NASA Astrophysics Data System (ADS)
Kanti Bera, Tushar
2018-03-01
Biological tissues are developed with biological cells which exhibit complex electrical impedance called electrical bioimpedance. Under an alternating electrical excitation the bioimpedance varies with the tissue anatomy, composition and the signal frequency. The current penetration and conduction paths vary with frequency of the applied signal. Bioimpedance spectroscopy is used to study the frequency response of the electrical impedance of biological materials noninvasively. In bioimpedance spectroscopy, a low amplitude electrical signal is injected to the tissue sample or body parts to characterization the sample in terms of its bioimpedance. The electrical current conduction phenomena, which is highly influenced by the tissue impedance and the signal frequency, is an important phenomena which should be studied to understand the bioimpedance techniques like bioelectrical impedance analysis (BIA), EIS, or else. In this paper the origin of bioelectrical impedance and current conduction phenomena has been reviewed to present a brief summary of bioelectrical impedance and the frequency dependent current conduction through biological tissues. Simulation studies are conducted with alternation current injection through a two dimensional model of biological tissues containing finite number of biological cells suspended in extracellular fluid. The paper demonstrates the simulation of alternating current conduction through biological tissues conducted by COMSOL Multiphysics. Simulation studies also show the frequency response of the tissue impedance for different tissue compositions.
NASA Astrophysics Data System (ADS)
Kosch, M.; Nielsen, E.
Two bi-static VHF radar systems STARE and SABRE have been employed to estimate ionospheric electric field distributions in the geomagnetic latitude range 61 1 - 69 3 degrees over Scandinavia corresponding to the global Region 2 current system 173 days of data from all four radars have been analysed during the period 1982 to 1986 The average magnetic field-aligned currents have been computed as a function of the Kp and Ae indices using an empirical model of ionospheric Pedersen and Hall conductance taking into account conductance gradients The divergence of horizontal Pedersen currents and Hall conductance gradients have approximately the same importance for generating the Region 2 field-aligned currents Pedersen conductance gradients have a significant modifying effect A case study of field-aligned currents has been performed using the STARE radar system to obtain the instantaneous ionospheric electric field distribution in the vicinity of an auroral arc The instantaneous Hall conductance was estimated from the Scandinavian Magnetometer Array This study clearly shows that even for quiet steady state geomagnetic conditions conductance gradients are important modifiers of magnetic field-aligned currents
Lee, Hyunyeol; Jeong, Woo Chul; Kim, Hyung Joong; Woo, Eung Je; Park, Jaeseok
2016-05-01
To develop a novel, current-controlled alternating steady-state free precession (SSFP)-based conductivity imaging method and corresponding MR signal models to estimate current-induced magnetic flux density (Bz ) and conductivity distribution. In the proposed method, an SSFP pulse sequence, which is in sync with alternating current pulses, produces dual oscillating steady states while yielding nonlinear relation between signal phase and Bz . A ratiometric signal model between the states was analytically derived using the Bloch equation, wherein Bz was estimated by solving a nonlinear inverse problem for conductivity estimation. A theoretical analysis on the signal-to-noise ratio of Bz was given. Numerical and experimental studies were performed using SSFP-FID and SSFP-ECHO with current pulses positioned either before or after signal encoding to investigate the feasibility of the proposed method in conductivity estimation. Given all SSFP variants herein, SSFP-FID with alternating current pulses applied before signal encoding exhibits the highest Bz signal-to-noise ratio and conductivity contrast. Additionally, compared with conventional conductivity imaging, the proposed method benefits from rapid SSFP acquisition without apparent loss of conductivity contrast. We successfully demonstrated the feasibility of the proposed method in estimating current-induced Bz and conductivity distribution. It can be a promising, rapid imaging strategy for quantitative conductivity imaging. © 2015 Wiley Periodicals, Inc.
Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.
Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2017-11-01
Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes.
Associating ground magnetometer observations with current or voltage generators
NASA Astrophysics Data System (ADS)
Hartinger, M. D.; Xu, Z.; Clauer, C. R.; Yu, Y.; Weimer, D. R.; Kim, H.; Pilipenko, V.; Welling, D. T.; Behlke, R.; Willer, A. N.
2017-07-01
A circuit analogy for magnetosphere-ionosphere current systems has two extremes for drivers of ionospheric currents: ionospheric electric fields/voltages constant while current/conductivity vary—the "voltage generator"—and current constant while electric field/conductivity vary—the "current generator." Statistical studies of ground magnetometer observations associated with dayside Transient High Latitude Current Systems (THLCS) driven by similar mechanisms find contradictory results using this paradigm: some studies associate THLCS with voltage generators, others with current generators. We argue that most of this contradiction arises from two assumptions used to interpret ground magnetometer observations: (1) measurements made at fixed position relative to the THLCS field-aligned current and (2) negligible auroral precipitation contributions to ionospheric conductivity. We use observations and simulations to illustrate how these two assumptions substantially alter expectations for magnetic perturbations associated with either a current or a voltage generator. Our results demonstrate that before interpreting ground magnetometer observations of THLCS in the context of current/voltage generators, the location of a ground magnetometer station relative to the THLCS field-aligned current and the location of any auroral zone conductivity enhancements need to be taken into account.
Current distribution in conducting nanowire networks
NASA Astrophysics Data System (ADS)
Kumar, Ankush; Vidhyadhiraja, N. S.; Kulkarni, Giridhar U.
2017-07-01
Conducting nanowire networks find diverse applications in solar cells, touch-screens, transparent heaters, sensors, and various related transparent conducting electrode (TCE) devices. The performances of these devices depend on effective resistance, transmittance, and local current distribution in these networks. Although, there have been rigorous studies addressing resistance and transmittance in TCE, not much attention is paid on studying the distribution of current. Present work addresses this compelling issue of understanding current distribution in TCE networks using analytical as well as Monte-Carlo approaches. We quantified the current carrying backbone region against isolated and dangling regions as a function of wire density (ranging from percolation threshold to many multiples of threshold) and compared the wired connectivity with those obtained from template-based methods. Further, the current distribution in the obtained backbone is studied using Kirchhoff's law, which reveals that a significant fraction of the backbone (which is believed to be an active current component) may not be active for end-to-end current transport due to the formation of intervening circular loops. The study shows that conducting wire based networks possess hot spots (extremely high current carrying regions) which can be potential sources of failure. The fraction of these hot spots is found to decrease with increase in wire density, while they are completely absent in template based networks. Thus, the present work discusses unexplored issues related to current distribution in conducting networks, which are necessary to choose the optimum network for best TCE applications.
Conductive paths through polycrystalline BaTiO{sub 3}: Scanning probe microscopy study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayvazian, Talin; Bersuker, Gennadi; Lingley, Zachary R.
2016-08-15
The microstructural features determining the leakage current through polycrystalline BaTiO{sub 3} films are investigated using Conductive Atomic Force Microscopy. Grain boundaries are found to be the dominant conductive paths compared to the conduction through the grains. Grain boundary currents are observed to reversibly rise with the increase of the applied DC voltages, indicating that the current is controlled by a field-activated charge transport process.
NASA Astrophysics Data System (ADS)
Xiang, An; Xu, Xingliang; Zhang, Lin; Li, Zhiqiang; Li, Juntao; Dai, Gang
2018-02-01
The conduction of current from n-4H-SiC into pyrogenic and dry oxidized films is studied. Anomalous current conduction was observed at a high electric field above 8 MV/cm for dry oxidized metal-oxide-semiconductor (MOS) capacitors, which cannot be interpreted in the framework of pure Fowler-Nordheim tunneling. The temperature-dependent current measurement and density of interface trap estimated from the hi-lo method for the SiO2/4H-SiC interface revealed that the combined current conduction of Fowler-Nordheim and Poole-Frenkel emission is responsible for the current conduction in both pyrogenic and dry oxidized MOS capacitors. Furthermore, the origin of temperature dependent current conduction is the Poole-Frenkel emission via the carbon pair defect trap level at 1.3 eV below the conduction band edge of SiO2. In addition, with the dry oxidized capacitors, the enhanced temperature dependent current above 8 MV/cm is attributed to the PF emission via a trap level at 1.47 eV below the conduction band edge of SiO2, which corresponds to another configuration of a carbon pair defect in SiO2 films.
The Entrepreneurship Education and Academic Performance
ERIC Educational Resources Information Center
Nasrullah, Shazia; Khan, Muhammad Saqib; Khan, Irfanullah
2016-01-01
The current study will be conducted in relationship of entrepreneurship education and academic performance. The study will be conducted on the post graduate students in the Universities of Bahawalpur. In the current study those universities will be included that were offering and also not offering entrepreneurship as a subject of teaching. The…
Separate Cl^- Conductances Activated by cAMP and Ca2+ in Cl^--Secreting Epithelial Cells
NASA Astrophysics Data System (ADS)
Cliff, William H.; Frizzell, Raymond A.
1990-07-01
We studied the cAMP- and Ca2+-activated secretory Cl^- conductances in the Cl^--secreting colonic epithelial cell line T84 using the whole-cell patch-clamp technique. Cl^- and K^+ currents were measured under voltage clamp. Forskolin or cAMP increased Cl^- current 2-15 times with no change in K^+ current. The current-voltage relation for cAMP-activated Cl^- current was linear from -100 to +100 mV and showed no time-dependent changes in current during voltage pulses. Ca2+ ionophores or increased pipette Ca2+ increased both Cl^- and K^+ currents 2-30 times. The Ca2+-activated Cl^- current was outwardly rectified, activated during depolarizing voltage pulses, and inactivated during hyperpolarizing voltage pulses. Addition of ionophore after forskolin further increased Cl^- conductance 1.5-5 times, and the current took on the time-dependent characteristics of that stimulated by Ca2+. Thus, cAMP and Ca2+ activate Cl^- conductances with different properties, implying that these second messengers activate different Cl^- channels or that they induce different conductive and kinetic states in the same Cl^- channel.
Use of a small overpotential approximation to analyze Geobacter sulfurreducens biofilm impedance
NASA Astrophysics Data System (ADS)
Babauta, Jerome T.; Beyenal, Haluk
2017-07-01
The electrochemical impedance of Geobacter sulfurreducens biofilms reflects the extracellular electron transfer mechanisms determining the rate of current output. Binned into two characteristic parameters, conductance and capacitance, biofilm impedance has received significant attention. The goal of this study was to evaluate a small overpotential approximation for extracellular electron transfer in G. sulfurreducens biofilms. Our motivation was to determine whether conductance over biofilm growth behaved linearly with respect to limiting current. Biofilm impedance was tracked during growth using electrochemical impedance spectroscopy (EIS) and electrochemical quartz crystal microbalance (eQCM). We showed that normalization of the biofilm impedance is useful for characterizing the changes during growth. When the conductance and capacitance were compared to the biofilm current, we found that: 1) conductance had a linear response and 2) constant phase elements (CPE) had a saturating response that coincided with the limiting current. We provided a framework using a simple iV relationship that predicted the conductance-current slope to be 9.57 V-1. CPEs showed more variability across biofilm replicates than conductance values. Although G. sulfurreducens biofilms were used here, other electrochemically active biofilms exhibiting catalytic waves could be studied using the same methods.
Temperature dependent charge transport in poly(3-hexylthiophene) diodes
NASA Astrophysics Data System (ADS)
Rahaman, Abdulla Bin; Sarkar, Atri; Banerjee, Debamalya
2018-04-01
In this work, we present charge transport properties of poly(3-hexylthiophene) (P3HT) diodes under dark conditions. Temperature dependent current-voltage (J-V) characteristics shows that charge transport represents a transition from ohomic to trap limited current. The forward current density obeys a power law J˜Vm, m>2 represents the space charge limited current region in presence of traps within the band gap. Frequency dependent conductivity has been studied in a temperature range 150K-473K. The dc conductivity values show Arrhenius like behavior and it gives conductivity activation energy 223 meV. Temperature dependent conductivity indicates a thermodynamic transition of our system.
... Success Home > Explore Research > Current Research Studies Current Research Studies Email Print + Share The Crohn’s & Colitis Foundation ... conducted online. Learn more about IBD Partners. Clinical Research Alliance The Clinical Research Alliance is a network ...
Charge transport study in bis{2-(2-hydroxyphenyl) benzoxazolate} zinc [Zn(hpb)2
NASA Astrophysics Data System (ADS)
Rai, Virendra Kumar; Srivastava, Ritu; Chauhan, Gayatri; Kumar, Arunandan; Kamalasanan, M. N.
2008-10-01
The nature of the electrical transport mechanism for carrier transport in pure bis {2-(2-hydroxyphenyl) benzoxazolate} zinc [Zn(hpb)2] has been studied by current voltage measurements of samples at different thicknesses and at different temperatures. Hole-only devices show ohmic conduction at low voltages and space charge conduction at high voltages. The space charge conduction is clearly identifiable with a square law dependence of current on voltage as well as the scaling of current inversely with the cube of thickness. With a further increase in voltage, the current increases with a Vm dependence with m varying with temperature typical of trap limited conduction with an exponential distribution of trap states. From the square law region the effective charge carrier mobility of holes has been evaluated as 2.5 × 10-11 m2 V-1 s-1. Electron-only devices however show electrode limited conduction, which was found to obey the Scott Malliaras model of charge injection.
Hiesgen, Renate; Helmly, Stefan; Galm, Ines; Morawietz, Tobias; Handl, Michael; Friedrich, K. Andreas
2012-01-01
The conductivity of fuel cell membranes as well as their mechanical properties at the nanometer scale were characterized using advanced tapping mode atomic force microscopy (AFM) techniques. AFM produces high-resolution images under continuous current flow of the conductive structure at the membrane surface and provides some insight into the bulk conducting network in Nafion membranes. The correlation of conductivity with other mechanical properties, such as adhesion force, deformation and stiffness, were simultaneously measured with the current and provided an indication of subsurface phase separations and phase distribution at the surface of the membrane. The distribution of conductive pores at the surface was identified by the formation of water droplets. A comparison of nanostructure models with high-resolution current images is discussed in detail. PMID:24958429
Chen, Chiao-Chen; Baker, Lane A
2011-01-07
Local conductance variations can be estimated by measuring ion current magnitudes with scanning ion conductance microscopy (SICM). Factors which influence image quality and quantitation of ion currents measured with SICM have been evaluated. Specifically, effects of probe-sample separation and pipette modulation have been systematically studied for the case of imaging conductance variations at pores in a polymer membrane under transmembrane concentration gradients. The influence of probe-sample separation on ion current images was evaluated using distance-modulated (ac) feedback. Approach curves obtained using non-modulated (dc) feedback were also recorded to determine the relative influence of pipette-generated convection by comparison of ion currents measured with both ac and dc feedback modes. To better interpret results obtained, comparison to a model based on a disk-shaped geometry for nanopores in the membrane, as well as relevant position-dependent parameters of the experiment is described. These results advance our current understanding of conductance measurements with SICM.
Study of local currents in low dimension materials using complex injecting potentials
NASA Astrophysics Data System (ADS)
He, Shenglai; Covington, Cody; Varga, Kálmán
2018-04-01
A complex potential is constructed to inject electrons into the conduction band, mimicking electron currents in nanoscale systems. The injected electrons are time propagated until a steady state is reached. The local current density can then be calculated to show the path of the conducting electrons on an atomistic level. The method allows for the calculation of the current density vectors within the medium as a function of energy of the conducting electron. Using this method, we investigate the electron pathway of graphene nanoribbons in various structures, molecular junctions, and black phosphorus nanoribbons. By analyzing the current flow through the structures, we find strong dependence on the structural geometry and the energy of the injected electrons. This method may be of general use in the study of nano-electronic materials and interfaces.
NASA Astrophysics Data System (ADS)
Xu, J.; Wang, Z.; Wang, C.; Li, J.; Gwiazda, R.; Paull, C. K.; Maier, K. L.
2016-12-01
Conductivity-Temperature (CT) sensors are one of the most common instruments in oceanographic research that record water conductivity and temperature, two most important parameters of ocean waters from which salinity is computed. When used in super-high turbid water or flows (e.g. turbidity currents or slurries), however, the working principle of CT sensors suggests possibility of bias in conductivity measurements. In this study, a series of lab experiments were conducted to investigate how the presence of high-concentrated sediment particles influences the conductivity readings from an inductive CT sensor. The results provided evidence to challenge a long-held notion that the reduced conductivity often seen inside turbidity currents is an indication of fresh water presence.
Drag and Lift Forces Between a Rotating Conductive Sphere and a Cylindrical Magnet
NASA Technical Reports Server (NTRS)
Nurge, Mark A.; Youngquist, Robert C.
2017-01-01
Modeling the interaction between a non-uniform magnetic field and a rotating conductive object allows study of the drag force which is used in applications such as eddy current braking and linear induction motors as well as the transition to a repulsive force that is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two step mathematics process is developed to find a closed form solution in terms of only two eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.
NOTE Effects of skeletal muscle anisotropy on induced currents from low-frequency magnetic fields
NASA Astrophysics Data System (ADS)
Tachas, Nikolaos J.; Samaras, Theodoros; Baskourelos, Konstantinos; Sahalos, John N.
2009-12-01
Studies which take into account the anisotropy of tissue dielectric properties for the numerical assessment of induced currents from low-frequency magnetic fields are scarce. In the present study, we compare the induced currents in two anatomical models, using the impedance method. In the first model, we assume that all tissues have isotropic conductivity, whereas in the second one, we assume anisotropic conductivity for the skeletal muscle. Results show that tissue anisotropy should be taken into account when investigating the exposure to low-frequency magnetic fields, because it leads to higher induced current values.
Conduction mechanism of leakage current due to the traps in ZrO2 thin film
NASA Astrophysics Data System (ADS)
Seo, Yohan; Lee, Sangyouk; An, Ilsin; Song, Chulgi; Jeong, Heejun
2009-11-01
In this work, a metal-oxide-semiconductor capacitor with zirconium oxide (ZrO2) gate dielectric was fabricated by an atomic layer deposition (ALD) technique and the leakage current characteristics under negative bias were studied. From the result of current-voltage curves there are two possible conduction mechanisms to explain the leakage current in the ZrO2 thin film. The dominant mechanism is the space charge limited conduction in the high-electric field region (1.5-5.0 MV cm-1) while the trap-assisted tunneling due to the existence of traps is prevailed in the low-electric field region (0.8-1.5 MV cm-1). Conduction caused by the trap-assisted tunneling is found from the experimental results of a weak temperature dependence of current, and the trap barrier height is obtained. The space charge limited conduction is evidenced, for different temperatures, by Child's law dependence of current density versus voltage. Child's law dependence can be explained by considering a single discrete trapping level and we can obtain the activation energy of 0.22 eV.
Zhang, S L; Xue, F; Wu, R; Cui, J; Jiang, Z M; Yang, X J
2009-04-01
Conductive atomic force microscopy has been employed to study the topography and conductance distribution of individual GeSi quantum dots (QDs) and quantum rings (QRs) during the transformation from QDs to QRs by depositing an Si capping layer on QDs. The current distribution changes significantly with the topographic transformation during the Si capping process. Without the capping layer, the QDs are dome-shaped and the conductance is higher at the ring region between the center and boundary than that at the center. After capping with 0.32 nm Si, the shape of the QDs changes to pyramidal and the current is higher at both the center and the arris. When the Si capping layer increases to 2 nm, QRs are formed and the current of individual QRs is higher at the rim than that at the central hole. By comparing the composition distributions obtained by scanning Auger microscopy and atomic force microscopy combined with selective chemical etching, the origin of the current distribution change is discussed.
On the Variability of Wilson Currents by Storm Type and Phase
NASA Technical Reports Server (NTRS)
Deierling, Wiebke; Kalb, Christina; Mach, Douglas; Liu, Chuntao; Peterson, Michael; Blakeslee, Richard
2014-01-01
Storm total conduction currents from electrified clouds are thought to play a major role in maintaining the potential difference between the earth's surface and the upper atmosphere within the Global Electric Circuit (GEC). However, it is not entirely known how the contributions of these currents vary by cloud type and phase of the clouds life cycle. Estimates of storm total conduction currents were obtained from data collected over two decades during multiple field campaigns involving the NASA ER-2 aircraft. In this study the variability of these currents by cloud type and lifecycle is investigated. We also compared radar derived microphysical storm properties with total storm currents to investigate whether these storm properties can be used to describe the current variability of different electrified clouds. The ultimate goal is to help improve modeling of the GEC via quantification and improved parameterization of the conduction current contribution of different cloud types.
Actions of subtype-specific purinergic ligands on rat spiral ganglion neurons.
Ito, Ken; Iwasaki, Shinichi; Kondo, Kenji; Dulon, Didier; Kaga, Kimitaka
2004-08-01
In a previous study we showed that, in rat spiral ganglion neurons (SGNs), the adenosine 5'-triphosphate (ATP)-evoked currents were a combination of the activation of ionotropic receptors (the first fast current) and the activation of metabotropic receptors which secondarily opened non-selective cation channels. These two conductances imply the involvement of different receptor subtypes. In the present study, we tested three subtype-specific purinergic ligands: alpha,beta-methylene ATP (a;pha,beta-meATP) for P2X receptors, uridine 5'-triphosphate (UTP) for P2Y receptors and 2'-3'-O-(4-benzoylbenzoyl) ATP (Bz-ATP) for P2Z (P2X(7)) receptors. Application of 100 microM alpha,beta-meATP did not trigger any significant change in membrane conductance, while the SGNs were responsive to ATP. Pressure application of UTP (100 microM, 1 s) evoked an inward current averaging 344+/-169 pA at a holding potential of -50 mV. The conductance developed after a latency averaging 1.5+/-0.6 s, took 4-6 s to peak and reversed slowly within 15-30 s. The current-voltage curve reversed near 0 mV, suggesting a non-selective cation conductance, like the second component of the ATP conductance. Bz-ATP evoked an inward current which developed without latency, was sustained during ligand application and was rapidly inactivated at the end of application: the same characteristics as the first component of the ATP-evoked current. The Bz-ATP conductance reversed around -10 mV, indicating also a non-selective cation conductance. These results suggest that, in SGNs, ATP acts via two different receptor subtypes, ionotropic P2Z receptors and metabotropic P2Y receptors, and that these two receptor subtypes can assume different physiological roles.
Determination of head conductivity frequency response in vivo with optimized EIT-EEG.
Dabek, Juhani; Kalogianni, Konstantina; Rotgans, Edwin; van der Helm, Frans C T; Kwakkel, Gert; van Wegen, Erwin E H; Daffertshofer, Andreas; de Munck, Jan C
2016-02-15
Electroencephalography (EEG) benefits from accurate head models. Dipole source modelling errors can be reduced from over 1cm to a few millimetres by replacing generic head geometry and conductivity with tailored ones. When adequate head geometry is available, electrical impedance tomography (EIT) can be used to infer the conductivities of head tissues. In this study, the boundary element method (BEM) is applied with three-compartment (scalp, skull and brain) subject-specific head models. The optimal injection of small currents to the head with a modular EIT current injector, and voltage measurement by an EEG amplifier is first sought by simulations. The measurement with a 64-electrode EEG layout is studied with respect to three noise sources affecting EIT: background EEG, deviations from the fitting assumption of equal scalp and brain conductivities, and smooth model geometry deviations from the true head geometry. The noise source effects were investigated depending on the positioning of the injection and extraction electrode and the number of their combinations used sequentially. The deviation from equal scalp and brain conductivities produces rather deterministic errors in the three conductivities irrespective of the current injection locations. With a realistic measurement of around 2 min and around 8 distant distinct current injection pairs, the error from the other noise sources is reduced to around 10% or less in the skull conductivity. The analysis of subsequent real measurements, however, suggests that there could be subject-specific local thinnings in the skull, which could amplify the conductivity fitting errors. With proper analysis of multiplexed sinusoidal EIT current injections, the measurements on average yielded conductivities of 340 mS/m (scalp and brain) and 6.6 mS/m (skull) at 2 Hz. From 11 to 127 Hz, the conductivities increased by 1.6% (scalp and brain) and 6.7% (skull) on the average. The proper analysis was ensured by using recombination of the current injections into virtual ones, avoiding problems in location-specific skull morphology variations. The observed large intersubject variations support the need for in vivo measurement of skull conductivity, resulting in calibrated subject-specific head models. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mukherjee, P. S.; Das, A. K.; Dutta, B.; Meikap, A. K.
2017-12-01
A comprehensive study on the prevailing conduction mechanism, dielectric relaxation and current voltage behaviour of Polyvinyl alcohol (PVA) - Silver (Ag) nanotube composite film has been reported. Introduction of Ag nanotubes enhances the conductivity and dielectric permittivity of film. Film shows semiconducting behaviour with two activation energies. The dc conductivity of the nanocomposite film obeys the adiabatic small polaron model. The dielectric permittivity can be analysed by modified Cole-Cole model. A non-Debye type asymmetric behaviour has been observed in the sample. The back to back Schottky diode concept has been used to describe the current-voltage characteristic of the composite film.
Electrical Conductivity and Barrier Properties of Lithium Niobate Thin Films
NASA Astrophysics Data System (ADS)
Gudkov, S. I.; Baklanova, K. D.; Kamenshchikov, M. V.; Solnyshkin, A. V.; Belov, A. N.
2018-04-01
The thin-film structures made of LiNbO3 and obtained via laser ablation and magnetron sputtering are studied with volt-farad and volt-ampere characteristics. A potential barrier on the Si-LiNbO3 interface was found for both types of the films with the capacitance-voltage characteristics. The current-voltage characteristics showed that there are several conduction mechanisms in the structures studied. The Poole-Frenkel effect and the currents limited by a space charge mainly contribute to the electrical conductivity in the LiNbO3 film produced with the laser ablation method. The currents limited by a space charge contribute to the main mechanism in the film heterostructure obtained with the magnetron sputtering method.
CdS-metal contact at higher current densities.
NASA Technical Reports Server (NTRS)
Stirn, R. J.; Boeer, K. W.; Dussel, G. A.
1973-01-01
An investigation is conducted concerning the mechanisms by which a steady flow of current proceeds through the contact when an external voltage is applied. The main characteristics of current mechanisms are examined, giving attention to photoemission from the cathode, thermionic emission, minority-carrier extraction, and the tunneling of electrons. A high-field domain analysis is conducted together with experimental studies. Particular attention is given to the range in which tunneling predominates.
Furlong, Mairead; McGilloway, Sinead; Bywater, Tracey; Hutchings, Judy; Smith, Susan M; Donnelly, Michael
2013-03-07
Early-onset child conduct problems are common and costly. A large number of studies and some previous reviews have focused on behavioural and cognitive-behavioural group-based parenting interventions, but methodological limitations are commonplace and evidence for the effectiveness and cost-effectiveness of these programmes has been unclear. To assess the effectiveness and cost-effectiveness of behavioural and cognitive-behavioural group-based parenting programmes for improving child conduct problems, parental mental health and parenting skills. We searched the following databases between 23 and 31 January 2011: CENTRAL (2011, Issue 1), MEDLINE (1950 to current), EMBASE (1980 to current), CINAHL (1982 to current), PsycINFO (1872 to current), Social Science Citation Index (1956 to current), ASSIA (1987 to current), ERIC (1966 to current), Sociological Abstracts (1963 to current), Academic Search Premier (1970 to current), Econlit (1969 to current), PEDE (1980 to current), Dissertations and Theses Abstracts (1980 to present), NHS EED (searched 31 January 2011), HEED (searched 31 January 2011), DARE (searched 31 January 2011), HTA (searched 31 January 2011), mRCT (searched 29 January 2011). We searched the following parent training websites on 31 January 2011: Triple P Library, Incredible Years Library and Parent Management Training. We also searched the reference lists of studies and reviews. We included studies if: (1) they involved randomised controlled trials (RCTs) or quasi-randomised controlled trials of behavioural and cognitive-behavioural group-based parenting interventions for parents of children aged 3 to 12 years with conduct problems, and (2) incorporated an intervention group versus a waiting list, no treatment or standard treatment control group. We only included studies that used at least one standardised instrument to measure child conduct problems. Two authors independently assessed the risk of bias in the trials and the methodological quality of health economic studies. Two authors also independently extracted data. We contacted study authors for additional information. This review includes 13 trials (10 RCTs and three quasi-randomised trials), as well as two economic evaluations based on two of the trials. Overall, there were 1078 participants (646 in the intervention group; 432 in the control group). The results indicate that parent training produced a statistically significant reduction in child conduct problems, whether assessed by parents (standardised mean difference (SMD) -0.53; 95% confidence interval (CI) -0.72 to -0.34) or independently assessed (SMD -0.44; 95% CI -0.77 to -0.11). The intervention led to statistically significant improvements in parental mental health (SMD -0.36; 95% CI -0.52 to -0.20) and positive parenting skills, based on both parent reports (SMD -0.53; 95% CI -0.90 to -0.16) and independent reports (SMD -0.47; 95% CI -0.65 to -0.29). Parent training also produced a statistically significant reduction in negative or harsh parenting practices according to both parent reports (SMD -0.77; 95% CI -0.96 to -0.59) and independent assessments (SMD -0.42; 95% CI -0.67 to -0.16). Moreover, the intervention demonstrated evidence of cost-effectiveness. When compared to a waiting list control group, there was a cost of approximately $2500 (GBP 1712; EUR 2217) per family to bring the average child with clinical levels of conduct problems into the non-clinical range. These costs of programme delivery are modest when compared with the long-term health, social, educational and legal costs associated with childhood conduct problems. Behavioural and cognitive-behavioural group-based parenting interventions are effective and cost-effective for improving child conduct problems, parental mental health and parenting skills in the short term. The cost of programme delivery was modest when compared with the long-term health, social, educational and legal costs associated with childhood conduct problems. Further research is needed on the long-term assessment of outcomes. Copyright © 2013 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Furlong, Mairead; McGilloway, Sinead; Bywater, Tracey; Hutchings, Judy; Smith, Susan M; Donnelly, Michael
2012-02-15
Early-onset child conduct problems are common and costly. A large number of studies and some previous reviews have focused on behavioural and cognitive-behavioural group-based parenting interventions, but methodological limitations are commonplace and evidence for the effectiveness and cost-effectiveness of these programmes has been unclear. To assess the effectiveness and cost-effectiveness of behavioural and cognitive-behavioural group-based parenting programmes for improving child conduct problems, parental mental health and parenting skills. We searched the following databases between 23 and 31 January 2011: CENTRAL (2011, Issue 1), MEDLINE (1950 to current), EMBASE (1980 to current), CINAHL (1982 to current), PsycINFO (1872 to current), Social Science Citation Index (1956 to current), ASSIA (1987 to current), ERIC (1966 to current), Sociological Abstracts (1963 to current), Academic Search Premier (1970 to current), Econlit (1969 to current), PEDE (1980 to current), Dissertations and Theses Abstracts (1980 to present), NHS EED (searched 31 January 2011), HEED (searched 31 January 2011), DARE (searched 31 January 2011), HTA (searched 31 January 2011), mRCT (searched 29 January 2011). We searched the following parent training websites on 31 January 2011: Triple P Library, Incredible Years Library and Parent Management Training. We also searched the reference lists of studies and reviews. We included studies if: (1) they involved randomised controlled trials (RCTs) or quasi-randomised controlled trials of behavioural and cognitive-behavioural group-based parenting interventions for parents of children aged 3 to 12 years with conduct problems, and (2) incorporated an intervention group versus a waiting list, no treatment or standard treatment control group. We only included studies that used at least one standardised instrument to measure child conduct problems. Two authors independently assessed the risk of bias in the trials and the methodological quality of health economic studies. Two authors also independently extracted data. We contacted study authors for additional information. This review includes 13 trials (10 RCTs and three quasi-randomised trials), as well as two economic evaluations based on two of the trials. Overall, there were 1078 participants (646 in the intervention group; 432 in the control group). The results indicate that parent training produced a statistically significant reduction in child conduct problems, whether assessed by parents (standardised mean difference (SMD) -0.53; 95% confidence interval (CI) -0.72 to -0.34) or independently assessed (SMD -0.44; 95% CI -0.77 to -0.11). The intervention led to statistically significant improvements in parental mental health (SMD -0.36; 95% CI -0.52 to -0.20) and positive parenting skills, based on both parent reports (SMD -0.53; 95% CI -0.90 to -0.16) and independent reports (SMD -0.47; 95% CI -0.65 to -0.29). Parent training also produced a statistically significant reduction in negative or harsh parenting practices according to both parent reports (SMD -0.77; 95% CI -0.96 to -0.59) and independent assessments (SMD -0.42; 95% CI -0.67 to -0.16). Moreover, the intervention demonstrated evidence of cost-effectiveness. When compared to a waiting list control group, there was a cost of approximately $2500 (GBP 1712; EUR 2217) per family to bring the average child with clinical levels of conduct problems into the non-clinical range. These costs of programme delivery are modest when compared with the long-term health, social, educational and legal costs associated with childhood conduct problems. Behavioural and cognitive-behavioural group-based parenting interventions are effective and cost-effective for improving child conduct problems, parental mental health and parenting skills in the short term. The cost of programme delivery was modest when compared with the long-term health, social, educational and legal costs associated with childhood conduct problems. Further research is needed on the long-term assessment of outcomes.
NASA Technical Reports Server (NTRS)
Otoshi, T. Y.; Franco, M. M.; Reilly, H. F., Jr.
1992-01-01
A significant amount of noise temperature can potentially be generated by currently unknown dissipative losses in the beam waveguide (BWG) shroud. The amount of noise temperature contribution from this source is currently being studied. In conjunction with this study, electrical conductivity measurements were made on samples of the DSS-13 BWG shroud material at 8.420 GHz. The effective conductivities of unpainted and painted samples of the BWG shroud were measured to be 0.01 x 10(exp 7) and 0.0036 x 10(exp 7) mhos/m, respectively. This value may be compared with 5.66 x 10(exp 7) mhos/m for high conductivity copper.
Methodological Approaches in Conducting Overviews: Current State in HTA Agencies
ERIC Educational Resources Information Center
Pieper, Dawid; Antoine, Sunya-Lee; Morfeld, Jana-Carina; Mathes, Tim; Eikermann, Michaela
2014-01-01
Objectives: Overviews search for reviews rather than for primary studies. They might have the potential to support decision making within a shorter time frame by reducing production time. We aimed to summarize available instructions for authors intending to conduct overviews as well as the currently applied methodology of overviews in…
Arpinar, V E; Hamamura, M J; Degirmenci, E; Muftuler, L T
2012-07-07
Magnetic resonance electrical impedance tomography (MREIT) is a technique that produces images of conductivity in tissues and phantoms. In this technique, electrical currents are applied to an object and the resulting magnetic flux density is measured using magnetic resonance imaging (MRI) and the conductivity distribution is reconstructed using these MRI data. Currently, the technique is used in research environments, primarily studying phantoms and animals. In order to translate MREIT to clinical applications, strict safety standards need to be established, especially for safe current limits. However, there are currently no standards for safe current limits specific to MREIT. Until such standards are established, human MREIT applications need to conform to existing electrical safety standards in medical instrumentation, such as IEC601. This protocol limits patient auxiliary currents to 100 µA for low frequencies. However, published MREIT studies have utilized currents 10-400 times larger than this limit, bringing into question whether the clinical applications of MREIT are attainable under current standards. In this study, we investigated the feasibility of MREIT to accurately reconstruct the relative conductivity of a simple agarose phantom using 200 µA total injected current and tested the performance of two MREIT reconstruction algorithms. These reconstruction algorithms used are the iterative sensitivity matrix method (SMM) by Ider and Birgul (1998 Elektrik 6 215-25) with Tikhonov regularization and the harmonic B(Z) proposed by Oh et al (2003 Magn. Reason. Med. 50 875-8). The reconstruction techniques were tested at both 200 µA and 5 mA injected currents to investigate their noise sensitivity at low and high current conditions. It should be noted that 200 µA total injected current into a cylindrical phantom generates only 14.7 µA current in imaging slice. Similarly, 5 mA total injected current results in 367 µA in imaging slice. Total acquisition time for 200 µA and 5 mA experiments was about 1 h and 8.5 min, respectively. The results demonstrate that conductivity imaging is possible at low currents using the suggested imaging parameters and reconstructing the images using iterative SMM with Tikhonov regularization, which appears to be more tolerant to noisy data than harmonic B(Z).
Wind-induced vibration of stay cables : brief
DOT National Transportation Integrated Search
2005-02-01
The objectives of this project were to: : Identify gaps in current knowledge base : Conduct analytical and experimental research in critical areas : Study performance of existing cable-stayed bridges : Study current mitigation methods...
NASA Astrophysics Data System (ADS)
Demkin, V. P.; Shchetinin, P. P.; Melnichuk, S. V.; Kingma, H.; Van de Berg, R.; Pleshkov, M. O.; Starkov, D. N.
2018-03-01
An electric model of current transmission through tissues of the vestibular labyrinth of a patient is suggested. To stimulate directly the vestibular nerve in surgical operation, terminations of the electrodes are implanted through the bone tissue of the labyrinth into the perilymph in the vicinity of the vestibular nerve. The biological tissue of the vestibular labyrinth surrounding the electrodes and having heterogeneous composition possesses conductive and dielectric properties. Thus, when a current pulse from the vestibular implant is applied to one of the electrodes, conductive disturbance currents may arise between the electrodes and the vestibular nerves that can significantly deteriorate the direct signal quality. To study such signals and to compensate for the conductive disturbance currents, an equivalent electric circuit with actual electric impedance properties of tissues of the vestibular system is suggested, and the time parameters of the conductive disturbance current transmission are calculated. It is demonstrated that these parameters can reach large values. The suggested electric model and the results of calculations can be used for perfection of the vestibular implant.
Parasitic Currents Caused by Different Ionic and Electronic Conductivities in Fuel Cell Anodes.
Schalenbach, Maximilian; Zillgitt, Marcel; Maier, Wiebke; Stolten, Detlef
2015-07-29
The electrodes in fuel cells simultaneously realize electric and ionic conductivity. In the case of acidic polymer electrolytes, the electrodes are typically made of composites of carbon-supported catalyst and Nafion polymer electrolyte binder. In this study, the interaction of the proton conduction, the electron conduction, and the electrochemical hydrogen conversion in such composite electrode materials was examined. Exposed to a hydrogen atmosphere, these composites displayed up to 10-fold smaller resistivities for the proton conduction than that of Nafion membranes. This effect was ascribed to the simultaneously occurring electrochemical hydrogen oxidation and evolution inside the composite samples, which are driven by different proton and electron resistivities. The parasitic electrochemical currents resulting were postulated to occur in the anode of fuel cells with polymer, solid oxide, or liquid alkaline electrolytes, when the ohmic drop of the ion conduction in the anode is higher with the anodic kinetic overvoltage (as illustrated in the graphical abstract). In this case, the parasitic electrochemical currents increase the anodic kinetic overpotential and the ohmic drop in the anode. Thinner fuel cell anodes with smaller ohmic drops for the ion conduction may reduce the parasitic electrochemical currents.
NASA Astrophysics Data System (ADS)
Jánský, Jaroslav; Lucas, Greg M.; Kalb, Christina; Bayona, Victor; Peterson, Michael J.; Deierling, Wiebke; Flyer, Natasha; Pasko, Victor P.
2017-12-01
This work analyzes different current source and conductivity parameterizations and their influence on the diurnal variation of the global electric circuit (GEC). The diurnal variations of the current source parameterizations obtained using electric field and conductivity measurements from plane overflights combined with global Tropical Rainfall Measuring Mission satellite data give generally good agreement with measured diurnal variation of the electric field at Vostok, Antarctica, where reference experimental measurements are performed. An approach employing 85 GHz passive microwave observations to infer currents within the GEC is compared and shows the best agreement in amplitude and phase with experimental measurements. To study the conductivity influence, GEC models solving the continuity equation in 3-D are used to calculate atmospheric resistance using yearly averaged conductivity obtained from the global circulation model Community Earth System Model (CESM). Then, using current source parameterization combining mean currents and global counts of electrified clouds, if the exponential conductivity is substituted by the conductivity from CESM, the peak to peak diurnal variation of the ionospheric potential of the GEC decreases from 24% to 20%. The main reason for the change is the presence of clouds while effects of 222Rn ionization, aerosols, and topography are less pronounced. The simulated peak to peak diurnal variation of the electric field at Vostok is increased from 15% to 18% from the diurnal variation of the global current in the GEC if conductivity from CESM is used.
Current conduction in junction gate field effect transistors. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Kim, C.
1970-01-01
The internal physical mechanism that governs the current conduction in junction-gate field effect transistors is studied. A numerical method of analyzing the devices with different length-to-width ratios and doping profiles is developed. This method takes into account the two dimensional character of the electric field and the field dependent mobility. Application of the method to various device models shows that the channel width and the carrier concentration in the conductive channel decrease with increasing drain-to-source voltage for conventional devices. It also shows larger differential drain conductances for shorter devices when the drift velocity is not saturated. The interaction of the source and the drain gives the carrier accumulation in the channel which leads to the space-charge-limited current flow. The important parameters for the space-charge-limited current flow are found to be the L/L sub DE ratio and the crossover voltage.
Single Nanopore Investigations with Ion Conductance Microscopy
Chen, Chiao-Chen; Zhou, Yi; Baker, Lane A.
2011-01-01
A three-electrode scanning ion conductance microscope (SICM) was used to investigate the local current-voltage properties of a single nanopore. In this experimental configuration, the response measured is a function of changes in the resistances involved in the pathways of ion migration. Single nanopore membranes utilized in this study were prepared with an epoxy painting procedure to isolate a single nanopore from a track-etch multi-pore membrane. Current-voltage responses measured with the SICM probe in the vicinity of a single nanopore were investigated in detail and agreed well with equivalent circuit models proposed in this study. With this modified SICM, the current-voltage responses characterized for the case of a single cylindrical pore and a single conical pore exhibit distinct conductance properties that originate from the geometry of nanopores. PMID:21923184
Hydrodynamics of spatially inhomogeneous real membranes
NASA Astrophysics Data System (ADS)
Kirii, V. A.; Shelistov, V. S.; Demekhin, E. A.
2017-07-01
Electrokinetic processes in the vicinity of inhomogeneous ion-selective surfaces (electrodes, membranes, microchannels, and nanochannels) consisting of alternating conducting and nonconducting regions in the presence of a normal-to-surface electric current are numerically studied. An increase in the electric current density is observed in the case of some particular alternation of conducting and nonconducting regions of the surface. The current-voltage characteristics of homogeneous and inhomogeneous electric membranes are found to be in qualitative agreement. Various physical phenomena leading to the emergence of a supercritical current in homogeneous and inhomogeneous membranes are detected.
NASA Astrophysics Data System (ADS)
Robinson, R. M.; Zanetti, L. J.; Anderson, B. J.; Korth, H.; Samara, M.; Michell, R.; Grubbs, G. A., II; Hampton, D. L.; Dropulic, A.
2016-12-01
A high latitude conductivity model based on field-aligned currents measured by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) provides the means for complete specification of electric fields and currents at high latitudes. Based on coordinated measurements made by AMPERE and the Poker Flat Incoherent Scatter Radar, the model determines the most likely value of the ionospheric conductance from the direction, magnitude, and magnetic local time of the field-aligned current. A conductance model driven by field-aligned currents ensures spatial and temporal consistency between the calculated electrodynamic parameters. To validate the results, the Pedersen and Hall conductances were used to calculate the energy flux associated with the energetic particle precipitation. When integrated over the entire hemisphere, the total energy flux compares well with the Hemispheric Power Index derived from the OVATION-PRIME model. The conductances were also combined with the field-aligned currents to calculate the self-consistent electric field, which was then used to compute horizontal currents and Joule heating. The magnetic perturbations derived from the currents replicate most of the variations observed in ground-based magnetograms. The model was used to study high latitude particle precipitation, currents, and Joule heating for 24 magnetic storms. In most cases, the total energy input from precipitating particles and Joule heating exhibits a sharply-peaked maximum at the times of local minima in Dst, suggesting a close coupling between the ring current and the high latitude currents driven by the Region 2 field-aligned currents. The rapid increase and decrease of the high latitude energy deposition suggests an explosive transfer of energy from the magnetosphere to the ionosphere just prior to storm recovery.
Charging in the ac Conductance of a Double Barrier Resonant Tunneling Structure
NASA Technical Reports Server (NTRS)
Anantram, M. P.; Saini, Subhash (Technical Monitor)
1998-01-01
There have been many studies of the linear response ac conductance of a double barrier resonant tunneling structure (DBRTS), both at zero and finite dc biases. While these studies are important, they fail to self consistently include the effect of the time dependent charge density in the well. In this paper, we calculate the ac conductance at both zero and finite do biases by including the effect of the time dependent charge density in the well in a self consistent manner. The charge density in the well contributes to both the flow of displacement currents in the contacts and the time dependent potential in the well. We find that including these effects can make a significant difference to the ac conductance and the total ac current is not equal to the simple average of the non-selfconsistently calculated conduction currents in the two contacts. This is illustrated by comparing the results obtained with and without the effect of the time dependent charge density included correctly. Some possible experimental scenarios to observe these effects are suggested.
Anisotropic conductivity imaging with MREIT using equipotential projection algorithm.
Değirmenci, Evren; Eyüboğlu, B Murat
2007-12-21
Magnetic resonance electrical impedance tomography (MREIT) combines magnetic flux or current density measurements obtained by magnetic resonance imaging (MRI) and surface potential measurements to reconstruct images of true conductivity with high spatial resolution. Most of the biological tissues have anisotropic conductivity; therefore, anisotropy should be taken into account in conductivity image reconstruction. Almost all of the MREIT reconstruction algorithms proposed to date assume isotropic conductivity distribution. In this study, a novel MREIT image reconstruction algorithm is proposed to image anisotropic conductivity. Relative anisotropic conductivity values are reconstructed iteratively, using only current density measurements without any potential measurement. In order to obtain true conductivity values, only either one potential or conductivity measurement is sufficient to determine a scaling factor. The proposed technique is evaluated on simulated data for isotropic and anisotropic conductivity distributions, with and without measurement noise. Simulation results show that the images of both anisotropic and isotropic conductivity distributions can be reconstructed successfully.
Propulsion Study for Small Transport Aircraft Technology (STAT)
NASA Technical Reports Server (NTRS)
Gill, J. C.; Earle, R. V.; Staton, D. V.; Stolp, P. C.; Huelster, D. S.; Zolezzi, B. A.
1980-01-01
Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988.
Current sheet formation in a sheared force-free-magnetic field. [in sun
NASA Technical Reports Server (NTRS)
Wolfson, Richard
1989-01-01
This paper presents the results of a study showing how continuous shearing motion of magnetic footpoints in a tenuous, infinitely conducting plasma can lead to the development of current sheets, despite the absence of such sheets or even of neutral points in the initial state. The calculations discussed here verify the earlier suggestion by Low and Wolfson (1988) that extended current sheets should form due to the shearing of a force-free quadrupolar magnetic field. More generally, this work augments earlier studies suggesting that the appearance of discontinuities - current sheets - may be a necessary consequence of the topological invariance imposed on the magnetic field geometry of an ideal MHD system by virtue of its infinite conductivity. In the context of solar physics, the work shows how the gradual and continuous motion of magnetic footpoints at the solar photosphere may lead to the buildup of magnetic energy that can then be released explosively when finite conductivity effects become important and lead to the rapid dissipation of current sheets. Such energy release may be important in solar flares, coronal mass ejections, and other eruptive events.
Sheath oscillation characteristics and effect on near-wall conduction in a krypton Hall thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fengkui, E-mail: fengkuizhang@163.com; Kong, Lingyi; Li, Chenliang
2014-11-15
Despite its affordability, the krypton Hall-effect thruster in applications always had problems in regard to performance. The reason for this degradation is studied from the perspective of the near-wall conductivity of electrons. Using the particle-in-cell method, the sheath oscillation characteristics and its effect on near-wall conduction are compared in the krypton and xenon Hall-effect thrusters both with wall material composed of BNSiO{sub 2}. Comparing these two thrusters, the sheath in the krypton-plasma thruster will oscillate at low electron temperatures. The near-wall conduction current is only produced by collisions between electrons and wall, thereby causing a deficiency in the channel current.more » The sheath displays spatial oscillations only at high electron temperature; electrons are then reflected to produce the non-oscillation conduction current needed for the krypton-plasma thruster. However, it is accompanied with intensified oscillations.« less
In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)
NASA Astrophysics Data System (ADS)
Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2017-01-01
New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.
Methods for recording and measuring tonic GABAA receptor-mediated inhibition
Bright, Damian P.; Smart, Trevor G.
2013-01-01
Tonic inhibitory conductances mediated by GABAA receptors have now been identified and characterized in many different brain regions. Most experimental studies of tonic GABAergic inhibition have been carried out using acute brain slice preparations but tonic currents have been recorded under a variety of different conditions. This diversity of recording conditions is likely to impact upon many of the factors responsible for controlling tonic inhibition and can make comparison between different studies difficult. In this review, we will firstly consider how various experimental conditions, including age of animal, recording temperature and solution composition, are likely to influence tonic GABAA conductances. We will then consider some technical considerations related to how the tonic conductance is measured and subsequently analyzed, including how the use of current noise may provide a complementary and reliable method for quantifying changes in tonic current. PMID:24367296
NASA Astrophysics Data System (ADS)
Das, A. K.; Bhowmik, R. N.; Meikap, A. K.
2018-05-01
We report a comprehensive study on hysteresis behaviour of current-voltage characteristic and impedance spectroscopy of granular semicrystalline poly(vinyl alcohol) (PVA) film. The charge carrier conduction mechanism and charge traps of granular PVA film by measuring and analyzing the temperature dependent current-voltage characteristic indicate a bi-stable electronic state in the film. A sharp transformation of charge carrier conduction mechanism from Poole-Frenkel emission to space charge limited current mechanism has been observed. An anomalous oscillatory behaviour of current has been observed due to electric pulse effect on the molecular chain of the polymer. Effect of microstructure on charge transport mechanism has been investigated from impedance spectroscopy analysis. An equivalent circuit model has been proposed to explain the result.
Perspectives on setting limits for RF contact currents: a commentary.
Tell, Richard A; Tell, Christopher A
2018-01-15
Limits for exposure to radiofrequency (RF) contact currents are specified in the two dominant RF safety standards and guidelines developed by the Institute of Electrical and Electronics Engineers (IEEE) and the International Commission on Non-Ionizing Radiation Protection (ICNIRP). These limits are intended to prevent RF burns when contacting RF energized objects caused by high local tissue current densities. We explain what contact currents are and review some history of the relevant limits with an emphasis on so-called "touch" contacts, i.e., contact between a person and a contact current source during touch via a very small contact area. Contact current limits were originally set on the basis of controlling the specific absorption rate resulting from the current flowing through regions of small conductive cross section within the body, such as the wrist or ankle. More recently, contact currents have been based on thresholds of perceived heating. In the latest standard from the IEEE developed for NATO, contact currents have been based on two research studies in which thresholds for perception of thermal warmth or thermal pain have been measured. Importantly, these studies maximized conductive contact between the subject and the contact current source. This factor was found to dominate the response to heating wherein high resistance contact, such as from dry skin, can result in local heating many times that from a highly conductive contact. Other factors such as electrode size and shape, frequency of the current and the physical force associated with contact are found to introduce uncertainty in threshold values when comparing data across multiple studies. Relying on studies in which the contact current is minimized for a given threshold does not result in conservative protection limits. Future efforts to develop limits on contact currents should include consideration of (1) the basis for the limits (perception, pain, tissue damage); (2) understanding of the practical conditions of real world exposure for contact currents such as contact resistance, size and shape of the contact electrode and applied force at the point of contact; (3) consistency of how contact currents are applied in research studies across different researchers; (4) effects of frequency.
Drag and lift forces between a rotating conductive sphere and a cylindrical magnet
NASA Astrophysics Data System (ADS)
Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.
2018-06-01
Modeling the interaction between a non-uniform magnetic field and a rotating conductive object provides insight into the drag force, which is used in applications such as eddy current braking and linear induction motors, as well as the transition to a repulsive force, which is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two-step mathematical process is developed to find a closed-form solution in terms of only three eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate-level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.
DOT National Transportation Integrated Search
2016-02-01
The Washington State Department of Transportation (WSDOT) regional planning programs address current and forecasted deficiencies of State highways through the conduct of corridor studies. This Guidance for the conduct of corridor planning studies is ...
NASA Astrophysics Data System (ADS)
Amma, Shin-ichi; Tokumoto, Yuki; Edagawa, Keiichi; Shibata, Naoya; Mizoguchi, Teruyasu; Yamamoto, Takahisa; Ikuhara, Yuichi
2010-05-01
Conductive nanowires were fabricated in GaN thin film by selectively doping of Al along threading dislocations. Electrical current flow localized at the nanowires was directly measured by a contact mode atomic force microscope. The current flow at the nanowires was considered to be Frenkel-Poole emission mode, suggesting the existence of the deep acceptor level along the nanowires as a possible cause of the current flow. The results obtained in this study show the possibility for fabricating nanowires using pipe-diffusion at dislocations in solid thin films.
NASA Technical Reports Server (NTRS)
Williamson, P. R.; Banks, P. M.
1976-01-01
The objectives of the Tethered Balloon Current Generator experiment are to: (1) generate relatively large regions of thermalized, field-aligned currents, (2) produce controlled-amplitude Alfven waves, (3) study current-driven electrostatic plasma instabilities, and (4) generate substantial amounts of power or propulsion through the MHD interaction. A large balloon (a diameter of about 30 m) will be deployed with a conducting surface above the space shuttle at a distance of about 10 km. For a generally eastward directed orbit at an altitude near 400 km, the balloon, connected to the shuttle by a conducting wire, will be positive with respect to the shuttle, enabling it to collect electrons. At the same time, the shuttle will collect positive ions and, upon command, emit an electron beam to vary current flow in the system.
A study of electrically active traps in AlGaN/GaN high electron mobility transistor
NASA Astrophysics Data System (ADS)
Yang, Jie; Cui, Sharon; Ma, T. P.; Hung, Ting-Hsiang; Nath, Digbijoy; Krishnamoorthy, Sriram; Rajan, Siddharth
2013-10-01
We have studied electron conduction mechanisms and the associated roles of the electrically active traps in the AlGaN layer of an AlGaN/GaN high electron mobility transistor structure. By fitting the temperature dependent I-V (Current-Voltage) curves to the Frenkel-Poole theory, we have identified two discrete trap energy levels. Multiple traces of I-V measurements and constant-current injection experiment all confirm that the main role of the traps in the AlGaN layer is to enhance the current flowing through the AlGaN barrier by trap-assisted electron conduction without causing electron trapping.
NASA Astrophysics Data System (ADS)
Yu, Y.; Jordanova, V. K.; McGranaghan, R. M.; Solomon, S. C.
2017-12-01
The ionospheric conductance, height-integrated electric conductivity, can regulate both the ionospheric electrodynamics and the magnetospheric dynamics because of its key role in determining the electric field within the coupled magnetosphere-ionosphere system. State-of-the-art global magnetosphere models commonly adopt empirical conductance calculators to obtain the auroral conductance. Such specification can bypass the complexity of the ionosphere-thermosphere chemistry but on the other hand breaks the self-consistent link within the coupled system. In this study, we couple a kinetic ring current model RAM-SCB-E that solves for anisotropic particle distributions with a two-stream electron transport code (GLOW) to more self-consistently compute the height-dependent electric conductivity, provided the auroral electron precipitation from the ring current model. Comparisons with the traditional empirical formula are carried out. It is found that the newly coupled modeling framework reveals smaller Hall and Pedersen conductance, resulting in a larger electric field. As a consequence, the subauroral polarization streams demonstrate a better agreement with observations from DMSP satellites. It is further found that the commonly assumed Maxwellian spectrum of the particle precipitation is not globally appropriate. Instead, a full precipitation spectrum resulted from wave particle interactions in the ring current accounts for a more comprehensive precipitation spectrum.
Method and apparatus for casting conductive and semi-conductive materials
Ciszek, T.F.
1984-08-13
A method and apparatus is disclosed for casting conductive and semi-conductive materials. The apparatus includes a plurality of conductive members arranged to define a container-like area having a desired cross-sectional shape. A portion or all of the conductive or semi-conductive material which is to be cast is introduced into the container-like area. A means is provided for inducing the flow of an electrical current in each of the conductive members, which currents act collectively to induce a current flow in the material. The induced current flow through the conductive members is in a direction substantially opposite to the induced current flow in the material so that the material is repelled from the conductive members during the casting process.
NASA Astrophysics Data System (ADS)
Abu-Nabah, Bassam A.
Recent research results indicated that eddy current conductivity measurements can be exploited for nondestructive evaluation of near-surface residual stresses in surface-treated nickel-base superalloy components. Most of the previous experimental studies were conducted on highly peened (Almen 10-16A) specimens that exhibit harmful cold work in excess of 30% plastic strain. Such high level of cold work causes thermo-mechanical relaxation at relatively modest operational temperatures; therefore the obtained results were not directly relevant to engine manufacturers and end users. The main reason for choosing peening intensities in excess of recommended normal levels was that in low-conductivity engine alloys the eddy current penetration depth could not be forced below 0.2 mm without expanding the measurements above 10 MHz which is beyond the operational range of most commercial eddy current instruments. As for shot-peened components, it was initially felt that the residual stress effect was more difficult to separate from cold work, texture, and inhomogeneity effects in titanium alloys than in nickel-base superalloys. In addition, titanium alloys have almost 50% lower electric conductivity than nickel-base superalloys; therefore require proportionally higher inspection frequencies, which was not feasible until our recent breakthrough in instrument development. Our work has been focused on six main aspects of this continuing research, namely, (i) the development of an iterative inversion technique to better retrieve the depth-dependent conductivity profile from the measured frequency-dependent apparent eddy current conductivity (AECC), (ii) the extension of the frequency range up to 80 MHz to better capture the peak compressive residual stress in nickel-base superalloys using a new eddy current conductivity measuring system, which offers better reproducibility, accuracy and measurement speed than the previously used conventional systems, (iii) the lift-off effect on high frequency eddy current spectroscopy, (iv) the development of custom-made spiral coils to allow eddy current conductivity characterization over the whole frequency range of interest with reduced coil sensitivity to lift off, (v) the benefits of implementing a semi-quadratic system calibration in reducing the coil sensitivity to lift-off, and (vi) the feasibility of adapting high-frequency eddy current residual stress characterization for shot-peened titanium alloys.
Nilius, B; Reichenbach, A
1988-06-01
Radial glial (Müller) cells were isolated from rabbit retinae by papaine and mechanical dissociation. Regional membrane properties of these cells were studied by using the patch-clamp technique. In the course of our experiments, we found three distinct types of large K+ conducting channels. The vitread process membrane was dominated by high conductance inwardly rectifying (HCR) channels which carried, in the open state, inward currents along a conductance of about 105 pS (symmetrical solutions with 140 mM K+) but almost no outward currents. In the membrane of the soma and the proximal distal process, we found low conductance inwardly rectifying (LCR) channels which had an open state-conductance of about 60 pS and showed rather weak rectification. The endfoot membrane, on the other hand, was found to contain non-rectifying very high conductance (VHC) channels with an open state-conductance of about 360 pS (same solutions). These results suggest that mammalian Müller cells express regional membrane specializations which are optimized to carry spatial buffering currents of excess K+ ions.
ERIC Educational Resources Information Center
Kus, Zafer
2015-01-01
The current study aims to investigate social studies and science teachers' attitudes and classroom practices associated with controversial issues. The study is a qualitative research based on data collected through interviews and observation. Social studies and Science teachers participated in the current study which was conducted in Kirsehir, a…
NASA Astrophysics Data System (ADS)
Tarao, H.; Kuisti, H.; Korpinen, L.; Hayashi, N.; Isaka, K.
2012-05-01
Contact currents flow through the human body when a conducting object with different potential is touched. There are limited reports on numerical dosimetry for contact current exposure compared with electromagnetic field exposures. In this study, using an anatomical human adult male model, we performed numerical calculation of internal electric fields resulting from 60 Hz contact current flowing from the left hand to the left foot as a basis case. Next, we performed a variety of similar calculations with varying tissue conductivity and contact area, and compared the results with the basis case. We found that very low conductivity of skin and a small electrode size enhanced the internal fields in the muscle, subcutaneous fat and skin close to the contact region. The 99th percentile value of the fields in a particular tissue type did not reliably account for these fields near the electrode. In the arm and leg, the internal fields for the muscle anisotropy were identical to those in the isotropy case using a conductivity value longitudinal to the muscle fibre. Furthermore, the internal fields in the tissues abreast of the joints such as the wrist and the elbow, including low conductivity tissues, as well as the electrode contact region, exceeded the ICNIRP basic restriction for the general public with contact current as the reference level value.
Solvent effects on polysulfide redox kinetics and ionic conductivity in lithium-sulfur batteries
Fan, Frank Y.; Pan, Menghsuan Sam; Lau, Kah Chun; ...
2016-11-25
Lithium-sulfur (Li-S) batteries have high theoretical energy density and low raw materials cost compared to present lithium-ion batteries and are thus promising for use in electric transportation and other applications. A major obstacle for Li-S batteries is low rate capability, especially at the low electrolyte/sulfur (E/S) ratios required for high energy density. Herein, we investigate several potentially rate-limiting factors for Li-S batteries. We study the ionic conductivity of lithium polysulfide solutions of varying concentration and in different ether-based solvents and their exchange current density on glassy carbon working electrodes. We believe this is the first such investigation of exchange currentmore » density for lithium polysulfide in solution. Exchange current densities are measured using both electrochemical impedance spectroscopy and steady-state galvanostatic polarization. In the range of interest (1-8 M [S]), the ionic conductivity monotonically decreases with increasing sulfur concentration while exchange current density shows a more complicated relationship to sulfur concentration. The electrolyte solvent dramatically affects ionic conductivity and exchange current density. Finally, the measured ionic conductivities and exchange current densities are also used to interpret the overpotential and rate capability of polysulfide-nanocarbon suspensions; this analysis demonstrates that ionic conductivity is the rate-limiting property in the solution regime (i.e. between Li 2S 8 and Li 2S 4).« less
An analysis of electrical conductivity model in saturated porous media
NASA Astrophysics Data System (ADS)
Cai, J.; Wei, W.; Qin, X.; Hu, X.
2017-12-01
Electrical conductivity of saturated porous media has numerous applications in many fields. In recent years, the number of theoretical methods to model electrical conductivity of complex porous media has dramatically increased. Nevertheless, the process of modeling the spatial conductivity distributed function continues to present challenges when these models used in reservoirs, particularly in porous media with strongly heterogeneous pore-space distributions. Many experiments show a more complex distribution of electrical conductivity data than the predictions derived from the experiential model. Studies have observed anomalously-high electrical conductivity of some low-porosity (tight) formations compared to more- porous reservoir rocks, which indicates current flow in porous media is complex and difficult to predict. Moreover, the change of electrical conductivity depends not only on the pore volume fraction but also on several geometric properties of the more extensive pore network, including pore interconnection and tortuosity. In our understanding of electrical conductivity models in porous media, we study the applicability of several well-known methods/theories to electrical characteristics of porous rocks as a function of pore volume, tortuosity and interconnection, to estimate electrical conductivity based on the micro-geometrical properties of rocks. We analyze the state of the art of scientific knowledge and practice for modeling porous structural systems, with the purpose of identifying current limitations and defining a blueprint for future modeling advances. We compare conceptual descriptions of electrical current flow processes in pore space considering several distinct modeling approaches. Approaches to obtaining more reasonable electrical conductivity models are discussed. Experiments suggest more complex relationships between electrical conductivity and porosity than experiential models, particularly in low-porosity formations. However, the available theoretical models combined with simulations do provide insight to how microscale physics affects macroscale electrical conductivity in porous media.
Electrodynamics of the middle atmosphere: Superpressure balloon program
NASA Technical Reports Server (NTRS)
Holzworth, Robert H.
1987-01-01
In this experiment a comprehensive set of electrical parameters were measured during eight long duration flights in the southern hemisphere stratosphere. These flight resulted in the largest data set ever collected from the stratosphere. The stratosphere has never been electrodynamically sampled in the systematic manner before. New discoveries include short term variability in the planetary scale electric current system, the unexpected observation of stratospheric conductivity variations over thunderstorms and the observation of direct stratospheric conductivity variations following a relatively small solar flare. Major statistical studies were conducted of the large scale current systems, the stratospheric conductivity and the neutral gravity waves (from pressure and temperature data) using the entire data set.
Investigation of the resistive switching in AgxAsS2 layer by conductive AFM
NASA Astrophysics Data System (ADS)
Zhang, Bo; Kutalek, Petr; Knotek, Petr; Hromadko, Ludek; Macak, Jan M.; Wagner, Tomas
2016-09-01
In this paper, a study of resistive switching in AgxAsS2 layer, based on a utilization of conductive atomic force microscope (AFM), is reported. As the result of biasing, two distinct regions were created on the surface (the conductive region and non-conductive region). Both were analysed from the spread current maps. The volume change, corresponding to the growth of Ag particles, was derived from the topological maps, recorded simultaneously with the current maps. Based on the results, a model explaining the mechanism of the Ag particle and Ag filament formation was proposed from the distribution of charge carriers and Ag ions.
CHARACTERIZING PESTICIDE RESIDUE TRANSFER EFFICIENCIES USING FLUORESCENT TRACER IMAGING TECHNIQUES
To reduce the uncertainty associated with current estimates of children's exposure to pesticides by dermal contact and non-dietary ingestion, residue transfer data are required. Prior to conducting exhaustive studies, a screening study was conducted to identify the important pa...
Alternating current conduction studies on polypyrrole-iron nanocomposite at room temperature
NASA Astrophysics Data System (ADS)
Kumar, T. G. Naveen; Megha, R.; Revanasiddappa, M.; Ravikiran, Y. T.; Kumari, S. C. Vijaya
2018-05-01
In the present work, Polypyrrole (PPy) and Polypyrrole-Iron (PPy-Fe) nanocomposite were synthesized separately by chemical polymerisation method and then they were structurally characterised by Fourier transform infrared spectroscopy (FTIR) and Transmission electron microscopy (TEM) techniques. The alternate current (AC) response characteristics at room temperature of PPy and the composite were comparatively studied in the frequency range 100Hz-1MHz. The real part of conductivities of both PPy and the composite were interpreted as power law of frequency and the frequency exponent s was found to lie in the range 0< s<1 in both the cases. The nanocomposite has shown significant improvement in conductivity as compared to PPy.
Reciprocal Modulation of IK1–INa Extends Excitability in Cardiac Ventricular Cells
Varghese, Anthony
2016-01-01
The inwardly rectifying potassium current (IK1) and the fast inward sodium current (INa) are reciprocally modulated in mammalian ventricular myocytes. An increase in the expression of channels responsible for one of these two currents results in a corresponding increase in expression of the other. These currents are critical in the propagation of action potentials (AP) during the normal functioning of the heart. This study identifies a physiological role for IK1–INa reciprocal modulation in ventricular fiber activation thresholds and conduction. Simulations of action potentials in single cells and propagating APs in cardiac fibers were carried out using an existing model of electrical activity in cardiac ventricular myocytes. The conductances, GK1, of the inwardly rectifying potassium current, and GNa, of the fast inward sodium current were modified independently and in tandem to simulate reciprocal modulation. In single cells, independent modulation of GK1 alone resulted in changes in activation thresholds that were qualitatively similar to those for reciprocal GK1–GNa modulation and unlike those due to independent modulation of GNa alone, indicating that GK1 determines the cellular activation threshold. On the other hand, the variations in conduction velocity in cardiac cell fibers were similar for independent GNa modulation and for tandem changes in GK1–GNa, suggesting that GNa is primarily responsible for setting tissue AP conduction velocity. Conduction velocity dependence on GK1–GNa is significantly affected by the intercellular gap junction conductance. While the effects on the passive fiber space constant due to changes in both GK1 and the intercellular gap junction conductance, Ggj, were in line with linear cable theory predictions, both conductances had surprisingly large effects on fiber activation thresholds. Independent modulation of GK1 rendered cardiac fibers inexcitable at higher levels of GK1 whereas tandem GK1–GNa changes allowed fibers to remain excitable at high GK1 values. Reciprocal modulation of the inwardly rectifying potassium current and the fast inward sodium current may have a functional role in allowing cardiac tissue to remain excitable when IK1 is upregulated. PMID:27895596
Current collectors for improved safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelmalak, Michael Naguib; Allu, Srikanth; Dudney, Nancy J.
A battery electrode assembly includes a current collector with conduction barrier regions having a conductive state in which electrical conductivity through the conduction barrier region is permitted, and a safety state in which electrical conductivity through the conduction barrier regions is reduced. The conduction barrier regions change from the conductive state to the safety state when the current collector receives a short-threatening event. An electrode material can be connected to the current collector. The conduction barrier regions can define electrical isolation subregions. A battery is also disclosed, and methods for making the electrode assembly, methods for making a battery, andmore » methods for operating a battery.« less
Nanopurification of semen improves AI pregnancy rates in beef cattle
USDA-ARS?s Scientific Manuscript database
Reproductive efficiency is several times more important than any other factor affecting economic efficiency in beef production. Multiple studies have been conducted to improve fertility of beef cows, but few studies have been conducted to improve fertility in sires. Also, with current improvements...
Vail, III, William Banning
2001-01-01
Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information useful to determine the resistivity of adjacent geological formations from within the cased well are described. The multiple electrode apparatus has a plurality of spaced apart voltage measurement electrodes that electrically engage a portion of the interior of the cased well. During measurements of information useful to determine formation resistivity, current is conducted between a first current conducting electrode in electrical contact with the interior of the cased well to a second current conducting electrode that is also in electrical contact with the interior of the cased well. The first and second current conducting electrodes are separated by a distance sufficient so that at least a portion of the current conducted between the first and second current conducting electrodes is conducted through the geological formation of interest.
Effect of electrical coupling on ionic current and synaptic potential measurements.
Rabbah, Pascale; Golowasch, Jorge; Nadim, Farzan
2005-07-01
Recent studies have found electrical coupling to be more ubiquitous than previously thought, and coupling through gap junctions is known to play a crucial role in neuronal function and network output. In particular, current spread through gap junctions may affect the activation of voltage-dependent conductances as well as chemical synaptic release. Using voltage-clamp recordings of two strongly electrically coupled neurons of the lobster stomatogastric ganglion and conductance-based models of these neurons, we identified effects of electrical coupling on the measurement of leak and voltage-gated outward currents, as well as synaptic potentials. Experimental measurements showed that both leak and voltage-gated outward currents are recruited by gap junctions from neurons coupled to the clamped cell. Nevertheless, in spite of the strong coupling between these neurons, the errors made in estimating voltage-gated conductance parameters were relatively minor (<10%). Thus in many cases isolation of coupled neurons may not be required if a small degree of measurement error of the voltage-gated currents or the synaptic potentials is acceptable. Modeling results show, however, that such errors may be as high as 20% if the gap-junction position is near the recording site or as high as 90% when measuring smaller voltage-gated ionic currents. Paradoxically, improved space clamp increases the errors arising from electrical coupling because voltage control across gap junctions is poor for even the highest realistic coupling conductances. Furthermore, the common procedure of leak subtraction can add an extra error to the conductance measurement, the sign of which depends on the maximal conductance.
Nayak, Alpana; Suresh, K A
2008-08-01
We have studied the electrical conductivity in monolayer films of an ionic disk-shaped liquid-crystal molecule, pyridinium tethered with hexaalkoxytriphenylene (PyTp), and its complex with DNA by current-sensing atomic force microscopy (CS-AFM). The pure PyTp and PyTp-DNA complex monolayer films were first formed at the air-water interface and then transferred onto conducting substrates by the Langmuir-Blodgett (LB) technique to study the nanoscale electron transport through these films. The conductive tip of CS-AFM, the LB film, and the metal substrate form a nanoscopic metal-LB film-metal (M-LB-M) junction. We have measured the current-voltage (I-V) characteristics for the M-LB-M junction using CS-AFM and have analyzed the data quantitatively. We find that the I-V curves fit well to the Fowler-Nordheim (FN) model, suggesting electron tunneling to be a possible mechanism for electron transport in our system. Further, analysis of the I-V curves based on the FN model yields the barrier heights of PyTp-DNA complex and pure PyTp films. Electron transport studies of films of ionic disk-shaped liquid-crystal molecules and their complex with DNA are important from the point of view of their applications in organic electronics.
NASA Astrophysics Data System (ADS)
Nayak, Alpana; Suresh, K. A.
2008-08-01
We have studied the electrical conductivity in monolayer films of an ionic disk-shaped liquid-crystal molecule, pyridinium tethered with hexaalkoxytriphenylene (PyTp), and its complex with DNA by current-sensing atomic force microscopy (CS-AFM). The pure PyTp and PyTp-DNA complex monolayer films were first formed at the air-water interface and then transferred onto conducting substrates by the Langmuir-Blodgett (LB) technique to study the nanoscale electron transport through these films. The conductive tip of CS-AFM, the LB film, and the metal substrate form a nanoscopic metal-LB film-metal (M-LB-M) junction. We have measured the current-voltage (I-V) characteristics for the M-LB-M junction using CS-AFM and have analyzed the data quantitatively. We find that the I-V curves fit well to the Fowler-Nordheim (FN) model, suggesting electron tunneling to be a possible mechanism for electron transport in our system. Further, analysis of the I-V curves based on the FN model yields the barrier heights of PyTp-DNA complex and pure PyTp films. Electron transport studies of films of ionic disk-shaped liquid-crystal molecules and their complex with DNA are important from the point of view of their applications in organic electronics.
Conductivity Analysis of Membranes for High-Temperature PEMFC Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, R.; Turner, J.A.
2005-01-01
Low-temperature operation requirements for per-fluorinated membranes are one factor that limits the viability of current fuel cell technology for transportation and other uses. Because of this, high-temperature membrane materials are being researched. The protonic conductivity of organic/inorganic hybrid composites, Nafion® analog material, and heteropoly acid doped Nafion membranes were studied using a BekkTech® conductivity test cell as a hydrogen pump. The goal was to find a high-temperature membrane with sufficient enough conductive properties to replace the currently implemented low-temperature membranes, such as Nafion. Four-point conductivity measurements were taken using a hydrogen pump experiment. Results showed that one of the organic/inorganicmore » membranes that we tested had similar protonic conductivity to Nafion. Nafion analog membranes were shown to have similar to slightly better conductivity than Nafion at high-temperatures. However, like Nafion, performance dropped upon dehydration of the membrane at higher temperatures. Of the heteropoly acid doped Nafion membranes studied, silicotungstic acid was found to be, overall, the most promising for use as a dopant.« less
Simultaneous measurement of skin potential and conductance in electrodermal response monitoring
NASA Astrophysics Data System (ADS)
Jabbari, A.; Johnsen, B.; Grimnes, S.; Martinsen, Ø. G.
2010-04-01
Measurement of electrodermal activity (EDA) has been an important tool in psychophysiological research. The emotional sweat activity is very sensitive to psychological stimuli or conditions. The changes are easily detected by means of electrical measurements and since the sweat ducts are predominantly resistive, a low-frequency conductance measurement is appropriate for measurement of skin conductance in electrodermal response. The main purpose of this study was to develop a measuring system where DC current was replaced by a small AC current in a system so the DC potential and AC conductance could be measured simultaneously at the same skin site. A small, battery operated, PDA based instrument has been developed. The preliminary results of this ongoing study show that there is additional information in the DC potential channel and that different stimuli seem to produce slightly different response patterns.
Effect of bending and vacancies on the conductance of carbon nanotubes
NASA Astrophysics Data System (ADS)
Hansson, Anders; Paulsson, Magnus; Stafström, Sven
2000-09-01
Electron transport through nanotubes is studied theoretically using the Landauer formalism. The studies are carried out for finite metallic nanotubes that bridge two contacts pads. The current is observed to increase stepwise with the applied voltage. Each step corresponds to resonance tunneling including one single-particle eigenstate of the nanotube. Moderate bending of the nanotube results in a shift of the single-particle levels but the overall current remains essentially unaffected. For large bending, however, the π electron system becomes more disturbed, which introduces backscattering and a marked decrease in the conductivity along the tube. A single carbon vacancy in the nanotube is shown to have very small effect on the conductivity in the center of the metallic band whereas, by increasing the defect concentration the conductivity decreases in the same way as for the strongly bent tubes.
Differential Electrochemical Conductance Imaging at the Nanoscale.
López-Martínez, Montserrat; Artés, Juan Manuel; Sarasso, Veronica; Carminati, Marco; Díez-Pérez, Ismael; Sanz, Fausto; Gorostiza, Pau
2017-09-01
Electron transfer in proteins is essential in crucial biological processes. Although the fundamental aspects of biological electron transfer are well characterized, currently there are no experimental tools to determine the atomic-scale electronic pathways in redox proteins, and thus to fully understand their outstanding efficiency and environmental adaptability. This knowledge is also required to design and optimize biomolecular electronic devices. In order to measure the local conductance of an electrode surface immersed in an electrolyte, this study builds upon the current-potential spectroscopic capacity of electrochemical scanning tunneling microscopy, by adding an alternating current modulation technique. With this setup, spatially resolved, differential electrochemical conductance images under bipotentiostatic control are recorded. Differential electrochemical conductance imaging allows visualizing the reversible oxidation of an iron electrode in borate buffer and individual azurin proteins immobilized on atomically flat gold surfaces. In particular, this method reveals submolecular regions with high conductance within the protein. The direct observation of nanoscale conduction pathways in redox proteins and complexes enables important advances in biochemistry and bionanotechnology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sabzwari, Saniya; Kauser, Samreen; Khuwaja, Ali Khan
2009-11-16
The developing world has had limited quality research and in Pakistan, research is still in its infancy. We conducted a study to assess the proportion of junior faculty involved in research to highlight their attitude towards research, and identify the factors associated with their research involvement. A cross-sectional study was conducted in four medical universities/teaching hospitals in Pakistan, representing private and public sectors. A pre-tested, self-administered questionnaire was used to collect information from 176 junior faculty members of studied universities/hospitals. Logistic regression analysis was used to identify factors related to attitudes and barriers in research among those currently involved in research with those who were not. Overall, 41.5% of study subjects were currently involved in research. A highly significant factor associated with current research involvement was research training during the post-graduate period (p < 0.001). Other factors associated with current involvement in research were male gender, working in the public sector and previous involvement in research. Overall, a large majority (85.2%) of doctors considered research helpful in their profession and had a positive attitude towards research; nevertheless this positive attitude was more frequently reported by doctors who were currently involved in research compared to those who were not (OR = 4.69; 95% CI = 1.54-14.26). Similarly, a large proportion (83.5%) of doctors considered research difficult to conduct; higher by doctors who were not presently involved in research (OR = 2.74; 95% CI = 1.20-6.22) Less than half of the study participants were currently involved in research. Research output may improve if identified barriers are rectified. Further studies are recommended in this area.
Electrode Models for Electric Current Computed Tomography
CHENG, KUO-SHENG; ISAACSON, DAVID; NEWELL, J. C.; GISSER, DAVID G.
2016-01-01
This paper develops a mathematical model for the physical properties of electrodes suitable for use in electric current computed tomography (ECCT). The model includes the effects of discretization, shunt, and contact impedance. The complete model was validated by experiment. Bath resistivities of 284.0, 139.7, 62.3, 29.5 Ω · cm were studied. Values of “effective” contact impedance z used in the numerical approximations were 58.0, 35.0, 15.0, and 7.5 Ω · cm2, respectively. Agreement between the calculated and experimentally measured values was excellent throughout the range of bath conductivities studied. It is desirable in electrical impedance imaging systems to model the observed voltages to the same precision as they are measured in order to be able to make the highest resolution reconstructions of the internal conductivity that the measurement precision allows. The complete electrode model, which includes the effects of discretization of the current pattern, the shunt effect due to the highly conductive electrode material, and the effect of an “effective” contact impedance, allows calculation of the voltages due to any current pattern applied to a homogeneous resistivity field. PMID:2777280
Electrode models for electric current computed tomography.
Cheng, K S; Isaacson, D; Newell, J C; Gisser, D G
1989-09-01
This paper develops a mathematical model for the physical properties of electrodes suitable for use in electric current computed tomography (ECCT). The model includes the effects of discretization, shunt, and contact impedance. The complete model was validated by experiment. Bath resistivities of 284.0, 139.7, 62.3, 29.5 omega.cm were studied. Values of "effective" contact impedance zeta used in the numerical approximations were 58.0, 35.0, 15.0, and 7.5 omega.cm2, respectively. Agreement between the calculated and experimentally measured values was excellent throughout the range of bath conductivities studied. It is desirable in electrical impedance imaging systems to model the observed voltages to the same precision as they are measured in order to be able to make the highest resolution reconstructions of the internal conductivity that the measurement precision allows. The complete electrode model, which includes the effects of discretization of the current pattern, the shunt effect due to the highly conductive electrode material, and the effect of an "effective" contact impedance, allows calculation of the voltages due to any current pattern applied to a homogeneous resistivity field.
Design of conduction cooling system for a high current HTS DC reactor
NASA Astrophysics Data System (ADS)
Dao, Van Quan; Kim, Taekue; Le Tat, Thang; Sung, Haejin; Choi, Jongho; Kim, Kwangmin; Hwang, Chul-Sang; Park, Minwon; Yu, In-Keun
2017-07-01
A DC reactor using a high temperature superconducting (HTS) magnet reduces the reactor’s size, weight, flux leakage, and electrical losses. An HTS magnet needs cryogenic cooling to achieve and maintain its superconducting state. There are two methods for doing this: one is pool boiling and the other is conduction cooling. The conduction cooling method is more effective than the pool boiling method in terms of smaller size and lighter weight. This paper discusses a design of conduction cooling system for a high current, high temperature superconducting DC reactor. Dimensions of the conduction cooling system parts including HTS magnets, bobbin structures, current leads, support bars, and thermal exchangers were calculated and drawn using a 3D CAD program. A finite element method model was built for determining the optimal design parameters and analyzing the thermo-mechanical characteristics. The operating current and inductance of the reactor magnet were 1,500 A, 400 mH, respectively. The thermal load of the HTS DC reactor was analyzed for determining the cooling capacity of the cryo-cooler. The study results can be effectively utilized for the design and fabrication of a commercial HTS DC reactor.
ERIC Educational Resources Information Center
South Carolina Commission on Higher Education, 2007
2007-01-01
For the current study, institutions evaluated education and general (E&G) buildings on their campuses using an assessment format established in the original deferred maintenance study conducted in 1994. The joint study, "Deferred Maintenance, An Analysis of South Carolina's Facilities Portfolio," conducted by the Commission on Higher…
Challenges of Conducting a Self-Study Process: Small Two-Year Institutions.
ERIC Educational Resources Information Center
Weeks, Richard G., Jr.
A description is provided of the accreditation self-study process employed by Northwest Community College (NCC), along with a copy of the final self-study report. First, information is presented on how the current college organizational structure was used to conduct the self-study, including explanations of the role of the President's Advisory…
Biocontamination Control for Spacesuit Garments - A Preliminary Study
NASA Technical Reports Server (NTRS)
Rhodes, Richard A.; Orndoff, Evelyne; Korona, F. Adam; Poritz, Darwin; Smith, Jelanie; Wong, Wing
2011-01-01
This paper outlines a preliminary study that was conducted to review, test, and improve on current space suit biocontamination control. Biocontamination from crew members can cause space suit damage and objectionable odors and lead to crew member health hazards. An understanding of the level of biocontamination is necessary to mitigate its effects. A series of tests were conducted with the intent of evaluating current suit materials, ground and on-orbit disinfectants, and potential commercial off-the-shelf antimicrobial materials. Included in this paper is a discussion of the test methodology, results, and analysis method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, You-Lin, E-mail: ylwu@ncnu.edu.tw; Liao, Chun-Wei; Ling, Jing-Jenn
2014-06-16
The electrical characterization of HfO{sub 2}/ITO/Invar resistive switching memory structure was studied using conductive atomic force microscopy (AFM) with a semiconductor parameter analyzer, Agilent 4156C. The metal alloy Invar was used as the metal substrate to ensure good ohmic contact with the substrate holder of the AFM. A conductive Pt/Ir AFM tip was placed in direct contact with the HfO{sub 2} surface, such that it acted as the top electrode. Nanoscale current-voltage (I-V) characteristics of the HfO{sub 2}/ITO/Invar structure were measured by applying a ramp voltage through the conductive AFM tip at various current compliances and ramp voltage sweep rates.more » It was found that the resistance of the low resistance state (RLRS) decreased with increasing current compliance value, but resistance of high resistance state (RHRS) barely changed. However, both the RHRS and RLRS decreased as the voltage sweep rate increased. The reasons for this dependency on current compliance and voltage sweep rate are discussed.« less
Dynamic generation of spin-wave currents in hybrid structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyapilin, I. I.; Okorokov, M. S., E-mail: Okorokovmike@gmail.com
2016-11-15
Spin transport through the interface in a semiconductor/ferromagnetic insulator hybrid structure is studied by the nonequilibrium statistical operator method under conditions of the spin Seebeck effect. The effective parameter approach in which each examined subsystem (conduction electrons, magnons, phonons) is characterized by its specific effective temperature is considered. The effect of the resonant (electric dipole) excitation of the spin electronic subsystem of conduction electrons on spin-wave current excitation in a ferromagnetic insulator is considered. The macroscopic equations describing the spin-wave current caused by both resonant excitation of the spin system of conduction electrons and the presence of a nonuniform temperaturemore » field in the ferromagnetic insulator are derived taking into account both the resonance-diffusion propagation of magnons and their relaxation processes. It is shown that spin-wave current excitation is also of resonant nature under the given conditions.« less
NASA Astrophysics Data System (ADS)
Samanta, Piyas
2017-10-01
The conduction mechanism of gate leakage current through thermally grown silicon dioxide (SiO2) films on (100) p-type silicon has been investigated in detail under negative bias on the degenerately doped n-type polysilicon (n+-polySi) gate. The analysis utilizes the measured gate current density J G at high oxide fields E ox in 5.4 to 12 nm thick SiO2 films between 25 and 300 °C. The leakage current measured up to 300 °C was due to Fowler-Nordheim (FN) tunneling of electrons from the accumulated n +-polySi gate in conjunction with Poole Frenkel (PF) emission of trapped-electrons from the electron traps located at energy levels ranging from 0.6 to 1.12 eV (depending on the oxide thickness) below the SiO2 conduction band (CB). It was observed that PF emission current I PF dominates FN electron tunneling current I FN at oxide electric fields E ox between 6 and 10 MV/cm and throughout the temperature range studied here. Understanding of the mechanism of leakage current conduction through SiO2 films plays a crucial role in simulation of time-dependent dielectric breakdown (TDDB) of metaloxide-semiconductor (MOS) devices and to precisely predict the normal operating field or applied gate voltage for lifetime projection of the MOS integrated circuits.
Lee, Hyunyeol; Sohn, Chul-Ho; Park, Jaeseok
2017-07-01
To develop a current-induced, alternating reversed dual-echo-steady-state-based magnetic resonance electrical impedance tomography for joint estimation of tissue relaxation and electrical properties. The proposed method reverses the readout gradient configuration of conventional, in which steady-state-free-precession (SSFP)-ECHO is produced earlier than SSFP-free-induction-decay (FID) while alternating current pulses are applied in between the two SSFPs to secure high sensitivity of SSFP-FID to injection current. Additionally, alternating reversed dual-echo-steady-state signals are modulated by employing variable flip angles over two orthogonal injections of current pulses. Ratiometric signal models are analytically constructed, from which T 1 , T 2 , and current-induced B z are jointly estimated by solving a nonlinear inverse problem for conductivity reconstruction. Numerical simulations and experimental studies are performed to investigate the feasibility of the proposed method in estimating relaxation parameters and conductivity. The proposed method, if compared with conventional magnetic resonance electrical impedance tomography, enables rapid data acquisition and simultaneous estimation of T 1 , T 2 , and current-induced B z , yielding a comparable level of signal-to-noise ratio in the parameter estimates while retaining a relative conductivity contrast. We successfully demonstrated the feasibility of the proposed method in jointly estimating tissue relaxation parameters as well as conductivity distributions. It can be a promising, rapid imaging strategy for quantitative conductivity estimation. Magn Reson Med 78:107-120, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Kim, Yong-Sang; Ko, Sang-Jin; Lee, Sangkyu; Kim, Jung-Gu
2018-03-01
An interpretation of the relation between the electric field and the applied current for cathodic protection is investigated using a boundary element method simulation. Also, a conductivity-difference environment is set for the interface influence. The variation of the potential distribution is increased with the increase of the applied current and the conductivity difference due to the rejection of the current at the interface. In the case of the electric field, the tendencies of the increasing rate and the applied currents are similar, but the interface influence is different according to the directional component and field type (decrease of E z and increases of E x and E y) due to the directional difference between the electric fields. Also, the change tendencies of the electric fields versus the applied current plots are affected by the polarization curve tendency regarding the polarization type (activation and concentration polarizations in the oxygen-reduction and hydrogen-reduction reactions). This study shows that the underwater electric signature is determined by the polarization behavior of the materials.
Electropolymerized Conducting Polymer as Actuator and Sensor Device
ERIC Educational Resources Information Center
Cortes, Maria T.; Moreno, Juan C.
2005-01-01
A study demonstrates the potential application of conducting polymers to convert electrical energy into mechanical energy at low voltage or current. The performance of the device is explained using electrochemistry and solid-state chemistry.
Method and apparatus for casting conductive and semiconductive materials
Ciszek, Theodore F.
1986-01-01
A method and apparatus is disclosed for casting conductive and semiconduce materials. The apparatus includes a plurality of conductive members arranged to define a container-like area having a desired cross-sectional shape. A portion or all of the conductive or semiconductive material which is to be cast is introduced into the container-like area. A means is provided for inducing the flow of an electrical current in each of the conductive members, which currents act collectively to induce a current flow in the material. The induced current flow through the conductive members is in a direction substantially opposite to the induced current flow in the material so that the material is repelled from the conductive members during the casting process.
ERIC Educational Resources Information Center
Lopez-Romero, Laura; Romero, Estrella; Luengo, M. Angeles
2012-01-01
Child and youth conduct problems are known to be a heterogeneous category that implies different factors and processes. The current study aims to analyze whether the early manifestation of psychopathic traits designates a group of children with severe, pervasive and persistent conduct problems. To this end, cluster analysis was conducted in a…
Supporting Mature-Aged Students from a Low Socioeconomic Background
ERIC Educational Resources Information Center
Tones, Megan; Fraser, Jenny; Elder, Ruth; White, Katherine M.
2009-01-01
The aim of the current study was to examine mature-aged student perceptions of university support services and barriers to study. Using a mixed methods approach, interviews and focus groups were conducted with mature-aged students to identify barriers to study, knowledge and use of current student support services, and suggestions to improve upon…
An Experimental Work On The Electrical Conductivity Of PEG Under Changing Relative Humidity
NASA Astrophysics Data System (ADS)
Erdamar, O.; Skarlatos, Y.; Aktas, G.; Inci, M. N.
2007-04-01
Polyethylene glycol (PEG) thin films are investigated experimentally. Dc measurements are done under changing relative humidity (rh) to study the change in the electrical conductivity. Upto 70 % rh, electronic conduction takes place with the increase in the current as a result of the absorbed water. Around 70 % rh, the polymer melts from the semicrystalline form, the water vapor condenses and conduction begins to take an ionic nature. At that point, the current shows a sudden increase. After 75 % rh, the conductivity shows irregularities with respect to the increase in rh. There is a hysterisis between the absorption and desorption of water as the film can not get its pre-absorption form, which can be maintained after drying the sample, in the time interval of desorption.
Simulation study on heat conduction of a nanoscale phase-change random access memory cell.
Kim, Junho; Song, Ki-Bong
2006-11-01
We have investigated heat transfer characteristics of a nano-scale phase-change random access memory (PRAM) cell using finite element method (FEM) simulation. Our PRAM cell is based on ternary chalcogenide alloy, Ge2Sb2Te5 (GST), which is used as a recording layer. For contact area of 100 x 100 nm2, simulations of crystallization and amorphization processes were carried out. Physical quantities such as electric conductivity, thermal conductivity, and specific heat were treated as temperature-dependent parameters. Through many simulations, it is concluded that one can reduce set current by decreasing both electric conductivities of amorphous GST and crystalline GST, and in addition to these conditions by decreasing electric conductivity of molten GST one can also reduce reset current significantly.
Conductance Switching Phenomena and H-Like Aggregates in Squarylium-Dye Langmuir-Blodgett Films
NASA Astrophysics Data System (ADS)
Kushida, Masahito; Inomata, Hisao; Tanaka, Yuichiro; Harada, Kieko; Saito, Kyoichi; Sugita, Kazuyuki
2002-03-01
The current-voltage characteristics of sandwich devices with the structure of top gold electrode/squarylium-dye Langmuir-Blodgett (SQ LB) films/bottom aluminum electrode indicated four kinds of conductivity depending on the evaporation conditions of the top gold electrode. The current densities of two, which showed conductance switching, of the four samples were 30-40 μA/cm2 and 20-30 mA/cm2 in the ON state. In the former case, the dependence of conductance switching voltage on the number of SQ LB films and ultraviolet-visible absorption spectra were studied. The results revealed that conductance switching phenomena were induced at the interface between the top gold electrode and SQ LB films, and caused by the presence of H-like aggregates in SQ LB films.
Zhao, Shuanfeng; Liu, Min; Guo, Wei; Zhang, Chuanwei
2018-02-28
Force sensitive conductive composite materials are functional materials which can be used as the sensitive material of force sensors. However, the existing sensors only use one-dimensional electrical properties of force sensitive conductive materials. Even in tactile sensors, the measurement of contact pressure is achieved by large-scale arrays and the units of a large-scale array are also based on the one-dimensional electrical properties of force sensitive materials. The main contribution of this work is to study the three-dimensional electrical properties and the inversion method of three-dimensional stress field of a force sensitive material (conductive rubber), which pushes the application of force sensitive material from one dimensional to three-dimensional. First, the mathematical model of the conductive rubber current field distribution under a constant force is established by the effective medium theory, and the current field distribution model of conductive rubber with different geometry, conductive rubber content and conductive rubber relaxation parameters is deduced. Secondly, the inversion method of the three-dimensional stress field of conductive rubber is established, which provides a theoretical basis for the design of a new tactile sensor, three-dimensional stress field and space force based on force sensitive materials.
NASA Astrophysics Data System (ADS)
Jewulski, J. R.; Osif, T. L.; Remick, R. J.
1990-12-01
The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling, and optimization studies. Correlation and optimization studies are described which include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells are presented which include the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms.
Salekin, Randall T; Lester, Whitney S; Sellers, Mary-Kate
2012-08-01
The purpose of the current study was to examine the effect of a motivational intervention on conduct problem youth with psychopathic features. Specifically, the current study examined conduct problem youths' mental set (or theory) regarding intelligence (entity vs. incremental) upon task performance. We assessed 36 juvenile offenders with psychopathic features and tested whether providing them with two different messages regarding intelligence would affect their functioning on a task related to academic performance. The study employed a MANOVA design with two motivational conditions and three outcomes including fluency, flexibility, and originality. Results showed that youth with psychopathic features who were given a message that intelligence grows over time, were more fluent and flexible than youth who were informed that intelligence is static. There were no significant differences between the groups in terms of originality. The implications of these findings are discussed including the possible benefits of interventions for adolescent offenders with conduct problems and psychopathic features. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
In vivo electric conductivity of cervical cancer patients based on B₁⁺ maps at 3T MRI.
Balidemaj, E; de Boer, P; van Lier, A L H M W; Remis, R F; Stalpers, L J A; Westerveld, G H; Nederveen, A J; van den Berg, C A T; Crezee, J
2016-02-21
The in vivo electric conductivity (σ) values of tissue are essential for accurate electromagnetic simulations and specific absorption rate (SAR) assessment for applications such as thermal dose computations in hyperthermia. Currently used σ-values are mostly based on ex vivo measurements. In this study the conductivity of human muscle, bladder content and cervical tumors is acquired non-invasively in vivo using MRI. The conductivity of 20 cervical cancer patients was measured with the MR-based electric properties tomography method on a standard 3T MRI system. The average in vivo σ-value of muscle is 14% higher than currently used in human simulation models. The σ-value of bladder content is an order of magnitude higher than the value for bladder wall tissue that is used for the complete bladder in many models. Our findings are confirmed by various in vivo animal studies from the literature. In cervical tumors, the observed average conductivity was 13% higher than the literature value reported for cervical tissue. Considerable deviations were found for the electrical conductivity observed in this study and the commonly used values for SAR assessment, emphasizing the importance of acquiring in vivo conductivity for more accurate SAR assessment in various applications.
NASA Astrophysics Data System (ADS)
Karashtin, E. A.; Fraerman, A. A.
2018-04-01
We report a theoretical study of the second harmonic generation in a noncollinearly magnetized conductive medium with equilibrium spin current. The hydrodynamic model is used to unravel the mechanism of a novel effect of the double frequency signal generation that is attributed to the spin current. According to our calculations, this second harmonic response appears due to the ‘non-adiabatic’ spin polarization of the conduction electrons induced by the oscillations in the non-uniform magnetization forced by the electric field of the electromagnetic wave. Together with the linear velocity response this leads to the generation of the double frequency spin current. This spin current is converted to the electric current via the inverse spin Hall effect, and the double-frequency electric current emits the second harmonic radiation. Possible experiment for detection of the new second harmonic effect is proposed.
ERIC Educational Resources Information Center
Nurie, Yenus
2017-01-01
Various studies investigating psychological variables associated with reading comprehension are currently available. However, there has been little linguistic research conducted to examine the pedagogical practices of teachers in teaching reading comprehension of EFL Secondary Schools, Ethiopia. The present study was conducted to fill the research…
Thinking about Digestive System in Early Childhood: A Comparative Study about Biological Knowledge
ERIC Educational Resources Information Center
AHI, Berat
2017-01-01
The current study aims to explore how children explain the concepts of biology and how biological knowledge develops across ages by focusing on the structure and functions of the digestive system. The study was conducted with 60 children. The data were collected through the interviews conducted within a think-aloud protocol. The interview data…
MOOCs: Expectations and Reality. Full Report
ERIC Educational Resources Information Center
Hollands, Fiona M.; Tirthali, Devayani
2014-01-01
The purpose of this study was to investigate the goals of institutions that are currently developing and delivering Massive Open Online Courses (MOOCs) and to assess the current evidence as to whether these goals are being met. A qualitative study was conducted comprising interviews of 83 individuals across 62 institutions including public and…
Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette
NASA Astrophysics Data System (ADS)
Vilozny, Boaz; Wollenberg, Alexander L.; Actis, Paolo; Hwang, Daniel; Singaram, Bakthan; Pourmand, Nader
2013-09-01
Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems.Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems. Electronic supplementary information (ESI) available: Experimental details on synthesis of polymer PVP-Bn, optical methods, 1H-NMR spectra, details on pH and ionic strength studies, and examples of current actuation with several different nanopores. See DOI: 10.1039/c3nr02105j
Dynamic current-current susceptibility in three-dimensional Dirac and Weyl semimetals
NASA Astrophysics Data System (ADS)
Thakur, Anmol; Sadhukhan, Krishanu; Agarwal, Amit
2018-01-01
We study the linear response of doped three-dimensional Dirac and Weyl semimetals to vector potentials, by calculating the wave-vector- and frequency-dependent current-current response function analytically. The longitudinal part of the dynamic current-current response function is then used to study the plasmon dispersion and the optical conductivity. The transverse response in the static limit yields the orbital magnetic susceptibility. In a Weyl semimetal, along with the current-current response function, all these quantities are significantly impacted by the presence of parallel electric and magnetic fields (a finite E .B term) and can be used to experimentally explore the chiral anomaly.
Conductivity is a measure of the ability of water to pass an electrical current. Because dissolved salts and other inorganic chemicals conduct electrical current, conductivity increases as salinity increases.
NASA Astrophysics Data System (ADS)
Gmati, Fethi; Fattoum, Arbi; Bohli, Nadra; Dhaoui, Wadia; Belhadj Mohamed, Abdellatif
2007-08-01
We report the results of studies on two series of polyaniline (PANI), doped with dichloroacetic (DCA) and trichloroacetic (TCA) acids, respectively, at various doping rates and obtained by the in situ polymerization method. Samples were characterized by x-ray diffraction, scanning electron microscopy and conductivity measurements. The direct current (dc) and alternating current (ac) electrical conductivities of PANI salts have been investigated in the temperature range 100-310 K and frequency range 7-106 Hz. The results of this study indicate better chain ordering and higher conductivity for PANI doped with TCA. The dc conductivity of all samples is suitably fitted to Mott's three-dimensional variable-range hopping (VRH) model. Different Mott parameters such as characteristic temperature T0, density of states at the Fermi level (N(EF)), average hopping energy (W) and the average hopping distance (R) have been evaluated. The dependence of such values on the dopant acid used is discussed. At high frequencies, the ac conductivity follows the power law σac(ω,T) = A(T)ωs(T,ω), which is characteristic for charge transport in disordered materials by hopping or tunnelling processes. The observed increase in the frequency exponent s with temperature suggests that the small-polaron tunnelling model best describes the dominant ac conduction mechanism. A direct correlation between conductivity, structure and morphology was obtained in our systems.
NASA Astrophysics Data System (ADS)
Chu, Hsiao-Ping; Chang, Tsangyao; Chang, Hsu-Ling; Su, Chi-Wei; Yuan, Young
2007-10-01
Here, the Panel seemingly unrelated regressions augmented Dickey-Fuller test (SURADF) test, first introduced and advanced by Breuer et al. [Misleading inferences from panel unit-root tests with an illustration from purchasing power parity, Rev. Int. Econ. 9(3) (2001) 482-493], is used to investigate the mean-reverting behavior of the current account of 48 African countries during the 1980-2004 periods. The empirical results from numerous panel-based unit root tests, conducted earlier, indicated that the current account of each of these countries is stationary; however, when Breuer et al.'s (2001) Panel SURADF test is conducted, it is found that a unit root exists in the current account of 11 of the countries studied. These results have one extremely important policy implication for the 48 African countries studied: the current account deficit of most is sustainable, and thus signifying that those nations should have no incentive to default on their international debt.
NASA Technical Reports Server (NTRS)
Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.
1999-01-01
In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.
A survey of current practices for sampling and examination of the nervous system in rodents and non-rodents for general and neurotoxicity (NT) studies was conducted by the Nervous System Sampling Subcommittee of the STP. For general toxicity studies most of those surveyed (>63%) ...
Phrase-Meaning Relationship According to Situational and Incidental Texts
ERIC Educational Resources Information Center
Coskun, Mustafa Volkan; Ozkaya, Perihan Gulce; Uysal, Zeynep Ezgi
2017-01-01
The purpose of the current study is to conduct a comparative analysis of the situational story of Sait Faik Abasiyanik entitled as "Alemdag'da Var Bir Yilan" and the incidental story of Refik Halid Karay entitled as "Boz Esek" in terms of syntax on the basis of their deep structures. The current study employed case study, one…
NASA Astrophysics Data System (ADS)
Park, K. W.; Dasika, V. D.; Nair, H. P.; Crook, A. M.; Bank, S. R.; Yu, E. T.
2012-06-01
We have used conductive atomic force microscopy to investigate the influence of growth temperature on local current flow in GaAs pn junctions with embedded ErAs nanoparticles grown by molecular beam epitaxy. Three sets of samples, one with 1 ML ErAs deposited at different growth temperatures and two grown at 530 °C and 575 °C with varying ErAs depositions, were characterized. Statistical analysis of local current images suggests that the structures grown at 575 °C have about 3 times thicker ErAs nanoparticles than structures grown at 530 °C, resulting in degradation of conductivity due to reduced ErAs coverage. These findings explain previous studies of macroscopic tunnel junctions.
Potassium currents and conductance. Comparison between motor and sensory myelinated fibers.
Palti, Y; Moran, N; Stämpfli, R
1980-01-01
The potassium conductance system of sensory and motor fibers from the frog Rana esculenta were studied and compared by means of the voltage clamp. The potassium ion accumulation was first estimated from the currents and reversal potentials within the framework of both a three-compartment model and diffusion-in-an-unstirred-layer model. The potassium conductance parameters were then computed using the measured currents and corrected ionic driving forces. It was found that the potassium accumulation is faster and more pronounced in sensory fibers, the voltage dependency of the potassium conductance is steeper in sensory fibers, the maximal potassium conductance, corrected for accumulation, is approximately 1.1 S/cm2 in sensory and 0.55 S/cm2 in motor fibers, and that the conductance time constants, tau n, are smaller in sensory than in motor fibers. These differences, which increase progressively with depolarization, are not detectable for depolarization of 50 mV or smaller. The interpretation of these findings in terms of different types of potassium channels as well as their implications with regard to the differences between the excitability phenomena in motor and sensory fibers are discussed. PMID:6973371
Current instability and burnout of HEMT structures
NASA Astrophysics Data System (ADS)
Vashchenko, V. A.; Sinkevitch, V. F.
1996-06-01
The burnout mechanism and region of high conductivity formation under breakdown of pseudomorphic GalnAs/GaAlAs and GaAs/GaAlAs HEMT structures have been studied in a pulsed and direct current (d.c.) regime. Peculiarities of the HEMT breakdown have been compared with a GaAs MESFET structure of the same topology. It appears that in all types of investigated structures the drain voltage increase is limited by the transition into a high conductivity state as a result of "parasitic" avalanche-injection conductivity modulation of the undoped GaAs or i-GaAs layer. It has been established that the transition into a high conductivity state is caused by holes from the drain avalanche region in the channel and is the result of a mutual intensification of the avalanche generation rate near the drain and the injection level from the source contact. It turns out that under a typical gate bias operation the transition in the high conductivity state is accompanied by a negative differential conductivity (NDC) and results in the formation of high current density filaments. The resulting high local overheating in the filament region is the cause of local melting and burnout of the HEMT structures.
Fung, E-Dean; Adak, Olgun; Lovat, Giacomo; Scarabelli, Diego; Venkataraman, Latha
2017-02-08
We investigate light-induced conductance enhancement in single-molecule junctions via photon-assisted transport and hot-electron transport. Using 4,4'-bipyridine bound to Au electrodes as a prototypical single-molecule junction, we report a 20-40% enhancement in conductance under illumination with 980 nm wavelength radiation. We probe the effects of subtle changes in the transmission function on light-enhanced current and show that discrete variations in the binding geometry result in a 10% change in enhancement. Importantly, we prove theoretically that the steady-state behavior of photon-assisted transport and hot-electron transport is identical but that hot-electron transport is the dominant mechanism for optically induced conductance enhancement in single-molecule junctions when the wavelength used is absorbed by the electrodes and the hot-electron relaxation time is long. We confirm this experimentally by performing polarization-dependent conductance measurements of illuminated 4,4'-bipyridine junctions. Finally, we perform lock-in type measurements of optical current and conclude that currents due to laser-induced thermal expansion mask optical currents. This work provides a robust experimental framework for studying mechanisms of light-enhanced transport in single-molecule junctions and offers tools for tuning the performance of organic optoelectronic devices by analyzing detailed transport properties of the molecules involved.
Panel Discussion: U.S. EPA Using Modeling and Ecosystem Services to Enhance Coastal Decision Making
This panel will discuss the research being conducted, and the models being used in three current coastal EPA studies being conducted on ecosystem services in Tampa Bay, the Chesapeake Bay and the Coastal Carolinas. These studies are intended to provide a broader and more compreh...
Alternative Conceptions Concerning the Earth's Interior Exhibited by Honduran Students
ERIC Educational Resources Information Center
Capps, Daniel K.; McAllister, Meredith; Boone, William J.
2013-01-01
Although multiple studies of misconceptions in Earth science have been completed using samples of North American and European students and teachers, little research has been conducted on alternative Earth science conceptions in developing countries. The current study was conducted in 5th- and 6th-grade classrooms in eastern Honduras, Central…
Walking a Fine Balance: The Life History of a Woman Principal
ERIC Educational Resources Information Center
Fennell, Hope-Arlene
2008-01-01
This article describes the leadership journey of Kathryn, an educational leader, in relation to current research on women's experiences as educational leaders. This life history was developed as a grounded theory (Glaser & Strauss, 1967) study. Conducted over a two-year period, the semi-structured interviews used to conduct the study were…
The importance of mechano-electrical feedback and inertia in cardiac electromechanics.
Costabal, Francisco Sahli; Concha, Felipe A; Hurtado, Daniel E; Kuhl, Ellen
2017-06-15
In the past years, a number cardiac electromechanics models have been developed to better understand the excitation-contraction behavior of the heart. However, there is no agreement on whether inertial forces play a role in this system. In this study, we assess the influence of mass in electromechanical simulations, using a fully coupled finite element model. We include the effect of mechano-electrical feedback via stretch activated currents. We compare five different models: electrophysiology, electromechanics, electromechanics with mechano-electrical feedback, electromechanics with mass, and electromechanics with mass and mechano-electrical feedback. We simulate normal conduction to study conduction velocity and spiral waves to study fibrillation. During normal conduction, mass in conjunction with mechano-electrical feedback increased the conduction velocity by 8.12% in comparison to the plain electrophysiology case. During the generation of a spiral wave, mass and mechano-electrical feedback generated secondary wavefronts, which were not present in any other model. These secondary wavefronts were initiated in tensile stretch regions that induced electrical currents. We expect that this study will help the research community to better understand the importance of mechanoelectrical feedback and inertia in cardiac electromechanics.
Saturation of conductance in single ion channels: the blocking effect of the near reaction field.
Nadler, Boaz; Schuss, Zeev; Hollerbach, Uwe; Eisenberg, R S
2004-11-01
The ionic current flowing through a protein channel in the membrane of a biological cell depends on the concentration of the permeant ion, as well as on many other variables. As the concentration increases, the rate of arrival of bath ions to the channel's entrance increases, and typically so does the net current. This concentration dependence is part of traditional diffusion and rate models that predict Michaelis-Menten current-concentration relations for a single ion channel. Such models, however, neglect other effects of bath concentrations on the net current. The net current depends not only on the entrance rate of ions into the channel, but also on forces acting on ions inside the channel. These forces, in turn, depend not only on the applied potential and charge distribution of the channel, but also on the long-range Coulombic interactions with the surrounding bath ions. In this paper, we study the effects of bath concentrations on the average force on an ion in a single ion channel. We show that the force of the reaction field on a discrete ion inside a channel embedded in an uncharged lipid membrane contains a blocking (shielding) term that is proportional to the square root of the ionic bath concentration. We then show that different blocking strengths yield different behavior of the current-concentration and conductance-concentration curves. Our theory shows that at low concentrations, when the blocking force is weak, conductance grows linearly with concentration, as in traditional models, e.g., Michaelis-Menten formulations. As the concentration increases to a range of moderate shielding, conductance grows as the square root of concentration, whereas at high concentrations, with high shielding, conductance may actually decrease with increasing concentrations: the conductance-concentration curve can invert. Therefore, electrostatic interactions between bath ions and the single ion inside the channel can explain the different regimes of conductance-concentration relations observed in experiments.
Ion Current Rectification, Limiting and Overlimiting Conductances in Nanopores
van Oeffelen, Liesbeth; Van Roy, Willem; Idrissi, Hosni; Charlier, Daniel; Lagae, Liesbet; Borghs, Gustaaf
2015-01-01
Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be. PMID:25978328
NASA Astrophysics Data System (ADS)
Pan, Yue; Cai, Yimao; Liu, Yefan; Fang, Yichen; Yu, Muxi; Tan, Shenghu; Huang, Ru
2016-04-01
TaOx-based resistive random access memory (RRAM) attracts considerable attention for the development of next generation nonvolatile memories. However, read current noise in RRAM is one of the critical concerns for storage application, and its microscopic origin is still under debate. In this work, the read current noise in TaOx-based RRAM was studied thoroughly. Based on a noise power spectral density analysis at room temperature and at ultra-low temperature of 25 K, discrete random telegraph noise (RTN) and continuous average current fluctuation (ACF) are identified and decoupled from the total read current noise in TaOx RRAM devices. A statistical comparison of noise amplitude further reveals that ACF depends strongly on the temperature, whereas RTN is independent of the temperature. Measurement results combined with conduction mechanism analysis show that RTN in TaOx RRAM devices arises from electron trapping/detrapping process in the hopping conduction, and ACF is originated from the thermal activation of conduction centers that form the percolation network. At last, a unified model in the framework of hopping conduction is proposed to explain the underlying mechanism of both RTN and ACF noise, which can provide meaningful guidelines for designing noise-immune RRAM devices.
Nonlinear conductivity of a holographic superconductor under constant electric field
NASA Astrophysics Data System (ADS)
Zeng, Hua Bi; Tian, Yu; Fan, Zheyong; Chen, Chiang-Mei
2017-02-01
The dynamics of a two-dimensional superconductor under a constant electric field E is studied by using the gauge-gravity correspondence. The pair breaking current induced by E first increases to a peak value and then decreases to a constant value at late times, where the superconducting gap goes to zero, corresponding to a normal conducting phase. The peak value of the current is found to increase linearly with respect to the electric field. Moreover, the nonlinear conductivity, defined as an average of the conductivity in the superconducting phase, scales as ˜E-2 /3 when the system is close to the critical temperature Tc, which agrees with predictions from solving the time-dependent Ginzburg-Landau equation. Away from Tc, the E-2 /3 scaling of the conductivity still holds when E is large.
ERIC Educational Resources Information Center
Vazquez Aranda, Armando I.; Henquin, Eduardo R.; Torres, Israel Rodriguez; Bisang, Jose M.
2012-01-01
A laboratory experiment is described to determine the primary current distribution in parallel-plate electrochemical reactors. The electrolyte is simulated by conductive paper and the electrodes are segmented to measure the current distribution. Experiments are reported with the electrolyte confined to the interelectrode gap, where the current…
Measuring skin conductance over clothes.
Hong, Ki Hwan; Lee, Seung Min; Lim, Yong Gyu; Park, Kwang Suk
2012-11-01
We propose a new method that measures skin conductance over clothes to nonintrusively monitor the changes in physiological conditions affecting skin conductance during daily activities. We selected the thigh-to-thigh current path and used an indirectly coupled 5-kHz AC current for the measurement. While varying the skin conductance by the Valsalva maneuver method, the results were compared with the traditional galvanic skin response (GSR) measured directly from the fingers. Skin conductance measured using a 5-kHz current displayed a highly negative correlation with the traditional GSR and the current measured over clothes reflected the rate of change of the conductance of the skin beneath.
Property influence of polyanilines on photovoltaic behaviors of dye-sensitized solar cells.
Tan, Shuxin; Zhai, Jin; Xue, Bofei; Wan, Meixiang; Meng, Qingbo; Li, Yuliang; Jiang, Lei; Zhu, Daoben
2004-03-30
The influence of polyanilines (PANIs) as hole conductors on the photovoltaic behaviors of dye-sensitized solar cells is studied. The current-voltage (I-V) characteristics and the incident photon to current conversion efficiency (IPCE) curves of the devices are determined as the function of different conductivities and morphologies of PANIs. The results show that the conductivity of PANIs affects the performance of the devices greatly, and PANI with the intermediate conductivity value (3.5 S/cm) is optimum. In addition, the effects of both the film formation property and the cluster size of polyanilines on the photovoltaic behaviors of the devices are also discussed.
Magnetoelectric Current Sensors
Bichurin, Mirza; Petrov, Roman; Leontiev, Viktor; Semenov, Gennadiy; Sokolov, Oleg
2017-01-01
In this work a magnetoelectric (ME) current sensor design based on a magnetoelectric effect is presented and discussed. The resonant and non-resonant type of ME current sensors are considered. Theoretical calculations of the ME current sensors by the equivalent circuit method were conducted. The application of different sensors using the new effects, for example, the ME effect, is made possible with the development of new ME composites. A large number of studies conducted in the field of new composites, allowed us to obtain a high magnetostrictive-piezoelectric laminate sensitivity. An optimal ME structure composition was matched. The characterization of a non-resonant current sensor showed that in the operation range to 5 A, the sensor had a sensitivity of 0.34 V/A, non-linearity less than 1% and for a resonant current sensor in the same operation range, the sensitivity was of 0.53 V/A, non-linearity less than 0.5%. PMID:28574486
Birgül, Ozlem; Eyüboğlu, B Murat; Ider, Y Ziya
2003-11-07
Magnetic resonance electrical impedance tomography (MR-EIT) is an emerging imaging technique that reconstructs conductivity images using magnetic flux density measurements acquired employing MRI together with conventional EIT measurements. In this study, experimental MR-EIT images from phantoms with conducting and insulator objects are presented. The technique is implemented using the 0.15 T Middle East Technical University MRI system. The dc current method used in magnetic resonance current density imaging is adopted. A reconstruction algorithm based on the sensitivity matrix relation between conductivity and only one component of magnetic flux distribution is used. Therefore, the requirement for object rotation is eliminated. Once the relative conductivity distribution is found, it is scaled using the peripheral voltage measurements to obtain the absolute conductivity distribution. Images of several insulator and conductor objects in saline filled phantoms are reconstructed. The L2 norm of relative error in conductivity values is found to be 13%, 17% and 14% for three different conductivity distributions.
NASA Astrophysics Data System (ADS)
Poh, Gangkai; Slavin, James A.; Jia, Xianzhe; Raines, Jim M.; Imber, Suzanne M.; Sun, Wei-Jie; Gershman, Daniel J.; DiBraccio, Gina A.; Genestreti, Kevin J.; Smith, Andy W.
2017-08-01
We analyzed MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) magnetic field and plasma measurements taken during 319 crossings of Mercury's cross-tail current sheet. We found that the measured BZ in the current sheet is higher on the dawnside than the duskside by a factor of ≈3 and the asymmetry decreases with downtail distance. This result is consistent with expectations based upon MHD stress balance. The magnetic fields threading the more stretched current sheet in the duskside have a higher plasma beta than those on the dawnside, where they are less stretched. This asymmetric behavior is confirmed by mean current sheet thickness being greatest on the dawnside. We propose that heavy planetary ion (e.g., Na+) enhancements in the duskside current sheet provides the most likely explanation for the dawn-dusk current sheet asymmetries. We also report the direct measurement of Mercury's substorm current wedge (SCW) formation and estimate the total current due to pileup of magnetic flux to be ≈11 kA. The conductance at the foot of the field lines required to close the SCW current is found to be ≈1.2 S, which is similar to earlier results derived from modeling of Mercury's Region 1 field-aligned currents. Hence, Mercury's regolith is sufficiently conductive for the current to flow radially then across the surface of Mercury's highly conductive iron core. Mercury appears to be closely coupled to its nightside magnetosphere by mass loading of upward flowing heavy planetary ions and electrodynamically by field-aligned currents that transfer momentum and energy to the nightside auroral oval crust and interior. Heavy planetary ion enhancements in Mercury's duskside current sheet provide explanation for cross-tail asymmetries found in this study. The total current due to the pileup of magnetic flux and conductance required to close the SCW current is found to be ≈11 kA and 1.2 S. Mercury is coupled to magnetotail by mass loading of heavy ions and field-aligned currents driven by reconnection-related fast plasma flow.
Current and Emerging Ethical Issues in Counseling: A Delphi Study of Expert Opinions
ERIC Educational Resources Information Center
Herlihy, Barbara; Dufrene, Roxane L.
2011-01-01
A Delphi study was conducted to ascertain the opinions of panel experts regarding the most important current and emerging ethical issues facing the counseling profession. Expert opinions on ethical issues in counselor preparation also were sought. Eighteen panelists responded to 3 rounds of data collection interspersed with feedback. Themes that…
Logging utilization in Idaho: Current and past trends
Eric A. Simmons; Todd A. Morgan; Erik C. Berg; Stanley J. Zarnoch; Steven W. Hayes; Mike T. Thompson
2014-01-01
A study of commercial timber-harvesting activities in Idaho was conducted during 2008 and 2011 to characterize current tree utilization, logging operations, and changes from previous Idaho logging utilization studies. A two-stage simple random sampling design was used to select sites and felled trees for measurement within active logging sites. Thirty-three logging...
ERIC Educational Resources Information Center
Lee, Yee Ming; Kwon, Junehee; Sauer, Kevin
2014-01-01
Purpose/Objectives: The purpose of this study was to explore child nutrition professionals' (CNPs) attitudes about food allergies, current practices of food allergy training, and operational issues related to food allergy training in school foodservice operations. Methods: Three focus groups were conducted with 21 CNPs with managerial…
Current Backpack Weight Status for Primary Schoolchildren in Colima, Mexico
ERIC Educational Resources Information Center
Olmedo-Buenrostro, Bertha Alicia; Delgado-Enciso, Iván; Sánchez-Ramírez, Carmen Alicia; Cruz, Sergio Adrián Montero; Vásquez, Clemente; Mora-Brambila, Ana Bertha; Rodríguez-Sánchez, Iram P.; Martínez-Fierro, Margarita L.
2016-01-01
The purpose of the study was to identify the current status of backpack weight in primary schoolchildren in Colima, Mexico, in relation to gender, school grade level, and body mass index. A cross-sectional study was conducted on 240 randomly selected children from 20 primary schools. The participating children's parents signed statements of…
Traumatic Brain Injury: Are We Conducting Enough Resarch
2017-04-17
Autism Spectrum Disorder (ASD), whose current rate of total study growth was 2.08. Within subsets of ASD studies, the current rate of RCT growth was...the lack of emerging treatments. As neurological disorders are notoriously complex, we set out to compare the state of TBI research to that of the 11
Substorm Birkeland currents and Cowling channels in the ionosphere
NASA Astrophysics Data System (ADS)
Fujii, R.
2016-12-01
Field-aligned current (FAC) connects electromagnetically the ionosphere with the magnetosphere and plays important roles on dynamics and energetics in the magnetosphere and the ionosphere. In particular, connections between FACs in the ionosphere give important information on various current sources in the magnetosphere and the linkage between them, although the connection between FACs in the ionosphere does not straightforwardly give that in the magnetosphere. FACs in the ionosphere are closed to each other through ionospheric currents determined with the electric field and the Hall and Pedersen conductivities. The electric field and the conductivities are not independently distributed, but rather they are harmonized with each other spatially and temporarily in a physically consistent manner to give a certain FAC. In particular, the divergence of the Hall current due to the inhomogeneity of the Hall conductivity either flows in/out to the magnetosphere as a secondary FAC or accumulates excess charges that produce a secondary electric field. This electric field drives a current circuit connecting the Hall current with the Pedersen current; a Cowling channel current circuit. The FAC (the electric field) we observe is the sum of the primary and secondary FACs (electric fields). The talk will present characteristics of FACs and associated electric field and auroras during substorms, and the ionospheric current closures between the FACs. A statistical study has shown that the majority of region 1 currents are connected to their adjacent region 2 or region 0 currents, indicating the Pedersen current closure rather than the Hall current closure is dominant. On the other hand, the Pedersen currents associated with surge and substorm-related auroras often are connected to the Hall currents, forming a Cowling channel current circuit within the ionosphere.
Tadjibaeva, G; Sabirov, R; Tomita, T
2000-08-25
Flammutoxin, a 31-kDa cardiotoxic and cytolytic protein from the edible mushroom Flammulina velutipes, has been shown to assemble into a pore-forming annular oligomer with outer and inner diameters of 10 and 5 nm on the target cells [Tomita et al., Biochem. J. 333 (1998) 129-137]. Here we studied electrophysiological properties of flammutoxin channels using planar lipid bilayer technique, and found that flammutoxin formed two types of moderately cation-selective, voltage-gated channels with smaller and larger current amplitudes (1-4.5 pA and 20-30 pA, respectively, at 20 mV) in the lipid bilayers composed of phospholipid and cholesterol. The larger-conductance single channel showed the properties of a wide water-filled pore such as a linear relationship between channel conductance and salt concentration of the bathing solution. The functional diameter of the larger-conductance channel was estimated to be 4-5 nm by measuring the current conductance in the presence of polyethylene glycols of various sizes. In contrast, the smaller-conductance single channels showed a non-linear current to voltage curve and a saturating conductance to increasing salt concentration. These results suggest that the larger-conductance channel of flammutoxin corresponds to the hemolytic pore complex, while the smaller-conductance channel may reflect the intermediate state(s) of the assembling toxin.
Booker, Jordan A; Ollendick, Thomas H; Dunsmore, Julie C; Greene, Ross W
2016-05-01
Our objective in this study was to examine the moderating influence of parent-child relationship quality (as viewed by the child) on associations between conduct problems and treatment responses for children with oppositional defiant disorder (ODD). To date, few studies have considered children's perceptions of relationship quality with parents in clinical contexts even though extant studies show the importance of this factor in children's behavioral adjustment in non-clinical settings. In this study, 123 children (ages 7 - 14 years, 61.8% male, 83.7% white) who fulfilled DSM-IV criteria for ODD received one of two psychosocial treatments: Parent Management Training or Collaborative & Proactive Solutions. In an earlier study, both treatments were found to be effective and equivalent in treatment outcomes (Ollendick et al., in press). In the current study, pre-treatment maternal reports of conduct problems and pre-treatment child reports of relations with parents were used to predict outcomes in ODD symptoms and their severity following treatment. Elevated reports of children's conduct problems were associated with attenuated reductions in both ODD symptoms and their severity. Perceived relationship quality with parents moderated the ties between conduct problems and outcomes in ODD severity but not the number of symptoms. Mother reports of elevated conduct problems predicted attenuated treatment response only when children viewed relationship quality with their parents as poorer. When children viewed the relationship as higher quality, they did not show an attenuated treatment response, regardless of reported conduct problems. The current findings underscore the importance of children's perspectives in treatment response and reductions in externalizing child behaviors.
Nalladega, V; Sathish, S; Jata, K V; Blodgett, M P
2008-07-01
We present a high resolution electrical conductivity imaging technique based on the principles of eddy current and atomic force microscopy (AFM). An electromagnetic coil is used to generate eddy currents in an electrically conducting material. The eddy currents generated in the conducting sample are detected and measured with a magnetic tip attached to a flexible cantilever of an AFM. The eddy current generation and its interaction with the magnetic tip cantilever are theoretically modeled using monopole approximation. The model is used to estimate the eddy current force between the magnetic tip and the electrically conducting sample. The theoretical model is also used to choose a magnetic tip-cantilever system with appropriate magnetic field and spring constant to facilitate the design of a high resolution electrical conductivity imaging system. The force between the tip and the sample due to eddy currents is measured as a function of the separation distance and compared to the model in a single crystal copper. Images of electrical conductivity variations in a polycrystalline dual phase titanium alloy (Ti-6Al-4V) sample are obtained by scanning the magnetic tip-cantilever held at a standoff distance from the sample surface. The contrast in the image is explained based on the electrical conductivity and eddy current force between the magnetic tip and the sample. The spatial resolution of the eddy current imaging system is determined by imaging carbon nanofibers in a polymer matrix. The advantages, limitations, and applications of the technique are discussed.
NASA Technical Reports Server (NTRS)
Christodoulou, C. G.
1986-01-01
In some applications, the wires used to construct the grids are plated over with highly conducting materials such as gold or silver. In those cases, depending on the frequency of operation, the coating may not be thick enough to prevent currents from flowing in the substrate. The conjugate gradient method, in conjunction with the fast Fourier transform is employed to solve the problem of scattering from such rectangular grids. An internal impedance is utilized to account for the effects of the substrate conductivity on the induced current densities. Calculated values of the reflection coefficient and induced currents from different coating thicknesses, angles of incidence and polarizations are presented and discussed.
Assessment of government tribology programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, M.B.; Levinson, T.M.
1985-09-01
An assessment has been made to determine current tribology research and development work sponsored or conducted by the government. Data base surveys and discussions were conducted to isolate current projects sponsored primarily by 21 different government organizations. These projects were classified by subject, objective, energy relevance, type of research, phenomenon being investigated, variables being studied, type of motion, materials and application. An abstract of each project was prepared which included the classification, sponsor, performing organization and a project description. It was found that current work is primarily materials oriented to meet military requirements. Other than the high temperature programs verymore » few of the tribology projects accomplish energy related objectives.« less
Aerothermal modeling program, phase 2
NASA Technical Reports Server (NTRS)
Mongia, H. C.; Patankar, S. V.; Murthy, S. N. B.; Sullivan, J. P.; Samuelsen, G. S.
1985-01-01
The main objectives of the Aerothermal Modeling Program, Phase 2 are: to develop an improved numerical scheme for incorporation in a 3-D combustor flow model; to conduct a benchmark quality experiment to study the interaction of a primary jet with a confined swirling crossflow and to assess current and advanced turbulence and scalar transport models; and to conduct experimental evaluation of the air swirler interaction with fuel injectors, assessments of current two-phase models, and verification the improved spray evaporation/dispersion models.
Locci, Antonio Mario; Cincotti, Alberto; Todde, Sara; Orrù, Roberto; Cao, Giacomo
2010-01-01
A novel methodology is proposed for investigating the effect of the pulsed electric current during the spark plasma sintering (SPS) of electrically conductive powders without potential misinterpretation of experimental results. First, ensemble configurations (geometry, size and material of the powder sample, die, plunger and spacers) are identified where the electric current is forced to flow only through either the sample or the die, so that the sample is heated either through the Joule effect or by thermal conduction, respectively. These ensemble configurations are selected using a recently proposed mathematical model of an SPS apparatus, which, once suitably modified, makes it possible to carry out detailed electrical and thermal analysis. Next, SPS experiments are conducted using the ensemble configurations theoretically identified. Using aluminum powders as a case study, we find that the temporal profiles of sample shrinkage, which indicate densification behavior, as well as the final density of the sample are clearly different when the electric current flows only through the sample or through the die containing it, whereas the temperature cycle and mechanical load are the same in both cases. PMID:27877354
Olschewski, Andrea; Wolff, Matthias; Bräu, Michael E; Hempelmann, Gunter; Vogel, Werner; Safronov, Boris V
2002-01-01
Combining the patch-clamp recordings in slice preparation with the ‘entire soma isolation' method we studied action of several local anaesthetics on delayed-rectifier K+ currents in spinal dorsal horn neurones.Bupivacaine, lidocaine and mepivacaine at low concentrations (1–100 μM) enhanced delayed-rectifier K+ current in intact neurones within the spinal cord slice, while exhibiting a partial blocking effect at higher concentrations (>100 μM). In isolated somata 0.1–10 μM bupivacaine enhanced delayed-rectifier K+ current by shifting its steady-state activation characteristic and the voltage-dependence of the activation time constant to more negative potentials by 10–20 mV.Detailed analysis has revealed that bupivacaine also increased the maximum delayed-rectifier K+ conductance by changing the open probability, rather than the unitary conductance, of the channel.It is concluded that local anaesthetics show a dual effect on delayed-rectifier K+ currents by potentiating them at low concentrations and partially suppressing at high concentrations. The phenomenon observed demonstrated the complex action of local anaesthetics during spinal and epidural anaesthesia, which is not restricted to a suppression of Na+ conductance only. PMID:12055132
Design and Experimental Study of a Current Transformer with a Stacked PCB Based on B-Dot.
Wang, Jingang; Si, Diancheng; Tian, Tian; Ren, Ran
2017-04-10
An electronic current transformer with a B-dot sensor is proposed in this study. The B-dot sensor can realize the current measurement of the transmission line in a non-contact way in accordance with the principle of magnetic field coupling. The multiple electrodes series-opposing structure is applied together with differential input structures and active integrating circuits, which can allow the sensor to operate in differential mode. Maxwell software is adopted to model and simulate the sensor. Optimization of the sensor structural parameters is conducted through finite-element simulation. A test platform is built to conduct the steady-state characteristic, on-off operation, and linearity tests for the designed current transformer under the power-frequency current. As shown by the test results, in contrast with traditional electromagnetic CT, the designed current transformer can achieve high accuracy and good phase-frequency; its linearity is also very good at different distances from the wire. The proposed current transformer provides a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system, thereby satisfying the development demands of the smart power grid.
Design and Experimental Study of a Current Transformer with a Stacked PCB Based on B-Dot
Wang, Jingang; Si, Diancheng; Tian, Tian; Ren, Ran
2017-01-01
An electronic current transformer with a B-dot sensor is proposed in this study. The B-dot sensor can realize the current measurement of the transmission line in a non-contact way in accordance with the principle of magnetic field coupling. The multiple electrodes series-opposing structure is applied together with differential input structures and active integrating circuits, which can allow the sensor to operate in differential mode. Maxwell software is adopted to model and simulate the sensor. Optimization of the sensor structural parameters is conducted through finite-element simulation. A test platform is built to conduct the steady-state characteristic, on-off operation, and linearity tests for the designed current transformer under the power-frequency current. As shown by the test results, in contrast with traditional electromagnetic CT, the designed current transformer can achieve high accuracy and good phase-frequency; its linearity is also very good at different distances from the wire. The proposed current transformer provides a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system, thereby satisfying the development demands of the smart power grid. PMID:28394298
Kan, Chiemi; Kawakami, Norito; Umeda, Maki
2015-12-01
The majority of studies on the role of psychological resources linking childhood socioeconomic status (SES) and adult health have been conducted in Western countries. Empirical evidence for mediation effects of psychological resources is currently lacking in Japan. The purpose of this study was to investigate the mediating effect of psychological resources (mastery and sense of coherence [SOC]) on the association between childhood SES and current health. Analyses were conducted on cross-sectional data (1,497 men and 1,764 women) from the Japanese Study of Stratification, Health, Income, and Neighborhood Study (J-SHINE) in Tokyo. Psychological resources (mastery and SOC), childhood SES (parents' education and perceived childhood SES), and current health of adults (psychological distress measured by K6 and self-rated health) were measured using a self-report questionnaire. Mastery and SOC significantly and independently mediated the association between childhood SES and current health in the total sample after adjusting for age, gender, and respondent education, regardless of type of SES or health outcome indicators. Similar mediation effects were observed for both men and women. A few gender differences were observed; specifically, SOC significantly mediated the association between parents' education and current health only among women, and it mediated the association between perceived childhood SES and current health only among men. Overall, the findings underscore the importance of the mediating role of psychological resources in the association between childhood SES and current health.
Reasons for Silence: A Case Study of Two Korean Students at a U.S. Graduate School
ERIC Educational Resources Information Center
Choi, Jung Yun
2015-01-01
This article explores the perception and reasons for Korean students' silence and low levels of oral participation in U.S. graduate programs. It analyzes a case study conducted with two Korean students currently attending graduate school in urban settings. The researcher conducted semi-structured interviews with the participants, using a constant…
A Research-Based Proposal for EFL Writing Instruction in Korean Higher Education
ERIC Educational Resources Information Center
Lee, Song-Eun
2017-01-01
Writing and its pedagogy have been underemphasized in formal school education in Korea; nevertheless, a number of studies on writing have been conducted in the English education field in Korean higher education. Among these studies, however, few have been conducted to afford a broader understanding of the current situation of English writing…
Sexual Difficulties for Persons with Multiple Sclerosis in New South Wales, Australia
ERIC Educational Resources Information Center
Redelman, Margaret Juliet
2009-01-01
This 1992 study was conducted to ascertain the incidence of sexual difficulties in individuals diagnosed with multiple sclerosis (MS) living in New South Wales, Australia. New South Wales is a state lying roughly 29-36 [degrees] south of the equator. This is currently the largest study conducted. The anonymous questionnaire completed by 283…
NASA Astrophysics Data System (ADS)
Thakre, Atul; Kumar, Ashok
2017-12-01
An enhanced, repeatable and robust resistive switching phenomenon was observed in Cr substituted BaTiO3 polar ferroelectric thin films; fabricated and deposited by the sol-gel approach and spin coating technique, respectively. An enhanced bistable bipolar resistive switching (BRS) phenomenon without electro-forming process, low switching voltage (˜ 2 V) and moderate retention characteristics of 104 s along with a high Roff/Ron resistance ratio ˜103 was achieved. The current conduction analysis showed that the space charge limited conduction (SCLC) and Schottky emission conduction dominate in the high voltage range, while thermally active charge carriers (ohmic) in the lower voltage range. The impedance spectroscopy study indicates the formation of current conducting path and rupturing of oxygen vacancies during SET and RESET process.
NASA Astrophysics Data System (ADS)
Paul, J.; Madhu, A. K.; Jayadeep, U. B.; Sobhan, C. B.; Peterson, G. P.
2018-03-01
Liquid layering is considered to be one of the factors contributing to the often anomalous enhancement in thermal conductivity of nanoparticle suspensions. The extent of this layering was found to be significant at lower particle sizes, as reported in an earlier work by the authors. In continuation to that work, an investigation was conducted to better understand the fundamental parameters impacting the reported anomalous enhancement in thermal conductivity of nanoparticle suspensions (nanofluids), utilizing equilibrium molecular dynamics simulations in a copper-argon system. Nanofluids containing nanoparticles of size less than 6 nm were investigated and studied analytically. The heat current auto-correlation function in the Green-Kubo formulation for thermal conductivity was decomposed into self-correlations and cross-correlations of different species and the kinetic, potential, collision and enthalpy terms of the dominant portion of the heat current vector. The presence of liquid layering around the nanoparticle was firmly established through simulations that show the dominant contribution of Ar-Ar self-correlation and the trend displayed by the kinetic-potential cross-correlation within the argon species.
ERIC Educational Resources Information Center
Frick, Paul J.; Stickle, Timothy R.; Dandreaux, Danielle M.; Farrell, Jamie M.; Kimonis, Eva R.
2005-01-01
The current study tests whether the presence of callous-unemotional (CU) traits designates a group of children with conduct problems who show an especially severe and chronic pattern of conduct problems and delinquency. Ninety-eight children who were selected from a large community screening of school children in grades 3, 4, 6 and 7 were followed…
NASA Astrophysics Data System (ADS)
Estrada, M.; Hernandez-Barrios, Y.; Cerdeira, A.; Ávila-Herrera, F.; Tinoco, J.; Moldovan, O.; Lime, F.; Iñiguez, B.
2017-09-01
A crystalline-like temperature dependence of the electrical characteristics of amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) thin film transistors (TFTs) is reported, in which the drain current reduces as the temperature is increased. This behavior appears for values of drain and gate voltages above which a change in the predominant conduction mechanism occurs. After studying the possible conduction mechanisms, it was determined that, for gate and drain voltages below these values, hopping is the predominant mechanism with the current increasing with temperature, while for values above, the predominant conduction mechanism becomes percolation in the conduction band or band conduction and IDS reduces as the temperature increases. It was determined that this behavior appears, when the effect of trapping is reduced, either by varying the density of states, their characteristic energy or both. Simulations were used to further confirm the causes of the observed behavior.
A modeling study of the time-averaged electric currents in the vicinity of isolated thunderstorms
NASA Technical Reports Server (NTRS)
Driscoll, Kevin T.; Blakeslee, Richard J.; Baginski, Michael E.
1992-01-01
A thorough examination of the results of a time-dependent computer model of a dipole thunderstorm revealed that there are numerous similarities between the time-averaged electrical properties and the steady-state properties of an active thunderstorm. Thus, the electrical behavior of the atmosphere in the vicinity of a thunderstorm can be determined with a formulation similar to what was first described by Holzer and Saxon (1952). From the Maxwell continuity equation of electric current, a simple analytical equation was derived that expresses a thunderstorm's average current contribution to the global electric circuit in terms of the generator current within the thundercloud, the intracloud lightning current, the cloud-to-ground lightning current, the altitudes of the charge centers, and the conductivity profile of the atmosphere. This equation was found to be nearly as accurate as the more computationally expensive numerical model, even when it is applied to a thunderstorm with a reduced conductivity thundercloud, a time-varying generator current, a varying flash rate, and a changing lightning mix.
Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals
Poznanski, R. R.; Cacha, L. A.; Ali, J.; Rizvi, Z. H.; Yupapin, P.; Salleh, S. H.; Bandyopadhyay, A.
2017-01-01
A cable model that includes polarization-induced capacitive current is derived for modeling the solitonic conduction of electrotonic potentials in neuronal branchlets with microstructure containing endoplasmic membranes. A solution of the nonlinear cable equation modified for fissured intracellular medium with a source term representing charge ‘soakage’ is used to show how intracellular capacitive effects of bound electrical charges within mitochondrial membranes can influence electrotonic signals expressed as solitary waves. The elastic collision resulting from a head-on collision of two solitary waves results in localized and non-dispersing electrical solitons created by the nonlinearity of the source term. It has been shown that solitons in neurons with mitochondrial membrane and quasi-electrostatic interactions of charges held by the microstructure (i.e., charge ‘soakage’) have a slower velocity of propagation compared with solitons in neurons with microstructure, but without endoplasmic membranes. When the equilibrium potential is a small deviation from rest, the nonohmic conductance acts as a leaky channel and the solitons are small compared when the equilibrium potential is large and the outer mitochondrial membrane acts as an amplifier, boosting the amplitude of the endogenously generated solitons. These findings demonstrate a functional role of quasi-electrostatic interactions of bound electrical charges held by microstructure for sustaining solitons with robust self-regulation in their amplitude through changes in the mitochondrial membrane equilibrium potential. The implication of our results indicate that a phenomenological description of ionic current can be successfully modeled with displacement current in Maxwell’s equations as a conduction process involving quasi-electrostatic interactions without the inclusion of diffusive current. This is the first study in which solitonic conduction of electrotonic potentials are generated by polarization-induced capacitive current in microstructure and nonohmic mitochondrial membrane current. PMID:28880876
Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals.
Poznanski, R R; Cacha, L A; Ali, J; Rizvi, Z H; Yupapin, P; Salleh, S H; Bandyopadhyay, A
2017-01-01
A cable model that includes polarization-induced capacitive current is derived for modeling the solitonic conduction of electrotonic potentials in neuronal branchlets with microstructure containing endoplasmic membranes. A solution of the nonlinear cable equation modified for fissured intracellular medium with a source term representing charge 'soakage' is used to show how intracellular capacitive effects of bound electrical charges within mitochondrial membranes can influence electrotonic signals expressed as solitary waves. The elastic collision resulting from a head-on collision of two solitary waves results in localized and non-dispersing electrical solitons created by the nonlinearity of the source term. It has been shown that solitons in neurons with mitochondrial membrane and quasi-electrostatic interactions of charges held by the microstructure (i.e., charge 'soakage') have a slower velocity of propagation compared with solitons in neurons with microstructure, but without endoplasmic membranes. When the equilibrium potential is a small deviation from rest, the nonohmic conductance acts as a leaky channel and the solitons are small compared when the equilibrium potential is large and the outer mitochondrial membrane acts as an amplifier, boosting the amplitude of the endogenously generated solitons. These findings demonstrate a functional role of quasi-electrostatic interactions of bound electrical charges held by microstructure for sustaining solitons with robust self-regulation in their amplitude through changes in the mitochondrial membrane equilibrium potential. The implication of our results indicate that a phenomenological description of ionic current can be successfully modeled with displacement current in Maxwell's equations as a conduction process involving quasi-electrostatic interactions without the inclusion of diffusive current. This is the first study in which solitonic conduction of electrotonic potentials are generated by polarization-induced capacitive current in microstructure and nonohmic mitochondrial membrane current.
Sánchez, Carlos; Corrias, Alberto; Bueno-Orovio, Alfonso; Davies, Mark; Swinton, Jonathan; Jacobson, Ingemar; Laguna, Pablo; Pueyo, Esther; Rodríguez, Blanca
2012-03-01
Pharmacological treatment of atrial fibrillation (AF) exhibits limited efficacy. Further developments require a comprehensive characterization of ionic modulators of electrophysiology in human atria. Our aim is to systematically investigate the relative importance of ionic properties in modulating excitability, refractoriness, and rotor dynamics in human atria before and after AF-related electrical remodeling (AFER). Computer simulations of single cell and tissue atrial electrophysiology were conducted using two human atrial action potential (AP) models. Changes in AP, refractory period (RP), conduction velocity (CV), and rotor dynamics caused by alterations in key properties of all atrial ionic currents were characterized before and after AFER. Results show that the investigated human atrial electrophysiological properties are primarily modulated by maximal value of Na(+)/K(+) pump current (G(NaK)) as well as conductances of inward rectifier potassium current (G(K1)) and fast inward sodium current (G(Na)). G(NaK) plays a fundamental role through both electrogenic and homeostatic modulation of AP duration (APD), APD restitution, RP, and reentrant dominant frequency (DF). G(K1) controls DF through modulation of AP, APD restitution, RP, and CV. G(Na) is key in determining DF through alteration of CV and RP, particularly in AFER. Changes in ionic currents have qualitatively similar effects in control and AFER, but effects are smaller in AFER. The systematic analysis conducted in this study unravels the important role of the Na(+)/K(+) pump current in determining human atrial electrophysiology.
Learning about Spinal Muscular Atrophy
... causes the disorder. Top of page NHGRI Clinical Research on Spinal Muscular Atrophy Currently, NHGRI is not conducting studies on SMA. The National Institutes of Health is conducting clinical trials identified as enrolling individuals with SMA: Quantitative Analysis of SMN1 and SMN2 Gene Based on ...
Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackerman, E.; Hart, D.; Lethi, M.
The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of themore » case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.« less
School Library Support of Health Education in China: A Preliminary Study
ERIC Educational Resources Information Center
Liu, Geoffrey Z.; Zhang, Wuhong
2008-01-01
This preliminary study investigates the current situation of school library support of K-12 health education in China. A survey of 42 school librarians and 115 K-12 teachers from selected schools was conducted to find out their views about school library's role in school health education and their current practice of library use in health…
NASA Technical Reports Server (NTRS)
Browning, G. L.; Tzur, I.; Roble, R. G.
1987-01-01
A time-dependent model is introduced that can be used to simulate the interaction of a thunderstorm with its global electrical environment. The model solves the continuity equation of the Maxwell current, which is assumed to be composed of the conduction, displacement, and source currents. Boundary conditions which can be used in conjunction with the continuity equation to form a well-posed initial-boundary value problem are determined. Properties of various components of solutions of the initial-boundary value problem are analytically determined. The results indicate that the problem has two time scales, one determined by the background electrical conductivity and the other by the time variation of the source function. A numerical method for obtaining quantitative results is introduced, and its properties are studied. Some simulation results on the evolution of the displacement and conduction currents during the electrification of a storm are presented.
GilPavas, Edison; Arbeláez-Castaño, Paula; Medina, José; Acosta, Diego A
2017-11-01
A combined electrocoagulation (EC) and electrochemical oxidation (EO) industrial textile wastewater treatment potential is evaluated in this work. A fractional factorial design of experiment showed that EC current density, followed by pH, were the most significant factors. Conductivity and number of electrooxidation cells did not affect chemical oxygen demand degradation (DCOD). Aluminum and iron anodes performed similarly as sacrificial anodes. Current density, pH and conductivity were chosen for a Box-Behnken design of experiment to determine optimal conditions to achieve a high DCOD minimizing operating cost (OC). The optimum to achieve a 70% DCOD with an OC of USD 1.47/m 3 was: pH of 4, a conductivity of 3.7 mS/cm and a current density of 4.1 mA/cm 2 . This study also shows the applicability of a combined EC/EO treatment process of a real complex industrial wastewater.
Innes, Ev; Straker, Leon
2003-01-01
The purpose of this study was to understand the current beliefs of therapists in Australia, and the strategies they use to address the issues of credibility, reliability, consistency, trustworthiness, validity, generalisability and quality in conducting work-related assessments. In-depth semi-structured interviews were conducted with 26 occupational therapists and physiotherapists from around Australia. Participants expressed the belief that the therapist was the assessment instrument and was central to the credibility of an assessment. Conflict was reported when participants modified standardised assessments in an attempt to focus on context relevant activities and tasks. Participants were aware of the issues of reliability and validity but believed it was not practical to establish these aspects formally in most work-related assessments. The strategies used to achieve credibility, reliability, consistency, trustworthiness, validity, generalisability and quality were similar to those recommended for use in qualitative research. The strategies identified in this study can provide the basis for therapists to examine how they conduct work-related assessments and consider whether they currently use these strategies or have the opportunity to implement others.
Lee, Inhwa; Kim, Gun Woo; Yang, Minyang; Kim, Taek-Soo
2016-01-13
Conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) has attracted significant attention as a hole transport and electrode layer that substitutes metal electrodes in flexible organic devices. However, its weak cohesion critically limits the reliable integration of PSS in flexible electronics, which highlights the importance of further investigation of the cohesion of PSS. Furthermore, the electrical conductivity of PSS is insufficient for high current-carrying devices such as organic photovoltaics (OPVs) and organic light emitting diodes (OLEDs). In this study, we improve the cohesion and electrical conductivity through adding dimethyl sulfoxide (DMSO), and we demonstrate the significant changes in the properties that are dependent on the wt % of DMSO. In particular, with the addition of 3 wt % DMSO, the maximum enhancements for cohesion and electrical conductivity are observed where the values increase by 470% and 6050%, respectively, due to the inter-PEDOT bridging mechanism. Furthermore, when OLED devices using the PSS films are fabricated using the 3 wt % DMSO, the display exhibits 18% increased current efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Yue; Cai, Yimao, E-mail: caiyimao@pku.edu.cn; Liu, Yefan
TaO{sub x}-based resistive random access memory (RRAM) attracts considerable attention for the development of next generation nonvolatile memories. However, read current noise in RRAM is one of the critical concerns for storage application, and its microscopic origin is still under debate. In this work, the read current noise in TaO{sub x}-based RRAM was studied thoroughly. Based on a noise power spectral density analysis at room temperature and at ultra-low temperature of 25 K, discrete random telegraph noise (RTN) and continuous average current fluctuation (ACF) are identified and decoupled from the total read current noise in TaO{sub x} RRAM devices. A statisticalmore » comparison of noise amplitude further reveals that ACF depends strongly on the temperature, whereas RTN is independent of the temperature. Measurement results combined with conduction mechanism analysis show that RTN in TaO{sub x} RRAM devices arises from electron trapping/detrapping process in the hopping conduction, and ACF is originated from the thermal activation of conduction centers that form the percolation network. At last, a unified model in the framework of hopping conduction is proposed to explain the underlying mechanism of both RTN and ACF noise, which can provide meaningful guidelines for designing noise-immune RRAM devices.« less
ERIC Educational Resources Information Center
ManTech Technical Services Corp., Fairfax, VA.
This report presents the results of a management study of audio playback equipment operations conducted by the National Library Service, Library of Congress, its associated network of state and local machine lending agencies (MLA), and other parties that play a role in current operations. The objectives were to document current operations,…
Naidoo, Rajen N; Robins, Thomas G; Seixas, Noah; Lalloo, Umesh G; Becklake, Margaret
2005-05-01
Dust-related dose-response decrements in lung function among coal miners have been reported in several studies, with varying magnitudes across populations. Few studies have compared differences between current and former coal miners. No studies on dose response relationships with lung function have been conducted in South African coal mines, one of the top three producers of coal internationally. The objectives of this study were (1) to describe the relationship between respirable dust exposure and lung function among current and former South African coal miners and to determine whether differential dust related effects were present between these employment categories; (2) to examine dust related dose response relationships, controlling for potential confounding by smoking and a history of tuberculosis (TB). Six hundred and eighty-four current and 188 ex-miners from three bituminous coal mines in Mpumalanga Province were studied. Interviews assessing work histories, smoking profiles and other risk factors were conducted. Work histories were also obtained from company records. Standardised spirometry was performed by trained technicians. Cumulative respirable dust exposure (CDE) estimates were constructed from company-collected sampling and measurements conducted by the researchers. Regression models examined the associations of CDE with per cent predicted FEV(1) and FVC, controlling for smoking, past history of TB and employment status. A statistically significant decline in FEV(1) of 1.1 and 2.2 ml/mg-year/m(3) was found in representative 40-year-old, 1.7-m tall current and former miners, respectively. Significant differences were found between the highest and medium exposure categories. Ex-miners had a lower mean per cent predicted lung function than current miners for each cumulative exposure category, suggesting a "healthy worker" effect. Past history of TB contributed to 21 and 14% declines in per cent predicted FEV(1) and FVC, respectively. Thus, in this cohort, a dose-related decline in lung function was associated with respirable dust exposure, with a magnitude of effect similar to that seen in other studies and important differences between current and former employees. A "healthy worker" effect may have attenuated the magnitude of this relationship. TB was a significant contributor to lung function loss.
NASA Astrophysics Data System (ADS)
Xu, J.; Wang, Z.; Gwiazda, R.; Paull, C. K.; Talling, P.; Parsons, D. R.; Maier, K. L.; Simmons, S.; Cartigny, M.
2017-12-01
During a large turbidity current event observed by seven moorings placed along Monterey Canyon, offshore central California, in the axial channel between 300 and 1900 meters water depth, a conductivity/temperature sensor placed 11 meters above canyon floor on the mooring at 1500 meters water depth recorded a rapid decrease of conductivity and increase of temperature during the passage of a large turbidity current. The conductivity decline is unlikely caused by fresh water input owing to lack of precipitation in the region prior to the event. We investigated the mechanisms of turbidity currents' high sediment concentration reducing the measured conductivity. By conducting a series of laboratory experiments with a range of different concentrations, grain size, and water temperature combinations, we quantified a relationship between reduced conductivity and the elevated sediment concentration. This relationship can be used for estimating the very high sediment concentrations in a turbidity current with a condition of assuming constant salinity of the ambient seawater. The empirical relationship was then applied to the in-situ time-series of temperature and conductivity measured during this turbidity current. The highest sediment concentration, in the head of the flow, reached nearly 400 g/L (volume concentration 17%). Such a high value, which has yet been reported in literature for an oceanic turbidity current, will have significant implications for the dynamics and deposits of such flows.
NASA Astrophysics Data System (ADS)
Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.
2014-12-01
Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.
Development program on a cold cathode electron gun
NASA Technical Reports Server (NTRS)
Spindt, C. A.; Holland, C. E.
1985-01-01
During this phase of the cathode development program, SRI improved the multiple electron beam exposure system used to print hole patterns for the cathode arrays, studied anisotropic etch processes, conducted cathode investigations using an emission microscope, reviewed possible alternate materials for cathode fabrication, studied cathode storage techniques, conducted high power operation experiments, and demonstrated high-current-density operation with small arrays of tips.
Paychecks: A Guide to Conducting Salary-Equity Studies for Higher Education Faculty. Second Edition.
ERIC Educational Resources Information Center
Haignere, Lois
This guidebook is designed as a resource for those in the higher education community who want to conduct analyses of bias in faculty salaries or to understand and interpret the results of studies presented to them. This edition will help readers detect gender and face bias in current rank, select a salary-equity consultant, understand different…
Quality Assurance of Non-Local Accounting Programs Conducted in Hong Kong
ERIC Educational Resources Information Center
Cheng, Mei-Ai; Leung, Noel W.
2014-01-01
This study examines the current government policy and institutional practice on quality assurance of non-local accounting programs conducted in Hong Kong. Both international guidelines, national regulations and institutional frameworks in higher education and transnational higher education, and professional practice in accounting education are…
Leakage current transport mechanism under reverse bias in Au/Ni/GaN Schottky barrier diode
NASA Astrophysics Data System (ADS)
Peta, Koteswara Rao; Kim, Moon Deock
2018-01-01
The leakage current transport mechanism under reverse bias of Au/Ni/GaN Schottky diode is studied using temperature dependent current-voltage (I-V-T) and capacitance-voltage (C-V) characteristics. I-V measurement in this study is in the range of 140 K-420 K in steps of 10 K. A reduction in voltage dependent barrier height and a strong internal electric field in depletion region under reverse bias suggested electric field enhanced thermionic emission in carrier transport via defect states in Au/Ni/GaN SBD. A detailed analysis of reverse leakage current revealed two different predominant transport mechanisms namely variable-range hopping (VRH) and Poole-Frenkel (PF) emission conduction at low (<260 K) and high (>260 K) temperatures respectively. The estimated thermal activation energies (0.20-0.39 eV) from Arrhenius plot indicates a trap assisted tunneling of thermally activated electrons from a deep trap state into a continuum of states associated with each conductive threading dislocation.
Effect of current ripple on cathode erosion in 30 kWe class arcjets
NASA Technical Reports Server (NTRS)
Harris, William J.; O'Hair, Edgar A.; Hatfield, Lynn L.; Kristiansen, M.; Grimes, Montgomery D.
1991-01-01
An investigation was conducted to study the effect of current ripple on cathode erosion in 30 kWe class arcjets to determine the change in the cathode erosion rate for high (11 percent) and low (4 percent) current ripple. The measurements were conducted using a copper-tungsten cathode material to accelerate the cathode erosion process. It is shown that the high ripple erosion rate was initially higher than the low ripple erosion rate, but decreased asymptotically with time to a level less than half that of the low ripple value. Results suggest that high ripple extends the cathode lifetime for long duration operation, and improves arc stability by increasing the cathode attachment area.
Sauvaget, Anne; Trojak, Benoît; Bulteau, Samuel; Jiménez-Murcia, Susana; Fernández-Aranda, Fernando; Wolz, Ines; Menchón, José M.; Achab, Sophia; Vanelle, Jean-Marie; Grall-Bronnec, Marie
2015-01-01
Objectives: Behavioral addictions (BA) are complex disorders for which pharmacological and psychotherapeutic treatments have shown their limits. Non-invasive brain stimulation, among which transcranial direct current stimulation (tDCS), has opened up new perspectives in addiction treatment. The purpose of this work is to conduct a critical and systematic review of tDCS efficacy, and of technical and methodological considerations in the field of BA. Methods: A bibliographic search has been conducted on the Medline and ScienceDirect databases until December 2014, based on the following selection criteria: clinical studies on tDCS and BA (namely eating disorders, compulsive buying, Internet addiction, pathological gambling, sexual addiction, sports addiction, video games addiction). Study selection, data analysis, and reporting were conducted according to the PRISMA guidelines. Results: Out of 402 potential articles, seven studies were selected. So far focusing essentially on abnormal eating, these studies suggest that tDCS (right prefrontal anode/left prefrontal cathode) reduces food craving induced by visual stimuli. Conclusions: Despite methodological and technical differences between studies, the results are promising. So far, only few studies of tDCS in BA have been conducted. New research is recommended on the use of tDCS in BA, other than eating disorders. PMID:26500478
Sauvaget, Anne; Trojak, Benoît; Bulteau, Samuel; Jiménez-Murcia, Susana; Fernández-Aranda, Fernando; Wolz, Ines; Menchón, José M; Achab, Sophia; Vanelle, Jean-Marie; Grall-Bronnec, Marie
2015-01-01
Behavioral addictions (BA) are complex disorders for which pharmacological and psychotherapeutic treatments have shown their limits. Non-invasive brain stimulation, among which transcranial direct current stimulation (tDCS), has opened up new perspectives in addiction treatment. The purpose of this work is to conduct a critical and systematic review of tDCS efficacy, and of technical and methodological considerations in the field of BA. A bibliographic search has been conducted on the Medline and ScienceDirect databases until December 2014, based on the following selection criteria: clinical studies on tDCS and BA (namely eating disorders, compulsive buying, Internet addiction, pathological gambling, sexual addiction, sports addiction, video games addiction). Study selection, data analysis, and reporting were conducted according to the PRISMA guidelines. Out of 402 potential articles, seven studies were selected. So far focusing essentially on abnormal eating, these studies suggest that tDCS (right prefrontal anode/left prefrontal cathode) reduces food craving induced by visual stimuli. Despite methodological and technical differences between studies, the results are promising. So far, only few studies of tDCS in BA have been conducted. New research is recommended on the use of tDCS in BA, other than eating disorders.
Expression and permeation properties of the K(+) channel Kir7.1 in the retinal pigment epithelium.
Shimura, M; Yuan, Y; Chang, J T; Zhang, S; Campochiaro, P A; Zack, D J; Hughes, B A
2001-03-01
Bovine Kir7.1 clones were obtained from a retinal pigment epithelium (RPE)-subtracted cDNA library. Human RPE cDNA library screening resulted in clones encoding full-length human Kir7.1. Northern blot analysis indicated that bovine Kir7.1 is highly expressed in the RPE. Human Kir7.1 channels were expressed in Xenopus oocytes and studied using the two-electrode voltage-clamp technique. The macroscopic Kir7.1 conductance exhibited mild inward rectification and an inverse dependence on extracellular K+ concentration ([K+]o). The selectivity sequence based on permeability ratios was K+ (1.0) approximately Rb+ (0.89) > Cs+ (0.013) > Na+ (0.003) approximately Li+ (0.001) and the sequence based on conductance ratios was Rb+ (9.5) > K+ (1.0) > Na+ (0.458) > Cs+ (0.331) > Li+ (0.139). Non-stationary noise analysis of Rb+ currents in cell-attached patches yielded a unitary conductance for Kir7.1 of approximately 2 pS. In whole-cell recordings from freshly isolated bovine RPE cells, the predominant current was a mild inwardly rectifying K+ current that exhibited an inverse dependence of conductance on [K+]o. The selectivity sequence based on permeability ratios was K+ (1.0) approximately Rb+ (0.89) > Cs+ (0.021) > Na+ (0.003) approximately Li+ (0.002) and the sequence based on conductance ratios was Rb+ (8.9) > K+ (1.0) > Na+ (0.59) > Cs+ (0.23) > Li+ (0.08). In cell-attached recordings with Rb+ in the pipette, inwardly rectifying currents were observed in nine of 12 patches of RPE apical membrane but in only one of 13 basolateral membrane patches. Non-stationary noise analysis of Rb+ currents in cell-attached apical membrane patches yielded a unitary conductance for RPE Kir of approximately 2 pS. On the basis of this molecular and electrophysiological evidence, we conclude that Kir7.1 channel subunits comprise the K+ conductance of the RPE apical membrane.
Influences of the coordinate dependent noncommutative space on charged and spin currents
NASA Astrophysics Data System (ADS)
Ren, Ya-Jie; Ma, Kai
2018-06-01
We study the charged and spin currents on a coordinate dependent noncommutative space. Starting from the noncommutative extended relativistic equation of motion, the nonrelativistic approximation is obtained by using the Foldy-Wouthuysen transformation, and then the charged and spin currents are derived by using the extended Drude model. We find that the charged current is twisted by modifying the off-diagonal elements of the Hall conductivity, however, the spin current is not affected up to leading order of the noncommutative parameter.
Effect of polyvinylpyrrolidone content on alternating current conductivity of polyaniline
NASA Astrophysics Data System (ADS)
Megha, R.; Kumar, T. G. Naveen; Ravikiran, Y. T.; Prakash, H. G. Raj; Revanasiddappa, M.; Kumari, S. C. Vijaya
2018-05-01
In the present work, Polyaniline (PANI) and Polyaniline-polyvinylpyrrolidone (PANI-PVP) composites of two different weight percentages of PVP were synthesized separately by simple chemical polymerization method. The interaction between PANI and PVP in each of the composite was confirmed by Attenuated total reflection infrared spectroscopic (AT-IR) technique. The alternate current (AC) response characteristics at room temperature of PANI and the composites in the frequency range 50 Hz-1 MHz were comparatively studied. Both the composites have shown decreased conductivity as compared to that of PANI.
NASA Astrophysics Data System (ADS)
Zubarev, N. M.; Zubareva, O. V.
2017-06-01
The magnetic shaping problem is studied for the situation where a cylindrical column of a perfectly conducting fluid is deformed by the magnetic field of a system of linear current-carrying conductors. Equilibrium is achieved due to the balance of capillary and magnetic pressures. Two two-parametric families of exact solutions of the problem are obtained with the help of conformal mapping technique. In accordance with them, the column essentially deforms in the cross section up to its disintegration.
Fast, V G; Kléber, A G
1995-05-01
Unidirectional conduction block (UCB) and reentry may occur as a consequence of an abrupt tissue expansion and a related change in the electrical load. The aim of this study was to evaluate critical dimensions of the tissue necessary for establishing UCB in heart cell culture. Neonatal rat heart cell cultures with cell strands of variable width emerging into a large cell area were grown using a technique of patterned cell growth. Action potential upstrokes were measured using a voltage sensitive dye (RH-237) and a linear array of 10 photodiodes with a 15 microns resolution. A mathematical model was used to relate action potential wave shapes to underlying ionic currents. UCB (block of a single impulse in anterograde direction - from a strand to a large area - and conduction in the retrograde direction) occurred in narrow cell strands with a width of 15(SD 4) microns (1-2 cells in width, n = 7) and there was no conduction block in strands with a width of 31(8) microns (n = 9, P < 0.001) or larger. The analysis of action potential waveshapes indicated that conduction block was either due to geometrical expansion alone (n = 5) or to additional local depression of conduction (n = 2). In wide strands, action potential upstrokes during anterograde conduction were characterised by multiple rising phases. Mathematical modelling showed that two rising phases were caused by electronic current flow, whereas local ionic current did not coincide with the rising portions of the upstrokes. (1) High resolution optical mapping shows multiphasic action potential upstrokes at the region of abrupt expansion. At the site of the maximum decrement in conduction, these peaks were largely determined by the electrotonus and not by the local ionic current. (2) Unidirectional conduction block occurred in strands with a width of 15(4) microns (1-2 cells).
Identifying g: A Review of Current Factor Analytic Practices in the Science of Mental Abilities
ERIC Educational Resources Information Center
Reeve, Charlie L.; Blacksmith, Nikki
2009-01-01
Factor analysis is arguably one of the most important tools in the science of mental abilities. While many studies have been conducted to make recommendations regarding "best practices" concerning its use, it is unknown the degree to which contemporary ability researchers abide by those standards. The current study sought to evaluate the typical…
Pre-Service and In-Service Science Teachers' Conceptions of the Nature of Science
ERIC Educational Resources Information Center
Buaraphan, Khajornsak
2010-01-01
The author explores the history of nature of science beliefs among pre-service and in-service teachers primarily in the United States and Thailand and compares this history to findings in a current study being conducted in Thailand. Two research questions were used to guide this current study: What are pre-service and in-service science teachers'…
A Laboratory Activity on the Eddy Current Brake
ERIC Educational Resources Information Center
Molina-Bolivar, J. A.; Abella-Palacios, A. J.
2012-01-01
The aim of this paper is to introduce a simple and low-cost experimental setup that can be used to study the eddy current brake, which considers the motion of a sliding magnet on an inclined conducting plane in terms of basic physical principles. We present a set of quantitative experiments performed to study the influence of the geometrical and…
ERIC Educational Resources Information Center
Reardon, Mary Beth
2017-01-01
Social and emotional learning is a topic currently and increasingly scrutinized in our schools. Typically, the social and emotional skills of students are examined to assess proficiency in this area. Extensive study of social and emotional skills of teachers is rarely conducted. This study addresses the current knowledge of teachers' social and…
Conduct Disorder in Girls: Diagnostic and Intervention Issues
ERIC Educational Resources Information Center
Delligatti, Nina; Akin-Little, Angeleque; Little, Steven G.
2003-01-01
Current prevalence rates of Conduct Disorder (CD) in girls may be an underestimate due to inappropriate diagnostic criteria, biased perceptions by those responsible for reporting problematic behavior, and differential social constraints for each gender. Relatively few published studies of CD and related behaviors in girls exist. Available evidence…
Excess current in ferromagnet-superconductor structures with fully polarized triplet component
NASA Astrophysics Data System (ADS)
Moor, Andreas; Volkov, Anatoly F.; Efetov, Konstantin B.
2016-05-01
We study the I -V characteristics of ST/n/N contacts, where ST is a BCS superconductor S with a built-in exchange field h , n represents a normal metal wire, and N a normal metal reservoir. The superconductor ST is separated from the n wire by a spin filter which allows the passage of electrons with a certain spin direction so that only fully polarized triplet Cooper pairs penetrate into the n wire. We show that both the subgap conductance σsg and the excess current Iexc, which occur in conventional S/n/N contacts due to Andreev reflection (AR), exist also in the considered system. In our case, they are caused by unconventional AR that is not accompanied by spin flip. The excess current Iexc exists only if h exceeds a certain magnitude hc. At h
Abdullayeva, Nazrin; Sankir, Mehmet
2017-01-01
By using an easy and effective method of depositing conjugated polymers (PEDOT:PSS) on flexible substrates, a new design for organic bioelectronic devices has been developed. The purpose was to build up a system that mimics the motion of neurotransmitters in the synaptic cleft by obtaining an electrical to chemical signal transport. Fourier transform infrared (FTIR) spectroscopy and Raman measurements have demonstrated that electrochemical overoxidation region which separates the pristine PEDOT:PSS electrodes and allows ionic conduction has been achieved successfully. The influence of both electrical and ionic conductivities on organic electronic ion pump (OEIP) performances has been studied. The ultimate goal was to achieve the highest equilibrium current density at the lowest applied voltage via enhancing the electrical conductivity of PEDOT:PSS and ionic conductivity of electrochemically overoxidized region. The highest equilibrium current density, which corresponds to 4.81 × 1017 number of ions of acetylcholine was about 41 μA cm−2 observed for the OEIP with the electrical conductivities of 54 S cm−1. This was a threshold electrical conductivity beyond which the OEIP performances were not changed much. Once Nafion™ has been applied for enhancing the ionic conductivity, the equilibrium current density increased about ten times and reached up to 408 μA cm−2. Therefore, it has been demonstrated that the OEIP performance mainly scales with the ionic conductivity. A straightforward method of producing organic bioelectronics is proposed here may provide a clue for their effortless mass production in the near future. PMID:28772946
Current and Expected Roles of Agriculture Supervisors.
ERIC Educational Resources Information Center
Barrick, R. Kirby
1986-01-01
A study was conducted to describe the current role of local agriculture supervisors in Ohio as perceived by vocational agriculture teachers and local and state agricultural education supervisors; and to describe the expected role of local agriculture supervisors in Ohio as perceived by the same groups. (CT)
Pre-Service Teacher Beliefs: Are Musicians Different?
ERIC Educational Resources Information Center
Swainston, Andrew; Jeanneret, Neryl
2013-01-01
This paper reviews issues around teacher education and the beliefs students bring to their courses. It considers concerns about current classroom music teaching, preservice teachers' beliefs, and preservice music teachers' identity construction as the foundation for research currently being conducted at The University of Melbourne. The study is…
NASA Astrophysics Data System (ADS)
Ganguly, Sudin; Basu, Saurabh
2018-04-01
We study the charge and spin transport in two and four terminal graphene nanoribbons (GNR) decorated with random distribution of magnetic adatoms. The inclusion of the magnetic adatoms generates only the z-component of the spin polarized conductance via an exchange bias in the absence of Rashba spin-orbit interaction (SOI), while in presence of Rashba SOI, one is able to create all the three (x, y and z) components. This has important consequences for possible spintronic applications. The charge conductance shows interesting behaviour near the zero of the Fermi energy. Where in presence of magnetic adatoms the familiar plateau at 2e2 / h vanishes, thereby transforming a quantum spin Hall insulating phase to an ordinary insulator. The local charge current and the local spin current provide an intuitive idea on the conductance features of the system. We found that, the local charge current is independent of Rashba SOI, while the three components of the local spin currents are sensitive to Rashba SOI. Moreover the fluctuations of the spin polarized conductance are found to be useful quantities as they show specific trends, that is, they enhance with increasing adatom densities. A two terminal GNR device seems to be better suited for possible spintronic applications.
Guo, Shaoyin; Hihath, Joshua; Díez-Pérez, Ismael; Tao, Nongjian
2011-11-30
We report on the measurement and statistical study of thousands of current-voltage characteristics and transition voltage spectra (TVS) of single-molecule junctions with different contact geometries that are rapidly acquired using a new break junction method at room temperature. This capability allows one to obtain current-voltage, conductance voltage, and transition voltage histograms, thus adding a new dimension to the previous conductance histogram analysis at a fixed low-bias voltage for single molecules. This method confirms the low-bias conductance values of alkanedithiols and biphenyldithiol reported in literature. However, at high biases the current shows large nonlinearity and asymmetry, and TVS allows for the determination of a critically important parameter, the tunneling barrier height or energy level alignment between the molecule and the electrodes of single-molecule junctions. The energy level alignment is found to depend on the molecule and also on the contact geometry, revealing the role of contact geometry in both the contact resistance and energy level alignment of a molecular junction. Detailed statistical analysis further reveals that, despite the dependence of the energy level alignment on contact geometry, the variation in single-molecule conductance is primarily due to contact resistance rather than variations in the energy level alignment.
Tercjak, Agnieszka; Gutierrez, Junkal; Ocando, Connie; Mondragon, Iñaki
2010-03-16
Conductive properties of different thermosetting materials modified with nematic 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) liquid crystal and rutile TiO(2) nanoparticles were successfully studied by means of tunneling atomic force miscroscopy (TUNA). Taking into account the liquid crystal state of the HBC at room temperature, depending on both the HBC content and the presence of TiO(2) nanoparticles, designed materials showed different TUNA currents passed through the sample. The addition of TiO(2) nanoparticles into the systems multiply the detected current if compared to the thermosetting systems without TiO(2) nanoparticles and simultaneously stabilized the current passed through the sample, making the process reversible since the absolute current values were almost the same applying both negative and positive voltage. Moreover, thermosetting systems modified with liquid crystals with and without TiO(2) nanoparticles are photoluminescence switchable materials as a function of temperature gradient during repeatable heating/cooling cycle. Conductive properties of switchable photoluminescence thermosetting systems based on liquid crystals can allow them to find potential application in the field of photoresponsive devices, with a high contrast ratio between transparent and opaque states.
Zhang, Wen-Hao; Skerrett, Martha; Walker, N. Alan; Patrick, John W.; Tyerman, Stephen D.
2002-01-01
In developing bean (Phaseolus vulgaris) seeds, phloem-imported nutrients move in the symplast from sieve elements to the ground parenchyma cells where they are transported across the plasma membrane into the seed apoplast. To study the mechanisms underlying this transport, channel currents in ground parenchyma protoplasts were characterized using patch clamp. A fast-activating outward current was found in all protoplasts, whereas a slowly activating outward current was observed in approximately 25% of protoplasts. The two currents had low selectivity for univalent cations, but the slow current was more selective for K+ over Cl− (PK:PCl = 3.6–4.2) than the fast current (PK:PCl = 1.8–2.5) and also displayed Ca2+ selectivity. The slow current was blocked by Ba2+, whereas both currents were blocked by Gd3+ and La3+. Efflux of K+ from seed coat halves was inhibited 25% by Gd3+ and La3+ but was stimulated by Ba2+ and Cs+, suggesting that only the fast current may be a component in the pathway for K+ release. An “instantaneous” inward current observed in all protoplasts exhibited similar pharmacology and permeability for univalent cations to the fast outward current. In outside-out patches, two classes of depolarization-activated cation-selective channels were observed: one slowly activating of low conductance (determined from nonstationary noise to be 2.4 pS) and another with conductances 10-fold higher. Both channels occurred at high density. The higher conductance channel in 10 mm KCl had PK:PCl = 2.8. Such nonselective channels in the seed coat ground parenchyma cell could function to allow some of the efflux of phloem-imported univalent ions into the seed apoplast. PMID:11842143
Masurkar, Arjun V.; Chen, Wei R.
2011-01-01
The olfactory glomerulus is the locus of information transfer between olfactory sensory neurons and output neurons of the olfactory bulb. Juxtaglomerular cells (JGCs) may influence intraglomerular processing by firing plateau potentials that support multiple spikes. It is unclear what inward currents mediate this firing pattern. In previous work, we characterized potassium currents of JGCs. We focus here on the inward currents using whole cell current clamp and voltage recording in a rat in vitro slice preparation, as well as computer simulation. We first showed that sodium current was not required to mediate plateau potentials. Voltage clamp characterization of calcium current (ICa) determined that ICa consisted of a slow activating, rapidly inactivating (τ10%–90% rise 6–8ms, τinactivation 38–77ms) component Icat1, similar to T-type currents, and a sustained (τinactivation≫500ms) component Icat2, likely composed of L-type and P/Q-type currents. We used computer simulation to test their roles in plateau potential firing. We robustly modeled Icat1 and Icat2 to Hodgkin-Huxley schemes (m3h and m2, respectively) and simulated a JGC plateau potential with 6 conductances: calcium currents as above, potassium currents from our prior study (A-type Ikt1, D-type Ikt2, delayed rectifier Ikt3), and a fast sodium current (INa). We demonstrated that Icat1 was required for mediating the plateau potential, unlike INa and Icat2, and its τinactivation determined plateau duration. We also found that Ikt1 dictated plateau potential shape more than Ikt2 and Ikt3. The influence of these two transient and opposing conductances suggests a unique mechanism of plateau potential physiology. PMID:21704681
Space station contamination control study: Internal combustion, phase 1
NASA Technical Reports Server (NTRS)
Ruggeri, Robert T.
1987-01-01
Contamination inside Space Station modules was studied to determine the best methods of controlling contamination. The work was conducted in five tasks that identified existing contamination control requirements, analyzed contamination levels, developed outgassing specification for materials, wrote a contamination control plan, and evaluated current materials of offgassing tests used by NASA. It is concluded that current contamination control methods can be made to function on the Space Station for up to 1000 days, but that current methods are deficient for periods longer than about 1000 days.
Mays, Darren; Gilman, Stephen E; Rende, Richard; Luta, George; Tercyak, Kenneth P; Niaura, Raymond S
2014-06-01
Adolescents with conduct problems are more likely to smoke, and tobacco advertising exposure may exacerbate this risk. Males' excess risk for conduct problems and females' susceptibility to advertising suggest gender-specific pathways to smoking. We investigated the associations between gender, conduct problems, and lifetime smoking and adolescents' exposure to tobacco advertising, and we examined prospective relationships with smoking behaviors. Adolescents completed baseline (2001-2004; n = 541) and 5-year follow-up (2007-2009; n =320) interviews for a family study of smoking risk. Baseline interviews assessed conduct problems and tobacco advertising exposure; smoking behavior was assessed at both timepoints. Generalized linear models analyzed gender differences in the relationship between conduct problems, advertising exposure, and smoking behavior at baseline and longitudinally. At baseline, among males, conduct problems were associated with greater advertising exposure independent of demographics and lifetime smoking. Among females at baseline, conduct problems were associated with greater advertising exposure only among never-smokers after adjusting for demographics. In longitudinal analyses, baseline advertising exposure predicted subsequent smoking initiation (i.e., smoking their first cigarette between baseline and follow-up) for females but not for males. Baseline conduct problems predicted current (i.e., daily or weekly) smoking at follow-up for all adolescents in adjusted models. The findings of this study reinforce that conduct problems are a strong predictor of subsequent current smoking for all adolescents and reveal important differences between adolescent males and females in the relationship between conduct problems, tobacco advertising behavior, and smoking behavior. The findings suggest gender-specific preventive interventions targeting advertising exposure may be warranted.
ERIC Educational Resources Information Center
Bridges, Benjamin, Jr.; Johnston, Mary P.
The impact of the tax-transfer system on the distribution of income among economic units is the subject of a number of studies by the Office of Research and Statistics of the Social Security Administration. One of the most important data sources for the work is the Census Bureau's March Current Population Survey (CPS). To conduct such studies, the…
Voltage-Clamp Studies on Uterine Smooth Muscle
Anderson, Nels C.
1969-01-01
These studies have developed and tested an experimental approach to the study of membrane ionic conductance mechanisms in strips of uterine smooth muscle. The experimental and theoretical basis for applying the double sucrose-gap technique is described along with the limitations of this system. Nonpropagating membrane action potentials were produced in response to depolarizing current pulses under current-clamp conditions. The stepwise change of membrane potential under voltage-clamp conditions resulted in a family of ionic currents with voltage- and time-dependent characteristics. In sodium-free solution the peak transient current decreased and its equilibrium potential shifted along the voltage axis toward a more negative internal potential. These studies indicate a sodium-dependent, regenerative excitation mechanism. PMID:5796366
ERIC Educational Resources Information Center
Al-Harby, Jubeir Suleiman Samir
2016-01-01
The main intent of the current study was to investigate the effectiveness of the reciprocal-teaching strategy in learning outcomes and attitudes of Qassim-University students in Islamic culture. The study was conducted in Oqlat Al-Soqour Faculty of Sciences and Arts for paucity of research conducted in such a faculty, as well as for being the…
The study of electrical conductivity of DNA molecules by scanning tunneling spectroscopy
NASA Astrophysics Data System (ADS)
Sharipov, T. I.; Bakhtizin, R. Z.
2017-10-01
An interest to the processes of charge transport in DNA molecules is very high, due to perspective of their using in nanoelectronics. The original sample preparation for studying electrical conductivity of DNA molecules by scanning tunneling spectroscopy has been proposed and tested. The DNA molecules immobilized on gold surface have been imaged clearly and their current-voltage curves have been measured.
Translocation of double strand DNA into a biological nanopore
NASA Astrophysics Data System (ADS)
Chatkaew, Sunita; Mlayeh, Lamia; Leonetti, Marc; Homble, Fabrice
2009-03-01
Translocation of double strand DNA across a unique mitochondrial biological nanopore (VDAC) is observed by an electrophysiological method. Characteristics of opened and sub-conductance states of VDAC are studied. When the applied electric potential is beyond ± 20 mV, VDAC transits to a sub-conductance state. Plasmids (circular double strand DNA) with a diameter greater than that of the channel shows the current reduction into the channel during the interaction but the state with zero-current is not observed. On the contrary, the interaction of linear double strand DNA with the channel shows the current reduction along with the zero-current state. These show the passages of linear double strand DNA across the channel and the electrostatic effect due to the surface charges of double strand DNA and channel for circular and linear double strand DNA.
NASA Technical Reports Server (NTRS)
Zhu, L.; Schunk, R. W.; Sojka, J. J.
1991-01-01
The influence of the ionospheric conductance on the field-aligned current associated with a distorted two-cell convection pattern during northward IMF was investigated using the Heppner-Maynard (1987) convection model and the Utah State University conductivity model described by Rasmussen and Schunk (1987). Results show that the variation of the ionospheric conductivity distribution can significantly affect the features of the field-aligned current for northward IMF, where matching or mismatching between the conductance gradient and the convection electric field plays a key role. It was found that the increase of the field-aligned current in the polar cap observed during summer is mainly due to the increasing contribution from the Pedersen current, and that the increase of the field-aligned current in both the oval region and the evening-midnight sector during the active aurora period is mainly due to the increasing contribution from the Hall current.
Risks associated with crack cocaine smoking among exotic dancers in Baltimore, MD.
Sherman, Susan G; Reuben, Jacqueline; Chapman, Chris Serio; Lilleston, Pamela
2011-04-01
There is a dearth of research focusing on sex work in exotic dance clubs. We conducted a cross-sectional study to examine the prevalence and correlates of crack cocaine smoking among a sample of exotic dancers. The "block," a historical red-light district in downtown Baltimore, MD, is comprised of 30 adult-entertainment establishments. Between 01/09 and 08/09, we conducted a survey with exotic dancers (N=98). The survey explored demographic, and drug and sexual/drug risk behaviors. Bivariate and multivariate analysis was conducted using Poisson regression with robust variance estimates to examine correlates of current crack smoking. Crack cocaine smokers compared to non-crack cocaine smokers were significantly more likely to report: older age (29 vs. 23 years, respectively, p<0.0001); being White (79% vs. 50%, respectively, p=0.008); having been arrested (93% vs. 67%, respectively, p=0.008); daily alcohol consumption (36% vs. 17%, p=0.047); current heroin injection (57% vs. 13%, p<0.001); and current sex exchange (79% vs. 30%, p<0.001). In the presence of other variables, crack cocaine smokers compared to non-crack cocaine smokers were significantly older, more likely to report current heroin injection, and more likely to report current sex exchange. We found high levels of drug use and sexual risk behaviors as well as a number of risks behaviors associated with crack cocaine smoking among this very under-studied population. Targeted interventions are greatly needed. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yaney, Perry P.; Ouchen, Fahima; Grote, James G.
2009-08-01
DC resistivity studies were carried out on biopolymer films of DNA-CTMA and silk fibroin, and on selected traditional polymer films, including PMMA and APC. Films of DNA-CTMA versus molecular weight and with conductive dopants PCBM, BAYTRON P and ammonium tetrachloroplatinate are reported. The films were spin coated on glass slides configured for measurements of volume dc resistance. The measurements used the alternating polarity method to record the applied voltage-dependent current independent of charging and background currents. The Arrhenius equation plus a constant was fitted to the conductivity versus temperature data of the polymers and the non-doped DNA-based biopolymers with activation energies ranging from 0.8 to 1.4 eV.
Medical School Programs Resources and Financing.
ERIC Educational Resources Information Center
Rosenthal, Joseph
The current efforts of the Association of American Medical Colleges to test the feasibility of broadening the application, utility, and scope of the cost-finding studies conducted by many academic health centers and individual schools of the health professions are examined. The current effort is an outgrowth of the existing foundations of cost…
Southern California Area Environmental Manpower and Training Needs Study.
ERIC Educational Resources Information Center
Kowalski, James A.
A survey was conducted to identify environmentally related jobs, the current employment need in these areas, the 5-year projection, and the current status of educational training programs to meet the employment needs for technicians or paraprofessionals within a five-county area of Southern California. The environmentally related occupations…
Family Involvement in the Schools of Belize
ERIC Educational Resources Information Center
Youngblom, Rachel K.; Houlihan, Daniel
2015-01-01
This study was conducted to better understand the level of involvement of families in Belize with the education of their children. It was anticipated that information from this broadly distributed survey might show areas of current strengths and weakness in the current system that might allow for future adjustments.
NR2C in the thalamic reticular nucleus; effects of the NR2C knockout.
Zhang, Yuchun; Buonanno, Andres; Vertes, Robert P; Hoover, Walter B; Lisman, John E
2012-01-01
NMDAR antagonists can evoke delta frequency bursting in the nucleus reticularis of the thalamus (nRT). The mechanism of this oscillation was determined; antagonist blocks an NR2C-like conductance that has low Mg block at resting potential and thus can contribute a resting inward current in response to ambient glutamate. Block of this current hyperpolarizes the cell, deinactivating T-type Ca channels and thus triggering delta frequency bursting. The basis for assuming a NR2C-like conductance was that (1) transcripts for NR2C are abundant in the thalamus and (2) the current-voltage curve of the synaptically evoked NMDAR current has the low rectification characteristic of NR2C. In the current study, we have sought to determine whether the channels that generate the NMDAR current are NR2C-like or are actually comprised of receptors containing NR2C. We studied the current-voltage curve of synaptically evoked NMDAR current in the nRT of NR2C knockout mice. In wild-type mice, the current was weakly voltage dependent, as previously observed in rats. This weak rectification was absent in NR2C KO mice. In contrast, NR2C KO had no effect on the strongly rectifying NMDAR current in pyramidal cells of the prefrontal cortex. These results demonstrate that the low rectification normally observed in the nRT is due to NR2C.
Study protocol for a scoping review on rehabilitation scoping reviews.
Colquhoun, Heather L; Jesus, Tiago S; O'Brien, Kelly K; Tricco, Andrea C; Chui, Adora; Zarin, Wasifa; Lillie, Erin; Hitzig, Sander L; Straus, Sharon
2017-09-01
Scoping reviews are increasingly popular in rehabilitation. However, significant variability in scoping review conduct and reporting currently exists, limiting potential for the methodology to advance rehabilitation research, practice and policy. Our aim is to conduct a scoping review of rehabilitation scoping reviews in order to examine the current volume, yearly distribution, proportion, scope and methodological practices involved in the conduct of scoping reviews in rehabilitation. Key areas of methodological improvement will be described. Methods and analysis: We will undertake the review using the Arksey and O'Malley scoping review methodology. Our search will involve two phases. The first will combine a previously conducted scoping review of scoping reviews (not distinct to rehabilitation, with data current to July 2014) together with a rehabilitation keyword search in PubMed. Articles found in the first phase search will undergo a full text review. The second phase will include an update of the previously conducted scoping review of scoping reviews (July 2014 to current). This update will include the search of nine electronic databases, followed by title and abstract screening as well as a full text review. All screening and extraction will be performed independently by two authors. Articles will be included if they are scoping reviews within the field of rehabilitation. A consultation exercise with key targets will inform plans to improve rehabilitation scoping reviews. Ethics and dissemination: Ethics will be required for the consultation phase of our scoping review. Dissemination will include peer-reviewed publication and conferences in rehabilitation-specific contexts.
Advanced electric propulsion research - 1990
NASA Technical Reports Server (NTRS)
Monheiser, Jeffery M.; Wilbur, Paul J.
1991-01-01
An experimental study of impingement current collection on the accelerator grid of an ion thruster is presented. The equipment, instruments, and procedures being used to conduct the study are discussed. The contribution to this current due to charge-exchange ions produced close to the grid is determined using a volume-integration procedure and measured ion beam current design, computed neutral atom density and measured beam plasma potential data. This current, which is expected to be almost equal to that measured directly, is found to be an order of magnitude less. The impingement current determined by integrating the current density of ambient ions in the beam plasma close to the grid is found to agree with the directly measured impingement current. Possible reasons for the disagreement between the directly measured and volume integrated impingement currents are discussed.
NASA Astrophysics Data System (ADS)
Jamail, Nor Akmal Mohd; Piah, Mohamed Afendi Mohamed; Muhamad, Nor Asiah
2012-09-01
Nondestructive and time domain dielectric measurement techniques such as polarization and depolarization current (PDC) measurements have recently been widely used as a potential tool for determining high-voltage insulation conditions by analyzing the insulation conductivity. The variation in the conductivity of an insulator was found to depend on several parameters: the difference between the polarization and depolarization currents, geometric capacitance, and the relative permittivity of the insulation material. In this paper the conductivities of different types of oil-paper insulation material are presented. The insulation conductivities of several types of electrical apparatus were simulated using MATLAB. Conductivity insulation was found to be high at high polarizations and at the lowest depolarization current. It was also found to increase with increasing relative permittivity as well as with decreasing geometric capacitance of the insulating material.
Frieden, M; Sollini, M; Bény, J-L
1999-01-01
Substance P and bradykinin, endothelium-dependent vasodilators of pig coronary artery, trigger in endothelial cells a rise in cytosolic Ca2+ concentration ([Ca2+]i) and membrane hyperpolarization. The aim of the present study was to determine the type of Ca2+-dependent K+ (KCa) currents underlying the endothelial cell hyperpolarization. The substance P-induced increase in [Ca2+]i was 30 % smaller than that induced by bradykinin, although the two peptides triggered a membrane hyperpolarization of the same amplitude. The two agonists evoked a large outward K+ current of the same conductance at maximal stimulation. Agonists applied together produced the same maximal current amplitude as either one applied alone. Iberiotoxin (50 nM) reduced by about 40 % the K+ current activated by bradykinin without modifying the substance P response. Conversely, apamin (1 μm) inhibited the substance P-induced K+ current by about 65 %, without affecting the bradykinin response. Similar results were obtained on peptide-induced membrane hyperpolarization. Bradykinin-induced, but not substance P-induced, endothelium-dependent relaxation resistant to NG-nitro-L-arginine and indomethacin was partly inhibited by 3 μm 17-octadecynoic acid (17-ODYA), an inhibitor of cytochrome P450 epoxygenase. Similarly, the bradykinin-induced K+ current was reduced by 17-ODYA. Our results show that responses to substance P and bradykinin result in a hyperpolarization due to activation of different KCa currents. A current consistent with the activation of large conductance (BKCa) channels was activated only by bradykinin, whereas a current consistent with the activation of small conductance (SKCa) channels was stimulated only by substance P. The observation that a similar electrical response is produced by different pools of channels implies distinct intracellular pathways leading to KCa current activation. PMID:10457055
Iberiotoxin-sensitive and -insensitive BK currents in Purkinje neuron somata
Benton, Mark D.; Lewis, Amanda H.; Bant, Jason S.
2013-01-01
Purkinje cells have specialized intrinsic ionic conductances that generate high-frequency action potentials. Disruptions of their Ca or Ca-activated K (KCa) currents correlate with altered firing patterns in vitro and impaired motor behavior in vivo. To examine the properties of somatic KCa currents, we recorded voltage-clamped KCa currents in Purkinje cell bodies isolated from postnatal day 17–21 mouse cerebellum. Currents were evoked by endogenous Ca influx with approximately physiological Ca buffering. Purkinje somata expressed voltage-activated, Cd-sensitive KCa currents with iberiotoxin (IBTX)-sensitive (>100 nS) and IBTX-insensitive (>75 nS) components. IBTX-sensitive currents activated and partially inactivated within milliseconds. Rapid, incomplete macroscopic inactivation was also evident during 50- or 100-Hz trains of 1-ms depolarizations. In contrast, IBTX-insensitive currents activated more slowly and did not inactivate. These currents were insensitive to the small- and intermediate-conductance KCa channel blockers apamin, scyllatoxin, UCL1684, bicuculline methiodide, and TRAM-34, but were largely blocked by 1 mM tetraethylammonium. The underlying channels had single-channel conductances of ∼150 pS, suggesting that the currents are carried by IBTX-resistant (β4-containing) large-conductance KCa (BK) channels. IBTX-insensitive currents were nevertheless increased by small-conductance KCa channel agonists EBIO, chlorzoxazone, and CyPPA. During trains of brief depolarizations, IBTX-insensitive currents flowed during interstep intervals, and the accumulation of interstep outward current was enhanced by EBIO. In current clamp, EBIO slowed spiking, especially during depolarizing current injections. The two components of BK current in Purkinje somata likely contribute differently to spike repolarization and firing rate. Moreover, augmentation of BK current may partially underlie the action of EBIO and chlorzoxazone to alleviate disrupted Purkinje cell firing associated with genetic ataxias. PMID:23446695
Nam, Joo-Youn; Kim, Hyun-Woo; Lim, Kyeong-Ho; Shin, Hang-Sik; Logan, Bruce E
2010-01-15
Microbial fuel cells (MFCs) are operated with solutions containing various chemical species required for the growth of electrochemically active microorganisms including nutrients and vitamins, substrates, and chemical buffers. Many different buffers are used in laboratory media, but the effects of these buffers and their inherent electrolyte conductivities have not been examined relative to current generation in MFCs. We investigated the effect of several common buffers (phosphate, MES, HEPES, and PIPES) on power production in single chambered MFCs compared to a non-buffered control. At the same concentrations the buffers produced different solution conductivities which resulted in different ohmic resistances and power densities. Increasing the solution conductivities to the same values using NaCl produced comparable power densities for all buffers. Very large increases in conductivity resulted in a rapid voltage drop at high current densities. Our results suggest that solution conductivity at a specific pH for each buffer is more important in MFC studies than the buffer itself given relatively constant pH conditions. Based on our analysis of internal resistance and a set neutral pH, phosphate and PIPES are the most useful buffers of those examined here because pH was maintained close to the pK(a) of the buffer, maximizing the ability of the buffer to contribute to increase current generation at high power densities. Copyright 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Suh, Hyun Sang; Lee, Won Hee; Kim, Tae-Seong
2012-11-01
To establish safe and efficient transcranial direct current stimulation (tDCS), it is of particular importance to understand the electrical effects of tDCS in the brain. Since the current density (CD) and electric field (EF) in the brain generated by tDCS depend on various factors including complex head geometries and electrical tissue properties, in this work, we investigated the influence of anisotropic conductivity in the skull and white matter (WM) on tDCS via a 3D anatomically realistic finite element head model. We systematically incorporated various anisotropic conductivity ratios into the skull and WM. The effects of anisotropic tissue conductivity on the CD and EF were subsequently assessed through comparisons to the conventional isotropic solutions. Our results show that the anisotropic skull conductivity significantly affects the CD and EF distribution: there is a significant reduction in the ratio of the target versus non-target total CD and EF on the order of 12-14%. In contrast, the WM anisotropy does not significantly influence the CD and EF on the targeted cortical surface, only on the order of 1-3%. However, the WM anisotropy highly alters the spatial distribution of both the CD and EF inside the brain. This study shows that it is critical to incorporate anisotropic conductivities in planning of tDCS for improved efficacy and safety.
Improved conductivity of carbon-nano-fiber (CNF)/polytetrafluoroethylene (PTFE) composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, Sarita; Kalra, G. S.; Pushkar, Vinay K.
2016-05-23
A series of CNF/PTFE composite loaded with different weight % of CNFs as 0.01, 0.02, 0.03, 0.05, 1, 2, 3, 4, 5 into PTFE is fabricated. In this work, the 5wt% heat-treated CNFs were used as filler in PTFE. Current-voltage (I-V) study of the samples confirmed the samples as conducting composite. In scanning electron microscope (SEM) study, the conducting CNFs channels were observed from upper surface to inside throughout the polymer matrix. A sintered composite of 5 wt% loading of CNFs showed an improved conductivity and SEM image exhibited a good binding of CNFs into PTFE.
Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei
2018-05-15
Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors.
Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei
2018-01-01
Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors. PMID:29762528
High electric field conduction in low-alkali boroaluminosilicate glass
NASA Astrophysics Data System (ADS)
Dash, Priyanka; Yuan, Mengxue; Gao, Jun; Furman, Eugene; Lanagan, Michael T.
2018-02-01
Electrical conduction in silica-based glasses under a low electric field is dominated by high mobility ions such as sodium, and there is a transition from ionic transport to electronic transport as the electric field exceeds 108 V/m at low temperatures. Electrical conduction under a high electric field was investigated in thin low-alkali boroaluminosilicate glass samples, showing nonlinear conduction with the current density scaling approximately with E1/2, where E is the electric field. In addition, thermally stimulated depolarization current (TSDC) characterization was carried out on room-temperature electrically poled glass samples, and an anomalous discharging current flowing in the same direction as the charging current was observed. High electric field conduction and TSDC results led to the conclusion that Poole-Frenkel based electronic transport occurs in the mobile-cation-depleted region adjacent to the anode, and accounts for the observed anomalous current.
Casper, T. A.; Meyer, W. H.; Jackson, G. L.; ...
2010-12-08
We are exploring characteristics of ITER startup scenarios in similarity experiments conducted on the DIII-D Tokamak. In these experiments, we have validated scenarios for the ITER current ramp up to full current and developed methods to control the plasma parameters to achieve stability. Predictive simulations of ITER startup using 2D free-boundary equilibrium and 1D transport codes rely on accurate estimates of the electron and ion temperature profiles that determine the electrical conductivity and pressure profiles during the current rise. Here we present results of validation studies that apply the transport model used by the ITER team to DIII-D discharge evolutionmore » and comparisons with data from our similarity experiments.« less
Ionospheric convection driven by NBZ currents
NASA Technical Reports Server (NTRS)
Rasmussen, C. E.; Schunk, R. W.
1987-01-01
Computer simulations of Birkeland currents and electric fields in the polar ionosphere during periods of northward IMF were conducted. When the IMF z component is northward, an additional current system, called the NBZ current system, is present in the polar cap. These simulations show the effect of the addition of NBZ currents on ionospheric convection, particularly in the polar cap. When the total current in the NBZ system is roughly 25 to 50 percent of the net region 1 and 2 currents, convection in the central portion of the polar cap reverses direction and turns sunward. This creates a pattern of four-cell convection with two small cells located in the polar cap, rotating in an opposite direction from the larger cells. When the Birkeland currents are fixed (constant current source), the electric field is reduced in regions of relatively high conductivity, which affects the pattern of ionospheric convection. Day-night asymmetries in conductivity change convection in such a way that the two polar-cap cells are located within the large dusk cell. When ionospheric convection is fixed (constant voltage source), Birkeland currents are increased in regions of relatively high conductivity. Ionospheric currents, which flow horizontally to close the Birkeland currents, are changed appreciably by the NBZ current system. The principal effect is an increase in ionospheric current in the polar cap.
A Review of Research on Metacognition in Science Education: Current and Future Directions
ERIC Educational Resources Information Center
Zohar, Anat; Barzilai, Sarit
2013-01-01
The goal of this study is to map the current state of research in the field of metacognition in science education, to identify key trends, and to discern areas and questions for future research. We conducted a systematic analysis of 178 studies published in peer-reviewed journals in the years 2000-2012 and indexed in the ERIC database. The…
ERIC Educational Resources Information Center
Macintosh, Henry G.
A study was conducted to examine and compare, in 10 selected countries, the interaction between current conceptions and theories of assessment and assessment practices. Of particular interest was the nature of changing practice and theory in assessing the learning achievements of students in elementary and secondary education, as well as the…
Analysis of recoverable current from one component of magnetic flux density in MREIT and MRCDI.
Park, Chunjae; Lee, Byung Il; Kwon, Oh In
2007-06-07
Magnetic resonance current density imaging (MRCDI) provides a current density image by measuring the induced magnetic flux density within the subject with a magnetic resonance imaging (MRI) scanner. Magnetic resonance electrical impedance tomography (MREIT) has been focused on extracting some useful information of the current density and conductivity distribution in the subject Omega using measured B(z), one component of the magnetic flux density B. In this paper, we analyze the map Tau from current density vector field J to one component of magnetic flux density B(z) without any assumption on the conductivity. The map Tau provides an orthogonal decomposition J = J(P) + J(N) of the current J where J(N) belongs to the null space of the map Tau. We explicitly describe the projected current density J(P) from measured B(z). Based on the decomposition, we prove that B(z) data due to one injection current guarantee a unique determination of the isotropic conductivity under assumptions that the current is two-dimensional and the conductivity value on the surface is known. For a two-dimensional dominating current case, the projected current density J(P) provides a good approximation of the true current J without accumulating noise effects. Numerical simulations show that J(P) from measured B(z) is quite similar to the target J. Biological tissue phantom experiments compare J(P) with the reconstructed J via the reconstructed isotropic conductivity using the harmonic B(z) algorithm.
NASA Astrophysics Data System (ADS)
Hatsukade, Y.; Takahashi, T.; Yasui, T.; Tsubaki, M.; Fukumono, M.; Tanaka, S.
2007-10-01
We have developed an SQUID-NDI technique for evaluation of friction stir welding (FSW) between aluminum alloy A6063 and stainless steel SUS304 from the electric conductivities in board specimens bonded by FSW. A SQUID-NDI system employing an HTS-SQUID gradiometer was constructed to measure current distribution in the FSW specimens by applying voltage to the specimen. By measuring field gradients dBz/dy and dBz/dx above the FSW specimens made with various FSW conditions and then converting them to current vector Jx and Jy, conductivities of FSW areas were estimated. Due to the difference in the FSW conditions, the conductivity distributions varied dramatically. From these results, it was suggested that the conductivities in FSW areas should be varied due to the temperature heated by the friction between the milling tool and the materials.
Current conducting end plate of fuel cell assembly
Walsh, Michael M.
1999-01-01
A fuel cell assembly has a current conducting end plate with a conductive body formed integrally with isolating material. The conductive body has a first surface, a second surface opposite the first surface, and an electrical connector. The first surface has an exposed portion for conducting current between a working section of the fuel cell assembly and the electrical connector. The isolating material is positioned on at least a portion of the second surface. The conductive body can have support passage(s) extending therethrough for receiving structural member(s) of the fuel cell assembly. Isolating material can electrically isolate the conductive body from the structural member(s). The conductive body can have service passage(s) extending therethrough for servicing one or more fluids for the fuel cell assembly. Isolating material can chemically isolate the one or more fluids from the conductive body. The isolating material can also electrically isolate the conductive body from the one or more fluids.
Functional Analysis in Public Schools: A Summary of 90 Functional Analyses
ERIC Educational Resources Information Center
Mueller, Michael M.; Nkosi, Ajamu; Hine, Jeffrey F.
2011-01-01
Several review and epidemiological studies have been conducted over recent years to inform behavior analysts of functional analysis outcomes. None to date have closely examined demographic and clinical data for functional analyses conducted exclusively in public school settings. The current paper presents a data-based summary of 90 functional…
Lightweight diesel aircraft engines for general aviation
NASA Technical Reports Server (NTRS)
Berenyi, S. G.; Brouwers, A. P.
1980-01-01
A methodical design study was conducted to arrive at new diesel engine configurations and applicable advanced technologies. Two engines are discussed and the description of each engine includes concept drawings. A performance analysis, stress and weight prediction, and a cost study were also conducted. This information was then applied to two airplane concepts, a six-place twin and a four-place single engine aircraft. The aircraft study consisted of installation drawings, computer generated performance data, aircraft operating costs and drawings of the resulting airplanes. The performance data shows a vast improvement over current gasoline-powered aircraft. At the completion of this basic study, the program was expanded to evaluate a third engine configuration. This third engine incorporates the best features of the original two, and its design is currently in progress. Preliminary information on this engine is presented.
Use of solar cell in electrokinetic remediation of cadmium-contaminated soil.
Yuan, Songhu; Zheng, Zhonghua; Chen, Jing; Lu, Xiaohua
2009-03-15
This preliminary study used a solar cell, instead of direct current (DC) power supply, to generate electric field for electrokinetic (EK) remediation of cadmium-contaminated soil. Three EK tests were conducted and compared; one was conducted on a cloudy and rainy day with solar cell, one was conducted on a sunny day with solar cell and another was conducted periodically with DC power supply. It was found that the output potential of solar cell depended on daytime and was influenced by weather conditions; the applied potential in soil was affected by the output potential and weather conditions, and the current achieved by solar cell was comparable with that achieved by DC power supply. Solar cell could be used to drive the electromigration of cadmium in contaminated soil, and removal efficiency achieved by solar cell was comparable with that achieved by DC power supply. Compared with traditional DC power supply, using solar cell as power supply for EK remediation can greatly reduce energy expenditure. This study provided an alternative to improve the EK soil remediation and expanded the use of solar cell in environmental remediation.
NASA Astrophysics Data System (ADS)
Singh, Jai Prakash; Chai, Jing; Hsian Saw, Min; Khoo, Yong Sheng
2017-08-01
Bifacial cells are conventionally measured using gold-plated chuck, which is conductive and reflective. This measurement setup does not portray the actual operating conditions of the bifacial cells in a module. The reflective chuck causes an overestimation of the current due to the cell transmittance for the infrared light. The conductive chuck creates a shorter current flow path in the rear side of the cell and causes an over inflation of the fill factor measurement. In this study, we characterize and quantitatively analyze the difference between the bifacial cell measurements on different mounting chucks and calculate the cell-to-module (CTM) loss. To characterize the optical behavior of the bifacial cell and module, we perform external quantum efficiency, reflectance and transmittance measurements. The electrical behavior of the bifacial cell is studied using in-house developed software Griddler. Using Griddler, we calculate the difference in the fill factor of the bifacial cell due to the measurement using a conductive and non-conductive chuck, and estimate the corresponding CTM resistive losses.
Heat conduction in one-dimensional aperiodic quantum Ising chains.
Li, Wenjuan; Tong, Peiqing
2011-03-01
The heat conductivity of nonperiodic quantum Ising chains whose ends are connected with heat baths at different temperatures are studied numerically by solving the Lindblad master equation. The chains are subjected to a uniform transverse field h, while the exchange coupling J{m} between the nearest-neighbor spins takes the two values J{A} and J{B} arranged in Fibonacci, generalized Fibonacci, Thue-Morse, and period-doubling sequences. We calculate the energy-density profile and energy current of the resulting nonequilibrium steady states to study the heat-conducting behavior of finite but large systems. Although these nonperiodic quantum Ising chains are integrable, it is clearly found that energy gradients exist in all chains and the energy currents appear to scale as the system size ~N{α}. By increasing the ratio of couplings, the exponent α can be modulated from α > -1 to α < -1 corresponding to the nontrivial transition from the abnormal heat transport to the heat insulator. The influences of the temperature gradient and the magnetic field to heat conduction have also been discussed.
Novel Devices and Components for THz Systems
2014-04-25
sources that have a higher THz-power-to-cost ratio than the current state of the art. Photoconductive antennas are mostly used to conduct ...a higher THz-power-to-cost ratio than the current state of the art. Photoconductive antennas are mostly used to conduct spectroscopy measurements...when incoming photons switch the semiconductor to a conducting state current can flow through the antenna
NASA Astrophysics Data System (ADS)
Jolanta Walery, Maria
2017-12-01
The article describes optimization studies aimed at analysing the impact of capital and current costs changes of medical waste incineration on the cost of the system management and its structure. The study was conducted on the example of an analysis of the system of medical waste management in the Podlaskie Province, in north-eastern Poland. The scope of operational research carried out under the optimization study was divided into two stages of optimization calculations with assumed technical and economic parameters of the system. In the first stage, the lowest cost of functioning of the analysed system was generated, whereas in the second one the influence of the input parameter of the system, i.e. capital and current costs of medical waste incineration on economic efficiency index (E) and the spatial structure of the system was determined. Optimization studies were conducted for the following cases: with a 25% increase in capital and current costs of incineration process, followed by 50%, 75% and 100% increase. As a result of the calculations, the highest cost of system operation was achieved at the level of 3143.70 PLN/t with the assumption of 100% increase in capital and current costs of incineration process. There was an increase in the economic efficiency index (E) by about 97% in relation to run 1.
Analysis and Modeling of Intense Oceanic Lightning
NASA Astrophysics Data System (ADS)
Zoghzoghy, F. G.; Cohen, M.; Said, R.; Lehtinen, N. G.; Inan, U.
2014-12-01
Recent studies using lightning data from geo-location networks such as GLD360 suggest that lightning strokes are more intense over the ocean than over land, even though they are less common [Said et al. 2013]. We present an investigation of the physical differences between oceanic and land lightning. We have deployed a sensitive Low Frequency (1 MHz sampling rate) radio receiver system aboard the NOAA Ronald W. Brown research vessel and have collected thousands of lightning waveforms close to deep oceanic lightning. We analyze the captured waveforms, describe our modeling efforts, and summarize our findings. We model the ground wave (gw) portion of the lightning sferics using a numerical method built on top of the Stanford Full Wave Method (FWM) [Lehtinen and Inan 2008]. The gwFWM technique accounts for propagation over a curved Earth with finite conductivity, and is used to simulate an arbitrary current profile along the lightning channel. We conduct a sensitivity analysis and study the current profiles for land and for oceanic lightning. We find that the effect of ground conductivity is minimal, and that stronger oceanic radio intensity does not result from shorter current rise-time or from faster return stroke propagation speed.
NASA Astrophysics Data System (ADS)
Chien, Chih-Chun; Gruss, Daniel; Di Ventra, Massimiliano; Zwolak, Michael
2013-06-01
The study of time-dependent, many-body transport phenomena is increasingly within reach of ultra-cold atom experiments. We show that the introduction of spatially inhomogeneous interactions, e.g., generated by optically controlled collisions, induce negative differential conductance in the transport of atoms in one-dimensional optical lattices. Specifically, we simulate the dynamics of interacting fermionic atoms via a micro-canonical transport formalism within both a mean-field and a higher-order approximation, as well as with a time-dependent density-matrix renormalization group (DMRG). For weakly repulsive interactions, a quasi-steady-state atomic current develops that is similar to the situation occurring for electronic systems subject to an external voltage bias. At the mean-field level, we find that this atomic current is robust against the details of how the interaction is switched on. Further, a conducting-non-conducting transition exists when the interaction imbalance exceeds some threshold from both our approximate and time-dependent DMRG simulations. This transition is preceded by the atomic equivalent of negative differential conductivity observed in transport across solid-state structures.
Seasonal dependence of large-scale Birkeland currents
NASA Technical Reports Server (NTRS)
Fujii, R.; Iijima, T.; Potemra, T. A.; Sugiura, M.
1981-01-01
Seasonal variations of large-scale Birkeland currents are examined in a study of the source mechanisms and the closure of the three-dimensional current systems in the ionosphere. Vector magnetic field data acquired by the TRIAD satellite in the Northern Hemisphere were analyzed for the statistics of single sheet and double sheet Birkeland currents during 555 passes during the summer and 408 passes during the winter. The single sheet currents are observed more frequently in the dayside of the auroral zone, and more often in summer than in winter. The intensities of both the single and double dayside currents are found to be greater in the summer than in the winter by a factor of two, while the intensities of the double sheet Birkeland currents on the nightside do not show a significant difference from summer to winter. Both the single and double sheet currents are found at higher latitudes in the summer than in the winter on the dayside. Results suggest that the Birkeland current intensities are controlled by the ionospheric conductivity in the polar region, and that the currents close via the polar cap when the conductivity there is sufficiently high. It is also concluded that an important source of these currents must be a voltage generator in the magnetosphere.
Magneto-hydrodynamics of coupled fluid-sheet interface with mass suction and blowing
NASA Astrophysics Data System (ADS)
Ahmad, R.
2016-01-01
There are large number of studies which prescribe the kinematics of the sheet and ignore the sheet's mechanics. However, the current boundary layer analysis investigates the mechanics of both the electrically conducting fluid and a permeable sheet, which makes it distinct from the other studies in the literature. One of the objectives of the current study is to (i) examine the behaviour of magnetic field effect for both the surface and the electrically conducting fluid (ii) investigate the heat and mass transfer between a permeable sheet and the surrounding electrically conducting fluid across the hydro, thermal and mass boundary layers. Self-similar solutions are obtained by considering the RK45 technique. Analytical solution is also found for the stretching sheet case. The skin friction dual solutions are presented for various types of sheet. The influence of pertinent parameters on the dimensionless velocity, shear stress, temperature, mass concentration, heat and mass transfer rates on the fluid-sheet interface is presented graphically as well as numerically. The obtained results are of potential benefit for studying the electrically conducting flow over various soft surfaces such as synthetic plastics, soft silicone sheet and soft synthetic rubber sheet. These surfaces are easily deformed by thermal fluctuations or thermal stresses.
2016-08-01
present work, a systematic BHEC and fractographic study has been conducted by inspecting several hundred fastener holes in ex-service F/A- 18 ...BHEC and fractographic study was conducted by inspecting several hundred fastener holes in ex-service F/A- 18 aircraft bulkheads, following fatigue...study is based on BHEC inspections of several hundred fastener holes in ex-service F/A- 18 aircraft bulkheads. These Al-alloy bulkheads contained
Organic Bistable Memory Switching Phenomena in Squarylium-Dye Langmuir-Blodgett Films
NASA Astrophysics Data System (ADS)
Kushida, Masahito; Inomata, Hisao; Miyata, Hiroshi; Harada, Kieko; Saito, Kyoichi; Sugita, Kazuyuki
2003-06-01
We have investigated the relationship between the switching phenomena and H-like aggregates in squarylium-dye Langmuir-Blodgett (SQ LB) films. The current-voltage characteristics of SQ LB films sandwiched between the top gold electrode and the bottom aluminum electrode indicated conductance switching phenomena below the temperature of 100°C but not at 140°C. Current densities suddenly increased at switching voltages between 2 and 4 V. The switching voltage increased as the temperature increased between room temperature and 100°C. Current densities were 50-100 μA/cm2 in a low-impedance state (ON state). A high-impedance state (OFF state) can be recovered by applying a reverse bias, and therefore, these bistable devices are ideal for memory applications. The dependence of conductance switching phenomena and ultraviolet-visible absorption spectra on annealing temperatures was studied. The results revealed that conductance switching phenomena were caused by the presence of H-like aggregates in the SQ LB films.
Impact of ionic current variability on human ventricular cellular electrophysiology.
Romero, Lucía; Pueyo, Esther; Fink, Martin; Rodríguez, Blanca
2009-10-01
Abnormalities in repolarization and its rate dependence are known to be related to increased proarrhythmic risk. A number of repolarization-related electrophysiological properties are commonly used as preclinical biomarkers of arrhythmic risk. However, the variability and complexity of repolarization mechanisms make the use of cellular biomarkers to predict arrhythmic risk preclinically challenging. Our goal is to investigate the role of ionic current properties and their variability in modulating cellular biomarkers of arrhythmic risk to improve risk stratification and identification in humans. A systematic investigation into the sensitivity of the main preclinical biomarkers of arrhythmic risk to changes in ionic current conductances and kinetics was performed using computer simulations. Four stimulation protocols were applied to the ten Tusscher and Panfilov human ventricular model to quantify the impact of +/-15 and +/-30% variations in key model parameters on action potential (AP) properties, Ca(2+) and Na(+) dynamics, and their rate dependence. Simulations show that, in humans, AP duration is moderately sensitive to changes in all repolarization current conductances and in L-type Ca(2+) current (I(CaL)) and slow component of the delayed rectifier current (I(Ks)) inactivation kinetics. AP triangulation, however, is strongly dependent only on inward rectifier K(+) current (I(K1)) and delayed rectifier current (I(Kr)) conductances. Furthermore, AP rate dependence (i.e., AP duration rate adaptation and restitution properties) and intracellular Ca(2+) and Na(+) levels are highly sensitive to both I(CaL) and Na(+)/K(+) pump current (I(NaK)) properties. This study provides quantitative insights into the sensitivity of preclinical biomarkers of arrhythmic risk to variations in ionic current properties in humans. The results show the importance of sensitivity analysis as a powerful method for the in-depth validation of mathematical models in cardiac electrophysiology.
1979-01-01
Chloropentalfluoroothane - - - - - - - 11 140 1 - Chloropropane - 69 22 -- - - - Chlorosi lane - 6s 22 - - - - - - a-Chlorotoluens - 6s 22 - - - - - - -Chlorotofuene - 6s...Properties,’ Touloukian, 1 .S. and Ho, C. Y., 197 pp., 1979. To further expand this Data Series and to facilitate current research studies, this Master...Editor Volume 1 . Thermal Conductivity-Metallic Elements and Alloys Volume 2. Thermal Conductivity-Nonmetallic Solids Volume 3. Thermal Conductivity
Twin lead ballistic conductor based on nanoribbon edge transport
NASA Astrophysics Data System (ADS)
Konôpka, Martin; Dieška, Peter
2018-03-01
If a device like a graphene nanoribbon (GNR) has all its four corners attached to electric current leads, the device becomes a quantum junction through which two electrical circuits can interact. We study such system theoretically for stationary currents. The 4-point energy-dependent conductance matrix of the nanostructure and the classical resistors in the circuits are parameters of the model. The two bias voltages in the circuits are the control variables of the studied system while the electrochemical potentials at the device's terminals are non-trivially dependent on the voltages. For the special case of the linear-response regime analytical formulae for the operation of the coupled quantum-classical device are derived and applied. For higher bias voltages numerical solutions are obtained. The effects of non-equilibrium Fermi levels are captured using a recursive algorithm in which self-consistency between the electrochemical potentials and the currents is reached within few iterations. The developed approach allows to study scenarios ranging from independent circuits to strongly coupled ones. For the chosen model of the GNR with highly conductive zigzag edges we determine the regime in which the single device carries two almost independent currents.
NASA Astrophysics Data System (ADS)
Smirnov, V. A.; Mokrushin, A. D.; Denisov, N. N.; Dobrovolsky, Yu. A.
2018-07-01
The proton conductivity of graphene oxide (GO) and Nafion films was studied depending on the humidity and voltage on electrodes. The electric properties of the films were similar, but the mobility of positive charges in Nafion was approximately two orders of magnitude higher than in GO. In GO films, the negative ion current with a positive voltage bias was up to 10% of the proton current, while in Nafion films it was almost absent (<1%). The sensors based on GO and Nafion films were most effective at humidity (RH) in the range 20-80%.
Transport mechanisms in Schottky diodes realized on GaN
NASA Astrophysics Data System (ADS)
Amor, Sarrah; Ahaitouf, Ali; Ahaitouf, Abdelaziz; Salvestrini, Jean Paul; Ougazzaden, Abdellah
2017-03-01
This work is focused on the conducted transport mechanisms involved on devices based in gallium nitride GaN and its alloys. With considering all conduction mechanisms of current, its possible to understanded these transport phenomena. Thanks to this methodology the current-voltage characteristics of structures with unusual behaviour are further understood and explain. Actually, the barrier height (SBH) is a complex problem since it depends on several parameters like the quality of the metal-semiconductor interface. This study is particularly interesting as solar cells are made on this material and their qualification is closely linked to their transport properties.
Inner ear damage following electric current and lightning injury: a literature review.
Modayil, P C; Lloyd, G W; Mallik, A; Bowdler, D A
2014-05-01
Audiovestibular sequelae of electrical injury, due to lightning or electric current, are probably much more common than indicated in literature. The aim of the study was to review the impact of electrical injury on the cochleovestibular system. Studies were identified through Medline, Embase, CINAHL and eMedicine databases. Medical Subject Headings used were 'electrical injury', 'lightning', 'deafness' and 'vertigo'. All prospective and retrospective studies, case series and case reports of patients with cochlear or vestibular damage due to lightning or electrical current injury were included. Studies limited to external and middle ear injuries were excluded. Thirty-five articles met the inclusion criteria. Fifteen reported audiovestibular damage following electric current injury (domestic or industrial); a further 15 reported lightning injuries and five concerned pathophysiology and management. There were no histological studies of electrical current injury to the human audiovestibular system. The commonest acoustic insult after lightning injury is conductive hearing loss secondary to tympanic membrane rupture and the most frequent vestibular symptom is transient vertigo. Electrical current injuries predominantly cause pure sensorineural hearing loss and may significantly increase a patient's lifetime risk of vertigo. Theories for cochleovestibular damage in electrical injury include disruption of inner ear anatomy, electrical conductance, hypoxia, vascular effects and stress response hypothesis. The pathophysiology of cochleovestibular damage following electrical injury is unresolved. The mechanism of injury following lightning strike is likely to be quite different from that following domestic or industrial electrical injury. The formulation of an audiovestibular management protocol for patients who have suffered electrical injuries and systematic reporting of all such events is recommended.
NASA Astrophysics Data System (ADS)
Sajib, Saurav Z. K.; Kim, Ji Eun; Jeong, Woo Chul; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2015-03-01
Magnetic resonance electrical impedance tomography visualizes current density and/or conductivity distributions inside an electrically conductive object. Injecting currents into the imaging object along at least two different directions, induced magnetic flux density data can be measured using a magnetic resonance imaging scanner. Without rotating the object inside the scanner, we can measure only one component of the magnetic flux density denoted as Bz. Since the biological tissues such as skeletal muscle and brain white matter show strong anisotropic properties, the reconstruction of anisotropic conductivity tensor is indispensable for the accurate observations in the biological systems. In this paper, we propose a direct method to reconstruct an axial apparent orthotropic conductivity tensor by using multiple Bz data subject to multiple injection currents. To investigate the anisotropic conductivity properties, we first recover the internal current density from the measured Bz data. From the recovered internal current density and the curl-free condition of the electric field, we derive an over-determined matrix system for determining the internal absolute orthotropic conductivity tensor. The over-determined matrix system is designed to use a combination of two loops around each pixel. Numerical simulations and phantom experimental results demonstrate that the proposed algorithm stably determines the orthotropic conductivity tensor.
NASA Astrophysics Data System (ADS)
Schmidt, Christian; Wagner, Sven; Burger, Martin; van Rienen, Ursula; Wolters, Carsten H.
2015-08-01
Objective. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique to modify neural excitability. Using multi-array tDCS, we investigate the influence of inter-individually varying head tissue conductivity profiles on optimal electrode configurations for an auditory cortex stimulation. Approach. In order to quantify the uncertainty of the optimal electrode configurations, multi-variate generalized polynomial chaos expansions of the model solutions are used based on uncertain conductivity profiles of the compartments skin, skull, gray matter, and white matter. Stochastic measures, probability density functions, and sensitivity of the quantities of interest are investigated for each electrode and the current density at the target with the resulting stimulation protocols visualized on the head surface. Main results. We demonstrate that the optimized stimulation protocols are only comprised of a few active electrodes, with tolerable deviations in the stimulation amplitude of the anode. However, large deviations in the order of the uncertainty in the conductivity profiles could be noted in the stimulation protocol of the compensating cathodes. Regarding these main stimulation electrodes, the stimulation protocol was most sensitive to uncertainty in skull conductivity. Finally, the probability that the current density amplitude in the auditory cortex target region is supra-threshold was below 50%. Significance. The results suggest that an uncertain conductivity profile in computational models of tDCS can have a substantial influence on the prediction of optimal stimulation protocols for stimulation of the auditory cortex. The investigations carried out in this study present a possibility to predict the probability of providing a therapeutic effect with an optimized electrode system for future auditory clinical and experimental procedures of tDCS applications.
Determining confounding sensitivities in eddy current thin film measurements
NASA Astrophysics Data System (ADS)
Gros, Ethan; Udpa, Lalita; Smith, James A.; Wachs, Katelyn
2017-02-01
Eddy current (EC) techniques are widely used in industry to measure the thickness of non-conductive films on a metal substrate. This is done by using a system whereby a coil carrying a high-frequency alternating current is used to create an alternating magnetic field at the surface of the instrument's probe. When the probe is brought near a conductive surface, the alternating magnetic field will induce ECs in the conductor. The substrate characteristics and the distance of the probe from the substrate (the coating thickness) affect the magnitude of the ECs. The induced currents load the probe coil affecting the terminal impedance of the coil. The measured probe impedance is related to the lift off between coil and conductor as well as conductivity of the test sample. For a known conductivity sample, the probe impedance can be converted into an equivalent film thickness value. The EC measurement can be confounded by a number of measurement parameters. It was the goal of this research to determine which physical properties of the measurement set-up and sample can adversely affect the thickness measurement. The eddy-current testing was performed using a commercially available, hand-held eddy-current probe (ETA3.3H spring-loaded eddy probe running at 8 MHz) that comes with a stand to hold the probe. The stand holds the probe and adjusts the probe on the z-axis to help position the probe in the correct area as well as make precise measurements. The signal from the probe was sent to a hand-held readout, where the results are recorded directly in terms of liftoff or film thickness. Understanding the effect of certain factors on the measurements of film thickness, will help to evaluate how accurate the ETA3.3H spring-loaded eddy probe was at measuring film thickness under varying experimental conditions. This research studied the effects of a number of factors such as i) conductivity, ii) edge effect, iii) surface finish of base material and iv) cable condition.
Coupled circuit numerical analysis of eddy currents in an open MRI system.
Akram, Md Shahadat Hossain; Terada, Yasuhiko; Keiichiro, Ishi; Kose, Katsumi
2014-08-01
We performed a new coupled circuit numerical simulation of eddy currents in an open compact magnetic resonance imaging (MRI) system. Following the coupled circuit approach, the conducting structures were divided into subdomains along the length (or width) and the thickness, and by implementing coupled circuit concepts we have simulated transient responses of eddy currents for subdomains in different locations. We implemented the Eigen matrix technique to solve the network of coupled differential equations to speed up our simulation program. On the other hand, to compute the coupling relations between the biplanar gradient coil and any other conducting structure, we implemented the solid angle form of Ampere's law. We have also calculated the solid angle for three dimensions to compute inductive couplings in any subdomain of the conducting structures. Details of the temporal and spatial distribution of the eddy currents were then implemented in the secondary magnetic field calculation by the Biot-Savart law. In a desktop computer (Programming platform: Wolfram Mathematica 8.0®, Processor: Intel(R) Core(TM)2 Duo E7500 @ 2.93GHz; OS: Windows 7 Professional; Memory (RAM): 4.00GB), it took less than 3min to simulate the entire calculation of eddy currents and fields, and approximately 6min for X-gradient coil. The results are given in the time-space domain for both the direct and the cross-terms of the eddy current magnetic fields generated by the Z-gradient coil. We have also conducted free induction decay (FID) experiments of eddy fields using a nuclear magnetic resonance (NMR) probe to verify our simulation results. The simulation results were found to be in good agreement with the experimental results. In this study we have also conducted simulations for transient and spatial responses of secondary magnetic field induced by X-gradient coil. Our approach is fast and has much less computational complexity than the conventional electromagnetic numerical simulation methods. Copyright © 2014 Elsevier Inc. All rights reserved.
2014-01-01
Introduction: Adolescents with conduct problems are more likely to smoke, and tobacco advertising exposure may exacerbate this risk. Males’ excess risk for conduct problems and females’ susceptibility to advertising suggest gender-specific pathways to smoking. We investigated the associations between gender, conduct problems, and lifetime smoking and adolescents’ exposure to tobacco advertising, and we examined prospective relationships with smoking behaviors. Methods: Adolescents completed baseline (2001–2004; n = 541) and 5-year follow-up (2007–2009; n =320) interviews for a family study of smoking risk. Baseline interviews assessed conduct problems and tobacco advertising exposure; smoking behavior was assessed at both timepoints. Generalized linear models analyzed gender differences in the relationship between conduct problems, advertising exposure, and smoking behavior at baseline and longitudinally. Results: At baseline, among males, conduct problems were associated with greater advertising exposure independent of demographics and lifetime smoking. Among females at baseline, conduct problems were associated with greater advertising exposure only among never-smokers after adjusting for demographics. In longitudinal analyses, baseline advertising exposure predicted subsequent smoking initiation (i.e., smoking their first cigarette between baseline and follow-up) for females but not for males. Baseline conduct problems predicted current (i.e., daily or weekly) smoking at follow-up for all adolescents in adjusted models. Conclusions: The findings of this study reinforce that conduct problems are a strong predictor of subsequent current smoking for all adolescents and reveal important differences between adolescent males and females in the relationship between conduct problems, tobacco advertising behavior, and smoking behavior. The findings suggest gender-specific preventive interventions targeting advertising exposure may be warranted. PMID:24590388
Resolving Overlimiting Current Mechanisms in Microchannel-Nanochannel Interface Devices
NASA Astrophysics Data System (ADS)
Yossifon, Gilad; Leibowitz, Neta; Liel, Uri; Schiffbauer, Jarrod; Park, Sinwook
2015-11-01
We present results demonstrating the space charge-mediated transition between classical, diffusion-limited current and surface-conduction dominant over-limiting currents in a shallow micro-nanochannel device. The extended space charge layer develops at the depleted micro-nanochannel entrance at high current and is correlated with a distinctive maximum in the dc resistance. Experimental results for a shallow surface-conduction dominated system are compared with theoretical models, allowing estimates of the effective surface charge at high voltage to be obtained. Further, we extend the study to microchannels of moderate to large depths where the role of various electro-convection mechanisms becomes dominant. In particular, electro-osmotic of the second kind and electro-osmotic instability (EOI) which competes each other at geometrically heterogeneous (e.g. undulated nanoslot interface, array of nanoslots) nanoslot devices. Also, these effects are also shown to be strongly modulated by the non-ideal permselectivity of the nanochannel.
Mechanisms of the passage of dark currents through Cd(Zn)Te semi-insulating crystals
NASA Astrophysics Data System (ADS)
Sklyarchuk, V.; Fochuk, P.; Rarenko, I.; Zakharuk, Z.; Sklyarchuk, O.; Nykoniuk, Ye.; Rybka, A.; Kutny, V.; Bolotnikov, A. E.; James, R. B.
2014-09-01
We investigated the passage of dark currents through semi-insulating crystals of Cd(Zn)Te with weak n-type conductivity that are used widely as detectors of ionizing radiation. The crystals were grown from a tellurium solution melt at 800 оС by the zone-melting method, in which a polycrystalline rod in a quartz ampoule was moved through a zone heater at a rate of 2 mm per day. The synthesis of the rod was carried out at ~1150 оС. We determined the important electro-physical parameters of this semiconductor, using techniques based on a parallel study of the temperature dependence of current-voltage characteristics in both the ohmic and the space-charge-limited current regions. We established in these crystals the relationship between the energy levels and the concentrations of deep-level impurity states, responsible for dark conductivity and their usefulness as detectors.
NASA Astrophysics Data System (ADS)
Atsarkin, V. A.; Borisenko, I. V.; Demidov, V. V.; Shaikhulov, T. A.
2018-06-01
Temperature evolution of pure spin current has been studied in an epitaxial thin-film bilayer La2/3Sr1/3MnO3/Pt deposited on a NdGaO3 substrate. The spin current was generated by microwave pumping under conditions of ferromagnetic resonance in the ferromagnetic La2/3Sr1/3MnO3 layer and detected in the Pt layer due to the inverse spin Hall effect. A considerable increase in the spin current magnitude has been observed upon cooling from the Curie point (350 K) down to 100 K. Using the obtained data, the temperature evolution of the mixed spin conductance g mix (T) has been extracted. It was found that the g mix (T) dependence correlates with magnetization in a thin area adjacent to the ferromagnetic-normal metal interface.
NASA Astrophysics Data System (ADS)
Song, K.; Song, H. P.; Gao, C. F.
2018-03-01
It is well known that the key factor determining the performance of thermoelectric materials is the figure of merit, which depends on the thermal conductivity (TC), electrical conductivity, and Seebeck coefficient (SC). The electric current must be zero when measuring the TC and SC to avoid the occurrence of measurement errors. In this study, the complex-variable method is used to analyze the thermoelectric field near an elliptic inhomogeneity in an open circuit, and the field distributions are obtained in closed form. Our analysis shows that an electric current inevitably exists in both the matrix and the inhomogeneity even though the circuit is open. This unexpected electric current seriously affects the accuracy with which the TC and SC are measured. These measurement errors, both overall and local, are analyzed in detail. In addition, an error correction method is proposed based on the analytical results.
NASA Technical Reports Server (NTRS)
Wang, N. N.
1974-01-01
The reaction concept is employed to formulate an integral equation for radiation and scattering from plates, corner reflectors, and dielectric-coated conducting cylinders. The surface-current density on the conducting surface is expanded with subsectional bases. The dielectric layer is modeled with polarization currents radiating in free space. Maxwell's equation and the boundary conditions are employed to express the polarization-current distribution in terms of the surface-current density on the conducting surface. By enforcing reaction tests with an array of electric test sources, the moment method is employed to reduce the integral equation to a matrix equation. Inversion of the matrix equation yields the current distribution, and the scattered field is then obtained by integrating the current distribution. The theory, computer program and numerical results are presented for radiation and scattering from plates, corner reflectors, and dielectric-coated conducting cylinders.
Pachuski, Justin; Vaida, Sonia; Donahue, Kathleen; Roberts, John; Kunselman, Allen; Oberman, Benjamin; Patel, Hetal; Goldenberg, David
2016-03-01
Intraoperative neuromonitoring of the recurrent laryngeal nerve (RLN) is often used as an adjunct for RLN identification and preservation during thyroidectomies. Laryngotracheal anesthesia (LTA) with topical lidocaine reduces coughing upon emergence from anesthesia and in the immediate postoperative period; however, its use is prohibited with concerns that it could decrease the sensitivity of the intraoperative neuromonitoring. We hypothesize that there is no difference in measurements of nerve conduction made before and after LTA administration. An observational study in which all patients were subjected to LTA administration was conducted. Recurrent laryngeal nerve threshold currents were measured before and after the intervention. Tertiary medical center operating room. Eighteen patients (total of 25 nerves at risk) with American Society of Anesthesiologists classes 1 to 3 undergoing thyroid surgery. After the thyroid was removed and threshold currents at the RLN were obtained, LTA with endotracheal lidocaine was applied on the left and right side of the in situ endotracheal tube (2 cc of 4% lidocaine per side). Threshold currents were reassessed at 5 and 10 minutes after LTA administration. Threshold currents (minimum stimulus current applied to the RLN required to generate a discernible electromyographic response at the vocal cords) were recorded along the RLN for a baseline at 5 and 10 mm from the insertion point of the RLN into the larynx. Threshold currents were reassessed at the same 2 positions on the RLN at 5 and 10 minutes after LTA administration. Differences in mean values, between threshold currents recorded at the 3 different times, at 2 positions on the RLN, were used to compare effects of LTA on nerve conduction. There were no statistically significant differences when comparing threshold currents before and after LTA administration. Laryngotracheal anesthesia had no significant effect on RLN nerve conduction in the period assessed. Copyright © 2016 Elsevier Inc. All rights reserved.
Current Status of the Matson Evaluation of Drug Side Effects (MEDS)
ERIC Educational Resources Information Center
Matson, Johnny L.; Cervantes, Paige E.
2013-01-01
The Matson Evaluation of Drug Side Effects (MEDS) is currently the best established and most researched measure of drug side effects in the intellectual disability (ID) literature. Initial research was conducted on its psychometric properties such as reliability and validity. More recent research studies have used the measure to determine the…
Complete Statistical Survey Results of 1982 Texas Competency Validation Project.
ERIC Educational Resources Information Center
Rogers, Sandra K.; Dahlberg, Maurine F.
This report documents a project to develop current statewide validated competencies for auto mechanics, diesel mechanics, welding, office occupations, and printing. Section 1 describes the four steps used in the current competency validation project and provides a standardized process for conducting future studies at the local or statewide level.…
The Educational Psychologist in the Early Years: Current Practice and Future Directions
ERIC Educational Resources Information Center
Shannon, Deborah; Posada, Susan
2007-01-01
Following suggestions for updated models of service within the early years educational psychologist (EP) role, the study aimed to provide exploratory research evidence of current models of service delivery and EP attitudes. Questionnaires were completed by 32 EPs. Interviews were conducted with three EPs. Quantitative data obtained were analysed…
A Meta-Analytic Review of Research on Gender Differences in Sexuality, 1993-2007
ERIC Educational Resources Information Center
Petersen, Jennifer L.; Hyde, Janet Shibley
2010-01-01
In 1993 Oliver and Hyde conducted a meta-analysis on gender differences in sexuality. The current study updated that analysis with current research and methods. Evolutionary psychology, cognitive social learning theory, social structural theory, and the gender similarities hypothesis provided predictions about gender differences in sexuality. We…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gayathri, H. N.; Suresh, K. A., E-mail: suresh@cnsms.res.in
2015-06-28
We report our studies on the nanoscale electrical conductivity in monolayers of n-alkyl cyanobiphenyl materials deposited on solid surface. Initially, the 8CB, 9CB, and 10CB monolayer films were prepared by the Langmuir technique at air-water interface and characterized by surface manometry and Brewster angle microscopy. The monolayer films were transferred on to solid substrates by the Langmuir-Blodgett (L-B) technique. The 8CB, 9CB, and 10CB monolayer L-B films were deposited on freshly cleaved mica and studied by atomic force microscope (AFM), thereby measuring the film thickness as ∼1.5 nm. The electrical conductivity measurements were carried out on 9CB and 10CB monolayer L-Bmore » films deposited onto highly ordered pyrolytic graphite using current sensing AFM. The nanoscale current-voltage (I-V) measurements show a non-linear variation. The nature of the curve indicates electron tunneling to be the mechanism for electrical conduction. Furthermore, analysis of the I-V curve reveals a transition in the electron conduction mechanism from direct tunneling to injection tunneling. From the transition voltage, we have estimated the values of barrier height for 9CB and 10CB to be 0.71 eV and 0.37 eV, respectively. For both 9CB and 10CB, the effective mass of electron was calculated to be 0.021 m{sub e} and 0.065 m{sub e}, respectively. These parameters are important in the design of molecular electronic devices.« less
Sabirov, R Z; Dutta, A K; Okada, Y
2001-09-01
In mouse mammary C127i cells, during whole-cell clamp, osmotic cell swelling activated an anion channel current, when the phloretin-sensitive, volume-activated outwardly rectifying Cl(-) channel was eliminated. This current exhibited time-dependent inactivation at positive and negative voltages greater than around +/-25 mV. The whole-cell current was selective for anions and sensitive to Gd(3)+. In on-cell patches, single-channel events appeared with a lag period of approximately 15 min after a hypotonic challenge. Under isotonic conditions, cell-attached patches were silent, but patch excision led to activation of currents that consisted of multiple large-conductance unitary steps. The current displayed voltage- and time-dependent inactivation similar to that of whole-cell current. Voltage-dependent activation profile was bell-shaped with the maximum open probability at -20 to 0 mV. The channel in inside-out patches had the unitary conductance of approximately 400 pS, a linear current-voltage relationship, and anion selectivity. The outward (but not inward) single-channel conductance was suppressed by extracellular ATP with an IC(50) of 12.3 mM and an electric distance (delta) of 0.47, whereas the inward (but not outward) conductance was inhibited by intracellular ATP with an IC(50) of 12.9 mM and delta of 0.40. Despite the open channel block by ATP, the channel was ATP-conductive with P(ATP)/P(Cl) of 0.09. The single-channel activity was sensitive to Gd(3)+, SITS, and NPPB, but insensitive to phloretin, niflumic acid, and glibenclamide. The same pharmacological pattern was found in swelling-induced ATP release. Thus, it is concluded that the volume- and voltage-dependent ATP-conductive large-conductance anion channel serves as a conductive pathway for the swelling-induced ATP release in C127i cells.
42 CFR 90.8 - Conduct of health assessments and health effects studies.
Code of Federal Regulations, 2011 CFR
2011-10-01
... site visit in connection with a health assessment or health effects study. The ATSDR representative may... release for the limited purpose of determining the existence of current or potential health problems. ...
Ohmori, H
1978-01-01
1. Inward K current through the anomalous rectifier in the tunicate egg (Halocynthis roretzi, Drashe) was studied under voltage clamp. The transient inward current in response to a step change of membrane potential was measured. The steady-state current fluctuations were analysed using the power density spectrum (p.d.s.). 2. The inward current showed time-dependent changes, which were described by a pair of the first order kinetic parameters, n and s for activation and inactivation, respectively. The steady-state channel open probability due to the activation process (n infinity) was assumed to be 1.0 for V more negative than about--100 mV, but that of the inactivation process (s infinity) and the time constant of inactivation (taus) were membrane potential dependent in the same potential range; both decreased with increasing hyperpolarization. 3. The inward currents in Na-free choline medium did not inactivate, but were decreased in size. In Na-free Li medium, inactivation was very small; the steady-state conductance was not affected significantly. 4. After exposure to high Ca media, an increase of the conductance was observed. This effect is probably caused by an increase of intracellular Ca due to Ca ions entering through the Na channels. Mg ions slightly decreased the conductance. 5. In the hyperpolarized membrane (-160 less than or equal to V less than or equal to -80mV), steady-state current noise was recorded and analysed using p.d.s. A p.d.s. of the 1/[1 + (f/fc)2] type as well a p.d.s. of the 1/f type was observed; f, frequency, fc, cut-off frequency. 6. fc was translated into time constant tauN (= 1/2pIfC) and compared with the time constant of inactivation, taus. There was a significant correlation betwen these values with a regression coefficient of 0.82. 7. Changing from 400 mM-Li abloshied inactivation and changed the p.d.s. from the 1/[1 + (f/fc)2] into the 1/f type. These results (paragraphs 5--7)suggest that the fluctuations in the steady-state currents originatte in the inactivation gatin kinetics of the an ofthe anomalous rectifier. 8. The number of anomalous rectifier channels and the unit channel conductance were estimated from the 1/[1 + (f/fc)2] type current noise according to the formula : (see text), where I infinity = gamma Nninfinity s infinity (V--VK), gamma the unit channel conductance, N the maximum number of channels that can be opened by a hyperpolarizing pulse per egg. The unit conductance was 6 pmho in standard artificial sea water and the channel density was 0.028/micrometer2. 9. The unit channel conductance (gamma) was dependent upon external K concentration, but the number ofchannels (N) was not. 10. The increase in chord conductance evoked by higher Ca concentrations was due to the increase of the channel number. By contrast, Mg ions seem to decrease the unit channel conductance slightly. PMID:568176
Maternal characteristics predicting young girls' disruptive behavior.
van der Molen, Elsa; Hipwell, Alison E; Vermeiren, Robert; Loeber, Rolf
2011-01-01
Little is known about the relative predictive utility of maternal characteristics and parenting skills on the development of girls' disruptive behavior. The current study used five waves of parent- and child-report data from the ongoing Pittsburgh Girls Study to examine these relationships in a sample of 1,942 girls from age 7 to 12 years. Multivariate generalized estimating equation analyses indicated that European American race, mother's prenatal nicotine use, maternal depression, maternal conduct problems prior to age 15, and low maternal warmth explained unique variance. Maladaptive parenting partly mediated the effects of maternal depression and maternal conduct problems. Both current and early maternal risk factors have an impact on young girls' disruptive behavior, providing support for the timing and focus of the prevention of girls' disruptive behavior.
Conducting-insulating transition in adiabatic memristive networks
NASA Astrophysics Data System (ADS)
Sheldon, Forrest C.; Di Ventra, Massimiliano
2017-01-01
The development of neuromorphic systems based on memristive elements—resistors with memory—requires a fundamental understanding of their collective dynamics when organized in networks. Here, we study an experimentally inspired model of two-dimensional disordered memristive networks subject to a slowly ramped voltage and show that they undergo a discontinuous transition in the conductivity for sufficiently high values of memory, as quantified by the memristive ON-OFF ratio. We investigate the consequences of this transition for the memristive current-voltage characteristics both through simulation and theory, and demonstrate the role of current-voltage duality in relating forward and reverse switching processes. Our work sheds considerable light on the statistical properties of memristive networks that are presently studied both for unconventional computing and as models of neural networks.
Shuttle Gaseous Hydrogen Venting Risk from Flow Control Valve Failure
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Baurle, Robert A.; Gafney, Richard L.; Norris, Andrew T.; Pellett, Gerald L.; Rock, Kenneth E.
2009-01-01
This paper describes a series of studies to assess the potential risk associated with the failure of one of three gaseous hydrogen flow control valves in the orbiter's main propulsion system during the launch of Shuttle Endeavour (STS-126) in November 2008. The studies focused on critical issues associated with the possibility of combustion resulting from release of gaseous hydrogen from the external tank into the atmosphere during assent. The Shuttle Program currently assumes hydrogen venting from the external tank will result in a critical failure. The current effort was conducted to increase understanding of the risk associated with venting hydrogen given the flow control valve failure scenarios being considered in the Integrated In-Flight Anomaly Investigation being conducted by NASA.
Thermally Stimulated Currents in Nanocrystalline Titania
Bruzzi, Mara; Mori, Riccardo; Baldi, Andrea; Cavallaro, Alessandro; Scaringella, Monica
2018-01-01
A thorough study on the distribution of defect-related active energy levels has been performed on nanocrystalline TiO2. Films have been deposited on thick-alumina printed circuit boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed thermally stimulated currents analysis on a wide temperature range (5–630 K), in view to evidence contributions from shallow to deep energy levels within the gap. Data have been processed by numerically modelling electrical transport. The model considers both free and hopping contribution to conduction, a density of states characterized by an exponential tail of localized states below the conduction band and the convolution of standard Thermally Stimulated Currents (TSC) emissions with gaussian distributions to take into account the variability in energy due to local perturbations in the highly disordered network. Results show that in the low temperature range, up to 200 K, hopping within the exponential band tail represents the main contribution to electrical conduction. Above room temperature, electrical conduction is dominated by free carriers contribution and by emissions from deep energy levels, with a defect density ranging within 1014–1018 cm−3, associated with physio- and chemi-sorbed water vapour, OH groups and to oxygen vacancies. PMID:29303976
Thermally Stimulated Currents in Nanocrystalline Titania.
Bruzzi, Mara; Mori, Riccardo; Baldi, Andrea; Carnevale, Ennio Antonio; Cavallaro, Alessandro; Scaringella, Monica
2018-01-05
A thorough study on the distribution of defect-related active energy levels has been performed on nanocrystalline TiO₂. Films have been deposited on thick-alumina printed circuit boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed thermally stimulated currents analysis on a wide temperature range (5-630 K), in view to evidence contributions from shallow to deep energy levels within the gap. Data have been processed by numerically modelling electrical transport. The model considers both free and hopping contribution to conduction, a density of states characterized by an exponential tail of localized states below the conduction band and the convolution of standard Thermally Stimulated Currents (TSC) emissions with gaussian distributions to take into account the variability in energy due to local perturbations in the highly disordered network. Results show that in the low temperature range, up to 200 K, hopping within the exponential band tail represents the main contribution to electrical conduction. Above room temperature, electrical conduction is dominated by free carriers contribution and by emissions from deep energy levels, with a defect density ranging within 10 14 -10 18 cm -3 , associated with physio- and chemi-sorbed water vapour, OH groups and to oxygen vacancies.
Zagha, Edward; Mato, German; Rudy, Bernardo; Nadal, Marcela S.
2014-01-01
The signaling properties of thalamocortical (TC) neurons depend on the diversity of ion conductance mechanisms that underlie their rich membrane behavior at subthreshold potentials. Using patch-clamp recordings of TC neurons in brain slices from mice and a realistic conductance-based computational model, we characterized seven subthreshold ion currents of TC neurons and quantified their individual contributions to the total steady-state conductance at levels below tonic firing threshold. We then used the TC neuron model to show that the resting membrane potential results from the interplay of several inward and outward currents over a background provided by the potassium and sodium leak currents. The steady-state conductances of depolarizing Ih (hyperpolarization-activated cationic current), IT (low-threshold calcium current), and INaP (persistent sodium current) move the membrane potential away from the reversal potential of the leak conductances. This depolarization is counteracted in turn by the hyperpolarizing steady-state current of IA (fast transient A-type potassium current) and IKir (inwardly rectifying potassium current). Using the computational model, we have shown that single parameter variations compatible with physiological or pathological modulation promote burst firing periodicity. The balance between three amplifying variables (activation of IT, activation of INaP, and activation of IKir) and three recovering variables (inactivation of IT, activation of IA, and activation of Ih) determines the propensity, or lack thereof, of repetitive burst firing of TC neurons. We also have determined the specific roles that each of these variables have during the intrinsic oscillation. PMID:24760784
ERIC Educational Resources Information Center
Kodaka, Manami; Hikitsuchi, Emi; Takai, Michiko; Okada, Sumie; Watanabe, Yasue; Fukushima, Kiyoko; Yamada, Mitsuhiko; Inagaki, Masatoshi; Takeshima, Tadashi; Matsumoto, Toshihiko
2018-01-01
This study explored the current implementation status of and opinions and concerns regarding suicide education at schools of social work in Japan. We conducted a survey of faculty members who taught at least one of the social work subjects. About half the respondents had given a lecture of some kind on suicide, and more than 80% agreed that…
Low power consumption resistance random access memory with Pt/InOx/TiN structure
NASA Astrophysics Data System (ADS)
Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.; Tsai, Ming-Jinn
2013-09-01
In this study, the resistance switching characteristics of a resistive random access memory device with Pt/InOx/TiN structure is investigated. Unstable bipolar switching behavior is observed during the initial switching cycle, which then stabilizes after several switching cycles. Analyses indicate that the current conduction mechanism in the resistance state is dominated by Ohmic conduction. The decrease in electrical conductance can be attributed to the reduction of the cross-sectional area of the conduction path. Furthermore, the device exhibits low operation voltage and power consumption.
Moreno-Galindo, Eloy G; Sanchez-Chapula, Jose A; Tristani-Firouzi, Martin; Navarro-Polanco, Ricardo A
2016-09-01
Potassium (K(+)) channels are crucial for determining the shape, duration, and frequency of action-potential firing in excitable cells. Broadly speaking, K(+) channels can be classified based on whether their macroscopic current outwardly or inwardly rectifies, whereby rectification refers to a change in conductance with voltage. Outwardly rectifying K(+) channels conduct greater current at depolarized membrane potentials, whereas inward rectifier channels conduct greater current at hyperpolarized membrane potentials. Under most circumstances, outward currents through inwardly rectifying K(+) channels are reduced at more depolarized potentials. However, the acetylcholine-gated K(+) channel (KACh) conducts current that inwardly rectifies when activated by some ligands (such as acetylcholine), and yet conducts current that outwardly rectifies when activated by other ligands (for example, pilocarpine and choline). The perplexing and paradoxical behavior of KACh channels is due to the intrinsic voltage sensitivity of the receptor that activates KACh channels, the M2 muscarinic receptor (M2R). Emerging evidence reveals that the affinity of M2R for distinct ligands varies in a voltage-dependent and ligand-specific manner. These intrinsic receptor properties determine whether current conducted by KACh channels inwardly or outwardly rectifies. This review summarizes the most recent concepts regarding the intrinsic voltage sensitivity of muscarinic receptors and the consequences of this intriguing behavior on cardiac physiology and pharmacology of KACh channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Wang, Haowei; Wang, Yishan; He, Bo; Li, Weile; Sulaman, Muhammad; Xu, Junfeng; Yang, Shengyi; Tang, Yi; Zou, Bingsuo
2016-07-20
With its properties of bandgap tunability, low cost, and substrate compatibility, colloidal quantum dots (CQDs) are becoming promising materials for optoelectronic applications. Additionally, solution-processed organic, inorganic, and hybrid ligand-exchange technologies have been widely used in PbS CQDs solar cells, and currently the maximum certified power conversion efficiency of 9.9% has been reported by passivation treatment of molecular iodine. Presently, there are still some challenges, and the basic physical mechanism of charge carriers in CQDs-based solar cells is not clear. Electrochemical impedance spectroscopy is a monitoring technology for current by changing the frequency of applied alternating current voltage, and it provides an insight into its electrical properties that cannot be measured by direct current testing facilities. In this work, we used EIS to analyze the recombination resistance, carrier lifetime, capacitance, and conductivity of two typical PbS CQD solar cells Au/PbS-TBAl/ZnO/ITO and Au/PbS-EDT/PbS-TBAl/ZnO/ITO, in this way, to better understand the charge carriers conduction mechanism behind in PbS CQD solar cells, and it provides a guide to design high-performance quantum-dots solar cells.
Space charge dynamic of irradiated cyanate ester/epoxy at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Wang, Shaohe; Tu, Youping; Fan, Linzhen; Yi, Chengqian; Wu, Zhixiong; Li, Laifeng
2018-03-01
Glass fibre reinforced polymers (GFRPs) have been widely used as one of the main electrical insulating structures for superconducting magnets. A new type of GFRP insulation material using cyanate ester/epoxy resin as a matrix was developed in this study, and the samples were irradiated by Co-60 for 1 MGy and 5 MGy dose. Space charge distributed within the sample were tested using the pulsed electroacoustic method, and charge concentration was found at the interfaces between glass fibre and epoxy resin. Thermally stimulated current (TSC) and dc conduction current were also tested to evaluate the irradiation effect. It was supposed that charge mobility and density were suppressed at the beginning due to the crosslinking reaction, and for a higher irradiation dose, molecular chain degradation dominated and led to more sever space charge accumulation at interfaces which enhance the internal electric field higher than the external field, and transition field for conduction current was also decreased by irradiation. Space charge dynamic at cryogenic temperature was revealed by conduction current and TSC, and space charge injection was observed for the irradiated samples at 225 K, which was more obvious for the irradiated samples.
Fourier analysis of polar cap electric field and current distributions
NASA Technical Reports Server (NTRS)
Barbosa, D. D.
1984-01-01
A theoretical study of high-latitude electric fields and currents, using analytic Fourier analysis methods, is conducted. A two-dimensional planar model of the ionosphere with an enhanced conductivity auroral belt and field-aligned currents at the edges is employed. Two separate topics are treated. A field-aligned current element near the cusp region of the polar cap is included to investigate the modifications to the convection pattern by the east-west component of the interplanetary magnetic field. It is shown that a sizable one-cell structure is induced near the cusp which diverts equipotential contours to the dawnside or duskside, depending on the sign of the cusp current. This produces characteristic dawn-dusk asymmetries to the electric field that have been previously observed over the polar cap. The second topic is concerned with the electric field configuration obtained in the limit of perfect shielding, where the field is totally excluded equatorward of the auroral oval. When realistic field-aligned current distributions are used, the result is to produce severely distorted, crescent-shaped equipotential contours over the cap. Exact, analytic formulae applicable to this case are also provided.
Can Collaborative Learning Improve the Effectiveness of Worked Examples in Learning Mathematics?
ERIC Educational Resources Information Center
Retnowati, Endah; Ayres, Paul; Sweller, John
2017-01-01
Worked examples and collaborative learning have both been shown to facilitate learning. However, the testing of both strategies almost exclusively has been conducted independently of each other. The main aim of the current study was to examine interactions between these 2 strategies. Two experiments (N = 182 and N = 122) were conducted with…
Teacher Educators Developing Professional Roles: Frictions between Current and Optimal Practices
ERIC Educational Resources Information Center
Meeus, Wil; Cools, Wouter; Placklé, Inge
2018-01-01
This article reports on a study of the professional learning of Flemish teacher educators. In the first part, an exemplary survey was conducted in order to compile an inventory of the existing types of education initiatives for teacher educators in Flanders. An electronic survey was then conducted in order to identify the professional needs of…
ERIC Educational Resources Information Center
Maslowsky, Julie; Schulenberg, John E.; Zucker, Robert A.
2014-01-01
The identification of developmentally specific windows at which key predictors of adolescent substance use are most influential is a crucial task for informing the design of appropriately targeted substance use prevention and intervention programs. The current study examined effects of conduct problems and depressive symptomatology on changes in…
Kosa, Sarah Daisy; Mbuagbaw, Lawrence; Borg Debono, Victoria; Bhandari, Mohit; Dennis, Brittany B; Ene, Gabrielle; Leenus, Alvin; Shi, Daniel; Thabane, Michael; Valvasori, Sara; Vanniyasingam, Thuva; Ye, Chenglin; Yranon, Elgene; Zhang, Shiyuan; Thabane, Lehana
2018-02-01
The primary objective of this systematic survey was to examine the percentage of studies in which there was agreement in the reporting of the primary outcome between the currently updated version of the clinical trial registry and the published paper. We also investigated the factors associated with agreement in reporting of the primary outcome. We searched PubMed for all randomized control trials (RCT)s published in 2012-2015 in the top five general medicine journals (based on the 2014 impact factor). Two hundred abstracts (50 from each year) were randomly selected for data extraction. Agreement in reporting of 11 key study conduct items (e.g., sample size) and study characteristics (e.g., funding, number of sites) were extracted by two independent reviewers. Descriptive analyses were conducted to determine the proportion of studies on which there was agreement in reporting of key study conduct items. Generalized estimating equations were used to explore factors associated with agreement in reporting of the primary outcome. Of the 200 included studies, 87% had agreement in reporting of the primary outcome. After adjusting for other covariates, having greater than 50 sites was associated with an increased likelihood of agreement in reporting of the primary outcome (odds ratio=7.1, 95% confidence interval=1.39, 36.27, p=0.018). We identified substantive disagreement in reporting between publications and current clinical trial registry, which were associated with several study characteristics. Further measures are needed to improve reporting given the potential threats to the quality and integrity of scientific research. Copyright © 2017 Elsevier Inc. All rights reserved.
Conductance of Ion Channels - Theory vs. Experiment
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael; Mijajlovic, Milan
2013-01-01
Transmembrane ion channels mediate a number of essential physiological processes in a cell ranging from regulating osmotic pressure to transmission of neural signals. Kinetics and selectivity of ion transport is of critical importance to a cell and, not surprisingly, it is a subject of numerous experimental and theoretical studies. In this presentation we will analyze in detail computer simulations of two simple channels from fungi - antiamoebin and trichotoxin. Each of these channels is made of an alpha-helical bundle of small, nongenomically synthesized peptides containing a number of rare amino acids and exhibits strong antimicrobial activity. We will focus on calculating ionic conductance defined as the ratio of ionic current through the channel to applied voltage. From molecular dynamics simulations, conductance can be calculated in at least two ways, each involving different approximations. Specifically, the current, given as the number of charges transferred through the channel per unit of time, can be obtained from the number of events in which ions cross the channel during the simulation. This method works well for large currents (high conductance values and/or applied voltages). If the number of crossing events is small, reliable estimates of current are difficult to achieve. Alternatively, conductance can be estimated assuming that ion transport can be well approximated as diffusion in the external potential given by the free energy profile. Then, the current can be calculated by solving the one-dimensional diffusion equation in this external potential and applied voltage (the generalized Nernst-Planck equation). To do so three ingredients are needed: the free energy profile, the position-dependent diffusion coefficient and the diffusive flux of ions into the channel. All these quantities can be obtained from molecular dynamics simulations. An important advantage of this method is that it can be used equally well to estimating large and small currents. In addition, once the free energy profile becomes available the full current-voltage dependence can be readily obtained. For both channels we carried out calculations using both approaches. We also tested the main assumptions underlying the diffusive model, such as uncorrelated nature of individual crossing events and Fickian diffusion. The accuracy and consistency of different methods will be discussed. Finally we will discuss how comparisons between calculated and measured ionic conductance and selectivity of transport can be used for determining structural models of the channels.
Housley, G D; Norris, C H; Guth, P S
1990-01-01
Two cholinergically-induced modulations of membrane conductances have been identified in hair cells isolated from the crista ampullaris of the leopard frog (Rana pipiens), using the whole cell recording configuration of the patch clamp technique. Of 56 crista hair cells tested, 28 showed drug-induced changes in membrane current or membrane potential which were repeatable and could be reversed with washout of drug. The predominant effect (observed in 20 hair cells) of acetylcholine (Ach, 100 microM) to 1mM) or carbachol (1 microM to 50 microM) applied to these hair cells was the reduction of an outward current corresponding to a change in conductance of approximately -0.22 nS. This action by Ach on hair cells has been inferred from previous studies of afferent fiber discharge which reported an increase in firing rate with stimulation of efferent fibers or exogenous application of cholinomimetics (Bernard et al., 1985; Valli et al., 1986; Guth et al., 1986; Norris et al., 1988a). The Ach-induced reduction in outward current was associated with a depolarization of the zero-current membrane potential by approximately +2.5 mV. In a total of 8 hair cells, an Ach-induced reversible increase in outward current was recorded. Changes in conductance were approximately +0.13 nS and were associated with a hyperpolarization of the zero-current membrane potential by approximately -2.2 mV. This current increase is likely to be responsible for the inhibitory post-synaptic potentials (IPSPs) which have previously been recorded intracellularly from acoustico-lateralis hair cells during stimulation of the efferent innervation (Flock and Russell, 1976; Ashmore and Russell, 1982; Art et al., 1984, 1985). Of the remaining 28 hair cells, six cells failed to exhibit any change in membrane conductance or membrane potential in the presence of cholinomimetics while an additional 15 cells exhibited decreases, and 7 cells exhibited increases in outward conductance, during application of Ach or carbachol, which were neither reversible with washout nor repeatable. The Ach-induced decrease in outward current could be reversible blocked by removal of Ca2+ from the external solution. The antagonism of the Ach-induced decrease in outward current by atropine (10(-5) M) suggests that this current may correspond to a facilitatory, 'atropine-preferring' Ach receptor mediated response previously identified in the isolated semicircular canal (Norris et al., 1988a).(ABSTRACT TRUNCATED AT 400 WORDS)
Magnuson, B A; Burdock, G A; Doull, J; Kroes, R M; Marsh, G M; Pariza, M W; Spencer, P S; Waddell, W J; Walker, R; Williams, G M
2007-01-01
Aspartame is a methyl ester of a dipeptide used as a synthetic nonnutritive sweetener in over 90 countries worldwide in over 6000 products. The purpose of this investigation was to review the scientific literature on the absorption and metabolism, the current consumption levels worldwide, the toxicology, and recent epidemiological studies on aspartame. Current use levels of aspartame, even by high users in special subgroups, remains well below the U.S. Food and Drug Administration and European Food Safety Authority established acceptable daily intake levels of 50 and 40 mg/kg bw/day, respectively. Consumption of large doses of aspartame in a single bolus dose will have an effect on some biochemical parameters, including plasma amino acid levels and brain neurotransmitter levels. The rise in plasma levels of phenylalanine and aspartic acid following administration of aspartame at doses less than or equal to 50 mg/kg bw do not exceed those observed postprandially. Acute, subacute and chronic toxicity studies with aspartame, and its decomposition products, conducted in mice, rats, hamsters and dogs have consistently found no adverse effect of aspartame with doses up to at least 4000 mg/kg bw/day. Critical review of all carcinogenicity studies conducted on aspartame found no credible evidence that aspartame is carcinogenic. The data from the extensive investigations into the possibility of neurotoxic effects of aspartame, in general, do not support the hypothesis that aspartame in the human diet will affect nervous system function, learning or behavior. Epidemiological studies on aspartame include several case-control studies and one well-conducted prospective epidemiological study with a large cohort, in which the consumption of aspartame was measured. The studies provide no evidence to support an association between aspartame and cancer in any tissue. The weight of existing evidence is that aspartame is safe at current levels of consumption as a nonnutritive sweetener.
Facilities and Methods Used in Full-scale Airplane Crash-fire Investigation
NASA Technical Reports Server (NTRS)
Black, Dugald O.
1952-01-01
The facilities and the techniques employed in the conduct of full scale airplane crash-fire studies currently being conducted at the NACA Lewis laboratory are discussed herein. This investigation is part of a comprehensive study of the airplane crash-fire problem. The crash configuration chosen, the general physical layout of the crash site, the test methods, the instrumentation, the data-recording systems, and the post-crash examination procedure are described
NASA Astrophysics Data System (ADS)
Ohta, Akio; Kato, Yusuke; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi
2018-06-01
We have studied the resistive switching behaviors of electron beam (EB) evaporated Si-rich oxide (SiO x ) sandwiched between Ni electrodes by applying a constant voltage and current. Additionally, the impact of Ti nanodots (NDs) embedded into SiO x on resistive switching behaviors was investigated because it is expected that NDs can trigger the formation of a conductive filament path in SiO x . The resistive switching behaviors of SiO x show that the response time during resistance switching was decreased by increasing the applied constant current or constant voltage. It was found that Ti-NDs in SiO x enhance the conductive filament path formation owing to electric field concentration by Ti-NDs.
Chang, Chia-Chi; Lin, Li-Min; Chen, I-Hui; Kang, Chun-Mei; Chang, Wen-Yin
2015-01-01
Although the benefits of preceptor training programs on the performance of nurse preceptors have been reported, research related to nurse preceptors' perceptions of and experiences with preceptor training courses is relatively limited. To explore nurse preceptors' perceptions of preceptor training courses and obtain information on their experiences in working as preceptors. A mixed method design was conducted. Nurse preceptors who currently work at one of eight hospitals in northern Taiwan were recruited to participate in this study. A questionnaire survey and focus group interviews were conducted. A training course perception scale was developed and generated based on the current nurse preceptor training programs offered in eight hospitals. Focus group interviews were conducted to obtain additional information on nurse preceptors' experiences in working as preceptors. The survey data were analyzed using descriptive statistics. Interview data were transcribed and analyzed using a qualitative content analysis approach. The results from the surveys of 386 nurse preceptors revealed that most courses included in the current preceptor training programs did not fulfill the learning needs of nurse preceptors and were clinically impractical. The most necessary and clinically useful course was the communication skills course, whereas the least useful course was the adult learning theory and principles course. Three themes were identified as problems based on the three focus group interviews conducted with 36 nurse preceptors: inadequate training was received before nurses were appointed as nurse preceptors, the courses were more theoretical rather than practical, and the preceptors experienced stress from multiple sources. The results revealed that the current preceptor training courses are impractical; therefore, the content of preceptor training courses must be altered to fulfill nurse preceptors' training needs. Furthermore, problems identified through the focus group interviews reinforce the survey results. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate
NASA Technical Reports Server (NTRS)
Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.
1993-01-01
Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.
NASA Astrophysics Data System (ADS)
Bhadra, Narendra; Foldes, Emily; Vrabec, Tina; Kilgore, Kevin; Bhadra, Niloy
2018-02-01
Objective. Application of kilohertz frequency alternating current (KHFAC) waveforms can result in nerve conduction block that is induced in less than a second. Conduction recovers within seconds when KHFAC is applied for about 5-10 min. This study investigated the effect of repeated and prolonged application of KHFAC on rat sciatic nerve with bipolar platinum electrodes. Approach. Varying durations of KHFAC at signal amplitudes for conduction block with intervals of no stimulus were studied. Nerve conduction was monitored by recording peak Gastrocnemius muscle force utilizing stimulation electrodes proximal (PS) and distal (DS) to a blocking electrode. The PS signal traveled through the block zone on the nerve, while the DS went directly to the motor end-plate junction. The PS/DS force ratio provided a measure of conduction patency of the nerve in the block zone. Main results. Conduction recovery times were found to be significantly affected by the cumulative duration of KHFAC application. Peak stimulated muscle force returned to pre-block levels immediately after cessation of KHFAC delivery when it was applied for less than about 15 min. They fell significantly but recovered to near pre-block levels for cumulative stimulus of 50 ± 20 min, for the tested On/Off times and frequencies. Conduction recovered in two phases, an initial fast one (60-80% recovery), followed by a slower phase. No permanent conduction block was seen at the end of the observation period during any experiment. Significance. This carry-over block effect may be exploited to provide continuous conduction block in peripheral nerves without continuous application of KHFAC.
Atmospheric Electricity and Tethered Aerostats, Volume 2
1976-05-11
vs Altitude (Non- conducting or Conducting Tethers...Effect of Corona Charge Plume 15 3.1 Tether Current vs Balloon Altitude , BJ+3 - 25 Sep 73 20 3.2 Tether Current vs Balloon Altitude , Baldy - 17 Oct 73 21...3.3 Tether Current vs Balloon Altitude , Baldy - 31 Oct 73 22 3.4 Tether Current vs Balloon Altitude , Baldy - 2 Nov 73 23 3.5 Tether Current vs
NASA Astrophysics Data System (ADS)
Sukhanov, D. Ya.; Zav'yalova, K. V.
2018-03-01
The paper represents induced currents in an electrically conductive object as a totality of elementary eddy currents. The proposed scanning method includes measurements of only one component of the secondary magnetic field. Reconstruction of the current distribution is performed by deconvolution with regularization. Numerical modeling supported by the field experiments show that this approach is of direct practical relevance.
Effectiveness study on temporary pavement marking removals methods.
DOT National Transportation Integrated Search
2011-06-01
"This study was conducted to identify effective temporary marking removal methods and procedures on concrete and asphalt pavements. Pavement markings provide guidance to road travelers and can lead to accidents when not properly removed. Current stat...
Effectiveness study on temporary pavement marking removals methods.
DOT National Transportation Integrated Search
2011-06-01
This study was conducted to identify effective temporary marking removal methods and procedures on concrete and asphalt pavements. Pavement markings provide guidance to road travelers and can lead to accidents when not properly removed. Current state...
40 CFR 93.153 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operation to activities currently being conducted. (xii) Planning, studies, and provision of technical... control activities and adopting approach, departure, and enroute procedures for aircraft operations above... (e) of this section. (3) Research, investigations, studies, demonstrations, or training (other than...
40 CFR 93.153 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... operation to activities currently being conducted. (xii) Planning, studies, and provision of technical... control activities and adopting approach, departure, and enroute procedures for aircraft operations above... (e) of this section. (3) Research, investigations, studies, demonstrations, or training (other than...
40 CFR 93.153 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operation to activities currently being conducted. (xii) Planning, studies, and provision of technical... control activities and adopting approach, departure, and enroute procedures for aircraft operations above... (e) of this section. (3) Research, investigations, studies, demonstrations, or training (other than...
Iron-oxide minerals affect extracellular electron-transfer paths of Geobacter spp.
Kato, Souichiro; Hashimoto, Kazuhito; Watanabe, Kazuya
2013-01-01
Some bacteria utilize (semi)conductive iron-oxide minerals as conduits for extracellular electron transfer (EET) to distant, insoluble electron acceptors. A previous study demonstrated that microbe/mineral conductive networks are constructed in soil ecosystems, in which Geobacter spp. share dominant populations. In order to examine how (semi)conductive iron-oxide minerals affect EET paths of Geobacter spp., the present study grew five representative Geobacter strains on electrodes as the sole electron acceptors in the absence or presence of (semi)conductive iron oxides. It was found that iron-oxide minerals enhanced current generation by three Geobacter strains, while no effect was observed in another strain. Geobacter sulfurreducens was the only strain that generated substantial amounts of currents both in the presence and absence of the iron oxides. Microscopic, electrochemical and transcriptomic analyses of G. sulfurreducens disclosed that this strain constructed two distinct types of EET path; in the absence of iron-oxide minerals, bacterial biofilms rich in extracellular polymeric substances were constructed, while composite networks made of mineral particles and microbial cells (without polymeric substances) were developed in the presence of iron oxides. It was also found that uncharacterized c-type cytochromes were up-regulated in the presence of iron oxides that were different from those found in conductive biofilms. These results suggest the possibility that natural (semi)conductive minerals confer energetic and ecological advantages on Geobacter, facilitating their growth and survival in the natural environment.
The Flipped Classroom: Fertile Ground for Nursing Education Research.
Bernard, Jean S
2015-07-16
In the flipped classroom (FC) students view pre-recorded lectures or complete pre-class assignments to learn foundational concepts. Class time involves problem-solving and application activities that cultivate higher-level cognitive skills. A systematic, analytical literature review was conducted to explore the FC's current state of the science within higher education. Examination of this model's definition and measures of student performance, student and faculty perceptions revealed an ill-defined educational approach. Few studies confirmed FC effectiveness; many lacked rigorous design, randomized samples, or control of extraneous variables. Few researchers conducted longitudinal studies to determine sufficiently trends related to FC practice. This study proves relevant to nurse educators transitioning from traditional teaching paradigms to learner-centered models, and provides insight from faculty teaching across disciplines around the world. It reveals pertinent findings and identifies current knowledge gaps that call for further inquiry.
Oral Biofluid Biomarker Research: Current Status and Emerging Frontiers
Wang, Austin; Wang, Chris P.; Tu, Michael; Wong, David T.W.
2016-01-01
Salivary diagnostics is a rapidly advancing field that offers clinicians and patients the potential of rapid, noninvasive diagnostics with excellent accuracy. In order for the complete realization of the potential of saliva, however, extensive profiling of constituents must be conducted and diagnostic biomarkers must be thoroughly validated. This article briefly overviews the process of conducting a study of salivary biomarkers in a patient cohort and highlights the studies that have been conducted on different classes of molecules in the saliva. Emerging frontiers in salivary diagnostics research that may significantly advance the field will also be highlighted. PMID:27999326
Addissie, Adamu; Davey, Gail; Newport, Melanie J; Addissie, Thomas; MacGregor, Hayley; Feleke, Yeweyenhareg; Farsides, Bobbie
2014-05-02
Rapid Ethical Assessment (REA) is a form of rapid ethnographic assessment conducted at the beginning of research project to guide the consent process with the objective of reconciling universal ethical guidance with specific research contexts. The current study is conducted to assess the perceived relevance of introducing REA as a mainstream tool in Ethiopia. Mixed methods research using a sequential explanatory approach was conducted from July to September 2012, including 241 cross-sectional, self-administered and 19 qualitative, in-depth interviews among health researchers and regulators including ethics committee members in Ethiopian health research institutions and universities. In their evaluation of the consent process, only 40.2% thought that the consent process and information given were adequately understood by study participants; 84.6% claimed they were not satisfied with the current consent process and 85.5% thought the best interests of study participants were not adequately considered. Commonly mentioned consent-related problems included lack of clarity (48.1%), inadequate information (34%), language barriers (28.2%), cultural differences (27.4%), undue expectations (26.6%) and power imbalances (20.7%). About 95.4% believed that consent should be contextualized to the study setting and 39.4% thought REA would be an appropriate approach to improve the perceived problems. Qualitative findings helped to further explore the gaps identified in the quantitative findings and to map-out concerns related to the current research consent process in Ethiopia. Suggestions included, conducting REA during the pre-test (pilot) phase of studies when applicable. The need for clear guidance for researchers on issues such as when and how to apply the REA tools was stressed. The study findings clearly indicated that there are perceived to be correctable gaps in the consent process of medical research in Ethiopia. REA is considered relevant by researchers and stakeholders to address these gaps. Exploring further the feasibility and applicability of REA is recommended.
2014-01-01
Background Rapid Ethical Assessment (REA) is a form of rapid ethnographic assessment conducted at the beginning of research project to guide the consent process with the objective of reconciling universal ethical guidance with specific research contexts. The current study is conducted to assess the perceived relevance of introducing REA as a mainstream tool in Ethiopia. Methods Mixed methods research using a sequential explanatory approach was conducted from July to September 2012, including 241 cross-sectional, self-administered and 19 qualitative, in-depth interviews among health researchers and regulators including ethics committee members in Ethiopian health research institutions and universities. Results In their evaluation of the consent process, only 40.2% thought that the consent process and information given were adequately understood by study participants; 84.6% claimed they were not satisfied with the current consent process and 85.5% thought the best interests of study participants were not adequately considered. Commonly mentioned consent-related problems included lack of clarity (48.1%), inadequate information (34%), language barriers (28.2%), cultural differences (27.4%), undue expectations (26.6%) and power imbalances (20.7%). About 95.4% believed that consent should be contextualized to the study setting and 39.4% thought REA would be an appropriate approach to improve the perceived problems. Qualitative findings helped to further explore the gaps identified in the quantitative findings and to map-out concerns related to the current research consent process in Ethiopia. Suggestions included, conducting REA during the pre-test (pilot) phase of studies when applicable. The need for clear guidance for researchers on issues such as when and how to apply the REA tools was stressed. Conclusion The study findings clearly indicated that there are perceived to be correctable gaps in the consent process of medical research in Ethiopia. REA is considered relevant by researchers and stakeholders to address these gaps. Exploring further the feasibility and applicability of REA is recommended. PMID:24885049
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maidana, Carlos O.; Nieminen, Juha E.
Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is amore » source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. Here, first studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.« less
Maidana, Carlos O.; Nieminen, Juha E.
2017-02-01
Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is amore » source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. Here, first studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.« less
The electrical conductance growth of a metallic granular packing
NASA Astrophysics Data System (ADS)
Jakšić, Zorica M.; Cvetković, Milica; Šćepanović, Julija R.; Lončarević, Ivana; Budinski-Petković, Ljuba; Vrhovac, Slobodan B.
2017-06-01
We report on measurements of the electrical conductivity on a two-dimensional packing of metallic disks when a stable current of 1 mA flows through the system. At low applied currents, the conductance σ is found to increase by a pattern σ( t) = σ ∞ - Δσ E α [ - ( t/ τ) α ], where E α denotes the Mittag-Leffler function of order α ∈ (0,1). By changing the inclination angle θ of the granular bed from horizontal, we have studied the impact of the effective gravitational acceleration g e ff = gsin θ on the relaxation features of the conductance σ( t). The characteristic timescale τ is found to grow when effective gravity g e ff decreases. By changing both the distance between the electrodes and the number of grains in the packing, we have shown that the long term resistance decay observed in the experiment is related to local micro-contacts rearrangements at each disk. By focusing on the electro-mechanical processes that allow both creation and breakdown of micro-contacts between two disks, we present an approach to granular conduction based on subordination of stochastic processes. In order to imitate, in a very simplified way, the conduction dynamics of granular material at low currents, we impose that the micro-contacts at the interface switch stochastically between two possible states, "on" and "off", characterizing the conductivity of the micro-contact. We assume that the time intervals between the consecutive changes of state are governed by a certain waiting-time distribution. It is demonstrated how the microscopic random dynamics regarding the micro-contacts leads to the macroscopic observation of slow conductance growth, described by an exact fractional kinetic equations.
STUDY TO IDENTIFY IMPORTANT PARAMETERS FOR CHARACTERIZING PESTICIDE RESIDUE TRANSFER EFFICIENCIES
To reduce the uncertainty associated with current estimates of children's exposure to pesticides by dermal contact and non-dietary ingestion, residue transfer data are required. Prior to conducting exhaustive studies, a screening study to identify the important parameters for...
Ekdahl, Jr., Carl A.; Frost, Charles A.
1986-01-01
An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.
Ekdahl, C.A. Jr.; Frost, C.A.
1984-11-13
An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.
NASA Astrophysics Data System (ADS)
Garcia-Castello, Nuria; Illera, Sergio; Guerra, Roberto; Prades, Joan Daniel; Ossicini, Stefano; Cirera, Albert
2013-08-01
We study the details of electronic transport related to the atomistic structure of silicon quantum dots embedded in a silicon dioxide matrix using ab initio calculations of the density of states. Several structural and composition features of quantum dots (QDs), such as diameter and amorphization level, are studied and correlated with transport under transfer Hamiltonian formalism. The current is strongly dependent on the QD density of states and on the conduction gap, both dependent on the dot diameter. In particular, as size increases, the available states inside the QD increase, while the QD band gap decreases due to relaxation of quantum confinement. Both effects contribute to increasing the current with the dot size. Besides, valence band offset between the band edges of the QD and the silica, and conduction band offset in a minor grade, increases with the QD diameter up to the theoretical value corresponding to planar heterostructures, thus decreasing the tunneling transmission probability and hence the total current. We discuss the influence of these parameters on electron and hole transport, evidencing a correlation between the electron (hole) barrier value and the electron (hole) current, and obtaining a general enhancement of the electron (hole) transport for larger (smaller) QD. Finally, we show that crystalline and amorphous structures exhibit enhanced probability of hole and electron current, respectively.
A Citation Analysis of Who's Who in Introductory Textbooks
ERIC Educational Resources Information Center
Griggs, Richard A.; Proctor, Derrick L.
2002-01-01
Given the many changes in the introductory psychology textbook market in the past 2 decades and the lack of a recent citation study of introductory texts, we conducted a citation analysis of a stratified random sample of current texts. To provide a more comprehensive picture of current citation emphases, we extended our analysis to the top 60…
Study of surge current effects on solid tantalum capacitors
NASA Technical Reports Server (NTRS)
1980-01-01
Results are presented of a 2,000 hour cycled life test program conducted to determine the effect of short term surge current screening on approximately 47 micron f/volt solid tantalum capacitors. The format provides average values and standard deviations of the parameters, capacitance, dissipation factor, and equivalent series resistance at 120 Hz, 1KHz, abd 40 KHz.
A new instrument designedfor frequency-domain sounding in the depth range 0-10 m uses short coil spacings of 5 m or less and a frequency range of 300 kHz to 30 MHz. In this frequency range, both conduction currents (controlled by electrical conductibity) and displacement currents...
TEX-SIS First-Year Graduate Follow-Up, Vol. 2, #1.
ERIC Educational Resources Information Center
Gose, Frank J.
A follow-up study was conducted of Yavapai College students who completed a certificate or graduated with a degree in spring 1980 to obtain demographic data and information on the graduates' current status, purpose for enrolling at Yavapai, and views of the college, and on the relationship between their current activities and their coursework at…
Propulsion technology for an advanced subsonic transport
NASA Technical Reports Server (NTRS)
Beheim, M. A.; Antl, R. J.; Povolny, J. H.
1972-01-01
Engine design studies for future subsonic commercial transport aircraft were conducted in parallel with airframe studies. These studies surveyed a broad distribution of design variables, including aircraft configuration, payload, range, and speed, with particular emphasis on reducing noise and exhaust emissions without severe economic and performance penalties. The results indicated that an engine for an advanced transport would be similar to the currently emerging turbofan engines. Application of current technology in the areas of noise suppression and combustors imposed severe performance and economic penalties.
Hemorrhage Control for Major Traumatic Vascular Injuries
2017-10-01
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO...aims: 1) Determine current practice patterns for the treatment of patients with NCTH among 4 clinical sites using a retrospective study design (Phase...competency, and training issues for catheter-based hemorrhage control (Phase 1b); 3) Conduct a prospective 4-site observational study to test the hypothesis
Social Studies Teacher Candidates' Views on Historical Thinking Skills
ERIC Educational Resources Information Center
Ozmen, Cengiz
2015-01-01
Current study aimed to present Social Studies teacher candidates' views on historical thinking skills. Study was conducted using qualitative design and working group was composed of a total of 121 teacher candidates (62 females and 59 males) attending Social Studies Teaching Department of Karadeniz Technical University and Adiyaman University…
System and method for evaluating a wire conductor
Panozzo, Edward; Parish, Harold
2013-10-22
A method of evaluating an electrically conductive wire segment having an insulated intermediate portion and non-insulated ends includes passing the insulated portion of the wire segment through an electrically conductive brush. According to the method, an electrical potential is established on the brush by a power source. The method also includes determining a value of electrical current that is conducted through the wire segment by the brush when the potential is established on the brush. The method additionally includes comparing the value of electrical current conducted through the wire segment with a predetermined current value to thereby evaluate the wire segment. A system for evaluating an electrically conductive wire segment is also disclosed.
Non-consent towing cost study in Utah.
DOT National Transportation Integrated Search
2015-01-01
This study was conducted on behalf of the UDOT Motor Carrier Division at the request of the towing industry in : Utah to evaluate the maximum allowable rates for Non-Consent Towing. The objectives were to: 1-Evaluate : the Current Maximum...
Roadway lighting study : Rte. 264 in downtown Norfolk.
DOT National Transportation Integrated Search
1974-01-01
A study of roadway lighting is currently being conducted at several locations in Virginia by using a mobile illumination recording system to obtain lighting measurements. Areas being surveyed include the I-264 interchange area in downtown Norfolk and...
NASA Astrophysics Data System (ADS)
Samanta, Piyas
2017-09-01
We present a detailed investigation on temperature-dependent current conduction through thin tunnel oxides grown on degenerately doped n-type silicon (n+-Si) under positive bias ( VG ) on heavily doped n-type polycrystalline silicon (n+-polySi) gate in metal-oxide-semiconductor devices. The leakage current measured between 298 and 573 K and at oxide fields ranging from 6 to 10 MV/cm is primarily attributed to Poole-Frenkel (PF) emission of trapped electrons from the neutral electron traps located in the silicon dioxide (SiO2) band gap in addition to Fowler-Nordheim (FN) tunneling of electrons from n+-Si acting as the drain node in FLOating gate Tunnel OXide Electrically Erasable Programmable Read-Only Memory devices. Process-induced neutral electron traps are located at 0.18 eV and 0.9 eV below the SiO2 conduction band. Throughout the temperature range studied here, PF emission current IPF dominates FN electron tunneling current IFN at oxide electric fields Eox between 6 and 10 MV/cm. A physics based new analytical formula has been developed for FN tunneling of electrons from the accumulation layer of degenerate semiconductors at a wide range of temperatures incorporating the image force barrier rounding effect. FN tunneling has been formulated in the framework of Wentzel-Kramers-Brilloiun taking into account the correction factor due to abrupt variation of the energy barrier at the cathode/oxide interface. The effect of interfacial and near-interfacial trapped-oxide charges on FN tunneling has also been investigated in detail at positive VG . The mechanism of leakage current conduction through SiO2 films plays a crucial role in simulation of time-dependent dielectric breakdown of the memory devices and to precisely predict the normal operating field or applied floating gate (FG) voltage for lifetime projection of the devices. In addition, we present theoretical results showing the effect of drain doping concentration on the FG leakage current.
Electrical conductivity changes during irreversible electroporation treatment of brain cancer.
Garcia, Paulo A; Rossmeisl, John H; Davalos, Rafael V
2011-01-01
Irreversible electroporation (IRE) is a new minimally invasive technique to kill tumors and other undesirable tissue in a non-thermal manner. During an IRE treatment, a series of short and intense electric pulses are delivered to the region of interest to destabilize the cell membranes in the tissue and achieve spontaneous cell death. The alteration of the cellular membrane results in a dramatic increase in electrical conductivity during IRE as in other electroporation-based-therapies. In this study, we performed the planning and execution of an IRE brain cancer treatment using MRI reconstructions of the tumor and a multichannel array that served as a stereotactic fiducial and electrode guide. Using the tumor reconstructions within our numerical simulations, we developed equations relating the increase in tumor conductivity to calculated currents and volumes of tumor treated with IRE. We also correlated the experimental current measured during the procedure to an increase in tumor conductivity ranging between 3.42-3.67 times the baseline conductivity, confirming the physical phenomenon that has been detected in other tissues undergoing similar electroporation-based treatments.
NASA Astrophysics Data System (ADS)
Xie, Ting; Dreyer, Michael; Bowen, David; Hinkel, Dan; Butera, R. E.; Krafft, Charles; Mayergoyz, Isaak
2018-05-01
Scanning tunneling microscopy experiments using iron-coated tungsten tips and current-carrying tungsten films have been conducted. An asymmetry of the tunneling current with respect to the change of the direction of the bias current through a tungsten film has been observed. It is argued that this asymmetry is a manifestation of the spin Hall effect in the current-carrying tungsten film. Nanoscale variations of this asymmetry across the tungsten film have been studied by using the scanning tunneling microscopy technique.
Deformations of the spin currents by topological screw dislocation and cosmic dispiration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jianhua; Ma, Kai, E-mail: makainca@gmail.com; Li, Kang
2015-11-15
We study the spin currents induced by topological screw dislocation and cosmic dispiration. By using the extended Drude model, we find that the spin dependent forces are modified by the nontrivial geometry. For the topological screw dislocation, only the direction of spin current is bent by deforming the spin polarization vector. In contrast, the force induced by cosmic dispiration could affect both the direction and magnitude of the spin current. As a consequence, the spin-Hall conductivity does not receive corrections from screw dislocation.
Elimination of current spikes in buck power converters
NASA Technical Reports Server (NTRS)
Mclyman, W. T. (Inventor)
1981-01-01
Current spikes in a buck power converter due to commutating diode turn-off time are eliminated by using a tapped inductor in the converter with the tap connected to the switching transistor. The commutating diode is not in the usual place, but is instead connected to conduct current from one end of the tapped inductor remote from the load during the interval in which the transistor is not conducting. In the case of a converter having a center-tapped (primary and secondary) transformer between two switching power transistors operated in a push-pull mode and two rectifying diodes in the secondary circuit, current spikes due to transformer saturation are also eliminated by using a tapped inductor in the converter with the tap connected to the rectifying diodes and a diode connected to conduct current from one end of the tapped inductor remote from the load during the interval in which the transistors are not conducting.
Effect of Ground Layer Patterns with Slits on Conducted Noise Currents from Printed Circuit Board
NASA Astrophysics Data System (ADS)
Maeno, Tsuyoshi; Unou, Takanori; Ichikawa, Kouji; Fujiwara, Osamu
Electromagnetic disturbances for vehicle-mounted radios can be caused by conducted noise currents that flows out from electronic equipment for vehicles to wire-harnesses. In this paper, for reducing the conducted noise currents from electronic equipment for vehicles, we made a simulation and experiment on how ground patterns affect the noise currents from three-layer printed circuit boards (PCBs) with slit-types and plane-type ground patterns. As a result, we could confirm that slits on a ground pattern allow conducted noise currents to flow out from PCBs to wire-harnesses. For the PCBs with plane-type ground and one of three slit-type patterns, on the other hand, both the simulation and examination showed that resonance phenomena occur at unexpected low-frequencies. A circuit analysis revealed that the above phenomena can be caused by the imbalance of a bridge circuit consisting of the trace circuits on the PCB.
Maternal Characteristics Predicting Young Girls’ Disruptive Behavior
van der Molen, Elsa; Hipwell, Alison E.; Vermeiren, Robert; Loeber, Rolf
2011-01-01
Little is known about the relative predictive utility of maternal characteristics and parenting skills on the development of girls’ disruptive behavior. The current study used five waves of parent and child-report data from the ongoing Pittsburgh Girls Study to examine these relationships in a sample of 1,942 girls from age 7 to 12 years. Multivariate Generalized Estimating Equation (GEE) analyses indicated that European American race, mother’s prenatal nicotine use, maternal depression, maternal conduct problems prior to age 15, and low maternal warmth explained unique variance. Maladaptive parenting partly mediated the effects of maternal depression and maternal conduct problems. Both current and early maternal risk factors have an impact on young girls’ disruptive behavior, providing support for the timing and focus of the prevention of girls’ disruptive behavior. PMID:21391016
Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes.
Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric
2016-04-15
In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1/3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given pH.
Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric
2016-04-01
In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1 /3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given p H .
The Effects of Conducting a Functional Analysis on Problem Behavior in Other Settings
ERIC Educational Resources Information Center
Call, Nathan A.; Findley, Addie J.; Reavis, Andrea R.
2012-01-01
It has been suggested that reinforcing problem behavior during functional analyses (FAs) may be unethical (e.g., Carr, 1977), the implication being that doing so may result in an increase in problem behavior outside of FA sessions. The current study assessed whether conducting a FA resulted in increases in problem behavior outside of the FA…
ERIC Educational Resources Information Center
O'Reilly, Robert C.
A study was conducted to examine current concepts and procedures of community college governance in the United States and the United Kingdom. Agendas and minutes of board meetings were analyzed and interviews were conducted with administrators and board members at four institutions, one rural and one urban from each country. The participating…
ERIC Educational Resources Information Center
Castellanos-Ryan, Natalie; Conrod, Patricia J.
2011-01-01
Externalising behaviours such as substance misuse (SM) and conduct disorder (CD) symptoms highly co-ocurr in adolescence. While disinhibited personality traits have been consistently linked to externalising behaviours there is evidence that these traits may relate differentially to SM and CD. The current study aimed to assess whether this was the…
A Wave Glider for Studies of Biofouling and Ocean Productivity
2017-11-07
sensors for conductivity, water and air temperature , dissolved oxygen , chlorophyll-a fluorescence, wind speed and direction, barometric pressure, and...endurance, reduce fuel consumption , and reduce carbon emissions. During deployments, vessels encounter a range of planktonic assemblages and ocean...with an acoustic Doppler current profiler, an optical camera system, and standard sensors for conductivity, water and air temperature , dissolved
Co-Occurrence of Conduct Disorder and Depression in a Clinic-Based Sample of Boys with ADHD
ERIC Educational Resources Information Center
Drabick, Deborah A. G.; Gadow, Kenneth D.; Sprafkin, Joyce
2006-01-01
Background: Children with attention-deficit/hyperactivity disorder (ADHD) are at risk for the development of comorbid conduct disorder (CD) and depression. The current study examined potential psychosocial risk factors for CD and depression in a clinic-based sample of 203 boys (aged 6-10 years) with ADHD. Methods: The boys and their mothers…
Nonlinear spin conductance of yttrium iron garnet thin films driven by large spin-orbit torque
NASA Astrophysics Data System (ADS)
Thiery, N.; Draveny, A.; Naletov, V. V.; Vila, L.; Attané, J. P.; Beigné, C.; de Loubens, G.; Viret, M.; Beaulieu, N.; Ben Youssef, J.; Demidov, V. E.; Demokritov, S. O.; Slavin, A. N.; Tiberkevich, V. S.; Anane, A.; Bortolotti, P.; Cros, V.; Klein, O.
2018-02-01
We report high power spin transfer studies in open magnetic geometries by measuring the spin conductance between two nearby Pt wires deposited on top of an epitaxial yttrium iron garnet thin film. Spin transport is provided by propagating spin waves that are generated and detected by direct and inverse spin Hall effects. We observe a crossover in spin conductance from a linear transport dominated by exchange magnons (low current regime) to a nonlinear transport dominated by magnetostatic magnons (high current regime). The latter are low-damping magnetic excitations, located near the spectral bottom of the magnon manifold, with a sensitivity to the applied magnetic field. This picture is supported by microfocus Brillouin light-scattering spectroscopy. Our findings could be used for the development of controllable spin conductors by variation of relatively weak magnetic fields.
PRELIMINARY FINDINGS FROM THE NERL RESEARCH TRIANGLE PARK PARTICULATE MATTER PANEL STUDY
The U.S. Environmental Protection Agency is currently conducting the National Exposure Research Laboratory (NERL) Research Triangle Park (RTP) Particulate Matter (PM) Panel Study. This study represents a one year investigation of PM and related co-pollutants involving two dist...
NASA Astrophysics Data System (ADS)
Ren, Zhengyong; Qiu, Lewen; Tang, Jingtian; Wu, Xiaoping; Xiao, Xiao; Zhou, Zilong
2018-01-01
Although accurate numerical solvers for 3-D direct current (DC) isotropic resistivity models are current available even for complicated models with topography, reliable numerical solvers for the anisotropic case are still an open question. This study aims to develop a novel and optimal numerical solver for accurately calculating the DC potentials for complicated models with arbitrary anisotropic conductivity structures in the Earth. First, a secondary potential boundary value problem is derived by considering the topography and the anisotropic conductivity. Then, two a posteriori error estimators with one using the gradient-recovery technique and one measuring the discontinuity of the normal component of current density are developed for the anisotropic cases. Combing the goal-oriented and non-goal-oriented mesh refinements and these two error estimators, four different solving strategies are developed for complicated DC anisotropic forward modelling problems. A synthetic anisotropic two-layer model with analytic solutions verified the accuracy of our algorithms. A half-space model with a buried anisotropic cube and a mountain-valley model are adopted to test the convergence rates of these four solving strategies. We found that the error estimator based on the discontinuity of current density shows better performance than the gradient-recovery based a posteriori error estimator for anisotropic models with conductivity contrasts. Both error estimators working together with goal-oriented concepts can offer optimal mesh density distributions and highly accurate solutions.
Effect of pulsed current charging on the performance of nickel-cadium cells
NASA Technical Reports Server (NTRS)
Bedrossian, A. A.; Cheh, H. Y.
1977-01-01
The effect of pulsed current charging on the charge acceptance of NiCd cells in terms of mass transfer, kinetic, and structural considerations was investigated. A systemic investigation on the performance of Ni-Cd cells by pulsed current charging was conducted under a variety of well-defined charge-discharge conditions. Experiments were carried out with half cells and film electrodes. The system behavior was studied by charge acceptance, mechanistic, and structural measurements.
Conductivity Rise During Irreversible Electroporation: True Permeabilization or Heat?
Ruarus, Alette H; Vroomen, Laurien G P H; Puijk, Robbert S; Scheffer, Hester J; Faes, Theo J C; Meijerink, Martijn R
2018-04-23
Irreversible electroporation (IRE) induces apoptosis with high-voltage electric pulses. Although the working mechanism is non-thermal, development of secondary Joule heating occurs. This study investigated whether the observed conductivity rise during IRE is caused by increased cellular permeabilization or heat development. IRE was performed in a gelatin tissue phantom, in potato tubers, and in 30 patients with unresectable colorectal liver metastases (CRLM). Continuous versus sequential pulsing protocols (10-90 vs. 10-30-30-30) were assessed. Temperature was measured using fiber-optic probes. After temperature had returned to baseline, 100 additional pulses were delivered. The primary technique efficacy of the treated CRLM was compared to the periprocedural current rise. Seven patients received ten additional pulses after a 10-min cool-down period. Temperature and current rise was higher for the continuous pulsing protocol (medians, gel: 13.05 vs. 9.55 °C and 9 amperes (A) vs. 7A; potato: 12.70 vs. 10.53 °C and 6.0A vs. 6.5A). After cooling-down, current returned to baseline in the gel phantom and near baseline values (Δ2A with continuous- and Δ5A with sequential pulsing) in the potato tubers. The current declined after cooling-down in all seven patients with CRLM, although baseline values were not reached. There was a positive correlation between current rise and primary technique efficacy (p = 0.02); however, the previously reported current increase threshold of 12-15A was reached in 13%. The observed conductivity rise during IRE is caused by both cellular permeabilization and heat development. Although a correlation between current rise and efficacy exists, the current increase threshold seems unfeasible for CRLM.
Guidelines for the Design and Conduct of Clinical Studies in Knee Articular Cartilage Repair
Mithoefer, Kai; Saris, Daniel B.F.; Farr, Jack; Kon, Elizaveta; Zaslav, Kenneth; Cole, Brian J.; Ranstam, Jonas; Yao, Jian; Shive, Matthew; Levine, David; Dalemans, Wilfried; Brittberg, Mats
2011-01-01
Objective: To summarize current clinical research practice and develop methodological standards for objective scientific evaluation of knee cartilage repair procedures and products. Design: A comprehensive literature review was performed of high-level original studies providing information relevant for the design of clinical studies on articular cartilage repair in the knee. Analysis of cartilage repair publications and synopses of ongoing trials were used to identify important criteria for the design, reporting, and interpretation of studies in this field. Results: Current literature reflects the methodological limitations of the scientific evidence available for articular cartilage repair. However, clinical trial databases of ongoing trials document a trend suggesting improved study designs and clinical evaluation methodology. Based on the current scientific information and standards of clinical care, detailed methodological recommendations were developed for the statistical study design, patient recruitment, control group considerations, study endpoint definition, documentation of results, use of validated patient-reported outcome instruments, and inclusion and exclusion criteria for the design and conduct of scientifically sound cartilage repair study protocols. A consensus statement among the International Cartilage Repair Society (ICRS) and contributing authors experienced in clinical trial design and implementation was achieved. Conclusions: High-quality clinical research methodology is critical for the optimal evaluation of current and new cartilage repair technologies. In addition to generally applicable principles for orthopedic study design, specific criteria and considerations apply to cartilage repair studies. Systematic application of these criteria and considerations can facilitate study designs that are scientifically rigorous, ethical, practical, and appropriate for the question(s) being addressed in any given cartilage repair research project. PMID:26069574
Modeling MHD Equilibrium and Dynamics with Non-Axisymmetric Resistive Walls in LTX and HBT-EP
NASA Astrophysics Data System (ADS)
Hansen, C.; Levesque, J.; Boyle, D. P.; Hughes, P.
2017-10-01
In experimental magnetized plasmas, currents in the first wall, vacuum vessel, and other conducting structures can have a strong influence on plasma shape and dynamics. These effects are complicated by the 3D nature of these structures, which dictate available current paths. Results from simulations to study the effect of external currents on plasmas in two different experiments will be presented: 1) The arbitrary geometry, 3D extended MHD code PSI-Tet is applied to study linear and non-linear plasma dynamics in the High Beta Tokamak (HBT-EP) focusing on toroidal asymmetries in the adjustable conducting wall. 2) Equilibrium reconstructions of the Lithium Tokamak eXperiment (LTX) in the presence of non-axisymmetric eddy currents. An axisymmetric model is used to reconstruct the plasma equilibrium, using the PSI-Tri code, along with a set of fixed 3D eddy current distributions in the first wall and vacuum vessel [C. Hansen et al., PoP Apr. 2017]. Simulations of detailed experimental geometries are enabled by use of the PSI-Tet code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-Tet and PSI-Tri will also be presented. This work supported by US DOE contract DE-SC0016256.
Numerical characterization of micro-cell UO2sbnd Mo pellet for enhanced thermal performance
NASA Astrophysics Data System (ADS)
Lee, Heung Soo; Kim, Dong-Joo; Kim, Sun Woo; Yang, Jae Ho; Koo, Yang-Hyun; Kim, Dong Rip
2016-08-01
Metallic micro-cell UO2 pellet with high thermal conductivity has received attention as a promising accident-tolerant fuel. Although experimental demonstrations have been successful, studies on the potency of current metallic micro-cell UO2 fuels for further enhancement of thermal performance are lacking. Here, we numerically investigated the thermal conductivities of micro-cell UO2sbnd Mo pellets in terms of the amount of Mo content, the unit cell size, and the aspect ratio of the micro-cells. The results showed good agreement with experimental measurements, and more importantly, indicated the importance of optimizing the unit cell geometries of the micro-cell pellets for greater increases in thermal conductivity. Consequently, the micro-cell UO2sbnd Mo pellets (5 vol% Mo) with modified geometries increased the thermal conductivity of the current UO2 pellets by about 2.5 times, and lowered the temperature gradient within the pellets by 62.9% under a linear heat generation rate of 200 W/cm.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-06
... all bioequivalence studies (BE studies) the applicant conducts on a drug product formulation submitted for approval, including both studies that demonstrate and studies that fail to demonstrate that a generic product meets the current bioequivalence criteria. The guidance provides recommendations to...
Effective Elementary Social Studies.
ERIC Educational Resources Information Center
Hoge, John Douglas
This book advocates providing high-quality K-6 social studies instruction. The text provides practical information on how teachers can conduct high-quality social studies programs in their classrooms. The volume is divided into three parts. Part 1 offers an overview of the formal and informal social studies curriculum, its history, current status,…
NASA Astrophysics Data System (ADS)
Santos, Hernán; Latgé, A.; Alvarellos, J. E.; Chico, Leonor
2016-04-01
We study the effect of the Rashba spin-orbit interaction in the quantum transport of carbon nanotubes with arbitrary chiralities. For certain spin directions, we find a strong spin-polarized electrical current that depends on the diameter of the tube, the length of the Rashba region, and on the tube chirality. Predictions for the spin-dependent conductances are presented for different families of achiral and chiral tubes. We have found that different symmetries acting on spatial and spin variables have to be considered in order to explain the relations between spin-resolved conductances in carbon nanotubes. These symmetries are more general than those employed in planar graphene systems. Our results indicate the possibility of having stable spin-polarized electrical currents in absence of external magnetic fields or magnetic impurities in carbon nanotubes.
Xue, Hai-Bin; Liang, Jiu-Qing; Liu, Wu-Ming
2015-01-01
Molecular spintroinic device based on a single-molecule magnet is one of the ultimate goals of semiconductor nanofabrication technologies. It is thus necessary to understand the electron transport properties of a single-molecule magnet junction. Here we study the negative differential conductance and super-Poissonian shot noise properties of electron transport through a single-molecule magnet weakly coupled to two electrodes with either one or both of them being ferromagnetic. We predict that the negative differential conductance and super-Poissonian shot noise, which can be tuned by a gate voltage, depend sensitively on the spin polarization of the source and drain electrodes. In particular, the shot noise in the negative differential conductance region can be enhanced or decreased originating from the different formation mechanisms of negative differential conductance. The effective competition between fast and slow transport channels is responsible for the observed negative differential conductance and super-Poissonian shot noise. In addition, we further discuss the skewness and kurtosis properties of transport current in the super-Poissonian shot noise regions. Our findings suggest a tunable negative differential conductance molecular device, and the predicted properties of high-order current cumulants are very interesting for a better understanding of electron transport through single-molecule magnet junctions. PMID:25736094
Xue, Hai-Bin; Liang, Jiu-Qing; Liu, Wu-Ming
2015-03-04
Molecular spintroinic device based on a single-molecule magnet is one of the ultimate goals of semiconductor nanofabrication technologies. It is thus necessary to understand the electron transport properties of a single-molecule magnet junction. Here we study the negative differential conductance and super-Poissonian shot noise properties of electron transport through a single-molecule magnet weakly coupled to two electrodes with either one or both of them being ferromagnetic. We predict that the negative differential conductance and super-Poissonian shot noise, which can be tuned by a gate voltage, depend sensitively on the spin polarization of the source and drain electrodes. In particular, the shot noise in the negative differential conductance region can be enhanced or decreased originating from the different formation mechanisms of negative differential conductance. The effective competition between fast and slow transport channels is responsible for the observed negative differential conductance and super-Poissonian shot noise. In addition, we further discuss the skewness and kurtosis properties of transport current in the super-Poissonian shot noise regions. Our findings suggest a tunable negative differential conductance molecular device, and the predicted properties of high-order current cumulants are very interesting for a better understanding of electron transport through single-molecule magnet junctions.
Reversed Hall effect and plasma conductivity in the presence of charged impurities
NASA Astrophysics Data System (ADS)
Yaroshenko, V. V.; Lühr, H.
2018-01-01
The Hall conductivity of magnetized plasma can be strongly suppressed by the contribution of negatively charged particulates (referred further as "dust"). Once the charge density accumulated by the dust exceeds a certain threshold, the Hall component becomes negative, providing a reversal in the Hall current. Such an effect is unique for dust-loaded plasmas, and it can hardly be achieved in electronegative plasmas. Further growth of the dust density leads to an increase in both the absolute value of the Hall and Pedersen conductivities, while the field-aligned component is decreased. These modifications enhance the role of transverse electric currents and reduce the anisotropy of a magnetized plasma when loaded with charged impurities. The findings provide an important basis for studying the generation of electric currents and transport phenomena in magnetized plasma systems containing small charged particulates. They can be relevant for a wide range of applications from naturally occurring space plasmas in planetary magnetospheres and astrophysical objects to laboratory dusty plasmas (Magnetized Dusty Plasma Experiment) and to technological and fusion plasmas.
CHARACTERIZING RESIDUE TRANSFER EFFICIENCIES USING A FLUORESCENT IMAGING TECHNIQUE
To reduce the uncertainty associated with current estimates of children's exposure to pesticides by dermal contact and indirect ingestion, residue transfer data are required. Prior to conducting exhaustive studies, a screening study to identify the important parameters for chara...
Magnetoacoustic Tomography with Magnetic Induction for Electrical Conductivity based Tissue imaging
NASA Astrophysics Data System (ADS)
Mariappan, Leo
Electrical conductivity imaging of biological tissue has attracted considerable interest in recent years owing to research indicating that electrical properties, especially electrical conductivity and permittivity, are indicators of underlying physiological and pathological conditions in biological tissue. Also, the knowledge of electrical conductivity of biological tissue is of interest to researchers conducting electromagnetic source imaging and in design of devices that apply electromagnetic energy to the body such as MRI. So, the need for a non-invasive, high resolution impedance imaging method is highly desired. To address this need we have studied the magnetoacoustic tomography with magnetic induction (MAT-MI) method. In MAT-MI, the object is placed in a static and a dynamic magnetic field giving rise to ultrasound waves. The dynamic field induces eddy currents in the object, and the static field leads to generation of acoustic vibrations from Lorentz force on the induced currents. The acoustic vibrations are at the same frequency as the dynamic magnetic field, which is chosen to match the ultrasound frequency range. These ultrasound signals can be measured by ultrasound probes and are used to reconstruct MAT-MI acoustic source images using possible ultrasound imaging approaches .The reconstructed high spatial resolution image is indicative of the object's electrical conductivity contrast. We have investigated ultrasound imaging methods to reliably reconstruct the MAT-MI image under the practical conditions of limited bandwidth and transducer geometry. The corresponding imaging algorithm, computer simulation and experiments are developed to test the feasibility of these different methods. Also, in experiments, we have developed a system with the strong static field of an MRI magnet and a strong pulsed magnetic field to evaluate MAT-MI in biological tissue imaging. It can be seen from these simulations and experiments that conductivity boundary images with millimeter resolution can be reliably reconstructed with MAT-MI. Further, to estimate the conductivity distribution throughout the object, we reconstruct a vector source image corresponding to the induced eddy currents. As the current source is uniformly present throughout the object, we are able to reliably estimate the internal conductivity distribution for a more complete imaging. From the computer simulations and experiments it can be seen that MAT-MI method has the potential to be a clinically applicable, high resolution, non-invasive method for electrical conductivity imaging.
NASA Technical Reports Server (NTRS)
Flowers, George T.
1994-01-01
Substantial progress has been made toward the goals of this research effort in the past six months. A simplified rotor model with a flexible shaft and backup bearings has been developed. The model is based upon the work of Ishii and Kirk. Parameter studies of the behavior of this model are currently being conducted. A simple rotor model which includes a flexible disk and bearings with clearance has been developed and the dynamics of the model investigated. The study consists of simulation work coupled with experimental verification. The work is documented in the attached paper. A rotor model based upon the T-501 engine has been developed which includes backup bearing effects. The dynamics of this model are currently being studied with the objective of verifying the conclusions obtained from the simpler models. Parallel simulation runs are being conducted using an ANSYS based finite element model of the T-501.
Ishihara, Keiko
2018-06-15
Strong inward rectifier K + (sKir) channels determine the membrane potentials of many types of excitable and nonexcitable cells, most notably the resting potentials of cardiac myocytes. They show little outward current during membrane depolarization (i.e., strong inward rectification) because of the channel blockade by cytoplasmic polyamines, which depends on the deviation of the membrane potential from the K + equilibrium potential ( V - E K ) when the extracellular K + concentration ([K + ] out ) is changed. Because their open - channel conductance is apparently proportional to the "square root" of [K + ] out , increases/decreases in [K + ] out enhance/diminish outward currents through sKir channels at membrane potentials near their reversal potential, which also affects, for example, the repolarization and action-potential duration of cardiac myocytes. Despite its importance, however, the mechanism underlying the [K + ] out dependence of the open sKir channel conductance has remained elusive. By studying Kir2.1, the canonical member of the sKir channel family, we first show that the outward currents of Kir2.1 are observed under the external K + -free condition when its inward rectification is reduced and that the complete inhibition of the currents at 0 [K + ] out results solely from pore blockade caused by the polyamines. Moreover, the noted square-root proportionality of the open sKir channel conductance to [K + ] out is mediated by the pore blockade by the external Na + , which is competitive with the external K + Our results show that external K + itself does not activate or facilitate K + permeation through the open sKir channel to mediate the apparent external K + dependence of its open channel conductance. The paradoxical increase/decrease in outward sKir channel currents during alternations in [K + ] out , which is physiologically relevant, is caused by competition from impermeant extracellular Na . © 2018 Ishihara.
The What and Where of Adding Channel Noise to the Hodgkin-Huxley Equations
Goldwyn, Joshua H.; Shea-Brown, Eric
2011-01-01
Conductance-based equations for electrically active cells form one of the most widely studied mathematical frameworks in computational biology. This framework, as expressed through a set of differential equations by Hodgkin and Huxley, synthesizes the impact of ionic currents on a cell's voltage—and the highly nonlinear impact of that voltage back on the currents themselves—into the rapid push and pull of the action potential. Later studies confirmed that these cellular dynamics are orchestrated by individual ion channels, whose conformational changes regulate the conductance of each ionic current. Thus, kinetic equations familiar from physical chemistry are the natural setting for describing conductances; for small-to-moderate numbers of channels, these will predict fluctuations in conductances and stochasticity in the resulting action potentials. At first glance, the kinetic equations provide a far more complex (and higher-dimensional) description than the original Hodgkin-Huxley equations or their counterparts. This has prompted more than a decade of efforts to capture channel fluctuations with noise terms added to the equations of Hodgkin-Huxley type. Many of these approaches, while intuitively appealing, produce quantitative errors when compared to kinetic equations; others, as only very recently demonstrated, are both accurate and relatively simple. We review what works, what doesn't, and why, seeking to build a bridge to well-established results for the deterministic equations of Hodgkin-Huxley type as well as to more modern models of ion channel dynamics. As such, we hope that this review will speed emerging studies of how channel noise modulates electrophysiological dynamics and function. We supply user-friendly MATLAB simulation code of these stochastic versions of the Hodgkin-Huxley equations on the ModelDB website (accession number 138950) and http://www.amath.washington.edu/~etsb/tutorials.html. PMID:22125479
Optically controlled resonant tunneling in a double-barrier diode
NASA Astrophysics Data System (ADS)
Kan, S. C.; Wu, S.; Sanders, S.; Griffel, G.; Yariv, A.
1991-03-01
The resonant tunneling effect is optically enhanced in a GaAs/GaAlAs double-barrier structure that has partial lateral current confinement. The peak current increases and the valley current decreases simultaneously when the device surface is illuminated, due to the increased conductivity of the top layer of the structure. The effect of the lateral current confinement on the current-voltage characteristic of a double-barrier resonant tunneling structure was also studied. With increased lateral current confinement, the peak and valley current decrease at a different rate such that the current peak-to-valley ratio increases up to three times. The experimental results are explained by solving the electrostatic potential distribution in the structure using a simple three-layer model.
Varistor piezotronics: Mechanically tuned conductivity in varistors
NASA Astrophysics Data System (ADS)
Baraki, Raschid; Novak, Nikola; Hofstätter, Michael; Supancic, Peter; Rödel, Jürgen; Frömling, Till
2015-08-01
The piezoelectric effect of ZnO has been investigated recently with the goal to modify metal/semiconductor Schottky-barriers and p-n-junctions by application of mechanical stress. This research area called "piezotronics" is so far focused on nano structured ZnO wires. At the same time, ZnO varistor materials are already widely utilized and may benefit from a piezotronic approach. In this instance, the grain boundary potential barriers in the ceramic can be tuned by mechanical stress. Polycrystalline varistors exhibit huge changes of resistivity upon applied electrical and mechanical fields and therefore offer descriptive model systems to study the piezotronic effect. If the influence of temperature is contemplated, our current mechanistic understanding can be interrogated and corroborated. In this paper, we present a physical model based on parallel conducting pathways. This affords qualitative and semi-quantitative rationalization of temperature dependent electrical properties. The investigations demonstrate that narrow conductive pathways contribute to the overall current, which becomes increasingly conductive with application of mechanical stress due to lowering of the barrier height. Rising temperature increases the thermionic current through the rest of the material with higher average potential barriers, which are hardly affected by the piezoelectric effect. Hence, relative changes in resistance due to application of stress are higher at low temperature.
NASA Astrophysics Data System (ADS)
Liang, Qizhen; Yao, Xuxia; Wang, Wei; Wong, C. P.
2012-02-01
Low operation temperature and efficient heat dissipation are important for device life and speed in current electronic and photonic technologies. Being ultra-high thermally conductive, graphene is a promising material candidate for heat dissipation improvement in devices. In the application, graphene is expected to be vertically stacked between contact solid surfaces in order to facilitate efficient heat dissipation and reduced interfacial thermal resistance across contact solid surfaces. However, as an ultra-thin membrane-like material, graphene is susceptible to Van der Waals forces and usually tends to be recumbent on substrates. Thereby, direct growth of vertically aligned free-standing graphene on solid substrates in large scale is difficult and rarely available in current studies, bringing significant barriers in graphene's application as thermal conductive media between joint solid surfaces. In this work, a three-dimensional vertically aligned multi-layer graphene architecture is constructed between contacted Silicon/Silicon surfaces with pure Indium as a metallic medium. Significantly higher equivalent thermal conductivity and lower contact thermal resistance of vertically aligned multilayer graphene are obtained, compared with those of their recumbent counterpart. This finding provides knowledge of vertically aligned graphene architectures, which may not only facilitate current demanding thermal management but also promote graphene's widespread applications such as electrodes for energy storage devices, polymeric anisotropic conductive adhesives, etc.
NASA Astrophysics Data System (ADS)
Al-Alwani, Ammar J.; Chumakov, A. S.; Begletsova, N. N.; Shinkarenko, O. A.; Markin, A. V.; Gorbachev, I. A.; Bratashov, D. N.; Gavrikov, M. V.; Venig, S. B.; Glukhovskoy, E. G.
2018-04-01
The formation of CdSe quantum dots (QDs) monolayers was studied by Langmuir Blodgett method. The fluorescence (PL) spectra of QD monolayers were investigated at different substrate type (glass, silicon and ITO glass) and the influence of graphene sheets layer (as a conductive surface) on the QDs properties has also been studied. The optoelectronic properties of QDs can be tuned by deposition of insulating nano-size layers of the liquid crystal between QDs and conductive substrate. The monolayer of QDs transferred on conductive surface (glass with ITO) has lowest intensity of PL spectra due to quenching effect. The PL intensity of QDs could be tuned by using various type of substrates or/and by transformed high conductive layer. Also the photooxidation processes of CdSe QDs monolayer on the solid surface can be controlled by selection of suitable substrate. The current-voltage (I–V) characteristics of QDs thin film on ITO surface was studied using scanning tunneling microscope (STM).
Theory-based interventions in STIs/HIV Prevention: A systematic review of the literature in Iran
Latifi, Arman; Merghati-Khoei, Effat; Shojaeizadeh, Davood; Nedjat, Saharnaz; Mehri, Ali; Garmaroudi, Gholamreza
2017-01-01
Background: Various theory-based interventions (TBIs) have been done to prevent STI/HIV. The current study aimed at reviewing the TBIs for STI/HIV prevention in Iran. Methods: We systematically searched 6 English and Persian electronic databases to identify TBIs conducted for STI/HIV prevention in Iran. General searches were conducted using PubMed MeSH terms. Articles were included if they were interventional and conducted using models and theories, aimed at reducing the risk of STIs, were quasi-experimental or experimental, and if their full text was available. Results: Overall, 1042 studies were found. Finally, 13 original studies met our inclusion criteria. The findings indicated that HBM and TPB were the most frequently used theory/models. High school students and drug abusers were the most common target groups in the included studies. Conclusion: The results revealed that the majority of the conducted TBIs contained a methodological weakness. Conducting randomized controlled trials is needed to evaluate the effectiveness of the TBIs.
ERIC Educational Resources Information Center
Box, Wilford Winston
A study was conducted at Southwest Texas Junior College (STJC) to assess current management practices used by the physical plant maintenance department (PPMD) and to develop a strategic plan for physical plant management. Procedures included an analysis of current management practices and systems that affect physical resources, and periodic and…
ERIC Educational Resources Information Center
Hawkins, Jeffrey M.; Buckendorf, Michael
2010-01-01
A content analysis of ten United States history textbooks (2005-2008) was conducted by the researchers to determine the current depiction of Japanese Americans and internment during the World War II era. This study updates and expands upon the textbooks used in prior research by Romanowski (1995), Harada (2000), and Ogawa (2004) that had numerous…
ERIC Educational Resources Information Center
Cho, Yonjoo; Jo, Sung Jun; Park, Sunyoung; Kang, Ingu; Chen, Zengguan
2011-01-01
This study conducted a citation network analysis (CNA) of human performance technology (HPT) to examine its current state of the field. Previous reviews of the field have used traditional research methods, such as content analysis, survey, Delphi, and citation analysis. The distinctive features of CNA come from using a social network analysis…
Adoption of Information Technology by Advertising Agencies.
ERIC Educational Resources Information Center
Herling, Thomas J.; Merskin, Debra
Since little empirical research has been conducted on adoption of currently available information technology by the advertising industry, a study explored the extent of advertising agencies' adoption of selected information technologies such as online database services and electronic mail. The study discussed data from earlier studies and analyzed…
NASA Astrophysics Data System (ADS)
Duan, Zhengchao; He, Feng; Si, Xinlu; Bradley, James W.; Ouyang, Jiting
2018-02-01
Conductive solid material sampling by micro-plasma under ambient atmosphere was studied experimentally. A high-voltage pulse generator was utilized to drive discharge between a tungsten needle and metal samples. The effects of pulse width on discharge, micro-plasma and sampling were investigated. The electrical results show that two discharge current pulses can be formed in one voltage pulse. The duration of the first current pulse is of the order of 100 ns. The duration of the second current pulse depends on the width of the voltage pulse. The electrical results also show that arc micro-plasma was generated during both current pulses. The results of the emission spectra of different sampled materials indicate that the relative emission intensity of elemental metal ions will increase with pulse width. The excitation temperature and electron density of the arc micro-plasmas increase with the voltage pulse width, which contributes to the increase of relative emission intensity of metal ions. The optical images and energy dispersive spectroscopy results of the sampling spots on metal surfaces indicate that discharge with a short voltage pulse can generate a small sputtering crater.
Roadwaste : issues and options.
DOT National Transportation Integrated Search
1998-06-01
The Oregon Department of Transportation (ODOT) is conducting a study to determine roadwaste management options. Phase 1 consisted of a thorough review of regulations and standards, roadwaste characterization, current management practices, and new tec...
NASA Astrophysics Data System (ADS)
Day, Jason
This study examines the wind energy planning frameworks from ten North American jurisdictions, drawing important lessons that British Columbia could use to build on its current model which has been criticized for its limited scope and restriction of local government powers. This study contributes to similar studies conducted by Kimrey (2006), Longston (2006), and Eriksen (2009). This study concludes that inclusion of wind resource zones delineated through strategic environmental assessment, programme assessment, and conducting research-oriented studies could improve the current British Columbia planning framework. The framework should also strengthen its bat impact assessment practices and incorporate habitat compensation. This research also builds upon Rosenberg's (2008) wind energy planning framework typologies. I conclude that the typology utilized in Texas should be employed in British Columbia in order to facilitate utilizing wind power. The only adaptation needed is the establishment of a cross-jurisdictional review committee for project assessment to address concerns about local involvement and site-specific environmental and social concerns.
NASA Astrophysics Data System (ADS)
Zhou, Shengjun; Lv, Jiajiang; Wu, Yini; Zhang, Yuan; Zheng, Chenju; Liu, Sheng
2018-05-01
We investigated the reverse leakage current characteristics of InGaN/GaN multiple quantum well (MQW) near-ultraviolet (NUV)/blue/green light-emitting diodes (LEDs). Experimental results showed that the NUV LED has the smallest reverse leakage current whereas the green LED has the largest. The reason is that the number of defects increases with increasing nominal indium content in InGaN/GaN MQWs. The mechanism of the reverse leakage current was analyzed by temperature-dependent current–voltage measurement and capacitance–voltage measurement. The reverse leakage currents of NUV/blue/green LEDs show similar conduction mechanisms: at low temperatures, the reverse leakage current of these LEDs is attributed to variable-range hopping (VRH) conduction; at high temperatures, the reverse leakage current of these LEDs is attributed to nearest-neighbor hopping (NNH) conduction, which is enhanced by the Poole–Frenkel effect.
NASA Astrophysics Data System (ADS)
Li, Yi; Yin, Kang-Sheng; Zhang, Mei-Yun; Cheng, Long; Lu, Ke; Long, Shi-Bing; Zhou, Yaxiong; Wang, Zhuorui; Xue, Kan-Hao; Liu, Ming; Miao, Xiang-Shui
2017-11-01
Memristors are attracting considerable interest for their prospective applications in nonvolatile memory, neuromorphic computing, and in-memory computing. However, the nature of resistance switching is still under debate, and current fluctuation in memristors is one of the critical concerns for stable performance. In this work, random telegraph noise (RTN) as the indication of current instabilities in distinct resistance states of the Pt/Ti/HfO2/W memristor is thoroughly investigated. Standard two-level digital-like RTN, multilevel current instabilities with non-correlation/correlation defects, and irreversible current transitions are observed and analyzed. The dependence of RTN on the resistance and read bias reveals that the current fluctuation depends strongly on the morphology and evolution of the conductive filament composed of oxygen vacancies. Our results link the current fluctuation behaviors to the evolution of the conductive filament and will guide continuous optimization of memristive devices.
I-V curve hysteresis induced by gate-free charging of GaAs nanowires' surface oxide
NASA Astrophysics Data System (ADS)
Alekseev, P. A.; Geydt, P.; Dunaevskiy, M. S.; Lähderanta, E.; Haggrén, T.; Kakko, J.-P.; Lipsanen, H.
2017-09-01
The control of nanowire-based device performance requires knowledge about the transport of charge carriers and its limiting factors. We present the experimental and modeled results of a study of electrical properties of GaAs nanowires (NWs), considering their native oxide cover. Measurements of individual vertical NWs were performed by conductive atomic force microscopy (C-AFM). Experimental C-AFM observations with numerical simulations revealed the complex resistive behavior of NWs. A hysteresis of current-voltage characteristics of the p-doped NWs as-grown on substrates with different types of doping was registered. The emergence of hysteresis was explained by the trapping of majority carriers in the surface oxide layer near the reverse-biased barriers under the source-drain current. It was found that the accumulation of charge increases the current for highly doped p+-NWs on n+-substrates, while for moderately doped p-NWs on p+-substrates, charge accumulation decreases the current due to blocking of the conductive channel of NWs.
Repetitive switching for an electromagnetic rail gun
NASA Astrophysics Data System (ADS)
Gruden, J. M.
1983-12-01
Previous testing on a repetitive opening switch for inductive energy storage has proved the feasibility of the rotary switch concept. The concept consists of a rotating copper disk (rotor) with a pie-shaped insulator section and brushes which slide along each of the rotor surfaces. While on top of the copper surface, the brushes and rotor conduct current allowing the energy storage inductor to charge. When the brushes slide onto the insulator section, the current cannot pass through the rotor and is diverted into the load. This study investigates two new brush designs and a rotor modification designed to improve the current commutating capabilities of the switch. One brush design (fringe fiber) employs carbon fibers on the leading and trailing edge of the brush to increase the resistive commutating action as the switch opens and closes. The other brush design uses fingers to conduct current to the rotor surface, effectively increasing the number of brush contact points. The rotor modification was the placement of tungsten inserts at the copper-insulator interfaces.
Gemmell, Philip; Burrage, Kevin; Rodriguez, Blanca; Quinn, T Alexander
2014-01-01
Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A systematic exploration of the effects of simultaneously varying the magnitude of six transmembrane current conductances (transient outward, rapid and slow delayed rectifier K(+), inward rectifying K(+), L-type Ca(2+), and Na(+)/K(+) pump currents) in two rabbit-specific ventricular action potential models (Shannon et al. and Mahajan et al.) at multiple cycle lengths (400, 600, 1,000 ms) was performed. This was accomplished with distributed computing software specialised for multi-dimensional parameter sweeps and grid execution. An initial population of 15,625 parameter sets was generated for both models at each cycle length. Action potential durations of these populations were compared to experimentally derived ranges for rabbit ventricular myocytes. 1,352 parameter sets for the Shannon model and 779 parameter sets for the Mahajan model yielded action potential duration within the experimental range, demonstrating that a wide array of ionic conductance values can be used to simulate a physiological rabbit ventricular action potential. Furthermore, by using clutter-based dimension reordering, a technique that allows visualisation of multi-dimensional spaces in two dimensions, the interaction of current conductances and their relative importance to the ventricular action potential at different cycle lengths were revealed. Overall, this work represents an important step towards a better understanding of the role that variability in current conductances may play in experimentally observed intercellular variability of rabbit ventricular action potential repolarisation.
Gemmell, Philip; Burrage, Kevin; Rodriguez, Blanca; Quinn, T. Alexander
2014-01-01
Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A systematic exploration of the effects of simultaneously varying the magnitude of six transmembrane current conductances (transient outward, rapid and slow delayed rectifier K+, inward rectifying K+, L-type Ca2+, and Na+/K+ pump currents) in two rabbit-specific ventricular action potential models (Shannon et al. and Mahajan et al.) at multiple cycle lengths (400, 600, 1,000 ms) was performed. This was accomplished with distributed computing software specialised for multi-dimensional parameter sweeps and grid execution. An initial population of 15,625 parameter sets was generated for both models at each cycle length. Action potential durations of these populations were compared to experimentally derived ranges for rabbit ventricular myocytes. 1,352 parameter sets for the Shannon model and 779 parameter sets for the Mahajan model yielded action potential duration within the experimental range, demonstrating that a wide array of ionic conductance values can be used to simulate a physiological rabbit ventricular action potential. Furthermore, by using clutter-based dimension reordering, a technique that allows visualisation of multi-dimensional spaces in two dimensions, the interaction of current conductances and their relative importance to the ventricular action potential at different cycle lengths were revealed. Overall, this work represents an important step towards a better understanding of the role that variability in current conductances may play in experimentally observed intercellular variability of rabbit ventricular action potential repolarisation. PMID:24587229
Behind Bars: Experiences Conducting Behavioral Addictions Research in a County Jail.
Hickey, Kari L; Kerber, Cindy; Astroth, Kim Schafer; Kim, MyoungJin; Schlenker, Emily
2015-10-01
Individuals who are incarcerated experience disparities in mental health, warranting study by nurse researchers. However, nurse researchers' unfamiliarity with the jail environment may pose a barrier to conducting research with this vulnerable population. The current article presents an account of the planning and implementation needed to study perceived health and gambling behavior in county jail inmates. The challenges and rewards of research that aim to better understand the mental health issues affecting this population are also identified. Developing relationships with jail personnel and understanding the incarcerated population and their surroundings are key to conducting research in this environment. Copyright 2015, SLACK Incorporated.
Atomistic simulations of contact area and conductance at nanoscale interfaces.
Hu, Xiaoli; Martini, Ashlie
2017-11-09
Atomistic simulations were used to study conductance across the interface between a nanoscale gold probe and a graphite surface with a step edge. Conductance on the graphite terrace was observed to increase with load and be approximately proportional to contact area calculated from the positions of atoms in the interface. The relationship between area and conductance was further explored by varying the position of the contact relative to the location of the graphite step edge. These simulations reproduced a previously-reported current dip at step edges measured experimentally and the trend was explained by changes in both contact area and the distribution of distances between atoms in the interface. The novel approach reported here provides a foundation for future studies of the fundamental relationships between conductance, load and surface topography at the atomic scale.
Columbia River Component Data Gap Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. C. Hulstrom
2007-10-23
This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.
Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3
Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin
2017-01-01
Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors. PMID:28216672
Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3.
Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin
2017-02-20
Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO 3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors.
Electrophysiological responses of dissociated type I cells of the rabbit carotid body to cyanide.
Biscoe, T J; Duchen, M R
1989-01-01
1. The carotid body is the major peripheral sensor of arterial PO2 in the mammal and is excited by cyanide (CN-). Type I cells, the presumed sites for transduction, were freshly dissociated from the carotid body of the adult rabbit and studied with the whole-cell patch clamp technique. 2. Type I cells were hyperpolarized by CN-, the action potential was shortened, and there was an increased after-hyperpolarization. 3. Under voltage clamp control, CN- increased a voltage-dependent outward current, which showed pronounced outward rectification. Tail currents increased by CN- reversed close to the predicted EK, the reversal potential of the CN--induced current depended on extracellular [K+], and the current was blocked by intracellular TEA+ and Cs+. 4. The i-V relation of the CN--induced conductance strongly mirrored that of voltage-gated Ca2+ entry, and the response was abolished by removal of extracellular Ca2+. We conclude that the increased gK is Ca2+ -dependent (gK(Ca]. 5. The Ca2+ current was attenuated by CN-, and showed an increased rate of inactivation. Thus, the increased gK(Ca) must result from an alteration in Ca2+ homeostasis independent of the Ca2+ current, and not an increased Ca2+ entry through voltage-activated channels. 6. Carbachol also hyperpolarized cells and increased a K+ conductance. 7. At depolarized holding potentials a steady-state outward current was increased by CN-. The current reversed close to EK, and was associated with increased current fluctuations. Noise analysis showed that a channel conductance of 3 pS carries the current. 8. The response to CN- was not impaired by the inclusion of 5 mM-MgATP in the patch pipette. 9. If signals to the CNS are initiated by the calcium-dependent release of transmitters from type I cells, transduction would appear to be the direct consequence of the energy dependence of Ca2+ homeostasis. PMID:2557439
Chloride currents activated by caffeine in rat intestinal smooth muscle cells.
Ohta, T; Ito, S; Nakazato, Y
1993-01-01
1. Current responses to caffeine in single smooth muscle cells isolated from rat intestine were studied with the whole-cell patch clamp technique. Intracellular calcium concentration, [Ca2+]i, was simultaneously monitored with fura-2 (0.1 mM) introduced into the cell through a patch pipette. 2. With a potassium-containing pipette solution, caffeine (10 mM) produced an outward current at a holding potential of 0 mV and an inward current at -60 mV, both of which were accompanied by parallel increases in [Ca2+]i. The outward current response disappeared after the removal of K+ from pipette solutions, indicating that caffeine activates a Ca(2+)-activated K+ conductance. 3. When NaCl was present in both pipette and external solutions as the major constituent, caffeine evoked an inward current at -60 mV simultaneously with a rise in [Ca2+]i. The reversal potential (Er) of this current was about 0 mV. 4. Substitution of Tris+ or choline+ for external Na+ did not alter the Er. When external Cl- was replaced by thiocyanate-, iodide- or glutamate-, the Er changed to respectively -55, -38 and +35 mV. 5. The current response to caffeine decreased with increasing concentration of EGTA in the pipette solution. The caffeine-induced current and the intracellular Ca2+ transient was still observed for a few minutes after exposure of the cells to Ca(2+)-free external solution containing 2 mM EGTA. Caffeine failed to produce an inward current and Ca2+ transient after treatment with extracellular ryanodine. 6. It is concluded that caffeine caused an increase in membrane Cl- conductance and in K+ conductance resulting from a rise in [Ca2+]i derived from ryanodine-sensitive intracellular Ca2+ stores in isolated smooth muscle cells of the rat intestine. PMID:8229831
Space shuttle hypergolic bipropellant RCS engine design study, Bell model 8701
NASA Technical Reports Server (NTRS)
1974-01-01
A research program was conducted to define the level of the current technology base for reaction control system rocket engines suitable for space shuttle applications. The project consisted of engine analyses, design, fabrication, and tests. The specific objectives are: (1) extrapolating current engine design experience to design of an RCS engine with required safety, reliability, performance, and operational capability, (2) demonstration of multiple reuse capability, and (3) identification of current design and technology deficiencies and critical areas for future effort.
Quench in a conduction-cooled Nb3Sn SMES magnet
NASA Astrophysics Data System (ADS)
Korpela, Aki; Lehtonen, Jorma; Mikkonen, Risto; Perälä, Raine
2003-11-01
Due to the rapid development of cryocoolers, conduction-cooled Nb3Sn devices are nowadays enabled. A 0.2 MJ conduction-cooled Nb3Sn SMES system has been designed and constructed. The nominal current of the coil was 275 A at 10 K. The quench tests have been performed and in this paper the experimental data are compared to the computational one. Due to a slow normal zone propagation, Nb3Sn magnets are not necessarily self-protective. In conduction-cooled coils, a thermal interface provides a protection method known as a quench back. The temperature rise in the coil during a quench was measured with a sensor located on the inner radius of the coil. The current decay was also monitored. The measured temperature increased for approximately 15 s after the current had already decayed. This temperature rise is due to the heat conduction from the hot spot. Thus, the measured temperature does not represent the hot-spot temperature. A computational quench model which takes into account quench back and heat conduction after the current decay was developed in order to understand the measured temperatures. According to the results, a quench back due to the eddy current induced heating of the thermal interface of an LTS coil was an adequate protection method.
The state of web-based research: A survey and call for inclusion in curricula.
Krantz, John H; Reips, Ulf-Dietrich
2017-10-01
The first papers that reported on conducting psychological research on the web were presented at the Society for Computers in Psychology conference 20 years ago, in 1996. Since that time, there has been an explosive increase in the number of studies that use the web for data collection. As such, it seems a good time, 20 years on, to examine the health and adoption of sound practices of research on the web. The number of studies conducted online has increased dramatically. Overall, it seems that the web can be a method for conducting valid psychological studies. However, it is less clear that students and researchers are aware of the nature of web research. While many studies are well conducted, there is also a certain laxness appearing regarding the design and conduct of online studies. This laxness appears both anecdotally to the authors as managers of large sites for posting links to online studies, and in a survey of current researchers. One of the deficiencies discovered is that there is no coherent approach to educating researchers as to the unique features of web research.
ERIC Educational Resources Information Center
Market Data Retrieval, Inc., Shelton, CT.
A study was conducted to assess the number and type of schools and educators who use the Internet/World Wide Web. The national survey was conducted in November and December of 1996, and included 6,000 teachers, computer coordinators, and school librarians currently working in grades 3-5, 6-8, and 9-12. At the elementary level, classroom teachers…
Ionosphere-magnetosphere coupling and convection
NASA Technical Reports Server (NTRS)
Wolf, R. A.; Spiro, R. W.
1984-01-01
The following international Magnetospheric Study quantitative models of observed ionosphere-magnetosphere events are reviewed: (1) a theoretical model of convection; (2) algorithms for deducing ionospheric current and electric-field patterns from sets of ground magnetograms and ionospheric conductivity information; and (3) empirical models of ionospheric conductances and polar cap potential drop. Research into magnetic-field-aligned electric fields is reviewed, particularly magnetic-mirror effects and double layers.
Integrating Professional Development across the Curriculum: An Effectiveness Study
ERIC Educational Resources Information Center
Ciarocco, Natalie J.; Dinella, Lisa M.; Hatchard, Christine J.; Valosin, Jayde
2016-01-01
The current study empirically tested the effectiveness of a modular approach to integrating professional development across an undergraduate psychology curriculum. Researchers conducted a two-group, between-subjects experiment on 269 undergraduate psychology students assessing perceptions of professional preparedness and learning. Analysis…
Permeability and stability of base and subbase materials : appendices A-Q, August 2000.
DOT National Transportation Integrated Search
2000-08-01
This study determined the hydraulic conductivities, effective porosities and resilient moduli of several current and proposed drainable base materials. The materials studied were AASHTO No. 57, AASHTO No. 67, ODOT No. 304, ODOT No. 310, Iowa DOT No. ...
Permeability and stability of base and subbase materials : final report, August 2000.
DOT National Transportation Integrated Search
2000-08-01
This study determined the hydraulic conductivities, effective porosities and resilient moduli of several current and proposed drainable base materials. The materials studied were AASHTO No. 57, AASHTO No. 67, ODOT No. 304, ODOT No. 310, Iowa DOT No. ...
Permeability and stability of base and subbase materials : executive summary, August 2000.
DOT National Transportation Integrated Search
2000-08-01
This study determined the hydraulic conductivities, effective porosities and resilient moduli of several current and proposed drainable base materials. The materials studied were AASHTO No. 57, AASHTO No. 67, ODOT No. 304, ODOT No. 310, Iowa DOT No. ...
DERMAL AND MOUTHING TRANSFERS OF SURFACE RESIDUES MEASURED USING FLUORESCENCE IMAGING
To reduce the uncertainty associated with current estimates of children's exposure to pesticides by dermal contact and non-dietary ingestion, residue transfer data are required. Prior to conducting exhaustive studies, a screening study to develop and test methods for measuring...
DOT National Transportation Integrated Search
2016-05-01
This study was conducted on behalf of the Utah Department of Transportation (UDOT), to identify best practices by other governmental agencies in comparison to UDOTs current practices for the selection of pavement marking materials and produc...
NASA Astrophysics Data System (ADS)
Krauter, N.; Stefani, F.
2017-10-01
Eddy current flow meters are widely used for measuring the flow velocity of electrically conducting fluids. Since the flow induced perturbations of a magnetic field depend both on the geometry and the conductivity of the fluid, extensive calibration is needed to get accurate results. Transient eddy current flow metering has been developed to overcome this problem. It relies on tracking the position of an impressed eddy current system that is moving with the same velocity as the conductive fluid. We present an immersed version of this measurement technique and demonstrate its viability by numerical simulations and a first experimental validation.
Bio-Contamination Control for Spacesuit Garments - A Preliminary Study
NASA Technical Reports Server (NTRS)
Rhodes, Richard; Korona, Adam; Orndoff, Evelyn; Ott, Mark; Poritz, Darwin
2010-01-01
This paper outlines a preliminary study to review, test, and improve upon the current state of spacesuit bio-contamination control. The study includes an evaluation of current and advanced suit materials, ground and on-orbit cleaning methods, and microbial test and analysis methods. The first aspect of this study was to identify potential anti-microbial textiles and cleaning agents, and to review current microbial test methods. The anti-microbial cleaning agent and textile market survey included a review of current commercial-off-the-shelf (COTS) products that could potentially be used as future space flight hardware. This review included replacements for any of the softgood layers that may become contaminated during an extravehicular activity (EVA), including the pressure bladder, liquid cooling garment, and ancillary comfort undergarment. After a series of COTS anti-microbial textiles and clean ing agents were identified, a series of four tests were conducted: (1) a stacked configuration test that was conducted in order to review how bio-contamination would propagate through the various suit layers, (2) a individual materials test that evaluated how well each softgood layer either promoted or repressed growth, (3) a cleaning agent test that evaluated the efficacy on each of the baseline bladders, and (4) an evaluation of various COTS anti-microbial textiles. All antimicrobial COTS materials tested appeared to control bacteria colony forming unit (CFU) growth better than the Thermal Comfort Undergarment (TCU) and ACES Liquid Cooling Garment (LCG)/EMU Liquid Cooling Ventilation Garment (LCVG) materials currently in use. However, a comparison of fungi CFU growth in COTS to current suit materials appeared to vary per material. All cleaning agents tested in this study appeared to inhibit the level of bacteria and fungi growth to acceptable levels for short duration tests. While several trends can be obtained from the current analysis, a series of test improvements are described for future microbial testing.
NASA Astrophysics Data System (ADS)
Jaffres, Henri; George, Jean-Marie; Laczowski, Piotr; Reyren, Nicolas; Vila, Laurent
2016-10-01
Spintronic phenomena are made possible via the diffusion of spin-currents or the generation of spin-accumulation. Spinorbitronics uses the electronic spin-orbit coupling (SOC) and emerges as a new route to create spin-currents in the transverse direction of the charge flow. This is made possible via the intrinsic spin Hall conduction (SHE) of heavy metals or extrinsic spin-Hall effect of metallic alloys. SHE borrows its concept from the anomalous Hall effect (AHE) where the relativistic spin-orbit coupling (SOC) promotes an asymmetric deflection of the spin-current. SHE is now at the base of magnetization commutation and domain wall moving via spin-orbit torque (SOT) and spin-transfer torque operations in the FMR regime. However, the exact anatomy of SOT at spin-orbit active interfaces like Co/Pt is still missing. In the case of Pt, recent studies have put forward the major role played by i) the spin-memory loss (SML) and the electronic transparency at 3d/5d interfaces and ii) the inhomogeneity of the conductivity in the current-in-plane (CIP) geometry to explain the discrepancy in the SHE. Ingredients to consider then are the profiles of both the conductivity and spin-current across the multilayers and spin-transmission. In this talk, we will present robust SMR measurements observed on NiCo/Pt multilayer stacks characterized by a perpendicular magnetic anisotropy (PMA). The SMR occurs for both in-plane magnetization rotation or from nominal out-of-plane to the in-plane direction transverse to the current flow. This clearly departs from standard AMR or pure interfacial anisotropic-AMR symmetries. We analyze in large details our SMR signals for the whole series of samples owing to two main guidelines: i) we consider the exact conductivity profile across the multilayers, in particular near the Co/Pt interface, via the Camley-Barnas approach and ii) we derive the spin current profile generated by SHE along the perpendicular direction responsible for SMR. We consider pure interfacial spin dissipation by SML (decoherence, interfacial enhanced scattering) and give out a general analytical expression for SMR. Our conclusions go towards a robust value of the spin-Hall conductivity and SML like previously published. The CIP spin-Hall angle, of the order of 0.10 is larger than the one found in spin-pumping experiments (CPP geometry) owing to the smaller conductivity at the Co/Pt interface, in agreement with the results of STT-FMR experiments.
77 FR 21402 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... option is to conduct an eddy current inspection and the other option is to conduct a visual inspection... blade sanding inspection rather than the eddy current inspection, at an average labor rate of $85 per.... (1) Inspect by using either an eddy current inspection in accordance with paragraphs B.(1)(a) through...
Clor, Laura E.; McCleskey, R. Blaine; Huebner, Mark A.; Lowenstern, Jacob B.; Heasler, Henry P.; Mahony, Dan L.; Maloney, Tim; Evans, William C.
2012-01-01
This study aims to quantify relations between solute concentrations (especially chloride) and electrical conductivity for several rivers in Yellowstone National Park (YNP), by using automated samplers and conductivity meters. Norton and Friedman (1985) found that chloride concentrations and electrical conductivity have a good correlation in the Falls, Snake, Madison, and Yellowstone Rivers. However, their results are based on limited sampling and hydrologic conditions and their relation with other solutes was not determined. Once the correlations are established, conductivity measurements can then be used as a proxy for chloride concentrations, thereby enabling continuous heat-flow estimation on a much finer timescale and at lower cost than is currently possible with direct sampling. This publication serves as a repository for all data collected during the course of the study from May 2010 through July 2011, but it does not include correlations between solutes and conductivity or recommendations for quantification of chloride through continuous electrical conductivity measurements. This will be the object of a future document.
This report describes the retrospective case study in north central Texas, conducted at three locations in Wise County where both conventional and unconventional gas production occurred in the past. Currently unconventional gas production occurs from the Mississippian-aged Barne...
Compendium of JTPA and Related Evaluation Studies.
ERIC Educational Resources Information Center
Employment and Training Administration (DOL), Washington, DC.
This document summarizes the findings of currently available evaluation studies of the Job Training Partnership Act (JTPA) and other related reports and data. Data from 26 studies conducted between 1980 and 1986 are presented under the following subject headings: the state role (monitoring and oversight, policy interpretation and leadership,…
Ultimately short ballistic vertical graphene Josephson junctions
Lee, Gil-Ho; Kim, Sol; Jhi, Seung-Hoon; Lee, Hu-Jong
2015-01-01
Much efforts have been made for the realization of hybrid Josephson junctions incorporating various materials for the fundamental studies of exotic physical phenomena as well as the applications to superconducting quantum devices. Nonetheless, the efforts have been hindered by the diffusive nature of the conducting channels and interfaces. To overcome the obstacles, we vertically sandwiched a cleaved graphene monoatomic layer as the normal-conducting spacer between superconducting electrodes. The atomically thin single-crystalline graphene layer serves as an ultimately short conducting channel, with highly transparent interfaces with superconductors. In particular, we show the strong Josephson coupling reaching the theoretical limit, the convex-shaped temperature dependence of the Josephson critical current and the exceptionally skewed phase dependence of the Josephson current; all demonstrate the bona fide short and ballistic Josephson nature. This vertical stacking scheme for extremely thin transparent spacers would open a new pathway for exploring the exotic coherence phenomena occurring on an atomic scale. PMID:25635386
Si, Chaorun; Hu, Songtao; Cao, Xiaobao; Wu, Weichao
2017-01-01
Due to their ease of fabrication, facile use and low cost, ice valves have great potential for use in microfluidic platforms. For this to be possible, a rapid response speed is key and hence there is still much scope for improvement in current ice valve technology. Therefore, in this study, an ice valve with enhanced thermal conductivity and a movable refrigeration source has been developed. An embedded aluminium cylinder is used to dramatically enhance the heat conduction performance of the microfluidic platform and a movable thermoelectric unit eliminates the thermal inertia, resulting in a faster cooling process. The proposed ice valve achieves very short closing times (0.37 s at 10 μL/min) and also operates at high flow rates (1150 μL/min). Furthermore, the response time of the valve decreased by a factor of 8 when compared to current state of the art technology. PMID:28084447
NASA Astrophysics Data System (ADS)
Si, Chaorun; Hu, Songtao; Cao, Xiaobao; Wu, Weichao
2017-01-01
Due to their ease of fabrication, facile use and low cost, ice valves have great potential for use in microfluidic platforms. For this to be possible, a rapid response speed is key and hence there is still much scope for improvement in current ice valve technology. Therefore, in this study, an ice valve with enhanced thermal conductivity and a movable refrigeration source has been developed. An embedded aluminium cylinder is used to dramatically enhance the heat conduction performance of the microfluidic platform and a movable thermoelectric unit eliminates the thermal inertia, resulting in a faster cooling process. The proposed ice valve achieves very short closing times (0.37 s at 10 μL/min) and also operates at high flow rates (1150 μL/min). Furthermore, the response time of the valve decreased by a factor of 8 when compared to current state of the art technology.
Temperature dependence of direct current conductivity in Ag-ED20 nanocomposite films
NASA Astrophysics Data System (ADS)
Novikov, G. F.; Rabenok, E. V.; Bogdanova, L. M.; Irzhak, V. I.
2017-10-01
The effect of silver nanoparticles (NPs) in the concentration range of ≤0.8 wt % have on direct current conductivity σdc of Ag-ED20 nanocomposite is studied by method of broadband dielectric spectroscopy (10-2-105 Hz) method of broadband dielectric spectroscopy. It is found that temperature dependence σdc consists of two sections: above the glass transition temperature ( T g), the dependence corresponds to the empirical Vogel-Fulcher-Tammann law (Vogel temperature T 0 does not depend on the NP concentration); below T g, the dependence is Arrhenius with activation energy E a ≈ 1.2 eV. In the region where T > T g, the σdc value grows along with NP concentration. It is concluded that the observed broken form of the temperature dependence is apparently due to a change in the conduction mechanism after the freezing of ion mobility at temperatures below T g.
NASA Astrophysics Data System (ADS)
Woellner, Cristiano F.; Freire, José A.; Guide, Michele; Nguyen, Thuc-Quyen
2011-08-01
We develop a simple continuum model for the current voltage characteristics of a material as measured by the conducting atomic force microscopy, including space charge effects. We address the effect of the point contact on the magnitude of the current and on the transition voltages between the different current regimes by comparing these with the corresponding expressions obtained with planar electrodes.
Zevenhoven, Koos C J; Busch, Sarah; Hatridge, Michael; Oisjöen, Fredrik; Ilmoniemi, Risto J; Clarke, John
2014-03-14
Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field-applied before each signal acquisition sequence to increase the signal-induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures.
Zevenhoven, Koos C. J.; Busch, Sarah; Hatridge, Michael; Öisjöen, Fredrik; Ilmoniemi, Risto J.; Clarke, John
2014-01-01
Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field—applied before each signal acquisition sequence to increase the signal—induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures. PMID:24753629
Field-aligned current sources in the high-latitude ionosphere
NASA Technical Reports Server (NTRS)
Barbosa, D. D.
1979-01-01
The paper determines the electric potential in a plane which is fed current from a pair of field-aligned current sheets. The ionospheric conductivity is modelled as a constant with an enhanced conductivity annular ring. It is shown that field-aligned current distributions are arbitrary functions of azimuth angle (MLT) and thus allow for asymmetric potential configurations over the pole cap. In addition, ionospheric surface currents are computed by means of stream functions. Finally, the discussion relates these methods to the electrical characteristics of the magnetosphere.
Roadwaste management : a tool for developing district plans.
DOT National Transportation Integrated Search
2000-10-01
The Oregon Department of Transportation (ODOT) conducted a study to examine roadwaste management options. Phase 1 consisted of a thorough review of regulations and standards, roadwaste characterization, current management practices, and new technolog...
Full closure strategic analysis.
DOT National Transportation Integrated Search
2014-07-01
The full closure strategic analysis was conducted to create a decision process whereby full roadway : closures for construction and maintenance activities can be evaluated and approved or denied by CDOT : Traffic personnel. The study reviewed current...
Effective utility accommodation : final report.
DOT National Transportation Integrated Search
2009-12-08
The report presents research regarding methods to improve project delivery times and minimize construction delays due to utility coordination by conducting a study of the current best practices used by six (6) similar state transportation departments...
NASA Astrophysics Data System (ADS)
Devi, Sushila; Brogi, B. B.; Ahluwalia, P. K.; Chand, S.
2018-06-01
Electronic transport through asymmetric parallel coupled quantum dot system hybridized between normal leads has been investigated theoretically in the Coulomb blockade regime by using Non-Equilibrium Green Function formalism. A new decoupling scheme proposed by Rabani and his co-workers has been adopted to close the chain of higher order Green's functions appearing in the equations of motion. For resonant tunneling case; the calculations of current and differential conductance have been presented during transition of coupled quantum dot system from series to symmetric parallel configuration. It has been found that during this transition, increase in current and differential conductance of the system occurs. Furthermore, clear signatures of negative differential conductance and negative current appear in series case, both of which disappear when topology of system is tuned to asymmetric parallel configuration.
Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes
Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric
2016-01-01
In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1/3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given pH. PMID:27127970
MIS capacitor studies on silicon carbide single crystals
NASA Technical Reports Server (NTRS)
Kopanski, J. J.
1990-01-01
Cubic SIC metal-insulator-semiconductor (MIS) capacitors with thermally grown or chemical-vapor-deposited (CVD) insulators were characterized by capacitance-voltage (C-V), conductance-voltage (G-V), and current-voltage (I-V) measurements. The purpose of these measurements was to determine the four charge densities commonly present in an MIS capacitor (oxide fixed charge, N(f); interface trap level density, D(it); oxide trapped charge, N(ot); and mobile ionic charge, N(m)) and to determine the stability of the device properties with electric-field stress and temperature. The section headings in the report include the following: Capacitance-voltage and conductance-voltage measurements; Current-voltage measurements; Deep-level transient spectroscopy; and Conclusions (Electrical characteristics of SiC MIS capacitors).
The NBS: Processing/Microstructure/Property Relationships in 2024 Aluminum Alloy Plates
NASA Technical Reports Server (NTRS)
Ives, L. K.; Swartzendruber, W. J.; Boettinger, W. J.; Rosen, M.; Ridder, S. D.
1983-01-01
As received plates of 2024 aluminum alloy were examined. Topics covered include: solidification segregation studies; microsegregation and macrosegregation in laboratory and commercially cast ingots; C-curves and nondestructive evaluation; time-temperature precipitation diagrams and the relationships between mechanical properties and NDE measurements; transmission electron microscopy studies; the relationship between microstructure and properties; ultrasonic characterization; eddy-current conductivity characterization; the study of aging process by means of dynamic eddy current measurements; and Heat flow-property predictions, property degradations due to improve quench from the solution heat treatment temperature.
The Red Pill: Social Studies, Media Texts, and Literacies
ERIC Educational Resources Information Center
Walker, Trenia L.
2010-01-01
This article explores the use of media texts in contemporary high school social studies classrooms. Much of the current research regarding media education in social studies classes has focused on history classes and has centered on small idealized samples of both teachers and students. This study, based on the observations conducted in eight…
ERIC Educational Resources Information Center
Demir Kaymak, Zeliha; Horzum, Mehmet Baris
2013-01-01
Current study tried to determine whether a relationship exists between readiness levels of the online learning students for online learning and the perceived structure and interaction in online learning environments. In the study, cross sectional survey model was used. The study was conducted with 320 voluntary students studying online learning…
Industry Training: The Factors that Affect Demand. Discussion Paper.
ERIC Educational Resources Information Center
Smith, A.; Roberts, P.; Noble, C.; Hayton, G.; Thorne, E.
A study was conducted in Australia, to determine the factors that affect demand for job training. The study consisted of 30 detailed industry case studies, an industry analysis, and a literature review. Each case study examined current training practices, training decision making in the business, and the determinants of training for the…
This report describes the retrospective case study conducted near Killdeer, Dunn County, North Dakota. The Killdeer study area is the location of historical oil and gas production, with current unconventional oil and gas production occurring in the late Devonian/early Mississipp...
Identifying Crucial Parameter Correlations Maintaining Bursting Activity
Doloc-Mihu, Anca; Calabrese, Ronald L.
2014-01-01
Recent experimental and computational studies suggest that linearly correlated sets of parameters (intrinsic and synaptic properties of neurons) allow central pattern-generating networks to produce and maintain their rhythmic activity regardless of changing internal and external conditions. To determine the role of correlated conductances in the robust maintenance of functional bursting activity, we used our existing database of half-center oscillator (HCO) model instances of the leech heartbeat CPG. From the database, we identified functional activity groups of burster (isolated neuron) and half-center oscillator model instances and realistic subgroups of each that showed burst characteristics (principally period and spike frequency) similar to the animal. To find linear correlations among the conductance parameters maintaining functional leech bursting activity, we applied Principal Component Analysis (PCA) to each of these four groups. PCA identified a set of three maximal conductances (leak current, Leak; a persistent K current, K2; and of a persistent Na+ current, P) that correlate linearly for the two groups of burster instances but not for the HCO groups. Visualizations of HCO instances in a reduced space suggested that there might be non-linear relationships between these parameters for these instances. Experimental studies have shown that period is a key attribute influenced by modulatory inputs and temperature variations in heart interneurons. Thus, we explored the sensitivity of period to changes in maximal conductances of Leak, K2, and P, and we found that for our realistic bursters the effect of these parameters on period could not be assessed because when varied individually bursting activity was not maintained. PMID:24945358
Doloc-Mihu, Anca; Calabrese, Ronald L
2016-01-01
The underlying mechanisms that support robustness in neuronal networks are as yet unknown. However, recent studies provide evidence that neuronal networks are robust to natural variations, modulation, and environmental perturbations of parameters, such as maximal conductances of intrinsic membrane and synaptic currents. Here we sought a method for assessing robustness, which might easily be applied to large brute-force databases of model instances. Starting with groups of instances with appropriate activity (e.g., tonic spiking), our method classifies instances into much smaller subgroups, called families, in which all members vary only by the one parameter that defines the family. By analyzing the structures of families, we developed measures of robustness for activity type. Then, we applied these measures to our previously developed model database, HCO-db, of a two-neuron half-center oscillator (HCO), a neuronal microcircuit from the leech heartbeat central pattern generator where the appropriate activity type is alternating bursting. In HCO-db, the maximal conductances of five intrinsic and two synaptic currents were varied over eight values (leak reversal potential also varied, five values). We focused on how variations of particular conductance parameters maintain normal alternating bursting activity while still allowing for functional modulation of period and spike frequency. We explored the trade-off between robustness of activity type and desirable change in activity characteristics when intrinsic conductances are altered and identified the hyperpolarization-activated (h) current as an ideal target for modulation. We also identified ensembles of model instances that closely approximate physiological activity and can be used in future modeling studies.
Lord, Sarah E; Trudeau, Kimberlee J; Black, Ryan A; Lorin, Lucy; Cooney, Elizabeth; Villapiano, Albert; Butler, Stephen F
2011-01-01
The current study was conducted to construct and validate a computer-delivered, multimedia, substance use self-assessment for adolescents. Reliability and validity of six problem dimensions were evaluated in two studies, conducted from 2003 to 2008. Study 1 included 192 adolescents from five treatment settings throughout the United States (N = 142) and two high schools from Greater Boston, Massachusetts (N = 50). Study 2 included 356 adolescents (treatment: N = 260; school: N = 94). The final version of Comprehensive Health Assessment for Teens (CHAT) demonstrated relatively strong psychometric properties. The limitations and implications of this study are noted. This study was supported by an SBIR grant.
ERIC Educational Resources Information Center
Stoever, Edward C., Jr.
The National Association of Geology Teachers (NAGT) conducted an assessment of the implications of current studies encompassing the theories of continental drift, polar wandering, sea-floor spreading, and plate tectonics to K-12 education, and presented in this document recommendations for the incorporation of these concepts into school curricula.…
[Sexuell assaults in therapeutic relationships: risk factors, consequences and legal steps].
Eichenberg, Christiane; Dorniak, Judith; Fischer, Gottfried
2009-01-01
About 10 years ago, an initial empirical study was conducted in Germany about this topic. Since then, a penal code, paragraph 174 c StGB, was decreed, prohibiting sexual contact between therapists and their patients. A current follow-up survey was conducted in order to determine whether the results of previous surveys concerning situation conditions and after-effects converge with current results and if so, to what extent. Secondly, the survey was conducted to determine whether or not changes in the way the involved patients and authorities deal with this type of incident are evident. To ensure the comparability of the data, an online version of the Questionnaire about Sexual Contacts in Psychotherapy and Psychiatry (SKPP; Becker-Fischer, Fischer u. Jerouschek) was created and a survey of N = 77 affected patients was conducted. The majority of the participants in the study reported a serious decline in their overall well being following the incident, however, only very few undertook legal steps; only in three cases did it come to a legal procedure. The assumption that sexual contacts in psychotherapy result in extremely damaging consequences to patients, which the first study already revealed, was affirmed in the follow-up examination. Despite the changed legal situation, however, therapists in Germany are still not held legally responsible more often than they were 10 years ago. Georg Thieme Verlag KG Stuttgart-New York.
Field-aligned Currents at Mercury and Implications for Crustal Electrical Conductivity
NASA Astrophysics Data System (ADS)
Anderson, B. J.; Johnson, C. L.; Korth, H.; Winslow, R. M.; Slavin, J. A.; Solomon, S. C.; McNutt, R. L., Jr.
2013-12-01
Magnetic field data acquired in orbit about Mercury by the Magnetometer on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft are used to identify signatures of steady-state field-aligned or Birkeland currents in the northern polar region. These signatures allow us to determine the distribution, area, and total current typically flowing toward and away from the planet and closing at low altitudes. Results reveal that current flows downward on the dawn side and upward on the dusk side, a pattern corresponding to the Region-1 current system at Earth. Typical current densities are 10 to 20 nA/m2. The total current ranges from 10 kA under magnetically calm conditions to nearly 40 kA during disturbed periods. Both the current density and the total current are approximately two orders of magnitude lower than at Earth. The electric potential, consistent with dayside magnetopause magnetic reconnection, is estimated to be ~30 kV under typical conditions, implying that the net resistance to closure of the Birkeland currents is on the order of 1 ohm. At Earth this resistance is typically 0.02 ohms, and if the height-integrated low-altitude conductance were the same, the resistance at Mercury would be even lower than at Earth, ~0.01 ohms. The comparatively low current observed and the estimated high resistance are consistent with expectations that current closure at Mercury is markedly different than at Earth. We solve for the potential implied by the observed currents given closure through the planet. We consider crustal and mantle conductances consistent with experimental results for olivine, and we use a nominal present-day radial temperature profile for Mercury. Net potentials comparable to 30 kV require that the current closes radially through the crust and horizontally through the higher-conductivity mantle at depths of 50 to 400 km. The crust accounts for nearly all of the resistance to current flow, and the results are consistent with a crustal conductivity on the order of 10-8 S/m.
Hoseini, Bibi Leila; Mazloum, Seyed Reza; Jafarnejad, Farzaneh; Foroughipour, Mohsen
2013-03-01
The clinical evaluation, as one of the most important elements in medical education, must measure students' competencies and abilities. The implementation of any assessment tool is basically dependent on the acceptance of students. This study tried to assess midwifery students' satisfaction with Direct Observation of Procedural Skills (DOPS) and current clinical evaluation methods. This quasi-experimental study was conducted in the university hospitals affiliated to Mashhad University of Medical Sciences. The subjects comprised 67 undergraduate midwifery students selected by convenience sampling and allocated to control and intervention groups according to the training transposition. Current method was performed in the control group, and DOPS was conducted in the intervention group. The applied tools included DOPS rating scales, logbook, and satisfaction questionnaires with clinical evaluation methods. Validity and reliability of these tools were approved. At the end of training, students' satisfaction with the evaluation methods was assessed by the mentioned tools. The data were analyzed by descriptive and analytical statistics. Satisfaction mean scores of midwifery students with DOPS and current methods were 76.7 ± 12.9 and 62.6 ± 14.7 (out of 100), respectively. DOPS students' satisfaction mean score was significantly higher than the score obtained in current method (P < 0.000). The most satisfactory domains in the current method were "consistence with learning objectives" (71.2 ± 14.9) and "objectiveness" in DOPS (87.9 ± 15.0). In contrast, the least satisfactory domains in the current method were "interested in applying the method" (57.8 ± 26.5) and "number of assessments for each skill" (58.8 ± 25.9) in DOPS method. This study showed that DOPS method is associated with greater students' satisfaction. Since the students' satisfaction with the current method was also acceptable, we recommend combining this new clinical evaluation method with the current method, which covers its weaknesses, to promote the students' satisfaction with clinical evaluation methods in a perfect manner.
Flexible moldable conductive current-limiting materials
Shea, John Joseph; Djordjevic, Miomir B.; Hanna, William Kingston
2002-01-01
A current limiting PTC device (10) has two electrodes (14) with a thin film of electric conducting polymer material (20) disposed between the electrodes, the polymer material (20) having superior flexibility and short circuit performance, where the polymer material contains short chain aliphatic diepoxide, conductive filler particles, curing agent, and, preferably, a minor amount of bisphenol A epoxy resin.
Orchowski, Lindsay M; Berry-Cabán, Cristóbal S; Prisock, Kara; Borsari, Brian; Kazemi, Donna M
2018-03-01
The prevention of sexual assault (SA) in the U.S. military is a significant priority. This study applied the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to a literature search that identified research evaluating SA prevention programs conducted within military settings. Only six studies published between 2005 and 2016 met criteria for inclusion in the review. Studies demonstrated high heterogeneity in the: (1) conceptual framework of the prevention approach; (2) target population and timing of administration; (3) study recruitment methods; (4) methodological design; (5) method of delivery, program dosage and theory of change; and (6) outcome administration and efficacy. Scientific rigor according to the Oxford Center for Evidence-based Medicine was also variable. Several gaps in the research base were identified. Specifically, research evaluating SA prevention programs have only been conducted among U.S. Army and U.S. Navy samples. Most studies did not examine whether program participation was associated with reductions in rates of sexual violence. Studies also lacked utilization of a long-term follow-up period. Additionally, studies did not reflect the types of SA prevention programs currently being implemented in military settings. Taken together, further research is needed to enhance the evidence base for SA prevention in the military, and to evaluate the effectiveness of the approaches currently being conducted with service members.
Anomaly Trends for Missions to Mars: Mars Global Surveyor and Mars Odyssey
NASA Technical Reports Server (NTRS)
Green, Nelson W.; Hoffman, Alan R.
2008-01-01
Conducted as a part of NASA Ultra-Reliability effort: Goal is to design for increased reliability in all NASA missions. Desire is to increase reliability by a factor of 10. Study provides a baseline for current technology. Analyzed anomalies for spacecraft orbiting Mars. Long lived spacecraft. Comparison with current rover missions and past orbiters. Looked for trends to assist design of future missions.
ERIC Educational Resources Information Center
Wiese, Michele; Stancliffe, Roger J.; Balandin, Susan; Howarth, Glennys; Dew, Angela
2012-01-01
Background: The aim of this study was to explore the current status of end-of-life care and dying of people with intellectual disability based on the experiences of staff in community living services. Materials and Methods: Focus groups and individual interviews were conducted, guided by grounded theory methodology. Results: The current status of…
ERIC Educational Resources Information Center
Clark, Aaron C.; Scales, Alice Y.
2006-01-01
During the 1998-1999 academic year, a survey was conducted to look at current trends and issues in the profession of graphics education (Clark & Scales, 1999). The survey solicited information from the membership of the Engineering Design Graphics Division of the American Society for Engineering Education related to their view of future areas of…
Gas Generation Testing of Spherical Resorcinol-Formaldehyde (sRF) Resin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colburn, Heather A.; Bryan, Samuel A.; Camaioni, Donald M.
This report describes gas generation testing of the spherical resorcinol-formaldehyde (sRF) resin that was conducted to support the technology maturation of the LAWPS facility. The current safety basis for the LAWPS facility is based primarily on two studies that had limited or inconclusive data sets. The two studies indicated a 40% increase in hydrogen generation rate of water (as predicted by the Hu model) with sRF resin over water alone. However, the previous studies did not test the range of conditions (process fluids and temperatures) that are expected in the LAWPS facility. Additionally, the previous studies did not obtain replicatemore » test results or comparable liquid-only control samples. All of the testing described in this report, conducted with water, 0.45M nitric acid, and waste simulants with and without sRF resin, returned hydrogen generation rates that are within the current safety basis for the facility of 1.4 times the Hu model output for water.« less
Dual patch voltage clamp study of low membrane resistance astrocytes in situ.
Ma, Baofeng; Xu, Guangjin; Wang, Wei; Enyeart, John J; Zhou, Min
2014-03-17
Whole-cell patch clamp recording has been successfully used in identifying the voltage-dependent gating and conductance properties of ion channels in a variety of cells. However, this powerful technique is of limited value in studying low membrane resistance cells, such as astrocytes in situ, because of the inability to control or accurately measure the real amplitude of command voltages. To facilitate the study of ionic conductances of astrocytes, we have developed a dual patch recording method which permits membrane current and membrane potential to be simultaneously recorded from astrocytes in spite of their extraordinarily low membrane resistance. The utility of this technique is demonstrated by measuring the voltage-dependent activation of the inwardly rectifying K+ current abundantly expressed in astrocytes and multiple ionic events associated with astrocytic GABAA receptor activation. This protocol can be performed routinely in the study of astrocytes. This method will be valuable for identifying and characterizing the individual ion channels that orchestrate the electrical activity of low membrane resistance cells.
De Biase, Pablo M.; Markosyan, Suren; Noskov, Sergei
2014-01-01
We developed a novel scheme based on the Grand-Canonical Monte-Carlo/Brownian Dynamics (GCMC/BD) simulations and have extended it to studies of ion currents across three nanopores with the potential for ssDNA sequencing: solid-state nanopore Si3N4, α-hemolysin, and E111N/M113Y/K147N mutant. To describe nucleotide-specific ion dynamics compatible with ssDNA coarse-grained model, we used the Inverse Monte-Carlo protocol, which maps the relevant ion-nucleotide distribution functions from an all-atom MD simulations. Combined with the previously developed simulation platform for Brownian Dynamic (BD) simulations of ion transport, it allows for microsecond- and millisecond-long simulations of ssDNA dynamics in nanopore with a conductance computation accuracy that equals or exceeds that of all-atom MD simulations. In spite of the simplifications, the protocol produces results that agree with the results of previous studies on ion conductance across open channels and provide direct correlations with experimentally measured blockade currents and ion conductances that have been estimated from all-atom MD simulations. PMID:24738152
NASA Astrophysics Data System (ADS)
Novikov, A. S.; Filatov, D. O.; Antonov, D. A.; Antonov, I. N.; Shenina, M. E.; Gorshkov, O. N.
2018-03-01
We report on the experimental observation of the effect of optical excitation on resistive switching in ultrathin ZrO2(Y) films with single-layered arrays of Au nanoparticles. The samples were prepared by depositing nanometer-thick Au films sandwiched between two ZrO2(Y) layers by magnetron sputtering followed by annealing. Resistive switching was studied by conductive atomic force microscopy by measuring cyclic current-voltage curves of a probe-to-sample contact. The contact area was illuminated by radiation of a semiconductor laser diode with the wavelength corresponding to the plasmon resonance in an Au nanoparticle array. The enhancement of the hysteresis in cyclic current-voltage curves due to bipolar resistive switching under illumination was observed. The effect was attributed to heating of Au nanoparticles due to plasmonic optical absorption and a plasmon resonance, which enhances internal photoemission of electrons from the Fermi level in Au nanoparticles into the conduction band of ZrO2(Y). Both factors promote resistive switching in a ZrO2(Y) matrix.
Charge transport in doped zigzag phosphorene nanoribbons
NASA Astrophysics Data System (ADS)
Nourbakhsh, Zahra; Asgari, Reza
2018-06-01
The effects of lattice distortion and chemical disorder on charge transport properties of two-terminal zigzag phosphorene nanoribbons (zPNRs), which shows resonant tunneling behavior under an electrical applied bias, are studied. Our comprehensive study is based on ab initio quantum transport calculations on the basis of the Landauer theory. We use nitrogen and silicon substitutional dopant atoms, and employ different physical quantities such as the I -V curve, voltage drop behavior, transmission spectrum, transmission pathway, and atomic current to explore the transport mechanism of zPNR devices under a bias voltage. The calculated transmission pathways show the transition from a ballistic transport regime to a diffusive and in some particular cases to localized transport regimes. Current flowing via the chemical bonds and hopping are monitored; however, the conductance originates mainly from the charge traveling through the chemical bonds in the vicinity of the zigzag edges. Our results show that in the doped systems, the device conductance decreases and the negative differential resistance characteristic becomes weak or is eliminated. Besides, the conductance in a pure zPNR system is almost independent of the ribbon width.
Reconnaissance electrical surveys in the Coso Range, California
NASA Astrophysics Data System (ADS)
Jackson, Dallas B.; O'Donnell, James E.
1980-05-01
Telluric current, audiomagnetotelluric (AMT), and direct current (dc) methods were used to study the electrical structure of the Coso Range and Coso geothermal area. Telluric current mapping outlined major resistivity lows associated with conductive valley fill of the Rose Valley basin, the Coso Basin, and the northern extension of the Coso Basin east of Coso Hot Springs. A secondary resistivity low with a north-south trend runs through the Coso Hot Springs-Devil's Kitchen geothermal area. The secondary low in the geothermal area, best defined by the 7.5-Hz AMT map and dc soundings, is caused by a shallow conductive zone (5-30 ohm m) interpreted to be hydrothermally altered Sierra Nevada basement rocks containing saline water of a hot water geothermal system. This zone of lowest apparent resistivities over the basement rocks lies within a closed contour of a heat flow anomaly where all values are greater than 10 heat flow units.
Kirkhaug, Bente; Drugli, May Britt; Lydersen, Stian; Mørch, Willy-Tore
2013-08-01
Few studies have focused on conduct problems and co-occurring problems among the youngest children in schools, such as social, internalizing and attention problems. In particular, there is a lack of studies that differentiate between boys and girls in terms of such problems. The aim of the current study was to test associations between conduct problems and social, internalizing and attention problems, as well as adaptive school functioning, which was rated by the teachers of boys and girls in grades 1-3. In a cross-sectional study, 103 boys and 108 girls in grades 1-3 at six schools participated in a national Norwegian study of child conduct problems in the normal population. Linear regression analysis was used to test the associations between conduct problems, social skills, problems of internalization, attention problems and adaptation to school among boys and girls. There were significant associations between high levels of conduct problems and social skills problems, attention problems and low adaptive school functioning scores among boys and girls. Attention problems had the most powerful associations with conduct problems for both genders. Young schoolchildren with high levels of conduct problems also had co-occurring problems. Schools and teachers need to adopt a comprehensive approach to help these children during their first years in school.
Semerjian, Lucy; Damaj, Ahmad; Salam, Darine
2015-11-01
The current study aims at investigating the efficiency of electrocoagulation for the removal of humic acid from contaminated waters. In parallel, conventional chemical coagulation was conducted to asses humic acid removal patterns. The effect of varying contributing parameters (matrix pH, humic acid concentration, type of electrode (aluminum vs. iron), current density, solution conductivity, and distance between electrodes) was considered to optimize the electrocoagulation process for the best attainable humic acid removal efficiencies. Optimum removals were recorded at pH of 5.0-5.5, an electrical conductivity of 3000 μS/cm at 25 °C, and an electrode distance of 1 cm for both electrode types. With aluminum electrodes, a current density of 0.05 mA/cm2 outperformed 0.1 mA/cm2 yet not higher densities, whereas a current density of 0.8 mA/cm2 was needed for iron electrodes to exhibit comparable performance. With both electrode types, higher initial humic acid concentrations were removed at a slower rate but ultimately attained almost complete removals. On the other hand, the best humic acid removals (∼90%) by chemical coagulation were achieved at 4 mg/L for both coagulants. Also, higher removals were attained at elevated initial humic acid concentrations. Humic acid removals of 90% or higher at an initial HA concentration of 40 mg/L were exhibited, yet alum performed better at the highest experimented concentration. It was evident that iron flocs were larger, denser, and more geometrical in shape compared to aluminum flocs.
Characterization of Thallium Bromide (TlBr) for Room Temperature Radiation Detectors
NASA Astrophysics Data System (ADS)
Smith, Holland McTyeire
Thallium bromide (TlBr) has emerged as a remarkably well-suited material for room temperature radiation detection. The unique combination of high-Z elements, high density, suitable band gap, and excellent electrical transport properties present in TlBr have brought device performance up to par with CdZnTe (CZT), the current market-leading room temperature radiation detector material. TlBr research is at an earlier stage than that of CZT, giving hope that the material will see even further improvement in electronic properties. Improving a resistive semiconductor material requires knowledge of deep levels present in the material and the effects of these deep levels on transport properties. Very few deep level studies have been conducted on TlBr, and none with the depth required to generate useful growth suggestions. In this dissertation, deep levels in nominally undoped and doped TlBr samples are studied with electrical and optical methods. Photo-Induced Conductivity Transient Spectroscopy (PICTS) is used to discover many deep levels in TlBr electrically. These levels are compared to sub-band gap optical transitions originating from defects observed in emission spectra. The results of this research indicate that the origin of resistivity in TlBr is likely due to deep level defects pinning the Fermi level at least ˜0.7 eV from either the conduction or valence band edge. The effect of dopants and deep levels on transport in TlBr is assessed with microwave photoconductivity decay analysis. It is found that Pb-, Se-, and O-doping decreases carrier lifetime in TlBr, whereas C-doping does not. TlBr exhibits weak ionic conductivity at room temperature, which both negatively affects the leakage current of detectors and leads to device degradation over time. Researchers are actively looking for ways to reduce or eliminate the ionic conductivity, but are faced with an intriguing challenge of materials engineering: is it possible to mitigate the ionic conduction of TlBr without harming the excellent electronic transport properties? Doping TlBr in order to control the ionic conductivity has been proposed and shown to be effective in reducing dark ionic current, but the electronic effects of the dopants has not been previously studied in detail. In this dissertation, the electronic effects of dopants introduced for ionic reasons are evaluated.
Ion conduction in the KcsA potassium channel analyzed with a minimal kinetic model.
Mafé, Salvador; Pellicer, Julio
2005-02-01
We use a model by Nelson to study the current-voltage and conductance-concentration curves of bacterial potassium channel KcsA without assuming rapid ion translocation. Ion association to the channel filter is rate controlling at low concentrations, but dissociation and transport in the filter can limit conduction at high concentration for ions other than K+. The absolute values of the effective rate constants are tentative but the relative changes in these constants needed to qualitatively explain the experiments should be of significance.
Thermal Diffusivity and Conductivity in Ceramic Matrix Fiber Composite Materials - Literature Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.G. Quinn
A technical literature review was conducted to gain an understanding of the state of the art method, problems, results, and future of thermal diffusivity/conductivity of matrix-fiber composites for high temperature applications. This paper summarizes the results of test method development and theory. Results from testing on various sample types are discussed with concentration on the anisotropic characteristics of matrix-fiber composites, barriers to heat flow, and notable microstructure observations. The conclusion presents some observations from the technical literature, drawbacks of current information and discusses potential needs for future testing.
Alkhateeb, Jamal M; Hadidi, Muna S; Alkhateeb, Amal J
2016-01-01
In this study, a literature review was conducted to analyze studies published from 1990 to 2014 in English-written literature on inclusion of children with developmental disabilities in Arab countries. This study sought to review and analyze research conducted on Inclusive Education (IE) in Arab countries. The following electronic databases were used in searching the relevant literature: ScienceDirect, SpringerLink, PsychINFO, EBSCOhost Databases, ProQuest Dissertations and Theses Database, ERIC, and Google Scholar. After the publications to be included in this study were retrieved, each study was reviewed and analyzed. Each study was examined for details such as authors, title of research, publication year, country, purpose, methods, and key findings. The results showed that a total of 42 empirical studies related to inclusion of children with developmental disabilities in Arab countries have been published. More than two-thirds of these studies came from United Arab Emirates (UAE), Jordan, and Saudi Arabia. The majority of the studies were published in the last 6 years. The main parameters in these studies were: attitudes toward inclusion, barriers to inclusion, and evaluating inclusion. The results of the current study revealed that relatively little IE research has been conducted in Arab countries. More research is warranted to test the generalizability of the results of the current study. Further research is also needed to analyze IE practices and demonstrate strategies for the effective implementation of IE in these countries. Copyright © 2015 Elsevier Ltd. All rights reserved.
Systematic health screening of refugees after resettlement in recipient countries: a scoping review.
Hvass, Anne Mette Fløe; Wejse, Christian
2017-08-01
Health screening of refugees after settlement in a recipient country is an important tool to find and treat diseases. Currently, there are no available reviews on refugee health screening after resettlement. A systematic literature search was conducted using the online Medical Literature Analysis and Retrieval System ('MEDLINE') database. Data extraction and synthesis were performed according to the PRISMA statement. The search retrieved 342 articles. Relevance screening was conducted on all abstracts/titles. The final 53 studies included only original scientific articles on health screening of refugees conducted after settlement in another country. The 53 studies were all from North America, Australia/New Zealand and Europe. Because of differences in country policies, the screenings were conducted differently in the various locations. The studies demonstrated great variation in who was targeted for screening and how screening was conducted. The disease most frequently screened for was tuberculosis; this was done in approximately half of the studies. Few studies included screening for mental health and non-infectious diseases like diabetes and hypertension. Health screening of refugees after resettlement is conducted according to varying local policies and there are vast differences in which health conditions are covered in the screening and whom the screening is available to.
Basolateral K channels in an insect epithelium. Channel density, conductance, and block by barium
Hanrahan, JW; Wills, NK; Phillips, JE; Lewis, SA
1986-01-01
K channels in the basolateral membrane of insect hindgut were studied using current fluctuation analysis and microelectrodes. Locust recta were mounted in Ussing-type chambers containing Cl-free saline and cyclic AMP (cAMP). A transepithelial K current was induced by raising serosal [K] under short-circuit conditions. Adding Ba to the mucosal (luminal) side under these conditions had no effect; however, serosal Ba reversibly inhibited the short-circuit current (Isc), increased transepithelial resistance (Rt), and added a Lorentzian component to power density spectra of the Isc. A nonlinear relationship between corner frequency and serosal [Ba] was observed, which suggests that the rate constant for Ba association with basolateral channels increased as [Ba] was elevated. Microelectrode experiments revealed that the basolateral membrane hyperpolarized when Ba was added: this change in membrane potential could explain the nonlinearity of the 2 pi fc vs. [Ba] relationship if external Ba sensed about three-quarters of the basolateral membrane field. Conventional microelectrodes were used to determine the correspondence between transepithelially measured current noise and basolateral membrane conductance fluctuations, and ion-sensitive microelectrodes were used to measure intracellular K activity (acK). From the relationship between the net electrochemical potential for K across the basolateral membrane and the single channel current calculated from noise analysis, we estimate that the conductance of basolateral K channels is approximately 60 pS, and that there are approximately 180 million channels per square centimeter of tissue area. PMID:2420918
Conducting processes in simulated chronic inflammatory demyelinating polyneuropathy at 20°C-42°C.
Stephanova, D I; Daskalova, M; Mladenov, M
2015-03-01
Decreased conducting processes leading usually to conduction block and increased weakness of limbs during cold (cold paresis) or warmth (heat paresis) have been reported in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). To explore the mechanisms of these symptoms, the effects of temperature (from 20°C to 42°C) on nodal action potentials and their current kinetics in previously simulated case of 70% CIDP are investigated, using our temperature dependent multi-layered model of the myelinated human motor nerve fiber. The results show that potential amplitudes have a bifid form at 20°C. As in the normal case, for the CIDP case, the nodal action potentials are determined mainly by the nodal sodium currents (I Na ) for the temperature range of 20-39°C, as the contribution of nodal fast and slow potassium currents (I Kf and I Ks ) to the total ionic current (Ii) is negligible. Also, the contribution of I Kf and I Ks to the membrane repolarization is enhanced at temperatures higher than 39°C. However, in the temperature range of 20-42°C, all potential parameters in the CIDP case, except for the conduction block during hyperthermia (≥ 40°C) which is again at 45°C, worsen: (i) conduction velocities and potential amplitudes are decreased; (ii) afterpotentials and threshold stimulus currents for the potential generation are increased; (iii) the current kinetics of action potentials is slowed and (iv) the conduction block during hypothermia (≤ 25°C) is at temperatures lower than 20°C. These potential parameters are more altered during hyperthermia and are most altered during hypothermia. The present results suggest that the conducting processes in patients with CIDP are in higher risk during hypothermia than hyperthermia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bott-Suzuki, S. C.; Cordaro, S. W.; Caballero Bendixsen, L. S.
We present a study of the time varying current density distribution in solid metallic liner experiments at the 1MA level. Measurements are taken using an array of magnetic field probes which provide 2D triangulation of the average centroid of the drive current in the load at 3 discrete axial positions. These data are correlated with gated optical self-emission imaging which directly images the breakdown and plasma formation region. Results show that the current density is azimuthally non-uniform, and changes significantly throughout the 100ns experimental timescale. Magnetic field probes show clearly motion of the current density around the liner azimuth overmore » 10ns timescales. If breakdown is initiated at one azimuthal location, the current density remains non-uniform even over large spatial extents throughout the current drive. The evolution timescales are suggestive of a resistive diffusion process or uneven current distributions among simultaneously formed but discrete plasma conduction paths.« less
Bott-Suzuki, S. C.; Cordaro, S. W.; Caballero Bendixsen, L. S.; ...
2016-09-01
We present a study of the time varying current density distribution in solid metallic liner experiments at the 1MA level. Measurements are taken using an array of magnetic field probes which provide 2D triangulation of the average centroid of the drive current in the load at 3 discrete axial positions. These data are correlated with gated optical self-emission imaging which directly images the breakdown and plasma formation region. Results show that the current density is azimuthally non-uniform, and changes significantly throughout the 100ns experimental timescale. Magnetic field probes show clearly motion of the current density around the liner azimuth overmore » 10ns timescales. If breakdown is initiated at one azimuthal location, the current density remains non-uniform even over large spatial extents throughout the current drive. The evolution timescales are suggestive of a resistive diffusion process or uneven current distributions among simultaneously formed but discrete plasma conduction paths.« less
Transparent conducting oxide nanotubes
NASA Astrophysics Data System (ADS)
Alivov, Yahya; Singh, Vivek; Ding, Yuchen; Nagpal, Prashant
2014-09-01
Thin film or porous membranes made of hollow, transparent, conducting oxide (TCO) nanotubes, with high chemical stability, functionalized surfaces and large surface areas, can provide an excellent platform for a wide variety of nanostructured photovoltaic, photodetector, photoelectrochemical and photocatalytic devices. While large-bandgap oxide semiconductors offer transparency for incident light (below their nominal bandgap), their low carrier concentration and poor conductivity makes them unsuitable for charge conduction. Moreover, materials with high conductivity have nominally low bandgaps and hence poor light transmittance. Here, we demonstrate thin films and membranes made from TiO2 nanotubes heavily-doped with shallow Niobium (Nb) donors (up to 10%, without phase segregation), using a modified electrochemical anodization process, to fabricate transparent conducting hollow nanotubes. Temperature dependent current-voltage characteristics revealed that TiO2 TCO nanotubes, doped with 10% Nb, show metal-like behavior with resistivity decreasing from 6.5 × 10-4 Ωcm at T = 300 K (compared to 6.5 × 10-1 Ωcm for nominally undoped nanotubes) to 2.2 × 10-4 Ωcm at T = 20 K. Optical properties, studied by reflectance measurements, showed light transmittance up to 90%, within wavelength range 400 nm-1000 nm. Nb doping also improves the field emission properties of TCO nanotubes demonstrating an order of magnitude increase in field-emitter current, compared to undoped samples.
Impact of shock waves on the conductive properties and structure of MgB2 tapes
NASA Astrophysics Data System (ADS)
Mikhailov, Boris P.; Mikhailova, Alexandra B.; Borovitskaya, Irina V.; Nikulin, Valerii Ya.; Peregudova, Elena N.; Polukhin, Sergei N.; Silin, Pavel V.
2017-10-01
This article presents data on shock waves effect on the structure and the critical current of superconducting MgB2 tapes. To generate shock waves, a plasma focus installation (PF) was used. The conductive characteristics of the superconducting tapes dependence on the intensity of the impact and the number of shock pulses were studied. A distinct pattern of change in critical currents in transversal and longitudinal magnetic fields in the range of 2-9 T is studied at a temperature of 4.2 K. The microstructure of the superconducting tape and chemical composition of its layer are studied in the original state and after the shock wave effect. Changes were found in a microstructure of layers of MgB2 (granulation, subdivision of grains and consolidation), which arose due to the shock-wave impact (SWI), are found. The possibility of increasing the critical current of tapes on 50-80 A in a transversal magnetic field of 2-3 T by means of SWI has been established. In a parallel magnetic field, the impact of the shock effect was essential in magnetic fields lower than 4 T.
Composite lead for conducting an electrical current between 75--80K and 4. 5K temperatures
Negm, Y.; Zimmerman, G.O.; Powers, R.E. Jr.; McConeghy, R.J.; Kaplan, A.
1994-12-27
A composite lead is provided which electrically links and conducts a current between about 75-80K and liquid helium temperature of about 4.5K. The composite lead may be employed singly or in multiples concurrently to provide conduction of electrical current from normal conductors and semi-conductors at room temperature to superconductors operating at 4.5K. In addition, a variety of organizational arrangements and assemblies are provided by which the mechanical strength and electrical reliability of the composite lead is maintained. 12 figures.
Composite lead for conducting an electrical current between 75-80K and 4.5K temperatures
Negm, Yehia; Zimmerman, George O.; Powers, Jr., Robert E.; McConeghy, Randy J.; Kaplan, Alvaro
1994-12-27
A composite lead is provided which electrically links and conducts a current between about 75-80K. and liquid helium temperature of about 4.5K. The composite lead may be employed singly or in multiples concurrently to provide conduction of electrical current from normal conductors and semi-conductors at room temperature to superconductors operating at 4.5K. In addition, a variety of organizationl arrangements and assemblies are provided by which the mechanical strength and electrical reliability of the composite lead is maintained.
Hu, Gang; Li, Xu; He, Bin
2010-01-01
Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently introduced imaging modality for noninvasive electrical impedance imaging, with ultrasound imaging resolution and a contrast reflecting the electrical conductivity properties of tissues. However, previous MAT-MI systems can only image samples that are much more conductive than real human or animal tissues. To image real biological tissue samples, a large-current-carrying coil that can give stronger magnetic stimulations and stronger MAT-MI acoustic signals is employed in this study. The conductivity values of all the tissue samples employed in this study are also directly measured using a well calibrated four-electrode system. The experimental results demonstrated the feasibility to image biological tissues with electrical conductivity contrast below 1.0 S∕m using the MAT-MI technique with safe level of electromagnetic energy applied to tissue samples. PMID:20938494
NASA Astrophysics Data System (ADS)
Hu, Gang; Li, Xu; He, Bin
2010-09-01
Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently introduced imaging modality for noninvasive electrical impedance imaging, with ultrasound imaging resolution and a contrast reflecting the electrical conductivity properties of tissues. However, previous MAT-MI systems can only image samples that are much more conductive than real human or animal tissues. To image real biological tissue samples, a large-current-carrying coil that can give stronger magnetic stimulations and stronger MAT-MI acoustic signals is employed in this study. The conductivity values of all the tissue samples employed in this study are also directly measured using a well calibrated four-electrode system. The experimental results demonstrated the feasibility to image biological tissues with electrical conductivity contrast below 1.0 S/m using the MAT-MI technique with safe level of electromagnetic energy applied to tissue samples.
NASA Astrophysics Data System (ADS)
Kim, Sungjun; Park, Byung-Gook
2016-08-01
A study on the bipolar-resistive switching of an Ni/SiN/Si-based resistive random-access memory (RRAM) device shows that the influences of the reset power and the resistance value of the low-resistance state (LRS) on the reset-switching transitions are strong. For a low LRS with a large conducting path, the sharp reset switching, which requires a high reset power (>7 mW), was observed, whereas for a high LRS with small multiple-conducting paths, the step-by-step reset switching with a low reset power (<7 mW) was observed. The attainment of higher nonlinear current-voltage ( I-V) characteristics in terms of the step-by-step reset switching is due to the steep current-increased region of the trap-controlled space charge-limited current (SCLC) model. A multilevel cell (MLC) operation, for which the reset stop voltage ( V STOP) is used in the DC sweep mode and an incremental amplitude is used in the pulse mode for the step-by-step reset switching, is demonstrated here. The results of the present study suggest that well-controlled conducting paths in a SiN-based RRAM device, which are not too strong and not too weak, offer considerable potential for the realization of low-power and high-density crossbar-array applications.
Dijkstra, Maartje; van der Elst, Elise M; Micheni, Murugi; Gichuru, Evanson; Musyoki, Helgar; Duby, Zoe; Lange, Joep M A; Graham, Susan M; Sanders, Eduard J
2015-05-01
Sensitivity training of front-line African health care workers (HCWs) attending to men who have sex with men (MSM) is actively promoted through national HIV prevention programming in Kenya. Over 970 Kenyan-based HCWs have completed an eight-modular online training free of charge (http://www.marps-africa.org) since its creation in 2011. Before updating these modules, we performed a systematic review of published literature of MSM studies conducted in sub-Saharan Africa (sSA) in the period 2011-2014, to investigate if recent studies provided: important new knowledge currently not addressed in existing online modules; contested information of existing module topics; or added depth to topics covered already. We used learning objectives of the eight existing modules to categorise data from the literature. If data could not be categorised, new modules were suggested. Our review identified 142 MSM studies with data from sSA, including 34 studies requiring module updates, one study contesting current content, and 107 studies reinforcing existing module content. ART adherence and community engagement were identified as new modules. Recent MSM studies conducted in sSA provided new knowledge, contested existing information, and identified new areas of MSM service needs currently unaddressed in the online training. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.
Acoustic flight test of the Piper Lance
DOT National Transportation Integrated Search
1986-12-01
Research is being conducted to refine current noise regulation of propeller-driven small airplanes. Studies are examining the prospect of a substituting a takeoff procedure of equal stringency for the level flyover certification test presently requir...
DOT National Transportation Integrated Search
1998-03-01
This study was conducted to review the Pavement Condition Rating (PCR) : methodology currently used by the Ohio DOT. The results of the literature search in this : connection indicated that many Highway agencies use a similar methodology to rate thei...
Carpooling : Status and Potential
DOT National Transportation Integrated Search
1975-06-01
The report contains the findings of studies conducted to analyze the status and potential of work-trip carpooling as a means of achieving more efficient use of the automobile. Current and estimated maximum potential levels of carpooling are presented...
Space Station Freedom power management and distribution system design
NASA Technical Reports Server (NTRS)
Teren, Fred
1989-01-01
The design is described of the Space Station Freedom Power Management and Distribution (PMAD) System. In addition, the significant trade studies which were conducted are described, which led to the current PMAD system configuration.
Current Reading Research for Developmental Educators: Important Issues in Comprehension Research.
ERIC Educational Resources Information Center
Erwin, Robin W., Jr.
1985-01-01
Offers a review of research conducted on reading comprehension, focusing on studies of the cognitive processes involved in the comprehension of the meaning of the microstructures and macrostructures of a text. (DMM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-06-01
A survey was conducted of ten target study groups and subgroups for Klamath Falls, Oregon, and Susanville, California: local government, current and potential industry at the site, relocators to the site, current and potential financial community, regulators, and current and potential promoters and developers. The results of benchmark attitudinal measurement is presented separately for each target group. A literature review was conducted and Macro-environmental attitudes of a sample of local government and industry personnel at the sites were assessed. An assessment of capabilities was made which involved two measurements. The first was a measurement of a sample of promoters, developers,more » and industrial service companies active at the site to determine infrastructure capabilities required by industry for geothermal plants. The second measurement involved analyzing a sample of industry management in the area and defining their requirements for plant retrofit and expansion. Finally, the processes used by the study group to analyze information to reach commitment and regulatory decisions that significantly impact on geothermal energy projects at the site were identified and defined.« less
NASA Astrophysics Data System (ADS)
Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan
2017-02-01
Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors.
Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan
2017-01-01
Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors. PMID:28155913
Current at domain walls, roughly speaking: nanoscales studies of disorder roughening and conduction
NASA Astrophysics Data System (ADS)
Paruch, Patrycja
2013-03-01
Domain walls in (multi)ferroic materials are the thin elastic interfaces separating regions with different orientations of magnetisation, electric polarisation, or spontaneous strain. Understanding their behaviour, and controlling domain size and stability, is key for their integration into applications, while fundamentally, domain walls provide an excellent model system in which the rich physics of disordered elastic interfaces can be accesses. In addition, domain walls can present novel properties, quite different from those of their parent materials, making them potentially useful as active components in future nano-devices. Here, we present our atomic force microscopy studies of ferroelectric domain walls in epitaxial Pb(Zr0.2Ti0.8)O3 and BiFeO3 thin films, in which we use piezorespose force microscopy to show unusual domain wall roughening behaviour, with very localised disorder regions in the sample leading to a complex, multi-affine scaling of the domain wall shape. We also show the effects of temperature, environmental conditions, and defects on switching dynamics and domain wall roughness. We combine these observations with parallel conductive-tip atomic force microscopy current measurements, which also show highly localised variations in conduction, and highlight the key role played by oxygen vacancies in the observed domain wall conduction.
Research of Steel-dielectric Transition Using Subminiature Eddy-current Transducer
NASA Astrophysics Data System (ADS)
Dmitriev, S. F.; Malikov, V. N.; Sagalakov, A. M.; Ishkov, A. V.
2018-05-01
The research aims to develop a subminiature transducer for electrical steel investigation. The authors determined the capability to study steel characteristics at different depths based on variations of eddy-current transducer amplitude at the steel-dielectric boundary. A subminiature transformer-type transducer was designed, which enables to perform local investigations of ferromagnetic materials using an eddy-current method based on local studies of the steel electrical conductivity. Having the designed transducer as a basis, a hardware-software complex was built to perform experimental studies of steel at the interface boundary. Test results are reported for a specimen with continuous and discrete measurements taken at different frequencies. The article provides the key technical information about the eddy current transformer used and describes the methodology of measurements that makes it possible to control steel to dielectric transition.
NASA Technical Reports Server (NTRS)
Seybert, C. D.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.
2001-01-01
The elimination of convection is essential in experimental investigations of diffusive transport (of heat and matter) during solidification. One classical approach to damping convection in a conducting liquid is the application of a magnetic field. The damping phenomenon is the induction, by the motion of a conductor in a magnetic field, of currents which interact with the field to produce Lorentz forces that oppose the flow. However, there are many liquids which are not sufficiently conducting to exploit this phenomenon; examples include the transparent liquids (such as succinonitrile-acetone) that are used as "model alloys" in fundamental solidification studies. There have been several investigations of the solidification of these liquids that have been carried out in orbiting laboratories to eliminate natural convection. The paper describes an investigation of an alternative approach whereby a magnetic field gradient is applied to the liquid. A magnetic body force then arises which is dependent on the susceptibility of the liquid and thereby on the temperature and or concentration. With the field gradient aligned vertically and of correct magnitude, the variation of gravitational body force due to temperature/concentration dependent density can be counterbalanced by a variation in magnetic body force. Experiments have been carried out in a super-conducting magnet at Marshall Space Flight Center to measure velocities in an aqueous manganese chloride solution. The solution was contained in a chamber with temperature controlled end walls and glass side walls. Velocities were measured by particle image velocimetry. Starting from zero current in the magnet (zero field gradient) flow driven by the temperature difference between the end walls was measured. At a critical current the flow was halted. At higher currents the normal convection was reversed. The experiments included ones where the solution was solidified and were accompanied by solution of the flow/transport equations using the software package FLUENT.
Environmental impact assessment of Gonabad municipal waste landfill site using Leopold Matrix
Sajjadi, Seyed Ali; Aliakbari, Zohreh; Matlabi, Mohammad; Biglari, Hamed; Rasouli, Seyedeh Samira
2017-01-01
Introduction An environmental impact assessment (EIA) before embarking on any project is a useful tool to reduce the potential effects of each project, including landfill, if possible. The main objective of this study was to assess the environmental impact of the current municipal solid waste disposal site of Gonabad by using the Iranian Leopold matrix method. Methods This cross-sectional study was conducted to assess the environmental impacts of a landfill site in Gonabad in 2015 by an Iranian matrix (modified Leopold matrix). This study was conducted based on field visits of the landfill, and collected information from various sources and analyzing and comparing between five available options, including the continuation of the current disposal practices, construction of new sanitary landfills, recycling plans, composting, and incineration plants was examined. The best option was proposed to replace the existing landfill. Results The current approach has a score of 2.35, the construction of new sanitary landfill has a score of 1.59, a score of 1.57 for the compost plant, and recycling and incineration plant, respectively, have scores of 1.68 and 2.3. Conclusion Results showed that continuation of the current method of disposal, due to severe environmental damage and health problems, is rejected. A compost plant with the lowest negative score is the best option for the waste disposal site of Gonabad City and has priority over the other four options. PMID:28465797
Environmental impact assessment of Gonabad municipal waste landfill site using Leopold Matrix.
Sajjadi, Seyed Ali; Aliakbari, Zohreh; Matlabi, Mohammad; Biglari, Hamed; Rasouli, Seyedeh Samira
2017-02-01
An environmental impact assessment (EIA) before embarking on any project is a useful tool to reduce the potential effects of each project, including landfill, if possible. The main objective of this study was to assess the environmental impact of the current municipal solid waste disposal site of Gonabad by using the Iranian Leopold matrix method. This cross-sectional study was conducted to assess the environmental impacts of a landfill site in Gonabad in 2015 by an Iranian matrix (modified Leopold matrix). This study was conducted based on field visits of the landfill, and collected information from various sources and analyzing and comparing between five available options, including the continuation of the current disposal practices, construction of new sanitary landfills, recycling plans, composting, and incineration plants was examined. The best option was proposed to replace the existing landfill. The current approach has a score of 2.35, the construction of new sanitary landfill has a score of 1.59, a score of 1.57 for the compost plant, and recycling and incineration plant, respectively, have scores of 1.68 and 2.3. Results showed that continuation of the current method of disposal, due to severe environmental damage and health problems, is rejected. A compost plant with the lowest negative score is the best option for the waste disposal site of Gonabad City and has priority over the other four options.
Numerical study of electrical transport in co-percolative metal nanowire-graphene thin-films
NASA Astrophysics Data System (ADS)
Gupta, Man Prakash; Kumar, Satish
2016-11-01
Nanowires-dispersed polycrystalline graphene has been recently explored as a transparent conducting material for applications such as solar cells, displays, and touch-screens. Metal nanowires and polycrystalline graphene play synergetic roles during the charge transport in the material by compensating for each other's limitations. In the present work, we develop and employ an extensive computational framework to study the essential characteristics of the charge transport not only on an aggregate basis but also on individual constituents' levels in these types of composite thin-films. The method allows the detailed visualization of the percolative current pathways in the material and provides the direct evidence of current crowding in the 1-D nanowires and 2-D polygraphene sheet. The framework is used to study the effects of several important governing parameters such as length, density and orientation of the nanowires, grain density in polygraphene, grain boundary resistance, and the contact resistance between nanowires and graphene. We also present and validate an effective medium theory based generalized analytical model for the composite. The analytical model is in agreement with the simulations, and it successfully predicts the overall conductance as a function of several parameters including the nanowire network density and orientation and graphene grain boundaries. Our findings suggest that the longer nanowires (compared to grain size) with low angle orientation (<40°) with respect to the main carrier transport direction provide significant advantages in enhancing the conductance of the polygraphene sheet. We also find that above a certain value of grain boundary resistance (>60 × intra-grain resistance), the overall conductance becomes nearly independent of grain boundary resistance due to nanowires. The developed model can be applied to study other emerging transparent conducting materials such as nanowires, nanotubes, polygraphene, graphene oxide, and their hybrid nanostructures.
Liu, Gao
2017-07-11
Embodiments of the present invention disclose a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer. Another embodiment discloses a method for preparing a composition of matter comprising a plurality of silicon (Si) nanoparticles coated with a conductive polymer comprising providing Si nanoparticles, providing a conductive polymer, preparing a Si nanoparticle, conductive polymer, and solvent slurry, spraying the slurry into a liquid medium that is a non-solvent of the conductive polymer, and precipitating the silicon (Si) nanoparticles coated with the conductive polymer. Another embodiment discloses an anode comprising a current collector, and a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer.
The Relationship between Assessment and Alcohol Treatment.
ERIC Educational Resources Information Center
Maisto, Stephen A.; Nirenberg, Ted D.
The matching hypothesis, presented in this study, predicts that designing treatment according to patient characteristics leads to better outcomes. A study was conducted to collect data on current practices of patient-treatment matching in alcohol treatment. A questionnaire was completed by 70 directors of Veterans Administration inpatient alcohol…
Azo dyes and related compounds as important aquatic contaminants: a ten-year case study
Mutagenicity has been found in several aquatic systems in the world; however, this activity usually is not associated with any of the compounds that are currently regulated. Attempting to identify these hazardous compounds, an integrated study was conducted, employing several dif...
The document provides describes the current Class I UIC program, the history of Class I injection, and studies of human health risks associated with Class I injection wells, which were conducted for past regulatory efforts and policy documentation.
An Assessment of Differential Reinforcement Procedures for Learners with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Johnson, Kate A.; Vladescu, Jason C.; Kodak, Tiffany; Sidener, Tina M.
2017-01-01
Differential reinforcement procedures may promote unprompted correct responding, resulting in a quicker transfer of stimulus control than nondifferential reinforcement. Recent studies that have compared reinforcement arrangements have found that the most effective arrangement may differ across participants. The current study conducted an…
ERIC Educational Resources Information Center
Callahan, Casey
2017-01-01
This study was conducted to explore how public school superintendents consider the skills, traits, behaviors, and responsibilities of effective school principals in the hiring and assessment of campus principals at high performing schools in Education Service Center Region 15 (ESC Region 15). The participants of the current study (n=42) were the…
Focus: Profile of Kansas Community College Presidents.
ERIC Educational Resources Information Center
Parker, Paul; Parker, Patrick W.
In 1983, a study was conducted of the characteristics of the chief administrative officers of the 19 community colleges in Kansas. A survey instrument was sent to each current president, requesting information on personal characteristics, prior preparation and experiences, and administrative, professional, and community activities. Study findings,…
A feasibility study for conducting unattended night-time operations at WMKO
NASA Astrophysics Data System (ADS)
Stomski, Paul J.; Gajadhar, Sarah; Dahm, Scott; Jordan, Carolyn; Nordin, Tom
2016-08-01
In 2015, W. M. Keck Observatory conducted a study of the feasibility of conducting nighttime operations on Maunakea without any staff on the mountain. The study was motivated by the possibility of long term operational costs savings as well as other expected benefits. The goals of the study were to understand the technical feasibility and risk as well as to provide labor and cost estimates for implementation. The results of the study would be used to inform a decision about whether or not to fund and initiate a formal project aimed at the development of this new unattended nighttime operating capability. In this paper we will describe the study process as well as a brief summary of the results including the identified viable design alternative, the risk analysis, and the scope of work. We will also share the decisions made as a result of the study and current status of related follow-on activity.
NASA Astrophysics Data System (ADS)
Chen, Lin; Ren, Jing; Guo, Fan; Zhou, LiangJi; Li, Ye; He, An; Jiang, Wei
2014-03-01
To understand the formation process of vacuum gap in coaxial microsecond conduction time plasma opening switch (POS), we have made measurements of the line-integrated plasma density during switch operation using a time-resolved sensitive He-Ne interferometer. The conduction current and conduction time in experiments are about 120 kA and 1 μs, respectively. As a result, more than 85% of conduction current has been transferred to an inductive load with rise time of 130 ns. The radial dependence of the density is measured by changing the radial location of the line-of-sight for shots with the same nominal POS parameters. During the conduction phase, the line-integrated plasma density in POS increases at all radial locations over the gun-only case by further ionization of material injected from the guns. The current conduction is observed to cause a radial redistribution of the switch plasma. A vacuum gap forms rapidly in the plasma at 5.5 mm from the center conductor, which is consistent with the location where magnetic pressure is the largest, allowing current to be transferred from the POS to the load.
Imaging snake orbits at graphene n -p junctions
NASA Astrophysics Data System (ADS)
Kolasiński, K.; Mreńca-Kolasińska, A.; Szafran, B.
2017-01-01
We consider conductance mapping of the snake orbits confined along the n -p junction defined in graphene by the electrostatic doping in the quantum Hall regime. We explain the periodicity of conductance oscillations at the magnetic field and the Fermi energy scales by the properties of the n -p junction as a conducting channel. We evaluate the conductance maps for a floating gate scanning the surface of the device. In the quantum Hall conditions the currents flow near the edges of the sample and along the n -p junction. The conductance mapping resolves only the n -p junction and not the edges. The conductance oscillations along the junction are found in the maps with periodicity related to the cyclotron orbits of the scattering current. Stronger probe potentials provide support to localized resonances at one of the sides of the junction with current loops that interfere with the n -p junction currents. The interference results in a series of narrow lines parallel to the junction with positions that strongly depend on the magnetic field through the Aharonov-Bohm effect. The consequences of a limited transparency of finite-width n -p junctions are also discussed.
2016-01-01
Objective: Cognitive–behavioral models of chronic fatigue syndrome (CFS) propose that patients respond to symptoms with 2 predominant activity patterns—activity limitation and all-or-nothing behaviors—both of which may contribute to illness persistence. The current study investigated whether activity patterns occurred at the same time as, or followed on from, patient symptom experience and affect. Method: Twenty-three adults with CFS were recruited from U.K. CFS services. Experience sampling methodology (ESM) was used to assess fluctuations in patient symptom experience, affect, and activity management patterns over 10 assessments per day for a total of 6 days. Assessments were conducted within patients’ daily life and were delivered through an app on touchscreen Android mobile phones. Multilevel model analyses were conducted to examine the role of self-reported patient fatigue, pain, and affect as predictors of change in activity patterns at the same and subsequent assessment. Results: Current experience of fatigue-related symptoms and pain predicted higher patient activity limitation at the current and subsequent assessments whereas subjective wellness predicted higher all-or-nothing behavior at both times. Current pain predicted less all-or-nothing behavior at the subsequent assessment. In contrast to hypotheses, current positive affect was predictive of current activity limitation whereas current negative affect was predictive of current all-or-nothing behavior. Both activity patterns varied at the momentary level. Conclusions: Patient symptom experiences appear to be driving patient activity management patterns in line with the cognitive–behavioral model of CFS. ESM offers a useful method for examining multiple interacting variables within the context of patients’ daily life. PMID:27819461
The ionic bases of the action potential in isolated mouse cardiac Purkinje cell.
Vaidyanathan, Ravi; O'Connell, Ryan P; Deo, Makarand; Milstein, Michelle L; Furspan, Philip; Herron, Todd J; Pandit, Sandeep V; Musa, Hassan; Berenfeld, Omer; Jalife, José; Anumonwo, Justus M B
2013-01-01
Collecting electrophysiological and molecular data from the murine conduction system presents technical challenges. Thus, only little advantage has been taken of numerous genetically engineered murine models to study excitation through the cardiac conduction system of the mouse. To develop an approach for isolating murine cardiac Purkinje cells (PCs), to characterize major ionic currents and to use the data to simulate action potentials (APs) recorded from PCs. Light microscopy was used to isolate and identify PCs from apical and septal cells. Current and voltage clamp techniques were used to record APs and whole cell currents. We then simulated a PC AP on the basis of our experimental data. APs recorded from PCs were significantly longer than those recorded from ventricular cells. The prominent plateau phase of the PC AP was very negative (≈-40 mV). Spontaneous activity was observed only in PCs. The inward rectifier current demonstrated no significant differences compared to ventricular myocytes (VMs). However, sodium current density was larger, and the voltage-gated potassium current density was significantly less in PCs compared with myocytes. T-type Ca(2+) currents (I(Ca,T)) were present in PCs but not VMs. Computer simulations suggest that I(Ca,T) and cytosolic calcium diffusion significantly modulate AP profile recorded in PCs, as compared to VMs. Our study provides the first comprehensive ionic profile of murine PCs. The data show unique features of PC ionic mechanisms that govern its excitation process. Experimental data and numerical modeling results suggest that a smaller voltage-gated potassium current and the presence of I(Ca,T) are important determinants of the longer and relatively negative plateau phase of the APs. Copyright © 2013 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Ocak, Gurbuz; Yamac, Ahmet
2013-01-01
The aim of current study was to examine predictor and explanatory relationships between fifth graders' self-regulated learning strategies, motivational beliefs, attitudes towards mathematics, and academic achievement. The study was conducted on a sample of 204 students studying in the primary schools of Afyonkarahisar province. Motivated…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-01
... for assessing progress in food safety and associated methodological issues and to discuss potential.... The FoodNet also conducts special studies to determine risk factors for acquiring those illnesses... production, studies on the prevalence of specific pathogens in specific classes of food, and studies of...
Gender Differences in Attitudes toward Environmental Science
ERIC Educational Resources Information Center
Carrier, Sarah J.
2007-01-01
This study examined the role of gender in the areas of environmental education that included environmental knowledge, attitudes, behaviors, and comfort levels in the outdoors. The current study was part of a larger study designed to explore the effects of a treatment that consisted of 14 weeks of outdoor lessons conducted in the schoolyard as…
Technology Utilisation in Elementary Schools in Turkey's Capital: A Case Study
ERIC Educational Resources Information Center
Karaca, Feride; Can, Gulfidan; Yildirim, Soner
2013-01-01
A case study was conducted to explore teachers' current technology use in elementary schools in Ankara, the capital of Turkey. The data were collected through a survey, and participants included 1030 classroom teachers across eight districts. The present study results revealed that significant challenges remain with regard to technology use in the…
ERIC Educational Resources Information Center
Gulmez, Deniz; Kozan, Hatice Irem Ozteke
2017-01-01
In current study research assistants' perceptions about the concepts of "Academic adviser" and "Academic life" via metaphors were aimed which is conducted with qualitative research method. Participants of study consist of 82 research assistant (45 of them women) work in Educational Faculties in Turkey. In data collection, for…
Meta-Analysis of Behavioral Self-Management Interventions in Single-Case Research
ERIC Educational Resources Information Center
Briesch, Amy M.; Briesch, Jacquelyn M.
2016-01-01
The current study meta-analyzed 47 single-subject studies of behavioral self-management interventions that were published between 1971 and 2011. In addition to obtaining an overall measure of effect across all self-management studies (f = 0.93), analyses were conducted to assess whether treatment effectiveness was moderated by factors such as…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-29
...: Title: Motorcycle Crash Causation Study and Pilot Motorcycle Crash Causes and Outcomes Study. OMB... (OTC) for the purpose of conducting a comprehensive, in-depth motorcycle crash causation study that... that may have been relevant to the crash. The second procedure, known as the case-control procedure...
available through the RFS Program website. Section 203 Feedstock Impact Study of RFS DOE Requires DOE to work with NAS to conduct a study and issue a report on the impacts of the RFS program, including , USDA Requires a study to report on the current and future environmental and resource conservation
Estimates of olivine-basaltic melt electrical conductivity using a digital rock physics approach
NASA Astrophysics Data System (ADS)
Miller, Kevin J.; Montési, Laurent G. J.; Zhu, Wen-lu
2015-12-01
Estimates of melt content beneath fast-spreading mid-ocean ridges inferred from magnetotelluric tomography (MT) vary between 0.01 and 0.10. Much of this variation may stem from a lack of understanding of how the grain-scale melt geometry influences the bulk electrical conductivity of a partially molten rock, especially at low melt fraction. We compute bulk electrical conductivity of olivine-basalt aggregates over 0.02 to 0.20 melt fraction by simulating electric current in experimentally obtained partially molten geometries. Olivine-basalt aggregates were synthesized by hot-pressing San Carlos olivine and high-alumina basalt in a solid-medium piston-cylinder apparatus. Run conditions for experimental charges were 1.5 GPa and 1350 °C. Upon completion, charges were quenched and cored. Samples were imaged using synchrotron X-ray micro-computed tomography (μ-CT). The resulting high-resolution, 3-dimensional (3-D) image of the melt distribution constitutes a digital rock sample, on which numerical simulations were conducted to estimate material properties. To compute bulk electrical conductivity, we simulated a direct current measurement by solving the current continuity equation, assuming electrical conductivities for olivine and melt. An application of Ohm's Law yields the bulk electrical conductivity of the partially molten region. The bulk electrical conductivity values for nominally dry materials follow a power-law relationship σbulk = Cσmeltϕm with fit parameters m = 1.3 ± 0.3 and C = 0.66 ± 0.06. Laminar fluid flow simulations were conducted on the same partially molten geometries to obtain permeability, and the respective pathways for electrical current and fluid flow over the same melt geometry were compared. Our results indicate that the pathways for flow fluid are different from those for electric current. Electrical tortuosity is lower than fluid flow tortuosity. The simulation results are compared to existing experimental data, and the potential influence of volatiles and melt films on electrical conductivity of partially molten rocks is discussed.
Świergiel, Jolanta; Bouteiller, Laurent; Jadżyn, Jan
2014-11-14
Impedance spectroscopy was used for the study of the static and dynamic behavior of the electrical conductivity of a hydrogen-bonded supramolecular polymer of high viscosity. The experimental data are discussed in the frame of the Stokes-Einstein and Stokes-Einstein-Debye models. It was found that the translational movement of the ions is due to normal Brownian diffusion, which was revealed by a fulfillment of Ohm's law by the electric current and a strictly exponential decay of the current after removing the electric stimulus. The dependence of the dc conductivity on the viscosity of the medium fulfills the Stokes-Einstein model quite well. An extension of the model, by including in it the conductivity relaxation time, is proposed in this paper. A breakdown of the Stokes-Einstein-Debye model is revealed by the relations of the dipolar relaxation time to the viscosity and to the dc ionic conductivity. The importance of the C=O···H-N hydrogen bonds in that breakdown is discussed.
Inverse problems in eddy current testing using neural network
NASA Astrophysics Data System (ADS)
Yusa, N.; Cheng, W.; Miya, K.
2000-05-01
Reconstruction of crack in conductive material is one of the most important issues in the field of eddy current testing. Although many attempts to reconstruct cracks have been made, most of them deal with only artificial cracks machined with electro-discharge. However, in the case of natural cracks like stress corrosion cracking or inter-granular attack, there must be contact region and therefore their conductivity is not necessarily zero. In this study, an attempt to reconstruct natural cracks using neural network is presented. The neural network was trained through numerical simulated data obtained by the fast forward solver that calculated unflawed potential data a priori to save computational time. The solver is based on A-φ method discretized by using FEM-BEM A natural crack was modeled as an area whose conductivity was less than that of a specimen. The distribution of conductivity in that area was reconstructed as well. It took much time to train the network, but the speed of reconstruction was extremely fast after once it was trained. Well-trained network gave good reconstruction result.
Spin-orbit assisted transmission at 3d/5d metallic interfaces
NASA Astrophysics Data System (ADS)
Jaffres, Henri; Barbedienne, Quentin; Jouy, Augustin; Reyren, Nicolas; George, Jean-Marie; Laboratoire de Physique Et Des Plasmas, Ecole Polytechnique, Palaiseau, France Team; Unite Mixte de Physique Cnrs-Thales, Palaiseau, France Team
We will describe the anatomy of spin-transport and spin-orbit torques (SOT) at spin-orbit active interfaces involving 5d transition metals (TM) as heavy metals spin-Hall effect (SHE) materials and 3d TM in [Co,Ni]/Pt, NiFe. NiFe/Au:W and Co/Pt/Au;W systems. In the case of Pt, recent studies have put forward the major role played by the spin-memory loss (SML), the electronic transparency at 3d/5d interfaces and the inhomogeneity of the conductivity in the CIP-geometry. Ingredients to consider for spin-transport and spin-Hall Magnetoresistance (SMR) are the conductivity, the spin-current profiles across the multilayers and the spin-transmission. We will present SMR measurements observed on these systems possibly involving interfacial Anisotropy of Magnetoresistance (AIMR) contributions. We analyze in large details our SMR signals in the series of samples owing: i) the exact conductivity profile across the multilayers via the Camley-Barnas approach and the spin current profile generated by SHE. We will discuss the role of the generalized spin-mixing conductance on the spin-transport properties and spin-orbit torques.
Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels
Weisbrod, David; Khun, Shiraz Haron; Bueno, Hanna; Peretz, Asher; Attali, Bernard
2016-01-01
The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca2+-activated K+ channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity. PMID:26725737
Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels.
Weisbrod, David; Khun, Shiraz Haron; Bueno, Hanna; Peretz, Asher; Attali, Bernard
2016-01-01
The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca(2+)-activated K(+) channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity.
A study of methods for lowering aerial environmental survey cost
NASA Technical Reports Server (NTRS)
Stansberry, J. R.
1973-01-01
The results are presented of a study of methods for lowering the cost of environmental aerial surveys. A wide range of low cost techniques were investigated for possible application to current pressing urban and rural problems. The objective of the study is to establish a definition of the technical problems associated with conducting aerial surveys using various low cost techniques, to conduct a survey of equipment which may be used in low cost systems, and to establish preliminary estimates of cost. A set of candidate systems were selected and described for the environmental survey tasks.
Adolescent caffeine consumption and self-reported violence and conduct disorder.
Kristjansson, Alfgeir L; Sigfusdottir, Inga Dora; Frost, Stephanie S; James, Jack E
2013-07-01
Caffeine is the most widely used psychoactive substance in the world and currently the only one legally available to children and adolescents. The sale and use of caffeinated beverages has increased markedly among adolescents during the last decade. However, research on caffeine use and behaviors among adolescents is scarce. We investigate the relationship between adolescent caffeine use and self-reported violent behaviors and conduct disorders in a population-based cross-sectional sample of 3,747 10th grade students (15-16 years of age, 50.2 % girls) who were enrolled in the Icelandic national education system during February 2012. Through a series of multiple regression models, while controlling for background factors, Attention Deficit Hyperactivity Disorder symptoms and current medication and peer delinquency, and including measures on substance use, our findings show robust additive explanatory power of caffeine for both violent behaviors and conduct disorders. In addition, the association of caffeine to the outcomes is significantly stronger for girls than boys for both violent behaviors and conduct disorders. Future studies are needed to examine to what extent, if at all, these relationships are causal. Indication of causal connections between caffeine consumption and negative outcomes such as those reported here would call into question the acceptability of current policies concerning the availability of caffeine to adolescents and the targeting of adolescence in the marketing of caffeine products.
Reduced Sodium Current in the Lateral Ventricular Wall Induces Inferolateral J-Waves.
Meijborg, Veronique M F; Potse, Mark; Conrath, Chantal E; Belterman, Charly N W; De Bakker, Jacques M T; Coronel, Ruben
2016-01-01
J-waves in inferolateral leads are associated with a higher risk for idiopathic ventricular fibrillation. We aimed to test potential mechanisms (depolarization or repolarization dependent) responsible for inferolateral J-waves. We hypothesized that inferolateral J-waves can be caused by regional delayed activation of myocardium that is activated late during normal conditions. Computer simulations were performed to evaluate how J-point elevation is influenced by reducing sodium current conductivity (GNa), increasing transient outward current conductivity (Gto), or cellular uncoupling in three predefined ventricular regions (lateral, anterior, or septal). Two pig hearts were Langendorff-perfused with selective perfusion with a sodium channel blocker of lateral or anterior/septal regions. Volume-conducted pseudo-electrocardiograms (ECG) were recorded to detect the presence of J-waves. Epicardial unipolar electrograms were simultaneously recorded to obtain activation times (AT). Simulation data showed that conduction slowing, caused by reduced sodium current, in lateral, but not in other regions induced inferolateral J-waves. An increase in transient outward potassium current or cellular uncoupling in the lateral zone elicited slight J-point elevations which did not meet J-wave criteria. Additional conduction slowing in the entire heart attenuated J-waves and J-point elevations on the ECG, because of masking by the QRS. Experimental data confirmed that conduction slowing attributed to sodium channel blockade in the left lateral but not in the anterior/septal ventricular region induced inferolateral J-waves. J-waves coincided with the delayed activation. Reduced sodium current in the left lateral ventricular myocardium can cause inferolateral J-waves on the ECG.
Buczkowski, Krzysztof; Basinska, Małgorzata A; Ratajska, Anna; Lewandowska, Katarzyna; Luszkiewicz, Dorota; Sieminska, Alicja
2017-01-27
Tobacco smoking is the single most important modifiable factor in increased morbidity and premature mortality. Numerous factors-including genetics, personality, and environment-affect the development and persistence of tobacco addiction, and knowledge regarding these factors could improve smoking cessation rates. This study compared personality traits between never, former, and current smokers, using the Five-Factor Model of Personality in a country with a turbulent smoking reduction process. : In this cross-sectional study, 909 Polish adults completed the Revised Neuroticism-Extraversion-Openness Personality Inventory. Our results showed that current smokers' scores for extraversion, one of the five global dimensions of personality, were higher relative to never smokers. Neuroticism, openness to experience, agreeableness, and conscientiousness did not differ significantly according to smoking status. Facet analysis, which described each dimension in detail, showed that current smokers' activity and excitement seeking (facets of extraversion) scores were higher relative to those of never and former smokers. In turn, current smokers' dutifulness and deliberation (facets of conscientiousness) scores were lower than those found in former and never smokers. Never smokers scored the highest in self-consciousness (a facet of neuroticism) and compliance (a component of agreeableness). The study conducted among Polish individuals showed variation in personality traits according to their smoking status; however, this variation differed from that reported in countries in which efforts to reduce smoking had begun earlier relative to Poland. Knowledge regarding personality traits could be useful in designing smoking prevention and cessation programs tailored to individuals' needs.
Inter-hemispheric asymmetry of Pedersen conductance
NASA Astrophysics Data System (ADS)
Deng, Y.; Lu, Y.; Sheng, C.; Yue, X.
2015-12-01
Ionospheric conductance is very important to the magnetosphere-ionosphere coupling in the high latitude region, since it connects the polar cap potential with the currents. Meanwhile, the altitudinal distribution of Pederson conductance gives us a rough idea about the altitudinal distribution of Joule heating at high latitudes. Based on the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites observations of electron density profiles from 2009-2014, Pedersen conductivity has been calculated. A climatologic study of the height-integrated Pedersen conductivities in both E (100-150 km) and F (150-600 km) regions and their ratio in different seasons, solar and geomagnetic conditions have been conducted. A significant inter-hemispheric asymmetry is identified in the seasonal variation. Meanwhile, the conductance in both regions and the conductance ratio show a strong dependence on F10.7 and Ap indices. This result will strongly help our understanding of the inter-hemispheric difference in the high-latitude electrodynamics.
The Role of Magnetic Forces in Biology and Medicine
Roth, Bradley J
2011-01-01
The Lorentz force (the force acting on currents in a magnetic field) plays an increasingly larger role in techniques to image current and conductivity. This review will summarize several applications involving the Lorentz force, including 1) magneto-acoustic imaging of current, 2) “Hall effect” imaging, 3) ultrasonically-induced Lorentz force imaging of conductivity, 4) magneto-acoustic tomography with magnetic induction, and 5) Lorentz force imaging of action currents using magnetic resonance imaging. PMID:21321309
Eddy currents in a conducting sphere
NASA Technical Reports Server (NTRS)
Bergman, John; Hestenes, David
1986-01-01
This report analyzes the eddy current induced in a solid conducting sphere by a sinusoidal current in a circular loop. Analytical expressions for the eddy currents are derived as a power series in the vectorial displacement of the center of the sphere from the axis of the loop. These are used for first order calculations of the power dissipated in the sphere and the force and torque exerted on the sphere by the electromagnetic field of the loop.
Fujisaki, Keisuke; Ikeda, Tomoyuki
2013-01-01
To connect different scale models in the multi-scale problem of microwave use, equivalent material constants were researched numerically by a three-dimensional electromagnetic field, taking into account eddy current and displacement current. A volume averaged method and a standing wave method were used to introduce the equivalent material constants; water particles and aluminum particles are used as composite materials. Consumed electrical power is used for the evaluation. Water particles have the same equivalent material constants for both methods; the same electrical power is obtained for both the precise model (micro-model) and the homogeneous model (macro-model). However, aluminum particles have dissimilar equivalent material constants for both methods; different electric power is obtained for both models. The varying electromagnetic phenomena are derived from the expression of eddy current. For small electrical conductivity such as water, the macro-current which flows in the macro-model and the micro-current which flows in the micro-model express the same electromagnetic phenomena. However, for large electrical conductivity such as aluminum, the macro-current and micro-current express different electromagnetic phenomena. The eddy current which is observed in the micro-model is not expressed by the macro-model. Therefore, the equivalent material constant derived from the volume averaged method and the standing wave method is applicable to water with a small electrical conductivity, although not applicable to aluminum with a large electrical conductivity. PMID:28788395