Sample records for current study molecular

  1. Molecular markers for urothelial bladder cancer prognosis: toward implementation in clinical practice.

    PubMed

    van Rhijn, Bas W G; Catto, James W; Goebell, Peter J; Knüchel, Ruth; Shariat, Shahrokh F; van der Poel, Henk G; Sanchez-Carbayo, Marta; Thalmann, George N; Schmitz-Dräger, Bernd J; Kiemeney, Lambertus A

    2014-10-01

    To summarize the current status of clinicopathological and molecular markers for the prediction of recurrence or progression or both in non-muscle-invasive and survival in muscle-invasive urothelial bladder cancer, to address the reproducibility of pathology and molecular markers, and to provide directions toward implementation of molecular markers in future clinical decision making. Immunohistochemistry, gene signatures, and FGFR3-based molecular grading were used as molecular examples focussing on prognostics and issues related to robustness of pathological and molecular assays. The role of molecular markers to predict recurrence is limited, as clinical variables are currently more important. The prediction of progression and survival using molecular markers holds considerable promise. Despite a plethora of prognostic (clinical and molecular) marker studies, reproducibility of pathology and molecular assays has been understudied, and lack of reproducibility is probably the main reason that individual prediction of disease outcome is currently not reliable. Molecular markers are promising to predict progression and survival, but not recurrence. However, none of these are used in the daily clinical routine because of reproducibility issues. Future studies should focus on reproducibility of marker assessment and consistency of study results by incorporating scoring systems to reduce heterogeneity of reporting. This may ultimately lead to incorporation of molecular markers in clinical practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Molecular ecology studies of species radiations: current research gaps, opportunities and challenges.

    PubMed

    de la Harpe, Marylaure; Paris, Margot; Karger, Dirk N; Rolland, Jonathan; Kessler, Michael; Salamin, Nicolas; Lexer, Christian

    2017-05-01

    Understanding the drivers and limits of species radiations is a crucial goal of evolutionary genetics and molecular ecology, yet research on this topic has been hampered by the notorious difficulty of connecting micro- and macroevolutionary approaches to studying the drivers of diversification. To chart the current research gaps, opportunities and challenges of molecular ecology approaches to studying radiations, we examine the literature in the journal Molecular Ecology and revisit recent high-profile examples of evolutionary genomic research on radiations. We find that available studies of radiations are highly unevenly distributed among taxa, with many ecologically important and species-rich organismal groups remaining severely understudied, including arthropods, plants and fungi. Most studies employed molecular methods suitable over either short or long evolutionary time scales, such as microsatellites or restriction site-associated DNA sequencing (RAD-seq) in the former case and conventional amplicon sequencing of organellar DNA in the latter. The potential of molecular ecology studies to address and resolve patterns and processes around the species level in radiating groups of taxa is currently limited primarily by sample size and a dearth of information on radiating nuclear genomes as opposed to organellar ones. Based on our literature survey and personal experience, we suggest possible ways forward in the coming years. We touch on the potential and current limitations of whole-genome sequencing (WGS) in studies of radiations. We suggest that WGS and targeted ('capture') resequencing emerge as the methods of choice for scaling up the sampling of populations, species and genomes, including currently understudied organismal groups and the genes or regulatory elements expected to matter most to species radiations. © 2017 John Wiley & Sons Ltd.

  3. Controlling charge current through a DNA based molecular transistor

    NASA Astrophysics Data System (ADS)

    Behnia, S.; Fathizadeh, S.; Ziaei, J.

    2017-01-01

    Molecular electronics is complementary to silicon-based electronics and may induce electronic functions which are difficult to obtain with conventional technology. We have considered a DNA based molecular transistor and study its transport properties. The appropriate DNA sequence as a central chain in molecular transistor and the functional interval for applied voltages is obtained. I-V characteristic diagram shows the rectifier behavior as well as the negative differential resistance phenomenon of DNA transistor. We have observed the nearly periodic behavior in the current flowing through DNA. It is reported that there is a critical gate voltage for each applied bias which above it, the electrical current is always positive.

  4. Overlooked cryptic endemism in copepods: systematics and natural history of the calanoid subgenus Occidodiaptomus Borutzky 1991 (Copepoda, Calanoida, Diaptomidae).

    PubMed

    Marrone, Federico; Lo Brutto, Sabrina; Hundsdoerfer, Anna K; Arculeo, Marco

    2013-01-01

    Our comprehension of the phylogeny and diversity of most inland-water crustaceans is currently hampered by their pronounced morphological bradytely, which contributed to the affirmation of the "Cosmopolitanism Paradigm" of freshwater taxa. However, growing evidence of the existence of cryptic diversity and molecular regionalism is available for calanoid copepods, thus stressing the need for careful morphological and molecular studies in order to soundly investigate the systematics, diversity and distribution patterns of the group. Diaptomid copepods were here chosen as model taxa, and the morphological and molecular diversity of the species belonging to the west-Mediterranean diaptomid subgenus Occidodiaptomus were investigated with the aim of comparing the patterns of morphological and molecular evolution in freshwater copepods. Three species currently lumped under the binomen Hemidiaptomus (Occidodiaptomus) ingens and two highly divergent clades within H. (O.) roubaui were distinguished, thus showing an apparent discordance between the molecular distances recorded and Occidodiaptomus morphological homogeneity, and highlighting a noteworthy decoupling between the morphological and molecular diversity in the subgenus. Current Occidodiaptomus diversity pattern is ascribed to a combined effect of ancient vicariance and recent dispersal events. It is stressed that the lack of sound calibration points for the molecular clock makes it difficult to soundly temporally frame the diversification events of interest in the taxon studied, and thus to asses the role of morphological bradytely and of accelerated molecular evolutionary rates in shaping the current diversity of the group. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Has molecular imaging delivered to drug development?

    NASA Astrophysics Data System (ADS)

    Murphy, Philip S.; Patel, Neel; McCarthy, Timothy J.

    2017-10-01

    Pharmaceutical research and development requires a systematic interrogation of a candidate molecule through clinical studies. To ensure resources are spent on only the most promising molecules, early clinical studies must understand fundamental attributes of the drug candidate, including exposure at the target site, target binding and pharmacological response in disease. Molecular imaging has the potential to quantitatively characterize these properties in small, efficient clinical studies. Specific benefits of molecular imaging in this setting (compared to blood and tissue sampling) include non-invasiveness and the ability to survey the whole body temporally. These methods have been adopted primarily for neuroscience drug development, catalysed by the inability to access the brain compartment by other means. If we believe molecular imaging is a technology platform able to underpin clinical drug development, why is it not adopted further to enable earlier decisions? This article considers current drug development needs, progress towards integration of molecular imaging into studies, current impediments and proposed models to broaden use and increase impact. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.

  6. Molecular Epidemiology of Human Intestinal Amoebas in Iran

    PubMed Central

    Hooshyar, H; Rostamkhani, P; Rezaian, M

    2012-01-01

    Many microscopic-based epidemiological surveys on the prevalence of human intestinal pathogenic and non-pathogenic protozoa including intestinal amoeba performed in Iran show a high prevalence of human intestinal amoeba in different parts of Iran. Such epidemiological studies on amoebiasis are confusing, mainly due to recently appreciated distinction between the Entamoeba histolytica, E. dispar and E. moshkovskii. Differential diagnosis can be done by some methods such as PCR-based methods, monoclonal antibodies and the analysis of isoenzyme typing, however the molecular study of these protozoa in Iran is low. Based on molecular studies, it seems that E. dispar is predominant species especially in the central and northern areas of Iran and amoebiasis due to E. histolytica is a rare infection in the country. It is suggested that infection with E. moshkovskii may be common among Iranians. Considering the importance of molecular epidemiology of amoeba in Iran and also the current data, the present study reviews the data currently available on the molecular distribution of intestinal human amoeba in Iran. PMID:23193500

  7. [Molecular typing methods for Pasteurella multocida-A review].

    PubMed

    Peng, Zhong; Liang, Wan; Wu, Bin

    2016-10-04

    Pasteurella multocida is an important gram-negative pathogenic bacterium that could infect wide ranges of animals. Humans could also be infected by P. multocida via animal bite or scratching. Current typing methods for P. multocida include serological typing methods and molecular typing methods. Of them, serological typing methods are based on immunological assays, which are too complicated for clinical bacteriological studies. However, the molecular methods including multiple PCRs and multilocus sequence typing (MLST) methods are more suitable for bacteriological studies of P. multocida in clinic, with their simple operation, high efficiency and accurate detection compared to the traditional serological typing methods, they are therefore widely used. In the current review, we briefly describe the molecular typing methods for P. multocida. Our aim is to provide a knowledge-foundation for clinical bacteriological investigation especially the molecular investigation for P. multocida.

  8. A window on disease pathogenesis and potential therapeutic strategies: molecular imaging for arthritis

    PubMed Central

    2011-01-01

    Novel molecular imaging techniques are at the forefront of both preclinical and clinical imaging strategies. They have significant potential to offer visualisation and quantification of molecular and cellular changes in health and disease. This will help to shed light on pathobiology and underlying disease processes and provide further information about the mechanisms of action of novel therapeutic strategies. This review explores currently available molecular imaging techniques that are available for preclinical studies with a focus on optical imaging techniques and discusses how current and future advances will enable translation into the clinic for patients with arthritis. PMID:21345267

  9. Panel 4: Recent Advances in Otitis Media in Molecular Biology, Biochemistry, Genetics, and Animal Models

    PubMed Central

    Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F.; Bakaletz, Lauren O.; Brown, Steve D.; Cheeseman, Michael T.; Juhn, Steven K.; Jung, Timothy T. K.; Lim, David J.; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J. Christopher

    2014-01-01

    Background Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Objective To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. Data Sources and Review Methods A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Results Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Conclusions and Implications for Practice Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications. PMID:23536532

  10. The role of amino acid PET in the light of the new WHO classification 2016 for brain tumors.

    PubMed

    Suchorska, Bogdana; Albert, Nathalie L; Bauer, Elena K; Tonn, Jörg-Christian; Galldiks, Norbert

    2018-04-26

    Since its introduction in 2016, the revision of the World Health Organization (WHO) classification of central nervous system tumours has already changed the diagnostic and therapeutic approach in glial tumors. Blurring the lines between entities formerly labelled as "high-grade" or "low-grade", molecular markers define distinct biological subtypes with different clinical course. This new classification raises the demand for non-invasive imaging methods focussing on depicting metabolic processes. We performed a review of current literature on the use of amino acid PET (AA-PET) for obtaining diagnostic or prognostic information on glioma in the setting of the current WHO 2016 classification. So far, only a few studies have focussed on combining molecular genetic information and metabolic imaging using AA-PET. The current review summarizes the information available on "molecular grading" as well as prognostic information obtained from AA-PET and delivers an insight into a possible interrelation between metabolic imaging and glioma genetics. Within the framework of molecular characterization of gliomas, metabolic imaging using AA-PET is a promising tool for non-invasive characterisation of molecular features and to provide additional prognostic information. Further studies incorporating molecular and metabolic features are necessary to improve the explanatory power of AA-PET in glial tumors.

  11. Evolution of mechanical response of sodium montmorillonite interlayer with increasing hydration by molecular dynamics.

    PubMed

    Schmidt, Steven R; Katti, Dinesh R; Ghosh, Pijush; Katti, Kalpana S

    2005-08-16

    The mechanical response of the interlayer of hydrated montmorillonite was evaluated using steered molecular dynamics. An atomic model of the sodium montmorillonite was previously constructed. In the current study, the interlayer of the model was hydrated with multiple layers of water. Using steered molecular dynamics, external forces were applied to individual atoms of the clay surface, and the response of the model was studied. The displacement versus applied stress and stress versus strain relationships of various parts of the interlayer were studied. The paper describes the construction of the model, the simulation procedure, and results of the simulations. Some results of the previous work are further interpreted in the light of the current research. The simulations provide quantitative stress deformation relationships as well as an insight into the molecular interactions taking place between the clay surface and interlayer water and cations.

  12. What Is Psychosis?

    MedlinePlus

    ... our Questions & Answers page. Share Science News About Schizophrenia Disorders Share Molecular Signatures March 1, 2018 Molecular ... Dish as in Brain August 18, 2017 More Schizophrenia Research Clinical Trials: Current Studies on Schizophrenia PubMed: ...

  13. A simple molecular orbital treatment of current distributions in quantum transport through molecular junctions

    NASA Astrophysics Data System (ADS)

    Jhan, Sin-Mu; Jin, Bih-Yaw

    2017-11-01

    A simple molecular orbital treatment of local current distributions inside single molecular junctions is developed in this paper. Using the first-order perturbation theory and nonequilibrium Green's function techniques in the framework of Hückel theory, we show that the leading contributions to local current distributions are directly proportional to the off-diagonal elements of transition density matrices. Under the orbital approximation, the major contributions to local currents come from a few dominant molecular orbital pairs which are mixed by the interactions between the molecule and electrodes. A few simple molecular junctions consisting of single- and multi-ring conjugated systems are used to demonstrate that local current distributions inside molecular junctions can be decomposed by partial sums of a few leading contributing transition density matrices.

  14. Questions and Answers about Psychosis

    MedlinePlus

    ... they received effective services. Share Science News About Schizophrenia Disorders Share Molecular Signatures March 1, 2018 Molecular ... Dish as in Brain August 18, 2017 More Schizophrenia Research Clinical Trials: Current Studies on Schizophrenia PubMed: ...

  15. Genetic Breeding and Diversity of the Genus Passiflora: Progress and Perspectives in Molecular and Genetic Studies

    PubMed Central

    Cerqueira-Silva, Carlos Bernard M.; Jesus, Onildo N.; Santos, Elisa S. L.; Corrêa, Ronan X.; Souza, Anete P.

    2014-01-01

    Despite the ecological and economic importance of passion fruit (Passiflora spp.), molecular markers have only recently been utilized in genetic studies of this genus. In addition, both basic genetic researches related to population studies and pre-breeding programs of passion fruit remain scarce for most Passiflora species. Considering the number of Passiflora species and the increasing use of these species as a resource for ornamental, medicinal, and food purposes, the aims of this review are the following: (i) to present the current condition of the passion fruit crop; (ii) to quantify the applications and effects of using molecular markers in studies of Passiflora; (iii) to present the contributions of genetic engineering for passion fruit culture; and (iv) to discuss the progress and perspectives of this research. Thus, the present review aims to summarize and discuss the relationship between historical and current progress on the culture, breeding, and molecular genetics of passion fruit. PMID:25196515

  16. Measuring molecular biomarkers in epidemiologic studies: laboratory techniques and biospecimen considerations.

    PubMed

    Erickson, Heidi S

    2012-09-28

    The future of personalized medicine depends on the ability to efficiently and rapidly elucidate a reliable set of disease-specific molecular biomarkers. High-throughput molecular biomarker analysis methods have been developed to identify disease risk, diagnostic, prognostic, and therapeutic targets in human clinical samples. Currently, high throughput screening allows us to analyze thousands of markers from one sample or one marker from thousands of samples and will eventually allow us to analyze thousands of markers from thousands of samples. Unfortunately, the inherent nature of current high throughput methodologies, clinical specimens, and cost of analysis is often prohibitive for extensive high throughput biomarker analysis. This review summarizes the current state of high throughput biomarker screening of clinical specimens applicable to genetic epidemiology and longitudinal population-based studies with a focus on considerations related to biospecimens, laboratory techniques, and sample pooling. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Establishment of replacement batches for heparin low-molecular-mass for calibration CRS, and the International Standard Low Molecular Weight Heparin for Calibration.

    PubMed

    Mulloy, B; Heath, A; Behr-Gross, M-E

    2007-12-01

    An international collaborative study involving fourteen laboratories has taken place, organised by the European Directorate for the Quality of Medicines & HealthCare (EDQM) with National Institute for Biological Standards & Control (NIBSC) (in its capacity as a World Health Organisation (WHO) Laboratory for Biological Standardisation) to provide supporting data for the establishment of replacement batches of Heparin Low-Molecular-Mass (LMM) for Calibration Chemical Reference Substance (CRS), and of the International Reference Reagent (IRR) Low Molecular Weight Heparin for Molecular Weight Calibration. A batch of low-molecular-mass heparin was donated to the organisers and candidate preparations of freeze-dried heparin were produced at NIBSC and EDQM. The establishment study was organised in two phases: a prequalification (phase 1, performed in 3 laboratories in 2005) followed by an international collaborative study (phase 2). In phase 2, started in March 2006, molecular mass parameters were determined for seven different LMM heparin samples using the current CRS batch and two batches of candidate replacement material with a defined number average relative molecular mass (Mn) of 3,700, determined in phase 1. The values calculated using the candidates as standard were systematically different from values calculated using the current batch with its assigned number-average molecular mass (Mna) of 3,700. Using raw data supplied by participants, molecular mass parameters were recalculated using the candidates as standard with values for Mna of 3,800 and 3,900. Values for these parameters agreed more closely with those calculated using the current batch supporting the fact that the candidates, though similar to batch 1 in view of the production processes used, differ slightly in terms of molecular mass distribution. Therefore establishment of the candidates was recommended with an assigned Mna value of 3,800 that is both consistent with phase 1 results and guarantees continuity with the current CRS batch. In phase 2, participants also determined molecular weight parameters for the seven different LMM heparin samples using both the 1st IRR (90/686) and its Broad Standard Table and the candidate World Health Organization (WHO) 2nd International Standard (05/112) (2nd IS) using a Broad Standard Table established in phase 1. Mean molecular weights calculated using 2nd IS were slightly higher than with 1st IRR, and participants in the study indicated that this systematic difference precluded establishment of 2nd IS with the table supplied. A replacement Broad Standard Table has been devised on the basis of the central recalculations of raw data supplied by participants; this table gives improved agreement between values derived using the 1st IRR and the candidate 2nd IS. On the basis of this study a recommendation was made for the establishment of 2nd IS and its proposed Broad Standard Table as a replacement for the 1st International Reference Reagent Low Molecular Weight Heparin for Molecular Weight Calibration. Unlike the 1st IRR however, the candidate material 2nd IS is not suitable for use with the method of Nielsen. The candidate materials were established as heparin low-molecular-mass for calibration batches 2 and 3 by the Ph. Eur. Commission in March 2007 and as 2nd IS low-molecular-weight heparin for molecular weight calibration (05/112) by the Expert Committee on Biological Standardization in November 2007.

  18. Short-period (AlAs)(GaAs) superlattice lasers grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blood, P.; Fletcher, E.D.; Foxon, C.T.

    1988-07-25

    We have used short-period all-binary (AlAs)(GaAs) superlattices with layers as thin as three monolayers to synthesize the barrier and cladding regions of GaAs quantum well lasers grown by molecular beam epitaxy. By studying the threshold current of single- and double-well devices as a function of cavity length and temperature, we conclude that the optical scattering losses are very low, that the gain-current characteristics are similar to alloy barrier devices, and that there is evidence for current leakage by recombination in the barriers.

  19. Topography and transport properties of oligo(phenylene ethynylene) molecular wires studied by scanning tunneling microscopy

    NASA Technical Reports Server (NTRS)

    Dholakia, Geetha R.; Fan, Wendy; Koehne, Jessica; Han, Jie; Meyyappan, M.

    2003-01-01

    Conjugated phenylene(ethynylene) molecular wires are of interest as potential candidates for molecular electronic devices. Scanning tunneling microscopic study of the topography and current-voltage (I-V) characteristics of self-assembled monolayers of two types of molecular wires are presented here. The study shows that the topography and I-Vs, for small scan voltages, of the two wires are quite similar and that the electronic and structural changes introduced by the substitution of an electronegative N atom in the central phenyl ring of these wires does not significantly alter the self-assembly or the transport properties.

  20. Numerical Studies of Friction Between Metallic Surfaces and of its Dependence on Electric Currents

    NASA Astrophysics Data System (ADS)

    Meintanis, Evangelos; Marder, Michael

    2009-03-01

    We will present molecular dynamics simulations that explore the frictional mechanisms between clean metallic surfaces. We employ the HOLA molecular dynamics code to run slider-on-block experiments. Both objects are allowed to evolve freely. We recover realistic coefficients of friction and verify the importance of cold-welding and plastic deformations in dry sliding friction. We also find that plastic deformations can significantly affect both objects, despite a difference in hardness. Metallic contacts have significant technological applications in the transmission of electric currents. To explore the effects of the latter to sliding, we had to integrate an electrodynamics solver into the molecular dynamics code. The disparate time scales involved posed a challenge, but we have developed an efficient scheme for such an integration. A limited electrodynamic solver has been implemented and we are currently exploring the effects of currents in the friction and wear of metallic contacts.

  1. Laboratory Information Systems in Molecular Diagnostics: Why Molecular Diagnostics Data are Different.

    PubMed

    Lee, Roy E; Henricks, Walter H; Sirintrapun, Sahussapont J

    2016-03-01

    Molecular diagnostic testing presents new challenges to information management that are yet to be sufficiently addressed by currently available information systems for the molecular laboratory. These challenges relate to unique aspects of molecular genetic testing: molecular test ordering, informed consent issues, diverse specimen types that encompass the full breadth of specimens handled by traditional anatomic and clinical pathology information systems, data structures and data elements specific to molecular testing, varied testing workflows and protocols, diverse instrument outputs, unique needs and requirements of molecular test reporting, and nuances related to the dissemination of molecular pathology test reports. By satisfactorily addressing these needs in molecular test data management, a laboratory information system designed for the unique needs of molecular diagnostics presents a compelling reason to migrate away from the current paper and spreadsheet information management that many molecular laboratories currently use. This paper reviews the issues and challenges of information management in the molecular diagnostics laboratory.

  2. Nottingham Prognostic Index Plus (NPI+): a modern clinical decision making tool in breast cancer.

    PubMed

    Rakha, E A; Soria, D; Green, A R; Lemetre, C; Powe, D G; Nolan, C C; Garibaldi, J M; Ball, G; Ellis, I O

    2014-04-02

    Current management of breast cancer (BC) relies on risk stratification based on well-defined clinicopathologic factors. Global gene expression profiling studies have demonstrated that BC comprises distinct molecular classes with clinical relevance. In this study, we hypothesised that molecular features of BC are a key driver of tumour behaviour and when coupled with a novel and bespoke application of established clinicopathologic prognostic variables can predict both clinical outcome and relevant therapeutic options more accurately than existing methods. In the current study, a comprehensive panel of biomarkers with relevance to BC was applied to a large and well-characterised series of BC, using immunohistochemistry and different multivariate clustering techniques, to identify the key molecular classes. Subsequently, each class was further stratified using a set of well-defined prognostic clinicopathologic variables. These variables were combined in formulae to prognostically stratify different molecular classes, collectively known as the Nottingham Prognostic Index Plus (NPI+). The NPI+ was then used to predict outcome in the different molecular classes. Seven core molecular classes were identified using a selective panel of 10 biomarkers. Incorporation of clinicopathologic variables in a second-stage analysis resulted in identification of distinct prognostic groups within each molecular class (NPI+). Outcome analysis showed that using the bespoke NPI formulae for each biological BC class provides improved patient outcome stratification superior to the traditional NPI. This study provides proof-of-principle evidence for the use of NPI+ in supporting improved individualised clinical decision making.

  3. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  4. Preoperative Molecular Markers in Thyroid Nodules.

    PubMed

    Sahli, Zeyad T; Smith, Philip W; Umbricht, Christopher B; Zeiger, Martha A

    2018-01-01

    The need for distinguishing benign from malignant thyroid nodules has led to the pursuit of differentiating molecular markers. The most common molecular tests in clinical use are Afirma ® Gene Expression Classifier (GEC) and Thyroseq ® V2. Despite the rapidly developing field of molecular markers, several limitations exist. These challenges include the recent introduction of the histopathological diagnosis "Non-Invasive Follicular Thyroid neoplasm with Papillary-like nuclear features", the correlation of genetic mutations within both benign and malignant pathologic diagnoses, the lack of follow-up of molecular marker negative nodules, and the cost-effectiveness of molecular markers. In this manuscript, we review the current published literature surrounding the diagnostic value of Afirma ® GEC and Thyroseq ® V2. Among Afirma ® GEC studies, sensitivity (Se), specificity (Sp), positive predictive value (PPV), and negative predictive value (NPV) ranged from 75 to 100%, 5 to 53%, 13 to 100%, and 20 to 100%, respectively. Among Thyroseq ® V2 studies, Se, Sp, PPV, and NPV ranged from 40 to 100%, 56 to 93%, 13 to 90%, and 48 to 97%, respectively. We also discuss current challenges to Afirma ® GEC and Thyroseq ® V2 utility and clinical application, and preview the future directions of these rapidly developing technologies.

  5. Mapping reversible photoswitching of molecular-resistance fluctuations during the conformational transformation of azobenzene-terminated molecular switches.

    PubMed

    Cho, Duckhyung; Yang, Myungjae; Shin, Narae; Hong, Seunghun

    2018-06-07

    We report a direct mapping and analysis of electrical noise in azobenzene-terminated molecular monolayers, revealing reversible photoswitching of the molecular-resistance fluctuations in the layers. In this work, a conducting atomic force microscope combined with a homemade spectrum analyzer was used to image electrical current and noise at patterned self-assembled monolayers (SAMs) of azobenzene-terminated molecular wires on a gold substrate. We analyzed the current and noise imaging data to obtain maps of molecular resistances and amount of mean-square fluctuations in the resistances of the regions of trans-azobenzene and a cis/trans-azobenzene mixture. We revealed that the fluctuations in the molecular resistances in the SAMs were enhanced after the trans-to-cis isomerization, while the resistances were reduced. This result could be attributed to enhanced disorders in the molecular arrangements in the cis-SAMs. Furthermore, we observed that the changes in the resistance fluctuations were reversible with respect to repeated trans-to-cis and cis-to-trans isomerizations, indicating that the effects originated from reversible photoswitching of the molecular structures rather than irreversible damages of the molecules. These findings provide valuable insights into the electrical fluctuations in photoswitchable molecules, which could be utilized in further studies on molecular switches and molecular electronics in general. © 2018 IOP Publishing Ltd.

  6. Molecular genetics and genomics generate new insights into invertebrate pest invasions.

    PubMed

    Kirk, Heather; Dorn, Silvia; Mazzi, Dominique

    2013-07-01

    Invertebrate pest invasions and outbreaks are associated with high social, economic, and ecological costs, and their significance will intensify with an increasing pressure on agricultural productivity as a result of human population growth and climate change. New molecular genetic and genomic techniques are available and accessible, but have been grossly underutilized in studies of invertebrate pest invasions, despite that they are useful tools for applied pest management and for understanding fundamental features of pest invasions including pest population demographics and adaptation of pests to novel and/or changing environments. Here, we review current applications of molecular genetics and genomics in the study of invertebrate pest invasions and outbreaks, and we highlight shortcomings from the current body of research. We then discuss recent conceptual and methodological advances in the areas of molecular genetics/genomics and data analysis, and we highlight how these advances will further our understanding of the demographic, ecological, and evolutionary features of invertebrate pest invasions. We are now well equipped to use molecular data to understand invertebrate dispersal and adaptation, and this knowledge has valuable applications in agriculture at a time when these are critically required.

  7. Diversity in parasitic helminths of Australasian marsupials and monotremes: a molecular perspective.

    PubMed

    Beveridge, Ian; Gasser, Robin B

    2014-10-15

    Marsupials and monotremes are a prominent part of the mammalian fauna in Australia, and harbour an extremely diverse and highly distinctive array of helminth parasites. Their study has been relatively neglected, likely because they have no direct, adverse socioeconomic impact. As the body plans of helminths generally are very simple and morphological characterisation likely underestimates true diversity, molecular tools have been employed to assess genetic diversity. Using biochemical and/or molecular methods, recent studies show extensive diversity in helminths of marsupials, with cryptic species being commonly encountered. The purpose of this article is to review current knowledge about the diversity of parasitic helminths of marsupials and monotremes, to raise questions as to whether current molecular data can be used to estimate diversity, what mechanisms lead to such diversity, to critically appraise the molecular tools that have been employed thus far to explore diversity and to discuss the directions which might be taken in the future employing improved techniques. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  8. On simulation of local fluxes in molecular junctions

    NASA Astrophysics Data System (ADS)

    Cabra, Gabriel; Jensen, Anders; Galperin, Michael

    2018-05-01

    We present a pedagogical review of the current density simulation in molecular junction models indicating its advantages and deficiencies in analysis of local junction transport characteristics. In particular, we argue that current density is a universal tool which provides more information than traditionally simulated bond currents, especially when discussing inelastic processes. However, current density simulations are sensitive to the choice of basis and electronic structure method. We note that while discussing the local current conservation in junctions, one has to account for the source term caused by the open character of the system and intra-molecular interactions. Our considerations are illustrated with numerical simulations of a benzenedithiol molecular junction.

  9. First-principles study of the variation of electron transport in a single molecular junction with the length of the molecular wire

    NASA Astrophysics Data System (ADS)

    Pal, Partha Pratim; Pati, Ranjit

    2010-07-01

    We report a first-principles study of quantum transport in a prototype two-terminal device consisting of a molecular nanowire acting as an inter-connect between two gold electrodes. The wire is composed of a series of bicyclo[1.1.1]pentane (BCP) cage-units. The length of the wire (L) is increased by sequentially increasing the number of BCP cage units in the wire from 1 to 3. A two terminal model device is made out of each of the three wires. A parameter free, nonequilibrium Green’s function approach, in which the bias effect is explicitly included within a many body framework, is used to calculate the current-voltage characteristics of each of the devices. In the low bias regime that is considered in our study, the molecular devices are found to exhibit Ohmic behavior with resistances of 0.12, 1.4, and 6.5μΩ for the wires containing one, two, and three cages respectively. Thus the conductance value, Gc , which is the reciprocal of resistance, decreases as e-βL with a decay constant (β) of 0.59Å-1 . This observed variation of conductance with the length of the wire is in excellent agreement with the earlier reported exponential decay feature of the electron transfer rate predicted from the electron transfer coupling matrix values obtained using the two-state Marcus-Hush model and the Koopman’s theorem approximation. The downright suppression of the computed electrical current for a bias up to 0.4 V in the longest wire can be exploited in designing a three terminal molecular transistor; this molecular wire could potentially be used as a throttle to avoid leakage gate current.

  10. Molecular Pathology and Personalized Medicine: The Dawn of a New Era in Companion Diagnostics-Practical Considerations about Companion Diagnostics for Non-Small-Cell-Lung-Cancer.

    PubMed

    Plönes, Till; Engel-Riedel, Walburga; Stoelben, Erich; Limmroth, Christina; Schildgen, Oliver; Schildgen, Verena

    2016-01-15

    Companion diagnostics (CDx) have become a major tool in molecular pathology and assist in therapy decisions in an increasing number of various cancers. Particularly, the developments in lung cancer have been most impressing in the last decade and consequently lung cancer mutation testing and molecular profiling has become a major business of diagnostic laboratories. However, it has become difficult to decide which biomarkers are currently relevant for therapy decisions, as many of the new biomarkers are not yet approved as therapy targets, remain in the status of clinical studies, or still have not left the experimental phase. The current review is focussed on those markers that do have current therapy implications, practical implications arising from the respective companion diagnostics, and thus is focused on daily practice.

  11. Gate-controlled current and inelastic electron tunneling spectrum of benzene: a self-consistent study.

    PubMed

    Liang, Y Y; Chen, H; Mizuseki, H; Kawazoe, Y

    2011-04-14

    We use density functional theory based nonequilibrium Green's function to self-consistently study the current through the 1,4-benzenedithiol (BDT). The elastic and inelastic tunneling properties through this Au-BDT-Au molecular junction are simulated, respectively. For the elastic tunneling case, it is found that the current through the tilted molecule can be modulated effectively by the external gate field, which is perpendicular to the phenyl ring. The gate voltage amplification comes from the modulation of the interaction between the electrodes and the molecules in the junctions. For the inelastic case, the electron tunneling scattered by the molecular vibrational modes is considered within the self-consistent Born approximation scheme, and the inelastic electron tunneling spectrum is calculated.

  12. Electronic and transport properties of a molecular junction with asymmetric contacts.

    PubMed

    Tsai, M-H; Lu, T-H

    2010-02-10

    Asymmetric molecular junctions have been shown experimentally to exhibit a dual-conductance transport property with a pulse-like current-voltage characteristic, by Reed and co-workers. Using a recently developed first-principles integrated piecewise thermal equilibrium current calculation method and a gold-benzene-1-olate-4-thiolate-gold model molecular junction, this unusual transport property has been reproduced. Analysis of the electrostatics and the electronic structure reveals that the high-current state results from subtle bias induced charge transfer at the electrode-molecule contacts that raises molecular orbital energies and enhances the current-contributing molecular density of states and the probabilities of resonance tunneling of conduction electrons from one electrode to another.

  13. How molecular epidemiology studies can support the National Malaria Control Program in Papua New Guinea.

    PubMed

    Koepfli, Cristian; Barry, Alyssa; Javati, Sarah; Timinao, Lincoln; Nate, Elma; Mueller, Ivo; Barnadas, Celine

    2014-01-01

    Papua New Guinea (PNG) is undertaking intensified efforts to control malaria. The National Malaria Control Program aims to reduce the burden of disease by large-scale distribution of insecticide-treated bednets, improved diagnosis and implementation of new treatments. A scientific program monitoring the effect of these interventions, including molecular epidemiology studies, closely accompanies the program. Laboratory assays have been developed in (or transferred to) PNG to measure prevalence of infection and intensity of transmission as well as potential resistance to currently used drugs. These assays help to assess the impact of the National Malaria Control Program, and they reveal a much clearer picture of malaria epidemiology in PNG. In addition, analysis of the geographical clustering of parasites aids in selecting areas where intensified control will be most successful. This paper gives an overview of current research and recently completed studies in the molecular epidemiology of malaria conducted in Papua New Guinea.

  14. Prohibitin as the Molecular Binding Switch in the Retinal Pigment Epithelium.

    PubMed

    Sripathi, Srinivas R; Sylvester, O'Donnell; He, Weilue; Moser, Trevor; Um, Ji-Yeon; Lamoke, Folami; Ramakrishna, Wusirika; Bernstein, Paul S; Bartoli, Manuela; Jahng, Wan Jin

    2016-02-01

    Previously, our molecular binding study showed that prohibitin interacts with phospholipids, including phosphatidylinositide and cardiolipin. Under stress conditions, prohibitin interacts with cardiolipin as a retrograde response to activate mitochondrial proliferation. The lipid-binding switch mechanism of prohibitin with phosphatidylinositol-3,4,5-triphosphate and cardiolipin may suggest the role of prohibitin effects on energy metabolism and age-related diseases. The current study examined the region-specific expressions of prohibitin with respect to the retina and retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). A detailed understanding of prohibitin binding with lipids, nucleotides, and proteins shown in the current study may suggest how molecular interactions control apoptosis and how we can intervene against the apoptotic pathway in AMD. Our data imply that decreased prohibitin in the peripheral RPE is a significant step leading to mitochondrial dysfunction that may promote AMD progression.

  15. Molecular virology of feline calicivirus.

    PubMed

    Pesavento, Patricia A; Chang, Kyeong-Ok; Parker, John S L

    2008-07-01

    Caliciviridae are small, nonenveloped, positive-stranded RNA viruses. Much of our understanding of the molecular biology of the caliciviruses has come from the study of the naturally occurring animal caliciviruses. In particular, many studies have focused on the molecular virology of feline calicivirus (FCV), which reflects its importance as a natural pathogen of cats. FCVs demonstrate a remarkable capacity for high genetic, antigenic, and clinical diversity; "outbreak" vaccine resistant strains occur frequently. This article updates the reader on the current status of clinical behavior and pathogenesis of FCV.

  16. Molecular chaperones in Parkinson's disease--present and future.

    PubMed

    Ebrahimi-Fakhari, Darius; Wahlster, Lara; McLean, Pamela J

    2011-01-01

    Parkinson's disease, like many other neurodegenerative disorders, is characterized by the progressive accumulation of pathogenic protein species and the formation of intracellular inclusion bodies. The cascade by which the small synaptic protein α-synuclein misfolds to form distinctive protein aggregates, termed Lewy bodies and Lewy neurites, has been the subject of intensive research for more than a decade. Genetic and pathological studies in Parkinson's disease patients as well as experimental studies in disease models have clearly established altered protein metabolism as a key element in the pathogenesis of Parkinson's disease. Alterations in protein metabolism include misfolding and aggregation, post-translational modification and dysfunctional degradation of cytotoxic protein species. Protein folding and re-folding are both mediated by a highly conserved network of molecules, called molecular chaperones and co-chaperones. In addition to the regulatory role in protein folding, molecular chaperone function is intimately associated with pathways of protein degradation, such as the ubiquitin-proteasome system and the autophagy-lysosomal pathway, to effectively remove irreversibly misfolded proteins. Because of the central role of molecular chaperones in maintaining protein homeostasis, we herein review our current knowledge on the involvement of molecular chaperones and co-chaperones in Parkinson's disease. We further discuss the capacity of molecular chaperones to prevent or modulate neurodegeneration, an important concept for future neuroprotective strategies and summarize the current progress in preclinical studies in models of Parkinson's disease and other neurodegenerative disorders. Finally we include a discussion on the future potential of using molecular chaperones as a disease modifying therapy.

  17. Development of a Submillimeter Multipass Spectrometer for the Study of Molecular Ions

    NASA Astrophysics Data System (ADS)

    Carroll, A.; Rocher, B.; Laas, J. C.; Deprince, B. A.; Hays, B.; Weaver, S. L. Widicus; Lang, S.

    2012-06-01

    We have developed a multipass spectrometer for the submillimeter spectral region that is being used to study molecular ions through gas phase spectroscopy. The optical configuration is based on the design of Perry and coworkers that was implemented in the optical regime. To our knowledge, this is the first implementation of this optical configuration at long wavelengths. The setup involves two nearly concentric spherical mirrors that focus the multiple beam passes into a small area, or ``waist'', in the middle of the sample chamber. A supersonic molecular beam is coupled to the setup so that the molecular beam crosses the optical path at the waist. Initial studies have focused on neutral test molecules to probe the physical properties of the molecular beam under various arrangements of the molecular source relative to the optical path. Current studies focus on coupling a plasma discharge source to the setup to enable the study of molecular ions. Here we present the design of this instrument, compare the spectrometer capabilities to a traditional single pass spectrometer, and discuss the results of initial spectroscopic studies.

  18. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    DOE PAGES

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; ...

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K +/Na + molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showedmore » that the GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K +/Na + molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K +/Na + molar ratio increases.« less

  19. Molecular biology of gastroesophageal cancers: opportunities and challenges.

    PubMed

    Khan, Shaheer; Mikhail, Sameh; Xiu, Joanne; Salem, Mohamed E

    2017-01-01

    Gastroesophageal (GE) malignancies make up a significant and growing segment of newly diagnosed cancers. Approximately 80% of patients who have GE cancers die within 5 years of diagnosis, which means that effective treatments for these malignancies need to be found. Currently, targeted therapies have a minimal role in this disease group. Intensive study of the molecular biology of GE cancers is a relatively new and ongoing venture, but it has already led to a significant increase in our understanding of these malignancies. This understanding, although still limited, has the potential to enhance our ability to develop targeted therapies in conjunction with the ability to identify actionable gene mutations and perform genomic profiling to predict drug resistance. Several cell surface growth factor receptors have been found to play a prominent role in GE cancer cell signaling. This discovery has led to the approval of 2 agents within the last few years: trastuzumab, an anti-human epidermal growth factor receptor 2 (HER2) monoclonal antibody used in the first-line treatment of HER2-positive GE cancers, and ramucirumab, an anti-vascular endothelial growth factor receptor 2 (VEGFR2) monoclonal antibody that is currently used in later lines of therapy. This review discusses the current state of molecular testing in GE cancers, along with the known molecular biology and current and investigational treatments. The development of trastuzumab and ramucirumab represents a significant advance in our ability to make use of GE tumor molecular profiles. As our understanding of the impact of molecular aberrations on drug effectiveness and disease outcomes increases, we anticipate improved therapy for patients with GE cancers.

  20. Insulator charging limits direct current across tunneling metal-insulator-semiconductor junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilan, Ayelet

    Molecular electronics studies how the molecular nature affects the probability of charge carriers to tunnel through the molecules. Nevertheless, transport is also critically affected by the contacts to the molecules, an aspect that is often overlooked. Specifically, the limited ability of non-metallic contacts to maintain the required charge balance across the fairly insulating molecule often have dramatic effects. This paper shows that in the case of lead/organic monolayer-silicon junctions, a charge balance is responsible for an unusual current scaling, with the junction diameter (perimeter), rather than its area. This is attributed to the balance between the 2D charging at themore » metal/insulator interface and the 3D charging of the semiconductor space-charge region. A derivative method is developed to quantify transport across tunneling metal-insulator-semiconductor junctions; this enables separating the tunneling barrier from the space-charge barrier for a given current-voltage curve, without complementary measurements. The paper provides practical tools to analyze specific molecular junctions compatible with existing silicon technology, and demonstrates the importance of contacts' physics in modeling charge transport across molecular junctions.« less

  1. Bipolar Cascade Vertical-Cavity Surface-Emitting Lasers for RF Photonic Link Applications

    DTIC Science & Technology

    2007-09-01

    6 IV Current versus Voltage . . . . . . . . . . . . . . . . . . . . . 7 MBE Molecular Beam Epitaxy ...of carrying maximum photocur- rent. Numerous material parameters have been studied. Growth parameters for molecular beam epitaxy (MBE), metal-organic...12 MOCVD Metal-Organic Chemical Vapor Deposition . . . . . . . . . . 12 CBE Chemical Beam Epitaxy . . . . . . . . . . . . . . . . . . . . 12 LPE

  2. Molecular and biometric assessment of Myzodium mimulicola (Drew & Sampson) (Hemiptera, Aphididae), new synonymy, host, and distributional data

    USDA-ARS?s Scientific Manuscript database

    Molecular and biometric assessment and subsequent redescription of Myzodium mimulicola (Drew & Sampson) is provided. New host and distributional data for North America are presented, including the first record from Alaska. The current study determined that Myzodium knowltoni (Smith & Robinson) is a ...

  3. Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries

    PubMed Central

    Li, Qi; Tan, Shen; Li, Linlin; Lu, Yingying; He, Yi

    2017-01-01

    High energy and safe electrochemical storage are critical components in multiple emerging fields of technologies. Rechargeable lithium-metal batteries are considered to be promising alternatives for current lithium-ion batteries, leading to as much as a 10-fold improvement in anode storage capacity (from 372 to 3860 mAh g−1). One of the major challenges for commercializing lithium-metal batteries is the reliability and safety issue, which is often associated with uneven lithium electrodeposition (lithium dendrites) during the charging stage of the battery cycling process. We report that stable lithium-metal batteries can be achieved by simply charging cells with square-wave pulse current. We investigated the effects of charging period and frequency as well as the mechanisms that govern this process at the molecular level. Molecular simulations were performed to study the diffusion and the solvation structure of lithium cations (Li+) in bulk electrolyte. The model predicts that loose association between cations and anions can enhance the transport of Li+ and eventually stabilize the lithium electrodeposition. We also performed galvanostatic measurements to evaluate the cycling behavior and cell lifetime under pulsed electric field and found that the cell lifetime can be more than doubled using certain pulse current waveforms. Both experimental and simulation results demonstrate that the effectiveness of pulse current charging on dendrite suppression can be optimized by choosing proper time- and frequency-dependent pulses. This work provides a molecular basis for understanding the mechanisms of pulse current charging to mitigating lithium dendrites and designing pulse current waveforms for stable lithium-metal batteries. PMID:28776039

  4. GENE-07. MOLECULAR NEUROPATHOLOGY 2.0 - INCREASING DIAGNOSTIC ACCURACY IN PEDIATRIC NEUROONCOLOGY

    PubMed Central

    Sturm, Dominik; Jones, David T.W.; Capper, David; Sahm, Felix; von Deimling, Andreas; Rutkoswki, Stefan; Warmuth-Metz, Monika; Bison, Brigitte; Gessi, Marco; Pietsch, Torsten; Pfister, Stefan M.

    2017-01-01

    Abstract The classification of central nervous system (CNS) tumors into clinically and biologically distinct entities and subgroups is challenging. Children and adolescents can be affected by >100 histological variants with very variable outcomes, some of which are exceedingly rare. The current WHO classification has introduced a number of novel molecular markers to aid routine neuropathological diagnostics, and DNA methylation profiling is emerging as a powerful tool to distinguish CNS tumor classes. The Molecular Neuropathology 2.0 study aims to integrate genome wide (epi-)genetic diagnostics with reference neuropathological assessment for all newly-diagnosed pediatric brain tumors in Germany. To date, >350 patients have been enrolled. A molecular diagnosis is established by epigenetic tumor classification through DNA methylation profiling and targeted panel sequencing of >130 genes to detect diagnostically and/or therapeutically useful DNA mutations, structural alterations, and fusion events. Results are aligned with the reference neuropathological diagnosis, and discrepant findings are discussed in a multi-disciplinary tumor board including reference neuroradiological evaluation. Ten FFPE sections as input material are sufficient to establish a molecular diagnosis in >95% of tumors. Alignment with reference pathology results in four broad categories: a) concordant classification (~77%), b) discrepant classification resolvable by tumor board discussion and/or additional data (~5%), c) discrepant classification without currently available options to resolve (~8%), and d) cases currently unclassifiable by molecular diagnostics (~10%). Discrepancies are enriched in certain histopathological entities, such as histological high grade gliomas with a molecularly low grade profile. Gene panel sequencing reveals predisposing germline events in ~10% of patients. Genome wide (epi-)genetic analyses add a valuable layer of information to routine neuropathological diagnostics. Our study provides insight into CNS tumors with divergent histopathological and molecular classification, opening new avenues for research discoveries and facilitating optimization of clinical management for affected patients in the future.

  5. The promise of molecular epidemiology in defining the association between radiation and cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neta, R.

    2000-07-01

    Molecular epidemiology involves the inclusion in epidemiologic studies of biologic measurements made at a genetic and molecular level and aims to improve the current knowledge of disease etiology and risk. One of the goals of molecular epidemiology studies of cancer is to determine the role of environmental and genetic factors in initiation and progression of malignancies and to use this knowledge to develop preventive strategies. This approach promises extraordinary opportunities for revolutionizing the practice of medicine and reducing risk. However, this will be accompanied by the need to address and resolve many challenges, such as ensuring the appropriate interpretation ofmore » molecular testing and resolving associated ethical, legal, and social issues. Traditional epidemiologic approaches determined that exposure to ionizing radiation poses significantly increased risk of leukemia and several other types of cancer. Such studies provided the basis for setting exposure standards to protect the public and the workforce from potentially adverse effects of ionizing radiation. These standards were set by using modeling approaches to extrapolate from the biological effects observed in high-dose radiation studies to predicted, but mostly immeasurable, effects at low radiation doses. It is anticipated that the addition of the molecular parameters to the population-based studies will help identify the genes and pathways characteristic of cancers due to radiation exposure of individuals, as well as identify susceptible or resistant subpopulations. In turn, the information about the molecular mechanisms should aid to improve risk assessment. While studies on radiogenic concerns are currently limited to only a few candidate genes, the exponential growth of scientific knowledge and technology promises expansion of knowledge about identity of participating genes and pathways in the future. This article is meant to provide an introductory overview of recent advances in understanding of carcinogenesis at the molecular level, with an emphasis of the aspects that may be of use in establishing the association between radiation and cancer.« less

  6. Molecular evolution tracks macroevolutionary transitions in Cetacea.

    PubMed

    McGowen, Michael R; Gatesy, John; Wildman, Derek E

    2014-06-01

    Cetacea (whales, dolphins, and porpoises) is a model group for investigating the molecular signature of macroevolutionary transitions. Recent research has begun to reveal the molecular underpinnings of the remarkable anatomical and behavioral transformation in this clade. This shift from terrestrial to aquatic environments is arguably the best-understood major morphological transition in vertebrate evolution. The ancestral body plan and physiology were extensively modified and, in many cases, these crucial changes are recorded in cetacean genomes. Recent studies have highlighted cetaceans as central to understanding adaptive molecular convergence and pseudogene formation. Here, we review current research in cetacean molecular evolution and the potential of Cetacea as a model for the study of other macroevolutionary transitions from a genomic perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Molecular markers in pediatric neuro-oncology.

    PubMed

    Ichimura, Koichi; Nishikawa, Ryo; Matsutani, Masao

    2012-09-01

    Pediatric molecular neuro-oncology is a fast developing field. A multitude of molecular profiling studies in recent years has unveiled a number of genetic abnormalities unique to pediatric brain tumors. It has now become clear that brain tumors that arise in children have distinct pathogenesis and biology, compared with their adult counterparts, even for those with indistinguishable histopathology. Some of the molecular features are so specific to a particular type of tumors, such as the presence of the KIAA1549-BRAF fusion gene for pilocytic astrocytomas or SMARCB1 mutations for atypical teratoid/rhabdoid tumors, that they could practically serve as a diagnostic marker on their own. Expression profiling has resolved the existence of 4 molecular subgroups in medulloblastomas, which positively translated into improved prognostication for the patients. The currently available molecular markers, however, do not cover all tumors even within a single tumor entity. The molecular pathogenesis of a large number of pediatric brain tumors is still unaccounted for, and the hierarchy of tumors is likely to be more complex and intricate than currently acknowledged. One of the main tasks of future molecular analyses in pediatric neuro-oncology, including the ongoing genome sequencing efforts, is to elucidate the biological basis of those orphan tumors. The ultimate goal of molecular diagnostics is to accurately predict the clinical and biological behavior of any tumor by means of their molecular characteristics, which is hoped to eventually pave the way for individualized treatment.

  8. Soil Organic Matter (SOM): Molecular Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Amity

    Molecular simulation is a powerful tool used to gain an atomistic, molecular, and nanoscale level understanding of the structure, dynamics, and interactions from adsorption on minerals and assembly in aggregates of soil organic matter (SOM). Given the importance of SOM fate and persistence in soils and the current knowledge gaps, applications of atomistic scale simulations to study the complex compounds in SOM and their interactions in self-assembled aggregates composed of different organic matter compounds and with mineral surfaces of different types common in soils are few and far between. Here, we describe various molecular simulation methods that are currently inmore » use in various areas and applicable to SOM research, followed by a brief survey of specific applications to SOM research and an illustration with our own recent efforts in this area. We conclude with an outlook and the challenges for future research in this area.« less

  9. VIPER: Chronic Pain after Amputation: Inflammatory Mechanisms, Novel Analgesic Pathways, and Improved Patient Safety

    DTIC Science & Technology

    2017-10-01

    Through analysis of data obtained in the Molecular Signatures of Chronic Pain Subtypes study termed Veterans Integrated Pain Evaluation Research...immune cells (macrophages) to chronic pain while also evaluating novel analgesics in relevant animal models. The current proposal also attempts to...analysis of data obtained in the Molecular Signatures of Chronic Pain Subtypes study termed Veterans Integrated Pain Evaluation Research (VIPER

  10. Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales

    PubMed Central

    dos Reis, Mario; Thawornwattana, Yuttapong; Angelis, Konstantinos; Telford, Maximilian J.; Donoghue, Philip C.J.; Yang, Ziheng

    2015-01-01

    Summary The timing of divergences among metazoan lineages is integral to understanding the processes of animal evolution, placing the biological events of species divergences into the correct geological timeframe. Recent fossil discoveries and molecular clock dating studies have suggested a divergence of bilaterian phyla >100 million years before the Cambrian, when the first definite crown-bilaterian fossils occur. Most previous molecular clock dating studies, however, have suffered from limited data and biases in methodologies, and virtually all have failed to acknowledge the large uncertainties associated with the fossil record of early animals, leading to inconsistent estimates among studies. Here we use an unprecedented amount of molecular data, combined with four fossil calibration strategies (reflecting disparate and controversial interpretations of the metazoan fossil record) to obtain Bayesian estimates of metazoan divergence times. Our results indicate that the uncertain nature of ancient fossils and violations of the molecular clock impose a limit on the precision that can be achieved in estimates of ancient molecular timescales. For example, although we can assert that crown Metazoa originated during the Cryogenian (with most crown-bilaterian phyla diversifying during the Ediacaran), it is not possible with current data to pinpoint the divergence events with sufficient accuracy to test for correlations between geological and biological events in the history of animals. Although a Cryogenian origin of crown Metazoa agrees with current geological interpretations, the divergence dates of the bilaterians remain controversial. Thus, attempts to build evolutionary narratives of early animal evolution based on molecular clock timescales appear to be premature. PMID:26603774

  11. Treatment Algorithms Based on Tumor Molecular Profiling: The Essence of Precision Medicine Trials.

    PubMed

    Le Tourneau, Christophe; Kamal, Maud; Tsimberidou, Apostolia-Maria; Bedard, Philippe; Pierron, Gaëlle; Callens, Céline; Rouleau, Etienne; Vincent-Salomon, Anne; Servant, Nicolas; Alt, Marie; Rouzier, Roman; Paoletti, Xavier; Delattre, Olivier; Bièche, Ivan

    2016-04-01

    With the advent of high-throughput molecular technologies, several precision medicine (PM) studies are currently ongoing that include molecular screening programs and PM clinical trials. Molecular profiling programs establish the molecular profile of patients' tumors with the aim to guide therapy based on identified molecular alterations. The aim of prospective PM clinical trials is to assess the clinical utility of tumor molecular profiling and to determine whether treatment selection based on molecular alterations produces superior outcomes compared with unselected treatment. These trials use treatment algorithms to assign patients to specific targeted therapies based on tumor molecular alterations. These algorithms should be governed by fixed rules to ensure standardization and reproducibility. Here, we summarize key molecular, biological, and technical criteria that, in our view, should be addressed when establishing treatment algorithms based on tumor molecular profiling for PM trials. © The Author 2015. Published by Oxford University Press.

  12. The Glutamatergic Aspects of Schizophrenia Molecular Pathophysiology: Role of the Postsynaptic Density, and Implications for Treatment

    PubMed Central

    Iasevoli, Felice; Tomasetti, Carmine; Buonaguro, Elisabetta F.; de Bartolomeis, Andrea

    2014-01-01

    Schizophrenia is one of the most debilitating psychiatric diseases with a lifetime prevalence of approximately 1%. Although the specific molecular underpinnings of schizophrenia are still unknown, evidence has long linked its pathophysiology to postsynaptic abnormalities. The postsynaptic density (PSD) is among the molecular structures suggested to be potentially involved in schizophrenia. More specifically, the PSD is an electron-dense thickening of glutamatergic synapses, including ionotropic and metabotropic glutamate receptors, cytoskeletal and scaffolding proteins, and adhesion and signaling molecules. Being implicated in the postsynaptic signaling of multiple neurotransmitter systems, mostly dopamine and glutamate, the PSD constitutes an ideal candidate for studying dopamine-glutamate disturbances in schizophrenia. Recent evidence suggests that some PSD proteins, such as PSD-95, Shank, and Homer are implicated in severe behavioral disorders, including schizophrenia. These findings, further corroborated by genetic and animal studies of schizophrenia, offer new insights for the development of pharmacological strategies able to overcome the limitations in terms of efficacy and side effects of current schizophrenia treatment. Indeed, PSD proteins are now being considered as potential molecular targets against this devastating illness. The current paper reviews the most recent hypotheses on the molecular mechanisms underlying schizophrenia pathophysiology. First, we review glutamatergic dysfunctions in schizophrenia and we provide an update on postsynaptic molecules involvement in schizophrenia pathophysiology by addressing both human and animal studies. Finally, the possibility that PSD proteins may represent potential targets for new molecular interventions in psychosis will be discussed. PMID:24851087

  13. Development of the Molecular Adsorber Coating for Spacecraft and Instrument Interiors

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin

    2011-01-01

    On-orbit Molecular Contamination occurs when materials outgas and deposit onto very sensitive interior surfaces of the spacecraft and instruments. The current solution, Molecular Adsorber Pucks, has disadvantages, which are reviewed. A new innovative solution, Molecular Adsorber Coating (MAC), is currently being formulated, optimized, and tested. It is a sprayable alternative composed of Zeolite-based coating with adsorbing properties.

  14. Hierarchical equations of motion method applied to nonequilibrium heat transport in model molecular junctions: Transient heat current and high-order moments of the current operator

    NASA Astrophysics Data System (ADS)

    Song, Linze; Shi, Qiang

    2017-02-01

    We present a theoretical approach to study nonequilibrium quantum heat transport in molecular junctions described by a spin-boson type model. Based on the Feynman-Vernon path integral influence functional formalism, expressions for the average value and high-order moments of the heat current operators are derived, which are further obtained directly from the auxiliary density operators (ADOs) in the hierarchical equations of motion (HEOM) method. Distribution of the heat current is then derived from the high-order moments. As the HEOM method is nonperturbative and capable of treating non-Markovian system-environment interactions, the method can be applied to various problems of nonequilibrium quantum heat transport beyond the weak coupling regime.

  15. Conductance of three-terminal molecular bridge based on tight-binding theory

    NASA Astrophysics Data System (ADS)

    Wang, Li-Guang; Li, Yong; Yu, Ding-Wen; Katsunori, Tagami; Masaru, Tsukada

    2005-05-01

    The quantum transmission characteristic of three-benzene ring nano-molecular bridge is investigated theoretically by using Green's function approach based on tight-binding theory with only a π orbital per carbon atom at the site. The transmission probabilities that electrons transport through the molecular bridge from one terminal to the other two terminals are obtained. The electronic current distributions inside the molecular bridge are calculated and shown in graphical analogy by the current density method based on Fisher-Lee formula at the energy points E = ±0.42, ±1.06 and ±1.5, respectively, where the transmission spectra appear peaks. We find that the transmission spectra are related to the incident electronic energy and the molecular levels strongly and the current distributions agree well with Kirchhoff quantum current momentum conservation law.

  16. Non-equilibrium transport and spin dynamics in single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Moldoveanu, V.; Dinu, I. V.; Tanatar, B.

    2015-11-01

    The time-dependent transport through single-molecule magnets (SMM) coupled to magnetic or non-magnetic electrodes is studied in the framework of the generalized Master equation (GME) method. We calculate the transient currents which develop when the molecule is smoothly coupled to the source and drain electrodes. The signature of the electrically induced magnetic switching on these transient currents is investigated. Our simulations show that the magnetic switching of the molecular spin can be read indirectly from the transient currents if one lead is magnetic and it is much faster if the leads have opposite spin polarizations. We identify effects of the transverse anisotropy on the dynamics of molecular states.

  17. Molecular events in skeletal muscle during disuse atrophy

    NASA Technical Reports Server (NTRS)

    Kandarian, Susan C.; Stevenson, Eric J.

    2002-01-01

    This review summarizes the current knowledge of the molecular processes underlying skeletal muscle atrophy due to disuse. Because the processes involved with muscle wasting due to illness are similar to disuse, this literature is used for comparison. Areas that are ripe for further study and that will advance our understanding of muscle atrophy are suggested.

  18. Proteomics in the Classroom: An Investigative Study of Proteins in Microorganisms

    ERIC Educational Resources Information Center

    Benskin, Jon; Chen, Sixue

    2012-01-01

    As advances in biotechnology and molecular biology rapidly expand in research settings, it is vital that we continue to prepare high school students to enter and thrive in those modern laboratories. This multistep, inquiry-based lab describes highly adaptable methods to teach students not only current molecular techniques and technologies, but…

  19. Current methods for molecular epidemiology studies of implant infections.

    PubMed

    Campoccia, Davide; Montanaro, Lucio; Arciola, Carla Renata

    2009-09-01

    Over the last few decades, the number of surgical procedures involving prosthetic materials has greatly multiplied, along with the rising medical and economic impact of implant-associated infections. The need to appropriately counteract and deal with this phenomenon has led to growing efforts to elucidate the etiology, pathogenesis and epidemiology of these types of infections, characterized by opportunistic pathogens. Molecular epidemiology studies have progressively emerged as a leading multitask tool to identify and fingerprint bacterial strains, unveil the complex clonal nature of important pathogens, detect outbreak events, track the origin of the infections, assess the clinical significance of individual strain types, survey their distribution, recognize associations of strain types with specific virulence determinants and/or pathological conditions, assess the role played by the specific components of the virulon, and reveal the phylogeny and the mechanisms through which new strain types have emerged. Despite the many advances that have been made thanks to these flourishing new approaches to molecular epidemiology, a number of critical aspects remain challenging. In this paper, we briefly discuss the current limitations and possible developments of molecular epidemiology methods in the investigation and surveillance of implant infections.

  20. Molecular organization of phospholipid monolayers on the water surface by Maxwell displacement current measurement

    NASA Astrophysics Data System (ADS)

    Sulaiman, Khaulah; Majid, Wan Haliza Abdul; Muhamad, Muhamad Rasat

    2006-02-01

    The monolayer of organic molecules at the air-water interface has been studied using the Maxwell displacement current (MDC) technique. The materials used in this study were the biological materials of phosphatidyl ethanolamine (PE) and phosphatidic acids (PA). The configuration of the experimental set-up consists of the metal/air-gap/monolayer/metal coupled with the Langmuir method. This measurement enables the detection of current without destroying the monolayer. The phase transition and molecular orientation of the phospholipid monolayers were investigated using MDC measurement without mechanical contact between electrodes and the materials. Direct evidence of phase transition from gaseous to the polar ordering phase can be obtained across phospholipid monolayers even though at very low surface pressure. Relaxation process of the phospholipid monolayers was investigated by using the step compression on the MDC signals.

  1. Studying molecular changes during gravity perception and response in a single cell.

    PubMed

    Cannon, Ashley E; Salmi, Mari L; Bushart, Thomas J; Roux, Stanley J

    2015-01-01

    Early studies revealed a highly predictable pattern of gravity-directed growth and development in Ceratopteris richardii spores. This makes the spores a valuable model system for the study of how a single cell senses and responds to the force of gravity. Gravity regulates both the direction and magnitude of a trans-cell calcium current in germinating spores, and the orientation of this current predicts the polarization of spore development. Molecular techniques have been developed to evaluate the transcriptomic and proteomic profiles of spores before and after gravity establishes the polarity of their development. Here we describe these techniques, along with protocols for sterilizing the spores, sowing them in a solid or liquid growth media, and evaluating germination.

  2. A Desorbed Gas Molecular Ionization Mechanism for Arcing Onset in Solar Arrays Immersed in a Low-Density Plasma

    NASA Technical Reports Server (NTRS)

    Galofaro, J.; Vayner, B.; Ferguson, D.; Degroot, W.

    2002-01-01

    Previous experimental studies have hypothesized that the onset of Solar Array Arc (SAA) initiation in low-density space plasmas is caused by a desorbed gas molecular ionization mechanism. Indeed past investigations performed at the NASA Glenn Plasma Interaction Facility tend to not only support the desorbed gas molecular ionization mechanism, but have gone as far as identifying the crucial molecular species that must be present for molecular ion dominated process to occur. When electrical breakdown occurs at a triple junction site on a solar array panel, a quasi-neutral plasma cloud is ejected. Assuming the main component of the expelled plasma cloud by weight is due to water vapor, the fastest process available is due to HO molecules and OH(+) ions, or more succinctly, dissociative molecular-ion dominated recombination processes: H2O(+) + e(-) yields H* + OH*. Recently published spectroscopic observations of solar array arc spectra in ground tests have revealed the well-known molecular OH band (302 to 309nm), as well as the molecular SiH band (387nm peak), and the molecular CH band (432nm peak). Note that the OH band is observed in emission arcs where water vapor is present. Strong atomic lines were also observed for H(sub beta) at 486nm and H(sub alpha) at 656.3nm in prior ground testing. Independent supporting evidence of desorbed gas molecular ionization mechanisms also come from measurements of arc current pulse widths at different capacitances. We will revisit an earlier first order approximation demonstrating the dependence of arc current pulse widths on the square root of the capacitance. The simple arc current pulse width model will be then be used to estimate the temperature of the arc plasma (currently believed to be somewhere in the range of 3 to 5 eV). The current paper then seeks to extend the outlined work by including numerous vacuum chamber measurements obtained with a quadrupole mass spectrometer. A small solar array was mounted inside the vacuum chamber. A plasma source, also mounted inside the vacuum chamber, is used to simulate a low-density plasma environment. The solar array is then biased to a high negative potential and allowed to arc while a mass spectrometer is used to record the partial pressure of H2O and to track other significant changes in mass (1 to 150) AMU.

  3. A 17 GHz molecular rectifier

    PubMed Central

    Trasobares, J.; Vuillaume, D.; Théron, D.; Clément, N.

    2016-01-01

    Molecular electronics originally proposed that small molecules sandwiched between electrodes would accomplish electronic functions and enable ultimate scaling to be reached. However, so far, functional molecular devices have only been demonstrated at low frequency. Here, we demonstrate molecular diodes operating up to 17.8 GHz. Direct current and radio frequency (RF) properties were simultaneously measured on a large array of molecular junctions composed of gold nanocrystal electrodes, ferrocenyl undecanethiol molecules and the tip of an interferometric scanning microwave microscope. The present nanometre-scale molecular diodes offer a current density increase by several orders of magnitude compared with that of micrometre-scale molecular diodes, allowing RF operation. The measured S11 parameters show a diode rectification ratio of 12 dB which is linked to the rectification behaviour of the direct current conductance. From the RF measurements, we extrapolate a cut-off frequency of 520 GHz. A comparison with the silicon RF-Schottky diodes, architecture suggests that the RF-molecular diodes are extremely attractive for scaling and high-frequency operation. PMID:27694833

  4. Molecular Spintronics: Theory of Spin-Dependent Electron Transport in Fe/BDT/Fe Molecular Wire Systems

    NASA Astrophysics Data System (ADS)

    Dalgleish, Hugh; Kirczenow, George

    2004-03-01

    Metal/Molecule/Metal junction systems forming molecular wires are currently the focus of intense study. Recently, spin-dependent electron transport in molecular wires with magnetic Ni electrodes has been studied theoretically, and spin-valve effects have been predicted.* Here we explore theoretically another magnetic molecular wire system, namely, ferromagnetic Fe nano-contacts bridged with 1,4-benzene-dithiolate (BDT). We estimate the essential structural and electronic parameters for this system based on ab initio density functional calculations (DFT) for some simple model systems involving thiol groups and Fe clusters as well as semi-empirical considerations and the known electronic structure of bulk Fe. We then use Lippmann-Schwinger and Green's function techniques together with the Landauer formalism to study spin-dependent transport. *E. G. Emberly and G. Kirczenow, Chem. Phys. 281, 311 (2002); R. Pati, L. Senapati, P.M. Ajayan and S.K. Nayak, Phys. Rev. B68, 100407 (2003).

  5. Molecular transistors based on BDT-type molecular bridges.

    PubMed

    Wheeler, W D; Dahnovsky, Yu

    2008-10-21

    In this work we study the effect of electron correlations in molecular transistors with molecular bridges based on 1,4-benzene-dithiol (BDT) and 2-nitro-1,4-benzene-dithiol (nitro-BDT) by using ab initio electron propagator calculations. We find that there is no gate field effect for the BDT based transistor in accordance with the experimental data. After verifying the computational method on the BDT molecule, we consider a transistor with a nitro-BDT molecular bridge. From the electron propagator calculations, we predict strong negative differential resistance at small positive and negative values of source-drain voltages. The explanation of the peak and the minimum in the current is given in terms of the molecular orbital picture and switch-on (-off) properties due to the voltage dependencies of the Dyson poles (ionization potentials). When the current is off, the electronic states on both electrodes are populated resulting in the vanishing tunneling probability due to the Pauli principle. Besides the minimum and the maximum in the I-V characteristics, we find a strong gate field effect in the conductance where the peak at V(sd) = 0.15 eV and E(g) = 4x10(-3) a.u. switches to the minimum at E(g) = -4x10(-3) a.u. A similar behavior is discovered at the negative V(sd). Such a feature can be used for fast current modulation by changing the polarity of a gate field.

  6. Molecular markers in pediatric neuro-oncology

    PubMed Central

    Ichimura, Koichi; Nishikawa, Ryo; Matsutani, Masao

    2012-01-01

    Pediatric molecular neuro-oncology is a fast developing field. A multitude of molecular profiling studies in recent years has unveiled a number of genetic abnormalities unique to pediatric brain tumors. It has now become clear that brain tumors that arise in children have distinct pathogenesis and biology, compared with their adult counterparts, even for those with indistinguishable histopathology. Some of the molecular features are so specific to a particular type of tumors, such as the presence of the KIAA1549-BRAF fusion gene for pilocytic astrocytomas or SMARCB1 mutations for atypical teratoid/rhabdoid tumors, that they could practically serve as a diagnostic marker on their own. Expression profiling has resolved the existence of 4 molecular subgroups in medulloblastomas, which positively translated into improved prognostication for the patients. The currently available molecular markers, however, do not cover all tumors even within a single tumor entity. The molecular pathogenesis of a large number of pediatric brain tumors is still unaccounted for, and the hierarchy of tumors is likely to be more complex and intricate than currently acknowledged. One of the main tasks of future molecular analyses in pediatric neuro-oncology, including the ongoing genome sequencing efforts, is to elucidate the biological basis of those orphan tumors. The ultimate goal of molecular diagnostics is to accurately predict the clinical and biological behavior of any tumor by means of their molecular characteristics, which is hoped to eventually pave the way for individualized treatment. PMID:23095836

  7. Molecular pathophysiology of cerebral edema

    PubMed Central

    Gerzanich, Volodymyr; Simard, J Marc

    2015-01-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema. PMID:26661240

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emelianov, A. V., E-mail: emmsowton@gmail.com; Romashkin, A. V.; Tsarik, K. A.

    This study is devoted to the fabrication of molecular semiconductor channels based on polymer molecules with nanoscale electrodes made of single-walled carbon nanotubes. A reproducible technology for forming nanoscale gaps in carbon nanotubes using a focused Ga{sup +} ion beam is proposed. Polyaniline molecules are deposited into nanogaps up to 30 nm wide between nanotubes by electrophoresis from N-methyl-2-pyrrolidone solution. As a result, molecular organic transistors are fabricated, in which the field effect is studied and the molecular-channel mobility is determined as 0.1 cm{sup 2}/(V s) at an on/off current ratio of 5 × 10{sup 2}.

  9. Understanding the kinetics of ligand binding to globins with molecular dynamics simulations: the necessity of multiple state models.

    PubMed

    Estarellas Martin, Carolina; Seira Castan, Constantí; Luque Garriga, F Javier; Bidon-Chanal Badia, Axel

    2015-10-01

    Residue conformational changes and internal cavity migration processes play a key role in regulating the kinetics of ligand migration and binding events in globins. Molecular dynamics simulations have demonstrated their value in the study of these processes in different haemoglobins, but derivation of kinetic data demands the use of more complex techniques like enhanced sampling molecular dynamics methods. This review discusses the different methodologies that are currently applied to study the ligand migration process in globins and highlight those specially developed to derive kinetic data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Molecular Diode Studies Based on a Highly Sensitive Molecular Measurement Technique.

    PubMed

    Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu

    2017-04-26

    In 1974, molecular electronics pioneers Mark Ratner and Arieh Aviram predicted that a single molecule could act as a diode, in which electronic current can be rectified. The electronic rectification property of the diode is one of basic functions of electronic components and since then, the molecular diode has been investigated as a first single-molecule device that would have a practical application. In this review, we first describe the experimental fabrication and electronic characterization techniques of molecular diodes consisting of a small number of molecules or a single molecule. Then, two main mechanisms of the rectification property of the molecular diode are discussed. Finally, representative results for the molecular diode are reviewed and a brief outlook on crucial issues that need to be addressed in future research is discussed.

  11. Molecular Diode Studies Based on a Highly Sensitive Molecular Measurement Technique

    PubMed Central

    Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu

    2017-01-01

    In 1974, molecular electronics pioneers Mark Ratner and Arieh Aviram predicted that a single molecule could act as a diode, in which electronic current can be rectified. The electronic rectification property of the diode is one of basic functions of electronic components and since then, the molecular diode has been investigated as a first single-molecule device that would have a practical application. In this review, we first describe the experimental fabrication and electronic characterization techniques of molecular diodes consisting of a small number of molecules or a single molecule. Then, two main mechanisms of the rectification property of the molecular diode are discussed. Finally, representative results for the molecular diode are reviewed and a brief outlook on crucial issues that need to be addressed in future research is discussed. PMID:28445393

  12. Barcoding the largest animals on Earth: ongoing challenges and molecular solutions in the taxonomic identification of ancient cetaceans

    PubMed Central

    Speller, Camilla; van den Hurk, Youri; Charpentier, Anne; Rodrigues, Ana; Gardeisen, Armelle; Wilkens, Barbara; McGrath, Krista; Rowsell, Keri; Spindler, Luke; Collins, Matthew

    2016-01-01

    Over the last few centuries, many cetacean species have witnessed dramatic global declines due to industrial overharvesting and other anthropogenic influences, and thus are key targets for conservation. Whale bones recovered from archaeological and palaeontological contexts can provide essential baseline information on the past geographical distribution and abundance of species required for developing informed conservation policies. Here we review the challenges with identifying whale bones through traditional anatomical methods, as well as the opportunities provided by new molecular analyses. Through a case study focused on the North Sea, we demonstrate how the utility of this (pre)historic data is currently limited by a lack of accurate taxonomic information for the majority of ancient cetacean remains. We then discuss current opportunities presented by molecular identification methods such as DNA barcoding and collagen peptide mass fingerprinting (zooarchaeology by mass spectrometry), and highlight the importance of molecular identifications in assessing ancient species’ distributions through a case study focused on the Mediterranean. We conclude by considering high-throughput molecular approaches such as hybridization capture followed by next-generation sequencing as cost-effective approaches for enhancing the ecological informativeness of these ancient sample sets. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481784

  13. Therapeutic Approaches for Shankopathies

    PubMed Central

    Wang, Xiaoming; Bey, Alexandra; Chang, Leeyup; Krystal, Andrew D.; Jiang, Yong-hui

    2013-01-01

    Despite recent advances in understanding the molecular mechanisms of autism spectrum disorders (ASD), the current treatments for these disorders are mostly focused on behavioral and educational approaches. The considerable clinical and molecular heterogeneity of ASD present a significant challenge to the development of an effective treatment targeting underlying molecular defects. Deficiency of SHANK family genes causing ASD represent an exciting opportunity for developing molecular therapies because of strong genetic evidence for SHANKs as causative genes in ASD and the availability of a panel of Shank mutant mouse models. In this article we review the literature suggesting the potential for developing therapies based on molecular characteristics and discuss several exciting themes that are emerging from studying Shank mutant mice at the molecular level and in terms of synaptic function. PMID:23536326

  14. Molecular Imaging: Current Status and Emerging Strategies

    PubMed Central

    Pysz, Marybeth A.; Gambhir, Sanjiv S.; Willmann, Jürgen K.

    2011-01-01

    In vivo molecular imaging has a great potential to impact medicine by detecting diseases in early stages (screening), identifying extent of disease, selecting disease- and patient-specific therapeutic treatment (personalized medicine), applying a directed or targeted therapy, and measuring molecular-specific effects of treatment. Current clinical molecular imaging approaches primarily use PET- or SPECT-based techniques. In ongoing preclinical research novel molecular targets of different diseases are identified and, sophisticated and multifunctional contrast agents for imaging these molecular targets are developed along with new technologies and instrumentation for multimodality molecular imaging. Contrast-enhanced molecular ultrasound with molecularly-targeted contrast microbubbles is explored as a clinically translatable molecular imaging strategy for screening, diagnosing, and monitoring diseases at the molecular level. Optical imaging with fluorescent molecular probes and ultrasound imaging with molecularly-targeted microbubbles are attractive strategies since they provide real-time imaging, are relatively inexpensive, produce images with high spatial resolution, and do not involve exposure to ionizing irradiation. Raman spectroscopy/microscopy has emerged as a molecular optical imaging strategy for ultrasensitive detection of multiple biomolecules/biochemicals with both in vivo and ex vivo versatility. Photoacoustic imaging is a hybrid of optical and ultrasound modalities involving optically-excitable molecularly-targeted contrast agents and quantitative detection of resulting oscillatory contrast agent movement with ultrasound. Current preclinical findings and advances in instrumentation such as endoscopes and microcatheters suggest that these molecular imaging modalities have numerous clinical applications and will be translated into clinical use in the near future. PMID:20541650

  15. Current state and future prospects of immunotherapy for glioma.

    PubMed

    Kamran, Neha; Alghamri, Mahmoud S; Nunez, Felipe J; Shah, Diana; Asad, Antonela S; Candolfi, Marianela; Altshuler, David; Lowenstein, Pedro R; Castro, Maria G

    2018-02-01

    There is a large unmet need for effective therapeutic approaches for glioma, the most malignant brain tumor. Clinical and preclinical studies have enormously expanded our knowledge about the molecular aspects of this deadly disease and its interaction with the host immune system. In this review we highlight the wide array of immunotherapeutic interventions that are currently being tested in glioma patients. Given the molecular heterogeneity, tumor immunoediting and the profound immunosuppression that characterize glioma, it has become clear that combinatorial approaches targeting multiple pathways tailored to the genetic signature of the tumor will be required in order to achieve optimal therapeutic efficacy.

  16. Emerging Plasmodium vivax resistance to chloroquine in South America: an overview

    PubMed Central

    Gonçalves, Lígia Antunes; Cravo, Pedro; Ferreira, Marcelo Urbano

    2014-01-01

    The global emergence of Plasmodium vivax strains resistant to chloroquine (CQ) since the late 1980s is complicating the current international efforts for malaria control and elimination. Furthermore, CQ-resistant vivax malaria has already reached an alarming prevalence in Indonesia, East Timor and Papua New Guinea. More recently, in vivo studies have documented CQ-resistant P. vivax infections in Guyana, Peru and Brazil. Here, we summarise the available data on CQ resistance across P. vivax-endemic areas of Latin America by combining published in vivo and in vitro studies. We also review the current knowledge regarding the molecular mechanisms of CQ resistance in P. vivax and the prospects for developing and standardising reliable molecular markers of drug resistance. Finally, we discuss how the Worldwide Antimalarial Resistance Network, an international collaborative effort involving malaria experts from all continents, might contribute to the current regional efforts to map CQ-resistant vivax malaria in South America. PMID:25184999

  17. Methods for the Study of Gonadal Development.

    PubMed

    Piprek, Rafal P

    2016-01-01

    Current knowledge on gonadal development and sex determination is the product of many decades of research involving a variety of scientific methods from different biological disciplines such as histology, genetics, biochemistry, and molecular biology. The earliest embryological investigations, followed by the invention of microscopy and staining methods, were based on histological examinations. The most robust development of histological staining techniques occurred in the second half of the nineteenth century and resulted in structural descriptions of gonadogenesis. These first studies on gonadal development were conducted on domesticated animals; however, currently the mouse is the most extensively studied species. The next key point in the study of gonadogenesis was the advancement of methods allowing for the in vitro culture of fetal gonads. For instance, this led to the description of the origin of cell lines forming the gonads. Protein detection using antibodies and immunolabeling methods and the use of reporter genes were also invaluable for developmental studies, enabling the visualization of the formation of gonadal structure. Recently, genetic and molecular biology techniques, especially gene expression analysis, have revolutionized studies on gonadogenesis and have provided insight into the molecular mechanisms that govern this process. The successive invention of new methods is reflected in the progress of research on gonadal development.

  18. Molecular testing in lung cancer: fine-needle aspiration specimen adequacy and test prioritization prior to the CAP/IASLC/AMP Molecular Testing Guideline publication.

    PubMed

    Rafael, Oana C; Aziz, Mohamed; Raftopoulos, Harry; Vele, Oana E; Xu, Weisheng; Sugrue, Chiara

    2014-06-01

    Subtyping of lung carcinoma with immunohistochemistry is essential for diagnosis, whereas molecular testing (MT) is required for therapy guidance. In the current study, the authors report on MT performed on fine-needle aspiration specimens at the study institution over a 2-year period preceding the April 2013 College of American Pathologists (CAP)/International Association for the Study of Lung Cancer (IASLC)/Association for Molecular Pathology (AMP) Molecular Testing Guideline (MTG) publication. The database of the study institution was retrospectively queried for cases of lung and thoracic/lower cervical lymph node fine-needle aspiration specimens for 2011 through 2012. Of 246 selected cases, 26 featured a limited amount of material in cell blocks. MT increased significantly between 2011 and 2012 and was requested in 39.4% of cases (97 of 246 cases): 86 of those cases had at least 1 MT result and 11 had insufficient material for any MT. Anaplastic lymphoma kinase (ALK) testing was performed in 9 cases in which DNA was insufficient for epidermal growth factor receptor (EGFR) testing. In addition, 13 cases of adenocarcinoma/non-small cell lung carcinoma had at least 1 MT canceled because of insufficient DNA, but at the same time had an average of 3.46 immunohistochemical stains performed. Of all the cytology specimens, 10.6% featured limited material; however, no universally accepted testing sequence priority was available at the time the study was performed. As per the MTG, MT should take precedence over immunohistochemistry in cases of adenocarcinoma/non-small cell lung carcinoma. Approximately 5.3% of the specimens in the current study had insufficient material for MT while having multiple stains performed instead. The MTG also recommend performing EGFR before ALK testing; the authors found 9 cases with insufficient material for EGFR testing that had ALK testing performed. The results of the current study underscore the need for a testing prioritization algorithm in view of the MTG publication to serve as reference for both clinicians and pathologists. © 2014 American Cancer Society.

  19. Role of plasma membrane-associated AKAPs for the regulation of cardiac IK1 current by protein kinase A.

    PubMed

    Seyler, Claudia; Scherer, Daniel; Köpple, Christoph; Kulzer, Martin; Korkmaz, Sevil; Xynogalos, Panagiotis; Thomas, Dierk; Kaya, Ziya; Scholz, Eberhard; Backs, Johannes; Karle, Christoph; Katus, Hugo A; Zitron, Edgar

    2017-05-01

    The cardiac I K1 current stabilizes the resting membrane potential of cardiomyocytes. Protein kinase A (PKA) induces an inhibition of I K1 current which strongly promotes focal arrhythmogenesis. The molecular mechanisms underlying this regulation have only partially been elucidated yet. Furthermore, the role of A-kinase anchoring proteins (AKAPs) in this regulation has not been examined to date. The objective of this project was to elucidate the molecular mechanisms underlying the inhibition of I K1 by PKA and to identify novel molecular targets for antiarrhythmic therapy downstream β-adrenoreceptors. Patch clamp and voltage clamp experiments were used to record currents and co-immunoprecipitation, and co-localization experiments were performed to show spatial and functional coupling. Activation of PKA inhibited I K1 current in rat cardiomyocytes. This regulation was markedly attenuated by disrupting PKA-binding to AKAPs with the peptide inhibitor AKAP-IS. We observed functional and spatial coupling of the plasma membrane-associated AKAP15 and AKAP79 to Kir2.1 and Kir2.2 channel subunits, but not to Kir2.3 channels. In contrast, AKAPyotiao had no functional effect on the PKA regulation of Kir channels. AKAP15 and AKAP79 co-immunoprecipitated with and co-localized to Kir2.1 and Kir2.2 channel subunits in ventricular cardiomyocytes. In this study, we provide evidence for coupling of cardiac Kir2.1 and Kir2.2 subunits with the plasma membrane-bound AKAPs 15 and 79. Cardiac membrane-associated AKAPs are a functionally essential part of the regulatory cascade determining I K1 current function and may be novel molecular targets for antiarrhythmic therapy downstream from β-adrenoreceptors.

  20. Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms

    PubMed Central

    Pandey, Prachi; Ramegowda, Venkategowda; Senthil-Kumar, Muthappa

    2015-01-01

    In field conditions, plants are often simultaneously exposed to multiple biotic and abiotic stresses resulting in substantial yield loss. Plants have evolved various physiological and molecular adaptations to protect themselves under stress combinations. Emerging evidences suggest that plant responses to a combination of stresses are unique from individual stress responses. In addition, plants exhibit shared responses which are common to individual stresses and stress combination. In this review, we provide an update on the current understanding of both unique and shared responses. Specific focus of this review is on heat–drought stress as a major abiotic stress combination and, drought–pathogen and heat–pathogen as examples of abiotic–biotic stress combinations. We also comprehend the current understanding of molecular mechanisms of cross talk in relation to shared and unique molecular responses for plant survival under stress combinations. Thus, the knowledge of shared responses of plants from individual stress studies and stress combinations can be utilized to develop varieties with broad spectrum stress tolerance. PMID:26442037

  1. Tabletop Molecular Communication: Text Messages through Chemical Signals

    PubMed Central

    Farsad, Nariman; Guo, Weisi; Eckford, Andrew W.

    2013-01-01

    In this work, we describe the first modular, and programmable platform capable of transmitting a text message using chemical signalling – a method also known as molecular communication. This form of communication is attractive for applications where conventional wireless systems perform poorly, from nanotechnology to urban health monitoring. Using examples, we demonstrate the use of our platform as a testbed for molecular communication, and illustrate the features of these communication systems using experiments. By providing a simple and inexpensive means of performing experiments, our system fills an important gap in the molecular communication literature, where much current work is done in simulation with simplified system models. A key finding in this paper is that these systems are often nonlinear in practice, whereas current simulations and analysis often assume that the system is linear. However, as we show in this work, despite the nonlinearity, reliable communication is still possible. Furthermore, this work motivates future studies on more realistic modelling, analysis, and design of theoretical models and algorithms for these systems. PMID:24367571

  2. Man’s best friend: what can pet dogs teach us about non-Hodgkin lymphoma?

    PubMed Central

    Richards, Kristy L.; Suter, Steven E.

    2014-01-01

    Summary Animal models are essential for understanding lymphoma biology and testing new treatments prior to human studies. Spontaneously arising lymphomas in pet dogs represent an underutilized resource that could be used to complement current mouse lymphoma models, which do not adequately represent all aspects of the human disease. Canine lymphoma resembles human lymphoma in many important ways, including characteristic translocations and molecular abnormalities and similar therapeutic responses to chemotherapy, radiation, and newer targeted therapies (e.g. ibrutinib). Given the large number of pet dogs and high incidence of lymphoma, particularly in susceptible breeds, dogs represent a largely untapped resource for advancing the understanding and treatment of human lymphoma. This review highlights similarities in molecular biology, diagnosis, treatment, and outcomes between human and canine lymphoma. It also describes resources that are currently available to study canine lymphoma, advantages to be gained by exploiting the genetic breed structure in dogs, and current and future challenges and opportunities to take full advantage of this resource for lymphoma studies. PMID:25510277

  3. Next-Generation of Allergen-Specific Immunotherapies: Molecular Approaches.

    PubMed

    Curin, Mirela; Khaitov, Musa; Karaulov, Alexander; Namazova-Baranova, Leyla; Campana, Raffaela; Garib, Victoria; Valenta, Rudolf

    2018-06-09

    The aim of this article is to discuss how allergen-specific immunotherapy (AIT) can be improved through molecular approaches. We provide a summary of next-generation molecular AIT approaches and of their clinical evaluation. Furthermore, we discuss the potential of next generation molecular AIT forms for the treatment of severe manifestations of allergy and mention possible future molecular strategies for the secondary and primary prevention of allergy. AIT has important advantages over symptomatic forms of allergy treatment but its further development is limited by the quality of the therapeutic antigen preparations which are derived from natural allergen sources. The field of allergy diagnosis is currently undergoing a dramatic improvement through the use of molecular testing with defined, mainly recombinant allergens which allows high-resolution diagnosis. Several studies demonstrate that molecular testing in early childhood can predict the development of symptomatic allergy later on in life. Clinical studies indicate that molecular AIT approaches have the potential to improve therapy of allergic diseases and may be used as allergen-specific forms of secondary and eventually primary prevention for allergy.

  4. Evolution of pollen morphology in Loranthaceae

    PubMed Central

    Grímsson, Friðgeir; Grimm, Guido W.; Zetter, Reinhard

    2018-01-01

    Abstract Earlier studies indicate a strong correlation of pollen morphology and ultrastructure with taxonomy in Loranthaceae. Using high-resolution light microscopy and scanning electron microscopy imaging of the same pollen grains, we document pollen types of 35 genera including 15 studied for the first time. Using a molecular phylogenetic framework based on currently available sequence data with good genus-coverage, we reconstruct trends in the evolution of Loranthaceae pollen and pinpoint traits of high diagnostic value, partly confirming earlier intuitive hypotheses based on morphological observations. We find that pollen morphology in Loranthaceae is strongly linked to phylogenetic relationships. Some pollen types are diagnostic for discrete genera or evolutionary lineages, opening the avenue to recruit dispersed fossil pollen as age constraints for dated phylogenies and as independent data for testing biogeographic scenarios; so far based exclusively on modern-day data. Correspondences and discrepancies between palynological and molecular data and current taxonomic/systematic concepts are identified and suggestions made for future palynological and molecular investigations of Loranthaceae. PMID:29386990

  5. [When history meets molecular medicine: molecular history of human tuberculosis].

    PubMed

    Ottini, Laura; Falchetti, Mario

    2010-01-01

    Tuberculosis represents one of the humankind's most socially devastating diseases. Despite a long history of medical research and the development of effective therapies, this disease remains a global health danger even in the 21st century. Tuberculosis may cause death but infected people with effective immunity may remain healthy for years, suggesting long-term host-pathogen co-existence. Because of its antiquity, a supposed association with human settlements and the tendency to leave typical lesions on skeletal and mummified remains, tuberculosis has been the object of intensive multidisciplinary studies, including paleo-pathological research. During the past 10 years molecular paleo-pathology developed as a new scientific discipline allowing the study of ancient pathogens by direct detection of their DNA. In this work, we reviewed evidences for tuberculosis in ancient human remains, current methods for identifying ancient mycobacterial DNA and explored current theories of Mycobacterium tuberculosis evolution and their implications in the global development of tuberculosis looking into the past and present at the same time.

  6. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing.

    PubMed

    Zhong, Chunju; Yang, Bin; Jiang, Xinxin; Li, Jianping

    2018-01-02

    Nanomaterials have received much attention during the past decade because of their excellent optical, electronic, and catalytic properties. Nanomaterials possess high chemical reactivity, also high surface energy. Thus, provide a stable immobilization platform for biomolecules, while preserving their reactivity. Due to the conductive and catalytic properties, nanomaterials can also enhance the sensitivity of molecularly imprinted electrochemical sensors by amplifying the electrode surface, increasing the electron transfer, and catalyzing the electrochemical reactions. Molecularly imprinted polymers that contain specific molecular recognition sites can be designed for a particular target analyte. Incorporating nanomaterials into molecularly imprinted polymers is important because nanomaterials can improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. This study describes the classification of nanomaterials in molecularly imprinted polymers, their analytical properties, and their applications in the electrochemical sensors. The progress of the research on nanomaterials in molecularly imprinted polymers and the application of nanomaterials in molecularly imprinted polymers is also reviewed.

  7. Molecular analysis of tumor margins by MALDI mass spectrometry in renal carcinoma.

    PubMed

    Oppenheimer, Stacey R; Mi, Deming; Sanders, Melinda E; Caprioli, Richard M

    2010-05-07

    The rate of tumor recurrence post resection suggests that there are underlying molecular changes in nearby histologically normal tissue that go undetected by conventional diagnostic methods that utilize contrast agents and immunohistochemistry. MALDI MS is a molecular technology that has the specificity and sensitivity to monitor and identify molecular species indicative of these changes. The current study utilizes this technology to assess molecular distributions within a tumor and adjacent normal tissue in clear cell renal cell carcinoma biopsies. Results indicate that the histologically normal tissue adjacent to the tumor expresses many of the molecular characteristics of the tumor. Proteins of the mitochondrial electron transport system are examples of such distributions. This work demonstrates the utility of MALDI MS for the analysis of tumor tissue in the elucidation of aberrant molecular changes in the tumor microenvironment.

  8. Current and future molecular approaches to investigate the white pine blister rust pathosystem

    Treesearch

    B. A. Richardson; A. K. M. Ekramoddoulah; J.-J. Liu; M.-S. Kim; N. B. Klopfenstein

    2010-01-01

    Molecular genetics is proving to be especially useful for addressing a wide variety of research and management questions on the white pine blister rust pathosystem. White pine blister rust, caused by Cronartium ribicola, is an ideal model for studying biogeography, genetics, and evolution because: (1) it involves an introduced pathogen; (2) it includes multiple primary...

  9. Molecular Targeted Intervention for Pancreatic Cancer

    PubMed Central

    Mohammed, Altaf; Janakiram, Naveena B.; Pant, Shubham; Rao, Chinthalapally V.

    2015-01-01

    Pancreatic cancer (PC) remains one of the worst cancers, with almost uniform lethality. PC risk is associated with westernized diet, tobacco, alcohol, obesity, chronic pancreatitis, and family history of pancreatic cancer. New targeted agents and the use of various therapeutic combinations have yet to provide adequate treatments for patients with advanced cancer. To design better preventive and/or treatment strategies against PC, knowledge of PC pathogenesis at the molecular level is vital. With the advent of genetically modified animals, significant advances have been made in understanding the molecular biology and pathogenesis of PC. Currently, several clinical trials and preclinical evaluations are underway to investigate novel agents that target signaling defects in PC. An important consideration in evaluating novel drugs is determining whether an agent can reach the target in concentrations effective to treat the disease. Recently, we have reported evidence for chemoprevention of PC. Here, we provide a comprehensive review of current updates on molecularly targeted interventions, as well as dietary, phytochemical, immunoregulatory, and microenvironment-based approaches for the development of novel therapeutic and preventive regimens. Special attention is given to prevention and treatment in preclinical genetically engineered mouse studies and human clinical studies. PMID:26266422

  10. Coherent molecular transistor: control through variation of the gate wave function.

    PubMed

    Ernzerhof, Matthias

    2014-03-21

    In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.

  11. Vertical resonant tunneling transistors with molecular quantum dots for large-scale integration.

    PubMed

    Hayakawa, Ryoma; Chikyow, Toyohiro; Wakayama, Yutaka

    2017-08-10

    Quantum molecular devices have a potential for the construction of new data processing architectures that cannot be achieved using current complementary metal-oxide-semiconductor (CMOS) technology. The relevant basic quantum transport properties have been examined by specific methods such as scanning probe and break-junction techniques. However, these methodologies are not compatible with current CMOS applications, and the development of practical molecular devices remains a persistent challenge. Here, we demonstrate a new vertical resonant tunneling transistor for large-scale integration. The transistor channel is comprised of a MOS structure with C 60 molecules as quantum dots, and the structure behaves like a double tunnel junction. Notably, the transistors enabled the observation of stepwise drain currents, which originated from resonant tunneling via the discrete molecular orbitals. Applying side-gate voltages produced depletion layers in Si substrates, to achieve effective modulation of the drain currents and obvious peak shifts in the differential conductance curves. Our device configuration thus provides a promising means of integrating molecular functions into future CMOS applications.

  12. Molecular diagnostics of inflammatory disease: New tools and perspectives.

    PubMed

    Garzorz-Stark, Natalie; Lauffer, Felix

    2017-08-01

    This essay reviews current approaches to establish novel molecular diagnostic tools for inflammatory skin diseases. Moreover, it highlights the importance of stratifying patients according to molecular signatures and revising current outdated disease classification systems to eventually reach the goal of personalized medicine. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Molecular Force Spectroscopy on Cells

    NASA Astrophysics Data System (ADS)

    Liu, Baoyu; Chen, Wei; Zhu, Cheng

    2015-04-01

    Molecular force spectroscopy has become a powerful tool to study how mechanics regulates biology, especially the mechanical regulation of molecular interactions and its impact on cellular functions. This force-driven methodology has uncovered a wealth of new information of the physical chemistry of molecular bonds for various biological systems. The new concepts, qualitative and quantitative measures describing bond behavior under force, and structural bases underlying these phenomena have substantially advanced our fundamental understanding of the inner workings of biological systems from the nanoscale (molecule) to the microscale (cell), elucidated basic molecular mechanisms of a wide range of important biological processes, and provided opportunities for engineering applications. Here, we review major force spectroscopic assays, conceptual developments of mechanically regulated kinetics of molecular interactions, and their biological relevance. We also present current challenges and highlight future directions.

  14. Experimental design and quantitative analysis of microbial community multiomics.

    PubMed

    Mallick, Himel; Ma, Siyuan; Franzosa, Eric A; Vatanen, Tommi; Morgan, Xochitl C; Huttenhower, Curtis

    2017-11-30

    Studies of the microbiome have become increasingly sophisticated, and multiple sequence-based, molecular methods as well as culture-based methods exist for population-scale microbiome profiles. To link the resulting host and microbial data types to human health, several experimental design considerations, data analysis challenges, and statistical epidemiological approaches must be addressed. Here, we survey current best practices for experimental design in microbiome molecular epidemiology, including technologies for generating, analyzing, and integrating microbiome multiomics data. We highlight studies that have identified molecular bioactives that influence human health, and we suggest steps for scaling translational microbiome research to high-throughput target discovery across large populations.

  15. Comparison of Low-Molecular-Weight Heparins Prepared From Bovine Heparins With Enoxaparin.

    PubMed

    Liu, Xinyue; St Ange, Kalib; Fareed, Jawed; Hoppensteadt, Debra; Jeske, Walter; Kouta, Ahmed; Chi, Lianli; Jin, Caijuan; Jin, Yongsheng; Yao, Yiming; Linhardt, Robert J

    2017-09-01

    Heparin and its low-molecular-weight heparin (LMWH) derivatives are widely used clinical anticoagulants. These drugs are critical for the practice of medicine in applications including kidney dialysis, cardiopulmonary bypass, and in the management of venous thromboembolism. Currently, these drugs are derived from livestock, primarily porcine intestine. The worldwide dependence on a single animal species has made the supply chain for this critical drug quite fragile, leading to the search for other sources of these drugs, including bovine tissues such as bovine intestine or lung. A number of laboratories are currently examining the similarities and differences between heparins prepared from porcine and bovine tissues. The current study is designed to compare LMWH prepared from bovine heparins through chemical β-elimination, a process currently used to prepare the LMWH, enoxaparin, from porcine heparin. Using top-down, bottom-up, compositional analysis and bioassays, LMWHs, derived from bovine lung and intestine, are shown to closely resemble enoxaparin.

  16. Nanomicrointerface to read molecular potentials into current-voltage based electronics.

    PubMed

    Rangel, Norma L; Seminario, Jorge M

    2008-03-21

    Molecular potentials are unreadable and unaddressable by any present technology. It is known that the proper assembly of molecules can implement an entire numerical processing system based on digital or even analogical computation. In turn, the outputs of this molecular processing unit need to be amplified in order to be useful. We have developed a nanomicrointerface to read information encoded in molecular level potentials and to amplify this signal to microelectronic levels. The amplification is performed by making the output molecular potential slightly twist the torsional angle between two rings of a pyridazine, 3,6-bis(phenylethynyl) (aza-OPE) molecule, requiring only fractions of kcal/mol energies. In addition, even if the signal from the molecular potentials is not enough to turn the ring or even if the angles are the same for different combinations of outputs, still the current output yields results that resemble the device as a field effect transistor, providing the possibility to reduce channel lengths to the range of just 1 or 2 nm. The slight change in the torsional angle yields readable changes in the current through the aza-OPE biased by an external applied voltage. Using ab initio methods, we computationally demonstrate the amplification of molecular potential signals into currents that can be read by standard circuits.

  17. Study Points to Genetic Subtypes of Esophageal Cancer

    Cancer.gov

    A Cancer Currents blog post about a study by The Cancer Genome Atlas Research Network that identified distinct genetic and molecular changes in esophageal cancers that could improve their classification and identify potential new treatments.

  18. Beyond Standard Molecular Dynamics: Investigating the Molecular Mechanisms of G Protein-Coupled Receptors with Enhanced Molecular Dynamics Methods

    PubMed Central

    Johnston, Jennifer M.

    2014-01-01

    The majority of biological processes mediated by G Protein-Coupled Receptors (GPCRs) take place on timescales that are not conveniently accessible to standard molecular dynamics (MD) approaches, notwithstanding the current availability of specialized parallel computer architectures, and efficient simulation algorithms. Enhanced MD-based methods have started to assume an important role in the study of the rugged energy landscape of GPCRs by providing mechanistic details of complex receptor processes such as ligand recognition, activation, and oligomerization. We provide here an overview of these methods in their most recent application to the field. PMID:24158803

  19. Malaria Molecular Epidemiology: Lessons from the International Centers of Excellence for Malaria Research Network

    PubMed Central

    Escalante, Ananias A.; Ferreira, Marcelo U.; Vinetz, Joseph M.; Volkman, Sarah K.; Cui, Liwang; Gamboa, Dionicia; Krogstad, Donald J.; Barry, Alyssa E.; Carlton, Jane M.; van Eijk, Anna Maria; Pradhan, Khageswar; Mueller, Ivo; Greenhouse, Bryan; Andreina Pacheco, M.; Vallejo, Andres F.; Herrera, Socrates; Felger, Ingrid

    2015-01-01

    Molecular epidemiology leverages genetic information to study the risk factors that affect the frequency and distribution of malaria cases. This article describes molecular epidemiologic investigations currently being carried out by the International Centers of Excellence for Malaria Research (ICEMR) network in a variety of malaria-endemic settings. First, we discuss various novel approaches to understand malaria incidence and gametocytemia, focusing on Plasmodium falciparum and Plasmodium vivax. Second, we describe and compare different parasite genotyping methods commonly used in malaria epidemiology and population genetics. Finally, we discuss potential applications of molecular epidemiological tools and methods toward malaria control and elimination efforts. PMID:26259945

  20. Retraction Note: Catalytic living ring-opening metathesis polymerization

    NASA Astrophysics Data System (ADS)

    Nagarkar, Amit A.; Kilbinger, Andreas F. M.

    2018-05-01

    We the authors are retracting this Article because of our failure to reproduce the molecular weight dispersities (PDI) shown in Fig. 4 using the chain-transfer agent described in the paper (CTA1). While the degenerate chain-transfer mechanism described in Fig. 3 is correct, the best molecular weight dispersities that could be reproduced with the chain-transfer agent shown in the Article are much larger (PDI > 2.0) than reported.We have since studied the kinetics of CTA1 in comparison with several other chain-transfer agents we are currently investigating and we now understand that the reactivity of CTA1 towards propagating ruthenium alkylidene complexes is very low. Very long monomer addition times would therefore have been necessary to gain control over the molecular weight distribution. Such long addition times would exceed the lifetime of the Grubbs catalyst in solution. Faster addition of the monomer has since repeatedly been shown to broaden the molecular weight dispersity.Additionally, the best chain-transfer agents we are currently investigating are orders of magnitude more reactive than CTA1 but give broader molecular weight dispersities than reported in Fig. 4. Molecular weight and dispersity control as shown in Fig. 4 is therefore an inappropriate claim for CTA1.The authors deeply regret these errors and apologize to the community.

  1. [Molecular imaging; current status and future prospects in USA].

    PubMed

    Kobayashi, Hisataka

    2007-02-01

    The goal of this review is to introduce the definition, current status, and future prospects of the molecular imaging, which has recently been a hot topic in medicine and the biological science in USA. In vivo imaging methods to visualize the molecular events and functions in organs or animals/humans are overviewed and discussed especially in combinations of imaging modalities (machines) and contrast agents(chemicals) used in the molecular imaging. Next, the close relationship between the molecular imaging and the nanotechnology, an important part of nanomedicine, is stressed from the aspect of united multidisciplinary sciences such as physics, chemistry, biology, and medicine.

  2. An Experimental and Computational Evaluation of the Importance of Molecular Diffusion in Gas Gravity Currents

    NASA Astrophysics Data System (ADS)

    Herman, Jeremy J.

    The accidental release of hazardous, denser-than-air gases during their transport or manufacture is a vital area of study for process safety researchers. This project examines the importance of molecular diffusion on the developing concentration field of a gas gravity current released into a calm environment. Questions which arose from the unexpectedly severe explosion in 2005 at Buncefield, England were of particular interest. The accidental overfilling of a large tank with gasoline on a completely calm morning led to a massive open air explosion. Forensic evidence showed that at the time of ignition, a vapor cloud, most of which now appears to have been within the flammability limits, covered approximately 120,000 m2. Neither the severity of the explosion, nor the size of the vapor cloud would have been anticipated. Experiments were conducted in which carbon dioxide was released from a sunken source into a one meter wide channel devoid of any wind. These experiments were designed in such a way as to mitigate the formation of a raised head at the front of the gravity current which would have resulted in turbulent entrainment of air. This was done to create a flow in which molecular diffusion was the controlling form of mixing between the carbon dioxide and air. Concentration measurements were taken using flame ionization detection at varying depths and down channel locations. A model of the experiments was developed using COMSOL Multiphysics. The only form of mixing allowed between carbon dioxide and air in the model was molecular diffusion. In this manner the accuracy of the assertion that molecular diffusion was controlling in our experiments was checked and verified. Experimental measurements showed a large variation of gas concentration with depth of the gravity current at the very beginning of the channel where the gas emerged up from the sunken source and began flowing down channel. Due to this variation, molecular diffusion caused the vertical concentration profile to get more uniform as the gravity current flowed down the channel. A COMSOL model was developed which showed an overall increase in the depth of the flammable region of a cloud with increasing time, due to this effect.

  3. Direct mapping of electrical noise sources in molecular wire-based devices

    PubMed Central

    Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun

    2017-01-01

    We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices. PMID:28233821

  4. Direct mapping of electrical noise sources in molecular wire-based devices

    NASA Astrophysics Data System (ADS)

    Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun

    2017-02-01

    We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices.

  5. Single-molecule designs for electric switches and rectifiers.

    PubMed

    Kornilovitch, Pavel; Bratkovsky, Alexander; Williams, Stanley

    2003-12-01

    A design for molecular rectifiers is proposed. Current rectification is based on the spatial asymmetry of a molecule and requires only one resonant conducting molecular orbital. Rectification is caused by asymmetric coupling of the orbital to the electrodes, which results in asymmetric movement of the two Fermi levels with respect to the orbital under external bias. Results from numerical studies of the family of suggested molecular rectifiers, HS-(CH(2))(n)-C(6)H(4)(CH(2))(m)SH, are presented. Current rectification ratios in excess of 100 are achievable for n = 2 and m > 6. A class of bistable stator-rotor molecules is proposed. The stationary part connects the two electrodes and facilitates electron transport between them. The rotary part, which has a large dipole moment, is attached to an atom of the stator via a single sigma bond. Electrostatic bonds formed between the oxygen atom of the rotor and hydrogen atoms of the stator make the symmetric orientation of the dipole unstable. The rotor has two potential minima with equal energy for rotation about the sigma bond. The dipole can be flipped between the two states by an external electric field. Both rotor-orientation states have asymmetric current-voltage characteristics that are the reverse of each other, so they are distinguishable electrically. Theoretical results on conformation, energy barriers, retention times, switching voltages, and current-voltage characteristics are presented for a particular stator-rotor molecule. Such molecules could be the base for single-molecule switches, reversible diodes, and other molecular electronic devices.

  6. Shocks, Rarefaction Waves, and Current Fluctuations for Anharmonic Chains

    DOE PAGES

    Mendl, Christian B.; Spohn, Herbert

    2016-10-04

    The nonequilibrium dynamics of anharmonic chains is studied by imposing an initial domain-wall state, in which the two half lattices are prepared in equilibrium with distinct parameters. Here, we analyse the Riemann problem for the corresponding Euler equations and, in specific cases, compare with molecular dynamics. Additionally, the fluctuations of time-integrated currents are investigated. In analogy with the KPZ equation, their typical fluctuations should be of size t 1/3 and have a Tracy–Widom GUE distributed amplitude. The proper extension to anharmonic chains is explained and tested through molecular dynamics. Our results are calibrated against the stochastic LeRoux lattice gas.

  7. Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes

    PubMed Central

    Requena, Jose M.; Montalvo, Ana M.; Fraga, Jorge

    2015-01-01

    Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges) for drug discovery and improving of current treatments against leishmaniasis. PMID:26167482

  8. Effect of Morinda citrifolia (Noni)-enriched diet on hepatic heat shock protein and lipid metabolism-related genes in heat stressed broiler chickens

    USDA-ARS?s Scientific Manuscript database

    Heat stress (HS) has been reported to alter fat deposition in broilers, however the underlying molecular mechanisms are not well-defined. The objectives of the current study were, therefore: (1) to determine the effects of acute (2 h) and chronic (3 weeks) HS on the expression of key molecular signa...

  9. Molecular chirality: language, history, and significance.

    PubMed

    Gal, Joseph

    2013-01-01

    In this chapter some background material concerning molecular chirality and enantiomerism is presented. First some basic chemical-molecular aspects of chirality are reviewed, after which certain relevant terminology whose use in the literature has been problematic is discussed. Then an overview is provided of some of the early discoveries that laid the foundations of the science of molecular chirality in chemistry and biology, including the discovery of the phenomenon of molecular chirality by L. Pasteur, the proposals for the asymmetric carbon atom by J.H. van 't Hoff and J.A. Lebel, Pasteur's discovery of biological enantioselectivity, the discovery of enantioselectivity at biological receptors by A. Piutti, the studies of enzymatic stereoselectivity by E. Fischer, and the work on enantioselectivity in pharmacology by A. Cushny. Finally, the role of molecular chirality in pharmacotherapy and new-drug development, arguably one of the main driving forces for the current intense interest in the phenomenon of molecular chirality, is discussed.

  10. Two dimensional molecular electronics spectroscopy for molecular fingerprinting, DNA sequencing, and cancerous DNA recognition.

    PubMed

    Rajan, Arunkumar Chitteth; Rezapour, Mohammad Reza; Yun, Jeonghun; Cho, Yeonchoo; Cho, Woo Jong; Min, Seung Kyu; Lee, Geunsik; Kim, Kwang S

    2014-02-25

    Laser-driven molecular spectroscopy of low spatial resolution is widely used, while electronic current-driven molecular spectroscopy of atomic scale resolution has been limited because currents provide only minimal information. However, electron transmission of a graphene nanoribbon on which a molecule is adsorbed shows molecular fingerprints of Fano resonances, i.e., characteristic features of frontier orbitals and conformations of physisorbed molecules. Utilizing these resonance profiles, here we demonstrate two-dimensional molecular electronics spectroscopy (2D MES). The differential conductance with respect to bias and gate voltages not only distinguishes different types of nucleobases for DNA sequencing but also recognizes methylated nucleobases which could be related to cancerous cell growth. This 2D MES could open an exciting field to recognize single molecule signatures at atomic resolution. The advantages of the 2D MES over the one-dimensional (1D) current analysis can be comparable to those of 2D NMR over 1D NMR analysis.

  11. Current Status of Herbal Medicines in Chronic Liver Disease Therapy: The Biological Effects, Molecular Targets and Future Prospects

    PubMed Central

    Hong, Ming; Li, Sha; Tan, Hor Yue; Wang, Ning; Tsao, Sai-Wah; Feng, Yibin

    2015-01-01

    Chronic liver dysfunction or injury is a serious health problem worldwide. Chronic liver disease involves a wide range of liver pathologies that include fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The efficiency of current synthetic agents in treating chronic liver disease is not satisfactory and they have undesirable side effects. Thereby, numerous medicinal herbs and phytochemicals have been investigated as complementary and alternative treatments for chronic liver diseases. Since some herbal products have already been used for the management of liver diseases in some countries or regions, a systematic review on these herbal medicines for chronic liver disease is urgently needed. Herein, we conducted a review describing the potential role, pharmacological studies and molecular mechanisms of several commonly used medicinal herbs and phytochemicals for chronic liver diseases treatment. Their potential toxicity and side effects were also discussed. Several herbal formulae and their biological effects in chronic liver disease treatment as well as the underlying molecular mechanisms are also summarized in this paper. This review article is a comprehensive and systematic analysis of our current knowledge of the conventional medicinal herbs and phytochemicals in treating chronic liver diseases and on the potential pitfalls which need to be addressed in future study. PMID:26633388

  12. Current Status of Herbal Medicines in Chronic Liver Disease Therapy: The Biological Effects, Molecular Targets and Future Prospects.

    PubMed

    Hong, Ming; Li, Sha; Tan, Hor Yue; Wang, Ning; Tsao, Sai-Wah; Feng, Yibin

    2015-12-02

    Chronic liver dysfunction or injury is a serious health problem worldwide. Chronic liver disease involves a wide range of liver pathologies that include fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The efficiency of current synthetic agents in treating chronic liver disease is not satisfactory and they have undesirable side effects. Thereby, numerous medicinal herbs and phytochemicals have been investigated as complementary and alternative treatments for chronic liver diseases. Since some herbal products have already been used for the management of liver diseases in some countries or regions, a systematic review on these herbal medicines for chronic liver disease is urgently needed. Herein, we conducted a review describing the potential role, pharmacological studies and molecular mechanisms of several commonly used medicinal herbs and phytochemicals for chronic liver diseases treatment. Their potential toxicity and side effects were also discussed. Several herbal formulae and their biological effects in chronic liver disease treatment as well as the underlying molecular mechanisms are also summarized in this paper. This review article is a comprehensive and systematic analysis of our current knowledge of the conventional medicinal herbs and phytochemicals in treating chronic liver diseases and on the potential pitfalls which need to be addressed in future study.

  13. Photonic-plasmonic hybrid single-molecule nanosensor measures the effect of fluorescent labels on DNA-protein dynamics

    PubMed Central

    Liang, Feng; Guo, Yuzheng; Hou, Shaocong; Quan, Qimin

    2017-01-01

    Current methods to study molecular interactions require labeling the subject molecules with fluorescent reporters. However, the effect of the fluorescent reporters on molecular dynamics has not been quantified because of a lack of alternative methods. We develop a hybrid photonic-plasmonic antenna-in-a-nanocavity single-molecule biosensor to study DNA-protein dynamics without using fluorescent labels. Our results indicate that the fluorescein and fluorescent protein labels decrease the interaction between a single DNA and a protein due to weakened electrostatic interaction. Although the study is performed on the DNA-XPA system, the conclusion has a general implication that the traditional fluorescent labeling methods might be misestimating the molecular interactions. PMID:28560341

  14. Molecular mechanisms of inner ear development.

    PubMed

    Wu, Doris K; Kelley, Matthew W

    2012-08-01

    The inner ear is a structurally complex vertebrate organ built to encode sound, motion, and orientation in space. Given its complexity, it is not surprising that inner ear dysfunction is a relatively common consequence of human genetic mutation. Studies in model organisms suggest that many genes currently known to be associated with human hearing impairment are active during embryogenesis. Hence, the study of inner ear development provides a rich context for understanding the functions of genes implicated in hearing loss. This chapter focuses on molecular mechanisms of inner ear development derived from studies of model organisms.

  15. Discovering disease-disease associations by fusing systems-level molecular data

    PubMed Central

    Žitnik, Marinka; Janjić, Vuk; Larminie, Chris; Zupan, Blaž; Pržulj, Nataša

    2013-01-01

    The advent of genome-scale genetic and genomic studies allows new insight into disease classification. Recently, a shift was made from linking diseases simply based on their shared genes towards systems-level integration of molecular data. Here, we aim to find relationships between diseases based on evidence from fusing all available molecular interaction and ontology data. We propose a multi-level hierarchy of disease classes that significantly overlaps with existing disease classification. In it, we find 14 disease-disease associations currently not present in Disease Ontology and provide evidence for their relationships through comorbidity data and literature curation. Interestingly, even though the number of known human genetic interactions is currently very small, we find they are the most important predictor of a link between diseases. Finally, we show that omission of any one of the included data sources reduces prediction quality, further highlighting the importance in the paradigm shift towards systems-level data fusion. PMID:24232732

  16. Protein recognition by a pattern-generating fluorescent molecular probe.

    PubMed

    Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M; Motiei, Leila; Margulies, David

    2017-12-01

    Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.

  17. Protein recognition by a pattern-generating fluorescent molecular probe

    NASA Astrophysics Data System (ADS)

    Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M.; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M.; Motiei, Leila; Margulies, David

    2017-12-01

    Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.

  18. Discovering disease-disease associations by fusing systems-level molecular data.

    PubMed

    Žitnik, Marinka; Janjić, Vuk; Larminie, Chris; Zupan, Blaž; Pržulj, Nataša

    2013-11-15

    The advent of genome-scale genetic and genomic studies allows new insight into disease classification. Recently, a shift was made from linking diseases simply based on their shared genes towards systems-level integration of molecular data. Here, we aim to find relationships between diseases based on evidence from fusing all available molecular interaction and ontology data. We propose a multi-level hierarchy of disease classes that significantly overlaps with existing disease classification. In it, we find 14 disease-disease associations currently not present in Disease Ontology and provide evidence for their relationships through comorbidity data and literature curation. Interestingly, even though the number of known human genetic interactions is currently very small, we find they are the most important predictor of a link between diseases. Finally, we show that omission of any one of the included data sources reduces prediction quality, further highlighting the importance in the paradigm shift towards systems-level data fusion.

  19. Current Proceedings in the Molecular Dissection of Hepatocellular Adenomas: Review and Hands-on Guide for Diagnosis

    PubMed Central

    Goltz, Diane; Fischer, Hans-Peter

    2015-01-01

    Molecular dissection of hepatocellular adenomas has brought forward a diversity of well-defined entities. Their distinction is important for routine practice, since prognosis is tightly related to the individual subgroup. Very recent activity has generated new details on the molecular background of hepatocellular adenoma, which this article aims to integrate into the current concepts of taxonomy. PMID:26404250

  20. Current Proceedings in the Molecular Dissection of Hepatocellular Adenomas: Review and Hands-on Guide for Diagnosis.

    PubMed

    Goltz, Diane; Fischer, Hans-Peter

    2015-09-02

    Molecular dissection of hepatocellular adenomas has brought forward a diversity of well-defined entities. Their distinction is important for routine practice, since prognosis is tightly related to the individual subgroup. Very recent activity has generated new details on the molecular background of hepatocellular adenoma, which this article aims to integrate into the current concepts of taxonomy.

  1. Clinical Trials of Precision Medicine through Molecular Profiling: Focus on Breast Cancer.

    PubMed

    Zardavas, Dimitrios; Piccart-Gebhart, Martine

    2015-01-01

    High-throughput technologies of molecular profiling in cancer, such as gene-expression profiling and next-generation sequencing, are expanding our knowledge of the molecular landscapes of several cancer types. This increasing knowledge coupled with the development of several molecularly targeted agents hold the promise for personalized cancer medicine to be fully realized. Moreover, an expanding armamentarium of targeted agents has been approved for the treatment of specific molecular cancer subgroups in different diagnoses. According to this paradigm, treatment selection should be dictated by the specific molecular aberrations found in each patient's tumor. The classical clinical trials paradigm of patients' eligibility being based on clinicopathologic parameters is being abandoned, with current clinical trials enrolling patients on the basis of specific molecular aberrations. New, innovative trial designs have been generated to better tackle the multiple challenges induced by the increasing molecular fragmentation of cancer, namely: (1) longitudinal cohort studies with or without downstream trials, (2) studies assessing the clinical utility of molecular profiling, (3) master or umbrella trials, (4) basket trials, (5) N-of-1 trials, and (6) adaptive design trials. This article provides an overview of the challenges for clinical trials in the era of molecular profiling of cancer. Subsequently, innovative trial designs with respective examples and their potential to expedite efficient clinical development of targeted anticancer agents is discussed.

  2. Comprehensive Carrier Screening and Molecular Diagnostic Testing for Recessive Childhood Diseases

    PubMed Central

    Kingsmore, Stephen

    2012-01-01

    Of 7,028 disorders with suspected Mendelian inheritance, 1,139 are recessive and have an established molecular basis. Although individually uncommon, Mendelian diseases collectively account for ~20% of infant mortality and ~18% of pediatric hospitalizations. Molecular diagnostic testing is currently available for only ~300 recessive disorders. Preconception screening, together with genetic counseling of carriers, has resulted in remarkable declines in the incidence of several severe recessive diseases including Tay-Sachs disease and cystic fibrosis. However, extension of preconception screening and molecular diagnostic testing to most recessive disease genes has hitherto been impractical. Recently, we reported a preconception carrier screen / molecular diagnostic test for 448 recessive childhood diseases. The current status of this test is reviewed here. Currently, this reports analytical validity of the comprehensive carrier test. As the clinical validity and clinical utility in the contexts described is ascertained, this article will be updated. PMID:22872815

  3. The Structural Basis of IKs Ion-Channel Activation: Mechanistic Insights from Molecular Simulations.

    PubMed

    Ramasubramanian, Smiruthi; Rudy, Yoram

    2018-06-05

    Relating ion channel (iCh) structural dynamics to physiological function remains a challenge. Current experimental and computational techniques have limited ability to explore this relationship in atomistic detail over physiological timescales. A framework associating iCh structure to function is necessary for elucidating normal and disease mechanisms. We formulated a modeling schema that overcomes the limitations of current methods through applications of artificial intelligence machine learning. Using this approach, we studied molecular processes that underlie human IKs voltage-mediated gating. IKs malfunction underlies many debilitating and life-threatening diseases. Molecular components of IKs that underlie its electrophysiological function include KCNQ1 (a pore-forming tetramer) and KCNE1 (an auxiliary subunit). Simulations, using the IKs structure-function model, reproduced experimentally recorded saturation of gating-charge displacement at positive membrane voltages, two-step voltage sensor (VS) movement shown by fluorescence, iCh gating statistics, and current-voltage relationship. Mechanistic insights include the following: 1) pore energy profile determines iCh subconductance; 2) the entire protein structure, not limited to the pore, contributes to pore energy and channel subconductance; 3) interactions with KCNE1 result in two distinct VS movements, causing gating-charge saturation at positive membrane voltages and current activation delay; and 4) flexible coupling between VS and pore permits pore opening at lower VS positions, resulting in sequential gating. The new modeling approach is applicable to atomistic scale studies of other proteins on timescales of physiological function. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Background review for diagnostic test development for Zika virus infection.

    PubMed

    Charrel, Rémi N; Leparc-Goffart, Isabelle; Pas, Suzan; de Lamballerie, Xavier; Koopmans, Marion; Reusken, Chantal

    2016-08-01

    To review the state of knowledge about diagnostic testing for Zika virus infection and identify areas of research needed to address the current gaps in knowledge. We made a non-systematic review of the published literature about Zika virus and supplemented this with information from commercial diagnostic test kits and personal communications with researchers in European preparedness networks. The review covered current knowledge about the geographical spread, pathogen characteristics, life cycle and infection kinetics of the virus. The available molecular and serological tests and biosafety issues are described and discussed in the context of the current outbreak strain. We identified the following areas of research to address current knowledge gaps: (i) an urgent assessment of the laboratory capacity and capability of countries to detect Zika virus; (ii) rapid and extensive field validation of the available molecular and serological tests in areas with and without Zika virus transmission, with a focus on pregnant women; (iii) monitoring the genomic diversity of circulating Zika virus strains; (iv) prospective studies into the virus infection kinetics, focusing on diagnostic sampling (specimen types, combinations and timings); and (v) developing external quality assessments for molecular and serological testing, including differential diagnosis for similar viruses and symptom clusters. The availability of reagents for diagnostic development (virus strains and antigens, quantified viral ribonucleic acid) needs to be facilitated. An international laboratory response is needed, including preparation of protocols for prospective studies to address the most pressing information needs.

  5. Background review for diagnostic test development for Zika virus infection

    PubMed Central

    Charrel, Rémi N; Leparc-Goffart, Isabelle; Pas, Suzan; de Lamballerie, Xavier; Koopmans, Marion; Reusken, Chantal

    2016-01-01

    Abstract Objective To review the state of knowledge about diagnostic testing for Zika virus infection and identify areas of research needed to address the current gaps in knowledge. Methods We made a non-systematic review of the published literature about Zika virus and supplemented this with information from commercial diagnostic test kits and personal communications with researchers in European preparedness networks. The review covered current knowledge about the geographical spread, pathogen characteristics, life cycle and infection kinetics of the virus. The available molecular and serological tests and biosafety issues are described and discussed in the context of the current outbreak strain. Findings We identified the following areas of research to address current knowledge gaps: (i) an urgent assessment of the laboratory capacity and capability of countries to detect Zika virus; (ii) rapid and extensive field validation of the available molecular and serological tests in areas with and without Zika virus transmission, with a focus on pregnant women; (iii) monitoring the genomic diversity of circulating Zika virus strains; (iv) prospective studies into the virus infection kinetics, focusing on diagnostic sampling (specimen types, combinations and timings); and (v) developing external quality assessments for molecular and serological testing, including differential diagnosis for similar viruses and symptom clusters. The availability of reagents for diagnostic development (virus strains and antigens, quantified viral ribonucleic acid) needs to be facilitated. Conclusion An international laboratory response is needed, including preparation of protocols for prospective studies to address the most pressing information needs. PMID:27516635

  6. Molecular imaging of inflammation and intraplaque vasa vasorum: A step forward to identification of vulnerable plaques?

    PubMed Central

    ten Kate, Gerrit L.; Sijbrands, Eric J. G.; Valkema, Roelf; ten Cate, Folkert J.; Feinstein, Steven B.; van der Steen, Antonius F. W.; Daemen, Mat J. A. P.

    2010-01-01

    Current developments in cardiovascular biology and imaging enable the noninvasive molecular evaluation of atherosclerotic vascular disease. Intraplaque neovascularization sprouting from the adventitial vasa vasorum has been identified as an independent predictor of intraplaque hemorrhage and plaque rupture. These intraplaque vasa vasorum result from angiogenesis, most likely under influence of hypoxic and inflammatory stimuli. Several molecular imaging techniques are currently available. Most experience has been obtained with molecular imaging using positron emission tomography and single photon emission computed tomography. Recently, the development of targeted contrast agents has allowed molecular imaging with magnetic resonance imaging, ultrasound and computed tomography. The present review discusses the use of these molecular imaging techniques to identify inflammation and intraplaque vasa vasorum to identify vulnerable atherosclerotic plaques at risk of rupture and thrombosis. The available literature on molecular imaging techniques and molecular targets associated with inflammation and angiogenesis is discussed, and the clinical applications of molecular cardiovascular imaging and the use of molecular techniques for local drug delivery are addressed. PMID:20552308

  7. Head and neck mucosal melanoma: a review.

    PubMed

    Lourenço, Silvia V; Fernandes, Juliana D; Hsieh, Ricardo; Coutinho-Camillo, Claudia M; Bologna, Sheyla; Sangueza, Martin; Nico, Marcello M S

    2014-07-01

    Head and neck mucosal melanoma (MM) is an aggressive and rare neoplasm of melanocytic origin. To date, few retrospective series and case reports have been reported on MM. This article reviews the current evidence on head and neck MM and the molecular pathways that mediate the pathogenesis of this disease. Head and neck MM accounts for 0.7%-3.8% of all melanomas and involve (in decreasing order of frequency) the sinonasal cavity, oral cavity, pharynx, larynx, and upper esophagus. Although many studies have examined MM of the head and neck and the underlying molecular pathways, individual genetic and molecular alterations were less investigated. Further studies are needed to complement existing data and to increase our understanding of melanocytes tumorigenesis.

  8. Quantifying the Effect of Polymer Blending through Molecular Modelling of Cyanurate Polymers

    PubMed Central

    Crawford, Alasdair O.; Hamerton, Ian; Cavalli, Gabriel; Howlin, Brendan J.

    2012-01-01

    Modification of polymer properties by blending is a common practice in the polymer industry. We report here a study of blends of cyanurate polymers by molecular modelling that shows that the final experimentally determined properties can be predicted from first principles modelling to a good degree of accuracy. There is always a compromise between simulation length, accuracy and speed of prediction. A comparison of simulation times shows that 125ps of molecular dynamics simulation at each temperature provides the optimum compromise for models of this size with current technology. This study opens up the possibility of computer aided design of polymer blends with desired physical and mechanical properties. PMID:22970230

  9. Progress in the molecular diagnosis of Lyme disease.

    PubMed

    Ružić-Sabljić, Eva; Cerar, Tjaša

    2017-01-01

    Current laboratory testing of Lyme borreliosis mostly relies on serological methods with known limitations. Diagnostic modalities enabling direct detection of pathogen at the onset of the clinical signs could overcome some of the limitations. Molecular methods detecting borrelial DNA seem to be the ideal solution, although there are some aspects that need to be considered. Areas covered: This review represent summary and discussion of the published data obtained from literature searches from PubMed and The National Library of Medicine (USA) together with our own experience on molecular diagnosis of Lyme disease. Expert commentary: Molecular methods are promising and currently serve as supporting diagnostic testing in Lyme borreliosis. Since the field of molecular diagnostics is under rapid development, molecular testing could become an important diagnostic modality.

  10. Malaria Molecular Epidemiology: Lessons from the International Centers of Excellence for Malaria Research Network.

    PubMed

    Escalante, Ananias A; Ferreira, Marcelo U; Vinetz, Joseph M; Volkman, Sarah K; Cui, Liwang; Gamboa, Dionicia; Krogstad, Donald J; Barry, Alyssa E; Carlton, Jane M; van Eijk, Anna Maria; Pradhan, Khageswar; Mueller, Ivo; Greenhouse, Bryan; Pacheco, M Andreina; Vallejo, Andres F; Herrera, Socrates; Felger, Ingrid

    2015-09-01

    Molecular epidemiology leverages genetic information to study the risk factors that affect the frequency and distribution of malaria cases. This article describes molecular epidemiologic investigations currently being carried out by the International Centers of Excellence for Malaria Research (ICEMR) network in a variety of malaria-endemic settings. First, we discuss various novel approaches to understand malaria incidence and gametocytemia, focusing on Plasmodium falciparum and Plasmodium vivax. Second, we describe and compare different parasite genotyping methods commonly used in malaria epidemiology and population genetics. Finally, we discuss potential applications of molecular epidemiological tools and methods toward malaria control and elimination efforts. © The American Society of Tropical Medicine and Hygiene.

  11. Molecular Orientation of a Terbium(III)-Phthalocyaninato Double-Decker Complex for Effective Suppression of Quantum Tunneling of the Magnetization.

    PubMed

    Yamabayashi, Tsutomu; Katoh, Keiichi; Breedlove, Brian K; Yamashita, Masahiro

    2017-06-15

    Single-molecule magnet (SMM) properties of crystals of a terbium(III)-phthalocyaninato double-decker complex with different molecular packings ( 1 : TbPc₂, 2 : TbPc₂·CH₂Cl₂) were studied to elucidate the relationship between the molecular packing and SMM properties. From single crystal X-ray analyses, the high symmetry of the coordination environment of 2 suggested that the SMM properties were improved. Furthermore, the shorter intermolecular Tb-Tb distance and relative collinear alignment of the magnetic dipole in 2 indicated that the magnetic dipole-dipole interactions were stronger than those in 1 . This was confirmed by using direct current magnetic measurements. From alternating current magnetic measurements, the activation energy for spin reversal for 1 and 2 were similar. However, the relaxation time for 2 is three orders of magnitude slower than that for 1 in the low- T region due to effective suppression of the quantum tunneling of the magnetization. These results suggest that the SMM properties of TbPc₂ highly depend on the molecular packing.

  12. Current's Fluctuations through Molecular Wires Composed of Thiophene Rings.

    PubMed

    Ojeda Silva, Judith Helena; Cortés Peñaranda, Juan Camilo; Gómez Castaño, Jovanny A; Duque, Carlos Alberto

    2018-04-11

    We study theoretically the electronic transport and quantum fluctuations in single-molecule systems using thiophene rings as integrated elementary functions, as well as the dependence of these properties with the increase of the coupled rings, i.e., as a quantum wire. In order to analyze the current flow through these molecular systems, the thiophene rings are considered to be connected to metal contacts, which, in general terms, will be related to the application of voltages (bias voltages or gate voltages) to generate non-equilibrium behavior between the contacts. Due to the nonlinear behavior that is generated when said voltages are applied, it is possible to observe quantum fluctuations in the transport properties of these molecular wires. For the calculation of the transport properties, we applied a tight-binding approach using the Landauer-Büttiker formalism and the Fischer-Lee relationship, by means of a semi-analytic Green's function method within a real-space renormalization (decimation procedure). Our results showed an excellent agreement with results using a tight-binding model with a minimal number of parameters reported so far for these molecular systems.

  13. Molecular markers: progress and prospects for understanding reproductive ecology in elasmobranchs.

    PubMed

    Portnoy, D S; Heist, E J

    2012-04-01

    Application of modern molecular tools is expanding the understanding of elasmobranch reproductive ecology. High-resolution molecular markers provide information at scales ranging from the identification of reproductively isolated populations in sympatry (i.e. cryptic species) to the relationships among parents, offspring and siblings. This avenue of study has not only augmented the current understanding of the reproductive biology of elasmobranchs but has also provided novel insights that could not be obtained through experimental or observational techniques. Sharing of genetic polymorphisms across ocean basins indicates that for some species there may be gene flow on global scales. The presence, however, of morphologically similar but genetically distinct entities in sympatry suggests that reproductive isolation can occur with minimal morphological differentiation. This review discusses the recent findings in elasmobranch reproductive biology like philopatry, hybridization and polyandry while highlighting important molecular and analytical techniques. Furthermore, the review examines gaps in current knowledge and discusses how new technologies may be applied to further the understanding of elasmobranch reproductive ecology. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  14. Collaborative study for the establishment of replacement batches of heparin low- molecular-mass for assay biological reference preparations.

    PubMed

    Terao, E; Daas, A; Rautmann, G; Buchheit, K-H

    2010-10-01

    A collaborative study was run by the European Directorate for the Quality of Medicines & HealthCare (EDQM) in the context of the Biological Standardisation Programme (BSP), under the aegis of the Council of Europe and the European Commission, to establish replacement batches for the dwindling stocks of the Heparin low-molecular-mass for assay European Pharmacopoeia Biological Reference Preparation (BRP). The replacement batches of BRP are intended to be used in the assays for anti-Xa and anti-IIa activities, as described in the European Pharmacopoeia (Ph. Eur.) monograph Heparins, low-molecular-mass (0828). Three freeze-dried candidate batches were calibrated against the current International Standard (IS) for Heparin, lowmolecular- weight (2nd IS, 01/608). For the purpose of the continuity check between subsequent BRP batches, the current Heparin low-molecular-mass for assay BRP (batch 5) was also included in the test panel. Thirteen official medicines control and manufacturers laboratories from European and non-European countries contributed data. A central statistical analysis of the datasets was performed at the EDQM. On the basis of the results, the 3 candidate materials were assigned a potency of 104 IU/vial for the anti-Xa activity and 31 IU/vial for the anti-IIa activity. Taken into account the preliminary stability data and the results of this collaborative study, the 3 batches of candidate BRP were adopted in June 2010 by the Commission of the Ph. Eur. as Heparin low-molecular-mass for assay BRP batches 6, 7 and 8.

  15. Forty Years of Ebolavirus Molecular Biology: Understanding a Novel Disease Agent Through the Development and Application of New Technologies.

    PubMed

    Groseth, Allison; Hoenen, Thomas

    2017-01-01

    Molecular biology is a broad discipline that seeks to understand biological phenomena at a molecular level, and achieves this through the study of DNA, RNA, proteins, and/or other macromolecules (e.g., those involved in the modification of these substrates). Consequently, it relies on the availability of a wide variety of methods that deal with the collection, preservation, inactivation, separation, manipulation, imaging, and analysis of these molecules. As such the state of the art in the field of ebolavirus molecular biology research (and that of all other viruses) is largely intertwined with, if not driven by, advancements in the technical methodologies available for these kinds of studies. Here we review of the current state of our knowledge regarding ebolavirus biology and emphasize the associated methods that made these discoveries possible.

  16. Arrhythmogenic KCNE gene variants: current knowledge and future challenges

    PubMed Central

    Crump, Shawn M.; Abbott, Geoffrey W.

    2014-01-01

    There are twenty-five known inherited cardiac arrhythmia susceptibility genes, all of which encode either ion channel pore-forming subunits or proteins that regulate aspects of ion channel biology such as function, trafficking, and localization. The human KCNE gene family comprises five potassium channel regulatory subunits, sequence variants in each of which are associated with cardiac arrhythmias. KCNE gene products exhibit promiscuous partnering and in some cases ubiquitous expression, hampering efforts to unequivocally correlate each gene to specific native potassium currents. Likewise, deducing the molecular etiology of cardiac arrhythmias in individuals harboring rare KCNE gene variants, or more common KCNE polymorphisms, can be challenging. In this review we provide an update on putative arrhythmia-causing KCNE gene variants, and discuss current thinking and future challenges in the study of molecular mechanisms of KCNE-associated cardiac rhythm disturbances. PMID:24478792

  17. Cancer molecular markers: A guide to cancer detection and management.

    PubMed

    Nair, Meera; Sandhu, Sardul Singh; Sharma, Anil Kumar

    2018-02-08

    Cancer is generally caused by the molecular alterations which lead to specific mutations. Advances in molecular biology have provided an impetus to the study of cancers with valuable prognostic and predictive significance. Over the hindsight various attempts have been undertaken by scientists worldwide, in the management of cancer; where, we have witnessed a number of molecular markers which allow the early detection of cancers and lead to a decrease in its mortality rate. Recent advances in oncology have led to the discovery of cancer markers that has allowed early detection and targeted therapy of tumors. In this context, current review provides a detail outlook on various molecular markers for diagnosis, prognosis and management of therapeutic response in cancer patients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Molecular detection technologies for arboviruses

    USDA-ARS?s Scientific Manuscript database

    Arthropod-borne animal viruses (arboviruses) cause significant livestock and economic losses to world agriculture. This paper discusses the current and potential impact of these viruses, as well as the current and developing molecular diagnostic tools for these emerging and re-emerging insect transm...

  19. Modulation of circular current and associated magnetic field in a molecular junction: A new approach

    NASA Astrophysics Data System (ADS)

    Patra, Moumita; Maiti, Santanu K.

    2017-03-01

    A new proposal is given to control local magnetic field in a molecular junction. In presence of finite bias a net circular current is established in the molecular ring which induces a magnetic field at its centre. Allowing a direct coupling between two electrodes, due to their close proximity, and changing its strength we can regulate circular current as well as magnetic field for a wide range, without disturbing any other physical parameters. We strongly believe that our proposal is quite robust compared to existing approaches of controlling local magnetic field and can be verified experimentally.

  20. Black Molecular Adsorber Coatings for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  1. Molecular identification of the Sporothrix schenckii complex.

    PubMed

    Oliveira, Manoel Marques Evangelista; Almeida-Paes, Rodrigo; Gutierrez-Galhardo, Maria Clara; Zancope-Oliveira, Rosely M

    2014-01-01

    Sporothrix schenckii, an ascomycetous dimorphic organism that for over a century was recognized as the sole agent of sporotrichosis, a subcutaneous mycosis with a worldwide distribution. However, it has been proposed, based on physiologic and molecular aspects, that S. schenckii is a complex of distinct species: Sporothrix brasiliensis, Sporothrix mexicana, Sporothrix globosa, S. schenckii sensu strictu, Sporothrix luriei, and Sporothrix albicans (formerly Sporothrix pallida). Human disease has a broad range of clinical manifestations and can be classified into fixed cutaneous, lymphocutaneous, disseminated cutaneous, and extracutaneous sporotrichosis. The gold standard for the diagnosis of sporotrichosis is the culture; however, serologic, histopathologic and molecular approaches have been recently adopted for the diagnosis of this mycosis. Few molecular methods have been applied to the diagnosis of sporotrichosis to detect S. schenckii DNA from clinical specimens, and to identify Sporothrix spp. in culture. Until now, Sporothrix is the unique clinically relevant dimorphic fungus without an elucidated genome sequence, thus limiting molecular knowledge about the cryptic species of this complex, and the sexual form of all S. schenckii complex species. In this review we shall focus on the current diagnosis of the sporotrichosis, and discuss the current molecular tools applied to the diagnosis and identification of the Sporothrix complex species. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  2. Black molecular adsorber coatings for spaceflight applications

    NASA Astrophysics Data System (ADS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2014-09-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  3. [Point mutations of genes encoding proteins involvedin RNA splicing in patients with myelodysplastic syndromes].

    PubMed

    Barańska, Marta; Czerwińska-Rybak, Joanna; Gil, Lidia; Komarnicki, Mieczysław

    2015-01-01

    The myelodysplastic syndromes (MDS) constitute heterogeneous group of clonal disorders, characterized by ineffective hematopoiesis, peripheral cytopenia and increased risk of acute myeloid leukemia development. Molecular mechanisms behind MDS have not been fully explained, however recent studies based on new technologies confirmed that epigenetic abnormalities and somatic mutation in the spliceasome machinery are crucial in pathogenesis of these diseases. Abnormal mRNA splicing (excision of intronic sequences from mRNA) has been found in over half of all MDS patients and resulted in accumulation of cytogenetical and molecular changes. The biological impact of splicing factor genes mutations has been evaluated only in a limited extend and current studies concentrate on analysis of MDS transcriptome. Molecular characteristic of classical and alternative splicing is presented in the paper, according to current knowledge. We review the most prominent findings from recent years concerning mutation in the spliceasome machinery with respect to MDS phenotype and disease prognosis. Perspectives in applying of novel diagnostic and therapeutic possibilities for myelodysplasia, based on spliceosome mutations identification are also presented. © 2015 MEDPRESS.

  4. Prohibitin as the Molecular Binding Switch in the Retinal Pigment Epithelium

    PubMed Central

    Sripathi, Srinivasa R.; Sylvester, O’Donnell; He, Weilue; Moser, Trevor; Um, Ji-Yeon; Lamoke, Folami; Ramakrishna, Wusirika; Bernstein, Paul S.; Bartoli, Manuela; Jahng, Wan Jin

    2016-01-01

    Previously, our study showed that prohibitin interacts with phospholipids, including phosphatidylinositide and cardiolipin. Under stress conditions, prohibitin interacts with cardiolipin as a retrograde response to activate mitochondrial proliferation. The lipid-binding switch mechanism of prohibitin with phosphatidylinositol-3,4,5-triphosphate (PIP3) and cardiolipin may suggest the role of prohibitin effects on energy metabolism and age-related diseases. The current study examined the region-specific expressions of prohibitin with respect to the retina and retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). A detailed understanding of prohibitin binding with lipids, nucleotides, and proteins shown in the current study may suggest how molecular interactions control apoptosis and how we can intervene against the apoptotic pathway in AMD. Our data imply that decreased prohibitin in the peripheral RPE is a significant step leading to mitochondrial dysfunction that may promote AMD progression. PMID:26661103

  5. Complex molecular assemblies at hand via interactive simulations.

    PubMed

    Delalande, Olivier; Férey, Nicolas; Grasseau, Gilles; Baaden, Marc

    2009-11-30

    Studying complex molecular assemblies interactively is becoming an increasingly appealing approach to molecular modeling. Here we focus on interactive molecular dynamics (IMD) as a textbook example for interactive simulation methods. Such simulations can be useful in exploring and generating hypotheses about the structural and mechanical aspects of biomolecular interactions. For the first time, we carry out low-resolution coarse-grain IMD simulations. Such simplified modeling methods currently appear to be more suitable for interactive experiments and represent a well-balanced compromise between an important gain in computational speed versus a moderate loss in modeling accuracy compared to higher resolution all-atom simulations. This is particularly useful for initial exploration and hypothesis development for rare molecular interaction events. We evaluate which applications are currently feasible using molecular assemblies from 1900 to over 300,000 particles. Three biochemical systems are discussed: the guanylate kinase (GK) enzyme, the outer membrane protease T and the soluble N-ethylmaleimide-sensitive factor attachment protein receptors complex involved in membrane fusion. We induce large conformational changes, carry out interactive docking experiments, probe lipid-protein interactions and are able to sense the mechanical properties of a molecular model. Furthermore, such interactive simulations facilitate exploration of modeling parameters for method improvement. For the purpose of these simulations, we have developed a freely available software library called MDDriver. It uses the IMD protocol from NAMD and facilitates the implementation and application of interactive simulations. With MDDriver it becomes very easy to render any particle-based molecular simulation engine interactive. Here we use its implementation in the Gromacs software as an example. Copyright 2009 Wiley Periodicals, Inc.

  6. Sodium pump molecular activity and membrane lipid composition in two disparate ectotherms, and comparison with endotherms.

    PubMed

    Turner, Nigel; Hulbert, A J; Else, Paul L

    2005-02-01

    Previous research has shown that the lower sodium pump molecular activity observed in tissues of ectotherms compared to endotherms, is largely related to the lower levels of polyunsaturates and higher levels of monounsaturates found in the cell membranes of ectotherms. Marine-based ectotherms, however, have very polyunsaturated membranes, and in the current study, we measured molecular activity and membrane lipid composition in tissues of two disparate ectothermic species, the octopus (Octopus vulgaris) and the bearded dragon lizard (Pogona vitticeps), to determine whether the high level of membrane polyunsaturation generally observed in marine-based ectotherms is associated with an increased sodium pump molecular activity relative to other ectotherms. Phospholipids from all tissues of the octopus were highly polyunsaturated and contained high concentrations of the omega-3 polyunsaturate, docosahexaenoic acid (22:6 (n-3)). In contrast, phospholipids from bearded dragon tissues contained higher proportions of monounsaturates and lower proportions of polyunsaturates. Sodium pump molecular activity was only moderately elevated in tissues of the octopus compared to the bearded dragon, despite the much greater level of polyunsaturation in octopus membranes. When the current data were combined with data for the ectothermic cane toad, a significant (P = 0.003) correlation was observed between sodium pump molecular activity and the content of 22:6 (n-3) in the surrounding membrane. These results are discussed in relation to recent work which shows a similar relationship in endotherms.

  7. Tungsten polyoxometalate molecules as active nodes for dynamic carrier exchange in hybrid molecular/semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Balliou, A.; Douvas, A. M.; Normand, P.; Tsikritzis, D.; Kennou, S.; Argitis, P.; Glezos, N.

    2014-10-01

    In this work we study the utilization of molecular transition metal oxides known as polyoxometalates (POMs), in particular the Keggin structure anions of the formula PW12O403-, as active nodes for potential switching and/or fast writing memory applications. The active molecules are being integrated in hybrid Metal-Insulator/POM molecules-Semiconductor capacitors, which serve as prototypes allowing investigation of critical performance characteristics towards the design of more sophisticated devices. The charging ability as well as the electronic structure of the molecular layer is probed by means of electrical characterization, namely, capacitance-voltage and current-voltage measurements, as well as transient capacitance measurements, C (t), under step voltage polarization. It is argued that the transient current peaks observed are manifestations of dynamic carrier exchange between the gate electrode and specific molecular levels, while the transient C (t) curves under conditions of molecular charging can supply information for the rate of change of the charge that is being trapped and de-trapped within the molecular layer. Structural characterization via surface and cross sectional scanning electron microscopy as well as atomic force microscopy, spectroscopic ellipsometry, UV and Fourier-transform IR spectroscopies, UPS, and XPS contribute to the extraction of accurate electronic structure characteristics and open the path for the design of new devices with on-demand tuning of their interfacial properties via the controlled preparation of the POM layer.

  8. What are the currently available and in development molecular markers for bladder cancer? Will they prove to be useful in the future?

    PubMed

    Abdulmajed, Mohamed Ismat; Sancak, Eyüp Burak; Reşorlu, Berkan; Al-Chalaby, Gydhia Zuhair

    2014-12-01

    Urothelial carcinoma is the 9(th) most common cancer worldwide. Most urothelial tumors are non-muscle invasive on presentation. However, two-thirds of non-invasive bladder cancers will eventually recur with a 25% risk of progression to muscle-invasive bladder cancer. Tumor stage, histological grade and pathological invasion of blood vessels and lymphatic tissue are the main indicators for urothelial cancer prognosis. The gold standard for diagnosing bladder cancer is conventional white-light cystoscopy and biopsy. Urine cytology is a highly specific, sensitive test for high-grade tumors or carcinoma in situ (CIS). Urinary NMP22 has an overall sensitivity and specificity for detecting bladder cancer of 49% and 87%, respectively. However, there are false-positive results in the presence of urinary tract infection or hematuria. The detection of specific gene mutations related to urothelial cancers has been studied and employed to reproduce markers helpful for diagnosis. According to current studies, molecular markers can be used to predict tumor recurrence. From a prognostic point of view, new molecular markers have yet to be established as reliable indicators of tumor aggressiveness. We aimed to review the molecular markers with possible prognostic significance that have been discussed in the literature. This review examined the literature for various molecular markers under development for bladder cancer in an attempt to optimize patient care and reduce the costs of treating these patients.

  9. Molecular tools for carotenogenesis analysis in the zygomycete Mucor circinelloides.

    PubMed

    Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M; Garre, Victoriano; López-García, Sergio; Navarro, Eusebio; Vila, Ana

    2012-01-01

    The carotene producer fungus Mucor circinelloides is the zygomycete more amenable to genetic manipulations by using molecular tools. Since the initial development of an effective procedure of genetic transformation, more than two decades ago, the availability of new molecular approaches such as gene replacement techniques and gene expression inactivation by RNA silencing, in addition to the sequencing of its genome, has made Mucor a valuable organism for the study of a number of processes. Here we describe in detail the main techniques and methods currently used to manipulate M. circinelloides, including transformation, gene replacement, gene silencing, RNAi, and immunoprecipitation.

  10. Unraveling the Molecular Mechanism of Benzothiophene and Benzofuran scaffold merged compounds binding to anti-apoptotic Myeloid cell leukemia 1.

    PubMed

    Marimuthu, Parthiban; Singaravelu, Kalaimathy

    2018-05-10

    Myeloid cell leukemia 1 (Mcl1), is an anti-apoptotic member of the Bcl-2 family proteins, has gained considerable importance due to its overexpression activity prevents the oncogenic cells to undergo apoptosis. This overexpression activity of Mcl1 eventually develops strong resistance to a wide variety of anticancer agents. Therefore, designing novel inhibitors with potentials to elicit higher binding affinity and specificity to inhibit Mcl1 activity is of greater importance. Thus, Mcl1 acts as an attractive cancer target. Despite recent experimental advancement in the identification and characterization of Benzothiophene and Benzofuran scaffold merged compounds the molecular mechanisms of their binding to Mcl1 are yet to be explored. The current study demonstrates an integrated approach -pharmacophore-based 3D-QSAR, docking, Molecular Dynamics (MD) simulation and free-energy estimation- to access the precise and comprehensive effects of current inhibitors targeting Mcl1 together with its known activity values. The pharmacophore -ANRRR.240- based 3D-QSAR model from the current study provided high confidence (R 2 =0.9154, Q 2 =0.8736, and RMSE=0.3533) values. Furthermore, the docking correctly predicted the binding mode of highly active compound 42. Additionally, the MD simulation for docked complex under explicit-solvent conditions together with free-energy estimation exhibited stable interaction and binding strength over the time period. Also, the decomposition analysis revealed potential energy contributing residues -M231, M250, V253, R265, L267, and F270- to the complex stability. Overall, the current investigation might serve as a valuable insight, either to (i) improve the binding affinity of the current compounds or (ii) discover new generation anti-cancer agents that can effectively downregulate Mcl1 activity.

  11. When can time-dependent currents be reproduced by the Landauer steady-state approximation?

    NASA Astrophysics Data System (ADS)

    Carey, Rachel; Chen, Liping; Gu, Bing; Franco, Ignacio

    2017-05-01

    We establish well-defined limits in which the time-dependent electronic currents across a molecular junction subject to a fluctuating environment can be quantitatively captured via the Landauer steady-state approximation. For this, we calculate the exact time-dependent non-equilibrium Green's function (TD-NEGF) current along a model two-site molecular junction, in which the site energies are subject to correlated noise, and contrast it with that obtained from the Landauer approach. The ability of the steady-state approximation to capture the TD-NEGF behavior at each instant of time is quantified via the same-time correlation function of the currents obtained from the two methods, while their global agreement is quantified by examining differences in the average currents. The Landauer steady-state approach is found to be a useful approximation when (i) the fluctuations do not disrupt the degree of delocalization of the molecular eigenstates responsible for transport and (ii) the characteristic time for charge exchange between the molecule and leads is fast with respect to the molecular correlation time. For resonant transport, when these conditions are satisfied, the Landauer approach is found to accurately describe the current, both on average and at each instant of time. For non-resonant transport, we find that while the steady-state approach fails to capture the time-dependent transport at each instant of time, it still provides a good approximation to the average currents. These criteria can be employed to adopt effective modeling strategies for transport through molecular junctions in interaction with a fluctuating environment, as is necessary to describe experiments.

  12. Transcriptomic Modification in the Cerebral Cortex following Noninvasive Brain Stimulation: RNA-Sequencing Approach

    PubMed Central

    Holmes, Ben; Jung, Seung Ho; Lu, Jing; Wagner, Jessica A.; Rubbi, Liudmilla; Pellegrini, Matteo

    2016-01-01

    Transcranial direct current stimulation (tDCS) has been shown to modulate neuroplasticity. Beneficial effects are observed in patients with psychiatric disorders and enhancement of brain performance in healthy individuals has been observed following tDCS. However, few studies have attempted to elucidate the underlying molecular mechanisms of tDCS in the brain. This study was conducted to assess the impact of tDCS on gene expression within the rat cerebral cortex. Anodal tDCS was applied at 3 different intensities followed by RNA-sequencing and analysis. In each current intensity, approximately 1,000 genes demonstrated statistically significant differences compared to the sham group. A variety of functional pathways, biological processes, and molecular categories were found to be modified by tDCS. The impact of tDCS on gene expression was dependent on current intensity. Results show that inflammatory pathways, antidepressant-related pathways (GTP signaling, calcium ion binding, and transmembrane/signal peptide pathways), and receptor signaling pathways (serotonergic, adrenergic, GABAergic, dopaminergic, and glutamate) were most affected. Of the gene expression profiles induced by tDCS, some changes were observed across multiple current intensities while other changes were unique to a single stimulation intensity. This study demonstrates that tDCS can modify the expression profile of various genes in the cerebral cortex and that these tDCS-induced alterations are dependent on the current intensity applied. PMID:28119786

  13. Exploring GPCR-Lipid Interactions by Molecular Dynamics Simulations: Excitements, Challenges, and the Way Forward.

    PubMed

    Sengupta, Durba; Prasanna, Xavier; Mohole, Madhura; Chattopadhyay, Amitabha

    2018-06-07

    Gprotein-coupled receptors (GPCRs) are seven transmembrane receptors that mediate a large number of cellular responses and are important drug targets. One of the current challenges in GPCR biology is to analyze the molecular signatures of receptor-lipid interactions and their subsequent effects on GPCR structure, organization, and function. Molecular dynamics simulation studies have been successful in predicting molecular determinants of receptor-lipid interactions. In particular, predicted cholesterol interaction sites appear to correspond well with experimentally determined binding sites and estimated time scales of association. In spite of several success stories, the methodologies in molecular dynamics simulations are still emerging. In this Feature Article, we provide a comprehensive overview of coarse-grain and atomistic molecular dynamics simulations of GPCR-lipid interaction in the context of experimental observations. In addition, we discuss the effect of secondary and tertiary structural constraints in coarse-grain simulations in the context of functional dynamics and structural plasticity of GPCRs. We envision that this comprehensive overview will help resolve differences in computational studies and provide a way forward.

  14. Molecular Mechanisms of Inner Ear Development

    PubMed Central

    Wu, Doris K.; Kelley, Matthew W.

    2012-01-01

    The inner ear is a structurally complex vertebrate organ built to encode sound, motion, and orientation in space. Given its complexity, it is not surprising that inner ear dysfunction is a relatively common consequence of human genetic mutation. Studies in model organisms suggest that many genes currently known to be associated with human hearing impairment are active during embryogenesis. Hence, the study of inner ear development provides a rich context for understanding the functions of genes implicated in hearing loss. This chapter focuses on molecular mechanisms of inner ear development derived from studies of model organisms. PMID:22855724

  15. Targeting oncogenic vulnerabilities in triple negative breast cancer: biological bases and ongoing clinical studies

    PubMed Central

    Ocana, Alberto; Pandiella, Atanasio

    2017-01-01

    Triple negative breast cancer (TNBC) is still an incurable disease despite the great scientific effort performed during the last years. The huge heterogeneity of this disease has motivated the evaluation of a great number of therapies against different molecular alterations. In this article, we review the biological bases of this entity and how the known molecular evidence supports the current preclinical and clinical development of new therapies. Special attention will be given to ongoing clinical studies and potential options for future drug combinations. PMID:28108739

  16. Deep Learning in Nuclear Medicine and Molecular Imaging: Current Perspectives and Future Directions.

    PubMed

    Choi, Hongyoon

    2018-04-01

    Recent advances in deep learning have impacted various scientific and industrial fields. Due to the rapid application of deep learning in biomedical data, molecular imaging has also started to adopt this technique. In this regard, it is expected that deep learning will potentially affect the roles of molecular imaging experts as well as clinical decision making. This review firstly offers a basic overview of deep learning particularly for image data analysis to give knowledge to nuclear medicine physicians and researchers. Because of the unique characteristics and distinctive aims of various types of molecular imaging, deep learning applications can be different from other fields. In this context, the review deals with current perspectives of deep learning in molecular imaging particularly in terms of development of biomarkers. Finally, future challenges of deep learning application for molecular imaging and future roles of experts in molecular imaging will be discussed.

  17. Molecular Foundry

    Science.gov Websites

    Molecular Foundry? Research Themes Strategic Plan (PDF) Foundry Careers Foundry Facts Bay Cam Other User Information about current openings at the Molecular Foundry and complete application information is available Scientist, Nanofabrication Facility Molecular Foundry Director Top A U.S. Department of Energy National

  18. Molecular and Paleontological Evidence for a Post-Cretaceous Origin of Rodents

    PubMed Central

    Wu, Shaoyuan; Wu, Wenyu; Zhang, Fuchun; Ye, Jie; Ni, Xijun; Sun, Jimin; Edwards, Scott V.; Meng, Jin; Organ, Chris L.

    2012-01-01

    The timing of the origin and diversification of rodents remains controversial, due to conflicting results from molecular clocks and paleontological data. The fossil record tends to support an early Cenozoic origin of crown-group rodents. In contrast, most molecular studies place the origin and initial diversification of crown-Rodentia deep in the Cretaceous, although some molecular analyses have recovered estimated divergence times that are more compatible with the fossil record. Here we attempt to resolve this conflict by carrying out a molecular clock investigation based on a nine-gene sequence dataset and a novel set of seven fossil constraints, including two new rodent records (the earliest known representatives of Cardiocraniinae and Dipodinae). Our results indicate that rodents originated around 61.7–62.4 Ma, shortly after the Cretaceous/Paleogene (K/Pg) boundary, and diversified at the intraordinal level around 57.7–58.9 Ma. These estimates are broadly consistent with the paleontological record, but challenge previous molecular studies that place the origin and early diversification of rodents in the Cretaceous. This study demonstrates that, with reliable fossil constraints, the incompatibility between paleontological and molecular estimates of rodent divergence times can be eliminated using currently available tools and genetic markers. Similar conflicts between molecular and paleontological evidence bedevil attempts to establish the origination times of other placental groups. The example of the present study suggests that more reliable fossil calibration points may represent the key to resolving these controversies. PMID:23071573

  19. Cytomegalovirus infection management in solid organ transplant recipients across European centers in the time of molecular diagnostics: An ESGICH survey.

    PubMed

    Navarro, David; San-Juan, Rafael; Manuel, Oriol; Giménez, Estela; Fernández-Ruiz, Mario; Hirsch, Hans H; Grossi, Paolo Antonio; Aguado, José María

    2017-12-01

    Scant information is available about how transplant centers are managing their use of quantitative molecular testing (QNAT) assays for active cytomegalovirus (CMV) infection monitoring in solid organ transplant (SOT) recipients. The current study was aimed at gathering information on current practices in the management of CMV infection across European centers in the era of molecular testing assays. A questionnaire-based cross-sectional survey study was conducted by the European Study Group of Infections in Immunocompromised Hosts (ESGICH) of the Society of Clinical Microbiology and Infectious Diseases (ESCMID). The invitation and a weekly reminder with a personal link to an Internet service provider (https://es.surveymonkey.com/) was sent to transplant physicians, transplant infectious diseases specialists, and clinical virologists working at 340 European transplant centers. Of the 1181 specialists surveyed, a total of 173 responded (14.8%): 73 transplant physicians, 57 transplant infectious diseases specialists, and 43 virologists from 173 institutions located at 23 different countries. The majority of centers used QNAT assays for active CMV infection monitoring. Most centers preferred commercially available real-time polymerase chain reaction (RT-PCR) assays over laboratory-developed procedures for quantifying CMV DNA load in whole blood or plasma. Use of a wide variety of DNA extraction platforms and RT-PCR assays was reported. All programs used antiviral prophylaxis, preemptive therapy, or both, according to current guidelines. However, the centers used different criteria for starting preemptive antiviral treatment, for monitoring systemic CMV DNA load, and for requesting genotypic assays to detect emerging CMV-resistant variants. Significant variation in CMV infection management in SOT recipients still remains across European centers in the era of molecular testing. International multicenter studies are required to achieve commutability of CMV testing and antiviral management procedures. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Development and validation of risk models and molecular diagnostics to permit personalized management of cancer.

    PubMed

    Pu, Xia; Ye, Yuanqing; Wu, Xifeng

    2014-01-01

    Despite the advances made in cancer management over the past few decades, improvements in cancer diagnosis and prognosis are still poor, highlighting the need for individualized strategies. Toward this goal, risk prediction models and molecular diagnostic tools have been developed, tailoring each step of risk assessment from diagnosis to treatment and clinical outcomes based on the individual's clinical, epidemiological, and molecular profiles. These approaches hold increasing promise for delivering a new paradigm to maximize the efficiency of cancer surveillance and efficacy of treatment. However, they require stringent study design, methodology development, comprehensive assessment of biomarkers and risk factors, and extensive validation to ensure their overall usefulness for clinical translation. In the current study, the authors conducted a systematic review using breast cancer as an example and provide general guidelines for risk prediction models and molecular diagnostic tools, including development, assessment, and validation. © 2013 American Cancer Society.

  1. Molecular clouds and the large-scale structure of the galaxy

    NASA Technical Reports Server (NTRS)

    Thaddeus, Patrick; Stacy, J. Gregory

    1990-01-01

    The application of molecular radio astronomy to the study of the large-scale structure of the Galaxy is reviewed and the distribution and characteristic properties of the Galactic population of Giant Molecular Clouds (GMCs), derived primarily from analysis of the Columbia CO survey, and their relation to tracers of Population 1 and major spiral features are described. The properties of the local molecular interstellar gas are summarized. The CO observing programs currently underway with the Center for Astrophysics 1.2 m radio telescope are described, with an emphasis on projects relevant to future comparison with high-energy gamma-ray observations. Several areas are discussed in which high-energy gamma-ray observations by the EGRET (Energetic Gamma-Ray Experiment Telescope) experiment aboard the Gamma Ray Observatory will directly complement radio studies of the Milky Way, with the prospect of significant progress on fundamental issues related to the structure and content of the Galaxy.

  2. Diagnosis of Hepatitis A Virus Infection: a Molecular Approach

    PubMed Central

    Nainan, Omana V.; Xia, Guoliang; Vaughan, Gilberto; Margolis, Harold S.

    2006-01-01

    Current serologic tests provide the foundation for diagnosis of hepatitis A and hepatitis A virus (HAV) infection. Recent advances in methods to identify and characterize nucleic acid markers of viral infections have provided the foundation for the field of molecular epidemiology and increased our knowledge of the molecular biology and epidemiology of HAV. Although HAV is primarily shed in feces, there is a strong viremic phase during infection which has allowed easy access to virus isolates and the use of molecular markers to determine their genetic relatedness. Molecular epidemiologic studies have provided new information on the types and extent of HAV infection and transmission in the United States. In addition, these new diagnostic methods have provided tools for the rapid detection of food-borne HAV transmission and identification of the potential source of the food contamination. PMID:16418523

  3. Improving the leakage current of polyimide-based resistive memory by tuning the molecular chain stack of the polyimide film

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Chang; Hsiao, Yu-Ping; You, Hsin-Chiang; Lin, Guan-Wei; Kao, Min-Fang; Manga, Yankuba B.; Yang, Wen-Luh

    2018-02-01

    We have developed an organic-based resistive random access memory (ReRAM) by using spin-coated polyimide (PI) as the resistive layer. In this study, the chain distance and number of chain stacks of PI molecules are investigated. We employed different solid contents of polyamic acid (PAA) to synthesize various PI films, which served as the resistive layer of ReRAM, the electrical performance of which was evaluated. By tuning the PAA solid content, the intermolecular interaction energy of the PI films is changed without altering the molecular structure. Our results show that the leakage current in the high-resistance state and the memory window of the PI-based ReRAM can be substantially improved using this technique. The superior properties of the PI-based ReRAM are ascribed to fewer molecular chain stacks in the PI films when the PAA solid content is decreased, hence suppressing the leakage current. In addition, a device retention time of more than 107 s can be achieved using this technique. Finally, the conduction mechanism in the PI-based ReRAM was analyzed using hopping and conduction models.

  4. Serum markers for prostate cancer: a rational approach to the literature.

    PubMed

    Steuber, Thomas; O'Brien, Matthew Frank; Lilja, Hans

    2008-07-01

    Due to its universal applicability for early detection and prediction of cancer stage and disease recurrence, widespread implementation of serum-based prostate-specific antigen (PSA) measurements has a significant influence on current treatment strategies for men with prostate cancer (PCa). However, over-detection and the resultant over-treatment of indolent cancers have been strongly implicated to occur. Using current recommended guidelines, the PSA test suffers from both limited sensitivity and specificity to enable efficacious population-based cancer detection. Therefore, novel biomarkers are much needed to complement PSA by enhancing its diagnostic and prognostic performance. The present literature on serum markers for PCa was reviewed. PSA derivatives, molecular PSA isoforms, and novel molecular targets in blood were summarized and weighted against their potential to improve decision-making of men with PCa. Current evidence suggests that no single analyte is likely to achieve the desired level of diagnostic and prognostic accuracy for PCa. However, the combination of biomarkers with clinical and demographic data, for example, using established standard nomograms, has produced progress toward the goal of both optimal screening and risk assessment. Furthermore, potential candidate molecular markers for PCa can be derived from high-throughput technologies. Current studies demonstrate that understanding dynamic PSA changes over time may offer diagnostic and prognostic information. Bridging the gap between basic science and clinical practice represents the main goal in the near future to enable physicians to tailor risk-adjusted screening and treatment strategies for current patients with PCa.

  5. Bacteriophage lambda: early pioneer and still relevant

    PubMed Central

    Casjens, Sherwood R.; Hendrix, Roger W.

    2015-01-01

    Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid 1950's to mid 1980's was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives have continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle. PMID:25742714

  6. Unmasking molecular profiles of bladder cancer.

    PubMed

    Piao, Xuan-Mei; Byun, Young Joon; Kim, Wun-Jae; Kim, Jayoung

    2018-03-01

    Precision medicine is designed to tailor treatments for individual patients by factoring in each person's specific biology and mechanism of disease. This paradigm shifted from a "one size fits all" approach to "personalized and precision care" requires multiple layers of molecular profiling of biomarkers for accurate diagnosis and prediction of treatment responses. Intensive studies are also being performed to understand the complex and dynamic molecular profiles of bladder cancer. These efforts involve looking bladder cancer mechanism at the multiple levels of the genome, epigenome, transcriptome, proteome, lipidome, metabolome etc. The aim of this short review is to outline the current technologies being used to investigate molecular profiles and discuss biomarker candidates that have been investigated as possible diagnostic and prognostic indicators of bladder cancer.

  7. Development and application of a 2-electron reduced density matrix approach to electron transport via molecular junctions

    NASA Astrophysics Data System (ADS)

    Hoy, Erik P.; Mazziotti, David A.; Seideman, Tamar

    2017-11-01

    Can an electronic device be constructed using only a single molecule? Since this question was first asked by Aviram and Ratner in the 1970s [Chem. Phys. Lett. 29, 277 (1974)], the field of molecular electronics has exploded with significant experimental advancements in the understanding of the charge transport properties of single molecule devices. Efforts to explain the results of these experiments and identify promising new candidate molecules for molecular devices have led to the development of numerous new theoretical methods including the current standard theoretical approach for studying single molecule charge transport, i.e., the non-equilibrium Green's function formalism (NEGF). By pairing this formalism with density functional theory (DFT), a wide variety of transport problems in molecular junctions have been successfully treated. For some systems though, the conductance and current-voltage curves predicted by common DFT functionals can be several orders of magnitude above experimental results. In addition, since density functional theory relies on approximations to the exact exchange-correlation functional, the predicted transport properties can show significant variation depending on the functional chosen. As a first step to addressing this issue, the authors have replaced density functional theory in the NEGF formalism with a 2-electron reduced density matrix (2-RDM) method, creating a new approach known as the NEGF-RDM method. 2-RDM methods provide a more accurate description of electron correlation compared to density functional theory, and they have lower computational scaling compared to wavefunction based methods of similar accuracy. Additionally, 2-RDM methods are capable of capturing static electron correlation which is untreatable by existing NEGF-DFT methods. When studying dithiol alkane chains and dithiol benzene in model junctions, the authors found that the NEGF-RDM predicts conductances and currents that are 1-2 orders of magnitude below those of B3LYP and M06 DFT functionals. This suggests that the NEGF-RDM method could be a viable alternative to NEGF-DFT for molecular junction calculations.

  8. Current concepts of severe asthma

    PubMed Central

    Raundhal, Mahesh; Oriss, Timothy B.; Ray, Prabir; Wenzel, Sally E.

    2016-01-01

    The term asthma encompasses a disease spectrum with mild to very severe disease phenotypes whose traditional common characteristic is reversible airflow limitation. Unlike milder disease, severe asthma is poorly controlled by the current standard of care. Ongoing studies using advanced molecular and immunological tools along with improved clinical classification show that severe asthma does not identify a specific patient phenotype, but rather includes patients with constant medical needs, whose pathobiologic and clinical characteristics vary widely. Accordingly, in recent clinical trials, therapies guided by specific patient characteristics have had better outcomes than previous therapies directed to any subject with a diagnosis of severe asthma. However, there are still significant gaps in our understanding of the full scope of this disease that hinder the development of effective treatments for all severe asthmatics. In this Review, we discuss our current state of knowledge regarding severe asthma, highlighting different molecular and immunological pathways that can be targeted for future therapeutic development. PMID:27367183

  9. The current state of resident training in genomic pathology: a comprehensive analysis utilizing the Resident In-Service Exam (RISE)

    PubMed Central

    Haspel, Richard L.; Rinder, Henry M.; Frank, Karen M.; Wagner, Jay; Ali, Asma M.; Fisher, Patrick B.; Parks, Eric R.

    2014-01-01

    Objectives To determine the current state of pathology resident training in genomic and molecular pathology. Methods The Training Residents in Genomics (TRIG) Working Group developed survey and knowledge questions for the 2013 Pathology Resident In-Service Examination (RISE). Sixteen demographic questions related to amount of training, current and predicted future use, and perceived ability in molecular pathology vs. genomic medicine were included along with five genomic pathology and 19 molecular pathology knowledge questions. Results A total of 2,506 pathology residents took the 2013 RISE with approximately 600 individuals per post-graduate year (PGY). For genomic medicine, 42% of PGY-4 respondents stated they had no training compared to 7% for molecular pathology (p<0.001). PGY-4 resident perceived ability in genomic medicine, comfort in discussing results, and predicted future use as a practicing pathologist were less than reported for molecular pathology (p<0.001). There was a greater increase by PGY in knowledge question scores for molecular than for genomic pathology. Conclusions The RISE is a powerful tool in assessing the state of resident training in genomic pathology and current results suggest a significant deficit. The results also provide a baseline to assess future initiatives to improve genomics education for pathology residents such as those developed by the TRIG Working Group. PMID:25239410

  10. Translational research of optical molecular imaging for personalized medicine.

    PubMed

    Qin, C; Ma, X; Tian, J

    2013-12-01

    In the medical imaging field, molecular imaging is a rapidly developing discipline and forms many imaging modalities, providing us effective tools to visualize, characterize, and measure molecular and cellular mechanisms in complex biological processes of living organisms, which can deepen our understanding of biology and accelerate preclinical research including cancer study and medicine discovery. Among many molecular imaging modalities, although the penetration depth of optical imaging and the approved optical probes used for clinics are limited, it has evolved considerably and has seen spectacular advances in basic biomedical research and new drug development. With the completion of human genome sequencing and the emergence of personalized medicine, the specific drug should be matched to not only the right disease but also to the right person, and optical molecular imaging should serve as a strong adjunct to develop personalized medicine by finding the optimal drug based on an individual's proteome and genome. In this process, the computational methodology and imaging system as well as the biomedical application regarding optical molecular imaging will play a crucial role. This review will focus on recent typical translational studies of optical molecular imaging for personalized medicine followed by a concise introduction. Finally, the current challenges and the future development of optical molecular imaging are given according to the understanding of the authors, and the review is then concluded.

  11. Impact of ELN recommendations in the management of first-line treated chronic myeloid leukaemia patients: a French cross-sectional study.

    PubMed

    Etienne, Gabriel; Huguet, Francoise; Guerci-Bresler, Agnès; Nicolini, Franck E; Maloisel, Frédéric; Coiteux, Valérie; Dauriac, Charles; Carpentier, Nathalie; Bourdeix, Isabelle; Tulliez, Michel; Cony-Makhoul, Pascale

    2016-07-01

    The availability of tyrosine kinase inhibitors has extended therapeutic options for chronic myeloid leukaemia (CML) patients. Monitoring recommendations and clinical response goals have recently been updated. The objective of this study was to describe the profile of CML patients in chronic phase currently receiving first-line therapy, including treatment, monitoring and response kinetics. A multicentre, cross-sectional, epidemiological survey in unselected chronic phase CML patients in France attending consultations during a one-month period was performed. 438 of 697 (62·8%) reported patients were currently receiving first-line treatment and were analysed. Imatinib was the most frequently received treatment (72·4% of patients). Retrospective cytogenetic and molecular assessments at 3, 6, 12 or 18 months were available in 88·4% of patients. At the 12-month assessment, 32·2% were not in major molecular response (MMR). At last assessment, among 355 patients with duration of treatment ≥ 12 months, 91·5% had achieved MMR and 66·5% were in deep molecular response. This study, performed in everyday practice population of CML patients, suggests that monitoring of molecular responses in real-life practice is aligned with European LeukaemiaNet recommendations. The majority of patients still receiving first-line treatment are in optimal response, with a few being classified as in the warning area or responding to failure. © 2016 John Wiley & Sons Ltd.

  12. Genetic diversity of Mycobacterium tuberculosis strains isolated in Algeria: Results of spoligotyping.

    PubMed

    Ifticene, Malika; Kaïdi, Saïd; Khechiba, Mesbah-Mounir; Yala, Djamel; Boulahbal, Fadila

    2015-12-01

    Molecular typing tools, including spoligotyping, are currently widely used in the monitoring and study of the dynamics of tuberculosis epidemics. A study of the molecular profile of a sample of 129 Myobacterium tuberculosis strains isolated during 2011 was carried out in the National Reference Laboratory for Tuberculosis and Mycobacteria at the Pasteur Institute of Algeria. This sample was selected at random from a set of 350 strains isolated from tuberculosis patients from central and eastern areas of the country. Genotypic analysis helped to clarify the frequencies of the different genotypes in the current study population: H family, 29%; LAM family, 26%; T family, 25%; S family, 5%, and other genomic families, including orphan strains, 15%. The study of strains isolated between January and December 2011 has allowed insight into the frequency of different genomic families and the importance of existing clusters in the population of central and eastern Algeria. Copyright © 2015 Asian African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  13. Molecular dynamics simulations of field emission from a prolate spheroidal tip

    NASA Astrophysics Data System (ADS)

    Torfason, Kristinn; Valfells, Agust; Manolescu, Andrei

    2016-12-01

    High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to investigate field emission from a prolate spheroidal tip. The space charge limited current is several times lower than the current calculated with the Fowler-Nordheim formula. The image-charge is taken into account with a spherical approximation, which is good around the top of the tip, i.e., region where the current is generated.

  14. Molecular Targets for Antiepileptic Drug Development

    PubMed Central

    Meldrum, Brian S.; Rogawski, Michael A.

    2007-01-01

    Summary This review considers how recent advances in the physiology of ion channels and other potential molecular targets, in conjunction with new information on the genetics of idiopathic epilepsies, can be applied to the search for improved antiepileptic drugs (AEDs). Marketed AEDs predominantly target voltage-gated cation channels (the α subunits of voltage-gated Na+ channels and also T-type voltage-gated Ca2+ channels) or influence GABA-mediated inhibition. Recently, α2–δ voltage-gated Ca2+ channel subunits and the SV2A synaptic vesicle protein have been recognized as likely targets. Genetic studies of familial idiopathic epilepsies have identified numerous genes associated with diverse epilepsy syndromes, including genes encoding Na+ channels and GABAA receptors, which are known AED targets. A strategy based on genes associated with epilepsy in animal models and humans suggests other potential AED targets, including various voltage-gated Ca2+ channel subunits and auxiliary proteins, A- or M-type voltage-gated K+ channels, and ionotropic glutamate receptors. Recent progress in ion channel research brought about by molecular cloning of the channel subunit proteins and studies in epilepsy models suggest additional targets, including G-protein-coupled receptors, such as GABAB and metabotropic glutamate receptors; hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits, responsible for hyperpolarization-activated current Ih; connexins, which make up gap junctions; and neurotransmitter transporters, particularly plasma membrane and vesicular transporters for GABA and glutamate. New information from the structural characterization of ion channels, along with better understanding of ion channel function, may allow for more selective targeting. For example, Na+ channels underlying persistent Na+ currents or GABAA receptor isoforms responsible for tonic (extrasynaptic) currents represent attractive targets. The growing understanding of the pathophysiology of epilepsy and the structural and functional characterization of the molecular targets provide many opportunities to create improved epilepsy therapies. PMID:17199015

  15. Self-consistent-field study of conduction through conjugated molecules

    NASA Astrophysics Data System (ADS)

    Paulsson, Magnus; Stafström, Sven

    2001-07-01

    Current-voltage (I-V) characteristics of individual molecules connected by metallic leads are studied theoretically. Using the Pariser-Parr-Pople quantum chemical method to model the molecule enables us to include electron-electron interactions in the Hartree approximation. The self-consistent-field method is used to calculate charging together with other properties for the total system under bias. Thereafter the Landauer formula is used to calculate the current from the transmission amplitudes. The most important parameter to understand charging is the position of the chemical potentials of the leads in relation to the molecular levels. At finite bias, the main part of the potential drop is located at the molecule-lead junctions. Also, the potential of the molecule is shown to partially follow the chemical potential closest to the highest occupied molecular orbital (HOMO). Therefore, the resonant tunneling steps in the I-V curves are smoothed giving a I-V resembling a ``Coulomb-gap.'' However, the charge of the molecule is not quantized since the molecule is small with quite strong interactions with the leads. The calculations predict an increase in the current at the bias corresponding to the energy gap of the molecule irrespective of the metals used in the leads. When the bias is increased further, charge is redistributed from the HOMO level to the lowest unoccupied molecular orbital of the molecule. This gives a step in the I-V curves and a corresponding change in the potential profile over the molecule. Calculations were mainly performed on polyene molecules. Molecules asymmetrically coupled to the leads model the I-V curves for molecules contacted by a scanning tunneling microscopy tip. I-V curves for pentapyrrole and another molecule that show negative differential conductance are also analyzed. The charging of these two systems depends on the shape of the molecular wave functions.

  16. Probing Electronic and Thermoelectric Properties of Single Molecule Junctions

    NASA Astrophysics Data System (ADS)

    Widawsky, Jonathan R.

    In an effort to further understand electronic and thermoelectric phenomenon at the nanometer scale, we have studied the transport properties of single molecule junctions. To carry out these transport measurements, we use the scanning tunneling microscope-break junction (STM-BJ) technique, which involves the repeated formation and breakage of a metal point contact in an environment of the target molecule. Using this technique, we are able to create gaps that can trap the molecules, allowing us to sequentially and reproducibly create a large number of junctions. By applying a small bias across the junction, we can measure its conductance and learn about the transport mechanisms at the nanoscale. The experimental work presented here directly probes the transmission properties of single molecules through the systematic measurement of junction conductance (at low and high bias) and thermopower. We present measurements on a variety of molecular families and study how conductance depends on the character of the linkage (metal-molecule bond) and the nature of the molecular backbone. We start by describing a novel way to construct single molecule junctions by covalently connecting the molecular backbone to the electrodes. This eliminates the use of linking substituents, and as a result, the junction conductance increases substantially. Then, we compare transport across silicon chains (silanes) and saturated carbon chains (alkanes) while keeping the linkers the same and find a stark difference in their electronic transport properties. We extend our studies of molecular junctions by looking at two additional aspects of quantum transport -- molecular thermopower and molecular current-voltage characteristics. Each of these additional parameters gives us further insight into transport properties at the nanoscale. Evaluating the junction thermopower allows us to determine the nature of charge carriers in the system and we demonstrate this by contrasting the measurement of amine-terminated and pyridine-terminated molecules (which exhibit hole transport and electron transport, respectively). We also report the thermopower of the highly conducting, covalently bound molecular junctions that we have recently been able to form, and learn that, because of their unique transport properties, the junction power factors, GS2, are extremely high. Finally, we discuss the measurement of molecular current-voltage curves and consider the electronic and physical effects of applying a large bias to the system. We conclude with a summary of the work discussed and an outlook on related scientific studies.

  17. Ivabradine prolongs phase 3 of cardiac repolarization and blocks the hERG1 (KCNH2) current over a concentration-range overlapping with that required to block HCN4.

    PubMed

    Lees-Miller, James P; Guo, Jiqing; Wang, Yibo; Perissinotti, Laura L; Noskov, Sergei Y; Duff, Henry J

    2015-08-01

    In Europe, ivabradine has recently been approved to treat patients with angina who have intolerance to beta blockers and/or heart failure. Ivabradine is considered to act specifically on the sinoatrial node by inhibiting the If current (the funny current) to slow automaticity. However, in vitro studies show that ivabradine prolongs phase 3 repolarization in ventricular tissue. No episodes of Torsades de Pointes have been reported in randomized clinical studies. The objective of this study is to assess whether ivabradine blocked the hERG1 current. In the present study we discovered that ivabradine prolongs action potential and blocks the hERG current over a range of concentrations overlapping with those required to block HCN4. Ivabradine produced tonic, rather than use-dependent block. The mutation Y652A significantly suppressed pharmacologic block of hERG by ivabradine. Disruption of C-type inactivation also suppressed block of hERG1 by ivabradine. Molecular docking and molecular dynamics simulations indicate that ivabradine may access the inner cavity of the hERG1 via a lipophilic route and has a well-defined binding site in the closed state of the channel. Structural organization of the binding pockets for ivabradine is discussed. Ivabradine blocks hERG and prolongs action potential duration. Our study is potentially important because it indicates the need for active post marketing surveillance of ivabradine. Importantly, proarrhythmia of a number of other drugs has only been discovered during post marketing surveillance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Magnetoresistance effect of heat generation in a single-molecular spin-valve

    NASA Astrophysics Data System (ADS)

    Jiang, Feng; Yan, Yonghong; Wang, Shikuan; Yan, Yijing

    2016-02-01

    Based on non-equilibrium Green's functions' theory and small polaron transformation's technology, we study the heat generation by current through a single-molecular spin-valve. Numerical results indicate that the variation of spin polarization degree can change heat generation effectively, the spin-valve effect happens not only in electrical current but also in heat generation when Coulomb repulsion in quantum dot is smaller than phonon frequency and interestingly, when Coulomb repulsion is larger than phonon frequency, the inverse spin-valve effect appears by sweeping gate voltage and is enlarged with bias increasing. The inverse spin-valve effect will induce the unique heat magnetoresistance effect, which can be modulated from heat-resistance to heat-gain by gate voltage easily.

  19. Evaluation of bending modulus of lipid bilayers using undulation and orientation analysis

    NASA Astrophysics Data System (ADS)

    Chaurasia, Adarsh K.; Rukangu, Andrew M.; Philen, Michael K.; Seidel, Gary D.; Freeman, Eric C.

    2018-03-01

    In the current paper, phospholipid bilayers are modeled using coarse-grained molecular dynamics simulations with the MARTINI force field. The extracted molecular trajectories are analyzed using Fourier analysis of the undulations and orientation vectors to establish the differences between the two approaches for evaluating the bending modulus. The current work evaluates and extends the implementation of the Fourier analysis for molecular trajectories using a weighted horizon-based averaging approach. The effect of numerical parameters in the analysis of these trajectories is explored by conducting parametric studies. Computational modeling results are validated against experimentally characterized bending modulus of lipid membranes using a shape fluctuation analysis. The computational framework is then used to estimate the bending moduli for different types of lipids (phosphocholine, phosphoethanolamine, and phosphoglycerol). This work provides greater insight into the numerical aspects of evaluating the bilayer bending modulus, provides validation for the orientation analysis technique, and explores differences in bending moduli based on differences in the lipid nanostructures.

  20. Molecular mechanisms involved in Bacillus subtilis biofilm formation

    PubMed Central

    Mielich-Süss, Benjamin; Lopez, Daniel

    2014-01-01

    Summary Biofilms are the predominant lifestyle of bacteria in natural environments, and they severely impact our societies in many different fashions. Therefore, biofilm formation is a topic of growing interest in microbiology, and different bacterial models are currently studied to better understand the molecular strategies that bacteria undergo to build biofilms. Among those, biofilms of the soil-dwelling bacterium Bacillus subtilis are commonly used for this purpose. Bacillus subtilis biofilms show remarkable architectural features that are a consequence of sophisticated programs of cellular specialization and cell-cell communication within the community. Many laboratories are trying to unravel the biological role of the morphological features of biofilms, as well as exploring the molecular basis underlying cellular differentiation. In this review, we present a general perspective of the current state of knowledge of biofilm formation in B. subtilis. In particular, a special emphasis is placed on summarizing the most recent discoveries in the field and integrating them into the general view of these truly sophisticated microbial communities. PMID:24909922

  1. Review: Animal model and the current understanding of molecule dynamics of adipogenesis.

    PubMed

    Campos, C F; Duarte, M S; Guimarães, S E F; Verardo, L L; Wei, S; Du, M; Jiang, Z; Bergen, W G; Hausman, G J; Fernyhough-Culver, M; Albrecht, E; Dodson, M V

    2016-06-01

    Among several potential animal models that can be used for adipogenic studies, Wagyu cattle is the one that presents unique molecular mechanisms underlying the deposit of substantial amounts of intramuscular fat. As such, this review is focused on current knowledge of such mechanisms related to adipose tissue deposition using Wagyu cattle as model. So abundant is the lipid accumulation in the skeletal muscles of these animals that in many cases, the muscle cross-sectional area appears more white (adipose tissue) than red (muscle fibers). This enhanced marbling accumulation is morphologically similar to that seen in numerous skeletal muscle dysfunctions, disease states and myopathies; this might indicate cross-similar mechanisms between such dysfunctions and fat deposition in Wagyu breed. Animal models can be used not only for a better understanding of fat deposition in livestock, but also as models to an increased comprehension on molecular mechanisms behind human conditions. This revision underlies some of the complex molecular processes of fat deposition in animals.

  2. A concurrent multiscale micromorphic molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaofan, E-mail: shaofan@berkeley.edu; Tong, Qi

    2015-04-21

    In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics, and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure conditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynamics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be rigorously formulated and justified from firstmore » principle, and its general inhomogeneous case, i.e., the three scale con-current multiscale micromorphic molecular dynamics can take into account of macroscale continuum mechanics boundary condition without the limitation of atomistic boundary condition or periodic boundary conditions. The discovered multiscale scale structure and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to continuum scale and the intrinsic coupling mechanism among them based on first principle formulation.« less

  3. A Force Balanced Fragmentation Method for ab Initio Molecular Dynamic Simulation of Protein.

    PubMed

    Xu, Mingyuan; Zhu, Tong; Zhang, John Z H

    2018-01-01

    A force balanced generalized molecular fractionation with conjugate caps (FB-GMFCC) method is proposed for ab initio molecular dynamic simulation of proteins. In this approach, the energy of the protein is computed by a linear combination of the QM energies of individual residues and molecular fragments that account for the two-body interaction of hydrogen bond between backbone peptides. The atomic forces on the caped H atoms were corrected to conserve the total force of the protein. Using this approach, ab initio molecular dynamic simulation of an Ace-(ALA) 9 -NME linear peptide showed the conservation of the total energy of the system throughout the simulation. Further a more robust 110 ps ab initio molecular dynamic simulation was performed for a protein with 56 residues and 862 atoms in explicit water. Compared with the classical force field, the ab initio molecular dynamic simulations gave better description of the geometry of peptide bonds. Although further development is still needed, the current approach is highly efficient, trivially parallel, and can be applied to ab initio molecular dynamic simulation study of large proteins.

  4. Using molecular simulation to explore the nanoscale dynamics of the plant kinome.

    PubMed

    Moffett, Alexander S; Shukla, Diwakar

    2018-03-09

    Eukaryotic protein kinases (PKs) are a large family of proteins critical for cellular response to external signals, acting as molecular switches. PKs propagate biochemical signals by catalyzing phosphorylation of other proteins, including other PKs, which can undergo conformational changes upon phosphorylation and catalyze further phosphorylations. Although PKs have been studied thoroughly across the domains of life, the structures of these proteins are sparsely understood in numerous groups of organisms, including plants. In addition to efforts towards determining crystal structures of PKs, research on human PKs has incorporated molecular dynamics (MD) simulations to study the conformational dynamics underlying the switching of PK function. This approach of experimental structural biology coupled with computational biophysics has led to improved understanding of how PKs become catalytically active and why mutations cause pathological PK behavior, at spatial and temporal resolutions inaccessible to current experimental methods alone. In this review, we argue for the value of applying MD simulation to plant PKs. We review the basics of MD simulation methodology, the successes achieved through MD simulation in animal PKs, and current work on plant PKs using MD simulation. We conclude with a discussion of the future of MD simulations and plant PKs, arguing for the importance of molecular simulation in the future of plant PK research. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification.

    PubMed

    Gupta, Radhey S

    2016-07-01

    Analyses of genome sequences, by some approaches, suggest that the widespread occurrence of horizontal gene transfers (HGTs) in prokaryotes disguises their evolutionary relationships and have led to questioning of the Darwinian model of evolution for prokaryotes. These inferences are critically examined in the light of comparative genome analysis, characteristic synapomorphies, phylogenetic trees and Darwin's views on examining evolutionary relationships. Genome sequences are enabling discovery of numerous molecular markers (synapomorphies) such as conserved signature indels (CSIs) and conserved signature proteins (CSPs), which are distinctive characteristics of different prokaryotic taxa. Based on these molecular markers, exhibiting high degree of specificity and predictive ability, numerous prokaryotic taxa of different ranks, currently identified based on the 16S rRNA gene trees, can now be reliably demarcated in molecular terms. Within all studied groups, multiple CSIs and CSPs have been identified for successive nested clades providing reliable information regarding their hierarchical relationships and these inferences are not affected by HGTs. These results strongly support Darwin's views on evolution and classification and supplement the current phylogenetic framework based on 16S rRNA in important respects. The identified molecular markers provide important means for developing novel diagnostics, therapeutics and for functional studies providing important insights regarding prokaryotic taxa. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Large-Scale Conformational Changes of Trypanosoma cruzi Proline Racemase Predicted by Accelerated Molecular Dynamics Simulation

    PubMed Central

    McCammon, J. Andrew

    2011-01-01

    Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life-threatening illness affecting 11–18 million people. Currently available treatments are limited, with unacceptable efficacy and safety profiles. Recent studies have revealed an essential T. cruzi proline racemase enzyme (TcPR) as an attractive candidate for improved chemotherapeutic intervention. Conformational changes associated with substrate binding to TcPR are believed to expose critical residues that elicit a host mitogenic B-cell response, a process contributing to parasite persistence and immune system evasion. Characterization of the conformational states of TcPR requires access to long-time-scale motions that are currently inaccessible by standard molecular dynamics simulations. Here we describe advanced accelerated molecular dynamics that extend the effective simulation time and capture large-scale motions of functional relevance. Conservation and fragment mapping analyses identified potential conformational epitopes located in the vicinity of newly identified transient binding pockets. The newly identified open TcPR conformations revealed by this study along with knowledge of the closed to open interconversion mechanism advances our understanding of TcPR function. The results and the strategy adopted in this work constitute an important step toward the rationalization of the molecular basis behind the mitogenic B-cell response of TcPR and provide new insights for future structure-based drug discovery. PMID:22022240

  7. Large-scale conformational changes of Trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation.

    PubMed

    de Oliveira, César Augusto F; Grant, Barry J; Zhou, Michelle; McCammon, J Andrew

    2011-10-01

    Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life-threatening illness affecting 11-18 million people. Currently available treatments are limited, with unacceptable efficacy and safety profiles. Recent studies have revealed an essential T. cruzi proline racemase enzyme (TcPR) as an attractive candidate for improved chemotherapeutic intervention. Conformational changes associated with substrate binding to TcPR are believed to expose critical residues that elicit a host mitogenic B-cell response, a process contributing to parasite persistence and immune system evasion. Characterization of the conformational states of TcPR requires access to long-time-scale motions that are currently inaccessible by standard molecular dynamics simulations. Here we describe advanced accelerated molecular dynamics that extend the effective simulation time and capture large-scale motions of functional relevance. Conservation and fragment mapping analyses identified potential conformational epitopes located in the vicinity of newly identified transient binding pockets. The newly identified open TcPR conformations revealed by this study along with knowledge of the closed to open interconversion mechanism advances our understanding of TcPR function. The results and the strategy adopted in this work constitute an important step toward the rationalization of the molecular basis behind the mitogenic B-cell response of TcPR and provide new insights for future structure-based drug discovery.

  8. FORT Molecular Ecology Laboratory

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Stevens, P.D.

    2011-01-01

    The mission of the U.S. Geological Survey (USGS) at the Fort Collins Science Center Molecular Ecology Laboratory is to use the tools and concepts of molecular genetics to address a variety of complex management questions and conservation issues facing the management of the Nation's fish and wildlife resources. Together with our partners, we design and implement studies to document genetic diversity and the distribution of genetic variation among individuals, populations, and species. Information from these studies is used to support wildlife-management planning and conservation actions. Current and past studies have provided information to assess taxonomic boundaries, inform listing decisions made under the Endangered Species Act, identify unique or genetically depauperate populations, estimate population size or survival rates, develop management or recovery plans, breed wildlife in captivity, relocate wildlife from one location to another, and assess the effects of environmental change.

  9. Surveyor assay to diagnose persistent Müllerian duct syndrome in Miniature Schnauzers.

    PubMed

    Kim, Young June; Kwon, Hyuk Jin; Byun, Hyuk Soo; Yeom, Donguk; Choi, Jea-Hong; Kim, Joong-Hyun; Shim, Hosup

    2017-12-31

    Persistent Müllerian duct syndrome (PMDS) is a pseudohermaphroditism in males characterized by the presence of Müllerian duct derivatives. As PMDS dogs often lack clinical symptoms, a molecular diagnosis is essential to identify the syndrome in these animals. In this study, a new molecular method using DNA mismatch-specific Surveyor nuclease was developed. The Surveyor nuclease assay identified the AMHR2 mutation that produced PMDS in a Miniature Schnauzer as accurately as that obtained by using the conventional method based on restriction digestion. As an alternative to the current molecular diagnostic method, the new method may result in increased accuracy when detecting PMDS.

  10. Surveyor assay to diagnose persistent Müllerian duct syndrome in Miniature Schnauzers

    PubMed Central

    Kim, Young June; Kwon, Hyuk Jin; Byun, Hyuk Soo; Yeom, Donguk; Choi, Jea-Hong; Kim, Joong-Hyun

    2017-01-01

    Persistent Müllerian duct syndrome (PMDS) is a pseudohermaphroditism in males characterized by the presence of Müllerian duct derivatives. As PMDS dogs often lack clinical symptoms, a molecular diagnosis is essential to identify the syndrome in these animals. In this study, a new molecular method using DNA mismatch-specific Surveyor nuclease was developed. The Surveyor nuclease assay identified the AMHR2 mutation that produced PMDS in a Miniature Schnauzer as accurately as that obtained by using the conventional method based on restriction digestion. As an alternative to the current molecular diagnostic method, the new method may result in increased accuracy when detecting PMDS. PMID:27515263

  11. The role of the Hippo pathway in human disease and tumorigenesis

    PubMed Central

    2014-01-01

    Understanding the molecular nature of human cancer is essential to the development of effective and personalized therapies. Several different molecular signal transduction pathways drive tumorigenesis when deregulated and respond to different types of therapeutic interventions. The Hippo signaling pathway has been demonstrated to play a central role in the regulation of tissue and organ size during development. The deregulation of Hippo signaling leads to a concurrent combination of uncontrolled cellular proliferation and inhibition of apoptosis, two key hallmarks in cancer development. The molecular nature of this pathway was first uncovered in Drosophila melanogaster through genetic screens to identify regulators of cell growth and cell division. The pathway is strongly conserved in humans, rendering Drosophila a suitable and efficient model system to better understand the molecular nature of this pathway. In the present study, we review the current understanding of the molecular mechanism and clinical impact of the Hippo pathway. Current studies have demonstrated that a variety of deregulated molecules can alter Hippo signaling, leading to the constitutive activation of the transcriptional activator YAP or its paralog TAZ. Additionally, the Hippo pathway integrates inputs from a number of growth signaling pathways, positioning the Hippo pathway in a central role in the regulation of tissue size. Importantly, deregulated Hippo signaling is frequently observed in human cancers. YAP is commonly activated in a number of in vitro and in vivo models of tumorigenesis, as well as a number of human cancers. The common activation of YAP in many different tumor types provides an attractive target for potential therapeutic intervention. PMID:25097728

  12. Study establishes basis for genomic classification of endometrial cancers

    Cancer.gov

    A comprehensive genomic analysis of nearly 400 endometrial tumors suggests that certain molecular characteristics – such as the frequency of mutations – could complement current pathology methods and help distinguish between principal types of endometrial

  13. Heart failure gene therapy: closer to reality. Professor Walter Koch speaks to Christine Forder, commissioning editor.

    PubMed

    Koch, Walter J

    2009-03-01

    Professor Walter Koch is currently a Director at the Center for Translational Medicine and Vice Chairman for Research in the Department of Medicine at Jefferson Medical College, Thomas Jefferson University, PA, USA. Professor Koch started his career as a Research Associate at the Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA. His work is based around heart failure and the molecular mechanisms involved in the regulation of signaling through cardiovascular adrenergic receptors, the study of G-proteincoupled receptor function and signaling, and heart failure gene therapy. His current studies are investigating into the use of novel viral-mediated myocardial gene delivery for use in congestive heart failure, with an aim at developing reproducible surgical means of gene therapy. He is also involved in research to understand novel molecular signaling mechanisms responsible for reversible cardiac injury and potential repair.

  14. A novel approach for evaluating the performance of real time quantitative loop-mediated isothermal amplification-based methods.

    PubMed

    Nixon, Gavin J; Svenstrup, Helle F; Donald, Carol E; Carder, Caroline; Stephenson, Judith M; Morris-Jones, Stephen; Huggett, Jim F; Foy, Carole A

    2014-12-01

    Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR). There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These 'isothermal' methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT), akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP) assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.

  15. Liquid methanol under a static electric field

    NASA Astrophysics Data System (ADS)

    Cassone, Giuseppe; Giaquinta, Paolo V.; Saija, Franz; Saitta, A. Marco

    2015-02-01

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm-1) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  16. Molecular subtyping of diffuse large B-cell lymphoma: update on biology, diagnosis and emerging platforms for practising pathologists.

    PubMed

    Gifford, Grace K; Gill, Anthony J; Stevenson, William S

    2016-01-01

    Molecular classification of diffuse large B-cell lymphoma (DLBCL) is critical. Numerous methodologies have demonstrated that DLBCL is biologically heterogeneous despite morphological similarities. This underlies the disparate outcomes of treatment response or failure in this common non-Hodgkin lymphoma. This review will summarise historical approaches to lymphoma classifications, current diagnosis of DLBCL, molecular techniques that have primarily been used in the research setting to distinguish and subclassify DLBCL, evaluate contemporary diagnostic methodologies that seek to translate lymphoma biology into clinical practice, and introduce novel diagnostic platforms that may overcome current issues. The review concludes with an overview of key molecular lesions currently identified in DLBCL, all of which are potential targets for drug treatments that may improve survival and cure. Copyright © 2015 The Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.

  17. Process Research of Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1984-01-01

    An investigation was begun into the usefulness of molecular hydrogen annealing on polycrystalline solar cells. No improvement was realized even after twenty hours of hydrogenation. Thus, samples were chosen on the basis of: (1) low open circuit voltage; (2) low shunt conductance; and (3) high light generated current. These cells were hydrogenated in molecular hydrogen at 300 C. The differences between the before and after hydrogenation values are so slight as to be negligible. These cells have light generated current densities that indicate long minority carrier diffusion lengths. The open circuit voltage appears to be degraded, and quasi-neutral recombination current enhanced. Therefore, molecular hydrogen is not usful for passivating electrically active defects.

  18. Molecular classification of gastric cancer.

    PubMed

    Chia, N-Y; Tan, P

    2016-05-01

    Gastric cancer (GC), a heterogeneous disease characterized by epidemiologic and histopathologic differences across countries, is a leading cause of cancer-related death. Treatment of GC patients is currently suboptimal due to patients being commonly treated in a uniform fashion irrespective of disease subtype. With the advent of next-generation sequencing and other genomic technologies, GCs are now being investigated in great detail at the molecular level. High-throughput technologies now allow a comprehensive study of genomic and epigenomic alterations associated with GC. Gene mutations, chromosomal aberrations, differential gene expression and epigenetic alterations are some of the genetic/epigenetic influences on GC pathogenesis. In addition, integrative analyses of molecular profiling data have led to the identification of key dysregulated pathways and importantly, the establishment of GC molecular classifiers. Recently, The Cancer Genome Atlas (TCGA) network proposed a four subtype classification scheme for GC based on the underlying tumor molecular biology of each subtype. This landmark study, together with other studies, has expanded our understanding on the characteristics of GC at the molecular level. Such knowledge may improve the medical management of GC in the future. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. A review of methods used for studying the molecular epidemiology of Brachyspira hyodysenteriae.

    PubMed

    Zeeh, Friederike; Nathues, Heiko; Frey, Joachim; Muellner, Petra; Fellström, Claes

    2017-08-01

    Brachyspira (B.) spp. are intestinal spirochaetes isolated from pigs, other mammals, birds and humans. In pigs, seven Brachyspira spp. have been described, i.e. B. hyodysenteriae, B. pilosicoli, B. intermedia, B. murdochii, B. innocens, B. suanatina and B. hampsonii. Brachyspira hyodysenteriae is especially relevant in pigs as it causes swine dysentery and hence considerable economic losses to the pig industry. Furthermore, reduced susceptibility of B. hyodysenteriae to antimicrobials is of increasing concern. The epidemiology of B. hyodysenteriae infections is only partially understood, but different methods for detection, identification and typing have supported recent improvements in knowledge and understanding. In the last years, molecular methods have been increasingly used. Molecular epidemiology links molecular biology with epidemiology, offering unique opportunities to advance the study of diseases. This review is based on papers published in the field of epidemiology and molecular epidemiology of B. hyodysenteriae in pigs. Electronic databases were screened for potentially relevant papers using title and abstract and finally, Barcellos et al. papers were systemically selected and assessed. The review summarises briefly the current knowledge on B. hyodysenteriae epidemiology and elaborates on molecular typing techniques available. Results of the studies are compared and gaps in the knowledge are addressed. Finally, potential areas for future research are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Molecular diagnostics for hereditary hearing loss in children.

    PubMed

    Sommen, Manou; Wuyts, Wim; Van Camp, Guy

    2017-08-01

    Hearing loss (HL) is the most common birth defect in industrialized countries with far-reaching social, psychological and cognitive implications. It is an extremely heterogeneous disease, complicating molecular testing. The introduction of next-generation sequencing (NGS) has resulted in great progress in diagnostics allowing to study all known HL genes in a single assay. The diagnostic yield is currently still limited, but has the potential to increase substantially. Areas covered: In this review the utility of NGS and the problems for comprehensive molecular testing for HL are evaluated and discussed. Expert commentary: Different publications have proven the appropriateness of NGS for molecular testing of heterogeneous diseases such as HL. However, several problems still exist, such as pseudogenic background of some genes and problematic copy number variant analysis on targeted NGS data. Another main challenge for the future will be the establishment of population specific mutation-spectra to achieve accurate personalized comprehensive molecular testing for HL.

  1. [Advances in the study of neuroendocrinological regulation of kisspeptin in fish reproduction].

    PubMed

    Zhuo, Qi

    2013-10-01

    Kisspeptin, a key factor in the neuroendocrinological regulation of animal reproduction, is a peptide product encoded by kiss genes, which act as the natural ligand of GPR54. Over the last decade, multiple functional molecular forms of kisspeptin have been found in vertebrate species. In fish, the major molecular structural form is kisspeptin-10. The kisspeptin/GPR54 system has multiple important functions in reproduction. This review provides an overview of our current knowledge on kisspeptin and its role in regulating fish reproductive, including the distribution and location of kisspeptin neurons in the brain, the molecular polymorphism of fish kisspeptin, functional diversity, the molecular mechanism of fish reproductive regulation, and the molecular evolution of kisspeptin as well as the co-regulation of fish reproduction by kisspeptin and other functional molecules. Perspectives on the future of kisspeptin regulation in fish reproduction are also highlighted.

  2. Circular RNA - New member of noncoding RNA with novel functions.

    PubMed

    Hsiao, Kuei-Yang; Sun, H Sunny; Tsai, Shaw-Jenq

    2017-06-01

    A growing body of evidence indicates that circular RNAs are not simply a side product of splicing but a new class of noncoding RNAs in higher eukaryotes. The progression for the studies of circular RNAs is accelerated by combination of several advanced technologies such as next generation sequencing, gene silencing (small interfering RNAs) and editing (CRISPR/Cas9). More and more studies showed that dysregulated expression of circular RNAs plays critical roles during the development of several human diseases. Herein, we review the current advance of circular RNAs for their biosynthesis, molecular functions, and implications in human diseases. Impact statement The accumulating evidence indicate that circular RNA (circRNA) is a novel class of noncoding RNA with diverse molecular functions. Our review summarizes the current hypotheses for the models of circRNA biosynthesis including the direct interaction between upstream and downstream introns and lariat-driven circularization. In addition, molecular functions such as a decoy of microRNA (miRNA) termed miRNA sponge, transcriptional regulator, and protein-like modulator are also discussed. Finally, we reviewed the potential roles of circRNAs in neural system, cardiovascular system as well as cancers. These should provide insightful information for studying the regulation and functions of circRNA in other model of human diseases.

  3. Molecular tools in understanding the evolution of Vibrio cholerae

    PubMed Central

    Rahaman, Md. Habibur; Islam, Tarequl; Colwell, Rita R.; Alam, Munirul

    2015-01-01

    Vibrio cholerae, the etiological agent of cholera, has been a scourge for centuries. Cholera remains a serious health threat for developing countries and has been responsible for millions of deaths globally over the past 200 years. Identification of V. cholerae has been accomplished using a variety of methods, ranging from phenotypic strategies to DNA based molecular typing and currently whole genomic approaches. This array of methods has been adopted in epidemiological investigations, either singly or in the aggregate, and more recently for evolutionary analyses of V. cholerae. Because the new technologies have been developed at an ever increasing pace, this review of the range of fingerprinting strategies, their relative advantages and limitations, and cholera case studies was undertaken. The task was challenging, considering the vast amount of the information available. To assist the study, key references representative of several areas of research are provided with the intent to provide readers with a comprehensive view of recent advances in the molecular epidemiology of V. cholerae. Suggestions for ways to obviate many of the current limitations of typing techniques are also provided. In summary, a comparative report has been prepared that includes the range from traditional typing to whole genomic strategies. PMID:26500613

  4. Formation of high-quality self-assembled monolayers of conjugated dithiols on gold: base matters.

    PubMed

    Valkenier, Hennie; Huisman, Everardus H; van Hal, Paul A; de Leeuw, Dago M; Chiechi, Ryan C; Hummelen, Jan C

    2011-04-06

    This Article reports a systematic study on the formation of self-assembled monolayers (SAMs) of conjugated molecules for molecular electronic (ME) devices. We monitored the deprotection reaction of acetyl protected dithiols of oligophenylene ethynylenes (OPEs) in solution using two different bases and studied the quality of the resulting SAMs on gold. We found that the optimal conditions to reproducibly form dense, high-quality monolayers are 9-15% triethylamine (Et(3)N) in THF. The deprotection base tetrabutylammonium hydroxide (Bu(4)NOH) leads to less dense SAMs and the incorporation of Bu(4)N into the monolayer. Furthermore, our results show the importance of the equilibrium concentrations of (di)thiolate in solution on the quality of the SAM. To demonstrate the relevance of these results for molecular electronics applications, large-area molecular junctions were fabricated using no base, Et(3)N, and Bu(4)NOH. The magnitude of the current-densities in these devices is highly dependent on the base. A value of β=0.15 Å(-1) for the exponential decay of the current-density of OPEs of varying length formed using Et(3)N was obtained. © 2011 American Chemical Society

  5. Current and future molecular diagnostics in non-small-cell lung cancer.

    PubMed

    Li, Chun Man; Chu, Wing Ying; Wong, Di Lun; Tsang, Hin Fung; Tsui, Nancy Bo Yin; Chan, Charles Ming Lok; Xue, Vivian Wei Wen; Siu, Parco Ming Fai; Yung, Benjamin Yat Ming; Chan, Lawrence Wing Chi; Wong, Sze Chuen Cesar

    2015-01-01

    The molecular investigation of lung cancer has opened up an advanced area for the diagnosis and therapeutic management of lung cancer patients. Gene alterations in cancer initiation and progression provide not only information on molecular changes in lung cancer but also opportunities in advanced therapeutic regime by personalized targeted therapy. EGFR mutations and ALK rearrangement are important predictive biomarkers for the efficiency of tyrosine kinase inhibitor treatment in lung cancer patients. Moreover, epigenetic aberration and microRNA dysregulation are recent advances in the early detection and monitoring of lung cancer. Although a wide range of molecular tests are available, standardization and validation of assay protocols are essential for the quality of the test outcome. In this review, current and new advancements of molecular biomarkers for non-small-cell lung cancer will be discussed. Recommendations on future development of molecular diagnostic services will also be explored.

  6. Electronic properties of a molecular system with Platinum

    NASA Astrophysics Data System (ADS)

    Ojeda, J. H.; Medina, F. G.; Becerra-Alonso, David

    2017-10-01

    The electronic properties are studied using a finite homogeneous molecule called Trans-platinum-linked oligo(tetraethenylethenes). This system is composed of individual molecules such as benzene rings, platinum, Phosphore and Sulfur. The mechanism for the study of the electron transport through this system is based on placing the molecule between metal contacts to control the current through the molecular system. We study this molecule based on the tight-binding approach for the calculation of the transport properties using the Landauer-Büttiker formalism and the Fischer-Lee relationship, based on a semi-analytic Green's function method within a real-space renormalization approach. Our results show a significant agreement with experimental measurements.

  7. The AstroBiology Explorer (ABE) MIDEX Mission: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.

    2002-01-01

    The AstroBiology Explorer (ABE) mission is one of four selected for Phase A Concept Study in NASA's current call for MIDEX class missions. ABE is a cooled space telescope equipped with spectrographs covering the 2.5-20 micron spectral range. The ABE mission is devoted to the detection and identification of organic and related molecular species in space. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace.

  8. A 99 percent purity molecular sieve oxygen generator

    NASA Technical Reports Server (NTRS)

    Miller, G. W.

    1991-01-01

    Molecular sieve oxygen generating systems (MSOGS) have become the accepted method for the production of breathable oxygen on military aircraft. These systems separate oxygen for aircraft engine bleed air by application of pressure swing adsorption (PSA) technology. Oxygen is concentrated by preferential adsorption in nitrogen in a zeolite molecular sieve. However, the inability of current zeolite molecular sieves to discriminate between oxygen and argon results in an oxygen purity limitations of 93-95 percent (both oxygen and argon concentrate). The goal was to develop a new PSA process capable of exceeding the present oxygen purity limitations. A novel molecular sieve oxygen concentrator was developed which is capable of generating oxygen concentrations of up to 99.7 percent directly from air. The process is comprised of four absorbent beds, two containing a zeolite molecular sieve and two containing a carbon molecular sieve. This new process may find use in aircraft and medical breathing systems, and industrial air separation systems. The commercial potential of the process is currently being evaluated.

  9. Clinical relevance of molecular diagnostics in gastrointestinal (GI) cancer: European Society of Digestive Oncology (ESDO) expert discussion and recommendations from the 17th European Society for Medical Oncology (ESMO)/World Congress on Gastrointestinal Cancer, Barcelona.

    PubMed

    Baraniskin, Alexander; Van Laethem, Jean-Luc; Wyrwicz, Lucjan; Guller, Ulrich; Wasan, Harpreet S; Matysiak-Budnik, Tamara; Gruenberger, Thomas; Ducreux, Michel; Carneiro, Fatima; Van Cutsem, Eric; Seufferlein, Thomas; Schmiegel, Wolff

    2017-11-01

    In the epoch of precision medicine and personalised oncology, which aims to deliver the right treatment to the right patient, molecular genetic biomarkers are a topic of growing interest. The aim of this expert discussion and position paper is to review the current status of various molecular tests for gastrointestinal (GI) cancers and especially considering their significance for the clinical routine use. Opinion leaders and experts from diverse nationalities selected on scientific merit were asked to answer to a prepared set of questions about the current status of molecular diagnostics in different GI cancers. All answers were then discussed during a plenary session and reported here in providing a well-balanced reflection of both clinical expertise and updated evidence-based medicine. Preselected molecular genetic biomarkers that are described and disputed in the current medical literature in different GI cancers were debated, and recommendations for clinical routine practice were made whenever possible. Furthermore, the preanalytical variations were commented and proposals for quality controls of biospecimens were made. The current article summarises the recommendations of the expert committee regarding prognostic and predictive molecular genetic biomarkers in different entities of GI cancers. The briefly and comprehensively formulated guidelines should assist clinicians in the process of decision making in daily clinical practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Molecular evolutionary rates are not correlated with temperature and latitude in Squamata: an exception to the metabolic theory of ecology?

    PubMed

    Rolland, Jonathan; Loiseau, Oriane; Romiguier, Jonathan; Salamin, Nicolas

    2016-05-20

    The metabolic theory of ecology stipulates that molecular evolutionary rates should correlate with temperature and latitude in ectothermic organisms. Previous studies have shown that most groups of vertebrates, such as amphibians, turtles and even endothermic mammals, have higher molecular evolutionary rates in regions where temperature is high. However, the association between molecular evolutionary rates and temperature or latitude has never been tested in Squamata. We used a large dataset including the spatial distributions and environmental variables for 1,651 species of Squamata and compared the contrast of the rates of molecular evolution with the contrast of temperature and latitude between sister species. Using major axis regressions and a new algorithm to choose independent sister species pairs, we found that temperature and absolute latitude were not associated with molecular evolutionary rates. This absence of association in such a diverse ectothermic group questions the mechanisms explaining current pattern of species diversity in Squamata and challenges the presupposed universality of the metabolic theory of ecology.

  11. Interface-Engineered Charge-Transport Properties in Benzenedithiol Molecular Electronic Junctions via Chemically p-Doped Graphene Electrodes.

    PubMed

    Jang, Yeonsik; Kwon, Sung-Joo; Shin, Jaeho; Jeong, Hyunhak; Hwang, Wang-Taek; Kim, Junwoo; Koo, Jeongmin; Ko, Taeg Yeoung; Ryu, Sunmin; Wang, Gunuk; Lee, Tae-Woo; Lee, Takhee

    2017-12-06

    In this study, we fabricated and characterized vertical molecular junctions consisting of self-assembled monolayers of benzenedithiol (BDT) with a p-doped multilayer graphene electrode. The p-type doping of a graphene film was performed by treating pristine graphene (work function of ∼4.40 eV) with trifluoromethanesulfonic (TFMS) acid, producing a significantly increased work function (∼5.23 eV). The p-doped graphene-electrode molecular junctions statistically showed an order of magnitude higher current density and a lower charge injection barrier height than those of the pristine graphene-electrode molecular junctions, as a result of interface engineering. This enhancement is due to the increased work function of the TFMS-treated p-doped graphene electrode in the highest occupied molecular orbital-mediated tunneling molecular junctions. The validity of these results was proven by a theoretical analysis based on a coherent transport model that considers asymmetric couplings at the electrode-molecule interfaces.

  12. Molecular Imaging of Experimental Abdominal Aortic Aneurysms

    PubMed Central

    Ramaswamy, Aneesh K.; Hamilton, Mark; Joshi, Rucha V.; Kline, Benjamin P.; Li, Rui; Wang, Pu; Goergen, Craig J.

    2013-01-01

    Current laboratory research in the field of abdominal aortic aneurysm (AAA) disease often utilizes small animal experimental models induced by genetic manipulation or chemical application. This has led to the use and development of multiple high-resolution molecular imaging modalities capable of tracking disease progression, quantifying the role of inflammation, and evaluating the effects of potential therapeutics. In vivo imaging reduces the number of research animals used, provides molecular and cellular information, and allows for longitudinal studies, a necessity when tracking vessel expansion in a single animal. This review outlines developments of both established and emerging molecular imaging techniques used to study AAA disease. Beyond the typical modalities used for anatomical imaging, which include ultrasound (US) and computed tomography (CT), previous molecular imaging efforts have used magnetic resonance (MR), near-infrared fluorescence (NIRF), bioluminescence, single-photon emission computed tomography (SPECT), and positron emission tomography (PET). Mouse and rat AAA models will hopefully provide insight into potential disease mechanisms, and the development of advanced molecular imaging techniques, if clinically useful, may have translational potential. These efforts could help improve the management of aneurysms and better evaluate the therapeutic potential of new treatments for human AAA disease. PMID:23737735

  13. Molecular level in silico studies for oncology. Direct models review

    NASA Astrophysics Data System (ADS)

    Psakhie, S. G.; Tsukanov, A. A.

    2017-09-01

    The combination of therapy and diagnostics in one process "theranostics" is a trend in a modern medicine, especially in oncology. Such an approach requires development and usage of multifunctional hybrid nanoparticles with a hierarchical structure. Numerical methods and mathematical models play a significant role in the design of the hierarchical nanoparticles and allow looking inside the nanoscale mechanisms of agent-cell interactions. The current position of in silico approach in biomedicine and oncology is discussed. The review of the molecular level in silico studies in oncology, which are using the direct models, is presented.

  14. RNA Study Using DNA Nanotechnology.

    PubMed

    Tadakuma, Hisashi; Masubuchi, Takeya; Ueda, Takuya

    2016-01-01

    Transcription is one of the fundamental steps of gene expression, where RNA polymerases (RNAPs) bind to their template genes and make RNAs. In addition to RNAP and the template gene, many molecules such as transcription factors are involved. The interaction and the effect of these factors depend on the geometry. Molecular layout of these factors, RNAP and gene is thus important. DNA nanotechnology is a promising technology that allows controlling of the molecular layout in the range of nanometer to micrometer scale with nanometer resolution; thus, it is expected to expand the RNA study beyond the current limit. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The evolutionary ecology of molecular replicators

    PubMed Central

    2016-01-01

    By reasonable criteria, life on the Earth consists mainly of molecular replicators. These include viruses, transposons, transpovirons, coviruses and many more, with continuous new discoveries like Sputnik Virophage. Their study is inherently multidisciplinary, spanning microbiology, genetics, immunology and evolutionary theory, and the current view is that taking a unified approach has great power and promise. We support this with a new, unified, model of their evolutionary ecology, using contemporary evolutionary theory coupling the Price equation with game theory, studying the consequences of the molecular replicators' promiscuous use of each others' gene products for their natural history and evolutionary ecology. Even at this simple expository level, we can make a firm prediction of a new class of replicators exploiting viruses such as lentiviruses like SIVs, a family which includes HIV: these have been explicitly stated in the primary literature to be non-existent. Closely connected to this departure is the view that multicellular organism immunology is more about the management of chronic infections rather than the elimination of acute ones and new understandings emerging are changing our view of the kind of theatre we ourselves provide for the evolutionary play of molecular replicators. This study adds molecular replicators to bacteria in the emerging field of sociomicrobiology. PMID:27853598

  16. The evolutionary ecology of molecular replicators.

    PubMed

    Nee, Sean

    2016-08-01

    By reasonable criteria, life on the Earth consists mainly of molecular replicators. These include viruses, transposons, transpovirons, coviruses and many more, with continuous new discoveries like Sputnik Virophage. Their study is inherently multidisciplinary, spanning microbiology, genetics, immunology and evolutionary theory, and the current view is that taking a unified approach has great power and promise. We support this with a new, unified, model of their evolutionary ecology, using contemporary evolutionary theory coupling the Price equation with game theory, studying the consequences of the molecular replicators' promiscuous use of each others' gene products for their natural history and evolutionary ecology. Even at this simple expository level, we can make a firm prediction of a new class of replicators exploiting viruses such as lentiviruses like SIVs, a family which includes HIV: these have been explicitly stated in the primary literature to be non-existent. Closely connected to this departure is the view that multicellular organism immunology is more about the management of chronic infections rather than the elimination of acute ones and new understandings emerging are changing our view of the kind of theatre we ourselves provide for the evolutionary play of molecular replicators. This study adds molecular replicators to bacteria in the emerging field of sociomicrobiology.

  17. Students' knowledge of, and attitudes towards biotechnology revisited, 1995-2014: Changes in agriculture biotechnology but not in medical biotechnology.

    PubMed

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-09-10

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and attitudes towards biotechnology for nearly two decades. Not surprisingly, knowledge of biotechnology of current students has increased significantly (p < 0.001) and most students have learned some definitions and examples of biotechnology. There was a positive correlation between biotechnology knowledge and attitudes toward biotechnology for current students who study Advanced Biology (AB). However, for current students who did not study AB, there was a negative correlation.The attitude results showed that students today expressed less favorable opinions toward agricultural biotechnology (p < 0.001) despite studying AB or not. However, there is no significant difference between students today and 18 years ago in opinions towards medical biotechnology. In addition, current students showed a greater concern involving environmental risks than former students. Interestingly, the high school curriculum did affect students' attitudes toward genetically engineered (GE) plants but not GE animals. Our current study also found that the students' attitude towards GE animals was influenced more by their limited knowledge than by their moral belief. On the basis of findings from this study, we suggest that more materials of emerging animal biotechnology should be included in high school curriculum and recommend that high school teachers and university faculty establish a collaborative framework in the near future. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):475-491, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  18. Transport Phenomena of Water in Molecular Fluidic Channels

    PubMed Central

    Vo, Truong Quoc; Kim, BoHung

    2016-01-01

    In molecular-level fluidic transport, where the discrete characteristics of a molecular system are not negligible (in contrast to a continuum description), the response of the molecular water system might still be similar to the continuum description if the time and ensemble averages satisfy the ergodic hypothesis and the scale of the average is enough to recover the classical thermodynamic properties. However, even in such cases, the continuum description breaks down on the material interfaces. In short, molecular-level liquid flows exhibit substantially different physics from classical fluid transport theories because of (i) the interface/surface force field, (ii) thermal/velocity slip, (iii) the discreteness of fluid molecules at the interface and (iv) local viscosity. Therefore, in this study, we present the result of our investigations using molecular dynamics (MD) simulations with continuum-based energy equations and check the validity and limitations of the continuum hypothesis. Our study shows that when the continuum description is subjected to the proper treatment of the interface effects via modified boundary conditions, the so-called continuum-based modified-analytical solutions, they can adequately predict nanoscale fluid transport phenomena. The findings in this work have broad effects in overcoming current limitations in modeling/predicting the fluid behaviors of molecular fluidic devices. PMID:27650138

  19. Exploring the role of molecular biomarkers as a potential weapon against gastric cancer: A review of the literature.

    PubMed

    Matboli, Marwa; El-Nakeep, Sarah; Hossam, Nourhan; Habieb, Alaa; Azazy, Ahmed E M; Ebrahim, Ali E; Nagy, Ziad; Abdel-Rahman, Omar

    2016-07-14

    Gastric cancer (GC) is a global health problem and a major cause of cancer-related death with high recurrence rates ranging from 25% to 40% for GC patients staging II-IV. Unfortunately, while the majority of GC patients usually present with advanced tumor stage; there is still limited evidence-based therapeutic options. Current approach to GC management consists mainly of; endoscopy followed by, gastrectomy and chemotherapy or chemo-radiotherapy. Recent studies in GC have confirmed that it is a heterogeneous disease. Many molecular characterization studies have been performed in GC. Recent discoveries of the molecular pathways underlying the disease have opened the door to more personalized treatment and better predictable outcome. The identification of molecular markers is a useful tool for clinical managementin GC patients, assisting in diagnosis, evaluation of response to treatment and development of novel therapeutic modalities. While chemotherapeutic agents have certain physiological effects on the tumor cells, the prediction of the response is different from one type of tumor to the other. The specificity of molecular biomarkers is a principal feature driving their application in anticancer therapies. Here we are trying to focus on the role of molecular pathways of GC and well-established molecular markers that can guide the therapeutic management.

  20. [The current status and outlook for molecular genetic methods in solving the tasks of medical microbiology].

    PubMed

    Gintsburg, A L; Zigangirova, N A; Romanova, Iu M

    1999-01-01

    The article deals with modern methods, viz. PCR, molecular display and genotherapy, which permit the new approach to the solution of problems connected with the identification of infective agents, the study of the mechanisms of the pathogenesis of infectious diseases and their treatment. In this article concrete examples, clearly demonstrating how each of the above-mentioned technologies makes it possible to broaden the circle of problems solved in infectious pathology of man, are presented.

  1. Molecular Characterization of Epithelial Ovarian Cancer: Implications for Diagnosis and Treatment.

    PubMed

    Rojas, Veronica; Hirshfield, Kim M; Ganesan, Shridar; Rodriguez-Rodriguez, Lorna

    2016-12-15

    Epithelial ovarian cancer is a highly heterogeneous disease characterized by multiple histological subtypes. Molecular diversity has been shown to occur within specific histological subtypes of epithelial ovarian cancer, between different tumors of an individual patient, as well as within individual tumors. Recent advances in the molecular characterization of epithelial ovarian cancer tumors have provided the basis for a simplified classification scheme in which these cancers are classified as either type I or type II tumors, and these two categories have implications regarding disease pathogenesis and prognosis. Molecular analyses, primarily based on next-generation sequencing, otherwise known as high-throughput sequencing, are allowing for further refinement of ovarian cancer classification, facilitating the elucidation of the site(s) of precursor lesions of high-grade serous ovarian cancer, and providing insight into the processes of clonal selection and evolution that may be associated with development of chemoresistance. Potential therapeutic targets have been identified from recent molecular profiling studies of these tumors, and the effectiveness and safety of a number of specific targeted therapies have been evaluated or are currently being studied for the treatment of women with this disease.

  2. Molecular Characterization of Epithelial Ovarian Cancer: Implications for Diagnosis and Treatment

    PubMed Central

    Rojas, Veronica; Hirshfield, Kim M.; Ganesan, Shridar; Rodriguez-Rodriguez, Lorna

    2016-01-01

    Epithelial ovarian cancer is a highly heterogeneous disease characterized by multiple histological subtypes. Molecular diversity has been shown to occur within specific histological subtypes of epithelial ovarian cancer, between different tumors of an individual patient, as well as within individual tumors. Recent advances in the molecular characterization of epithelial ovarian cancer tumors have provided the basis for a simplified classification scheme in which these cancers are classified as either type I or type II tumors, and these two categories have implications regarding disease pathogenesis and prognosis. Molecular analyses, primarily based on next-generation sequencing, otherwise known as high-throughput sequencing, are allowing for further refinement of ovarian cancer classification, facilitating the elucidation of the site(s) of precursor lesions of high-grade serous ovarian cancer, and providing insight into the processes of clonal selection and evolution that may be associated with development of chemoresistance. Potential therapeutic targets have been identified from recent molecular profiling studies of these tumors, and the effectiveness and safety of a number of specific targeted therapies have been evaluated or are currently being studied for the treatment of women with this disease. PMID:27983698

  3. Transferability of molecular markers from major legumes to Lathyrus spp. for their application in mapping and diversity studies.

    PubMed

    Almeida, Nuno Felipe; Trindade Leitão, Susana; Caminero, Constantino; Torres, Ana Maria; Rubiales, Diego; Vaz Patto, Maria Carlota

    2014-01-01

    Lathyrus cicera L. (chickling pea) and L. sativus L. (grass pea) have great potential among grain legumes due to their adaptability to inauspicious environments, high protein content and resistance to serious diseases. Nevertheless, due to its past underused, further activities are required to exploit this potential and to capitalise on the advances in molecular biology that enable improved Lathyrus spp. breeding programmes. In this study we evaluated the transferability of molecular markers developed for closely related legume species to Lathyrus spp. (Medicago truncatula, pea, lentil, faba bean and lupin) and tested the application of those new molecular tools on Lathyrus mapping and diversity studies. Genomic and expressed sequence tag microsatellite, intron-targeted amplified polymorphic, resistance gene analogue and defence-related gene markers were tested. In total 128 (27.7 %) and 132 (28.6 %) molecular markers were successfully cross-amplified, respectively in L. cicera and L. sativus. In total, the efficiency of transferability from genomic microsatellites was 5 %, and from gene-based markers, 55 %. For L. cicera, three cleaved amplified polymorphic sequence markers and one derived cleaved amplified polymorphic sequence marker based on the cross-amplified markers were also developed. Nine of those molecular markers were suitable for mapping in a L. cicera recombinant inbred line population. From the 17 molecular markers tested for diversity analysis, six (35 %) in L. cicera and seven (41 %) in L. sativus were polymorphic and discriminate well all the L. sativus accessions. Additionally, L. cicera accessions were clearly distinguished from L. sativus accessions. This work revealed a high number of transferable molecular markers to be used in current genomic studies in Lathyrus spp. Although their usefulness was higher on diversity studies, they represent the first steps for future comparative mapping involving these species.

  4. Xenon inhibits excitatory but not inhibitory transmission in rat spinal cord dorsal horn neurons

    PubMed Central

    2010-01-01

    Background The molecular targets for the promising gaseous anaesthetic xenon are still under investigation. Most studies identify N-methyl-D-aspartate (NMDA) receptors as the primary molecular target for xenon, but the role of α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid (AMPA) receptors is less clear. In this study we evaluated the effect of xenon on excitatory and inhibitory synaptic transmission in the superficial dorsal horn of the spinal cord using in vitro patch-clamp recordings from rat spinal cord slices. We further evaluated the effects of xenon on innocuous and noxious stimuli using in vivo patch-clamp method. Results In vitro, xenon decreased the amplitude and area under the curve of currents induced by exogenous NMDA and AMPA and inhibited dorsal root stimulation-evoked excitatory postsynaptic currents. Xenon decreased the amplitude, but not the frequency, of miniature excitatory postsynaptic currents. There was no discernible effect on miniature or evoked inhibitory postsynaptic currents or on the current induced by inhibitory neurotransmitters. In vivo, xenon inhibited responses to tactile and painful stimuli even in the presence of NMDA receptor antagonist. Conclusions Xenon inhibits glutamatergic excitatory transmission in the superficial dorsal horn via a postsynaptic mechanism. There is no substantial effect on inhibitory synaptic transmission at the concentration we used. The blunting of excitation in the dorsal horn lamina II neurons could underlie the analgesic effect of xenon. PMID:20444263

  5. Report of the matrix of biological knowledge workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morowitz, H.J.; Smith, T.

    1987-10-30

    Current understanding of biology involves complex relationships rooted in enormous amounts of data. These data include entries from biochemistry, ecology, genetics, human and veterinary medicine, molecular structure studies, agriculture, embryology, systematics, and many other disciplines. The present wealth of biological data goes beyond past accumulations now include new understandings from molecular biology. Several important biological databases are currently being supported, and more are planned; however, major problems of interdatabase communication and management efficiency abound. Few scientists are currently capable of keeping up with this ever-increasing wealth of knowledge, let alone searching it efficiently for new or unsuspected links and importantmore » analogies. Yet this is what is required if the continued rapid generation of such data is to lead most effectively to the major conceptual, medical, and agricultural advances anticipated over the coming decades in the United States. The opportunity exists to combine the potential of modern computer science, database management, and artificial intelligence in a major effort to organize the vast wealth of biological and clinical data. The time is right because the amount of data is still manageable even in its current highly-fragmented form; important hardware and computer science tools have been greatly improved; and there have been recent fundamental advances in our comprehension of biology. This latter is particularly true at the molecular level where the information for nearly all higher structure and function is encoded. The organization of all biological experimental data coordinately within a structure incorporating our current understanding - the Matrix of Biological Knowledge - will provide the data and structure for the major advances foreseen in the years ahead.« less

  6. Effect of Noise on DNA Sequencing via Transverse Electronic Transport

    PubMed Central

    Krems, Matt; Zwolak, Michael; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2009-01-01

    Abstract Previous theoretical studies have shown that measuring the transverse current across DNA strands while they translocate through a nanopore or channel may provide a statistically distinguishable signature of the DNA bases, and may thus allow for rapid DNA sequencing. However, fluctuations of the environment, such as ionic and DNA motion, introduce important scattering processes that may affect the viability of this approach to sequencing. To understand this issue, we have analyzed a simple model that captures the role of this complex environment in electronic dephasing and its ability to remove charge carriers from current-carrying states. We find that these effects do not strongly influence the current distributions due to the off-resonant nature of tunneling through the nucleotides—a result we expect to be a common feature of transport in molecular junctions. In particular, only large scattering strengths, as compared to the energetic gap between the molecular states and the Fermi level, significantly alter the form of the current distributions. Since this gap itself is quite large, the current distributions remain protected from this type of noise, further supporting the possibility of using transverse electronic transport measurements for DNA sequencing. PMID:19804730

  7. The molecular electronic device and the biochip computer: present status.

    PubMed

    Haddon, R C; Lamola, A A

    1985-04-01

    The idea that a single molecule might function as a self-contained electronic device has been of interest for some time. However, a fully integrated version--the biochip or the biocomputer, in which both production and assembly of molecular electronic components is achieved through biotechnology-is a relatively new concept that is currently attracting attention both within the scientific community and among the general public. In the present article we draw together some of the approaches being considered for the construction of such devices and delineate the revolutionary nature of the current proposals for molecular electronic devices (MEDs) and biochip computers (BCCs). With the silicon semiconductor conductor industry already in place and in view of the continuing successes of the lithographic process it seems appropriate to ask why the highly speculative MED or BCC has engendered such interest. In some respects the answer is paradigmatic as much as it is real. It is perhaps best stated as the promise of the realm of the molecular. Thus it is envisioned that devices will be constructed by assembly of individual molecular electronic components into arrays, thereby engineering from small upward rather than large downward as do current lithographic techniques. An important corollary of the construction technique is that the functional elements of such an array would be individual molecules rather than macroscopic ensembles. These two aspects of the MED/BCC--assembly of molecular arrays and individually accessible functional molecular units--are truly revolutionary. Both require scientific breakthroughs and the necessary principles, quite apart from the technology, remain essentially unknown. It is concluded that the advent of the MED/BCC still lies well before us. The twin criteria of utilization of individual molecules as functional elements and the assembly of such elements remains as elusive as ever. Biology engineers structures on the molecular scale but biomolecules do not seem to be imbued with useful electronic properties. Molecular beam epitaxy and thin-film techniques produce electronic devices but they "engineer down" and are currently unable to generate individual molecular units. The potential of the MED/BCC field is matched only by the obstacles that must be surmounted for its realization.

  8. The molecular electronic device and the biochip computer: present status.

    PubMed Central

    Haddon, R C; Lamola, A A

    1985-01-01

    The idea that a single molecule might function as a self-contained electronic device has been of interest for some time. However, a fully integrated version--the biochip or the biocomputer, in which both production and assembly of molecular electronic components is achieved through biotechnology-is a relatively new concept that is currently attracting attention both within the scientific community and among the general public. In the present article we draw together some of the approaches being considered for the construction of such devices and delineate the revolutionary nature of the current proposals for molecular electronic devices (MEDs) and biochip computers (BCCs). With the silicon semiconductor conductor industry already in place and in view of the continuing successes of the lithographic process it seems appropriate to ask why the highly speculative MED or BCC has engendered such interest. In some respects the answer is paradigmatic as much as it is real. It is perhaps best stated as the promise of the realm of the molecular. Thus it is envisioned that devices will be constructed by assembly of individual molecular electronic components into arrays, thereby engineering from small upward rather than large downward as do current lithographic techniques. An important corollary of the construction technique is that the functional elements of such an array would be individual molecules rather than macroscopic ensembles. These two aspects of the MED/BCC--assembly of molecular arrays and individually accessible functional molecular units--are truly revolutionary. Both require scientific breakthroughs and the necessary principles, quite apart from the technology, remain essentially unknown. It is concluded that the advent of the MED/BCC still lies well before us. The twin criteria of utilization of individual molecules as functional elements and the assembly of such elements remains as elusive as ever. Biology engineers structures on the molecular scale but biomolecules do not seem to be imbued with useful electronic properties. Molecular beam epitaxy and thin-film techniques produce electronic devices but they "engineer down" and are currently unable to generate individual molecular units. The potential of the MED/BCC field is matched only by the obstacles that must be surmounted for its realization. PMID:3856865

  9. Adrenomedullin increases the short-circuit current in the mouse seminal vesicle: actions on chloride secretion.

    PubMed

    Liao, S B; Cheung, K H; O, W S; Tang, Fai

    2014-08-01

    Adrenomedullin (ADM) may regulate seminal vesicle fluid secretion, and this may affect sperm quality. In this study, we investigated the effect of ADM on chloride secretion in the mouse seminal vesicle. The presence of ADM in mouse seminal vesicle was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with enzyme-linked assay for ADM. The effects of ADM on chloride secretion were studied by short-circuit current technique in a whole-mount preparation of mouse seminal vesicle in an Ussing chamber. The effects of specific ADM and calcitonin gene-related peptide (CGRP) receptor antagonists were investigated. Whether the ADM effect depended on the cAMP- and/or calcium-activated chloride channel was also studied using specific chloride channel blockers. The results showed that ADM was present in seminal vesicle epithelial cells. The major molecular species was precursor in the mouse seminal vesicle. ADM increased short-circuit current through the calcium-activated chloride channel in mouse seminal vesicle, and CGRP receptor was involved. We conclude that ADM may regulate chloride and fluid secretion from the seminal vesicle, which may affect the composition of the seminal plasma bathing the sperm and, hence, fertility. © 2014 by the Society for the Study of Reproduction, Inc.

  10. Modeling adsorption: Investigating adsorbate and adsorbent properties

    NASA Astrophysics Data System (ADS)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas adsorption and catalysis. These studies are also applicable to environmental cleanup applications, such as waste stream purification and separation procedures as well as decontamination of chemical warfare agents.

  11. An integrative view of cisplatin-induced renal and cardiac toxicities: molecular mechanisms, current treatment challenges and potential protective measures

    PubMed Central

    Dugbartey, George J.; Peppone, Luke J.; de Graaf, Inge A.M.

    2017-01-01

    Cisplatin is currently one of the most widely-used chemotherapeutic agents against various malignancies. Its clinical application is limited, however, by inherent renal and cardiac toxicities and other side effects, of which the underlying mechanisms are only partly understood. Experimental studies show cisplatin generates reactive oxygen species, which impair the cell’s antioxidant defense system, causing oxidative stress and potentiating injury, thereby culminating in kidney and heart failure. Understanding the molecular mechanisms of cisplatin-induced renal and cardiac toxicities may allow clinicians to prevent or treat this problem better and may also provide a model for investigating drug-induced organ toxicity in general. This review discusses some of the major molecular mechanisms of cisplatin-induced renal and cardiac toxicities including disruption of ionic homeostasis and energy status of the cell leading to cell injury and cell death. We highlight clinical manifestations of both toxicities as well as (novel)biomarkers such as kidney injury molecule-1 (KIM-1), tissue inhibitor of metalloproteinase-1 (TIMP-1) and N-terminal pro-B-type natriuretic peptide (NT-proBNP). We also present some current treatment challenges and propose potential protective strategies with novel pharmacological compounds that might mitigate or prevent these toxicities, which include the use of hydrogen sulfide. PMID:27717837

  12. Constraining the excitation conditions of the molecular gas in the most distant submillimetre galaxy at z=4.76

    NASA Astrophysics Data System (ADS)

    Coppin, Kristen; Weiss, Axel; van der Werf, Paul; Menten, Karl; De Breuck, Carlos; Walter, Fabian; Loenen, Edo; Edge, Alastair; Emonts, Bjorn; Huynh, Minh; Swinbank, Mark; Smail, Ian; Schinnerer, Eva; Greve, Thomas; Chapman, Scott; Danielson, Alice; Knudsen, Kirsten; Dannerbauer, Helmut; Brandt, Niel; Berciano Alba, Alicia; Strom, Allison

    2010-10-01

    We propose to use ATCA to measure CO(5-4) emission in the currently highest redshift submm-selected galaxy (SMG) known: LESS J033229 at z=4.755. Combined with our previous successful ATCA observations of the CO(2-1) transition in this SMG, we will be able to start building up the CO SED excitation ladder and so gain new insight on the excitation conditions of the molecular gas which is fuelling a massive burst of star formation at a time when the Universe was only 1 Gyr old. ATCA is currently the only available facility that can provide these data, giving us a sneak-preview of the capabilities of ALMA for studying the youngest galaxies in the very distant Universe.

  13. Current and future molecular diagnostics in colorectal cancer and colorectal adenoma.

    PubMed

    Tsang, Andy Hin-Fung; Cheng, Ka-Ho; Wong, Apple Siu-Ping; Ng, Simon Siu-Man; Ma, Brigette Buig-Yue; Chan, Charles Ming-Lok; Tsui, Nancy Bo-Yin; Chan, Lawrence Wing-Chi; Yung, Benjamin Yat-Ming; Wong, Sze-Chuen Cesar

    2014-04-14

    Colorectal cancer (CRC) is one of the most prevalent cancers in developed countries. On the other hand, CRC is also one of the most curable cancers if it is detected in early stages through regular colonoscopy or sigmoidoscopy. Since CRC develops slowly from precancerous lesions, early detection can reduce both the incidence and mortality of the disease. Fecal occult blood test is a widely used non-invasive screening tool for CRC. Although fecal occult blood test is simple and cost-effective in screening CRC, there is room for improvement in terms of the accuracy of the test. Genetic dysregulations have been found to play an important role in CRC development. With better understanding of the molecular basis of CRC, there is a growing expectation on the development of diagnostic tests based on more sensitive and specific molecular markers and those tests may provide a breakthrough to the limitations of current screening tests for CRC. In this review, the molecular basis of CRC development, the characteristics and applications of different non-invasive molecular biomarkers, as well as the technologies available for the detection were discussed. This review intended to provide a summary on the current and future molecular diagnostics in CRC and its pre-malignant state, colorectal adenoma.

  14. Current and future molecular diagnostics in colorectal cancer and colorectal adenoma

    PubMed Central

    Tsang, Andy Hin-Fung; Cheng, Ka-Ho; Wong, Apple Siu-Ping; Ng, Simon Siu-Man; Ma, Brigette Buig-Yue; Chan, Charles Ming-Lok; Tsui, Nancy Bo-Yin; Chan, Lawrence Wing-Chi; Yung, Benjamin Yat-Ming; Wong, Sze-Chuen Cesar

    2014-01-01

    Colorectal cancer (CRC) is one of the most prevalent cancers in developed countries. On the other hand, CRC is also one of the most curable cancers if it is detected in early stages through regular colonoscopy or sigmoidoscopy. Since CRC develops slowly from precancerous lesions, early detection can reduce both the incidence and mortality of the disease. Fecal occult blood test is a widely used non-invasive screening tool for CRC. Although fecal occult blood test is simple and cost-effective in screening CRC, there is room for improvement in terms of the accuracy of the test. Genetic dysregulations have been found to play an important role in CRC development. With better understanding of the molecular basis of CRC, there is a growing expectation on the development of diagnostic tests based on more sensitive and specific molecular markers and those tests may provide a breakthrough to the limitations of current screening tests for CRC. In this review, the molecular basis of CRC development, the characteristics and applications of different non-invasive molecular biomarkers, as well as the technologies available for the detection were discussed. This review intended to provide a summary on the current and future molecular diagnostics in CRC and its pre-malignant state, colorectal adenoma. PMID:24744577

  15. Mode of action of mosquito repellents

    USDA-ARS?s Scientific Manuscript database

    The mode of action of mosquito repellents remains a controversial topic. However, electrophysiological studies and molecular approaches have provided a better understanding of how repellents exert their effects. Here, we briefly discuss various notions of repellent action and present the current sta...

  16. Patterns of host adaptation in Frankliniella occidentalis among vegetable crops

    USDA-ARS?s Scientific Manuscript database

    The current study examined the variation in life table characteristics, and physiological, biochemical, and molecular bases of western flower thrips, Frankliniella occidentalis (Pergande) host adaptation patterns. The main objective was to determine whether host availability affects insect preferenc...

  17. Molecular diodes in optical rectennas

    NASA Astrophysics Data System (ADS)

    Duché, David; Palanchoke, Ujwol; Terracciano, Luigi; Dang, Florian-Xuan; Patrone, Lionel; Le Rouzo, Judikael; Balaban, Téodore Silviu; Alfonso, Claude; Charai, Ahmed; Margeat, Olivier; Ackermann, Jorg; Gourgon, Cécile; Simon, Jean-Jacques; Escoubas, Ludovic

    2016-09-01

    The photo conversion efficiencies of the 1st and 2nd generat ion photovoltaic solar cells are limited by the physical phenomena involved during the photo-conversion processes. An upper limit around 30% has been predicted for a monojunction silicon solar cell. In this work, we study 3rd generation solar cells named rectenna which could direct ly convert visible and infrared light into DC current. The rectenna technology is at odds with the actual photovoltaic technologies, since it is not based on the use of semi-conducting materials. We study a rectenna architecture consist ing of plasmonic nano-antennas associated with rectifying self assembled molecular diodes. We first opt imized the geometry of plasmonic nano-antennas using an FDTD method. The optimal antennas are then realized using a nano-imprint process and associated with self assembled molecular diodes in 11- ferrocenyl-undecanethiol. Finally, The I(V) characterist ics in darkness of the rectennas has been carried out using an STM. The molecular diodes exhibit averaged rect ification ratios of 5.

  18. Potential of PET-MRI for imaging of non-oncologic musculoskeletal disease.

    PubMed

    Kogan, Feliks; Fan, Audrey P; Gold, Garry E

    2016-12-01

    Early detection of musculoskeletal disease leads to improved therapies and patient outcomes, and would benefit greatly from imaging at the cellular and molecular level. As it becomes clear that assessment of multiple tissues and functional processes are often necessary to study the complex pathogenesis of musculoskeletal disorders, the role of multi-modality molecular imaging becomes increasingly important. New positron emission tomography-magnetic resonance imaging (PET-MRI) systems offer to combine high-resolution MRI with simultaneous molecular information from PET to study the multifaceted processes involved in numerous musculoskeletal disorders. In this article, we aim to outline the potential clinical utility of hybrid PET-MRI to these non-oncologic musculoskeletal diseases. We summarize current applications of PET molecular imaging in osteoarthritis (OA), rheumatoid arthritis (RA), metabolic bone diseases and neuropathic peripheral pain. Advanced MRI approaches that reveal biochemical and functional information offer complementary assessment in soft tissues. Additionally, we discuss technical considerations for hybrid PET-MR imaging including MR attenuation correction, workflow, radiation dose, and quantification.

  19. Exciton dynamics of C60-based single-photon emitters explored by Hanbury Brown-Twiss scanning tunnelling microscopy.

    PubMed

    Merino, P; Große, C; Rosławska, A; Kuhnke, K; Kern, K

    2015-09-29

    Exciton creation and annihilation by charges are crucial processes for technologies relying on charge-exciton-photon conversion. Improvement of organic light sources or dye-sensitized solar cells requires methods to address exciton dynamics at the molecular scale. Near-field techniques have been instrumental for this purpose; however, characterizing exciton recombination with molecular resolution remained a challenge. Here, we study exciton dynamics by using scanning tunnelling microscopy to inject current with sub-molecular precision and Hanbury Brown-Twiss interferometry to measure photon correlations in the far-field electroluminescence. Controlled injection allows us to generate excitons in solid C60 and let them interact with charges during their lifetime. We demonstrate electrically driven single-photon emission from localized structural defects and determine exciton lifetimes in the picosecond range. Monitoring lifetime shortening and luminescence saturation for increasing carrier injection rates provides access to charge-exciton annihilation dynamics. Our approach introduces a unique way to study single quasi-particle dynamics on the ultimate molecular scale.

  20. The role of molecular imaging in diagnosis of deep vein thrombosis

    PubMed Central

    Houshmand, Sina; Salavati, Ali; Hess, Søren; Ravina, Mudalsha; Alavi, Abass

    2014-01-01

    Venous thromboembolism (VTE) mostly presenting as deep venous thrombosis (DVT) and pulmonary embolism (PE) affects up to 600,000 individuals in United States each year. Clinical symptoms of VTE are nonspecific and sometimes misleading. Additionally, side effects of available treatment plans for DVT are significant. Therefore, medical imaging plays a crucial role in proper diagnosis and avoidance from over/under diagnosis, which exposes the patient to risk. In addition to conventional structural imaging modalities, such as ultrasonography and computed tomography, molecular imaging with different tracers have been studied for diagnosis of DVT. In this review we will discuss currently available and newly evolving targets and tracers for detection of DVT using molecular imaging methods. PMID:25143860

  1. Interstellar molecules and dense clouds.

    NASA Technical Reports Server (NTRS)

    Rank, D. M.; Townes, C. H.; Welch, W. J.

    1971-01-01

    Current knowledge of the interstellar medium is discussed on the basis of recent published studies. The subjects considered include optical identification of interstellar molecules, radio molecular lines, interstellar clouds, isotopic abundances, formation and disappearance of interstellar molecules, and interstellar probing techniques. Diagrams are plotted for the distribution of galactic sources exhibiting molecular lines, for hydrogen molecule, hydrogen atom and electron abundances due to ionization, for the densities, velocities and temperature of NH3 in the direction of Sagitarius B2, for the lower rotational energy levels of H2CO, and for temporal spectral variations in masing H2O clouds of the radio source W49. Future applications of the maser and of molecular microscopy in this field are visualized.

  2. Phononic heat transport in nanomechanical structures: steady-state and pumping

    NASA Astrophysics Data System (ADS)

    Sena-Junior, Marcone I.; Lima, Leandro R. F.; Lewenkopf, Caio H.

    2017-10-01

    We study the heat transport due to phonons in nanomechanical structures using a phase space representation of non-equilibrium Green’s functions. This representation accounts for the atomic degrees of freedom making it particularly suited for the description of small (molecular) junctions systems. We rigorously show that for the steady state limit our formalism correctly recovers the heuristic Landauer-like heat conductance for a quantum coherent molecular system coupled to thermal reservoirs. We find general expressions for the non-stationary heat current due to an external periodic drive. In both cases we discuss the quantum thermodynamic properties of the systems. We apply our formalism to the case of a diatomic molecular junction.

  3. Molecular biology of retinal ganglion cells.

    PubMed Central

    Xiang, M; Zhou, H; Nathans, J

    1996-01-01

    Retinal ganglion cells are the output neurons that encode and transmit information from the eye to the brain. Their diverse physiologic and anatomic properties have been intensively studied and appear to account well for a number of psychophysical phenomena such as lateral inhibition and chromatic opponency. In this paper, we summarize our current view of retinal ganglion cell properties and pose a number of questions regarding underlying molecular mechanisms. As an example of one approach to understanding molecular mechanisms, we describe recent work on several POU domain transcription factors that are expressed in subsets of retinal ganglion cells and that appear to be involved in ganglion cell development. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:8570601

  4. Possibility designing XNOR and NAND molecular logic gates by using single benzene ring

    NASA Astrophysics Data System (ADS)

    Abbas, Mohammed A.; Hanoon, Falah H.; Al-Badry, Lafy F.

    2017-09-01

    This study focused on examining electronic transport through single benzene ring and suggested how such ring can be employed to design XNOR and NAND molecular logic gates. The single benzene ring was threaded by a magnetic flux. The magnetic flux and applied gate voltages were considered as the key tuning parameter in the XNOR and NAND gates operation. All the calculations are achieved by using steady-state theoretical model, which is based on the time-dependent Hamiltonian model. The transmission probability and the electric current are calculated as functions of electron energy and bias voltage, respectively. The application of the anticipated results can be a base for the progress of molecular electronics.

  5. Understanding charge transport in molecular electronics.

    PubMed

    Kushmerick, J J; Pollack, S K; Yang, J C; Naciri, J; Holt, D B; Ratner, M A; Shashidhar, R

    2003-12-01

    For molecular electronics to become a viable technology the factors that control charge transport across a metal-molecule-metal junction need to be elucidated. We use an experimentally simple crossed-wire tunnel junction to interrogate how factors such as metal-molecule coupling, molecular structure, and the choice of metal electrode influence the current-voltage characteristics of a molecular junction.

  6. Ancient dna from pleistocene fossils: Preservation, recovery, and utility of ancient genetic information for quaternary research

    NASA Astrophysics Data System (ADS)

    Yang, Hong

    Until recently, recovery and analysis of genetic information encoded in ancient DNA sequences from Pleistocene fossils were impossible. Recent advances in molecular biology offered technical tools to obtain ancient DNA sequences from well-preserved Quaternary fossils and opened the possibilities to directly study genetic changes in fossil species to address various biological and paleontological questions. Ancient DNA studies involving Pleistocene fossil material and ancient DNA degradation and preservation in Quaternary deposits are reviewed. The molecular technology applied to isolate, amplify, and sequence ancient DNA is also presented. Authentication of ancient DNA sequences and technical problems associated with modern and ancient DNA contamination are discussed. As illustrated in recent studies on ancient DNA from proboscideans, it is apparent that fossil DNA sequence data can shed light on many aspects of Quaternary research such as systematics and phylogeny. conservation biology, evolutionary theory, molecular taphonomy, and forensic sciences. Improvement of molecular techniques and a better understanding of DNA degradation during fossilization are likely to build on current strengths and to overcome existing problems, making fossil DNA data a unique source of information for Quaternary scientists.

  7. DrugPath: a database for academic investigators to match oncology molecular targets with drugs in development.

    PubMed

    Shah, Eric D; Fisch, Brandon M A; Arceci, Robert J; Buckley, Jonathan D; Reaman, Gregory H; Sorensen, Poul H; Triche, Timothy J; Reynolds, C Patrick

    2014-05-01

    Academic laboratories are developing increasingly large amounts of data that describe the genomic landscape and gene expression patterns of various types of cancers. Such data can potentially identify novel oncology molecular targets in cancer types that may not be the primary focus of a drug sponsor's initial research for an investigational new drug. Obtaining preclinical data that point toward the potential for a given molecularly targeted agent, or a novel combination of agents requires knowledge of drugs currently in development in both the academic and commercial sectors. We have developed the DrugPath database ( http://www.drugpath.org ) as a comprehensive, free-of-charge resource for academic investigators to identify agents being developed in academics or industry that may act against molecular targets of interest. DrugPath data on molecular targets overlay the Michigan Molecular Interactions ( http://mimi.ncibi.org ) gene-gene interaction map to facilitate identification of related agents in the same pathway. The database catalogs 2,081 drug development programs representing 751 drug sponsors and 722 molecular and genetic targets. DrugPath should assist investigators in identifying and obtaining drugs acting on specific molecular targets for biological and preclinical therapeutic studies.

  8. Molecular version of the resistive pulse technique: counting ATP by a single ion channel

    NASA Astrophysics Data System (ADS)

    Rostovtseva, T. K.; Bezrukov, S. M.

    1998-03-01

    The ``molecular Coulter counter'' concept has been used to study transport of ATP molecules through the nanometer-scale aqueous pore of the voltage-dependent mitochondrial ion channel, VDAC. We examine the ATP-induced current fluctuations and the change in average current through a single fully open channel reconstituted into a planar lipid bilayer. At high salt concentration (1M NaCl), the addition of ATP reduces both solution specific conductivity and channel conductance, but the effect on the channel is several times stronger and shows saturation behavior at 50 mM ATP concentration. ATP addition also generates an excess noise in the ionic current through the channel. By relating the low-frequency spectral density of the noise to the equilibrium diffusion of ATP molecules in the aqueous pore, we calculate a diffusion coefficient D = (1.6-3.3)x10-11 m^2 /s. We show that the mesoscopic VDAC pore is a Coulter counter with the added features of attraction and diffusion.

  9. Separation of three phenolic high-molecular-weight compounds from the crude extract of Terminalia Chebula Retz. by ultrasound-assisted extraction and high-speed counter-current chromatography.

    PubMed

    Zou, Deng-lang; Chen, Tao; Li, Hong-mei; Chen, Chen; Zhao, Jing-yang; Li, Yu-lin

    2016-04-01

    This study presents an efficient strategy for separation of three phenolic compounds with high molecular weight from the crude extract of Terminalia chebula Retz. by ultrasound-assisted extraction and high-speed counter-current chromatography. The ultrasound-assisted extraction conditions were optimized by response surface methodology and the results showed the target compounds could be well enriched under the optimized extraction conditions. Then the crude extract was directly separated by high-speed counter-current chromatography without any pretreatment using n-hexane/ethyl acetate/methanol/water (1:7:0.5:3, v/v/v/v) as the solvent system. In 180 min, 13 mg of A, 18 mg of B, and 9 mg of C were obtained from 200 mg of crude sample. Their structures were identified as Chebulagic acid (A, 954 Da), Chebulinic acid (B, 956 Da), and Ellagic acid (C) by (1) H NMR spectroscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Enhancing quantum annealing performance for the molecular similarity problem

    NASA Astrophysics Data System (ADS)

    Hernandez, Maritza; Aramon, Maliheh

    2017-05-01

    Quantum annealing is a promising technique which leverages quantum mechanics to solve hard optimization problems. Considerable progress has been made in the development of a physical quantum annealer, motivating the study of methods to enhance the efficiency of such a solver. In this work, we present a quantum annealing approach to measure similarity among molecular structures. Implementing real-world problems on a quantum annealer is challenging due to hardware limitations such as sparse connectivity, intrinsic control error, and limited precision. In order to overcome the limited connectivity, a problem must be reformulated using minor-embedding techniques. Using a real data set, we investigate the performance of a quantum annealer in solving the molecular similarity problem. We provide experimental evidence that common practices for embedding can be replaced by new alternatives which mitigate some of the hardware limitations and enhance its performance. Common practices for embedding include minimizing either the number of qubits or the chain length and determining the strength of ferromagnetic couplers empirically. We show that current criteria for selecting an embedding do not improve the hardware's performance for the molecular similarity problem. Furthermore, we use a theoretical approach to determine the strength of ferromagnetic couplers. Such an approach removes the computational burden of the current empirical approaches and also results in hardware solutions that can benefit from simple local classical improvement. Although our results are limited to the problems considered here, they can be generalized to guide future benchmarking studies.

  11. Differentiating low-molecular-weight heparins based on chemical, biological, and pharmacologic properties: implications for the development of generic versions of low-molecular-weight heparins.

    PubMed

    Jeske, Walter P; Walenga, Jeanine M; Hoppensteadt, Debra A; Vandenberg, Curtis; Brubaker, Aleah; Adiguzel, Cafer; Bakhos, Mamdouh; Fareed, Jawed

    2008-02-01

    Low-molecular-weight heparins (LMWHs) are polypharmacologic drugs used to treat thrombotic and cardiovascular disorders. These drugs are manufactured using different chemical and enzymatic methods, resulting in products with distinct chemical and pharmacologic profiles. Generic LMWHs have been introduced in Asia and South America, and several generic suppliers are seeking regulatory approval in the United States and the European Union. For simple small-molecule drugs, generic drugs have the same chemical structure, potency, and bioavailability as the innovator drug. Applying this definition to complex biological products such as the LMWHs has proved difficult. One major issue is defining appropriate criteria to demonstrate bioequivalence; pharmacopoeial specifications alone appear to be inadequate. Whereas available generic versions of LMWHs exhibit similar molecular and pharmacopoeial profiles, marked differences in their biological and pharmacologic behavior have been noted. Preliminary studies have demonstrated differences in terms of anti-Xa activity and tissue factor pathway inhibitor release after subcutaneous administration, as well as antiplatelet and profibrinolytic effects. The current data emphasize the need to consider multiple functional parameters when defining bioequivalence of biologic drugs with complex structures and activities and also underscore the importance of further pharmacologic studies involving animal models and human clinical trials. The U.S. Food and Drug Administration and the European Medicine Evaluation Agency are currently developing guidelines for the acceptance of biosimilar agents including LMWHs. Until such guidelines are complete, generic interchange may not be feasible.

  12. DEVELOPMENT OF A BIOMARKERS DATABASE FOR THE NATIONAL CHILDREN'S STUDY, PROCEEDINGS TO BE PUBLISEHD FROM THE INTERNATIONAL CONFERENCE ON BIOMARKERS FOR TOXICOLOGY AND MOLECULAR EPIDEMIOLOGY, ATLANTA, GA, MARCH 15-17, 2004

    EPA Science Inventory

    The National Children's Study (NCS) is a federally-sponsored, longitudinal study of environmental influences on the health and development of children across the United States (www.nationalchildrensstudy.gov). Current plans are to study approximately 100,000 children and their f...

  13. Toward Biological Subtyping of Papillary Renal Cell Carcinoma With Clinical Implications Through Histologic, Immunohistochemical, and Molecular Analysis.

    PubMed

    Saleeb, Rola M; Brimo, Fadi; Farag, Mina; Rompré-Brodeur, Alexis; Rotondo, Fabio; Beharry, Vidya; Wala, Samantha; Plant, Pamela; Downes, Michelle R; Pace, Kenneth; Evans, Andrew; Bjarnason, Georg; Bartlett, John M S; Yousef, George M

    2017-12-01

    Papillary renal cell carcinoma (PRCC) has 2 histologic subtypes. Almost half of the cases fail to meet all morphologic criteria for either type, hence are characterized as PRCC not otherwise specified (NOS). There are yet no markers to resolve the PRCC NOS category. Accurate classification can better guide the management of these patients. In our previous PRCC study we identified markers that can distinguish between the subtypes. A PRCC patient cohort of 108 cases was selected for the current study. A panel of potentially distinguishing markers was chosen from our previous genomic analysis, and assessed by immunohistochemistry. The panel exhibited distinct staining patterns between the 2 classic PRCC subtypes; and successfully reclassified the NOS (45%) cases. Moreover, these immunomarkers revealed a third subtype, PRCC3 (35% of the cohort). Molecular testing using miRNA expression and copy number variation analysis confirmed the presence of 3 distinct molecular signatures corresponding to the 3 subtypes. Disease-free survival was significantly enhanced in PRCC1 versus 2 and 3 (P=0.047) on univariate analysis. The subtypes stratification was also significant on multivariate analysis (P=0.025; hazard ratio, 6; 95% confidence interval, 1.25-32.2). We propose a new classification system of PRCC integrating morphologic, immunophenotypical, and molecular analysis. The newly described PRCC3 has overlapping morphology between PRCC1 and PRCC2, hence would be subtyped as NOS in the current classification. Molecularly PRCC3 has a distinct signature and clinically it behaves similar to PRCC2. The new classification stratifies PRCC patients into clinically relevant subgroups and has significant implications on the management of PRCC.

  14. Glacial history affected phenotypic differentiation in the alpine plant, Campanula thyrsoides.

    PubMed

    Scheepens, J F; Frei, Eva S; Stöcklin, Jürg

    2013-01-01

    Numerous widespread Alpine plant species show molecular differentiation among populations from distinct regions. This has been explained as the result of genetic drift during glacial survival in isolated refugia along the border of the European Alps. Since genetic drift may affect molecular markers and phenotypic traits alike, we asked whether phenotypic differentiation mirrors molecular patterns among Alpine plant populations from different regions. Phenotypic traits can be under selection, so we additionally investigated whether part of the phenotypic differentiation can be explained by past selection and/or current adaptation. Using the monocarpic Campanula thyrsoides as our study species, a common garden experiment with plants from 21 populations from four phylogeographic groups located in regions across the Alps and the Jura Mountains was performed to test for differentiation in morphological and phenological traits. Past selection was investigated by comparing phenotypic differentiation among and within regions with molecular differentiation among and within regions. The common garden results indicated regional differentiation among populations for all investigated phenotypic traits, particularly in phenology. Delayed flowering in plants from the South-eastern Alps suggested adaptation to long sub-mediterranean summers and contrasted with earlier flowering of plants experiencing shorter growing seasons in regions with higher elevation to the West. Comparisons between molecular and phenotypic differentiation revealed diversifying selection among regions in height and biomass, which is consistent with adaptation to environmental conditions in glacial refugia. Within regions, past selection acted against strong diversification for most phenotypic traits, causing restricted postglacial adaptation. Evidence consistent with post-glacial adaptation was also given by negative correlation coefficients between several phenotypic traits and elevation of the population's origin. In conclusion, our study suggests that, irrespective of adaptation of plants to their current environment, glacial history can have a strong and long-lasting influence on the phenotypic evolution of Alpine plants.

  15. Structure Controlled Long-Range Sequential Tunneling in Carbon-Based Molecular Junctions.

    PubMed

    Morteza Najarian, Amin; McCreery, Richard L

    2017-04-25

    Carbon-based molecular junctions consisting of aromatic oligomers between conducting sp 2 hybridized carbon electrodes exhibit structure-dependent current densities (J) when the molecular layer thickness (d) exceeds ∼5 nm. All four of the molecular structures examined exhibit an unusual, nonlinear ln J vs bias voltage (V) dependence which is not expected for conventional coherent tunneling or activated hopping mechanisms. All molecules exhibit a weak temperature dependence, with J increasing typically by a factor of 2 over the range of 200-440 K. Fluorene and anthraquinone show linear plots of ln J vs d with nearly identical J values for the range d = 3-10 nm, despite significant differences in their free-molecule orbital energy levels. The observed current densities for anthraquinone, fluorene, nitroazobenzene, and bis-thienyl benzene for d = 7-10 nm show no correlation with occupied (HOMO) or unoccupied (LUMO) molecular orbital energies, contrary to expectations for transport mechanisms based on the offset between orbital energies and the electrode Fermi level. UV-vis absorption spectroscopy of molecular layers bonded to carbon electrodes revealed internal energy levels of the chemisorbed films and also indicated limited delocalization in the film interior. The observed current densities correlate well with the observed UV-vis absorption maxima for the molecular layers, implying a transport mechanism determined by the HOMO-LUMO energy gap. We conclude that transport in carbon-based aromatic molecular junctions is consistent with multistep tunneling through a barrier defined by the HOMO-LUMO gap, and not by charge transport at the electrode interfaces. In effect, interfacial "injection" at the molecule/electrode interfaces is not rate limiting due to relatively strong electronic coupling, and transport is controlled by the "bulk" properties of the molecular layer interior.

  16. The anchoring effect on the spin transport properties and I-V characteristics of pentacene molecular devices suspended between nickel electrodes.

    PubMed

    Caliskan, S; Laref, A

    2014-07-14

    Spin-polarized transport properties are determined for pentacene sandwiched between Ni surface electrodes with various anchoring ligands. These calculations are carried out using spin density functional theory in tandem with a non-equilibrium Green's function technique. The presence of a Se atom at the edge of the pentacene molecule significantly modifies the transport properties of the device because Se has a different electronegativity than S. Our theoretical results clearly show a larger current for spin-up electrons than for spin-down electrons in the molecular junction that is attached asymmetrically across the Se linker at one side of the Ni electrodes (in an APL magnetic orientation). Moreover, this molecular junction exhibits pronounced NDR as the bias voltage is increased from 0.8 to 1.0 V. However, this novel NDR behavior is only detected in this promising pentacene molecular device. The NDR in the current-voltage (I-V) curve results from the narrowness of the density of states for the molecular states. The feasibility of controlling the TMR is also predicted in these molecular device nanostructures. Spin-dependent transmission calculations show that the sign and strength of the current-bias voltage characteristics and the TMR could be tailored for the organic molecule devices. These molecular junctions are joined symmetrically and asymmetrically between Ni metallic probes across the S and Se atoms (at the ends of the edges of the pentacene molecule). Our theoretical findings show that spin-valve phenomena can occur in these prototypical molecular junctions. The TMR and NDR results show that nanoscale junctions with spin valves could play a vital role in the production of novel functional molecular devices.

  17. Sudden unexpected death in epilepsy genetics: Molecular diagnostics and prevention.

    PubMed

    Goldman, Alica M; Behr, Elijah R; Semsarian, Christopher; Bagnall, Richard D; Sisodiya, Sanjay; Cooper, Paul N

    2016-01-01

    Epidemiologic studies clearly document the public health burden of sudden unexpected death in epilepsy (SUDEP). Clinical and experimental studies have uncovered dynamic cardiorespiratory dysfunction, both interictally and at the time of sudden death due to epilepsy. Genetic analyses in humans and in model systems have facilitated our current molecular understanding of SUDEP. Many discoveries have been informed by progress in the field of sudden cardiac death and sudden infant death syndrome. It is becoming apparent that SUDEP genomic complexity parallels that of sudden cardiac death, and that there is a pauci1ty of analytically useful postmortem material. Because many challenges remain, future progress in SUDEP research, molecular diagnostics, and prevention rests in international, collaborative, and transdisciplinary dialogue in human and experimental translational research of sudden death. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  18. Three Dopaminergic Polymorphisms Are Associated with Academic Achievement in Middle and High School

    ERIC Educational Resources Information Center

    Beaver, Kevin M.; Vaughn, Michael G.; Wright, John Paul; DeLisi, Matt; Howard, Matthew O.

    2010-01-01

    Although academic achievement is a heritable construct, to date research has yet to explore its molecular genetic underpinnings. Drawing on data from the National Longitudinal Study of Adolescent Health, the current longitudinal study investigated the associations between polymorphisms in three dopaminergic genes (DAT1, DRD2, and DRD4) and…

  19. Molecular markers in the epidemiology and diagnosis of coccidioidomycosis.

    PubMed

    Duarte-Escalante, Esperanza; Frías-De-León, María Guadalupe; Zúñiga, Gerardo; Martínez-Herrera, Erick; Acosta-Altamirano, Gustavo; Reyes-Montes, María Del Rocío

    2014-01-01

    The prevalence of coccidioidomycosis in endemic areas has been observed to increase daily. To understand the causes of the spread of the disease and design strategies for fungal detection in clinical and environmental samples, scientists have resorted to molecular tools that allow fungal detection in a natural environment, reliable identification in clinical cases and the study of biological characteristics, such as reproductive and genetic structure, demographic history and diversification. We conducted a review of the most important molecular markers in the epidemiology of Coccidioides spp. and the diagnosis of coccidioidomycosis. A literature search was performed for scientific publications concerning the application of molecular tools for the epidemiology and diagnosis of coccidioidomycosis. The use of molecular markers in the epidemiological study and diagnosis of coccidioidomycosis has allowed for the typing of Coccidioides spp. isolates, improved understanding of their mode of reproduction, genetic variation and speciation and resulted in the development specific, rapid and sensitive strategies for detecting the fungus in environmental and clinical samples. Molecular markers have revealed genetic variability in Coccidioides spp. This finding influences changes in the epidemiology of coccidioidomycosis, such as the emergence of more virulent or antifungal resistant genotypes. Furthermore, the molecular markers currently used to identify Coccidioides immitis and Coccidioides posadasii are specific and sensitive. However, they must be validated to determine their application in diagnosis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  20. Aligning molecular studies of mycorrhizal fungal diversity with ecologically important levels of diversity in ecosystems

    PubMed Central

    Sanders, Ian R; Rodriguez, Alia

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) occur in the roots of most plants and are an ecologically important component of the soil microbiome. Richness of AMF taxa is a strong driver of plant diversity and productivity, thus providing a rationale for characterizing AMF diversity in natural ecosystems. Consequently, a large number of molecular studies on AMF community composition are currently underway. Most published studies, at best, only address species or genera-level resolution. However, several experimental studies indicate that variation in plant performance is large among plants colonised by different individuals of one AMF species. Thus, there is a potential disparity between how molecular community ecologists are currently describing AMF diversity and the level of AMF diversity that may actually be ecologically relevant. We propose a strategy to find many polymorphic loci that can define within-species genetic variability within AMF, or at any level of resolution desired within the Glomermycota. We propose that allele diversity at the intraspecific level could then be measured for target AMF groups, or at other levels of resolution, in environmental DNA samples. Combining the use of such markers with experimental studies on AMF diversity would help to elucidate the most important level(s) of AMF diversity in plant communities. Our goal is to encourage ecologists who are trying to explain how mycorrhizal fungal communities are structured to take an approach that could also yield meaningful information that is relevant to the diversity, functioning and productivity of ecosystems. PMID:27128992

  1. The Molecular Biology of Frog Virus 3 and other Iridoviruses Infecting Cold-Blooded Vertebrates

    PubMed Central

    Chinchar, V. Gregory; Yu, Kwang H.; Jancovich, James K.

    2011-01-01

    Frog virus 3 (FV3) is the best characterized member of the family Iridoviridae. FV3 study has provided insights into the replication of other family members, and has served as a model of viral transcription, genome replication, and virus-mediated host-shutoff. Although the broad outlines of FV3 replication have been elucidated, the precise roles of most viral proteins remain unknown. Current studies using knock down (KD) mediated by antisense morpholino oligonucleotides (asMO) and small, interfering RNAs (siRNA), knock out (KO) following replacement of the targeted gene with a selectable marker by homologous recombination, ectopic viral gene expression, and recombinant viral proteins have enabled researchers to systematically ascertain replicative- and virulence-related gene functions. In addition, the application of molecular tools to ecological studies is providing novel ways for field biologists to identify potential pathogens, quantify infections, and trace the evolution of ecologically important viral species. In this review, we summarize current studies using not only FV3, but also other iridoviruses infecting ectotherms. As described below, general principles ascertained using FV3 served as a model for the family, and studies utilizing other ranaviruses and megalocytiviruses have confirmed and extended our understanding of iridovirus replication. Collectively, these and future efforts will elucidate molecular events in viral replication, intrinsic and extrinsic factors that contribute to disease outbreaks, and the role of the host immune system in protection from disease. PMID:22069524

  2. Molecular pathology curriculum for medical laboratory scientists: A report of the association for molecular pathology training and education committee.

    PubMed

    Taylor, Sara; Bennett, Katie M; Deignan, Joshua L; Hendrix, Ericka C; Orton, Susan M; Verma, Shalini; Schutzbank, Ted E

    2014-05-01

    Molecular diagnostics is a rapidly growing specialty in the clinical laboratory assessment of pathology. Educational programs in medical laboratory science and specialized programs in molecular diagnostics must address the training of clinical scientists in molecular diagnostics, but the educational curriculum for this field is not well defined. Moreover, our understanding of underlying genetic contributions to specific diseases and the technologies used in molecular diagnostics laboratories change rapidly, challenging providers of training programs in molecular diagnostics to keep their curriculum current and relevant. In this article, we provide curriculum recommendations to molecular diagnostics training providers at both the baccalaureate and master's level of education. We base our recommendations on several factors. First, we considered National Accrediting Agency for Clinical Laboratory Sciences guidelines for accreditation of molecular diagnostics programs, because educational programs in clinical laboratory science should obtain its accreditation. Second, the guidelines of several of the best known certifying agencies for clinical laboratory scientists were incorporated into our recommendations. Finally, we relied on feedback from current employers of molecular diagnostics scientists, regarding the skills and knowledge that they believe are essential for clinical scientists who will be performing molecular testing in their laboratories. We have compiled these data into recommendations for a molecular diagnostics curriculum at both the baccalaureate and master's level of education. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  3. Assessment of HIV molecular surveillance capacity in the European Union, 2016.

    PubMed

    Keating, Patrick; Pharris, Anastasia; Leitmeyer, Katrin; De Angelis, Stefania; Wensing, Annemarie; Amato-Gauci, Andrew J; Broberg, Eeva

    2017-12-01

    IntroductionExpanding access to HIV antiretroviral treatment is expected to decrease HIV incidence and acquired immunodeficiency syndrome (AIDS) mortality. However, this may also result in increased HIV drug resistance (DR). Better monitoring and surveillance of HIV DR is required to inform treatment regimens and maintain the long term effectiveness of antiretroviral drugs. As there is currently no formal European Union (EU)-wide collection of HIV DR data, this study aimed to assess the current HIV molecular surveillance capacity in EU/European Economic Area (EEA) countries in order to inform the planning of HIV DR monitoring at EU level. Methods: Thirty EU/EEA countries were invited to participate in a survey on HIV molecular surveillance capacity, which also included laboratory aspects. Results: Among 21 responding countries, 13 reported using HIV sequence data (subtype and/or DR) for surveillance purposes at national level. Of those, nine stated that clinical, epidemiological and sequence data were routinely linked for analysis. Discussion/conclusion : We identified similarities between existing HIV molecular surveillance systems, but also found important challenges including human resources, data ownership and legal issues that would need to be addressed.Information on capacities should allow better planning of the phased introduction of HIV DR surveillance at EU/EEA level.

  4. Molecular genetics and targeted therapeutics in biliary tract carcinoma.

    PubMed

    Marks, Eric I; Yee, Nelson S

    2016-01-28

    The primary malignancies of the biliary tract, cholangiocarcinoma and gallbladder cancer, often present at an advanced stage and are marginally sensitive to radiation and chemotherapy. Accumulating evidence indicates that molecularly targeted agents may provide new hope for improving treatment response in biliary tract carcinoma (BTC). In this article, we provide a critical review of the pathogenesis and genetic abnormalities of biliary tract neoplasms, in addition to discussing the current and emerging targeted therapeutics in BTC. Genetic studies of biliary tumors have identified the growth factors and receptors as well as their downstream signaling pathways that control the growth and survival of biliary epithelia. Target-specific monoclonal antibodies and small molecules inhibitors directed against the signaling pathways that drive BTC growth and invasion have been developed. Numerous clinical trials designed to test these agents as either monotherapy or in combination with conventional chemotherapy have been completed or are currently underway. Research focusing on understanding the molecular basis of biliary tumorigenesis will continue to identify for targeted therapy the key mutations that drive growth and invasion of biliary neoplasms. Additional strategies that have emerged for treating this malignant disease include targeting the epigenetic alterations of BTC and immunotherapy. By integrating targeted therapy with molecular profiles of biliary tumor, we hope to provide precision treatment for patients with malignant diseases of the biliary tract.

  5. Isothermal multiple displacement amplification: a methodical approach enhancing molecular routine diagnostics of microcarcinomas and small biopsies.

    PubMed

    Mairinger, Fabian D; Walter, Robert Fh; Vollbrecht, Claudia; Hager, Thomas; Worm, Karl; Ting, Saskia; Wohlschläger, Jeremias; Zarogoulidis, Paul; Zarogoulidis, Konstantinos; Schmid, Kurt W

    2014-01-01

    Isothermal multiple displacement amplification (IMDA) can be a powerful tool in molecular routine diagnostics for homogeneous and sequence-independent whole-genome amplification of notably small tumor samples, eg, microcarcinomas and biopsies containing a small amount of tumor. Currently, this method is not well established in pathology laboratories. We designed a study to confirm the feasibility and convenience of this method for routine diagnostics with formalin-fixed, paraffin-embedded samples prepared by laser-capture microdissection. A total of 250 μg DNA (concentration 5 μg/μL) was generated by amplification over a period of 8 hours with a material input of approximately 25 cells, approximately equivalent to 175 pg of genomic DNA. In the generated DNA, a representation of all chromosomes could be shown and the presence of elected genes relevant for diagnosis in clinical samples could be proven. Mutational analysis of clinical samples could be performed without any difficulty and showed concordance with earlier diagnostic findings. We established the feasibility and convenience of IMDA for routine diagnostics. We also showed that small amounts of DNA, which were not analyzable with current molecular methods, could be sufficient for a wide field of applications in molecular routine diagnostics when they are preamplified with IMDA.

  6. SHAPEMOL: the companion to SHAPE in the molecular era of ALMA and HERSCHEL

    NASA Astrophysics Data System (ADS)

    Santander-García, M.; Bujarrabal, V.; Alcolea, J.

    2013-05-01

    Modern instrumentation in radioastronomy constitutes a valuable tool for studying the Universe: ALMA will reach unprecedented sensitivities and spatial resolution, while Herschel/HIFI has opened a new window (most of the sub-mm and far infrared ranges are only accessible from space) for probing molecular warm gas (˜50-1000 K), complementing ground-based telescopes, which are better suited to study molecular molecular gas with temperatures under ˜100 K. On the other hand, the SHAPE software has emerged in the last few years as the standard tool for determinging the morphology and velocity field of different kinds of gaseous nebulae (mainly planetary nebulae, protoplanetary nebulae and nebulae around massive stars, although it can also be applied to H II regions and molecular clouds) via spatio-kinematical modelling. Standard SHAPE implements radiative transfer solving, but it is only available for atomic species and not for molecules. Being aware of the growing importance of the development of tools for easying the analyses of molecular data from new era observatories, we introduce the computer code shapemol, a plug-in for SHAPE with which we intend to fill the so far empty molecular niche. shapemol enables spatio-kinematic modeling with accurate non-LTE calculations of line excitation and radiative transfer in molecular species. This code has been succesfully tested in the study of the excitation conditions of the molecular envelope of the planetary nebula NGC 7027 using data from Herschel/HIFI and IRAM 30m. Currently, it allows radiative transfer solving in the ^{12}CO and ^{13}CO J=1-0 to J=17-16 lines. shapemol, used along SHAPE, allows to easily generate synthetic maps to test against interferometric observations, as well as synthetic line profiles to match single-dish observations.

  7. Evolutionary ARMS Race: Antimalarial Resistance Molecular Surveillance.

    PubMed

    Prosser, Christiane; Meyer, Wieland; Ellis, John; Lee, Rogan

    2018-04-01

    Molecular surveillance of antimalarial drug resistance markers has become an important part of resistance detection and containment. In the current climate of multidrug resistance, including resistance to the global front-line drug artemisinin, there is a consensus to upscale molecular surveillance. The most salient limitation to current surveillance efforts is that skill and infrastructure requirements preclude many regions. This includes sub-Saharan Africa, where Plasmodium falciparum is responsible for most of the global malaria disease burden. New molecular and data technologies have emerged with an emphasis on accessibility. These may allow surveillance to be conducted in broad settings where it is most needed, including at the primary healthcare level in endemic countries, and extending to the village health worker. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Current Methods in the Molecular Typing of Mycobacterium tuberculosis and Other Mycobacteria

    PubMed Central

    van Ingen, Jakko; Dziadek, Jarosław; Mazur, Paweł K.; Bielecki, Jacek

    2014-01-01

    In the epidemiology of tuberculosis (TB) and nontuberculous mycobacterial (NTM) diseases, as in all infectious diseases, the key issue is to define the source of infection and to disclose its routes of transmission and dissemination in the environment. For this to be accomplished, the ability of discerning and tracking individual Mycobacterium strains is of critical importance. Molecular typing methods have greatly improved our understanding of the biology of mycobacteria and provide powerful tools to combat the diseases caused by these pathogens. The utility of various typing methods depends on the Mycobacterium species under investigation as well as on the research question. For tuberculosis, different methods have different roles in phylogenetic analyses and person-to-person transmission studies. In NTM diseases, most investigations involve the search for environmental sources or phylogenetic relationships. Here, too, the type of setting determines which methodology is most suitable. Within this review, we summarize currently available molecular methods for strain typing of M. tuberculosis and some NTM species, most commonly associated with human disease. For the various methods, technical practicalities as well as discriminatory power and accomplishments are reviewed. PMID:24527454

  9. Inelastic effects in molecular transport junctions: The probe technique at high bias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilgour, Michael; Segal, Dvira, E-mail: dsegal@chem.utoronto.ca

    2016-03-28

    We extend the Landauer-Büttiker probe formalism for conductances to the high bias regime and study the effects of environmentally induced elastic and inelastic scattering on charge current in single molecule junctions, focusing on high-bias effects. The probe technique phenomenologically incorporates incoherent elastic and inelastic effects to the fully coherent case, mimicking a rich physical environment at trivial cost. We further identify environmentally induced mechanisms which generate an asymmetry in the current, manifested as a weak diode behavior. This rectifying behavior, found in two types of molecular junction models, is absent in the coherent-elastic limit and is only active in themore » case with incoherent-inelastic scattering. Our work illustrates that in the low bias-linear response regime, the commonly used “dephasing probe” (mimicking only elastic decoherence effects) operates nearly indistinguishably from a “voltage probe” (admitting inelastic-dissipative effects). However, these probes realize fundamentally distinct I-V characteristics at high biases, reflecting the central roles of dissipation and inelastic scattering processes on molecular electronic transport far-from-equilibrium.« less

  10. On the Relationship between Molecular Hit Rates in High-Throughput Screening and Molecular Descriptors.

    PubMed

    Hansson, Mari; Pemberton, John; Engkvist, Ola; Feierberg, Isabella; Brive, Lars; Jarvis, Philip; Zander-Balderud, Linda; Chen, Hongming

    2014-06-01

    High-throughput screening (HTS) is widely used in the pharmaceutical industry to identify novel chemical starting points for drug discovery projects. The current study focuses on the relationship between molecular hit rate in recent in-house HTS and four common molecular descriptors: lipophilicity (ClogP), size (heavy atom count, HEV), fraction of sp(3)-hybridized carbons (Fsp3), and fraction of molecular framework (f(MF)). The molecular hit rate is defined as the fraction of times the molecule has been assigned as active in the HTS campaigns where it has been screened. Beta-binomial statistical models were built to model the molecular hit rate as a function of these descriptors. The advantage of the beta-binomial statistical models is that the correlation between the descriptors is taken into account. Higher degree polynomial terms of the descriptors were also added into the beta-binomial statistic model to improve the model quality. The relative influence of different molecular descriptors on molecular hit rate has been estimated, taking into account that the descriptors are correlated to each other through applying beta-binomial statistical modeling. The results show that ClogP has the largest influence on the molecular hit rate, followed by Fsp3 and HEV. f(MF) has only a minor influence besides its correlation with the other molecular descriptors. © 2013 Society for Laboratory Automation and Screening.

  11. Charge Transport Processes in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Smith, Christopher Eugene

    Molecular electronics (ME) has evolved into a rich area of exploration that combines the fields of chemistry, materials, electronic engineering and computational modeling to explore the physics behind electronic conduction at the molecular level. Through studying charge transport properties of single molecules and nanoscale molecular materials the field has gained the potential to bring about new avenues for the miniaturization of electrical components where quantum phenomena are utilized to achieve solid state molecular device functionality. Molecular junctions are platforms that enable these studies and consist of a single molecule or a small group of molecules directly connected to electrodes. The work presented in this thesis has built upon the current understanding of the mechanisms of charge transport in ordered junctions using self-assembled monolayer (SAM) molecular thin films. Donor and acceptor compounds were synthesized and incorporated into SAMs grown on metal substrates then the transport properties were measured with conducting probe atomic force microscopy (CP-AFM). In addition to experimentally measured current-voltage (I-V) curves, the transport properties were addressed computationally and modeled theoretically. The key objectives of this project were to 1) investigate the impact of molecular structure on hole and electron charge transport, 2) understand the nature of the charge carriers and their structure-transport properties through long (<4 nm) conjugated molecular wires, and 3) quantitatively extract interfacial properties characteristic to macroscopic junctions, such as energy level alignment and molecule-contact electronic coupling from experimental I-V curves. Here, we lay ground work for creating a more complete picture of charge transport in macroscopically ordered molecular junctions of controlled architecture, length and charge carrier. The polaronic nature of hopping transport has been predicted in long, conjugated molecular wires. Using quantum-based calculations, we modeled 'p-type' polaron transport through oligophenylenethiophene (OPTI) wires and assigned transport activation energies to specific modes of nuclear motion. We also show control over 'n-type', LUMO-mediated transport in short ( 2 nm) redox-active perylenediimide (PDI) SAMs bound to contacts through isocyano linkers. By changing the contact work function (φ) and temperature, we were able to verify thermally-assisted LUMO transport. Transition voltage spectroscopy and the single level model was employed to fit the experimental I-V curves and extract the electronic coupling (epsilon) and the EF-LUMO offset (epsilonl). It was found that epsilonl does not change with φ (LUMO pinning), while Gamma changes with both φ and temperature. Further, the PDI SAMs could be reversibly chemically gated to modulate the transport. These results help advance our understanding of transport behavior in semiconducting molecular thin films, and open opportunities to engineer improved electronic functionality into molecular devices.

  12. Inhibition of gap junction currents by the abused solvent toluene.

    PubMed

    Del Re, Angelo M; Woodward, John J

    2005-05-09

    Abused inhalants are a large class of compounds that are inhaled for their intoxicating and mood altering effects. They include chemicals with known therapeutic uses such as anesthetic gases as well as volatile organic solvents like toluene that are found in paint thinners and adhesives. Because of their widespread commercial use and availability, inhalants are often among the first drugs that children encounter and use of these compounds is often associated with adverse acute and long-term consequences. The cellular and molecular sites of action for abused inhalants is not well known although recent studies report that toluene and other organic solvents alter the activity of specific ligand- and voltage-gated ion channels that regulate cellular excitability. As part of an ongoing effort to define molecular sites of action for abused inhalants, this study examined the effect of toluene on the function of gap junction proteins endogenously expressed in human embryonic kidney (HEK 293) cells. Gap junctions allow cell-to-cell electrical communication as well as passage of small molecular weight substances and are critical for synchronizing cellular activity in certain tissues. Gap junction currents in HEK 293 cells were measured during brief voltage steps using patch-clamp electrophysiology and were blocked by known gap junction blockers confirming expression of connexin proteins in these cells. Toluene dose-dependently inhibited these conductances with threshold effects appearing at approximately 0.4 mM and near complete inhibition occurring at concentrations of 1 mM and higher. The estimated EC50 value for toluene inhibition of gap junction currents in HEK 293 cells was 0.57 mM. The results of these studies suggest that volatile solvents including toluene may produce some of their effects by disrupting inter-cellular communication mediated by gap junction proteins.

  13. Exploring the Use of Molecular Biomarkers for Precision Medicine in Age-Related Macular Degeneration.

    PubMed

    Lorés-Motta, Laura; de Jong, Eiko K; den Hollander, Anneke I

    2018-06-01

    Precision medicine aims to improve patient care by adjusting medication to each patient's individual needs. Age-related macular degeneration (AMD) is a heterogeneous eye disease in which several pathways are involved, and the risk factors driving the disease differ per patient. As a consequence, precision medicine holds promise for improved management of this disease, which is nowadays a main cause of vision loss in the elderly. In this review, we provide an overview of the studies that have evaluated the use of molecular biomarkers to predict response to treatment in AMD. We predominantly focus on genetic biomarkers, but also include studies that examined circulating or eye fluid biomarkers in treatment response. This involves studies on treatment response to dietary supplements, response to anti-vascular endothelial growth factor, and response to complement inhibitors. In addition, we highlight promising new therapies that have been or are currently being tested in clinical trials and discuss the molecular studies that can help identify the most suitable patients for these upcoming therapeutic approaches.

  14. In vivo targeted peripheral nerve imaging with a nerve-specific nanoscale magnetic resonance probe.

    PubMed

    Zheng, Linfeng; Li, Kangan; Han, Yuedong; Wei, Wei; Zheng, Sujuan; Zhang, Guixiang

    2014-11-01

    Neuroimaging plays a pivotal role in clinical practice. Currently, computed tomography (CT), magnetic resonance imaging (MRI), ultrasonography, and positron emission tomography (PET) are applied in the clinical setting as neuroimaging modalities. There is no optimal imaging modality for clinical peripheral nerve imaging even though fluorescence/bioluminescence imaging has been used for preclinical studies on the nervous system. Some studies have shown that molecular and cellular MRI (MCMRI) can be used to visualize and image the cellular and molecular level of the nervous system. Other studies revealed that there are different pathological/molecular changes in the proximal and distal sites after peripheral nerve injury (PNI). Therefore, we hypothesized that in vivo peripheral nerve targets can be imaged using MCMRI with specific MRI probes. Specific probes should have higher penetrability for the blood-nerve barrier (BNB) in vivo. Here, a functional nanometre MRI probe that is based on nerve-specific proteins as targets, specifically, using a molecular antibody (mAb) fragment conjugated to iron nanoparticles as an MRI probe, was constructed for further study. The MRI probe allows for imaging the peripheral nerve targets in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Does anesthetic additivity imply a similar molecular mechanism of anesthetic action at N-methyl-D-aspartate receptors?

    PubMed

    Brosnan, Robert J; Pham, Trung L

    2011-03-01

    Isoflurane and carbon dioxide (CO(2)) negatively modulate N-methyl-d-aspartate (NMDA) receptors, but via different mechanisms. Isoflurane is a competitive antagonist at the NMDA receptor glycine binding site, whereas CO(2) inhibits NMDA receptor current through extracellular acidification. Isoflurane and CO(2) exhibit additive minimum alveolar concentration effects in rats, but we hypothesized that they would not additively inhibit NMDA receptor currents in vitro because they act at different molecular sites. NMDA receptors were expressed in frog oocytes and studied using 2-electrode voltage clamp techniques. A glycine concentration response for NMDA was measured in the presence and absence of CO(2). Concentration-response curves for isoflurane, H(+), CO(2), and ketamine as a function of NMDA inhibition were measured, and a Hill equation was used to calculate the EC(50) for each compound. Binary drug combinations containing ½ EC(50) were additive if NMDA current inhibition was not statistically different from 50%. The ½ EC(50) binary drug combinations decreased the percentage baseline NMDA receptor current as follows (mean ± SD, n = 5 to 6 oocytes each): CO(2)+ H(+) (51% ± 5%), CO(2 )+ isoflurane (54% ± 5%), H(+) + isoflurane (51% ± 3%), CO(2)+ ketamine (67% ± 8%), and H(+) + ketamine (64% ± 2%). In contrast to our hypothesis, NMDA receptor inhibition by CO(2) and isoflurane is additive. Possibly, CO(2) acidification modulates a pH-sensitive loop on the NMDA receptor that in turn alters glycine binding affinity on the GluN1 subunit. However, ketamine plus either CO(2) or H(+) synergistically inhibits NMDA receptor currents. Drugs acting via different mechanisms can thus exhibit additive or synergistic receptor effects. Additivity may not robustly indicate commonality between molecular anesthetic mechanisms.

  16. Study of local currents in low dimension materials using complex injecting potentials

    NASA Astrophysics Data System (ADS)

    He, Shenglai; Covington, Cody; Varga, Kálmán

    2018-04-01

    A complex potential is constructed to inject electrons into the conduction band, mimicking electron currents in nanoscale systems. The injected electrons are time propagated until a steady state is reached. The local current density can then be calculated to show the path of the conducting electrons on an atomistic level. The method allows for the calculation of the current density vectors within the medium as a function of energy of the conducting electron. Using this method, we investigate the electron pathway of graphene nanoribbons in various structures, molecular junctions, and black phosphorus nanoribbons. By analyzing the current flow through the structures, we find strong dependence on the structural geometry and the energy of the injected electrons. This method may be of general use in the study of nano-electronic materials and interfaces.

  17. Fragment molecular orbital study on electron tunneling mechanisms in bacterial photosynthetic reaction center.

    PubMed

    Kitoh-Nishioka, Hirotaka; Ando, Koji

    2012-11-01

    The tunneling mechanisms of electron transfers (ETs) in photosynthetic reaction center of Blastochloris viridis are studied by the ab initio fragment molecular orbital (FMO) method combined with the generalized Mulliken-Hush (GMH) and the bridge Green function (GF) calculations of the electronic coupling T(DA) and the tunneling current method for the ET pathway analysis at the fragment-based resolution. For the ET from batctriopheophytin (H(L)) to menaquinone (MQ), a major tunneling current through Trp M250 and a minor back flow via Ala M215, Ala M216, and His M217 are quantified. For the ET from MQ to ubiquinone, the major tunneling pathway via the nonheme Fe(2+) and His L190 is identified as well as minor pathway via His M217 and small back flows involving His L230, Glu M232, and His M264. At the given molecular structure from X-ray experiment, the spin state of the Fe(2+) ion, its replacement by Zn(2+), or its removal are found to affect the T(DA) value by factors within 2.2. The calculated T(DA) values, together with experimentally estimated values of the driving force and the reorganization energy, give the ET rates in reasonable agreement with experiments.

  18. Characterisation of physico-mechanical properties and degradation potential of calcium alginate beads for use in embolisation.

    PubMed

    Forster, Richard E J; Thürmer, Frank; Wallrapp, Christine; Lloyd, Andrew W; Macfarlane, Wendy; Phillips, Gary J; Boutrand, Jean-Pierre; Lewis, Andrew L

    2010-07-01

    High molecular weight alginate beads with 59% mannuronic acid content or 68% guluronic acid were prepared using a droplet generator and crosslinked in calcium chloride. The alginate beads were compared to current embolisation microspheres for compressibility and monitored over 12 weeks for size and weight change at 37 degrees C in low volumes of ringers solutions. A sheep uterine model was used to analyse bead degradation and inflammatory response over 12 weeks. Both the in vitro and in vivo data show good delivery, with a compressibility similar to current embolic beads. In vitro, swelling was noted almost immediately and after 12 weeks the first signs of degradation were noted. No difference was noted in vivo. This study has shown that high molecular weight alginate gel beads were well tolerated by the body, but beads associated with induced thrombi were susceptible to inflammatory cell infiltration. The beads were shown to be easy to handle and were still observable after 3 months in vivo. The beads were robust enough to be delivered through a 2.7 Fr microcatheter. This study has demonstrated that high molecular weight, high purity alginate bead can be considered as semi-permanent embolisation beads, with the potential to bioresorb over time.

  19. MicroRNA as therapeutic targets for treatment of depression

    PubMed Central

    Hansen, Katelin F; Obrietan, Karl

    2013-01-01

    Depression is a potentially life-threatening mental disorder affecting approximately 300 million people worldwide. Despite much effort, the molecular underpinnings of clinical depression remain poorly defined, and current treatments carry limited therapeutic efficacy and potentially burdensome side effects. Recently, small noncoding RNA molecules known as microRNA (miRNA) have gained prominence as a target for therapeutic intervention, given their capacity to regulate neuronal physiology. Further, mounting evidence suggests a prominent role for miRNA in depressive molecular signaling. Recent studies have demonstrated that dysregulation of miRNA expression occurs in animal models of depression, and in the post-mortem tissue of clinically depressed patients. Investigations into depression-associated miRNA disruption reveals dramatic effects on downstream targets, many of which are thought to contribute to depressive symptoms. Furthermore, selective serotonin reuptake inhibitors, as well as other antidepressant drugs, have the capacity to reverse aberrant depressive miRNA expression and their downstream targets. Given the powerful effects that miRNA have on the central nervous system transcriptome, and the aforementioned studies, there is a compelling rationale to begin to assess the potential contribution of miRNA to depressive etiology. Here, we review the molecular biology of miRNA, our current understanding of miRNA in relation to clinical depression, and the utility of targeting miRNA for antidepressant treatment. PMID:23935365

  20. Molecular evidence of hybridization in sympatric populations of the Enantia jethys complex (Lepidoptera: Pieridae).

    PubMed

    Jasso-Martínez, Jovana M; Machkour-M'Rabet, Salima; Vila, Roger; Rodríguez-Arnaiz, Rosario; Castañeda-Sortibrán, América Nitxin

    2018-01-01

    Hybridization events are frequently demonstrated in natural butterfly populations. One interesting butterfly complex species is the Enantia jethys complex that has been studied for over a century; many debates exist regarding the species composition of this complex. Currently, three species that live sympatrically in the Gulf slope of Mexico (Enantia jethys, E. mazai, and E. albania) are recognized in this complex (based on morphological and molecular studies). Where these species live in sympatry, some cases of interspecific mating have been observed, suggesting hybridization events. Considering this, we employed a multilocus approach (analyses of mitochondrial and nuclear sequences: COI, RpS5, and Wg; and nuclear dominant markers: inter-simple sequence repeat (ISSRs) to study hybridization in sympatric populations from Veracruz, Mexico. Genetic diversity parameters were determined for all molecular markers, and species identification was assessed by different methods such as analyses of molecular variance (AMOVA), clustering, principal coordinate analysis (PCoA), gene flow, and PhiPT parameters. ISSR molecular markers were used for a more profound study of hybridization process. Although species of the Enantia jethys complex have a low dispersal capacity, we observed high genetic diversity, probably reflecting a high density of individuals locally. ISSR markers provided evidence of a contemporary hybridization process, detecting a high number of hybrids (from 17% to 53%) with significant differences in genetic diversity. Furthermore, a directional pattern of hybridization was observed from E. albania to other species. Phylogenetic study through DNA sequencing confirmed the existence of three clades corresponding to the three species previously recognized by morphological and molecular studies. This study underlines the importance of assessing hybridization in evolutionary studies, by tracing the lineage separation process that leads to the origin of new species. Our research demonstrates that hybridization processes have a high occurrence in natural populations.

  1. Sarcomatoid renal cell carcinoma: Biology and treatment advances.

    PubMed

    Mouallem, Nemer El; Smith, Steven C; Paul, Asit K

    2018-06-01

    Sarcomatoid transformation in renal cell carcinoma, so called sacromatoid RCC (sRCC), is associated with an aggressive behavior and a poor prognosis. Current therapeutic approaches are largely ineffective. Recent studies looking into the genomic and molecular characterization of sRCCs have provided insights into the biology and pathogenesis of this entity. These advances in molecular signatures may help development of effective treatment strategies. We herein present a review of recent developments in the pathology, biology, and treatment modalities in sRCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Gene Expression in the Human Brain: The Current State of the Study of Specificity and Spatiotemporal Dynamics

    ERIC Educational Resources Information Center

    Naumova, Oksana Yu.; Lee, Maria; Rychkov, Sergei Yu.; Vlasova, Natalia V.; Grigorenko, Elena L.

    2013-01-01

    Gene expression is one of the main molecular processes regulating the differentiation, development, and functioning of cells and tissues. In this review a handful of relevant terms and concepts are introduced and the most common techniques used in studies of gene expression/expression profiling (also referred to as studies of the transcriptome or…

  3. Molecular imaging promotes progress in orthopedic research.

    PubMed

    Mayer-Kuckuk, Philipp; Boskey, Adele L

    2006-11-01

    Modern orthopedic research is directed towards the understanding of molecular mechanisms that determine development, maintenance and health of musculoskeletal tissues. In recent years, many genetic and proteomic discoveries have been made which necessitate investigation under physiological conditions in intact, living tissues. Molecular imaging can meet this demand and is, in fact, the only strategy currently available for noninvasive, quantitative, real-time biology studies in living subjects. In this review, techniques of molecular imaging are summarized, and applications to bone and joint biology are presented. The imaging modality most frequently used in the past was optical imaging, particularly bioluminescence and near-infrared fluorescence imaging. Alternate technologies including nuclear and magnetic resonance imaging were also employed. Orthopedic researchers have applied molecular imaging to murine models including transgenic mice to monitor gene expression, protein degradation, cell migration and cell death. Within the bone compartment, osteoblasts and their stem cells have been investigated, and the organic and mineral bone phases have been assessed. These studies addressed malignancy and injury as well as repair, including fracture healing and cell/gene therapy for skeletal defects. In the joints, molecular imaging has focused on the inflammatory and tissue destructive processes that cause arthritis. As described in this review, the feasibility of applying molecular imaging to numerous areas of orthopedic research has been demonstrated and will likely result in an increase in research dedicated to this powerful strategy. Molecular imaging holds great promise in the future for preclinical orthopedic research as well as next-generation clinical musculoskeletal diagnostics.

  4. Present and future molecular testing of lung carcinoma.

    PubMed

    Dacic, Sanja; Nikiforova, Marina N

    2014-03-01

    The rapid development of targeted therapies has tremendously changed clinical management of lung carcinoma patients and set the stage for similar developments in other tumor types. Many studies have been published in the past decade in search for the most acceptable method of assessment for predictors of response to targeted therapies in lung cancer. As a result, several guidelines for molecular testing have been published in a past couple of years. Because of accumulated evidence that targetable drugs show the best efficacy and improved progression survival rates in lung cancer patients whose tumors have a specific genotype, molecular testing for predictors of therapy response has became standard of care. Presently, testing for EGFR mutations and ALK rearrangements in lung adenocarcinoma has been standardized. The landscape of targetable genomic alterations in lung carcinoma is expanding, but none of other potentially targetable biomarkers have been standardized outside of clinical trials. This review will summarize current practice of molecular testing. Future methods in molecular testing of lung carcinoma will be briefly reviewed.

  5. Characterizing rare-event property distributions via replicate molecular dynamics simulations of proteins.

    PubMed

    Krishnan, Ranjani; Walton, Emily B; Van Vliet, Krystyn J

    2009-11-01

    As computational resources increase, molecular dynamics simulations of biomolecules are becoming an increasingly informative complement to experimental studies. In particular, it has now become feasible to use multiple initial molecular configurations to generate an ensemble of replicate production-run simulations that allows for more complete characterization of rare events such as ligand-receptor unbinding. However, there are currently no explicit guidelines for selecting an ensemble of initial configurations for replicate simulations. Here, we use clustering analysis and steered molecular dynamics simulations to demonstrate that the configurational changes accessible in molecular dynamics simulations of biomolecules do not necessarily correlate with observed rare-event properties. This informs selection of a representative set of initial configurations. We also employ statistical analysis to identify the minimum number of replicate simulations required to sufficiently sample a given biomolecular property distribution. Together, these results suggest a general procedure for generating an ensemble of replicate simulations that will maximize accurate characterization of rare-event property distributions in biomolecules.

  6. Coherent (photon) vs incoherent (current) detection of multidimensional optical signals from single molecules in open junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwalla, Bijay Kumar; Hua, Weijie; Zhang, Yu

    2015-06-07

    The nonlinear optical response of a current-carrying single molecule coupled to two metal leads and driven by a sequence of impulsive optical pulses with controllable phases and time delays is calculated. Coherent (stimulated, heterodyne) detection of photons and incoherent detection of the optically induced current are compared. Using a diagrammatic Liouville space superoperator formalism, the signals are recast in terms of molecular correlation functions which are then expanded in the many-body molecular states. Two dimensional signals in benzene-1,4-dithiol molecule show cross peaks involving charged states. The correlation between optical and charge current signal is also observed.

  7. Retinoids: a journey from the molecular structures and mechanisms of action to clinical uses in dermatology and adverse effects.

    PubMed

    Khalil, Samar; Bardawil, Tara; Stephan, Carla; Darwiche, Nadine; Abbas, Ossama; Kibbi, Abdul Ghani; Nemer, Georges; Kurban, Mazen

    2017-12-01

    Retinoids are a class of compounds derived from vitamin A or having structural and/or functional similarities with vitamin A. They are classified into three generations based on their molecular structures. Inside the body, retinoids bind to several classes of proteins including retinoid-binding proteins and retinoid nuclear receptors. This eventually leads to the activation of specific regulatory regions of DNA - called the retinoic acid response elements - involved in regulating cell growth, differentiation and apoptosis. Several clinical trials have studied the role of topical and systemic retinoids in disease, and research is still ongoing. Currently, retinoids are used in several fields of medicine. This paper aims to review the structure, mechanisms of action, and adverse effects of retinoids, as well as some of their current uses in Dermatology.

  8. Molecular mechanisms of cryptococcal meningitis

    PubMed Central

    Liu, Tong-Bao; Perlin, David; Xue, Chaoyang

    2012-01-01

    Fungal meningitis is a serious disease caused by a fungal infection of the central nervous system (CNS) mostly in individuals with immune system deficiencies. Fungal meningitis is often fatal without proper treatment, and the mortality rate remains unacceptably high even with antifungal drug interventions. Currently, cryptococcal meningitis is the most common fungal meningitis in HIV-1/AIDS, and its disease mechanism has been extensively studied. The key steps for fungi to infect brain and cause meningitis after establishment of local infection are the dissemination of fungal cells to the bloodstream and invasion through the blood brain barrier to reach the CNS. In this review, we use cryptococcal CNS infection as an example to describe the current molecular understanding of fungal meningitis, including the establishment of the infection, dissemination, and brain invasion. Host and microbial factors that contribute to these infection steps are also discussed. PMID:22460646

  9. Molecular dynamics simulations of metallic friction and of its dependence on electric currents - development and first results

    NASA Astrophysics Data System (ADS)

    Meintanis, Evangelos Anastasios

    We have extended the HOLA molecular dynamics (MD) code to run slider-on-block friction experiments for Al and Cu. Both objects are allowed to evolve freely and show marked deformation despite the hardness difference. We recover realistic coefficients of friction and verify the importance of cold-welding and plastic deformations in dry sliding friction. Our first data also show a mechanism for decoupling between load and friction at high velocities. Such a mechanism can explain an increase in the coefficient of friction of metals with velocity. The study of the effects of currents on our system required the development of a suitable electrodynamic (ED) solver, as the disparity of MD and ED time scales threatened the efficiency of our code. Our first simulations combining ED and MD are presented.

  10. Molecular and elemental effects underlying the biochemical action of transcranial direct current stimulation (tDCS) in appetite control

    NASA Astrophysics Data System (ADS)

    Surowka, Artur D.; Ziomber, Agata; Czyzycki, Mateusz; Migliori, Alessandro; Kasper, Kaja; Szczerbowska-Boruchowska, Magdalena

    2018-04-01

    Recent studies highlight that obesity may alter the electric activity in brain areas triggering appetite and craving. Transcranial direct current brain stimulation (tDCS) has recently emerged as a safe alternative for treating food addiction via modulating cortical excitability without any high-risk surgical procedure to be utilized. As for anodal-type tDCS (atDCS), we observe increased excitability and spontaneous firing of the cortical neurons, whilst for the cathodal-type tDCS (ctDCS) a significant decrease is induced. Unfortunately, for the method to be fully used in a clinical setting, its biochemical action mechanism must be precisely defined, although it is proposed that molecular remodelling processes play in concert with brain activity changes involving the ions of: Na, Cl, K and Ca. Herein, we proposed for the first time Fourier transform infrared (FTIR) and synchrotron X-ray fluorescence (SRXRF) microprobes for a combined molecular and elemental analysis in the brain areas implicated appetite control, upon experimental treatment by either atDCS or ctDCS. The study, although preliminary, shows that by stimulating the prefrontal cortex in the rats fed high-caloric nutrients, the feeding behavior can be significantly changed, resulting in significantly inhibited appetite. Both, atDCS and ctDCS produced significant molecular changes involving qualitative and structural properties of lipids, whereas atDCS was found with a somewhat more significant effect on protein secondary structure in all the brain areas investigated. Also, tDCS was reported to reduce surface masses of Na, Cl, K, and Ca in almost all brain areas investigated, although the atDCS deemed to have a stronger neuro-modulating effect. Taken together, one can report that tDCS is an effective treatment technique, and its action mechanism in the appetite control seems to involve a variety of lipid-, protein- and metal/non-metal-ion-driven biochemical changes, regardless the current polarization.

  11. Optimal molecular profiling of tissue and tissue components: defining the best processing and microdissection methods for biomedical applications.

    PubMed

    Bova, G Steven; Eltoum, Isam A; Kiernan, John A; Siegal, Gene P; Frost, Andra R; Best, Carolyn J M; Gillespie, John W; Su, Gloria H; Emmert-Buck, Michael R

    2005-02-01

    Isolation of well-preserved pure cell populations is a prerequisite for sound studies of the molecular basis of any tissue-based biological phenomenon. This article reviews current methods for obtaining anatomically specific signals from molecules isolated from tissues, a basic requirement for productive linking of phenotype and genotype. The quality of samples isolated from tissue and used for molecular analysis is often glossed over or omitted from publications, making interpretation and replication of data difficult or impossible. Fortunately, recently developed techniques allow life scientists to better document and control the quality of samples used for a given assay, creating a foundation for improvement in this area. Tissue processing for molecular studies usually involves some or all of the following steps: tissue collection, gross dissection/identification, fixation, processing/embedding, storage/archiving, sectioning, staining, microdissection/annotation, and pure analyte labeling/identification and quantification. We provide a detailed comparison of some current tissue microdissection technologies, and provide detailed example protocols for tissue component handling upstream and downstream from microdissection. We also discuss some of the physical and chemical issues related to optimal tissue processing, and include methods specific to cytology specimens. We encourage each laboratory to use these as a starting point for optimization of their overall process of moving from collected tissue to high quality, appropriately anatomically tagged scientific results. In optimized protocols is a source of inefficiency in current life science research. Improvement in this area will significantly increase life science quality and productivity. The article is divided into introduction, materials, protocols, and notes sections. Because many protocols are covered in each of these sections, information relating to a single protocol is not contiguous. To get the greatest benefit from this article, readers are advised to read through the entire article first, identify protocols appropriate to their laboratory for each step in their workflow, and then reread entries in each section pertaining to each of these single protocols.

  12. Preliminary evidence for associations between molecular markers and quantitative traits in a set of bread wheat (Triticum aestivum L.) cultivars and breeding lines.

    PubMed

    Abdollahi Mandoulakani, Babak; Nasri, Shilan; Dashchi, Sahar; Arzhang, Sorour; Bernousi, Iraj; Abbasi Holasou, Hossein

    The identification of polymorphic markers associated with various quantitative traits allows us to test their performance for the exploitation of the extensive quantitative variation maintained in gene banks. In the current study, a set of 97 wheat germplasm accessions including 48 cultivars and 49 breeding lines were evaluated for 18 agronomic traits. The accessions were also genotyped with 23 ISSR, nine IRAP and 20 REMAP markers, generating a total of 658 clear and scorable bands, 86% of which were polymorphic. Both neighbor-joining dendrogram and Bayesian analysis of clustering of individuals revealed that the accessions could be divided into four genetically distinct groups, indicating the presence of a population structure in current wheat germplasm. Associations between molecular markers and 18 agronomic traits were analyzed using the mixed linear model (MLM) approach. A total of 94 loci were found to be significantly associated with agronomic traits (P≤0.01). The highest number of bands significantly associated with the 18 traits varied from 11 for number of spikelets spike -1 (NSS) to two for grain yield in row (GRY). Loci ISSR16-9 and REMAP13-10 were associated with three different traits. The results of the current study provide useful information about the performance of retrotransposon-based and ISSR molecular markers that could be helpful in selecting potentially elite gene bank samples for wheat-breeding programs. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  13. Evaluation of a Phylogenetic Marker Based on Genomic Segment B of Infectious Bursal Disease Virus: Facilitating a Feasible Incorporation of this Segment to the Molecular Epidemiology Studies for this Viral Agent.

    PubMed

    Alfonso-Morales, Abdulahi; Rios, Liliam; Martínez-Pérez, Orlando; Dolz, Roser; Valle, Rosa; Perera, Carmen L; Bertran, Kateri; Frías, Maria T; Ganges, Llilianne; Díaz de Arce, Heidy; Majó, Natàlia; Núñez, José I; Pérez, Lester J

    2015-01-01

    Infectious bursal disease (IBD) is a highly contagious and acute viral disease, which has caused high mortality rates in birds and considerable economic losses in different parts of the world for more than two decades and it still represents a considerable threat to poultry. The current study was designed to rigorously measure the reliability of a phylogenetic marker included into segment B. This marker can facilitate molecular epidemiology studies, incorporating this segment of the viral genome, to better explain the links between emergence, spreading and maintenance of the very virulent IBD virus (vvIBDV) strains worldwide. Sequences of the segment B gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank Database; Cuban sequences were obtained in the current work. A phylogenetic marker named B-marker was assessed by different phylogenetic principles such as saturation of substitution, phylogenetic noise and high consistency. This last parameter is based on the ability of B-marker to reconstruct the same topology as the complete segment B of the viral genome. From the results obtained from B-marker, demographic history for both main lineages of IBDV regarding segment B was performed by Bayesian skyline plot analysis. Phylogenetic analysis for both segments of IBDV genome was also performed, revealing the presence of a natural reassortant strain with segment A from vvIBDV strains and segment B from non-vvIBDV strains within Cuban IBDV population. This study contributes to a better understanding of the emergence of vvIBDV strains, describing molecular epidemiology of IBDV using the state-of-the-art methodology concerning phylogenetic reconstruction. This study also revealed the presence of a novel natural reassorted strain as possible manifest of change in the genetic structure and stability of the vvIBDV strains. Therefore, it highlights the need to obtain information about both genome segments of IBDV for molecular epidemiology studies.

  14. Electron transport in molecular wires with transition metal contacts

    NASA Astrophysics Data System (ADS)

    Dalgleish, Hugh

    A molecular wire is an organic molecule that forms a conducting bridge between electronic contacts. Single molecules are likely to be the smallest entities to conduct electricity and thus molecular wires present many interesting challenges to fundamental science as well as enormous potential for nanoelectronic technological applications. A particular challenge stems from the realization that the properties of molecular wires are strongly influenced by the combined characteristics of the molecule and the metal contacts. While gold has been the most studied contact material to date, interest in molecular wires with transition metal contacts that are electronically more complex than gold is growing. This thesis presents a theoretical investigation of electron transport and associated phenomena in molecular wires with transition metal contacts. An appropriate methodology is developed on the basis of Landauer theory and ab initio and semi-empirical considerations and new, physically important systems are identified. Spin-dependent transport mechanisms and device characteristics are explored for molecular wires with ferromagnetic iron contacts, systems that have not been considered previously, either theoretically or experimentally. Electron transport between iron point contacts bridged by iron atoms is also investigated. Spin-dependent transport is also studied for molecules bridging nickel contacts and a possible explanation of some experimentally observed phenomena is proposed. A novel physical phenomenon termed strong spin current rectification and a new controllable negative differential resistance mechanism with potential applications for molecular electronic technology are introduced. The phenomena predicted in this thesis should be accessible to present day experimental techniques and this work is intended to stimulate experiments directed at observing them. Keywords. molecular electronics; spintronics; electron transport; interface states.

  15. Molecular and Genetic Investigation of Tau in Chronic Traumatic Encephalopathy (Log No. 13267017)

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-14-1-0399 TITLE: Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy (Log No. 13267017) PRINCIPAL...neuropathological findings we are currently characterizing in individuals with CTE reflect molecular and genetic differences that will enable the...INTRODUCTION: Repetitive mild traumatic brain injury leads to neurological symptoms and chronic traumatic encephalopathy (CTE). The molecular changes

  16. CRISPR-Cas adaptation: insights into the mechanism of action.

    PubMed

    Amitai, Gil; Sorek, Rotem

    2016-02-01

    Since the first demonstration that CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against phages and plasmids, numerous studies have yielded key insights into the molecular mechanisms governing how these systems attack and degrade foreign DNA. However, the molecular mechanisms underlying the adaptation stage, in which new immunological memory is formed, have until recently represented a major unresolved question. In this Progress article, we discuss recent discoveries that have shown both how foreign DNA is identified by the CRISPR-Cas adaptation machinery and the molecular basis for its integration into the chromosome to form an immunological memory. Furthermore, we describe the roles of each of the specific CRISPR-Cas components that are involved in memory formation, and consider current models for their evolutionary origin.

  17. Advances in the molecular genetics of gliomas - implications for classification and therapy.

    PubMed

    Reifenberger, Guido; Wirsching, Hans-Georg; Knobbe-Thomsen, Christiane B; Weller, Michael

    2017-07-01

    Genome-wide molecular-profiling studies have revealed the characteristic genetic alterations and epigenetic profiles associated with different types of gliomas. These molecular characteristics can be used to refine glioma classification, to improve prediction of patient outcomes, and to guide individualized treatment. Thus, the WHO Classification of Tumours of the Central Nervous System was revised in 2016 to incorporate molecular biomarkers - together with classic histological features - in an integrated diagnosis, in order to define distinct glioma entities as precisely as possible. This paradigm shift is markedly changing how glioma is diagnosed, and has important implications for future clinical trials and patient management in daily practice. Herein, we highlight the developments in our understanding of the molecular genetics of gliomas, and review the current landscape of clinically relevant molecular biomarkers for use in classification of the disease subtypes. Novel approaches to the genetic characterization of gliomas based on large-scale DNA-methylation profiling and next-generation sequencing are also discussed. In addition, we illustrate how advances in the molecular genetics of gliomas can promote the development and clinical translation of novel pathogenesis-based therapeutic approaches, thereby paving the way towards precision medicine in neuro-oncology.

  18. A methodological overview on molecular preimplantation genetic diagnosis and screening: a genomic future?

    PubMed

    Vendrell, Xavier; Bautista-Llácer, Rosa

    2012-12-01

    The genetic diagnosis and screening of preimplantation embryos generated by assisted reproduction technology has been consolidated in the prenatal care framework. The rapid evolution of DNA technologies is tending to molecular approaches. Our intention is to present a detailed methodological view, showing different diagnostic strategies based on molecular techniques that are currently applied in preimplantation genetic diagnosis. The amount of DNA from one single, or a few cells, obtained by embryo biopsy is a limiting factor for the molecular analysis. In this sense, genetic laboratories have developed molecular protocols considering this restrictive condition. Nevertheless, the development of whole-genome amplification methods has allowed preimplantation genetic diagnosis for two or more indications simultaneously, like the selection of histocompatible embryos plus detection of monogenic diseases or aneuploidies. Moreover, molecular techniques have permitted preimplantation genetic screening to progress, by implementing microarray-based comparative genome hybridization. Finally, a future view of the embryo-genetics field based on molecular advances is proposed. The normalization, cost-effectiveness analysis, and new technological tools are the next topics for preimplantation genetic diagnosis and screening. Concomitantly, these additions to assisted reproduction technologies could have a positive effect on the schedules of preimplantation studies.

  19. Asymptomatic Leishmania Infected Children: A Seroprevalence and Molecular Survey in a Rural Area of Fars Province, Southern Iran.

    PubMed

    Layegh Gigloo, Akram; Sarkari, Bahador; Rezaei, Zahra; Hatam, Gholam Reza; Davami, Mohammad Hassan

    2018-01-01

    The current study aimed to evaluate the seroprevalence of visceral leishmaniasis in asymptomatic healthy children in a rural area of Fars province, Southern Iran. Blood samples were taken from 617 asymptomatic healthy children and serum samples along with buffy coat were separated from the blood. The serum samples were assessed for antibodies against Leishmania infantum by an indirect ELISA and the buffy coats were tested for the presence of L. infantum DNA by molecular method. Of the 617 recruited children, 297 (48.1%) were female and 317 (51.4%) were male. Anti- Leishmania antibodies were detected in 17 (2.8%) of the children. From those 17 seropositive cases, 5 (29.4%) were male and 12 (70.6%) cases were female. Children aged 5-8 years had the highest seroprevalence rate; however, no associations were found between seropositivity to Leishmania and gender or age of the children. Moreover, L. infantum DNA was detected in buffy coat of 8 (1.3%) of 617 children. Three of the PCR-positive cases were seropositive whereas 14 of seropositive subjects (82.3%) were PCR-negative. Findings of the current study revealed a considerable subclinical leishmanial infection in children in the studied rural area in the south of Iran. Results of the current study could be used for surveillance, prevention, and control of VL in the area.

  20. Cellular and Molecular Mechanisms of Action of Transcranial Direct Current Stimulation: Evidence from In Vitro and In Vivo Models

    PubMed Central

    Pelletier, Simon J.

    2015-01-01

    Transcranial direct current stimulation is a noninvasive technique that has been experimentally tested for a number of psychiatric and neurological conditions. Preliminary observations suggest that this approach can indeed influence a number of cellular and molecular pathways that may be disease relevant. However, the mechanisms of action underlying its beneficial effects are largely unknown and need to be better understood to allow this therapy to be used optimally. In this review, we summarize the physiological responses observed in vitro and in vivo, with a particular emphasis on cellular and molecular cascades associated with inflammation, angiogenesis, neurogenesis, and neuroplasticity recruited by direct current stimulation, a topic that has been largely neglected in the literature. A better understanding of the neural responses to transcranial direct current stimulation is critical if this therapy is to be used in large-scale clinical trials with a view of being routinely offered to patients suffering from various conditions affecting the central nervous system. PMID:25522391

  1. A single-molecule diode.

    PubMed

    Elbing, Mark; Ochs, Rolf; Koentopp, Max; Fischer, Matthias; von Hänisch, Carsten; Weigend, Florian; Evers, Ferdinand; Weber, Heiko B; Mayor, Marcel

    2005-06-21

    We have designed and synthesized a molecular rod that consists of two weakly coupled electronic pi -systems with mutually shifted energy levels. The asymmetry thus implied manifests itself in a current-voltage characteristic with pronounced dependence on the sign of the bias voltage, which makes the molecule a prototype for a molecular diode. The individual molecules were immobilized by sulfur-gold bonds between both electrodes of a mechanically controlled break junction, and their electronic transport properties have been investigated. The results indeed show diode-like current-voltage characteristics. In contrast to that, control experiments with symmetric molecular rods consisting of two identical pi-systems did not show significant asymmetries in the transport properties. To investigate the underlying transport mechanism, phenomenological arguments are combined with calculations based on density functional theory. The theoretical analysis suggests that the bias dependence of the polarizability of the molecule feeds back into the current leading to an asymmetric shape of the current-voltage characteristics, similar to the phenomena in a semiconductor diode.

  2. The whole-genome landscape of medulloblastoma subtypes

    PubMed Central

    Northcott, Paul A.; Buchhalter, Ivo; Morrissy, A. Sorana; Hovestadt, Volker; Weischenfeldt, Joachim; Ehrenberger, Tobias; Groebner, Susanne; Segura-Wang, Maia; Zichner, Thomas; Rudneva, Vasilisa; Warnatz, Hans-Jörg; Sidiropoulos, Nikos; Phillips, Aaron H.; Schumacher, Steven; Kleinheinz, Kortine; Waszak, Sebastian M.; Erkek, Serap; Jones, David T.W.; Worst, Barbara C.; Kool, Marcel; Zapatka, Marc; Jäger, Natalie; Chavez, Lukas; Hutter, Barbara; Bieg, Matthias; Paramasivam, Nagarajan; Heinold, Michael; Gu, Zuguang; Ishaque, Naveed; Jäger-Schmidt, Christina; Imbusch, Charles D.; Jugold, Alke; Hübschmann, Daniel; Risch, Thomas; Amstislavskiy, Vyacheslav; Gonzalez, Francisco German Rodriguez; Weber, Ursula D.; Wolf, Stephan; Robinson, Giles W.; Zhou, Xin; Wu, Gang; Finkelstein, David; Liu, Yanling; Cavalli, Florence M.G.; Luu, Betty; Ramaswamy, Vijay; Wu, Xiaochong; Koster, Jan; Ryzhova, Marina; Cho, Yoon-Jae; Pomeroy, Scott L.; Herold-Mende, Christel; Schuhmann, Martin; Ebinger, Martin; Liau, Linda M.; Mora, Jaume; McLendon, Roger E.; Jabado, Nada; Kumabe, Toshihiro; Chuah, Eric; Ma, Yussanne; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen L.; Thiessen, Nina; Tse, Kane; Wong, Tina; Jones, Steven J.M.; Witt, Olaf; Milde, Till; Von Deimling, Andreas; Capper, David; Korshunov, Andrey; Yaspo, Marie-Laure; Kriwacki, Richard; Gajjar, Amar; Zhang, Jinghui; Beroukhim, Rameen; Fraenkel, Ernest; Korbel, Jan O.; Brors, Benedikt; Schlesner, Matthias; Eils, Roland; Marra, Marco A.; Pfister, Stefan M.; Taylor, Michael D.; Lichter, Peter

    2018-01-01

    Summary Current therapies for medulloblastoma (MB), a highly malignant childhood brain tumor, impose debilitating effects on the developing child, warranting deployment of molecularly targeted treatments with reduced toxicities. Prior studies failed to disclose the full spectrum of driver genes and molecular processes operative in MB subgroups. Herein, we detail the somatic landscape across 491 sequenced MBs and molecular heterogeneity amongst 1,256 epigenetically analyzed cases, identifying subgroup-specific driver alterations including previously unappreciated actionable targets. Driver mutations explained the majority of Group 3 and Group 4 patients, remarkably enhancing previous knowledge. Novel molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions targeting KBTBD4 and ‘enhancer hijacking’ driving PRDM6 activation. Thus, application of integrative genomics to an unprecedented cohort of clinical samples derived from a single childhood cancer entity disclosed a series of new cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for treating MB patients. PMID:28726821

  3. Molecular design for enhancement of ocular penetration.

    PubMed

    Shirasaki, Yoshihisa

    2008-07-01

    Over the past two decades, many oral drugs have been designed in consideration of physicochemical properties to attain optimal pharmacokinetic properties. This strategy significantly reduced attrition in drug development owing to inadequate pharmacokinetics during the last decade. On the other hand, most ophthalmic drugs are generated from reformulation of other therapeutic dosage forms. Therefore, the modification of formulations has been used mainly as the approach to improve ocular pharmacokinetics. However, to maximize ocular pharmacokinetic properties, a specific molecular design for ocular drug is preferable. Passive diffusion of drugs across the cornea membranes requires appropriate lipophilicity and aqueous solubility. Improvement of such physicochemical properties has been achieved by structure optimization or prodrug approaches. This review discusses the current knowledge about ophthalmic drugs adapted from systemic drugs and molecular design for ocular drugs. I propose the approaches for molecular design to obtain the optimal ocular penetration into anterior segment based on published studies to date.

  4. Molecular identification of unusual Mycetoma agents isolated from patients in Venezuela.

    PubMed

    Rojas, Olga C; León-Cachón, Rafael B R; Moreno-Treviño, Maria; González, Gloria M

    2017-02-01

    Mycetoma is a chronic granulomatous, subcutaneous disease endemic in tropical and subtropical countries. It is currently a health problem in rural areas of Africa, Asia and South America. Nine cases of mycetoma were analysed in a retrospective study. All isolates were identified by morphological features. The level of species identification was reached by molecular tools. Definitive identification of fungi was performed using sequence analysis of the ITS of the ribosomal DNA region and the ribosomal large-subunit D1/D2. Identification of actinomycetes was accomplished by the 16S rRNA gene sequence. Six unusual clinical isolates were identified: Aspergillus ustus, Cyphellophora oxyspora, Exophiala oligosperma, Madurella pseudomycetomatis, Nocardia farcinica and Nocardia wallacei. The prevalence of mycetoma in Venezuela remains unknown. This study represents the first report in the literature of mycetoma caused by unusual pathogens identified by molecular techniques. © 2016 Blackwell Verlag GmbH.

  5. Cellular and Molecular Mechanisms of Sexual Differentiation in the Mammalian Nervous System

    PubMed Central

    Forger, Nancy G.; Strahan, J. Alex; Castillo-Ruiz, Alexandra

    2016-01-01

    Neuroscientists are likely to discover new sex differences in the coming years, spurred by the National Institutes of Health initiative to include both sexes in preclinical studies. This review summarizes the current state of knowledge of the cellular and molecular mechanisms underlying sex differences in the mammalian nervous system, based primarily on work in rodents. Cellular mechanisms examined include neurogenesis, migration, the differentiation of neurochemical and morphological cell phenotype, and cell death. At the molecular level we discuss evolving roles for epigenetics, sex chromosome complement, the immune system, and newly identified cell signaling pathways. We review recent findings on the role of the environment, as well as genome-wide studies with some surprising results, causing us to rethink often-used models of sexual differentiation. We end by pointing to future directions, including an increased awareness of the important contributions of tissues outside of the nervous system to sexual differentiation of the brain. PMID:26790970

  6. Is pigment patterning in fish skin determined by the Turing mechanism?

    PubMed

    Watanabe, Masakatsu; Kondo, Shigeru

    2015-02-01

    More than half a century ago, Alan Turing postulated that pigment patterns may arise from a mechanism that could be mathematically modeled based on the diffusion of two substances that interact with each other. Over the past 15 years, the molecular and genetic tools to verify this prediction have become available. Here, we review experimental studies aimed at identifying the mechanism underlying pigment pattern formation in zebrafish. Extensive molecular genetic studies in this model organism have revealed the interactions between the pigment cells that are responsible for the patterns. The mechanism discovered is substantially different from that predicted by the mathematical model, but it retains the property of 'local activation and long-range inhibition', a necessary condition for Turing pattern formation. Although some of the molecular details of pattern formation remain to be elucidated, current evidence confirms that the underlying mechanism is mathematically equivalent to the Turing mechanism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Targeting PSMA by radioligands in non-prostate disease-current status and future perspectives.

    PubMed

    Backhaus, Philipp; Noto, Benjamin; Avramovic, Nemanja; Grubert, Lena Sophie; Huss, Sebastian; Bögemann, Martin; Stegger, Lars; Weckesser, Matthias; Schäfers, Michael; Rahbar, Kambiz

    2018-05-01

    Prostate-specific membrane antigen (PSMA) is the up-and-coming target for molecular imaging of prostate cancer. Despite its name, non-prostate-related PSMA expression in physiologic tissue as well as in benign and malignant disease has been reported in various publications. Unlike in prostate cancer, PSMA expression is only rarely observed in non-prostate tumor cells. Instead, expression occurs in endothelial cells of tumor-associated neovasculature, although no endothelial expression is observed under physiologic conditions. The resulting potential for tumor staging in non-prostate malignant tumors has been demonstrated in first patient studies. This review summarizes the first clinical studies and deduces future perspectives in staging, molecular characterization, and PSMA-targeted radionuclide therapy based on histopathologic examinations of PSMA expression. The non-exclusivity of PSMA in prostate cancer opens a window to utilize the spectrum of available radioactive PSMA ligands for imaging and molecular characterization and maybe even therapy of non-prostate disease.

  8. Adsorptive detoxification of fermentation inhibitors in acid pretreated liquor using functionalized polymer designed by molecular simulation.

    PubMed

    Devendra, Leena P; Pandey, Ashok

    2017-11-01

    Acid pretreatment is the most common method employed in the lignocellulosic biorefinery leading to the separation of pentose and hexose sugar. The liquor obtained after pretreatment (acid pretreatment liquor or APL) needs to be detoxified prior to fermentation. The aim of this study was to design functional groups on a polymer matrix which are selective in their interaction to inhibitors with little or no specificity to sugars. Molecular modeling was used as a tool to design a suitable adsorbent for selective adsorption of inhibitors from a complex mixture of APL. Phenyl glycine-p-sulfonic acid loaded on chloromethylated polystyrene polymer was designed as an adsorbent for selective interaction with inhibitors. Experimental verification of the selectivity was successfully achieved. The current study provides insights on the adsorptive separation processes at the molecular level by design of specific adsorbent which can be tailor made for the better selectivity of the desired component.

  9. Molecular Targets in Advanced Therapeutics of Cancers: The Role of Pharmacogenetics.

    PubMed

    Abubakar, Murtala B; Gan, Siew Hua

    2016-01-01

    The advent of advanced molecular targeted therapy has resulted in improved prognoses for patients with advanced malignancies. However, despite the significant success and specificity of this advocated targeted therapy, significant on- and off-target adverse effects and inter-individual variability in treatment responses have been reported. The interpatient variability in drug response has been suggested to be partly due to variations in patient genomes. Therefore, the identification of genetic biomarkers by conducting pharmacogenetics studies can help predict patient responses to targeted therapy and may serve as a basis for individualized treatment. In this review, both clinically established and potential molecular targets are highlighted. Overall, current literature suggests that individualization of targeted therapy is promising; however, integrating the clinical benefits of identified biomarkers into clinical practice for personalized medicine remains a major challenge, and further studies to validate these markers and identify novel therapeutic approaches are needed. © 2016 S. Karger AG, Basel.

  10. Evaluating Support for the Current Classification of Eukaryotic Diversity

    PubMed Central

    Parfrey, Laura Wegener; Barbero, Erika; Lasser, Elyse; Dunthorn, Micah; Bhattacharya, Debashish; Patterson, David J; Katz, Laura A

    2006-01-01

    Perspectives on the classification of eukaryotic diversity have changed rapidly in recent years, as the four eukaryotic groups within the five-kingdom classification—plants, animals, fungi, and protists—have been transformed through numerous permutations into the current system of six “supergroups.” The intent of the supergroup classification system is to unite microbial and macroscopic eukaryotes based on phylogenetic inference. This supergroup approach is increasing in popularity in the literature and is appearing in introductory biology textbooks. We evaluate the stability and support for the current six-supergroup classification of eukaryotes based on molecular genealogies. We assess three aspects of each supergroup: (1) the stability of its taxonomy, (2) the support for monophyly (single evolutionary origin) in molecular analyses targeting a supergroup, and (3) the support for monophyly when a supergroup is included as an out-group in phylogenetic studies targeting other taxa. Our analysis demonstrates that supergroup taxonomies are unstable and that support for groups varies tremendously, indicating that the current classification scheme of eukaryotes is likely premature. We highlight several trends contributing to the instability and discuss the requirements for establishing robust clades within the eukaryotic tree of life. PMID:17194223

  11. Is the role of human female reproductive tract microbiota underestimated?

    PubMed

    Kamińska, D; Gajecka, M

    2017-05-30

    An issue that is currently undergoing extensive study is the influence of human vaginal microbiota (VMB) on the health status of women and their neonates. Healthy women are mainly colonised with lactobacilli such as Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus iners; however, other bacteria may be elements of the VMB, particularly in women with bacterial vaginosis. The implementation of culture-independent molecular methods in VMB characterisation, especially next-generation sequencing, have provided new information regarding bacterial diversity in the vagina, revealing a large number of novel, fastidious, and/or uncultivated bacterial species. These molecular studies have contributed new insights regarding the role of bacterial community composition. In this study, we discuss recent findings regarding the reproductive tract microbiome. Not only bacteria but also viruses and fungi constitute important components of the reproductive tract microbiome. We focus on aspects related to the impact of the maternal microbiome on foetal development, as well as the establishment of the neonatal microbiomes, including the placenta microbiome, and the haematogenous source of intrauterine infection. We also discuss whether the role of the vaginal microbiome is currently understood and appreciated.

  12. Identification of a current hot spot of HIV type 1 transmission in Mongolia by molecular epidemiological analysis.

    PubMed

    Davaalkham, Jagdagsuren; Unenchimeg, Puntsag; Baigalmaa, Chultem; Erdenetuya, Gombo; Nyamkhuu, Dulmaa; Shiino, Teiichiro; Tsuchiya, Kiyoto; Hayashida, Tsunefusa; Gatanaga, Hiroyuki; Oka, Shinichi

    2011-10-01

    We investigated the current molecular epidemiological status of HIV-1 in Mongolia, a country with very low incidence of HIV-1 though with rapid expansion in recent years. HIV-1 pol (1065 nt) and env (447 nt) genes were sequenced to construct phylogenetic trees. The evolutionary rates, molecular clock phylogenies, and other evolutionary parameters were estimated from heterochronous genomic sequences of HIV-1 subtype B by the Bayesian Markov chain Monte Carlo method. We obtained 41 sera from 56 reported HIV-1-positive cases as of May 2009. The main route of infection was men who have sex with men (MSM). Dominant subtypes were subtype B in 32 cases (78%) followed by subtype CRF02_AG (9.8%). The phylogenetic analysis of the pol gene identified two clusters in subtype B sequences. Cluster 1 consisted of 21 cases including MSM and other routes of infection, and cluster 2 consisted of eight MSM cases. The tree analyses demonstrated very short branch lengths in cluster 1, suggesting a surprisingly active expansion of HIV-1 transmission during a short period with the same ancestor virus. Evolutionary analysis indicated that the outbreak started around the early 2000s. This study identified a current hot spot of HIV-1 transmission and potential seed of the epidemic in Mongolia. Comprehensive preventive measures targeting this group are urgently needed.

  13. Acquisition of Ice-Tethered Profilers with Velocity (ITP-V) Instruments for Future Arctic Studies

    DTIC Science & Technology

    2016-11-15

    instrument that measures sea water temperature and salinity versus depth, the ITP-V adds a multi-axis acoustic -travel-time current meter and...housing capped by an ultra-high-molecular-weight polyethylene dome. The electronics case sits within a foam body designed to provide buoyancy for...then transmits them by satellite to a logger computer at WHO I. The ITP-V instruments add a multi-axis acoustic -travel-time current meter and

  14. Electron transport through rectifying self-assembled monolayer diodes on silicon: Fermi-level pinning at the molecule-metal interface.

    PubMed

    Lenfant, S; Guerin, D; Tran Van, F; Chevrot, C; Palacin, S; Bourgoin, J P; Bouloussa, O; Rondelez, F; Vuillaume, D

    2006-07-20

    We report the synthesis and characterization of molecular rectifying diodes on silicon using sequential grafting of self-assembled monolayers of alkyl chains bearing a pi group at their outer end (Si/sigma-pi/metal junctions). We investigate the structure-performance relationships of these molecular devices, and we examine the extent to which the nature of the pi end group (change in the energy position of their molecular orbitals) drives the properties of these molecular diodes. Self-assembled monolayers of alkyl chains (different chain lengths from 6 to 15 methylene groups) functionalized by phenyl, anthracene, pyrene, ethylene dioxythiophene, ethylene dioxyphenyl, thiophene, terthiophene, and quaterthiophene were synthesized and characterized by contact angle measurements, ellipsometry, Fourier transform infrared spectroscopy, and atomic force microscopy. We demonstrate that reasonably well-packed monolayers are obtained in all cases. Their electrical properties were assessed by dc current-voltage characteristics and high-frequency (1-MHz) capacitance measurements. For all of the pi groups investigated here, we observed rectification behavior. These results extend our preliminary work using phenyl and thiophene groups (Lenfant et al., Nano Lett. 2003, 3, 741). The experimental current-voltage curves were analyzed with a simple analytical model, from which we extracted the energy position of the molecular orbital of the pi group in resonance with the Fermi energy of the electrodes. We report experimental studies of the band lineup in these silicon/alkyl pi-conjugated molecule/metal junctions. We conclude that Fermi-level pinning at the pi group/metal interface is mainly responsible for the observed absence of a dependence of the rectification effect on the nature of the pi groups, even though the groups examined were selected to have significant variations in their electronic molecular orbitals.

  15. Gene-Transformation-Induced Changes in Chemical Functional Group Features and Molecular Structure Conformation in Alfalfa Plants Co-Expressing Lc-bHLH and C1-MYB Transcriptive Flavanoid Regulatory Genes: Effects of Single-Gene and Two-Gene Insertion.

    PubMed

    Heendeniya, Ravindra G; Yu, Peiqiang

    2017-03-20

    Alfalfa ( Medicago sativa L.) genotypes transformed with Lc-bHLH and Lc transcription genes were developed with the intention of stimulating proanthocyanidin synthesis in the aerial parts of the plant. To our knowledge, there are no studies on the effect of single-gene and two-gene transformation on chemical functional groups and molecular structure changes in these plants. The objective of this study was to use advanced molecular spectroscopy with multivariate chemometrics to determine chemical functional group intensity and molecular structure changes in alfalfa plants when co-expressing Lc-bHLH and C1-MYB transcriptive flavanoid regulatory genes in comparison with non-transgenic (NT) and AC Grazeland (ACGL) genotypes. The results showed that compared to NT genotype, the presence of double genes ( Lc and C1 ) increased ratios of both the area and peak height of protein structural Amide I/II and the height ratio of α-helix to β-sheet. In carbohydrate-related spectral analysis, the double gene-transformed alfalfa genotypes exhibited lower peak heights at 1370, 1240, 1153, and 1020 cm -1 compared to the NT genotype. Furthermore, the effect of double gene transformation on carbohydrate molecular structure was clearly revealed in the principal component analysis of the spectra. In conclusion, single or double transformation of Lc and C1 genes resulted in changing functional groups and molecular structure related to proteins and carbohydrates compared to the NT alfalfa genotype. The current study provided molecular structural information on the transgenic alfalfa plants and provided an insight into the impact of transgenes on protein and carbohydrate properties and their molecular structure's changes.

  16. Hepatocellular Cancer: New Kids on the Block.

    PubMed

    Hoffmann, Andreas-Claudiu; Gerken, Guido G H

    2014-05-01

    With over 600,000 newly diagnosed hepatocellular cancer (HCC) patients worldwide every year and ongoing clinical research, it is surprising that many of the new molecular entities have not yet resulted in significant prolongation of progression-free or overall survival. Nevertheless, there are a number of promising agents currently under investigation. Given the unique tumor biology and heterogeneous clinical manifestations of HCC, the application of molecular and cellular markers could also benefit patient selection, disease prognosis and trial design. This paper provides an overview of the current therapeutic strategies for HCC in the curative and palliative settings. Furthermore, we introduce some of the promising small molecules and antibodies that may find their way into clinical practice, with a focus on substances that are currently in phase III testing. Finally, we summarize the role of promising biomarkers, such as circulating tumor or cancer stem cells. Despite the rising prevalence of HCC and active clinical research, few therapeutic options besides sorafenib have been established. This review discusses the new therapeutic agents in the pipeline. Although many promising preclinical studies have resulted in phase I-II trials on HCC, so far only the tyrosine and Raf kinase inhibitor sorafenib has made its way into the hands of physicians. This multikinase inhibitor is the only approved option for systemic treatment of advanced HCC. Currently, the development of promising approaches for disease management is guided by biomarkers such as molecular markers or cellular characteristics. The use of biomarkers may facilitate early diagnosis in high-risk groups and therefore enhance outcomes by detecting patients whose disease is still curable.

  17. Reduced-molecular-weight derivatives of frost grape polysaccharide

    USDA-ARS?s Scientific Manuscript database

    A new Type II arabinogalactan was recently described as an abundant gum exudate from stems of wildfrost grape (Vitus riparia Michx.). The purpose of the current study is to more thoroughly characterize the physical properties of this frost grape polysaccharide (FGP), and develop methods to modify th...

  18. Pure spin current and phonon thermoelectric transport in a triangulene-based molecular junction.

    PubMed

    Wang, Qiang; Li, Jianwei; Nie, Yihang; Xu, Fuming; Yu, Yunjin; Wang, Bin

    2018-06-13

    The experimental synthesis and characterization of enigmatic triangulene were reported for the first time recently. Based on this enigmatic molecule, we proposed a triangulene-based molecular junction and presented first principles calculations to investigate the electron and phonon thermoelectric transport properties. Numerical results show that the spin polarized electric transport properties of the triangulene-based molecular junction can be adjusted effectively by bias voltage and gate voltage. Through varying the gate voltage applied on the triangulene molecule, the system can exhibit a perfect spin filter effect. When a temperature gradient is applied between the two leads, spin up current and spin down current flow along opposite directions in the system simultaneously. Thus pure spin current can be obtained on a large scale by changing the temperature, temperature gradient, and gate voltage. When the phonon vibration effect is considered in thermal transport, the figure of merit is suppressed distinctively especially when the temperature is within the 10 K < T < 100 K range. More importantly, a large spin figure of merit can be achieved accompanied by a small charge figure of merit by adjusting the temperature, gate voltage and chemical potential in a wide range, which indicates a favorable application prospect of the triangulene-based molecular junction as a spin calorigenic device.

  19. Identification of liver cancer-specific aptamers using whole live cells.

    PubMed

    Shangguan, Dihua; Meng, Ling; Cao, Zehui Charles; Xiao, Zeyu; Fang, Xiaohong; Li, Ying; Cardona, Diana; Witek, Rafal P; Liu, Chen; Tan, Weihong

    2008-02-01

    Liver cancer is the third most deadly cancers in the world. Unfortunately, there is no effective treatment. One of the major problems is that most cancers are diagnosed in the later stage, when surgical resection is not feasible. Thus, accurate early diagnosis would significantly improve the clinical outcome of liver cancer. Currently, there are no effective molecular probes to recognize biomarkers that are specific for liver cancer. The objective of our current study is to identify liver cancer cell-specific molecular probes that could be used for liver cancer recognition and diagnosis. We applied a newly developed cell-SELEX (Systematic Evolution of Ligands by EXponential enrichment) method for the generation of molecular probes for specific recognition of liver cancer cells. The cell-SELEX uses whole live cells as targets to select aptamers (designed DNA/RNA) for cell recognition. In generating aptamers for liver cancer recognition, two liver cell lines were used: a liver cancer cell line BNL 1ME A.7R.1 (MEAR) and a noncancer cell line, BNL CL.2 (BNL). Both cell lines were originally derived from Balb/cJ mice. Through multiple rounds of selection using BNL as a control, we have identified a panel of aptamers that specifically recognize the cancer cell line MEAR with Kd in the nanomolar range. We have also demonstrated that some of the selective aptamers could specifically bind liver cancer cells in a mouse model. There are two major new results (compared with our reported cell-SELEX methodology) in addition to the generation of aptamers specifically for liver cancer. The first one is that our current study demonstrates that cell-based aptamer selection can select specific aptamers for multiple cell lines, even for two cell lines with minor differences (MEAR cell is derived from BNL by chemical inducement); and the second result is that cell-SELEX can be used for adhesive cells and thus open the door for solid tumor selection and investigation. The newly generated cancer-specific aptamers hold great promise as molecular probes for cancer early diagnosis and basic mechanism studies.

  20. Impact of antigenic exposures and role of molecular blood grouping in enhancing transfusion safety in chronically transfused thalassemics.

    PubMed

    Makroo, Raj Nath; Agrawal, Soma; Bhatia, Aakanksha; Chowdhry, Mohit; Thakur, Uday Kumar

    2016-01-01

    Red cell alloimmunization is an acknowledged complication of blood transfusion. Current transfusion practices for thalassemia do not cater to this risk. Serological phenotyping is usually not reliable in these cases unless performed before the first transfusion. Under such circumstances, molecular blood grouping is an effective alternative. To perform molecular blood group genotyping in chronically transfused thalassemia patients and assess the risk of antigenic exposure and incidence of alloimmunization with current transfusion protocols. Molecular blood group genotyping was performed for 47 chronically transfused thalassemia patients. Their 1-year transfusion records were retrieved to assess the antigenic exposure and the frequency thereof. Of 47 patients, 6 were already alloimmunized (3 with anti-E and 3 with anti-K) and were receiving the corresponding antigen negative units. We observed that random selection of ABO and Rh D matched units resulted in 57.7% ±8.26% chance of Rh and Kell phenotype matching also. Forty-four patients had received one or more antigenic exposures at least once. The 6 already alloimmunized patients were further exposed to antigens other than the ones they were immunized to. During the study period, only one patient developed an alloantibody, anti-E with exposure to antigens C (92%) and/or E (32%) at each transfusion. Several factors apart from mere antigen exposure may influence the development of alloimmunization as most of our patients received antigenic exposures but not alloimmunized. Our data provide an impetus for future large-scale studies to understand the development of alloimmunization in such patients.

  1. Optimal molecular profiling of tissue and tissue components: defining the best processing and microdissection methods for biomedical applications.

    PubMed

    Bova, G Steven; Eltoum, Isam A; Kiernan, John A; Siegal, Gene P; Frost, Andra R; Best, Carolyn J M; Gillespie, John W; Emmert-Buck, Michael R

    2005-01-01

    Isolation of well-preserved pure cell populations is a prerequisite for sound studies of the molecular basis of pancreatic malignancy and other biological phenomena. This chapter reviews current methods for obtaining anatomically specific signals from molecules isolated from tissues, a basic requirement for productive linking of phenotype and genotype. The quality of samples isolated from tissue and used for molecular analysis is often glossed-over or omitted from publications, making interpretation and replication of data difficult or impossible. Fortunately, recently developed techniques allow life scientists to better document and control the quality of samples used for a given assay, creating a foundation for improvement in this area. Tissue processing for molecular studies usually involves some or all of the following steps: tissue collection, gross dissection/identification, fixation, processing/embedding, storage/archiving, sectioning, staining, microdissection/annotation, and pure analyte labeling/identification. High-quality tissue microdissection does not necessarily mean high-quality samples to analyze. The quality of biomaterials obtained for analysis is highly dependent on steps upstream and downstream from tissue microdissection. We provide protocols for each of these steps, and encourage you to improve upon these. It is worth the effort of every laboratory to optimize and document its technique at each stage of the process, and we provide a starting point for those willing to spend the time to optimize. In our view, poor documentation of tissue and cell type of origin and the use of nonoptimized protocols is a source of inefficiency in current life science research. Even incremental improvement in this area will increase productivity significantly.

  2. Considerations for standardizing predictive molecular pathology for cancer prognosis.

    PubMed

    Fiorentino, Michelangelo; Scarpelli, Marina; Lopez-Beltran, Antonio; Cheng, Liang; Montironi, Rodolfo

    2017-01-01

    Molecular tests that were once ancillary to the core business of cyto-histopathology are becoming the most relevant workload in pathology departments after histopathology/cytopathology and before autopsies. This has resulted from innovations in molecular biology techniques, which have developed at an incredibly fast pace. Areas covered: Most of the current widely used techniques in molecular pathology such as FISH, direct sequencing, pyrosequencing, and allele-specific PCR will be replaced by massive parallel sequencing that will not be considered next generation, but rather, will be considered to be current generation sequencing. The pre-analytical steps of molecular techniques such as DNA extraction or sample preparation will be largely automated. Moreover, all the molecular pathology instruments will be part of an integrated workflow that traces the sample from extraction to the analytical steps until the results are reported; these steps will be guided by expert laboratory information systems. In situ hybridization and immunohistochemistry for quantification will be largely digitalized as much as histology will be mostly digitalized rather than viewed using microscopy. Expert commentary: This review summarizes the technical and regulatory issues concerning the standardization of molecular tests in pathology. A vision of the future perspectives of technological changes is also provided.

  3. Proposed biomimetic molecular sensor array for astrobiology applications

    NASA Astrophysics Data System (ADS)

    Cullen, D. C.; Grant, W. D.; Piletsky, S.; Sims, M. R.

    2001-08-01

    A key objective of future astrobiology lander missions, e.g. to Mars and Europa, is the detection of biomarkers - molecules whose presence indicates the existence of either current or extinct life. To address limitations of current analytical methods for biomarker detection, we describe the methodology of a new project for demonstration of a robust molecular-recognition sensor array for astrobiology biomarkers. The sensor array will be realised by assembling components that have been demonstrated individually in previous or current research projects. The major components are (1) robust artificial molecular receptors comprised of molecular imprinted polymer (MIP) recognition systems and (2) a sensor array comprised of both optical and electrochemical sensor elements. These components will be integrated together using ink-jet printing technology coupled with in situ photo-polymerisation of MIPs. For demonstration, four model biomarkers are chosen as targets and represent various classes of potential biomarkers. Objectives of the proposed work include (1) demonstration of practical proof-of-concept, (2) identify areas for further development and (3) provide performance and design data for follow-up projects leading to astrobiology missions.

  4. Entamoeba histolytica: a snapshot of current research and methods for genetic analysis

    PubMed Central

    Morf, Laura; Singh, Upinder

    2012-01-01

    Entamoeba histolytica represents one of the leading causes of parasitic death worldwide. Although identified as the causative agent of amebiasis since 1875, the molecular mechanisms by which the parasite causes disease are still not fully understood. Studying Entamoeba reveals insights into a eukaryotic cell that differs in many ways from better-studied model organisms. Thus, much can be learned from this protozoan parasite on evolution, cell biology and RNA biology. In this review we discuss selected research highlights in Entamoeba research and focus on the development of molecular biological techniques to study this pathogen. We end by highlighting some of the many questions that remain to be answered in order to fully understand this important human pathogen. PMID:22664276

  5. Molecular and genetic insights into an infantile epileptic encephalopathy - CDKL5 disorder.

    PubMed

    Zhou, Ailing; Han, Song; Zhou, Zhaolan Joe

    2017-02-01

    The discovery that mutations in cyclin-dependent kinase-like 5 ( CDKL5 ) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder. Given the large number of literature published thus far, this review aims to summarize current genetic studies, draw a consensus on proposed molecular functions, and point to gaps of knowledge in CDKL5 research. A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years. We analyzed these publications and summarized the findings into four sections: genetic studies, CDKL5 expression patterns, molecular functions, and animal models. We also discussed challenges and future directions in each section. On the clinical side, CDKL5 disorder is characterized by early onset epileptic seizures, intellectual disability, and stereotypical behaviors. On the research side, a series of molecular and genetic studies in human patients, cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy, and pointed to a key role for CDKL5 in regulating neuronal function in the brain. Mouse models of CDKL5 disorder have also been developed, and notably, manifest behavioral phenotypes, mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage. Given what we have learned thus far, future identification of robust, quantitative, and sensitive outcome measures would be the key in animal model studies, particularly in heterozygous females. In the meantime, molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes.

  6. Molecular and genetic insights into an infantile epileptic encephalopathy – CDKL5 disorder

    PubMed Central

    Zhou, Ailing; Han, Song

    2017-01-01

    Background The discovery that mutations in cyclin-dependent kinase-like 5 (CDKL5) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder. Given the large number of literature published thus far, this review aims to summarize current genetic studies, draw a consensus on proposed molecular functions, and point to gaps of knowledge in CDKL5 research. Methods A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years. We analyzed these publications and summarized the findings into four sections: genetic studies, CDKL5 expression patterns, molecular functions, and animal models. We also discussed challenges and future directions in each section. Results On the clinical side, CDKL5 disorder is characterized by early onset epileptic seizures, intellectual disability, and stereotypical behaviors. On the research side, a series of molecular and genetic studies in human patients, cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy, and pointed to a key role for CDKL5 in regulating neuronal function in the brain. Mouse models of CDKL5 disorder have also been developed, and notably, manifest behavioral phenotypes, mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage. Conclusions Given what we have learned thus far, future identification of robust, quantitative, and sensitive outcome measures would be the key in animal model studies, particularly in heterozygous females. In the meantime, molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes. PMID:28580010

  7. Gliomatosis cerebri: Prognosis based on current molecular markers.

    PubMed

    Maharaj, Monish M; Phan, Kevin; Xu, Joshua; Fairhall, Jacob; Reddy, Rajesh; Rao, Prashanth J V

    2017-09-01

    This study aims to review the literature and identify key molecular markers affecting the prognosis of Gliomatosis cerebri (2) to evaluate the level of evidence and identify outstanding markers requiring further study. A literature search was conducted across 5 major databases using the key terms: "Molecular markers" AND "Gliomatosis cerebri" OR "diffuse astrocytoma." Critical appraisal and data presentation was performed inline with the PRISMA guidelines. Following search strategy implementation, 11 studies were included in the final review process. Our data demonstrates significant prognostic value associated with IDH1 132H mutation and variable evidence surrounding the role of INA expression, MGMT promoter methylation and other factors. However, there are significant limitations in the level of evidence obtained. As the genetic basis for the pathogenesis of Gliomatosis cerebri continues to widen, there is little data on markers aside from IDH1 mutation available. IDH1 132H mutation has been demonstrated to have significant effect on survival, particularly in patients with Gliomatosis cerebri type 2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Exploring parameter space effects on structure-property relationships of surfactants at liquid-liquid interfaces.

    PubMed

    Emborsky, Christopher P; Cox, Kenneth R; Chapman, Walter G

    2011-08-28

    The ubiquitous use of surfactants in commercial and industrial applications has led to many experimental, theoretical, and simulation based studies. These efforts seek to provide a molecular level understanding of the effects on structuring behavior and the corresponding impacts on observable properties (e.g., interfacial tension). With such physical detail, targeted system design can be improved over typical techniques of observational trends and phenomenological correlations by taking advantage of predictive system response. This research provides a systematic study of part of the broad parameter space effects on equilibrium microstructure and interfacial properties of amphiphiles at a liquid-liquid interface using the interfacial statistical associating fluid theory density functional theory as a molecular model for the system from the bulk to the interface. Insights into the molecular level physics and thermodynamics governing the system behavior are discussed as they relate to both predictions qualitatively consistent with experimental observations and extensions beyond currently available studies. © 2011 American Institute of Physics

  9. Ionic calcium determination in skim milk with molecular probes and front-face fluorescence spectroscopy: simple linear regression.

    PubMed

    Gangidi, R R; Metzger, L E

    2006-11-01

    The purpose of this study was to determine if the ionic calcium content of skim milk could be determined using molecular probes and front-face fluorescence spectroscopy. Current methods for determining ionic calcium are not sensitive, overestimate ionic calcium, or require complex procedures. Molecular probes designed specifically for measuring ionic calcium could potentially be used to determine the ionic calcium content of skim milk. The goal of the current study was to develop foundation methods for future studies to determine ionic calcium directly in skim milk and other dairy products with molecular probes and fluorescence spectroscopy. In this study, the effect of pH on calcium-sensitive fluorescent probe (Rhod-5N and Fluo-5N) performance using various concentrations of skim milk was determined. The pH of diluted skim milk (1.9 to 8.9% skim milk), was adjusted to either 6.2 or 7.0, after which the samples were analyzed with fluorescent probes (1 microM) and front-face fluorescence spectroscopy. The ionic calcium content of each sample was also determined using a calcium ion-selective electrode. The results demonstrated that the ionic calcium content of each sample was highly correlated (R2 > 0.989) with the fluorescence intensities of the probe-calcium adduct using simple linear regression. Higher than suggested ionic calcium contents of 1,207 and 1,973 microM were determined with the probes (Fluo-5N and Rhod-5N) in diluted skim milk with pH 7.0 and 6.2, respectively. The fluorescence intensity of the probe-calcium adduct decreased with a decrease in pH for the same ionic calcium concentration. This study demonstrates that Fluo-5N and Rhod-5N can be used to determine the ionic-calcium content of diluted milk with front-face fluorescence spectroscopy. Furthermore, these probes may also have the potential to determine the ionic calcium content of undiluted skim milk.

  10. Chemical evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Prasad, Sheo S.; Tarafdar, Sankar P.; Villere, Karen R.; Huntress, Wesley T., Jr.

    1987-01-01

    The principles behind the coupled chemical-dynamical evolution of molecular clouds are described. Particular attention is given to current problems involving the simplest species (i.e., C. CO, O2, and H2) in quiescent clouds. The results of a comparison made between the molecular abundances in the Orion ridge and the hot core (Blake, 1986) are presented.

  11. Molecular Diagnostics in Pathology: Time for a Next-Generation Pathologist?

    PubMed

    Fassan, Matteo

    2018-03-01

    - Comprehensive molecular investigations of mainstream carcinogenic processes have led to the use of effective molecular targeted agents in most cases of solid tumors in clinical settings. - To update readers regarding the evolving role of the pathologist in the therapeutic decision-making process and the introduction of next-generation technologies into pathology practice. - Current literature on the topic, primarily sourced from the PubMed (National Center for Biotechnology Information, Bethesda, Maryland) database, were reviewed. - Adequate evaluation of cytologic-based and tissue-based predictive diagnostic biomarkers largely depends on both proper pathologic characterization and customized processing of biospecimens. Moreover, increased requests for molecular testing have paralleled the recent, sharp decrease in tumor material to be analyzed-material that currently comprises cytology specimens or, at minimum, small biopsies in most cases of metastatic/advanced disease. Traditional diagnostic pathology has been completely revolutionized by the introduction of next-generation technologies, which provide multigene, targeted mutational profiling, even in the most complex of clinical cases. Combining traditional and molecular knowledge, pathologists integrate the morphological, clinical, and molecular dimensions of a disease, leading to a proper diagnosis and, therefore, the most-appropriate tailored therapy.

  12. Dynamical photo-induced electronic properties of molecular junctions

    NASA Astrophysics Data System (ADS)

    Beltako, K.; Michelini, F.; Cavassilas, N.; Raymond, L.

    2018-03-01

    Nanoscale molecular-electronic devices and machines are emerging as promising functional elements, naturally flexible and efficient, for next-generation technologies. A deeper understanding of carrier dynamics in molecular junctions is expected to benefit many fields of nanoelectronics and power devices. We determine time-resolved charge current flowing at the donor-acceptor interface in molecular junctions connected to metallic electrodes by means of quantum transport simulations. The current is induced by the interaction of the donor with a Gaussian-shape femtosecond laser pulse. Effects of the molecular internal coupling, metal-molecule tunneling, and light-donor coupling on photocurrent are discussed. We then define the time-resolved local density of states which is proposed as an efficient tool to describe the absorbing molecule in contact with metallic electrodes. Non-equilibrium reorganization of hybridized molecular orbitals through the light-donor interaction gives rise to two phenomena: the dynamical Rabi shift and the appearance of Floquet-like states. Such insights into the dynamical photoelectronic structure of molecules are of strong interest for ultrafast spectroscopy and open avenues toward the possibility of analyzing and controlling the internal properties of quantum nanodevices with pump-push photocurrent spectroscopy.

  13. Monolayer atomic crystal molecular superlattices.

    PubMed

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A; Huang, Yu; Duan, Xiangfeng

    2018-03-07

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 10 7 , along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  14. Monolayer atomic crystal molecular superlattices

    NASA Astrophysics Data System (ADS)

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O.; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A., III; Huang, Yu; Duan, Xiangfeng

    2018-03-01

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  15. Initiative for Molecular Profiling and Advanced Cancer Therapy and challenges in the implementation of precision medicine.

    PubMed

    Tsimberidou, Apostolia-Maria

    In the last decade, breakthroughs in technology have improved our understanding of genomic, transcriptional, proteomic, epigenetic aberrations and immune mechanisms in carcinogenesis. Genomics and model systems have enabled the validation of novel therapeutic strategies. Based on these developments, in 2007, we initiated the IMPACT (Initiative for Molecular Profiling and Advanced Cancer Therapy) study, the first personalized medicine program for patients with advanced cancer at The University of Texas MD Anderson Cancer Center. We demonstrated that in patients referred for Phase I clinical trials, the use of tumor molecular profiling and treatment with matched targeted therapy was associated with encouraging rates of response, progression-free survival and overall survival compared to non-matched therapy. We are currently conducting IMPACT2, a randomized study evaluating molecular profiling and targeted agents in patients with metastatic cancer. Optimization of innovative biomarker-driven clinical trials that include targeted therapy and/or immunotherapeutic approaches for carefully selected patients will accelerate the development of novel drugs and the implementation of precision medicine. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Gastric Cancer Cells in Peritoneal Lavage Fluid: A Systematic Review Comparing Cytological with Molecular Detection for Diagnosis of Peritoneal Metastases and Prediction of Peritoneal Recurrences.

    PubMed

    Virgilio, Edoardo; Giarnieri, Enrico; Giovagnoli, Maria Rosaria; Montagnini, Monica; Proietti, Antonella; D'Urso, Rosaria; Mercantini, Paolo; Valabrega, Stefano; Balducci, Genoveffa; Cavallini, Marco

    2018-03-01

    Detecting free tumor cells in the peritoneal lavage fluid of gastric cancer patients permits to assess a more accurate prognosis, predict peritoneal recurrence and select cases for a more aggressive treatment. Currently, cytology and molecular biology comprise the two most popular methods of detection that are under constant study by researchers. We burrowed into the available literature comparing cytological with molecular detection of free intraperitoneal gastric cancer cells. PubMed, Science Direct, Scopus and Google Scholar were the search engines investigated. As of 2017, 51 dedicated studies have been published. Messenger RNA of carcinoembryonic antigen was the genetic target most frequently described. The genetic technique is usually superior to cytology in sensitivity (38-100% vs. 12.3-67% respectively), whereas cytological examination tends to show a slight pre-eminence in specificity (approximately 100%). So far, given the imperfection of each method, employment of both cytology and molecular examination seem to be mandatory. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. High performance computing in biology: multimillion atom simulations of nanoscale systems

    PubMed Central

    Sanbonmatsu, K. Y.; Tung, C.-S.

    2007-01-01

    Computational methods have been used in biology for sequence analysis (bioinformatics), all-atom simulation (molecular dynamics and quantum calculations), and more recently for modeling biological networks (systems biology). Of these three techniques, all-atom simulation is currently the most computationally demanding, in terms of compute load, communication speed, and memory load. Breakthroughs in electrostatic force calculation and dynamic load balancing have enabled molecular dynamics simulations of large biomolecular complexes. Here, we report simulation results for the ribosome, using approximately 2.64 million atoms, the largest all-atom biomolecular simulation published to date. Several other nanoscale systems with different numbers of atoms were studied to measure the performance of the NAMD molecular dynamics simulation program on the Los Alamos National Laboratory Q Machine. We demonstrate that multimillion atom systems represent a 'sweet spot' for the NAMD code on large supercomputers. NAMD displays an unprecedented 85% parallel scaling efficiency for the ribosome system on 1024 CPUs. We also review recent targeted molecular dynamics simulations of the ribosome that prove useful for studying conformational changes of this large biomolecular complex in atomic detail. PMID:17187988

  18. Molecular adsorption on graphene

    NASA Astrophysics Data System (ADS)

    Kong, Lingmei; Enders, Axel; Rahman, Talat S.; Dowben, Peter A.

    2014-11-01

    Current studies addressing the engineering of charge carrier concentration and the electronic band gap in epitaxial graphene using molecular adsorbates are reviewed. The focus here is on interactions between the graphene surface and the adsorbed molecules, including small gas molecules (H2O, H2, O2, CO, NO2, NO, and NH3), aromatic, and non-aromatic molecules (F4-TCNQ, PTCDA, TPA, Na-NH2, An-CH3, An-Br, Poly (ethylene imine) (PEI), and diazonium salts), and various biomolecules such as peptides, DNA fragments, and other derivatives. This is followed by a discussion on graphene-based gas sensor concepts. In reviewing the studies of the effects of molecular adsorption on graphene, it is evident that the strong manipulation of graphene’s electronic structure, including p- and n-doping, is not only possible with molecular adsorbates, but that this approach appears to be superior compared to these exploiting edge effects, local defects, or strain. However, graphene-based gas sensors, albeit feasible because huge adsorbate-induced variations in the relative conductivity are possible, generally suffer from the lack of chemical selectivity.

  19. EPR Studies of Magnetically Dilute Ga-Doped Single Crystals of Fe18 Antiferromagnetic Molecular Wheels

    NASA Astrophysics Data System (ADS)

    Henderson, John; Ramsey, Christopher; Del Barco, Enrique; Stamatatos, Theocharis; Christou, George

    2008-03-01

    Studies of the quantum dynamics of the electron spins in solid state systems has gained considerable interest recently due to their potential for use as quantum computing substrates. One class of materials, molecular magnets, are of particular importance, owing to the seemingly limitless array of spin configurations due to synthetic chemical flexibility. Efforts are currently devoted to minimizing decoherence times by diminishing dipolar effects. In this regard, we have carried out EPR measurements on small single crystals of 0.5% Ga doped Fe18 molecular antiferromagnetic wheels at temperatures down to 300 mK using planar resonators patterned on GaAs wafers. This system constitutes a dilute sample of S = 5/2 molecules dispersed within a sea of S = 0 (at low temperature) molecules, which significantly reduces dipolar interactions and might provide a means of observing Rabi oscillations in crystals of molecular magnets. Detailed angular dependence studies reveal significant anisotropy with D = 500 mK and E = 20 mK. The presence of second order anisotropy (E) is very unusual for such a high symmetry system and its interpretation will be discussed. Pulsed-EPR measurements and doping concentration dependence will also be discussed.

  20. Exploring Molecular Speciation and Crystallization Mechanism of Amorphous 2-Phenylamino Nicotinic Acid.

    PubMed

    Kalra, Arjun; Lubach, Joseph W; Munson, Eric J; Li, Tonglei

    2018-02-07

    Molecular understanding of phase stability and transition of the amorphous state helps in formulation and manufacturing of poorly-soluble drugs. Crystallization of a model compound, 2-phenylamino nicotinic acid (2PNA), from the amorphous state was studied using solid-state analytical methods. Our previous report suggests that 2PNA molecules mainly develop intermolecular -COOH∙∙∙pyridine N (acid-pyridine) interactions in the amorphous state. In the current study, the molecular speciation is explored with regard to the phase transition from the amorphous to the crystalline state. Using spectroscopic techniques, the molecular interactions and structural evolvement during the recrystallization from the glassy state were investigated. The results unveiled that the structurally heterogeneous amorphous state contains acid-pyridine aggregates - either as hydrogen-bonded neutral molecules or as zwitterions - as well as a population of carboxylic acid dimers. Phase transition from the amorphous state results in crystal structures composed of carboxylic acid dimer (acid-acid) synthon or acid-pyridine chains depending on the crystallization conditions employed. The study underlines the structural evolvement, as well as its impact on the metastability, of amorphous samples from local, supramolecular assemblies to long-range intermolecular ordering through crystallization.

  1. Ionic size effects to molecular solvation energy and to ion current across a channel resulted from the nonuniform size-modified PNP equations.

    PubMed

    Qiao, Yu; Tu, Bin; Lu, Benzhuo

    2014-05-07

    Ionic finite size can impose considerable effects to both the equilibrium and non-equilibrium properties of a solvated molecular system, such as the solvation energy, ionic concentration, and transport in a channel. As discussed in our former work [B. Lu and Y. C. Zhou, Biophys. J. 100, 2475 (2011)], a class of size-modified Poisson-Boltzmann (PB)/Poisson-Nernst-Planck (PNP) models can be uniformly studied through the general nonuniform size-modified PNP (SMPNP) equations deduced from the extended free energy functional of Borukhov et al. [I. Borukhov, D. Andelman, and H. Orland, Phys. Rev. Lett. 79, 435 (1997)] This work focuses on the nonuniform size effects to molecular solvation energy and to ion current across a channel for real biomolecular systems. The main contributions are: (1) we prove that for solvation energy calculation with nonuniform size effects (through equilibrium SMPNP simulation), there exists a simplified approximation formulation which is the same as the widely used one in PB community. This approximate form avoids integration over the whole domain and makes energy calculations convenient. (2) Numerical calculations show that ionic size effects tend to negate the solvation effects, which indicates that a higher molecular solvation energy (lower absolute value) is to be predicted when ionic size effects are considered. For both calculations on a protein and a DNA fragment systems in a 0.5M 1:1 ionic solution, a difference about 10 kcal/mol in solvation energies is found between the PB and the SMPNP predictions. Moreover, it is observed that the solvation energy decreases as ionic strength increases, which behavior is similar as those predicted by the traditional PB equation (without size effect) and by the uniform size-modified Poisson-Boltzmann equation. (3) Nonequilibrium SMPNP simulations of ion permeation through a gramicidin A channel show that the ionic size effects lead to reduced ion current inside the channel compared with the results without considering size effects. As a component of the current, the drift term is the main contribution to the total current. The ionic size effects to the total current almost come through the drift term, and have little influence on the diffusion terms in SMPNP.

  2. Molecular detection of bioluminescent dinoflagellates in surface waters of the Patagonian shelf during early austral summer 2008.

    PubMed

    Valiadi, Martha; Painter, Stuart C; Allen, John T; Balch, William M; Iglesias-Rodriguez, M Debora

    2014-01-01

    We investigated the distribution of bioluminescent dinoflagellates in the Patagonian Shelf region using "universal" PCR primers for the dinoflagellate luciferase gene. Luciferase gene sequences and single cell PCR tests, in conjunction with taxonomic identification by microscopy, allowed us to identify and quantify bioluminescent dinoflagellates. We compared these data to coincidental discrete optical measurements of stimulable bioluminescence intensity. Molecular detection of the luciferase gene showed that bioluminescent dinoflagellates were widespread across the majority of the Patagonian Shelf region. Their presence was comparatively underestimated by optical bioluminescence measurements, whose magnitude was affected by interspecific differences in bioluminescence intensity and by the presence of other bioluminescent organisms. Molecular and microscopy data showed that the complex hydrography of the area played an important role in determining the distribution and composition of dinoflagellate populations. Dinoflagellates were absent south of the Falkland Islands where the cold, nutrient-rich, and well-mixed waters of the Falklands Current favoured diatoms instead. Diverse populations of dinoflagellates were present in the warmer, more stratified waters of the Patagonian Shelf and Falklands Current as it warmed northwards. Here, the dinoflagellate population composition could be related to distinct water masses. Our results provide new insight into the prevalence of bioluminescent dinoflagellates in Patagonian Shelf waters and demonstrate that a molecular approach to the detection of bioluminescent dinoflagellates in natural waters is a promising tool for ecological studies of these organisms.

  3. Rapid screening, separation, and detection of hydroxyl radical scavengers from total flavonoids of Ginkgo biloba leaves by chromatography combined with molecular devices.

    PubMed

    Wang, Jing; Zheng, Meizhu; Chen, Lina; Liu, Zhiqiang; Zhang, Yuchi; Liu, Chun-Ming; Liu, Shu

    2016-11-01

    Hydroxyl radicals are the most reactive free radical of human body, a strong contributor to tissue damage. In this study, liquid chromatography coupled to electrospray ionization mass spectrometry was applied to screen and identify hydroxyl radical scavengers from the total flavonoids of Ginkgo biloba leaves, and high-performance counter current chromatography was used to separate and isolate the active compounds. Furthermore, molecular devices were used to determine hydroxyl radical scavenging activities of the obtained hydroxyl radical scavengers and other flavonoids from G. biloba leaves. As a result, six compounds were screened as hydroxyl radical scavengers, but only three flavonoids, namely, rutin, cosmos glycosides and apigenin-7-O-Glu-4'-O-Rha, were isolated successfully from total flavonoids by high-performance counter current chromatography. The purities of the three obtained compounds were over 90%, respectively, as determined by liquid chromatography. Molecular devices with 96-well microplates evaluation indicated that the 50% scavenging concentration values of screened compounds were lower than that of other flavonoids, they performed greater hydroxyl radical scavenging activity, and the evaluation effects were consistent with the liquid chromatography with mass spectrometry screening results. Therefore, chromatography combined with molecular devices is a feasible and an efficient method for systematic screening, identification, isolation, and evaluation of bioactive components in mixture of botanical medicines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Molecular genetics and targeted therapeutics in biliary tract carcinoma

    PubMed Central

    Marks, Eric I; Yee, Nelson S

    2016-01-01

    The primary malignancies of the biliary tract, cholangiocarcinoma and gallbladder cancer, often present at an advanced stage and are marginally sensitive to radiation and chemotherapy. Accumulating evidence indicates that molecularly targeted agents may provide new hope for improving treatment response in biliary tract carcinoma (BTC). In this article, we provide a critical review of the pathogenesis and genetic abnormalities of biliary tract neoplasms, in addition to discussing the current and emerging targeted therapeutics in BTC. Genetic studies of biliary tumors have identified the growth factors and receptors as well as their downstream signaling pathways that control the growth and survival of biliary epithelia. Target-specific monoclonal antibodies and small molecules inhibitors directed against the signaling pathways that drive BTC growth and invasion have been developed. Numerous clinical trials designed to test these agents as either monotherapy or in combination with conventional chemotherapy have been completed or are currently underway. Research focusing on understanding the molecular basis of biliary tumorigenesis will continue to identify for targeted therapy the key mutations that drive growth and invasion of biliary neoplasms. Additional strategies that have emerged for treating this malignant disease include targeting the epigenetic alterations of BTC and immunotherapy. By integrating targeted therapy with molecular profiles of biliary tumor, we hope to provide precision treatment for patients with malignant diseases of the biliary tract. PMID:26819503

  5. First Molecular Characterization of Theileria ornithorhynchi Mackerras, 1959: yet Another Challenge to the Systematics of the Piroplasms.

    PubMed

    Paparini, Andrea; Macgregor, James; Ryan, Una M; Irwin, Peter J

    2015-12-01

    Piroplasms, tick-transmitted Apicomplexa of the genera Theileria, Babesia and Cytauxzoon, are blood-borne parasites of clinical and veterinary importance. The order Piroplasmida shows a puzzling systematics characterized by multiple clades, soft polytomies and paraphyletic/polyphyletic genera. In the present study, screening of platypuses (Ornithorhynchus anatinus), was performed to infer the parasite molecular phylogeny. DNA was extracted from blood, ectoparasites and tick eggs and the 18S rRNA- hsp70-genes were used for the phylogenetic reconstructions. Microscopic analyses detected pleomorphic intra-erythrocytic organisms and tetrads consistent with previous descriptions of Theileria ornithorhynchi Mackerras, 1959, but observation of possible schizonts could not be confirmed. DNA sequences obtained from blood and ticks allowed resolving the systematics of the first piroplasm infecting a monotreme host. Molecularly, T. ornithorhynchi formed a novel monophyletic group, basal to most known piroplasms' clades. The ancestral position of this clade, isolated from an ancient lineage of mammalian host appears particularly fascinating. The present paper discusses the inadequacies of the current molecular systematics for the Piroplasmida and the consequences of incomplete sampling, morphology-based classification and ambiguous microscopic identifications. Likely when the current sampling bias is rectified and more sequence data is made available, the phylogenetic position of T. ornithorhynchi will be further contextualized without ambiguity. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Prostate cancer region prediction using MALDI mass spectra

    NASA Astrophysics Data System (ADS)

    Vadlamudi, Ayyappa; Chuang, Shao-Hui; Sun, Xiaoyan; Cazares, Lisa; Nyalwidhe, Julius; Troyer, Dean; Semmes, O. John; Li, Jiang; McKenzie, Frederic D.

    2010-03-01

    For the early detection of prostate cancer, the analysis of the Prostate-specific antigen (PSA) in serum is currently the most popular approach. However, previous studies show that 15% of men have prostate cancer even their PSA concentrations are low. MALDI Mass Spectrometry (MS) proves to be a better technology to discover molecular tools for early cancer detection. The molecular tools or peptides are termed as biomarkers. Using MALDI MS data from prostate tissue samples, prostate cancer biomarkers can be identified by searching for molecular or molecular combination that can differentiate cancer tissue regions from normal ones. Cancer tissue regions are usually identified by pathologists after examining H&E stained histological microscopy images. Unfortunately, histopathological examination is currently done on an adjacent slice because the H&E staining process will change tissue's protein structure and it will derogate MALDI analysis if the same tissue is used, while the MALDI imaging process will destroy the tissue slice so that it is no longer available for histopathological exam. For this reason, only the most confident cancer region resulting from the histopathological examination on an adjacent slice will be used to guide the biomarker identification. It is obvious that a better cancer boundary delimitation on the MALDI imaging slice would be beneficial. In this paper, we proposed methods to predict the true cancer boundary, using the MALDI MS data, from the most confident cancer region given by pathologists on an adjacent slice.

  7. Normal and abnormal development of the kidney: a clinician's interpretation of current knowledge.

    PubMed

    Glassberg, Kenneth I

    2002-06-01

    The recent basic science literature is replete with new discoveries in the molecular genetics of renal development. However, little of this information has filtered into urological textbooks and journals. An effort is made herein to integrate these new findings and propose a more sophisticated blueprint of renal development than the one traditionally taught in medical school and residency. To accomplish this goal the author offers simple definitions and interpretations of complicated terms and events, and points out how maldevelopment results when mutations take place. A review of recent advances in the molecular genetics of renal development and maldevelopment was done. Renal metanephric development results from the expression of many genes in the ureteral bud and metanephric blastema with each sending messages to the other to induce organogenesis. Currently an understanding of normal renal organogenesis stems from a study of disease states resulting from perturbations in molecular genetics. In turn, a better understanding of normal renal organogenesis facilitates an understanding of how dysplasia, hypoplasia, cystic disease and tumors develop when molecular genetics go awry. For each form of renal dysgenesis and for most renal tumors 1 or more gene defects are eventually identified. The young urologist based in these new discoveries would be better prepared to make the breakthroughs in the future that are necessary for advancing the prevention and management of these conditions.

  8. Microwave Three-Wave Mixing Experiments for Chirality Determination: Current Status

    NASA Astrophysics Data System (ADS)

    Perez, Cristobal; Shubert, V. Alvin; Schmitz, David; Medcraft, Chris; Krin, Anna; Schnell, Melanie

    2015-06-01

    Microwave three-wave mixing experiments have been shown to provide a novel and sensitive way to generate and measure enantiomer-specific molecular signatures. The handedness of the sample can be obtained from the phase of the molecular free induction decay whereas the enantiomeric excess can be determined by the amplitude of the chiral signal. After the introduction of this technique by Patterson et al. remarkable improvements have been realized and experimental strategies for both absolute phase determination and enantiomeric excess have been presented. This technique has been also successfully implemented at higher microwave frequencies. Here we present the current status of this technique as well future directions and perspectives. This will be illustrated through our systematic study of chiral terpenes as well as preliminary results in molecular clusters. Patterson, D.; Schnell, M.; Doyle, J. M. Enantiomer-Specific Detection of Chiral Molecules via Microwave Spectroscopy. Nature 2013, 497, 475-477. Patterson, D.; Doyle, J. M. Sensitive Chiral Analysis via Microwave Three-Wave Mixing. Phys. Rev. Lett. 2013, 111, 023008. Shubert, V. A.; Schmitz, D.; Patterson, D.; Doyle, J. M.; Schnell, M. Identifying Enantiomers in Mixtures of Chiral Molecules with Broadband Microwave Spectroscopy. Angew. Chem. Int. Ed. 2014, 53, 1152-1155. Lobsiger, S.; Perez, C.; Evangelisti, L.; Lehmann, K. K.; Pate, B. H. Molecular Structure and Chirality Detection by Fourier Transform Microwave Spectroscopy. J. Phys. Chem. Lett. 2014, 6, 196-200.

  9. Conductance of carbon based macro-molecular structures

    NASA Astrophysics Data System (ADS)

    Stafström, S.; Hansson, A.; Paulsson, M.

    2000-11-01

    Electron transport through metallic nanotubes and stacks of wide bandgap polyaromatic hydrocarbons (PAH) are studied theoretically using the Landauer formalism. These two systems constitute examples of different types of carbon based nanostructured materials of potential use in molecular electronics. The studies are carried out for structures with finite length that bridge two contact pads. In the case of perfect metallic nanotubes, the current is observed to increase stepwise with the applied voltage and the resistance is independent on the length of the tube. In the PAH stacks, the off resonance tunneling conductance decreases exponentially with the number of molecules in the stack and shows a near linear increase with the number of carbon atoms in each molecule.

  10. Use of pressure cycling technology for cell lysis and recovery of bacterial and fungal communities from soil

    USDA-ARS?s Scientific Manuscript database

    Current molecular methodologies, specifically DNA-based approaches, provide access to previously hidden soil biodiversity and are routinely employed in environmental studies of microbial ecology. Selection of cell lysis methodology is critical to community analyses due to the inability of any singul...

  11. Genetics of Attention Deficit Hyperactivity Disorder: A Current Review and Future Prospects

    ERIC Educational Resources Information Center

    Levy, Florence; Hay, David A.; Bennett, Kellie S.

    2006-01-01

    While there have been significant advances in both the behaviour genetics and molecular genetics of Attention Deficit Hyperactivity Disorder (ADHD), researchers are now beginning to develop hypotheses about relationships between phenotypes and genetic mechanisms. Twin studies are able to model genetic, shared environmental and non-shared…

  12. Improving toxicity extrapolation using molecular sequence similarity: A case study of pyrethroids and the sodium ion channel

    EPA Science Inventory

    A significant challenge in ecotoxicology has been determining chemical hazards to species with limited or no toxicity data. Currently, extrapolation tools like U.S. EPA’s Web-based Interspecies Correlation Estimation (Web-ICE; www3.epa.gov/webice) models categorize toxicity...

  13. Eicosapentaenoic acid prevents high fat diet-induced metabolic disorders: Genomic and metabolomic analyses of underlying mechanism

    USDA-ARS?s Scientific Manuscript database

    Previously our lab demonstrated eicosapenaenoic acid (EPA)'s ability to prevent high-fat (HF) diet-induced obesity by decreasing insulin resistance, glucose intolerance and inflammation. In the current study, we used genomic and metabolomic approaches to further investigate the molecular basis for t...

  14. An ethylene-induced regulatory module delays rose flower senescence by regulating cytokinin content

    USDA-ARS?s Scientific Manuscript database

    In many plant species, including rose (Rosa hybrida), flower senescence is promoted by the gaseous hormone, ethylene, and inhibited by cytokinin (CTK) class of hormones. However, the molecular mechanisms underlying these antagonistic effects are not well understood. In this current study, we charact...

  15. Molecular SPECT Imaging: An Overview

    PubMed Central

    Khalil, Magdy M.; Tremoleda, Jordi L.; Bayomy, Tamer B.; Gsell, Willy

    2011-01-01

    Molecular imaging has witnessed a tremendous change over the last decade. Growing interest and emphasis are placed on this specialized technology represented by developing new scanners, pharmaceutical drugs, diagnostic agents, new therapeutic regimens, and ultimately, significant improvement of patient health care. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) have their signature on paving the way to molecular diagnostics and personalized medicine. The former will be the topic of the current paper where the authors address the current position of the molecular SPECT imaging among other imaging techniques, describing strengths and weaknesses, differences between SPECT and PET, and focusing on different SPECT designs and detection systems. Radiopharmaceutical compounds of clinical as well-preclinical interest have also been reviewed. Moreover, the last section covers several application, of μSPECT imaging in many areas of disease detection and diagnosis. PMID:21603240

  16. Transient photocurrent in molecular junctions: singlet switching on and triplet blocking.

    PubMed

    Petrov, E G; Leonov, V O; Snitsarev, V

    2013-05-14

    The kinetic approach adapted to describe charge transmission in molecular junctions, is used for the analysis of the photocurrent under conditions of moderate light intensity of the photochromic molecule. In the framework of the HOMO-LUMO model for the single electron molecular states, the analytic expressions describing the temporary behavior of the transient and steady state sequential (hopping) as well as direct (tunnel) current components have been derived. The conditions at which the current components achieve their maximal values are indicated. It is shown that if the rates of charge transmission in the unbiased molecular diode are much lower than the intramolecular singlet-singlet excitation/de-excitation rate, and the threefold degenerated triplet excited state of the molecule behaves like a trap blocking the charge transmission, a possibility of a large peak-like transient switch-on photocurrent arises.

  17. Molecular biomarkers in idiopathic pulmonary fibrosis

    PubMed Central

    Ley, Brett; Brown, Kevin K.

    2014-01-01

    Molecular biomarkers are highly desired in idiopathic pulmonary fibrosis (IPF), where they hold the potential to elucidate underlying disease mechanisms, accelerated drug development, and advance clinical management. Currently, there are no molecular biomarkers in widespread clinical use for IPF, and the search for potential markers remains in its infancy. Proposed core mechanisms in the pathogenesis of IPF for which candidate markers have been offered include alveolar epithelial cell dysfunction, immune dysregulation, and fibrogenesis. Useful markers reflect important pathological pathways, are practically and accurately measured, have undergone extensive validation, and are an improvement upon the current approach for their intended use. The successful development of useful molecular biomarkers is a central challenge for the future of translational research in IPF and will require collaborative efforts among those parties invested in advancing the care of patients with IPF. PMID:25260757

  18. Molecular communication and networking: opportunities and challenges.

    PubMed

    Nakano, Tadashi; Moore, Michael J; Wei, Fang; Vasilakos, Athanasios V; Shuai, Jianwei

    2012-06-01

    The ability of engineered biological nanomachines to communicate with biological systems at the molecular level is anticipated to enable future applications such as monitoring the condition of a human body, regenerating biological tissues and organs, and interfacing artificial devices with neural systems. From the viewpoint of communication theory and engineering, molecular communication is proposed as a new paradigm for engineered biological nanomachines to communicate with the natural biological nanomachines which form a biological system. Distinct from the current telecommunication paradigm, molecular communication uses molecules as the carriers of information; sender biological nanomachines encode information on molecules and release the molecules in the environment, the molecules then propagate in the environment to receiver biological nanomachines, and the receiver biological nanomachines biochemically react with the molecules to decode information. Current molecular communication research is limited to small-scale networks of several biological nanomachines. Key challenges to bridge the gap between current research and practical applications include developing robust and scalable techniques to create a functional network from a large number of biological nanomachines. Developing networking mechanisms and communication protocols is anticipated to introduce new avenues into integrating engineered and natural biological nanomachines into a single networked system. In this paper, we present the state-of-the-art in the area of molecular communication by discussing its architecture, features, applications, design, engineering, and physical modeling. We then discuss challenges and opportunities in developing networking mechanisms and communication protocols to create a network from a large number of bio-nanomachines for future applications.

  19. Stem cell dynamics in the hair follicle niche

    PubMed Central

    Rompolas, Panteleimon; Greco, Valentina

    2014-01-01

    Hair follicles are skin appendages of the mammalian skin that have the ability to periodically and stereotypically regenerate in order to continuously produce new hair over our lifetime. The ability of the hair follicle to regenerate is due to the presence of stem cells that along with other cell populations and non-cellular components, including molecular signals and extracellular material, make up a niche microenvironment. Mounting evidence suggests that the niche is critical for regulating stem cell behavior and thus the process of regeneration. Here we review the literature concerning past and current studies that have utilized mouse genetic models, combined with other approaches to dissect the molecular and cellular composition of the hair follicle niche. We also discuss our current understanding of how stem cells operate within the niche during the process of tissue regeneration and the factors that regulate their behavior. PMID:24361866

  20. Targeted therapy in biliary tract cancers-current limitations and potentials in the future.

    PubMed

    Sahu, Selley; Sun, Weijing

    2017-04-01

    Biliary tract cancers (BTC)/Cholangiocarcinoma (CCA) is an aggressive biliary tract epithelial malignancy from varying locations within the biliary tree with cholangiocyte depreciation., including intrahepatic cholangiocarcinoma (iCCA) (iCCA), extrahepatic cholangiocarcinoma (eCCA) and gallbladder carcinoma (GBC). The disease is largely heterogeneous in etiology, epidemiology, and molecular profile. There are limited treatment options and low survival rates for those patients with advanced or metastatic disease. Systemic treatment is confined to cytotoxic chemotherapy with the combination of gemcitabine and cisplatin. Lack of a stereotype genetic signature makes difficult in identification of potential actionable target directly, which may also explain lack of obvious clinic benefit with target oriented agents from current studies. It is crucial to understand of BTC carcinogenesis, tumor-stroma interactions, and key molecular pathways, and herald to establish targeted, individualized therapies for the heterogeneous disease, and eventually to improve the survival and overall outcome of patients.

  1. Morphological phylogeny of Tradescantia L. (Commelinaceae) sheds light on a new infrageneric classification for the genus and novelties on the systematics of subtribe Tradescantiinae

    PubMed Central

    Pellegrini, Marco O. O.

    2017-01-01

    Abstract Throughout the years, three infrageneric classifications were proposed for Tradescantia along with several informal groups and species complexes. The current infrageneric classification accepts 12 sections – with T. sect. Tradescantia being further divided into four series – and assimilates many concepts adopted by previous authors. Recent molecular-based phylogenetic studies indicate that the currently accepted sections might not represent monophyletic groups within Tradescantia. Based on newly gathered morphological data on the group, complemented with available micromorphological, cytological and phytochemical data, I present the first morphology-based evolutionary hypothesis for Tradescantia. Furthermore, I reduce subtribe Thyrsantheminae to a synonym of subtribe Tradescantiinae, and propose a new infrageneric classification for Tradescantia, based on the total evidence of the present morphological phylogeny, in accordance to the previously published molecular data. PMID:29118649

  2. Cancer of the Pancreas: Molecular Pathways and Current Advancement in Treatment.

    PubMed

    Polireddy, Kishore; Chen, Qi

    2016-01-01

    Pancreatic cancer is one of the most lethal cancers among all malignances, with a median overall survival of <1 year and a 5-year survival of ~5%. The dismal survival rate and prognosis are likely due to lack of early diagnosis, fulminant disease course, high metastasis rate, and disappointing treatment outcome. Pancreatic cancers harbor a variety of genetic alternations that render it difficult to treat even with targeted therapy. Recent studies revealed that pancreatic cancers are highly enriched with a cancer stem cell (CSC) population, which is resistant to chemotherapeutic drugs, and therefore escapes chemotherapy and promotes tumor recurrence. Cancer cell epithelial to mesenchymal transition (EMT) is highly associated with metastasis, generation of CSCs, and treatment resistance in pancreatic cancer. Reviewed here are the molecular biology of pancreatic cancer, the major signaling pathways regulating pancreatic cancer EMT and CSCs, and the advancement in current clinical and experimental treatments for pancreatic cancer.

  3. Sanguinaria canadensis: Traditional Medicine, Phytochemical Composition, Biological Activities and Current Uses

    PubMed Central

    Croaker, Andrew; King, Graham J.; Pyne, John H.; Anoopkumar-Dukie, Shailendra; Liu, Lei

    2016-01-01

    Sanguinaria canadensis, also known as bloodroot, is a traditional medicine used by Native Americans to treat a diverse range of clinical conditions. The plants rhizome contains several alkaloids that individually target multiple molecular processes. These bioactive compounds, mechanistically correlate with the plant’s history of ethnobotanical use. Despite their identification over 50 years ago, the alkaloids of S. canadensis have not been developed into successful therapeutic agents. Instead, they have been associated with clinical toxicities ranging from mouthwash induced leukoplakia to cancer salve necrosis and treatment failure. This review explores the historical use of S. canadensis, the molecular actions of the benzophenanthridine and protopin alkaloids it contains, and explores natural alkaloid variation as a possible rationale for the inconsistent efficacy and toxicities encountered by S. canadensis therapies. Current veterinary and medicinal uses of the plant are studied with an assessment of obstacles to the pharmaceutical development of S. canadensis alkaloid based therapeutics. PMID:27618894

  4. Sanguinaria canadensis: Traditional Medicine, Phytochemical Composition, Biological Activities and Current Uses.

    PubMed

    Croaker, Andrew; King, Graham J; Pyne, John H; Anoopkumar-Dukie, Shailendra; Liu, Lei

    2016-08-27

    Sanguinaria canadensis, also known as bloodroot, is a traditional medicine used by Native Americans to treat a diverse range of clinical conditions. The plants rhizome contains several alkaloids that individually target multiple molecular processes. These bioactive compounds, mechanistically correlate with the plant's history of ethnobotanical use. Despite their identification over 50 years ago, the alkaloids of S. canadensis have not been developed into successful therapeutic agents. Instead, they have been associated with clinical toxicities ranging from mouthwash induced leukoplakia to cancer salve necrosis and treatment failure. This review explores the historical use of S. canadensis, the molecular actions of the benzophenanthridine and protopin alkaloids it contains, and explores natural alkaloid variation as a possible rationale for the inconsistent efficacy and toxicities encountered by S. canadensis therapies. Current veterinary and medicinal uses of the plant are studied with an assessment of obstacles to the pharmaceutical development of S. canadensis alkaloid based therapeutics.

  5. Recovery of Toxoplasma gondii DNA in experimentally mummified skin and bones: Prospects for paleoparasitological studies to unveil the origin of toxoplasmosis.

    PubMed

    Leles, Daniela; Lobo, Amanda; Rhodes, Taís; Millar, Patrícia Riddell; Amendoeira, Maria Regina Reis; Araújo, Adauto

    2016-09-01

    Paleoparasitology studies parasite infections by finding the parasites' remains in preserved organic remains such as natural or artificial mummy tissues, skeletons, teeth, and coprolites, among others. However, some currently important infections like toxoplasmosis have not been studied by paleoparasitology. The reasons include this parasite's complex life cycle, the resulting difficulties in locating this protozoan in the intermediate host tissues, and the limitation of coprolite studies to felines, the protozoan's definitive host. The current study thus aimed to produce an experimental model for molecular diagnosis of toxoplasmosis, prioritizing its study in bones and skin, the most abundant materials in archeological collections and sites. The study demonstrated the feasibility of recovering Toxoplasma gondii DNA from desiccated material, including bones and skin, in experimental models both with circulating tachyzoites (RH strain), characteristic of acute infection, and with cysts (ME49 cystogenic strain), characteristic of chronic infection. At present, most individuals with T. gondii infection are in the chronic phase, and the same was probably true in the past. The current study thus expands the odds of finding the parasite in archeological material, enhanced by the nature of the material in which the diagnosis was made. Finding the parasite may help answer questions that are widely debated in the literature on this protozoan's origin (Old World versus New World). In addition, when conditions do not allow ideal storage of samples for molecular tests, the methodology creates the possibility of testing oven-dried samples transported at room temperature. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Electron transport in dipyridazine and dipyridimine molecular junctions: a first-principles investigation

    NASA Astrophysics Data System (ADS)

    Parashar, Sweta

    2018-05-01

    We present density functional theory-nonequilibrium Green’s function method for electron transport of dipyridazine and dipyridimine molecular junctions with gold, copper and nickel electrodes. Our investigation reveals that the junctions formed with gold and copper electrodes bridging dipyridazine molecule through thiol anchoring group enhance current as compared to the junctions in which the molecule and electrode were coupled directly. Further, nickel electrode displays weak decrease of current with increase of voltage at about 1.2 V. The result is fully rationalized by means of the distribution of molecular orbitals as well as shift in molecular energy levels and HOMO-LUMO gap with applied bias voltage. Our findings are compared with theoretical and experimental results available for other molecular junctions. Present results predict potential avenues for changing the transport behavior by not only changing the electrodes, but also the position of nitrogen atom and type of anchoring-atom that connect molecule and electrodes, thus extending applications of dipyridazine and dipyridimine molecule in future integrated circuits.

  7. Molecular, genetic and stem cell-mediated therapeutic strategies for spinal muscular atrophy (SMA).

    PubMed

    Zanetta, Chiara; Riboldi, Giulietta; Nizzardo, Monica; Simone, Chiara; Faravelli, Irene; Bresolin, Nereo; Comi, Giacomo P; Corti, Stefania

    2014-02-01

    Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease. It is the first genetic cause of infant mortality. It is caused by mutations in the survival motor neuron 1 (SMN1) gene, leading to the reduction of SMN protein. The most striking component is the loss of alpha motor neurons in the ventral horn of the spinal cord, resulting in progressive paralysis and eventually premature death. There is no current treatment other than supportive care, although the past decade has seen a striking advancement in understanding of both SMA genetics and molecular mechanisms. A variety of disease modifying interventions are rapidly bridging the translational gap from the laboratory to clinical trials. In this review, we would like to outline the most interesting therapeutic strategies that are currently developing, which are represented by molecular, gene and stem cell-mediated approaches for the treatment of SMA. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Short-time dynamics of molecular junctions after projective measurement

    NASA Astrophysics Data System (ADS)

    Tang, Gaomin; Xing, Yanxia; Wang, Jian

    2017-08-01

    In this work, we study the short-time dynamics of a molecular junction described by Anderson-Holstein model using full-counting statistics after projective measurement. The coupling between the central quantum dot (QD) and two leads was turned on at remote past and the system is evolved to steady state at time t =0 , when we perform the projective measurement in one of the lead. Generating function for the charge transfer is expressed as a Fredholm determinant in terms of Keldysh nonequilibrium Green's function in the time domain. It is found that the current is not constant at short times indicating that the measurement does perturb the system. We numerically compare the current behaviors after the projective measurement with those in the transient regime where the subsystems are connected at t =0 . The universal scaling for high-order cumulants is observed for the case with zero QD occupation due to the unidirectional transport at short times. The influences of electron-phonon interaction on short-time dynamics of electric current, shot noise, and differential conductance are analyzed.

  9. Estimation of π-π Electronic Couplings from Current Measurements.

    PubMed

    Trasobares, J; Rech, J; Jonckheere, T; Martin, T; Aleveque, O; Levillain, E; Diez-Cabanes, V; Olivier, Y; Cornil, J; Nys, J P; Sivakumarasamy, R; Smaali, K; Leclere, P; Fujiwara, A; Théron, D; Vuillaume, D; Clément, N

    2017-05-10

    The π-π interactions between organic molecules are among the most important parameters for optimizing the transport and optical properties of organic transistors, light-emitting diodes, and (bio-) molecular devices. Despite substantial theoretical progress, direct experimental measurement of the π-π electronic coupling energy parameter t has remained an old challenge due to molecular structural variability and the large number of parameters that affect the charge transport. Here, we propose a study of π-π interactions from electrochemical and current measurements on a large array of ferrocene-thiolated gold nanocrystals. We confirm the theoretical prediction that t can be assessed from a statistical analysis of current histograms. The extracted value of t ≈35 meV is in the expected range based on our density functional theory analysis. Furthermore, the t distribution is not necessarily Gaussian and could be used as an ultrasensitive technique to assess intermolecular distance fluctuation at the subangström level. The present work establishes a direct bridge between quantum chemistry, electrochemistry, organic electronics, and mesoscopic physics, all of which were used to discuss results and perspectives in a quantitative manner.

  10. Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination.

    PubMed

    Yu, Jiujiang

    2012-10-25

    Traditional molecular techniques have been used in research in discovering the genes and enzymes that are involved in aflatoxin formation and genetic regulation. We cloned most, if not all, of the aflatoxin pathway genes. A consensus gene cluster for aflatoxin biosynthesis was discovered in 2005. The factors that affect aflatoxin formation have been studied. In this report, the author summarized the current status of research progress and future possibilities that may be used for solving aflatoxin contamination.

  11. Poorly Differentiated Thyroid Carcinoma.

    PubMed

    Setia, Namrata; Barletta, Justine A

    2014-12-01

    Poorly differentiated thyroid carcinoma (PDTC) has been recognized for the past 30 years as an entity showing intermediate differentiation and clinical behavior between well-differentiated thyroid carcinomas (ie, papillary thyroid carcinoma and follicular thyroid carcinoma) and anaplastic thyroid carcinoma; however, there has been considerable controversy around the definition of PDTC. In this review, the evolution in the definition of PDTC, current diagnostic criteria, differential diagnoses, potentially helpful immunohistochemical studies, and molecular alterations are discussed with the aim of highlighting where the diagnosis of PDTC currently stands. Published by Elsevier Inc.

  12. Current Understanding on Aflatoxin Biosynthesis and Future Perspective in Reducing Aflatoxin Contamination

    PubMed Central

    Yu, Jiujiang

    2012-01-01

    Traditional molecular techniques have been used in research in discovering the genes and enzymes that are involved in aflatoxin formation and genetic regulation. We cloned most, if not all, of the aflatoxin pathway genes. A consensus gene cluster for aflatoxin biosynthesis was discovered in 2005. The factors that affect aflatoxin formation have been studied. In this report, the author summarized the current status of research progress and future possibilities that may be used for solving aflatoxin contamination. PMID:23202305

  13. Molecular pathogenesis and clinical management of Fanconi anemia

    PubMed Central

    Kee, Younghoon; D’Andrea, Alan D.

    2012-01-01

    Fanconi anemia (FA) is a rare genetic disorder associated with a high frequency of hematological abnormalities and congenital anomalies. Based on multilateral efforts from basic scientists and clinicians, significant advances in our knowledge of FA have been made in recent years. Here we review the clinical features, the diagnostic criteria, and the current and future therapies of FA and describe the current understanding of the molecular basis of the disease. PMID:23114602

  14. Introduction to digital PCR.

    PubMed

    Bizouarn, Francisco

    2014-01-01

    Digital PCR (dPCR) is a molecular biology technique going through a renaissance. With the arrival of new instrumentation dPCR can now be performed as a routine molecular biology assay. This exciting new technique provides quantitative and detection capabilities that by far surpass other methods currently used. This chapter is an overview of some of the applications currently being performed using dPCR as well as the fundamental concepts and techniques this technology is based on.

  15. Leveraging Genomics for Head and Neck Cancer Treatment.

    PubMed

    Kemmer, J D; Johnson, D E; Grandis, J R

    2018-06-01

    The genomic landscape of head and neck squamous cell carcinoma (HNSCC) has been recently elucidated. Key epigenetic and genetic characteristics of this cancer have been reported and substantiated in multiple data sets, including those distinctive to the growing subset of human papilloma virus (HPV)-associated tumors. This increased understanding of the molecular underpinnings of HNSCC has not resulted in new approaches to treatment. Three Food and Drug Administration-approved molecular targeting agents are currently available to treat recurrent/metastatic disease, but these have exhibited efficacy only in subsets of HNSCC patients, and thus surgery, chemotherapy, and/or radiation remain as standard approaches. The lack of predictive biomarkers to any therapy represents an obstacle to achieving the promise of precision medicine. This review aims to familiarize the reader with current insights into the HNSCC genomic landscape, discuss the currently approved and promising molecular targeting agents under exploration in laboratories and clinics, and consider precision medicine approaches to HNSCC.

  16. The different mechanisms of sporophytic self-incompatibility.

    PubMed

    Hiscock, Simon J; Tabah, David A

    2003-06-29

    Flowering plants have evolved a multitude of mechanisms to avoid self-fertilization and promote outbreeding. Self-incompatibility (SI) is by far the most common of these, and is found in ca. 60% of flowering plants. SI is a genetically controlled pollen-pistil recognition system that provides a barrier to fertilization by self and self-related pollen in hermaphrodite (usually co-sexual) flowering plants. Two genetically distinct forms of SI can be recognized: gametophytic SI (GSI) and sporophytic SI (SSI), distinguished by how the incompatibility phenotype of the pollen is determined. GSI appears to be the most common mode of SI and can operate through at least three different mechanisms, two of which have been characterized extensively at a molecular level in the Solanaceae and Papaveraceae. Because molecular studies of SSI have been largely confined to species from the Brassicaceae, predominantly Brassica species, it is not yet known whether SSI, like GSI, can operate through different molecular mechanisms. Molecular studies of SSI are now being carried out on Ipomoea trifida (Convolvulaceae) and Senecio squalidus (Asteraceae) and are providing important preliminary data suggesting that SSI in these two families does not share the same molecular mechanism as that of the Brassicaceae. Here, what is currently known about the molecular regulation of SSI in the Brassicaceae is briefly reviewed, and the emerging data on SSI in I. trifida, and more especially in S. squalidus, are discussed.

  17. Molecular genetics of pancreatic neoplasms and their morphologic correlates: an update on recent advances and potential diagnostic applications.

    PubMed

    Reid, Michelle D; Saka, Burcu; Balci, Serdar; Goldblum, Andrew S; Adsay, N Volkan

    2014-02-01

    To summarize the most clinically and biologically relevant advances in molecular/genetic characteristics of various pancreatic neoplasms, with morphologic correlation. Whole-exome sequencing of numerous benign and malignant pancreatic tumors, along with the plethora of highly sensitive molecular studies now available for analyzing these tumors, provide mounting evidence to support the long-held belief that cancer is essentially a genetic disease. These genetic discoveries have not only helped to confirm the age-old, morphology-based classifications of pancreatic neoplasia but have shed new light on their mechanisms. Many of these molecular discoveries are currently being used in preoperative diagnosis. Mutations in KRAS, P16/CDKN2A, TP53, and SMAD4/DPC4 are commonly seen in ductal neoplasia but not in nonductal tumors; ductal adenocarcinomas with SMAD4/DPC4 loss are associated with widespread metastasis and poor prognosis. GNAS and RNF43 mutations have been discovered in most intraductal pancreatic mucinous neoplasms, providing critical molecular fingerprints for their diagnosis. Mutation in DAXX/ATRX is only seen in pancreatic neuroendocrine tumors, making it a useful potential marker in distinguishing these tumors from mimics. When combined with morphologic observations, molecular studies will increase our understanding of the pathogenesis and morphomolecular signatures associated with specific neoplasms and provide new horizons for precision medicine and targeted therapies.

  18. Amyloid beta peptide as a physiological modulator of neuronal 'A'-type K+ current.

    PubMed

    Plant, Leigh D; Webster, Nicola J; Boyle, John P; Ramsden, Martin; Freir, Darragh B; Peers, Chris; Pearson, Hugh A

    2006-11-01

    Control of neuronal spiking patterns resides, in part, in the type and degree of expression of voltage-gated K(+) channel subunits. Previous studies have revealed that soluble forms of the Alzheimer's disease associated amyloid beta protein (Abeta) can increase the 'A'-type current in neurones. In this study, we define the molecular basis for this increase and show that endogenous production of Abeta is important in the modulation of Kv4.2 and Kv4.3 subunit expression in central neurones. A-type K(+) currents, and Kv4.2 and Kv4.3 subunit expression, were transiently increased in cerebellar granule neurones by the 1-40 and 1-42 forms of Abeta (100nM, 2-24h). Currents through recombinant Kv4.2 channels expressed in HEK293 cells were increased in a similar fashion to those through the native channels. Increases in 'A'-type current could be prevented by the use of cycloheximide and brefeldin A, indicating that protein expression and trafficking processes were altered by Abeta, rather than protein degredation. Endogenous Abeta production in cerebellar granule neurones was blocked using inhibitors of either gamma- or beta-secretase and resulted in decreased K(+) current. Crucially this could be prevented by co-application of exogenous Abeta (1nM), however, no change in Kv4.2 or Kv4.3 subunit expression occurred. These data show that Abeta is a modulator of Kv4 subunit expression in neurones at both the functional and the molecular level. Thus Abeta is not only involved in Alzheimer pathology, but is also an important physiological regulator of ion channel expression and hence neuronal excitability.

  19. Choosing and Using Introns in Molecular Phylogenetics

    PubMed Central

    Creer, Simon

    2007-01-01

    Introns are now commonly used in molecular phylogenetics in an attempt to recover gene trees that are concordant with species trees, but there are a range of genomic, logistical and analytical considerations that are infrequently discussed in empirical studies that utilize intron data. This review outlines expedient approaches for locus selection, overcoming paralogy problems, recombination detection methods and the identification and incorporation of LVHs in molecular systematics. A range of parsimony and Bayesian analytical approaches are also described in order to highlight the methods that can currently be employed to align sequences and treat indels in subsequent analyses. By covering the main points associated with the generation and analysis of intron data, this review aims to provide a comprehensive introduction to using introns (or any non-coding nuclear data partition) in contemporary phylogenetics. PMID:19461984

  20. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    The Neural Development Section (NDS) headed by Dr. Lino Tessarollo has an open postdoctoral fellow position. The candidate should have a background in neurobiology and basic expertise in molecular biology, cell biology, immunoistochemistry and biochemistry.  Experience in confocal analysis is desired. The NDS study the biology of neurotrophin and Trk receptors function by using both in vitro and in vivo approaches. Our group makes extensive use of engineered mouse models and cell culture models. The current research emphasis is on understanding the molecular mechanisms by which activated trk receptor function. Specifically, we are dissecting the molecular mechanism responsible for modulating Trk receptors activity, including their interaction with specific scaffold proteins and proteins leading to de-activation of Trk signaling. Moreover, we are attempting to identify new signaling pathways activated by truncated Trk receptors.

  1. Modeling Contamination Migration on the Chandra X-ray Observatory II

    NASA Technical Reports Server (NTRS)

    O'Dell, Steve; Swartz, Doug; Tice, Neil; Plucinsky, Paul; Grant, Catherine; Marshall, Herman; Vikhlinin, Alexey

    2013-01-01

    During its first 14 years of operation, the cold (about -60degC) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition may have changed, perhaps partially related to changes in the operating temperature of the ACIS housing. This evolution of the accumulation of the molecular contamination has motivated further analysis of contamination migration on the Chandra X-ray Observatory, particularly within and near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, detailed thermal modeling based upon monitored temperature data, and an accordingly refined model of the molecular transport.

  2. The HITRAN molecular data base - Editions of 1991 and 1992

    NASA Technical Reports Server (NTRS)

    Rothman, Laurence S.; Gamache, R. R.; Tipping, R. H.; Rinsland, C. P.; Smith, M. A. H.; Benner, D. C.; Devi, V. M.; Flaud, J.-M.; Camy-Peyret, C.; Perrin, A.

    1992-01-01

    We describe in this paper the modifications, improvements, and enhancements to the HITRAN molecular absorption database that have occurred in the two editions of 1991 and 1992. The current database includes line parameters for 31 species and their isotopomers that are significant for terrestrial atmospheric studies. This line-by-line portion of HITRAN presently contains about 709,000 transitions between 0 and 23,000/cm and contains three molecules not present in earlier versions: COF2, SF6, and H2S. The HITRAN compilation has substantially more information on chlorofluorocarbons and other molecular species that exhibit dense spectra which are not amenable to line-by-line representation. The user access of the database has been advanced, and new media forms are now available for use on personal computers.

  3. Applying phylogenetic analysis to viral livestock diseases: moving beyond molecular typing.

    PubMed

    Olvera, Alex; Busquets, Núria; Cortey, Marti; de Deus, Nilsa; Ganges, Llilianne; Núñez, José Ignacio; Peralta, Bibiana; Toskano, Jennifer; Dolz, Roser

    2010-05-01

    Changes in livestock production systems in recent years have altered the presentation of many diseases resulting in the need for more sophisticated control measures. At the same time, new molecular assays have been developed to support the diagnosis of animal viral disease. Nucleotide sequences generated by these diagnostic techniques can be used in phylogenetic analysis to infer phenotypes by sequence homology and to perform molecular epidemiology studies. In this review, some key elements of phylogenetic analysis are highlighted, such as the selection of the appropriate neutral phylogenetic marker, the proper phylogenetic method and different techniques to test the reliability of the resulting tree. Examples are given of current and future applications of phylogenetic reconstructions in viral livestock diseases. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Molecular phylogeny of the squeak beetles, a family with disjunct Palearctic-Australian range.

    PubMed

    Hawlitschek, Oliver; Hendrich, Lars; Balke, Michael

    2012-01-01

    Many higher groups of plants and animals show distributional patterns which have been shown or have at some point in time been suggested to be correlated with plate tectonics and the ancient supercontinents Laurasia and Gondwana. Here, we study the family of squeak beetles (Coleoptera: Adephaga: Hygrobiidae) and its enigmatic distribution pattern, with one species in the Western Palearctic, one in China and four in Australia. We present a molecular phylogeny including five of the six extant species, showing the monophyly of the Australian radiation. We use a molecular clock approach, which indicates that Hygrobiidae is an ancient group dating back to the breakup of Pangea and discuss the possibility of vicariance as explanation for its current distribution. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Nature of Tau-Associated Neurodegeneration and the Molecular Mechanisms

    PubMed Central

    Yang, Ying; Wang, Jian-Zhi

    2018-01-01

    Neurodegeneration is defined as the progressive loss of structure or function of the neurons. As the nature of degenerative cell loss is currently not clear, there is no specific molecular marker to measure neurodegeneration. Therefore, researchers have been using apoptotic markers to measure neurodegeneration. However, neurodegeneration is completely different from apoptosis by morphology and time course. Lacking specific molecular marker has been the major hindrance in research of neurodegenerative disorders. Alzheimer’s disease (AD) is the most common neurodegenerative disorder, and tau accumulation forming neurofibrillary tangles is a hallmark pathology in the AD brains, suggesting that tau must play a critical role in AD neurodegeneration. Here we review part of our published papers on tau-related studies, and share our thoughts on the nature of tau-associated neurodegeneration in AD. PMID:29562535

  6. Molecular Techniques for the Detection and Differentiation of Host and Parasitoid Species and the Implications for Fruit Fly Management

    PubMed Central

    Jenkins, Cheryl; Chapman, Toni A.; Micallef, Jessica L.; Reynolds, Olivia L.

    2012-01-01

    Parasitoid detection and identification is a necessary step in the development and implementation of fruit fly biological control strategies employing parasitoid augmentive release. In recent years, DNA-based methods have been used to identify natural enemies of pest species where morphological differentiation is problematic. Molecular techniques also offer a considerable advantage over traditional morphological methods of fruit fly and parasitoid discrimination as well as within-host parasitoid identification, which currently relies on dissection of immature parasitoids from the host, or lengthy and labour-intensive rearing methods. Here we review recent research focusing on the use of molecular strategies for fruit fly and parasitoid detection and differentiation and discuss the implications of these studies on fruit fly management. PMID:26466628

  7. Exploring the science of thinking independently together: Faraday Discussion Volume 204 - Complex Molecular Surfaces and Interfaces, Sheffield, UK, July 2017.

    PubMed

    Samperi, M; Hirsch, B E; Diaz Fernandez, Y A

    2017-11-23

    The 2017 Faraday Discussion on Complex Molecular Surfaces and Interfaces brought together theoreticians and experimentalists from both physical and chemical backgrounds to discuss the relevant applied and fundamental research topics within the broader field of chemical surface analysis and characterization. Main discussion topics from the meeting included the importance of "disordered" two-dimensional (2D) molecular structures and the utility of kinetically trapped states. An emerging need for new experimental tools to address dynamics and kinetic pathways involved in self-assembled systems, as well as the future prospects and current limitations of in silico studies were also discussed. The following article provides a brief overview of the work presented and the challenges discussed during the meeting.

  8. A Decade of Molecular Understanding of Withanolide Biosynthesis and In vitro Studies in Withania somnifera (L.) Dunal: Prospects and Perspectives for Pathway Engineering

    PubMed Central

    Dhar, Niha; Razdan, Sumeer; Rana, Satiander; Bhat, Wajid W.; Vishwakarma, Ram; Lattoo, Surrinder K.

    2015-01-01

    Withania somnifera, a multipurpose medicinal plant is a rich reservoir of pharmaceutically active triterpenoids that are steroidal lactones known as withanolides. Though the plant has been well-characterized in terms of phytochemical profiles as well as pharmaceutical activities, limited attempts have been made to decipher the biosynthetic route and identification of key regulatory genes involved in withanolide biosynthesis. This scenario limits biotechnological interventions for enhanced production of bioactive compounds. Nevertheless, recent emergent trends vis-à-vis, the exploration of genomic, transcriptomic, proteomic, metabolomics, and in vitro studies have opened new vistas regarding pathway engineering of withanolide production. During recent years, various strategic pathway genes have been characterized with significant amount of regulatory studies which allude toward development of molecular circuitries for production of key intermediates or end products in heterologous hosts. Another pivotal aspect covering redirection of metabolic flux for channelizing the precursor pool toward enhanced withanolide production has also been attained by deciphering decisive branch point(s) as robust targets for pathway modulation. With these perspectives, the current review provides a detailed overview of various studies undertaken by the authors and collated literature related to molecular and in vitro approaches employed in W. somnifera for understanding various molecular network interactions in entirety. PMID:26640469

  9. Transcriptional control of Sost in bone [Transcriptional control of Sclerostin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebastian, Aimy; Loots, Gabriela G.

    Sclerostin is an osteocyte derived negative regulator of bone formation. A highly specific expression pattern and the exclusive bone phenotype have made Sclerostin an attractive target for therapeutic intervention in treating metabolic bone diseases such as osteoporosis and in facilitating fracture repair. Understanding the molecular mechanisms that regulate Sclerostin transcription is of great interest as it may unveil new avenues for therapeutic approaches. Such studies may also elucidate how various signaling pathways intersect to modulate bone metabolism. Furthermore we review the current understanding of the upstream molecular mechanisms that regulate Sost/SOST transcription, in bone.

  10. Physical and molecular bases of protein thermal stability and cold adaptation.

    PubMed

    Pucci, Fabrizio; Rooman, Marianne

    2017-02-01

    The molecular bases of thermal and cold stability and adaptation, which allow proteins to remain folded and functional in the temperature ranges in which their host organisms live and grow, are still only partially elucidated. Indeed, both experimental and computational studies fail to yield a fully precise and global physical picture, essentially because all effects are context-dependent and thus quite intricate to unravel. We present a snapshot of the current state of knowledge of this highly complex and challenging issue, whose resolution would enable large-scale rational protein design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Sticking together: building a biofilm the Bacillus subtilis way

    PubMed Central

    Vlamakis, Hera; Chai, Yunrong; Beauregard, Pascale; Losick, Richard; Kolter, Roberto

    2014-01-01

    Preface Biofilms are ubiquitous communities of tightly associated bacteria encased in an extracellular matrix. Bacillus subtilis has long-served as a robust model organism to examine the molecular mechanisms of biofilm formation and a number of studies have revealed that this process is subject to a number of integrated regulatory pathways. In this Review, we focus on the molecular mechanisms controlling biofilm assembly and briefly summarize the current state of knowledge regarding their disassembly. We also discuss recent progress that has expanded our understanding of biofilm formation on plant roots, which are a natural habitat for this soil bacterium. PMID:23353768

  12. Interference effects on vibration-mediated tunneling through interacting degenerate molecular states.

    PubMed

    Zhong, X; Cao, J C

    2009-07-22

    We study the combined effects of quantum electronic interference and Coulomb interaction on electron transport through near-degenerate molecular states with strong electron-vibration interaction. It is found that quantum electronic interference strongly affects the current and its noise properties. In particular, destructive interference induces pronounced negative differential conductances (NDCs) accompanying the vibrational excited states, and such NDC characters are not related to asymmetric tunnel coupling and are robust to the damping of a thermal bath. In a certain transport regime, the non-equilibrium vibration distribution even shows a peculiar sub-Poissonian behavior, which is enhanced by quantum electronic interference.

  13. Transcriptional control of Sost in bone [Transcriptional control of Sclerostin

    DOE PAGES

    Sebastian, Aimy; Loots, Gabriela G.

    2016-10-19

    Sclerostin is an osteocyte derived negative regulator of bone formation. A highly specific expression pattern and the exclusive bone phenotype have made Sclerostin an attractive target for therapeutic intervention in treating metabolic bone diseases such as osteoporosis and in facilitating fracture repair. Understanding the molecular mechanisms that regulate Sclerostin transcription is of great interest as it may unveil new avenues for therapeutic approaches. Such studies may also elucidate how various signaling pathways intersect to modulate bone metabolism. Furthermore we review the current understanding of the upstream molecular mechanisms that regulate Sost/SOST transcription, in bone.

  14. Sticking together: building a biofilm the Bacillus subtilis way.

    PubMed

    Vlamakis, Hera; Chai, Yunrong; Beauregard, Pascale; Losick, Richard; Kolter, Roberto

    2013-03-01

    Biofilms are ubiquitous communities of tightly associated bacteria encased in an extracellular matrix. Bacillus subtilis has long served as a robust model organism to examine the molecular mechanisms of biofilm formation, and a number of studies have revealed that this process is regulated by several integrated pathways. In this Review, we focus on the molecular mechanisms that control B. subtilis biofilm assembly, and then briefly summarize the current state of knowledge regarding biofilm disassembly. We also discuss recent progress that has expanded our understanding of B. subtilis biofilm formation on plant roots, which are a natural habitat for this soil bacterium.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendl, Christian B.; Spohn, Herbert

    The nonequilibrium dynamics of anharmonic chains is studied by imposing an initial domain-wall state, in which the two half lattices are prepared in equilibrium with distinct parameters. Here, we analyse the Riemann problem for the corresponding Euler equations and, in specific cases, compare with molecular dynamics. Additionally, the fluctuations of time-integrated currents are investigated. In analogy with the KPZ equation, their typical fluctuations should be of size t 1/3 and have a Tracy–Widom GUE distributed amplitude. The proper extension to anharmonic chains is explained and tested through molecular dynamics. Our results are calibrated against the stochastic LeRoux lattice gas.

  16. Mechanisms of X Chromosome Dosage Compensation

    PubMed Central

    Ercan, Sevinç

    2015-01-01

    In many animals, males have one X and females have two X chromosomes. The difference in X chromosome dosage between the two sexes is compensated by mechanisms that regulate X chromosome transcription. Recent advances in genomic techniques have provided new insights into the molecular mechanisms of X chromosome dosage compensation. In this review, I summarize our current understanding of dosage imbalance in general, and then review the molecular mechanisms of X chromosome dosage compensation with an emphasis on the parallels and differences between the three well-studied model systems, M. musculus, D. melanogaster and C. elegans. PMID:25628761

  17. Two-dimensional electrodynamic structure of the normal glow discharge in an axial magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surzhikov, S. T., E-mail: surg@ipmnet.ru

    Results are presented from numerical simulations of an axisymmetric normal glow discharge in molecular hydrogen and molecular nitrogen in an axial magnetic field. The charged particle densities and averaged azimuthal rotation velocities of electrons and ions are studied as functions of the gas pressure in the range of 1–5 Torr, electric field strength in the range of 100–600 V/cm, and magnetic field in the range of 0.01–0.3 T. It is found that the axial magnetic field does not disturb the normal current density law.

  18. A genetic fingerprint of Amphipoda from Icelandic waters – the baseline for further biodiversity and biogeography studies

    PubMed Central

    Jażdżewska, Anna M.; Corbari, Laure; Driskell, Amy; Frutos, Inmaculada; Havermans, Charlotte; Hendrycks, Ed; Hughes, Lauren; Lörz, Anne-Nina; Bente Stransky; Tandberg, Anne Helene S.; Vader, Wim; Brix, Saskia

    2018-01-01

    Abstract Amphipods constitute an abundant part of Icelandic deep-sea zoobenthos yet knowledge of the diversity of this fauna, particularly at the molecular level, is scarce. The present work aims to use molecular methods to investigate genetic variation of the Amphipoda sampled during two IceAGE collecting expeditions. The mitochondrial cytochrome oxidase subunit 1 (COI) of 167 individuals originally assigned to 75 morphospecies was analysed. These targeted morhospecies were readily identifiable by experts using light microscopy and representative of families where there is current ongoing taxonomic research. The study resulted in 81 Barcode Identity Numbers (BINs) (of which >90% were published for the first time), while Automatic Barcode Gap Discovery revealed the existence of 78 to 83 Molecular Operational Taxonomic Units (MOTUs). Six nominal species (Rhachotropis helleri, Arrhis phyllonyx, Deflexilodes tenuirostratus, Paroediceros propinquus, Metopa boeckii, Astyra abyssi) appeared to have a molecular variation higher than the 0.03 threshold of both p-distance and K2P usually used for amphipod species delineation. Conversely, two Oedicerotidae regarded as separate morphospecies clustered together with divergences in the order of intraspecific variation. The incongruence between the BINs associated with presently identified species and the publicly available data of the same taxa was observed in case of Paramphithoe hystrix and Amphilochus manudens. The findings from this research project highlight the necessity of supporting molecular studies with thorough morphology species analyses. PMID:29472762

  19. Integrated network analysis reveals potentially novel molecular mechanisms and therapeutic targets of refractory epilepsies

    PubMed Central

    Liu, Guangming; Wang, Yiwei; Zhao, Pengyao; Zhu, Yizhun; Yang, Xiaohan; Zheng, Tiezheng; Zhou, Xuezhong; Jin, Weilin; Sun, Changkai

    2017-01-01

    Epilepsy is a complex neurological disorder and a significant health problem. The pathogenesis of epilepsy remains obscure in a significant number of patients and the current treatment options are not adequate in about a third of individuals which were known as refractory epilepsies (RE). Network medicine provides an effective approach for studying the molecular mechanisms underlying complex diseases. Here we integrated 1876 disease-gene associations of RE and located those genes to human protein-protein interaction (PPI) network to obtain 42 significant RE-associated disease modules. The functional analysis of these disease modules showed novel molecular pathological mechanisms of RE, such as the novel enriched pathways (e.g., “presynaptic nicotinic acetylcholine receptors”, “signaling by insulin receptor”). Further analysis on the relationships between current drug targets and the RE-related disease genes showed the rational mechanisms of most antiepileptic drugs. In addition, we detected ten potential novel drug targets (e.g., KCNA1, KCNA4-6, KCNC3, KCND2, KCNMA1, CAMK2G, CACNB4 and GRM1) located in three RE related disease modules, which might provide novel insights into the new drug discovery for RE therapy. PMID:28388656

  20. PyMOL mControl: Manipulating Molecular Visualization with Mobile Devices

    ERIC Educational Resources Information Center

    Lam, Wendy W. T.; Siu, Shirley W. I.

    2017-01-01

    Viewing and manipulating three-dimensional (3D) structures in molecular graphics software are essential tasks for researchers and students to understand the functions of molecules. Currently, the way to manipulate a 3D molecular object is mainly based on mouse-and-keyboard control that is usually difficult and tedious to learn. While gesture-based…

  1. A Curriculum Skills Matrix for Development and Assessment of Undergraduate Biochemistry and Molecular Biology Laboratory Programs

    ERIC Educational Resources Information Center

    Caldwell, Benjamin; Rohlman, Christopher; Benore-Parsons, Marilee

    2004-01-01

    We have designed a skills matrix to be used for developing and assessing undergraduate biochemistry and molecular biology laboratory curricula. We prepared the skills matrix for the Project Kaleidoscope Summer Institute workshop in Snowbird, Utah (July 2001) to help current and developing undergraduate biochemistry and molecular biology program…

  2. Past, present and future distributions of an Iberian Endemic, Lepus granatensis: ecological and evolutionary clues from species distribution models.

    PubMed

    Acevedo, Pelayo; Melo-Ferreira, José; Real, Raimundo; Alves, Paulo Célio

    2012-01-01

    The application of species distribution models (SDMs) in ecology and conservation biology is increasing and assuming an important role, mainly because they can be used to hindcast past and predict current and future species distributions. However, the accuracy of SDMs depends on the quality of the data and on appropriate theoretical frameworks. In this study, comprehensive data on the current distribution of the Iberian hare (Lepus granatensis) were used to i) determine the species' ecogeographical constraints, ii) hindcast a climatic model for the last glacial maximum (LGM), relating it to inferences derived from molecular studies, and iii) calibrate a model to assess the species future distribution trends (up to 2080). Our results showed that the climatic factor (in its pure effect and when it is combined with the land-cover factor) is the most important descriptor of the current distribution of the Iberian hare. In addition, the model's output was a reliable index of the local probability of species occurrence, which is a valuable tool to guide species management decisions and conservation planning. Climatic potential obtained for the LGM was combined with molecular data and the results suggest that several glacial refugia may have existed for the species within the major Iberian refugium. Finally, a high probability of occurrence of the Iberian hare in the current species range and a northward expansion were predicted for future. Given its current environmental envelope and evolutionary history, we discuss the macroecology of the Iberian hare and its sensitivity to climate change.

  3. Past, Present and Future Distributions of an Iberian Endemic, Lepus granatensis: Ecological and Evolutionary Clues from Species Distribution Models

    PubMed Central

    Acevedo, Pelayo; Melo-Ferreira, José; Real, Raimundo; Alves, Paulo Célio

    2012-01-01

    The application of species distribution models (SDMs) in ecology and conservation biology is increasing and assuming an important role, mainly because they can be used to hindcast past and predict current and future species distributions. However, the accuracy of SDMs depends on the quality of the data and on appropriate theoretical frameworks. In this study, comprehensive data on the current distribution of the Iberian hare (Lepus granatensis) were used to i) determine the species’ ecogeographical constraints, ii) hindcast a climatic model for the last glacial maximum (LGM), relating it to inferences derived from molecular studies, and iii) calibrate a model to assess the species future distribution trends (up to 2080). Our results showed that the climatic factor (in its pure effect and when it is combined with the land-cover factor) is the most important descriptor of the current distribution of the Iberian hare. In addition, the model’s output was a reliable index of the local probability of species occurrence, which is a valuable tool to guide species management decisions and conservation planning. Climatic potential obtained for the LGM was combined with molecular data and the results suggest that several glacial refugia may have existed for the species within the major Iberian refugium. Finally, a high probability of occurrence of the Iberian hare in the current species range and a northward expansion were predicted for future. Given its current environmental envelope and evolutionary history, we discuss the macroecology of the Iberian hare and its sensitivity to climate change. PMID:23272115

  4. Adrenomedullin increases the short-circuit current in the rat prostate: Receptors, chloride channels, the effects of cAMP and calcium ions and implications on fluid secretion.

    PubMed

    Liao, S B; Cheung, K H; Cheung, M P L; Wong, P F; O, W S; Tang, F

    2014-05-01

    In this study, we have investigated the effects of adrenomedullin on chloride and fluid secretion in the rat prostate. The presence of adrenomedullin (ADM) in rat prostate was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with an enzyme-linked assay for ADM. The effects of ADM on fluid secretion were studied by short-circuit current technique in a whole mount preparation of the prostate in an Ussing chamber. The results indicated that the ADM level was higher in the ventral than the dorso-lateral prostate and the major molecular species was the active peptide. ADM increased the short-circuit current through both the cAMP- and calcium-activated chloride channels in the ventral lobe, but only through the calcium-activated channels in the dorso-lateral lobe. These stimulatory effects were blocked by the calcitonin gene-related peptide (CGRP) receptor antagonist, hCGRP8-37. We conclude that ADM may regulate prostatic fluid secretion through the chloride channels, which may affect the composition of the seminal plasma bathing the spermatozoa and hence fertility. © 2014 American Society of Andrology and European Academy of Andrology.

  5. Nanomechanics of Yeast Surfaces Revealed by AFM

    NASA Astrophysics Data System (ADS)

    Dague, Etienne; Beaussart, Audrey; Alsteens, David

    Despite the large and well-documented characterization of the microbial cell wall in terms of chemical composition, the determination of the mechanical properties of surface molecules in relation to their function remains a key challenge in cell biology.The emergence of powerful tools allowing molecular manipulations has already revolutionized our understanding of the surface properties of fungal cells. At the frontier between nanophysics and molecular biology, atomic force microscopy (AFM), and more specifically single-molecule force spectroscopy (SMFS), has strongly contributed to our current knowledge of the cell wall organization and nanomechanical properties. However, due to the complexity of the technique, measurements on live cells are still at their infancy.In this chapter, we describe the cell wall composition and recapitulate the principles of AFM as well as the main current methodologies used to perform AFM measurements on live cells, including sample immobilization and tip functionalization.The current status of the progress in probing nanomechanics of the yeast surface is illustrated through three recent breakthrough studies. Determination of the cell wall nanostructure and elasticity is presented through two examples: the mechanical response of mannoproteins from brewing yeasts and elasticity measurements on lacking polysaccharide mutant strains. Additionally, an elegant study on force-induced unfolding and clustering of adhesion proteins located at the cell surface is also presented.

  6. How Can We Treat Cancer Disease Not Cancer Cells?

    PubMed

    Kim, Kyu-Won; Lee, Su-Jae; Kim, Woo-Young; Seo, Ji Hae; Lee, Ho-Young

    2017-01-01

    Since molecular biology studies began, researches in biological science have centered on proteins and genes at molecular level of a single cell. Cancer research has also focused on various functions of proteins and genes that distinguish cancer cells from normal cells. Accordingly, most contemporary anticancer drugs have been developed to target abnormal characteristics of cancer cells. Despite the great advances in the development of anticancer drugs, vast majority of patients with advanced cancer have shown grim prognosis and high rate of relapse. To resolve this problem, we must reevaluate our focuses in current cancer research. Cancer should be considered as a systemic disease because cancer cells undergo a complex interaction with various surrounding cells in cancer tissue and spread to whole body through metastasis under the control of the systemic modulation. Human body relies on the cooperative interaction between various tissues and organs, and each organ performs its specialized function through tissue-specific cell networks. Therefore, investigation of the tumor-specific cell networks can provide novel strategy to overcome the limitation of current cancer research. This review presents the limitations of the current cancer research, emphasizing the necessity of studying tissue-specific cell network which could be a new perspective on treating cancer disease, not cancer cells.

  7. Molecular analysis demonstrates high prevalence of chloroquine resistance but no evidence of artemisinin resistance in Plasmodium falciparum in the Chittagong Hill Tracts of Bangladesh.

    PubMed

    Alam, Mohammad Shafiul; Ley, Benedikt; Nima, Maisha Khair; Johora, Fatema Tuj; Hossain, Mohammad Enayet; Thriemer, Kamala; Auburn, Sarah; Marfurt, Jutta; Price, Ric N; Khan, Wasif A

    2017-08-15

    Artemisinin resistance is present in the Greater Mekong region and poses a significant threat for current anti-malarial treatment guidelines in Bangladesh. The aim of this molecular study was to assess the current status of drug resistance in the Chittagong Hill Tracts of Bangladesh near the Myanmar border. Samples were obtained from patients enrolled into a Clinical Trial (NCT02389374) conducted in Alikadam, Bandarban between August 2014 and January 2015. Plasmodium falciparum infections were confirmed by PCR and all P. falciparum positive isolates genotyped for the pfcrt K76T and pfmdr1 N86Y markers. The propeller region of the kelch 13 (k13) gene was sequenced from isolates from patients with delayed parasite clearance. In total, 130 P. falciparum isolates were available for analysis. The pfcrt mutation K76T, associated with chloroquine resistance was found in 81.5% (106/130) of cases and the pfmdr1 mutation N86Y in 13.9% (18/130) cases. No single nucleotide polymorphisms were observed in the k13 propeller region. This study provides molecular evidence for the ongoing presence of chloroquine resistant P. falciparum in Bangladesh, but no evidence of mutations in the k13 propeller domain associated with artemisinin resistance. Monitoring for artemisinin susceptibility in Bangladesh is needed to ensure early detection and containment emerging anti-malarial resistance.

  8. Adsorption of gas molecules on a manganese phthalocyanine molecular device and its possibility as a gas sensor.

    PubMed

    Zou, Dongqing; Zhao, Wenkai; Cui, Bin; Li, Dongmei; Liu, Desheng

    2018-01-17

    A theoretical investigation of the gas detection performance of manganese(ii) phthalocyanine (MnPc) molecular junctions for six different gases (NO, CO, O 2 , CO 2 , NO 2 , and NH 3 ) is executed through a non-equilibrium Green's function technique in combination with spin density functional theory. Herein, we systematically studied the adsorption structural configurations, the adsorption energy, the charge transfer, and the spin transport properties of the MnPc molecular junctions with these gas adsorbates. Remarkably, NO adsorption can achieve an off-state of the Mn spin; this may be an effective measure to switch the molecular spin. In addition, our results indicate that by measuring spin filter efficiency and the changes in total current through the molecular junctions, the CO, NO, O 2 , and NO 2 gas molecules can be detected selectively. However, the CO 2 and NH 3 gas adsorptions are difficult to be detected due to weak van der Waals interaction between these two gases and central Mn atom. Our findings provide important clues to the application of nanosensors for highly sensitive and selective based on MnPc molecular junction systems.

  9. Pulsed, high-current, in-line reversal electron attachment detector

    NASA Technical Reports Server (NTRS)

    Bernius, Mark T.; Chutjian, Ara

    1989-01-01

    A new, pulsed, high-current, in-line reversal electron attachment ionizer/detector is described. The ionizer is capable of delivering a beam of electrons into an electrostatic mirror field to form a planar wall of electrons having zero kinetic energy. Electron attachment to a molecular target at the reversal point produces either parent or fragment negative ions through a zero-energy (s-wave) state. The atomic or molecular ion is pulsed out of the attachment region approximately 2 microsec after the electrons are pulsed off, and focused onto the entrance plane of a quadrupole mass analyzer. The sensitivity of the apparatus is preliminarily assessed, and its higher-energy behavior with regard to molecular attachment and ionization is described.

  10. A molecular spin-photovoltaic device.

    PubMed

    Sun, Xiangnan; Vélez, Saül; Atxabal, Ainhoa; Bedoya-Pinto, Amilcar; Parui, Subir; Zhu, Xiangwei; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E

    2017-08-18

    We fabricated a C 60 fullerene-based molecular spin-photovoltaic device that integrates a photovoltaic response with the spin transport across the molecular layer. The photovoltaic response can be modified under the application of a small magnetic field, with a magnetophotovoltage of up to 5% at room temperature. Device functionalities include a magnetic current inverter and the presence of diverging magnetocurrent at certain illumination levels that could be useful for sensing. Completely spin-polarized currents can be created by balancing the external partially spin-polarized injection with the photogenerated carriers. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. Interactive association between biopolymers and biofunctions in carinata seeds as energy feedstock and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation: current advanced molecular spectroscopic investigations.

    PubMed

    Yu, Peiqiang; Xin, Hangshu; Ban, Yajing; Zhang, Xuewei

    2014-05-07

    Recent advances in biofuel and bio-oil processing technology require huge supplies of energy feedstocks for processing. Very recently, new carinata seeds have been developed as energy feedstocks for biofuel and bio-oil production. The processing results in a large amount of coproducts, which are carinata meal. To date, there is no systematic study on interactive association between biopolymers and biofunctions in carinata seed as energy feedstocks for biofuel and bioethanol processing and their processing coproducts (carinata meal). Molecular spectroscopy with synchrotron and globar sources is a rapid and noninvasive analytical technique and is able to investigate molecular structure conformation in relation to biopolymer functions and bioavailability. However, to date, these techniques are seldom used in biofuel and bioethanol processing in other research laboratories. This paper aims to provide research progress and updates with molecular spectroscopy on the energy feedstock (carinata seed) and coproducts (carinata meal) from biofuel and bioethanol processing and show how to use these molecular techniques to study the interactive association between biopolymers and biofunctions in the energy feedstocks and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation.

  12. Polysaccharides and their depolymerized fragments from Costaria costata: Molecular weight and sulfation-dependent anticoagulant and FGF/FGFR signal activating activities.

    PubMed

    Hou, Ningning; Zhang, Meng; Xu, Yingjie; Sun, Zhongmin; Wang, Jing; Zhang, Lijuan; Zhang, Quanbin

    2017-12-01

    Crude polysaccharides from Costaria costata were extracted by hot water and further fractionated by anion exchange chromatography into three polysaccharide fractions. Three low molecular weight fragments were then prepared by degradation of the polysaccharides with hydrogen peroxide and ascorbic acid. The structural features of the polysaccharides and their low molecular weight fragments were elucidated for the first time based on the HGPC, FT-IR, NMR, MS, monosaccharide composition, and other chemical analyses. Their anticoagulant and FGF-1, -2, -7, -8, -9, -10/FGFR1c signaling activation activities in BaF3 cells were also examined. Our studies showed that the polysaccharides were sulfated at different positions of galactose and fucose residues. The APTT-, PT- and TT-based anticoagulant assay results indicated that a high molecular weight and a higher degree of sulfation were essential for their anticoagulant activities. In contrast, not only the polysaccharides but also the depolymerized fragments showed significant FGF/FGFR signal activating activities in a FGF-, molecular weight-, and sulfation-dependent manner. The results presented in current study demonstrated the potential use of the polysaccharides and their fragments as anticoagulants and FGF signal regulators. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Enteric Disease Surveillance Under the AFHSC-GEIS: Current Efforts, Landscape Analysis and Vision Forward

    DTIC Science & Technology

    2011-01-01

    Severe diarrhea study at Cairo University • Case-control study of modifiable risk behaviors • Molecular biology and cholera/ rotavirus microbiology...capacity as WHO Rotavirus Reference Laboratory • Norovirus outbreak response support, Incirlik Air Base, Turkey NMRCD-Peru • Cohort study among basic...identified rotavirus as the leading causative agent • Advanced characterization of Campylobacter spp. and Shigella spp. USAMRU-K • Movement of Enteric

  14. An empirical assessment of validation practices for molecular classifiers

    PubMed Central

    Castaldi, Peter J.; Dahabreh, Issa J.

    2011-01-01

    Proposed molecular classifiers may be overfit to idiosyncrasies of noisy genomic and proteomic data. Cross-validation methods are often used to obtain estimates of classification accuracy, but both simulations and case studies suggest that, when inappropriate methods are used, bias may ensue. Bias can be bypassed and generalizability can be tested by external (independent) validation. We evaluated 35 studies that have reported on external validation of a molecular classifier. We extracted information on study design and methodological features, and compared the performance of molecular classifiers in internal cross-validation versus external validation for 28 studies where both had been performed. We demonstrate that the majority of studies pursued cross-validation practices that are likely to overestimate classifier performance. Most studies were markedly underpowered to detect a 20% decrease in sensitivity or specificity between internal cross-validation and external validation [median power was 36% (IQR, 21–61%) and 29% (IQR, 15–65%), respectively]. The median reported classification performance for sensitivity and specificity was 94% and 98%, respectively, in cross-validation and 88% and 81% for independent validation. The relative diagnostic odds ratio was 3.26 (95% CI 2.04–5.21) for cross-validation versus independent validation. Finally, we reviewed all studies (n = 758) which cited those in our study sample, and identified only one instance of additional subsequent independent validation of these classifiers. In conclusion, these results document that many cross-validation practices employed in the literature are potentially biased and genuine progress in this field will require adoption of routine external validation of molecular classifiers, preferably in much larger studies than in current practice. PMID:21300697

  15. Single-molecular diodes based on opioid derivatives.

    PubMed

    Siqueira, M R S; Corrêa, S M; Gester, R M; Del Nero, J; Neto, A M J C

    2015-12-01

    We propose an efficient single-molecule rectifier based on a derivative of opioid. Electron transport properties are investigated within the non-equilibrium Green's function formalism combined with density functional theory. The analysis of the current-voltage characteristics indicates obvious diode-like behavior. While heroin presents rectification coefficient R>1, indicating preferential electronic current from electron-donating to electron-withdrawing, 3 and 6-acetylmorphine and morphine exhibit contrary behavior, R<1. Our calculations indicate that the simple inclusion of acetyl groups modulate a range of devices, which varies from simple rectifying to resonant-tunneling diodes. In particular, the rectification rations for heroin diodes show microampere electron current with a maximum of rectification (R=9.1) at very low bias voltage of ∼0.6 V and (R=14.3)∼1.8 V with resistance varying between 0.4 and 1.5 M Ω. Once most of the current single-molecule diodes usually rectifies in nanoampere, are not stable over 1.0 V and present electrical resistance around 10 M. Molecular devices based on opioid derivatives are promising in molecular electronics.

  16. Cancer and genetics: what we need to know now.

    PubMed

    Ruccione, K

    1999-07-01

    Profound changes brought about by discoveries in molecular biology may enable us in the future to treat cancer without causing late effects or to prevent cancer altogether. Even before that happens, the age of molecular medicine has arrived. Molecular biology is the study of biological processes at the level of the molecule. A major aspect of molecular biology is molecular genetics--the science that deals with DNA and RNA. Most of the progress in molecular biology has been made in the second half of the 20th century. Each discovery or technological innovation has built on previous discoveries and paved the way for the next, culminating in the current effort to map, sequence, and understand the functions of the entire human genome. In the past 20 years, many pieces of the cancer puzzle have been found, showing us how the normal cellular control mechanisms go awry to cause cancer and setting the stage for genetic testing and disease treatment. These new discoveries bring both promise and peril. To provide comprehensive care for survivors of childhood cancer and care in other settings as well, health care providers must now be familiar with the concepts and language of molecular biology, understand its applications to cancer care, and be fully informed about its implications for clinical practice, research, and education.

  17. First-principles investigation on transport properties of NiO monowire-based molecular device

    NASA Astrophysics Data System (ADS)

    Chandiramouli, R.; Sriram, S.

    2014-08-01

    The electronic transport properties of novel NiO monowire connected to the gold electrodes are investigated using density functional theory combined with nonequilibrium Green's functions formalism. The densities of states of the monowire under various bias conditions are discussed. The transport properties are discussed in terms of the transmission spectrum and current-voltage characteristics of NiO monowire. The transmission pathways provide the insight to the transmission of electrons along the monowire. With different bias voltages, current in the order of few microampere flows across the monowire. The applied voltage controls the flow of current through the monowire, which can be used to control the current efficiently in the low order of magnitude in the molecular device.

  18. Current Status of Protein Force Fields for Molecular Dynamics

    PubMed Central

    Lopes, Pedro E.M.; Guvench, Olgun

    2015-01-01

    Summary The current status of classical force fields for proteins is reviewed. These include additive force fields as well as the latest developments in the Drude and AMOEBA polarizable force fields. Parametrization strategies developed specifically for the Drude force field are described and compared with the additive CHARMM36 force field. Results from molecular simulations of proteins and small peptides are summarized to illustrate the performance of the Drude and AMOEBA force fields. PMID:25330958

  19. A new approach to the method of source-sink potentials for molecular conduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickup, Barry T., E-mail: B.T.Pickup@sheffield.ac.uk, E-mail: P.W.Fowler@sheffield.ac.uk; Fowler, Patrick W., E-mail: B.T.Pickup@sheffield.ac.uk, E-mail: P.W.Fowler@sheffield.ac.uk; Borg, Martha

    2015-11-21

    We re-derive the tight-binding source-sink potential (SSP) equations for ballistic conduction through conjugated molecular structures in a form that avoids singularities. This enables derivation of new results for families of molecular devices in terms of eigenvectors and eigenvalues of the adjacency matrix of the molecular graph. In particular, we define the transmission of electrons through individual molecular orbitals (MO) and through MO shells. We make explicit the behaviour of the total current and individual MO and shell currents at molecular eigenvalues. A rich variety of behaviour is found. A SSP device has specific insulation or conduction at an eigenvalue ofmore » the molecular graph (a root of the characteristic polynomial) according to the multiplicities of that value in the spectra of four defined device polynomials. Conduction near eigenvalues is dominated by the transmission curves of nearby shells. A shell may be inert or active. An inert shell does not conduct at any energy, not even at its own eigenvalue. Conduction may occur at the eigenvalue of an inert shell, but is then carried entirely by other shells. If a shell is active, it carries all conduction at its own eigenvalue. For bipartite molecular graphs (alternant molecules), orbital conduction properties are governed by a pairing theorem. Inertness of shells for families such as chains and rings is predicted by selection rules based on node counting and degeneracy.« less

  20. Library of molecular associations: curating the complex molecular basis of liver diseases.

    PubMed

    Buchkremer, Stefan; Hendel, Jasmin; Krupp, Markus; Weinmann, Arndt; Schlamp, Kai; Maass, Thorsten; Staib, Frank; Galle, Peter R; Teufel, Andreas

    2010-03-20

    Systems biology approaches offer novel insights into the development of chronic liver diseases. Current genomic databases supporting systems biology analyses are mostly based on microarray data. Although these data often cover genome wide expression, the validity of single microarray experiments remains questionable. However, for systems biology approaches addressing the interactions of molecular networks comprehensive but also highly validated data are necessary. We have therefore generated the first comprehensive database for published molecular associations in human liver diseases. It is based on PubMed published abstracts and aimed to close the gap between genome wide coverage of low validity from microarray data and individual highly validated data from PubMed. After an initial text mining process, the extracted abstracts were all manually validated to confirm content and potential genetic associations and may therefore be highly trusted. All data were stored in a publicly available database, Library of Molecular Associations http://www.medicalgenomics.org/databases/loma/news, currently holding approximately 1260 confirmed molecular associations for chronic liver diseases such as HCC, CCC, liver fibrosis, NASH/fatty liver disease, AIH, PBC, and PSC. We furthermore transformed these data into a powerful resource for molecular liver research by connecting them to multiple biomedical information resources. Together, this database is the first available database providing a comprehensive view and analysis options for published molecular associations on multiple liver diseases.

  1. Emerging commercial molecular tests for the diagnosis of bloodstream infection.

    PubMed

    Mwaigwisya, Solomon; Assiri, Rasha Assad M; O'Grady, Justin

    2015-05-01

    Bloodstream infection (BSI) by microorganisms can lead to sepsis. This condition has a high mortality rate, which rises significantly with delays in initiation of appropriate antimicrobial treatment. Current culture methods for diagnosing BSI have long turnaround times and poor clinical sensitivity. While clinicians wait for culture diagnosis, patients are treated empirically, which can result in inappropriate treatment, undesirable side effects and contribute to drug resistance development. Molecular diagnostics assays that target pathogen DNA can identify pathogens and resistance markers within hours. Early diagnosis improves antibiotic stewardship and is associated with favorable clinical outcomes. Nonetheless, limitations of current molecular diagnostic methods are substantial. This article reviews recent commercially available molecular methods that use pathogen DNA to diagnose BSI, either by testing positive blood cultures or directly testing patient blood. We critically assess these tests and their application in clinical microbiology. A view of future directions in BSI diagnosis is also provided.

  2. Nonequilibrium Green's function theory for nonadiabatic effects in quantum electron transport

    NASA Astrophysics Data System (ADS)

    Kershaw, Vincent F.; Kosov, Daniel S.

    2017-12-01

    We develop nonequilibrium Green's function-based transport theory, which includes effects of nonadiabatic nuclear motion in the calculation of the electric current in molecular junctions. Our approach is based on the separation of slow and fast time scales in the equations of motion for Green's functions by means of the Wigner representation. Time derivatives with respect to central time serve as a small parameter in the perturbative expansion enabling the computation of nonadiabatic corrections to molecular Green's functions. Consequently, we produce a series of analytic expressions for non-adiabatic electronic Green's functions (up to the second order in the central time derivatives), which depend not solely on the instantaneous molecular geometry but likewise on nuclear velocities and accelerations. An extended formula for electric current is derived which accounts for the non-adiabatic corrections. This theory is concisely illustrated by the calculations on a model molecular junction.

  3. Nonequilibrium Green's function theory for nonadiabatic effects in quantum electron transport.

    PubMed

    Kershaw, Vincent F; Kosov, Daniel S

    2017-12-14

    We develop nonequilibrium Green's function-based transport theory, which includes effects of nonadiabatic nuclear motion in the calculation of the electric current in molecular junctions. Our approach is based on the separation of slow and fast time scales in the equations of motion for Green's functions by means of the Wigner representation. Time derivatives with respect to central time serve as a small parameter in the perturbative expansion enabling the computation of nonadiabatic corrections to molecular Green's functions. Consequently, we produce a series of analytic expressions for non-adiabatic electronic Green's functions (up to the second order in the central time derivatives), which depend not solely on the instantaneous molecular geometry but likewise on nuclear velocities and accelerations. An extended formula for electric current is derived which accounts for the non-adiabatic corrections. This theory is concisely illustrated by the calculations on a model molecular junction.

  4. Molecular approaches to third generation photovoltaics: photochemical up-conversion

    NASA Astrophysics Data System (ADS)

    Cheng, Yuen Yap; Fückel, Burkhard; Roberts, Derrick A.; Khoury, Tony; Clady, Rapha"l. G. C. R.; Tayebjee, Murad J. Y.; Piper, Roland; Ekins-Daukes, N. J.; Crossley, Maxwell J.; Schmidt, Timothy W.

    2010-08-01

    We have investigated a photochemical up-conversion system comprising a molecular mixture of a palladium porphyrin to harvest light, and a polycyclic aromatic hydrocarbon to emit light. The energy of harvested photons is stored as molecular triplet states which then annihilate to bring about up-converted fluorescence. The limiting efficiency of such triplet-triplet annihilation up-conversion has been believed to be 11% for some time. However, by rigorously investigating the kinetics of delayed fluorescence following pulsed excitation, we demonstrate instantaneous annihilation efficiencies exceeding 40%, and limiting efficiencies for the current system of ~60%. We attribute the high efficiencies obtained to the electronic structure of the emitting molecule, which exhibits an exceptionally high T2 molecular state. We utilize the kinetic data obtained to model an up-converting layer irradiated with broadband sunlight, finding that ~3% efficiencies can be obtained with the current system, with this improving dramatically upon optimization of various parameters.

  5. Analyte-Triggered DNA-Probe Release from a Triplex Molecular Beacon for Nanopore Sensing.

    PubMed

    Guo, Bingyuan; Sheng, Yingying; Zhou, Ke; Liu, Quansheng; Liu, Lei; Wu, Hai-Chen

    2018-03-26

    A new nanopore sensing strategy based on triplex molecular beacon was developed for the detection of specific DNA or multivalent proteins. The sensor is composed of a triplex-forming molecular beacon and a stem-forming DNA component that is modified with a host-guest complex. Upon target DNA hybridizing with the molecular beacon loop or multivalent proteins binding to the recognition elements on the stem, the DNA probe is released and produces highly characteristic current signals when translocated through α-hemolysin. The frequency of current signatures can be used to quantify the concentrations of the target molecules. This sensing approach provides a simple, quick, and modular tool for the detection of specific macromolecules with high sensitivity and excellent selectivity. It may find useful applications in point-of-care diagnostics with a portable nanopore kit in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury.

    PubMed

    van Niekerk, Erna A; Tuszynski, Mark H; Lu, Paul; Dulin, Jennifer N

    2016-02-01

    Following axotomy, a complex temporal and spatial coordination of molecular events enables regeneration of the peripheral nerve. In contrast, multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration in the central nervous system. In this review, we examine the current understanding of differences in protein expression and post-translational modifications, activation of signaling networks, and environmental cues that may underlie the divergent regenerative capacity of central and peripheral axons. We also highlight key experimental strategies to enhance axonal regeneration via modulation of intraneuronal signaling networks and the extracellular milieu. Finally, we explore potential applications of proteomics to fill gaps in the current understanding of molecular mechanisms underlying regeneration, and to provide insight into the development of more effective approaches to promote axonal regeneration following injury to the nervous system. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Chemical and molecular factors in irritable bowel syndrome: current knowledge, challenges, and unanswered questions.

    PubMed

    Camilleri, Michael; Oduyebo, Ibironke; Halawi, Houssam

    2016-11-01

    Several chemical and molecular factors in the intestine are reported to be altered and to have a potentially significant role in irritable bowel syndrome (IBS), particularly in IBS with diarrhea. These include bile acids; short-chain fatty acids; mucosal barrier proteins; mast cell products such as histamine, proteases, and tryptase; enteroendocrine cell products; and mucosal mRNAs, proteins, and microRNAs. This article reviews the current knowledge and unanswered questions in the pathobiology of the chemical and molecular factors in IBS. Evidence continues to point to significant roles in pathogenesis of these chemical and molecular mechanisms, which may therefore constitute potential targets for future research and therapy. However, it is still necessary to address the interaction between these factors in the gut and to appraise how they may influence hypervigilance in the central nervous system in patients with IBS. Copyright © 2016 the American Physiological Society.

  8. Complete exon sequencing of all known Usher syndrome genes greatly improves molecular diagnosis.

    PubMed

    Bonnet, Crystel; Grati, M'hamed; Marlin, Sandrine; Levilliers, Jacqueline; Hardelin, Jean-Pierre; Parodi, Marine; Niasme-Grare, Magali; Zelenika, Diana; Délépine, Marc; Feldmann, Delphine; Jonard, Laurence; El-Amraoui, Aziz; Weil, Dominique; Delobel, Bruno; Vincent, Christophe; Dollfus, Hélène; Eliot, Marie-Madeleine; David, Albert; Calais, Catherine; Vigneron, Jacqueline; Montaut-Verient, Bettina; Bonneau, Dominique; Dubin, Jacques; Thauvin, Christel; Duvillard, Alain; Francannet, Christine; Mom, Thierry; Lacombe, Didier; Duriez, Françoise; Drouin-Garraud, Valérie; Thuillier-Obstoy, Marie-Françoise; Sigaudy, Sabine; Frances, Anne-Marie; Collignon, Patrick; Challe, Georges; Couderc, Rémy; Lathrop, Mark; Sahel, José-Alain; Weissenbach, Jean; Petit, Christine; Denoyelle, Françoise

    2011-05-11

    Usher syndrome (USH) combines sensorineural deafness with blindness. It is inherited in an autosomal recessive mode. Early diagnosis is critical for adapted educational and patient management choices, and for genetic counseling. To date, nine causative genes have been identified for the three clinical subtypes (USH1, USH2 and USH3). Current diagnostic strategies make use of a genotyping microarray that is based on the previously reported mutations. The purpose of this study was to design a more accurate molecular diagnosis tool. We sequenced the 366 coding exons and flanking regions of the nine known USH genes, in 54 USH patients (27 USH1, 21 USH2 and 6 USH3). Biallelic mutations were detected in 39 patients (72%) and monoallelic mutations in an additional 10 patients (18.5%). In addition to biallelic mutations in one of the USH genes, presumably pathogenic mutations in another USH gene were detected in seven patients (13%), and another patient carried monoallelic mutations in three different USH genes. Notably, none of the USH3 patients carried detectable mutations in the only known USH3 gene, whereas they all carried mutations in USH2 genes. Most importantly, the currently used microarray would have detected only 30 of the 81 different mutations that we found, of which 39 (48%) were novel. Based on these results, complete exon sequencing of the currently known USH genes stands as a definite improvement for molecular diagnosis of this disease, which is of utmost importance in the perspective of gene therapy.

  9. Oral microbiome and peri-implant diseases: where are we now?

    PubMed Central

    Pokrowiecki, Rafał; Mielczarek, Agnieszka; Zaręba, Tomasz; Tyski, Stefan

    2017-01-01

    Peri-implant infective diseases (PIIDs) in oral implantology are commonly known as peri-implant mucositis (PIM) and periimplantitis (PI). While PIM is restricted to the peri-implant mucosa and is reversible, PI also affects implant-supporting bone and, therefore, is very difficult to eradicate. PIIDs in clinical outcome may resemble gingivitis and periodontitis, as they share similar risk factors. However, recent study in the field of proteomics and other molecular studies indicate that PIIDs exhibit significant differences when compared to periodontal diseases. This review aims to elucidate the current knowledge of PIIDs, their etiopathology and diversified microbiology as well as the role of molecular studies, which may be a key to personalized diagnostic and treatment protocols of peri-implant infections in the near future. PMID:29238198

  10. Theoretical study on the rectifying performance of organoimido derivatives of hexamolybdates.

    PubMed

    Wen, Shizheng; Yang, Guochun; Yan, Likai; Li, Haibin; Su, Zhongmin

    2013-02-25

    We design a new type of molecular diode, based on the organoimido derivatives of hexamolybdates, by exploring the rectifying performances using density functional theory combined with the non-equilibrium Green's function. Asymmetric current-voltage characteristics were obtained for the models with an unexpected large rectification ratio. The rectifying behavior can be understood by the asymmetrical shift of the transmission peak observed under different polarities. It is interesting to find that the preferred electron-transport direction in our studied system is different from that of the organic D-bridge-A system. The results show that the studied organic-inorganic hybrid systems have an intrinsically robust rectifying ratio, which should be taken into consideration in the design of the molecular diodes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cyanide and isocyanide abundances in the cold, dark cloud TMC-1

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.

    1984-01-01

    Cold, dark molecular clouds are particularly useful for the study of interstellar chemistry because their physical parameters are better understood than those of heterogeneous, complex giant molecular clouds. Another advantage is their relatively small distance from the solar system. The present investigaation has the objective to provide accurate abundance ratios for several cyanides and isocyanides in order to constrain models of dark cloud chemistry. The relative abundances of such related species can be particularly useful for the study of chemical processes. The cloud TMC-1 considered in the current study has a remarkably high abundance of acetylene and polyacetylene derivatives. Data at 3 mm, corresponding to the J = 1 to 0 transitions of HCN, H(C-13)N, HN(C-13), HC(N-15), and H(N-15)C were obtained.

  12. Targeted Nanoparticles for Image-guided Treatment of Triple Negative Breast Cancer: Clinical Significance and Technological Advances

    PubMed Central

    Miller-Kleinhenz, Jasmine M.; Bozeman, Erica N.

    2015-01-01

    Effective treatment of triple negative breast cancer (TNBC) with its aggressive tumor biology, highly heterogeneous tumor cells, and poor prognosis requires an integrated therapeutic approach that addresses critical issues in cancer therapy. Multifunctional nanoparticles with the abilities of targeted drug delivery and non-invasive imaging for monitoring drug delivery and responses to therapy, such as theranostic nanoparticles, hold great promise towards the development of novel therapeutic approaches for the treatment of TNBC using a single therapeutic platform. The biological and pathological characteristics of TNBC provide insight into several potential molecular targets for current and future nanoparticle based therapeutics. Extensive tumor stroma, highly proliferative cells, and a high rate of drug-resistance are all barriers that must be appropriately addressed in order for these nanotherapeutic platforms to be effective. Utilization of the enhanced permeability and retention (EPR) effect coupled with active targeting of cell surface receptors expressed by TNBC cells, and tumor associated endothelial cells, stromal fibroblasts and macrophages is likely to overcome such barriers to facilitate more effective drug delivery. An in depth summary of current studies investigating targeted nanoparticles in preclinical TNBC mouse and human xenograft models is presented. This review aims to outline the current status of nanotherapeutic options for TNBC patients, identification of promising molecular targets, challenges associated with the development of targeted nanotherapeutics, the research done by our group as well as others and future perspectives on the nanomedicine field and ways to translate current preclinical studies into the clinic. PMID:25966677

  13. Systematics of the grey mullets (Teleostei: Mugiliformes: Mugilidae): molecular phylogenetic evidence challenges two centuries of morphology-based taxonomy.

    PubMed

    Durand, J-D; Shen, K-N; Chen, W-J; Jamandre, B W; Blel, H; Diop, K; Nirchio, M; Garcia de León, F J; Whitfield, A K; Chang, C-W; Borsa, P

    2012-07-01

    The family Mugilidae comprises mainly coastal marine species that are widely distributed in all tropical, subtropical and temperate seas. Mugilid species are generally considered to be ecologically important and they are a major food resource for human populations in certain parts of the world. The taxonomy and systematics of the Mugilidae are still much debated and based primarily on morphological characters. In this study, we provide the first comprehensive molecular systematic account of the Mugilidae using phylogenetic analyses of nucleotide sequence variation at three mitochondrial loci (16S rRNA, cytochrome oxidase I, and cytochrome b) for 257 individuals from 55 currently recognized species. The study covers all 20 mugilid genera currently recognized as being valid. The family comprises seven major lineages that radiated early on from the ancestor to all current forms. All genera that were represented by two species or more, except Cestraeus, turned out to be paraphyletic or polyphyletic. Thus, the present phylogenetic results generally disagree with the current taxonomy at the genus level and imply that the anatomical characters used for the systematics of the Mugilidae may be poorly informative phylogenetically. The present results should provide a sound basis for a taxonomic revision of the mugilid genera. A proportion of the species with large distribution ranges (including Moolgarda seheli, Mugil cephalus and M. curema) appear to consist of cryptic species, thus warranting further taxonomic and genetic work at the infra-generic level. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Thermoelectronic transport through spin-crossover single molecule Fe[(H2Bpz2)2bipy

    NASA Astrophysics Data System (ADS)

    Liu, N.; Zhu, L.; Yao, K. L.

    2018-04-01

    By means of density functional theory combined with the method of Keldysh nonequilibrium Green’s function, the thermal transport properties of high- and low-spin states of mononuclear FeII molecules with spin-crossover characteristics are studied. It is found that the high-spin molecular junction has a larger current than the low-spin one, producing thermally-induced switching effect. Furthermore, for high spin state molecule, the spin-up thermo-current is strongly blocked, thus achieving a pure thermo spin current. The enhanced Seebeck coefficient and the figure of merit value of high-spin state indicate that it is an ideal candidate for thermoelectric applications.

  15. Efficient spin-current injection in single-molecule magnet junctions

    NASA Astrophysics Data System (ADS)

    Xie, Haiqing; Xu, Fuming; Jiao, Hujun; Wang, Qiang; Liang, J.-Q.

    2018-01-01

    We study theoretically spin transport through a single-molecule magnet (SMM) in the sequential and cotunneling regimes, where the SMM is weakly coupled to one ferromagnetic and one normal-metallic leads. By a master-equation approach, it is found that the spin polarization injected from the ferromagnetic lead is amplified and highly polarized spin-current can be generated, due to the exchange coupling between the transport electron and the anisotropic spin of the SMM. Moreover, the spin-current polarization can be tuned by the gate or bias voltage, and thus an efficient spin injection device based on the SMM is proposed in molecular spintronics.

  16. Molecular and cellular biology of cerebral arteriovenous malformations: a review of current concepts and future trends in treatment.

    PubMed

    Rangel-Castilla, Leonardo; Russin, Jonathan J; Martinez-Del-Campo, Eduardo; Soriano-Baron, Hector; Spetzler, Robert F; Nakaji, Peter

    2014-09-01

    Arteriovenous malformations (AVMs) are classically described as congenital static lesions. However, in addition to rupturing, AVMs can undergo growth, remodeling, and regression. These phenomena are directly related to cellular, molecular, and physiological processes. Understanding these relationships is essential to direct future diagnostic and therapeutic strategies. The authors performed a search of the contemporary literature to review current information regarding the molecular and cellular biology of AVMs and how this biology will impact their potential future management. A PubMed search was performed using the key words "genetic," "molecular," "brain," "cerebral," "arteriovenous," "malformation," "rupture," "management," "embolization," and "radiosurgery." Only English-language papers were considered. The reference lists of all papers selected for full-text assessment were reviewed. Current concepts in genetic polymorphisms, growth factors, angiopoietins, apoptosis, endothelial cells, pathophysiology, clinical syndromes, medical treatment (including tetracycline and microRNA-18a), radiation therapy, endovascular embolization, and surgical treatment as they apply to AVMs are discussed. Understanding the complex cellular biology, physiology, hemodynamics, and flow-related phenomena of AVMs is critical for defining and predicting their behavior, developing novel drug treatments, and improving endovascular and surgical therapies.

  17. Molecular detection of Phytophthora ramorum by real-time PCR using Taqman, SYBR Green and molecular beacons with three genes

    Treesearch

    G.J. Bilodeau; C.A. Lévesque; A.W.A.M. De Cock; C. Duchaine; G. Kristjansson; R.C. Hamelin

    2006-01-01

    Sudden oak death, caused by Phytophthora ramorum, is a severe disease that can affect numerous species of trees and shrubs. This pathogen has been spread via nursery stock, and quarantine measures are currently in place to prevent further spread. Molecular assays have been developed to rapidly detect and identify P. ramorum, but...

  18. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging

    PubMed Central

    Joshi, Bishnu P.; Wang, Thomas D.

    2010-01-01

    Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research. PMID:22180839

  19. The molecular biology of WHO grade I astrocytomas.

    PubMed

    Marko, Nicholas F; Weil, Robert J

    2012-12-01

    World Health Organization (WHO) grade I astrocytomas include pilocytic astrocytoma (PA) and subependymal giant cell astrocytoma (SEGA). As technologies in pharmacologic neo-adjuvant therapy continue to progress and as molecular characteristics are progressively recognized as potential markers of both clinically significant tumor subtypes and response to therapy, interest in the biology of these tumors has surged. An updated review of the current knowledge of the molecular biology of these tumors is needed. We conducted a Medline search to identify published literature discussing the molecular biology of grade I astrocytomas. We then summarized this literature and discuss it in a logical framework through which the complex biology of these tumors can be clearly understood. A comprehensive review of the molecular biology of WHO grade I astrocytomas is presented. The past several years have seen rapid progress in the level of understanding of PA in particular, but the molecular literature regarding both PA and SEGA remains nebulous, ambiguous, and occasionally contradictory. In this review we provide a comprehensive discussion of the current understanding of the chromosomal, genomic, and epigenomic features of both PA and SEGA and provide a logical framework in which these data can be more readily understood.

  20. The molecular biology of soft-tissue sarcomas and current trends in therapy.

    PubMed

    Quesada, Jorge; Amato, Robert

    2012-01-01

    Basic research in sarcoma models has been fundamental in the discovery of scientific milestones leading to a better understanding of the molecular biology of cancer. Yet, clinical research in sarcoma has lagged behind other cancers because of the multiple clinical and pathological entities that characterize sarcomas and their rarity. Sarcomas encompass a very heterogeneous group of tumors with diverse pathological and clinical overlapping characteristics. Molecular testing has been fundamental in the identification and better definition of more specific entities among this vast array of malignancies. A group of sarcomas are distinguished by specific molecular aberrations such as somatic mutations, intergene deletions, gene amplifications, reciprocal translocations, and complex karyotypes. These and other discoveries have led to a better understanding of the growth signals and the molecular pathways involved in the development of these tumors. These findings are leading to treatment strategies currently under intense investigation. Disruption of the growth signals is being targeted with antagonistic antibodies, tyrosine kinase inhibitors, and inhibitors of several downstream molecules in diverse molecular pathways. Preliminary clinical trials, supported by solid basic research and strong preclinical evidence, promises a new era in the clinical management of these broad spectrum of malignant tumors.

  1. Ongoing molecular studies of Eucalyptus powdery mildew in Brazil

    Treesearch

    N. R. Fonseca; L. M. S. Guimaraes; R. P. Pires; Ned Klopfenstein; M. -S. Kim; A. C. Alfenas

    2016-01-01

    Powdery mildew diseases are caused by biotrophic fungi in the Erysiphales. These fungal pathogens are easily observed by the whitish powdery appearance caused by their colonization of the aerial surfaces on living plants (Stadnik & Rivera, 2001) (Figure 1). In Brazil, powdery mildew of Eucalyptus spp is increasing under the current nursery production...

  2. High-Fat Diet Linked to Prostate Cancer Metastasis

    Cancer.gov

    A new study in mice has revealed a molecular link between a high-fat diet and the growth and spread of prostate cancer. As this Cancer Currents post explains, researchers also showed that an anti-obesity drug that targets a protein that controls fat synthesis could potentially be used to treat metastatic prostate cance

  3. COMPARISON OF REAL-TIME PCR FECAL BACTERIA MEASUREMENTS IN RECREATIONAL WATERS USING DIFFERENT INSTRUMENTS AND REAGENT SYSTEMS

    EPA Science Inventory

    U.S. EPA guidance on the safety of surface waters for recreational use is currently based on concentrations of culturable fecal indicator bacteria. Attention is now shifting to more rapid molecular monitoring methods. A multi-year epidemiological study is in progress to determine...

  4. Revision of the taxonomic status of Aphis floridanae Tissot (Hemiptera:Aphididae) using morphological and molecular insight

    USDA-ARS?s Scientific Manuscript database

    Three Aphis species are involved in this study. Aphis floridanae Tissot, 1933 and A. nasturtii Kaltenbach, 1843 are currently treated as synonym, and A. impatientis Thomas, 1878 has a valid taxonomic status. Morphological and cytochrome oxidase 1 (Cox1) data show that Aphis floridanae is not synonym...

  5. Rice (Oryza) hemoglobins

    USDA-ARS?s Scientific Manuscript database

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a sin...

  6. Escherichia Coli--Key to Modern Genetics.

    ERIC Educational Resources Information Center

    Bregegere, Francois

    1982-01-01

    Mid-nineteenth century work by Mendel on plant hybrids and by Pasteur on fermentation gave birth by way of bacterial genetics to modern-day molecular biology. The bacterium Escherichia Coli has occupied a key position in genetic studies leading from early gene identification with DNA to current genetic engineering using recombinant DNA technology.…

  7. Soft Wall Ion Channel in Continuum Representation with Application to Modeling Ion Currents in α-Hemolysin

    PubMed Central

    Simakov, Nikolay A.

    2010-01-01

    A soft repulsion (SR) model of short range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson-Nernst-Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft wall protein model. Two sets of SR parameters are introduced: the first is parameterized for all essential amino acid residues using all atom molecular dynamic simulations; the second is a truncated Lennard – Jones potential. We have further designed an energy based algorithm for the determination of the ion accessible volume, which is appropriate for a particular system discretization. The effects of these models of short-range interaction were tested by computing current-voltage characteristics of the α-hemolysin channel. The introduced SR potentials significantly improve prediction of channel selectivity. In addition, we studied the effect of choice of some space-dependent diffusion coefficient distributions on the predicted current-voltage properties. We conclude that the diffusion coefficient distributions largely affect total currents and have little effect on rectifications, selectivity or reversal potential. The PNP-SR algorithm is implemented in a new efficient parallel Poisson, Poisson-Boltzman and PNP equation solver, also incorporated in a graphical molecular modeling package HARLEM. PMID:21028776

  8. A molecular dynamics study of liquid layering and thermal conductivity enhancement in nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Paul, J.; Madhu, A. K.; Jayadeep, U. B.; Sobhan, C. B.; Peterson, G. P.

    2018-03-01

    Liquid layering is considered to be one of the factors contributing to the often anomalous enhancement in thermal conductivity of nanoparticle suspensions. The extent of this layering was found to be significant at lower particle sizes, as reported in an earlier work by the authors. In continuation to that work, an investigation was conducted to better understand the fundamental parameters impacting the reported anomalous enhancement in thermal conductivity of nanoparticle suspensions (nanofluids), utilizing equilibrium molecular dynamics simulations in a copper-argon system. Nanofluids containing nanoparticles of size less than 6 nm were investigated and studied analytically. The heat current auto-correlation function in the Green-Kubo formulation for thermal conductivity was decomposed into self-correlations and cross-correlations of different species and the kinetic, potential, collision and enthalpy terms of the dominant portion of the heat current vector. The presence of liquid layering around the nanoparticle was firmly established through simulations that show the dominant contribution of Ar-Ar self-correlation and the trend displayed by the kinetic-potential cross-correlation within the argon species.

  9. Fluorescent probes for lipid rafts: from model membranes to living cells.

    PubMed

    Klymchenko, Andrey S; Kreder, Rémy

    2014-01-16

    Membrane microdomains (rafts) remain one of the controversial issues in biophysics. Fluorescent molecular probes, which make these lipid nanostructures visible through optical techniques, are one of the tools currently used to study lipid rafts. The most common are lipophilic fluorescent probes that partition specifically into liquid ordered or liquid disordered phase. Their partition depends on the lipid composition of a given phase, which complicates their use in cellular membranes. A second class of probes is based on environment-sensitive dyes, which partition into both phases, but stain them by different fluorescence color, intensity, or lifetime. These probes can directly address the properties of each separate phase, but their cellular applications are still limited. The present review focuses on summarizing the current state in the field of developing and applying fluorescent molecular probes to study lipid rafts. We highlight an urgent need to develop new probes, specifically adapted for cell plasma membranes and compatible with modern fluorescence microscopy techniques to push the understanding of membrane microdomains forward. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Structure-skin permeability relationship of dendrimers.

    PubMed

    Venuganti, Venkata Vamsi; Sahdev, Preety; Hildreth, Michael; Guan, Xiangming; Perumal, Omathanu

    2011-09-01

    To investigate skin penetration of poly (amidoamine) (PAMAM) dendrimers as a function of surface charge and molecular weight in presence and absence of iontophoresis. Dendrimers were labeled with fluoroisothiocynate (FITC); skin penetration of dendrimers was studied using excised porcine skin in-vitro. Skin penetration of FITC-labeled dendrimers was quantified using confocal laser scanning microscope (CLSM). G2-G6 NH(2), G3.5-COOH and G4-OH dendrimers were used. Cationic dendrimers showed higher skin penetration than neutral and anionic dendrimers. Skin penetration of cationic dendrimer increased linearly with increase in treatment time. Iontophoresis enhanced skin penetration of cationic and neutral dendrimers. Increase in current strength and current duration increased skin transport of dendrimers. Passive and iontophoretic skin penetration of cationic dendrimers was inversely related to their molecular weight. Dendrimer penetrated the skin through intercellular lipids and hair follicles. With iontophoresis, dendrimer was also found in localized skin regions. The study demonstrates that the physicochemical properties of dendrimers influence their skin transport. Findings can be used to design dendrimer-based nanocarriers for drug delivery to skin.

  11. Culicoides Latreille (Diptera: Ceratopogonidae) taxonomy: Current challenges and future directions

    PubMed Central

    Harrup, L.E.; Bellis, G.A.; Balenghien, T.; Garros, C.

    2015-01-01

    Culicoides Latreille biting midges (Diptera: Ceratopogonidae) cause a significant biting nuisance to humans, livestock and equines, and are the biological vectors of a range of internationally important pathogens of both veterinary and medical importance. Despite their economic significance, the delimitation and identification of species and evolutionary relationships between species within this genus remains at best problematic. To date no phylogenetic study has attempted to validate the subgeneric classification of the genus and the monophyly of many of the subgenera remains doubtful. Many informal species groupings are also known to exist but few are adequately described, further complicating accurate identification. Recent contributions to Culicoides taxonomy at the species level have revealed a high correlation between morphological and molecular analyses although molecular analyses are revealing the existence of cryptic species. This review considers the methods for studying the systematics of Culicoides using both morphological and genetic techniques, with a view to understanding the factors limiting our current understanding of Culicoides biology and hence arbovirus epidemiology. In addition, we examine the global status of Culicoides identification, highlighting areas that are poorly addressed, including the potential implementation of emerging technologies. PMID:25535946

  12. BET inhibitors in cancer therapeutics: a patent review.

    PubMed

    Ghoshal, Anirban; Yugandhar, D; Srivastava, Ajay Kumar

    2016-01-01

    Inhibition of Bromodomain and Extra Terminal (BET) proteins is an emerging approach for developing advanced cancer therapeutics. In 2015, at least thirty patents have been published for developing cancer chemotherapeutics by targeting BET. Currently there are seven small molecule BET inhibitors in various stages of clinical trials for the development of anti-cancer drugs. Important patents focusing on development of BET inhibitors as potential cancer therapeutics published in 2015 have been covered. The reports are presented together with a review of the related structural chemical space. This review mainly focuses on the therapeutic applications, chemical class and structural modifications along with the molecules currently in clinical trials. BET sub-family proteins are one of the emerging targets to develop anti-cancer agents. Although many research groups have demonstrated the rationality of BET inhibition to combat cancer, a detailed molecular study needs to be performed to investigate the affected biological pathways. Selectivity among BET proteins should be kept in mind while developing BET inhibitors. In-silico molecular modelling studies can also provide valuable information for designing selective BET inhibitors towards anti-cancer drug discovery and development.

  13. Medical Systemic Therapies for Hepatocellular Carcinoma: Clinical Perspectives and Safety Profile.

    PubMed

    Facciorusso, Antonio; Antonino, Matteo; Del Prete, Valentina; Amoruso, Annabianca; Neve, Viviana; Barone, Michele

    2015-01-01

    A multidisciplinary approach based on clinical expertise and knowledge of molecular processes involved in hepatocarcinogenesis is needed for the proper management of hepatocellular carcinoma (HCC) patients. Such information must be considered in the context of pathobiology of the underlying liver disease. New drugs targeting specific molecular steps in pathways involved in HCC growth and development bear the promise to radically modify the pharmacological therapies currently in use in hepatooncology. Sorafenib was the first drug approved in the setting of advanced HCC, but although it produces some improvement in survival, the responses are not durable. In addition, there are significant side effects. Other angiogenesis inhibitors are in development to treat HCC both in the first-line setting and after progression following sorafenib failure; among them, tivantinib, an inhibitor of cMET receptor, showed interesting results in a recent phase-II study. Additional agents currently studied for the treatment of HCC patients are briefly examined in this review. Aim of this paper is to discuss the state of the art in the management of advanced HCC patients, with a particular interest for the description of their side effects.

  14. Investigating the Non-Covalent Functionalization and Chemical Transformation of Graphene

    NASA Astrophysics Data System (ADS)

    Sham, Chun-Hong

    Trend in device miniatures demands capabilities to produce rationally designed patterns in ever-shrinking length scale. The research community has examined various techniques to push the current lithography resolution to sub-10nm scale. One of the ideas is to utilize the natural nanoscale patterns of molecular assemblies. In this thesis, the self-assembling phenomenon of a photoactive molecule on epitaxial graphene (EG) grown on SiC was discussed. This molecular assembly enables manipulation of chemical contrast in nanoscale through UV exposure or atomic layer deposition. Future development of nanoelectronics industry will be fueled by innovations in electronics materials, which could be discovered through covalent modification of graphene. In a study reported in this thesis, silicon is deposited onto EG. After annealing, a new surface reconstruction, identified to be (3x3)-SiC, was formed. Raman spectroscopy finds no signature of graphene after annealing, indicating a complete chemical transformation of graphene. DFT calculations reveal a possible conversion mechanism. Overall, these studies provide insights for future device miniaturization; contribute to the search of novel materials and help bridging the gap between graphene and current silicon-based industrial infrastructures.

  15. An exploratory study of recycled sputtering and CsF2- current enhancement for AMS

    NASA Astrophysics Data System (ADS)

    Zhao, X.-L.; Charles, C. R. J.; Cornett, R. J.; Kieser, W. E.; MacDonald, C.; Kazi, Z.; St-Jean, N.

    2016-01-01

    The analysis of 135Cs/Cs ratios at levels below 10-12 by accelerator mass spectrometry (AMS) would preferably use commonly available negative ion injection systems. The sputter ion sources in these injectors should ideally produce currents of Cs- or Cs-containing molecular anions approaching μA levels from targets containing mg quantities of Cs. However, since Cs is the most electro-positive stable element in nature with a low electron affinity, the generation of large negative atomic, or molecular beams containing Cs, has been very challenging. In addition, the reduction of the interferences from the 135Ba isobar and the primary 133Cs+ beam used for sputtering are also necessary. The measurement of a wide range of the isotope ratios also requires the ion source memory of previous samples be minimized. This paper describes some progresses towards a potential solution of all these problems by recycled sputtering using fluorinating targets of PbF2 with mg CsF mixed in. The problems encountered indicate that considerable further studies and some redesign of the present ion sources will be desirable.

  16. The use of FTA cards for preserving unfixed cytological material for high-throughput molecular analysis.

    PubMed

    Saieg, Mauro Ajaj; Geddie, William R; Boerner, Scott L; Liu, Ni; Tsao, Ming; Zhang, Tong; Kamel-Reid, Suzanne; da Cunha Santos, Gilda

    2012-06-25

    Novel high-throughput molecular technologies have made the collection and storage of cells and small tissue specimens a critical issue. The FTA card provides an alternative to cryopreservation for biobanking fresh unfixed cells. The current study compared the quality and integrity of the DNA obtained from 2 types of FTA cards (Classic and Elute) using 2 different extraction protocols ("Classic" and "Elute") and assessed the feasibility of performing multiplex mutational screening using fine-needle aspiration (FNA) biopsy samples. Residual material from 42 FNA biopsies was collected in the cards (21 Classic and 21 Elute cards). DNA was extracted using the Classic protocol for Classic cards and both protocols for Elute cards. Polymerase chain reaction for p53 (1.5 kilobase) and CARD11 (500 base pair) was performed to assess DNA integrity. Successful p53 amplification was achieved in 95.2% of the samples from the Classic cards and in 80.9% of the samples from the Elute cards using the Classic protocol and 28.5% using the Elute protocol (P = .001). All samples (both cards) could be amplified for CARD11. There was no significant difference in the DNA concentration or 260/280 purity ratio when the 2 types of cards were compared. Five samples were also successfully analyzed by multiplex MassARRAY spectrometry, with a mutation in KRAS found in 1 case. High molecular weight DNA was extracted from the cards in sufficient amounts and quality to perform high-throughput multiplex mutation assays. The results of the current study also suggest that FTA Classic cards preserve better DNA integrity for molecular applications compared with the FTA Elute cards. Copyright © 2012 American Cancer Society.

  17. Molecular diagnosis of putative Stargardt disease probands by exome sequencing

    PubMed Central

    2012-01-01

    Background The commonest genetic form of juvenile or early adult onset macular degeneration is Stargardt Disease (STGD) caused by recessive mutations in the gene ABCA4. However, high phenotypic and allelic heterogeneity and a small but non-trivial amount of locus heterogeneity currently impede conclusive molecular diagnosis in a significant proportion of cases. Methods We performed whole exome sequencing (WES) of nine putative Stargardt Disease probands and searched for potentially disease-causing genetic variants in previously identified retinal or macular dystrophy genes. Follow-up dideoxy sequencing was performed for confirmation and to screen for mutations in an additional set of affected individuals lacking a definitive molecular diagnosis. Results Whole exome sequencing revealed seven likely disease-causing variants across four genes, providing a confident genetic diagnosis in six previously uncharacterized participants. We identified four previously missed mutations in ABCA4 across three individuals. Likely disease-causing mutations in RDS/PRPH2, ELOVL, and CRB1 were also identified. Conclusions Our findings highlight the enormous potential of whole exome sequencing in Stargardt Disease molecular diagnosis and research. WES adequately assayed all coding sequences and canonical splice sites of ABCA4 in this study. Additionally, WES enables the identification of disease-related alleles in other genes. This work highlights the importance of collecting parental genetic material for WES testing as the current knowledge of human genome variation limits the determination of causality between identified variants and disease. While larger sample sizes are required to establish the precision and accuracy of this type of testing, this study supports WES for inherited early onset macular degeneration disorders as an alternative to standard mutation screening techniques. PMID:22863181

  18. The state of cell block variation and satisfaction in the era of molecular diagnostics and personalized medicine

    PubMed Central

    Crapanzano, John P.; Heymann, Jonas J.; Monaco, Sara; Nassar, Aziza; Saqi, Anjali

    2014-01-01

    Background: In the recent past, algorithms and recommendations to standardize the morphological, immunohistochemical and molecular classification of lung cancers on cytology specimens have been proposed, and several organizations have recommended cell blocks (CBs) as the preferred modality for molecular testing. Based on the literature, there are several different techniques available for CB preparation-suggesting that there is no standard. The aim of this study was to conduct a survey of CB preparation techniques utilized in various practice settings and analyze current issues, if any. Materials and Methods: A single E-mail with a link to an electronic survey was distributed to members of the American Society of Cytopathology and other pathologists. Questions pertaining to the participants’ practice setting and CBs-volume, method, quality and satisfaction-were included. Results: Of 95 respondents, 90/95 (94%) completed the survey and comprise the study group. Most participants practice in a community hospital/private practice (44%) or academic center (41%). On average, 14 CBs (range 0-50; median 10) are prepared by a laboratory daily. Over 10 methods are utilized: Plasma thrombin (33%), HistoGel (27%), Cellient automated cell block system (8%) and others (31%) respectively. Forty of 90 (44%) respondents are either unsatisfied or sometimes satisfied with their CB quality, with low-cellular yield being the leading cause of dissatisfaction. There was no statistical significance between the three most common CB preparation methods and satisfaction with quality. Discussion: Many are dissatisfied with their current method of CB preparation, and there is no consistent method to prepare CBs. In today's era of personalized medicine with an increasing array of molecular tests being applied to cytological specimens, there is a need for a standardized protocol for CB optimization to enhance cellularity. PMID:24799951

  19. The state of cell block variation and satisfaction in the era of molecular diagnostics and personalized medicine.

    PubMed

    Crapanzano, John P; Heymann, Jonas J; Monaco, Sara; Nassar, Aziza; Saqi, Anjali

    2014-01-01

    In the recent past, algorithms and recommendations to standardize the morphological, immunohistochemical and molecular classification of lung cancers on cytology specimens have been proposed, and several organizations have recommended cell blocks (CBs) as the preferred modality for molecular testing. Based on the literature, there are several different techniques available for CB preparation-suggesting that there is no standard. The aim of this study was to conduct a survey of CB preparation techniques utilized in various practice settings and analyze current issues, if any. A single E-mail with a link to an electronic survey was distributed to members of the American Society of Cytopathology and other pathologists. Questions pertaining to the participants' practice setting and CBs-volume, method, quality and satisfaction-were included. Of 95 respondents, 90/95 (94%) completed the survey and comprise the study group. Most participants practice in a community hospital/private practice (44%) or academic center (41%). On average, 14 CBs (range 0-50; median 10) are prepared by a laboratory daily. Over 10 methods are utilized: Plasma thrombin (33%), HistoGel (27%), Cellient automated cell block system (8%) and others (31%) respectively. Forty of 90 (44%) respondents are either unsatisfied or sometimes satisfied with their CB quality, with low-cellular yield being the leading cause of dissatisfaction. There was no statistical significance between the three most common CB preparation methods and satisfaction with quality. Many are dissatisfied with their current method of CB preparation, and there is no consistent method to prepare CBs. In today's era of personalized medicine with an increasing array of molecular tests being applied to cytological specimens, there is a need for a standardized protocol for CB optimization to enhance cellularity.

  20. Use of Neoadjuvant Chemotherapy Plus Molecular Targeted Therapy in Colorectal Liver Metastases: A Systematic Review and Meta-analysis.

    PubMed

    Sabanathan, Dhanusha; Eslick, Guy D; Shannon, Jenny

    2016-12-01

    Surgery remains the standard of care for patients with colorectal liver metastases (CLMs), with a 5-year survival rate approaching 35%. Perioperative chemotherapy confers a survival benefit in selected patients with CLMs. The use of molecular targeted therapy combined with neoadjuvant chemotherapy for CLMs, however, remains controversial. We reviewed the published data on combination neoadjuvant chemotherapy and molecular targeted therapy for resectable and initially unresectable CLMs. A literature search of the Medline and PubMed databases was conducted to identify studies of neoadjuvant chemotherapy plus molecular targeted therapy in the management of resectable or initially unresectable CLMs. We calculated the pooled proportion and 95% confidence intervals using a random effects model for the relationship of the combination neoadjuvant treatment on the overall response rate and performed a systematic review of all identified studies. The analysis was stratified according to the study design. The data from 11 studies of 908 patients who had undergone systemic chemotherapy plus targeted therapy for CLM were analyzed. The use of combination neoadjuvant therapy was associated with an overall response rate of 68% (95% confidence interval, 63%-73%), with significant heterogeneity observed in the studies (I 2  = 89.35; P < .001). Of the 11 studies, 4 used a combination that included oxaliplatin, 2 included irinotecan, and 5 included a combination of both. Also, 7 studies used cetuximab and 4 bevacizumab. The overall progression-free survival was estimated at 14.4 months. Current evidence suggests that neoadjuvant chemotherapy plus molecular targeted agents for CLM confers high overall response rates. Combination treatment might also increase the resectability rates in initially unresectable CLM. Further studies are needed to examine the survival outcomes, with a focus on the differential role of molecular targeted therapy in the neoadjuvant versus adjuvant setting. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  1. Understanding Molecular Conduction: Old Wine in a New Bottle?

    NASA Astrophysics Data System (ADS)

    Ghosh, Avik

    2007-03-01

    Molecules provide an opportunity to test our understanding of fundamental non-equilibrium transport processes, as well as explore new device possibilities. We have developed a unified approach to nanoscale conduction, coupling bandstructure and electrostatics of the channel and contacts with a quantum kinetic theory of current flow. This allows us to describe molecular conduction at various levels of detail, -- from quantum corrected compact models, to semi-empirical models for quick physical insights, and `first-principles' calculations of current-voltage (I-V) characteristics with no adjustable parameters. Using this suite of tools, we can quantitatively explain various experimental I-Vs, including complex reconstructed silicon substrates. We find that conduction in most molecules is contact dominated, and limited by fundamental electrostatic and thermodynamic restrictions quite analogous to those faced by the silicon industry, barring a few interesting exceptions. The distinction between molecular and silicon electronics must therefore be probed at a more fundamental level. Ultra-short molecules are unique in that they possess large Coulomb energies as well as anomalous vibronic couplings with current flow -- in other words, strong non-equilibrium electron-electron and electron-phonon correlations. These effects yield prominent experimental signatures, but require a completely different modeling approach -- in fact, popular approaches to include correlation typically do not work for non-equilibrium. Molecules exhibit rich physics, including the ability to function both as weakly interacting current conduits (quantum wires) as well as strongly correlated charge storage centers (quantum dots). Theoretical treatment of the intermediate coupling regime is particularly challenging, with a large `fine structure constant' for transport that negates orthodox theories of Coulomb Blockade and phonon-assisted tunneling. It is in this regime that the scientific and technological merits of molecular conductors may need to be explored. For instance, the tunable quantum coupling of current flow in silicon transistors with engineered molecular scatterers could lead to devices that operate on completely novel principles.

  2. Rice Molecular Breeding Laboratories in the Genomics Era: Current Status and Future Considerations

    PubMed Central

    Collard, Bert C. Y.; Vera Cruz, Casiana M.; McNally, Kenneth L.; Virk, Parminder S.; Mackill, David J.

    2008-01-01

    Using DNA markers in plant breeding with marker-assisted selection (MAS) could greatly improve the precision and efficiency of selection, leading to the accelerated development of new crop varieties. The numerous examples of MAS in rice have prompted many breeding institutes to establish molecular breeding labs. The last decade has produced an enormous amount of genomics research in rice, including the identification of thousands of QTLs for agronomically important traits, the generation of large amounts of gene expression data, and cloning and characterization of new genes, including the detection of single nucleotide polymorphisms. The pinnacle of genomics research has been the completion and annotation of genome sequences for indica and japonica rice. This information—coupled with the development of new genotyping methodologies and platforms, and the development of bioinformatics databases and software tools—provides even more exciting opportunities for rice molecular breeding in the 21st century. However, the great challenge for molecular breeders is to apply genomics data in actual breeding programs. Here, we review the current status of MAS in rice, current genomics projects and promising new genotyping methodologies, and evaluate the probable impact of genomics research. We also identify critical research areas to “bridge the application gap” between QTL identification and applied breeding that need to be addressed to realize the full potential of MAS, and propose ideas and guidelines for establishing rice molecular breeding labs in the postgenome sequence era to integrate molecular breeding within the context of overall rice breeding and research programs. PMID:18528527

  3. The application of proteomics in different aspects of hepatocellular carcinoma research.

    PubMed

    Xing, Xiaohua; Liang, Dong; Huang, Yao; Zeng, Yongyi; Han, Xiao; Liu, Xiaolong; Liu, Jingfeng

    2016-08-11

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, which is causing the second leading cancer-related death worldwide. With the significant advances of high-throughput protein analysis techniques, the proteomics offered an extremely useful and versatile analytical platform for biomedical researches. In recent years, different proteomic strategies have been widely applied in the various aspects of HCC studies, ranging from screening the early diagnostic and prognostic biomarkers to in-depth investigating the underlying molecular mechanisms. In this review, we would like to systematically summarize the current applications of proteomics in hepatocellular carcinoma study, and discuss the challenges of applying proteomics in study clinical samples, as well as discuss the possible application of proteomics in precision medicine. In this review, we have systematically summarized the current applications of proteomics in hepatocellular carcinoma study, ranging from screening biomarkers to in-depth investigating the underlying molecular mechanisms. In addition, we have discussed the challenges of applying proteomics in study clinical samples, as well as the possible applications of proteomics in precision medicine. We believe that this review would help readers to be better familiar with the recent progresses of clinical proteomics, especially in the field of hepatocellular carcinoma research. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations.

    PubMed

    Bottaro, Sandro; Bussi, Giovanni; Kennedy, Scott D; Turner, Douglas H; Lindorff-Larsen, Kresten

    2018-05-01

    RNA molecules are key players in numerous cellular processes and are characterized by a complex relationship between structure, dynamics, and function. Despite their apparent simplicity, RNA oligonucleotides are very flexible molecules, and understanding their internal dynamics is particularly challenging using experimental data alone. We show how to reconstruct the conformational ensemble of four RNA tetranucleotides by combining atomistic molecular dynamics simulations with nuclear magnetic resonance spectroscopy data. The goal is achieved by reweighting simulations using a maximum entropy/Bayesian approach. In this way, we overcome problems of current simulation methods, as well as in interpreting ensemble- and time-averaged experimental data. We determine the populations of different conformational states by considering several nuclear magnetic resonance parameters and point toward properties that are not captured by state-of-the-art molecular force fields. Although our approach is applied on a set of model systems, it is fully general and may be used to study the conformational dynamics of flexible biomolecules and to detect inaccuracies in molecular dynamics force fields.

  5. Subtle Monte Carlo Updates in Dense Molecular Systems.

    PubMed

    Bottaro, Sandro; Boomsma, Wouter; E Johansson, Kristoffer; Andreetta, Christian; Hamelryck, Thomas; Ferkinghoff-Borg, Jesper

    2012-02-14

    Although Markov chain Monte Carlo (MC) simulation is a potentially powerful approach for exploring conformational space, it has been unable to compete with molecular dynamics (MD) in the analysis of high density structural states, such as the native state of globular proteins. Here, we introduce a kinetic algorithm, CRISP, that greatly enhances the sampling efficiency in all-atom MC simulations of dense systems. The algorithm is based on an exact analytical solution to the classic chain-closure problem, making it possible to express the interdependencies among degrees of freedom in the molecule as correlations in a multivariate Gaussian distribution. We demonstrate that our method reproduces structural variation in proteins with greater efficiency than current state-of-the-art Monte Carlo methods and has real-time simulation performance on par with molecular dynamics simulations. The presented results suggest our method as a valuable tool in the study of molecules in atomic detail, offering a potential alternative to molecular dynamics for probing long time-scale conformational transitions.

  6. The whole-genome landscape of medulloblastoma subtypes.

    PubMed

    Northcott, Paul A; Buchhalter, Ivo; Morrissy, A Sorana; Hovestadt, Volker; Weischenfeldt, Joachim; Ehrenberger, Tobias; Gröbner, Susanne; Segura-Wang, Maia; Zichner, Thomas; Rudneva, Vasilisa A; Warnatz, Hans-Jörg; Sidiropoulos, Nikos; Phillips, Aaron H; Schumacher, Steven; Kleinheinz, Kortine; Waszak, Sebastian M; Erkek, Serap; Jones, David T W; Worst, Barbara C; Kool, Marcel; Zapatka, Marc; Jäger, Natalie; Chavez, Lukas; Hutter, Barbara; Bieg, Matthias; Paramasivam, Nagarajan; Heinold, Michael; Gu, Zuguang; Ishaque, Naveed; Jäger-Schmidt, Christina; Imbusch, Charles D; Jugold, Alke; Hübschmann, Daniel; Risch, Thomas; Amstislavskiy, Vyacheslav; Gonzalez, Francisco German Rodriguez; Weber, Ursula D; Wolf, Stephan; Robinson, Giles W; Zhou, Xin; Wu, Gang; Finkelstein, David; Liu, Yanling; Cavalli, Florence M G; Luu, Betty; Ramaswamy, Vijay; Wu, Xiaochong; Koster, Jan; Ryzhova, Marina; Cho, Yoon-Jae; Pomeroy, Scott L; Herold-Mende, Christel; Schuhmann, Martin; Ebinger, Martin; Liau, Linda M; Mora, Jaume; McLendon, Roger E; Jabado, Nada; Kumabe, Toshihiro; Chuah, Eric; Ma, Yussanne; Moore, Richard A; Mungall, Andrew J; Mungall, Karen L; Thiessen, Nina; Tse, Kane; Wong, Tina; Jones, Steven J M; Witt, Olaf; Milde, Till; Von Deimling, Andreas; Capper, David; Korshunov, Andrey; Yaspo, Marie-Laure; Kriwacki, Richard; Gajjar, Amar; Zhang, Jinghui; Beroukhim, Rameen; Fraenkel, Ernest; Korbel, Jan O; Brors, Benedikt; Schlesner, Matthias; Eils, Roland; Marra, Marco A; Pfister, Stefan M; Taylor, Michael D; Lichter, Peter

    2017-07-19

    Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and 'enhancer hijacking' events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.

  7. Functional optical coherence tomography: principles and progress

    NASA Astrophysics Data System (ADS)

    Kim, Jina; Brown, William; Maher, Jason R.; Levinson, Howard; Wax, Adam

    2015-05-01

    In the past decade, several functional extensions of optical coherence tomography (OCT) have emerged, and this review highlights key advances in instrumentation, theoretical analysis, signal processing and clinical application of these extensions. We review five principal extensions: Doppler OCT (DOCT), polarization-sensitive OCT (PS-OCT), optical coherence elastography (OCE), spectroscopic OCT (SOCT), and molecular imaging OCT. The former three have been further developed with studies in both ex vivo and in vivo human tissues. This review emphasizes the newer techniques of SOCT and molecular imaging OCT, which show excellent potential for clinical application but have yet to be well reviewed in the literature. SOCT elucidates tissue characteristics, such as oxygenation and carcinogenesis, by detecting wavelength-dependent absorption and scattering of light in tissues. While SOCT measures endogenous biochemical distributions, molecular imaging OCT detects exogenous molecular contrast agents. These newer advances in functional OCT broaden the potential clinical application of OCT by providing novel ways to understand tissue activity that cannot be accomplished by other current imaging methodologies.

  8. A review of molecular phase separation in binary self-assembled monolayers of thiols on gold surfaces

    NASA Astrophysics Data System (ADS)

    Ong, Quy; Nianias, Nikolaos; Stellacci, Francesco

    2017-09-01

    Binary self-assembled monolayers (SAMs) on gold surfaces have been known to undergo molecular phase separation to various degrees and have been subject to both experimental and theoretical studies. On gold nanoparticles in particular, binary SAMs ligand shells display intriguing morphologies. Consequently, unexpected behaviors of the nanoparticles with respect to their biological, chemical, and interfacial properties have been observed. It is critical that the phase separation of binary SAMs be understood at both molecular and macroscopic level to create, and then manipulate, the useful properties of the functionalized surfaces. We look into the current understanding of molecular phase separation of binary SAMs on gold surfaces, represented by Au(111) flat surfaces and Au nanoparticles, from both theoretical and experimental aspects. We point out shortcomings and describe several research strategies that will address them in the future. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Pule Pileni.

  9. Update on Molecular Testing for Cytologically Indeterminate Thyroid Nodules.

    PubMed

    Nishino, Michiya; Nikiforova, Marina

    2018-04-01

    - Approximately 15% to 30% of thyroid nodules that undergo fine-needle aspiration are classified as cytologically indeterminate, presenting management challenges for patients and clinicians alike. During the past several years, several molecular tests have been developed to reduce the diagnostic uncertainty of indeterminate thyroid fine-needle aspirations. - To review the methodology, clinical validation, and recent peer-reviewed literature for 4 molecular tests that are currently marketed for cytologically indeterminate thyroid fine-needle aspiration specimens: Afirma, ThyroSeq, ThyGenX/ThyraMIR, and RosettaGX Reveal. - Peer-reviewed literature retrieved from PubMed search, data provided by company websites and representatives, and authors' personal experiences. - The 4 commercially available molecular tests for thyroid cytology offer unique approaches to improve the risk stratification of thyroid nodules. Familiarity with data from the validation studies as well as the emerging literature about test performance in the postvalidation setting can help users to select and interpret these tests in a clinically meaningful way.

  10. Functional Optical Coherence Tomography: Principles and Progress

    PubMed Central

    Kim, Jina; Brown, William; Maher, Jason R.; Levinson, Howard; Wax, Adam

    2015-01-01

    In the past decade, several functional extensions of optical coherence tomography (OCT) have emerged, and this review highlights key advances in instrumentation, theoretical analysis, signal processing and clinical application of these extensions. We review five principal extensions: Doppler OCT (DOCT), polarization-sensitive OCT (PS-OCT), optical coherence elastography (OCE), spectroscopic OCT (SOCT), and molecular imaging OCT. The former three have been further developed with studies in both ex vivo and in vivo human tissues. This review emphasizes the newer techniques of SOCT and molecular imaging OCT, which show excellent potential for clinical application but have yet to be well reviewed in the literature. SOCT elucidates tissue characteristics, such as oxygenation and carcinogenesis, by detecting wavelength-dependent absorption and scattering of light in tissues. While SOCT measures endogenous biochemical distributions, molecular imaging OCT detects exogenous molecular contrast agents. These newer advances in functional OCT broaden the potential clinical application of OCT by providing novel ways to understand tissue activity that cannot be accomplished by other current imaging methodologies. PMID:25951836

  11. Some Dynamical Features of Molecular Fragmentation by Electrons and Swift Ions

    NASA Astrophysics Data System (ADS)

    Montenegro, E. C.; Sigaud, L.; Wolff, W.; Luna, H.; Natalia, Ferreira

    To date, the large majority of studies on molecular fragmentation by swift charged particles have been carried out using simple molecules, for which reliable Potential Energy Curves are available to interpret the measured fragmentation yields. For complex molecules the scenario is quite different and such guidance is not available, obscuring even a simple organization of the data which are currently obtained for a large variety of molecules of biological or technological interest. In this work we show that a general and relatively simple methodology can be used to obtain a broader picture of the fragmentation pattern of an arbitrary molecule. The electronic ionization or excitation cross section of a given molecular orbital, which is the first part of the fragmentation process, can be well scaled by a simple and general procedure at high projectile velocities. The fragmentation fractions arising from each molecular orbital can then be achieved by matching the calculated ionization with the measured fragmentation cross sections. Examples for Oxygen, Chlorodifluoromethane and Pyrimidine molecules are presented.

  12. Noninvasive probes of mitochondrial molecular motors

    NASA Astrophysics Data System (ADS)

    Nawarathna, Dharmakeerthna; Claycomb, James

    2005-03-01

    We report on a noninvasive method of probing mitochondrial molecular motors using nonlinear dielectric spectroscopy. It has been found previously that enzymes in the plasma membrane, particularly H+ ATPase, result in a strong low frequency (less than 100 Hz) nonlinear harmonic response. In this study, we find evidence that molecular motors located in the inner membranes of mitochondria cause the generation of harmonics at relatively high frequencies (1 - 30 kHz). In particular, we find that potassium cyanide (KCN), a respiratory inhibitor that binds to cytochrome c oxidase and thus prevents transport of protons across the mitochondrial inner membrane, suppresses the harmonic response. We observe this behavior in yeast (S. cerevisiae), a eucaryote that typically contains about 300 mitochondria, and B. indicas, a procaryote believed to be related to the ancient ancestor of mitochondria. Our current modeling efforts are focusing on a Brownian ratchet model of the F0 unit of ATP synthase, a remarkable molecular turbine driven by the proton gradient across the mitochondrial inner membrane.

  13. Advantages in functional imaging of the brain.

    PubMed

    Mier, Walter; Mier, Daniela

    2015-01-01

    As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this-visualize structure-function and brain-behavior relationships. The review describes the development and current applications of functional brain imaging techniques with a focus on applications in psychiatry. A historical overview of the development of functional imaging is followed by the portrayal of the principles and applications of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), two key molecular imaging techniques that have revolutionized the ability to image molecular processes in the brain. We conclude that the juxtaposition of PET and fMRI in hybrid PET/MRI scanners enhances the significance of both modalities for research in neurology and psychiatry and might pave the way for a new area of personalized medicine.

  14. Human Gut Microbiome: Function Matters.

    PubMed

    Heintz-Buschart, Anna; Wilmes, Paul

    2017-11-22

    The human gut microbiome represents a complex ecosystem contributing essential functions to its host. Recent large-scale metagenomic studies have provided insights into its structure and functional potential. However, the functional repertoire which is actually contributed to human physiology remains largely unexplored. Here, by leveraging recent omics datasets, we challenge current assumptions regarding key attributes of the functional gut microbiome, in particular with respect to its variability. We further argue that the closing of existing gaps in functional knowledge should be addressed by a most-wanted gene list, the development and application of molecular and cellular high-throughput measurements, the development and sensible use of experimental models, as well as the direct study of observable molecular effects in the human host. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Biological Studies of Posttraumatic Stress Disorder

    PubMed Central

    Pitman, Roger K.; Rasmusson, Ann M.; Koenen, Karestan C.; Shin, Lisa M.; Orr, Scott P.; Gilbertson, Mark W.; Milad, Mohammed R.; Liberzon, Israel

    2016-01-01

    Preface Posttraumatic stress disorder (PTSD) is the only major mental disorder for which a cause is considered to be known, viz., an event that involves threat to the physical integrity of oneself or others and induces a response of intense fear, helplessness, or horror. Although PTSD is still largely regarded as a psychological phenomenon, over the past three decades the growth of the biological PTSD literature has been explosive, and thousands of references now exist. Ultimately, the impact of an environmental event, such as a psychological trauma, must be understood at organic, cellular, and molecular levels. The present review attempts to present the current state of this understanding, based upon psychophysiological, structural and functional neuroimaging, endocrinological, genetic, and molecular biological studies in humans and in animal models. PMID:23047775

  16. Silicon oxide: a non-innocent surface for molecular electronics and nanoelectronics studies.

    PubMed

    Yao, Jun; Zhong, Lin; Natelson, Douglas; Tour, James M

    2011-02-02

    Silicon oxide (SiO(x)) has been widely used in many electronic systems as a supportive and insulating medium. Here, we demonstrate various electrical phenomena such as resistive switching and related nonlinear conduction, current hysteresis, and negative differential resistance intrinsic to a thin layer of SiO(x). These behaviors can largely mimic numerous electrical phenomena observed in molecules and other nanomaterials, suggesting that substantial caution should be paid when studying conduction in electronic systems with SiO(x) as a component. The actual electrical phenomena can be the result of conduction from SiO(x) at a post soft-breakdown state and not the presumed molecular or nanomaterial component. These electrical properties and the underlying mechanisms are discussed in detail.

  17. Hepatocellular Carcinoma: Molecular Biology and Therapy

    PubMed Central

    Abou-Alfa, Ghassan

    2007-01-01

    Advanced and metastatic hepatocellular carcinomas (HCC) are challenging to treat, and no cytotoxic agents have impacted survival. The underlying liver cirrhosis that commonly accompanies HCC provides an additional challenge; indeed, functional scoring of cirrhosis and HCC is a critical component of patient evaluation. Currently, the molecular biology and pathogenesis of HCC are being increasingly investigated, which may lead to better understanding of the evolution of the disease, especially differing etiologies and identification of survival genes that may affect outcome. Early studies of targeted therapies in HCC have shown disease stabilization, and an increased understanding of the mechanism(s) of these novel agents combined with correlative studies may lead to the identification of an active agent or combination of agents that impacts the natural history of HCC. PMID:17178294

  18. Using thermally stimulated current (TSC) to investigate disorder in micronized drug substance produced at different milling energies.

    PubMed

    Forcino, Rachel; Brum, Jeffrey; Galop, Marc; Sun, Yan

    2010-10-01

    To investigate the use of thermally stimulated current (TSC) to characterize disorder resulting from micronization of a crystalline drug substance. Samples processed at different milling energies are characterized, and annealing studied. Molecular mobility in micronized drug substance was studied using TSC and compared to results from differential scanning calorimetry (DSC). The micronized drug substance TSC spectra are compared to crystalline and amorphous references. TSC shows distinct relaxation modes for micronized material in comparison to a single weak exotherm observed with DSC. Molecular mobility modes are unique for micronized material compared to the amorphous reference indicating physically distinct disorder compared to phase-separated amorphous material. Signals are ascribed as arising from crystal defects. TSC differentiates material processed at different milling energies showing reasonable correlation between the AUC of the α-relaxation and micronization energy. The annealing process of crystal defects in micronized drug appears to proceed differently for α and β relaxations. TSC proves sensitive to the crystal defects in the micronized drug substance studied here. The technique is able to differentiate distinct types of disorder and can be used to characterize noncrystalline regions arising from milling processes which are physically distinct from amorphous material.

  19. Induction of oxidative stress by bisphenol A and its pleiotropic effects

    PubMed Central

    Gassman, Natalie R.

    2016-01-01

    Bisphenol A (BPA) has become a target of intense public scrutiny since concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer have emerged. BPA is a highly prevalent chemical in consumer products, and human exposure is thought to be ubiquitous. Numerous studies have demonstrated its endocrine disrupting properties and attributed exposure with cytotoxic, genotoxic, and carcinogenic effects; however, the results of these studies are still highly debated and a consensus about BPA's safety and its role in human disease has not been reached. One of the contributing factors is a lack of molecular mechanisms or modes of action that explain the diverse and pleiotropic effects observed after BPA exposure. The increase in BPA research seen over the last ten years has resulted in more studies that examine molecular mechanisms and revealed links between BPA-induced oxidative stress and human disease. Here, a review of the current literature examining BPA exposure and the induction of reactive oxygen species (ROS) or oxidative stress will be provided to examine the landscape of the current BPA literature and provide a framework for understanding how induction of oxidative stress by BPA may contribute to the pleiotropic effects observed after exposure. PMID:28181297

  20. Sarcopenia in post-menopausal women: Is there any role for vitamin D?

    PubMed

    Anagnostis, Panagiotis; Dimopoulou, Christina; Karras, Spyridon; Lambrinoudaki, Irene; Goulis, Dimitrios G

    2015-09-01

    Recently, special attention has been given to the role of vitamin D on the pathogenesis and therapy of sarcopenia in postmenopausal women. To elucidate the role of vitamin D with respect to sarcopenia in postmenopausal women, providing current evidence from both molecular and clinical studies. Systematic search to PubMed and Medline databases for publications reporting data on the role of vitamin D in sarcopenia. Sarcopenia has a high prevalence in postmenopausal women, leading to mobility restriction, functional impairment, physical disability and fractures. Accumulating evidence from molecular and clinical studies suggest that vitamin D deficiency is associated with sarcopenic status in elderly women independent of body composition, diet and hormonal status. Current data, but not in a uniform way, provide evidence about the beneficial effect of vitamin D supplementation on muscle strength, physical performance and prevention of falls and fractures in elderly female populations. It is still unclear if and to what extent treatment modalities, such as dose, mode of administration and duration of supplementation, could influence treatment outcome. Studies with superior methodological characteristics are needed in order to establish a role for vitamin D on the treatment of sarcopenia in postmenopausal women. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Molecular biology of pancreatic cancer: how useful is it in clinical practice?

    PubMed

    Sakorafas, George H; Smyrniotis, Vasileios

    2012-07-10

    During the recent two decades dramatic advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis. It is currently accepted that pancreatic cancer has a genetic component. The real challenge is now how these impressive advances could be used in clinical practice. To critically present currently available data regarding clinical application of molecular biology in pancreatic cancer. Reports about clinical implications of molecular biology in patients with pancreatic cancer were retrieved from PubMed. These reports were selected on the basis of their clinical relevance, and the data of their publication (preferentially within the last 5 years). Emphasis was placed on reports investigating diagnostic, prognostic, and therapeutic implications. Molecular biology can be used to identify individuals at high-risk for pancreatic cancer development. Intensive surveillance is indicated in these patients to detect pancreatic neoplasia ideally at a preinvasive stage, when curative resection is still possible. Molecular biology can also be used in the diagnosis of pancreatic cancer, with molecular analysis on samples of biologic material, such as serum or plasma, duodenal fluid or preferentially pure pancreatic juice, pancreatic cells or tissue, and stools. Molecular indices have also prognostic significance. Finally, molecular biology may have therapeutic implications by using various therapeutic approaches, such as antiangiogenic factors, purine synthesis inhibitors, matrix metalloproteinase inhibitors, factors modulating tumor-stroma interaction, inactivation of the hedgehog pathway, gene therapy, oncolytic viral therapy, immunotherapy (both passive as well as active) etc. Molecular biology may have important clinical implications in patients with pancreatic cancer and represents one of the most active areas on cancer research. Hopefully clinical applications of molecular biology in pancreatic cancer will expand in the future, improving the effectiveness of treatment and prognosis of patients with pancreatic cancer. 

  2. Preclinical assessment of abuse liability of biologics: In defense of current regulatory control policies.

    PubMed

    Gauvin, David V; Zimmermann, Zachary J; Baird, Theodore J

    2015-10-01

    Current regulatory policies of both the US Food and Drug Administration and Drug Enforcement Administration do not delineate automatic exceptions for biologics with respect to preclinical assessments for abuse liability of all new entities. As defined in current guidance documents and drug control policies, an exception may be given upon thorough review of available data, therapeutic target and in consultation with the Controlled Substances Staff within the Center for Drug Evaluation and Research of the FDA, but a blanket exception for all biological entities is not currently available. We review the abuse liability testing of four known biologics with definitive positive abuse liability signals in the three core abuse liability assays, self-administration, drug discrimination, and dependence potential described in the FDA draft guidance document. Interestingly, while all four examplars have positive abuse liability signals in all three assays, two of these biologics are controlled under the Comprehensive Drug Abuse and Control Act (CSA, 1970) and the other two are not currently controlled. Admittedly, these four biologics are small molecule entities. However, there is no reference to "molecular size" in the legally-binding statutory definition of biologics under the FD&C act or in the Controlled Substances Act. Neither of these drug control policy mandates have a bifurcated control status in which to make exceptions based solely on molecular size. With the current pharmaceutical focus on new technologies, such as "Trojan Horses", targeting the active transport of large molecule entities directly into the CNS, an argument to automatically exempt new molecular entities solely on molecular size is untenable. We argue that for the safety and health of general public the current regulatory control status be maintained until definitive criteria for exceptions can be identified and amended to both the FD&CA and CSA, if warranted. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Spontaneous recombination current in InGaAs/GaAs quantum well lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blood, P.; Fletcher, E.D.; Woodbridge, K.

    1990-10-08

    We have studied the intrinsic factors which determine the threshold current and its temperature dependence in 160-A-wide In{sub 0.2}Ga{sub 0.8}As single well quantum lasers with GaAs barriers, grown by molecular beam epitaxy on GaAs substrates. By measuring the relative temperature dependence of the spontaneous emission intensity at threshold we show that radiative transitions between higher order ({ital n}=2,3) electron and heavy hole subbands make a significant contribution to the threshold current and its temperature sensitivity, even in devices where the laser transitions are between {ital n}=1 subbands. These higher transitions will also influence the dependence of threshold current and itsmore » temperature sensitivity on well width.« less

  4. Molecular Nanotechnology and Designs of Future

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Reviewing the status of current approaches and future projections, as already published in the scientific journals and books, the talk will summarize the direction in which computational and experimental molecular nanotechnologies are progressing. Examples of nanotechnological approach to the concepts of design and simulation of atomically precise materials in a variety of interdisciplinary areas will be presented. The concepts of hypothetical molecular machines and assemblers as explained in Drexler's and Merckle's already published work and Han et. al's WWW distributed molecular gears will be explained.

  5. Advancing Treatment of Pituitary Adenomas through Targeted Molecular Therapies: The Acromegaly and Cushing Disease Paradigms.

    PubMed

    Mooney, Michael A; Simon, Elias D; Little, Andrew S

    2016-01-01

    The current treatment of pituitary adenomas requires a balance of conservative management, surgical resection, and in select tumor types, molecular therapy. Acromegaly treatment is an evolving field where our understanding of molecular targets and drug therapies has improved treatment options for patients with excess growth hormone levels. We highlight the use of molecular therapies in this disease process and advances in this field, which may represent a paradigm shift for the future of pituitary adenoma treatment.

  6. [Clinical applications of molecular imaging methods for patients with ischemic stroke].

    PubMed

    Yamauchi, Hiroshi; Fukuyama, Hidenao

    2007-02-01

    Several molecular imaging methods have been developed to visualize pathophysiology of cerebral ischemia in humans in vivo. PET and SPECT with specific ligands have been mainly used as diagnostic tools for the clinical usage of molecular imaging in patients with ischemic stroke. Recently, cellular MR imaging with specific contrast agents has been developed to visualize targeted cells in human stroke patients. This article reviews the current status in the clinical applications of those molecular imaging methods for patients with ischemic stroke.

  7. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine?

    PubMed

    Mahajan, A; Goh, V; Basu, S; Vaish, R; Weeks, A J; Thakur, M H; Cook, G J

    2015-10-01

    Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the evolution of cancer, target specific biological molecules, and study the anti-tumour effects of novel therapeutic agents. At the same time, there has been a paradigm shift in the field of oncological imaging from purely structural or functional imaging to combined multimodal structure-function approaches that enable the assessment of malignancy from all aspects (including molecular and functional level) in a single examination. The evolving molecular functional imaging using specific molecular targets (especially with combined positron-emission tomography [PET] computed tomography [CT] using 2- [(18)F]-fluoro-2-deoxy-D-glucose [FDG] and other novel PET tracers) has great potential in translational research, giving specific quantitative information with regard to tumour activity, and has been of pivotal importance in diagnoses and therapy tailoring. Furthermore, molecular functional imaging has taken a key place in the present era of translational cancer research, producing an important tool to study and evolve newer receptor-targeted therapies, gene therapies, and in cancer stem cell research, which could form the basis to translate these agents into clinical practice, popularly termed "theranostics". Targeted molecular imaging needs to be developed in close association with biotechnology, information technology, and basic translational scientists for its best utility. This article reviews the current role of molecular functional imaging as one of the main pillars of translational research. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  8. Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine

    PubMed Central

    Zylka, Mark J.; Sowa, Nathaniel A.; Taylor-Blake, Bonnie; Twomey, Margaret A.; Herrala, Annakaisa; Voikar, Vootele; Vihko, Pirkko

    2008-01-01

    SUMMARY Thiamine monophosphatase (TMPase, also known as Fluoride-Resistant Acid Phosphatase) is a classic histochemical marker of small-diameter dorsal root ganglia neurons. The molecular identity of TMPase is currently unknown. We found that TMPase is identical to the transmembrane isoform of Prostatic Acid Phosphatase (PAP), an enzyme with unknown molecular and physiological functions. We then found that PAP knockout mice have normal acute pain sensitivity but enhanced sensitivity in chronic inflammatory and neuropathic pain models. In gain-of-function studies, intraspinal injection of PAP protein has potent anti-nociceptive, anti-hyperalgesic and anti-allodynic effects that last longer than the opioid analgesic morphine. PAP suppresses pain by functioning as an ecto-5’-nucleotidase. Specifically, PAP dephosphorylates extracellular adenosine monophosphate (AMP) to adenosine and activates A1-adenosine receptors in dorsal spinal cord. Our studies reveal molecular and physiological functions for PAP in purine nucleotide metabolism and nociception and suggest a novel use for PAP in the treatment of chronic pain. PMID:18940592

  9. Hyaluronic Acid Graft Copolymers with Cleavable Arms as Potential Intravitreal Drug Delivery Vehicles.

    PubMed

    Borke, Tina; Najberg, Mathie; Ilina, Polina; Bhattacharya, Madhushree; Urtti, Arto; Tenhu, Heikki; Hietala, Sami

    2018-01-01

    Treatment of retinal diseases currently demands frequent intravitreal injections due to rapid clearance of the therapeutics. The use of high molecular weight polymers can extend the residence time in the vitreous and prolong the injection intervals. This study reports a water soluble graft copolymer as a potential vehicle for sustained intravitreal drug delivery. The copolymer features a high molecular weight hyaluronic acid (HA) backbone and poly(glyceryl glycerol) (PGG) side chains attached via hydrolysable ester linkers. PGG, a polyether with 1,2-diol groups in every repeating unit available for conjugation, serves as a detachable carrier. The influence of synthesis conditions and incubation in physiological media on the molecular weight of HA is studied. The cleavage of the PGG grafts from the HA backbone is quantified and polymer-from-polymer release kinetics are determined. The biocompatibility of the materials is tested in different cell cultures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Spin resolved electronic transport through N@C20 fullerene molecule between Au electrodes: A first principles study

    NASA Astrophysics Data System (ADS)

    Caliskan, Serkan

    2018-05-01

    Using first principles study, through Density Functional Theory combined with Non Equilibrium Green's Function Formalism, electronic properties of endohedral N@C20 fullerene molecule joining Au electrodes (Au-N@C20) was addressed in the presence of spin property. The electronic transport behavior across the Au-N@C20 molecular junction was investigated by spin resolved transmission, density of states, molecular orbitals, differential conductance and current-voltage (I-V) characteristics. Spin asymmetric variation was clearly observed in the results due to single N atom encapsulated in the C20 fullerene cage, where the N atom played an essential role in the electronic behavior of Au-N@C20. This N@C20 based molecular bridge, exhibiting a spin dependent I-V variation, revealed a metallic behavior within the bias range from -1 V to 1 V. The induced magnetic moment, spin polarization and other relevant quantities associated with the spin resolved transport were elucidated.

  11. A universal mini-vector and an annealing of PCR products (APP)-based cloning strategy for convenient molecular biological manipulations.

    PubMed

    Liu, Xia; Li, Tuoping; Hart, Darren J; Gao, Song; Wang, Hongling; Gao, Herui; Xu, Shumin; Zhang, Yifeng; Liu, Yifei; An, Yingfeng

    2018-03-18

    Currently, the most widely used strategies for molecular cloning are sticky-end ligation-based cloning, TA cloning, blunt-end ligation-based cloning and ligase-independent cloning. In this study we have developed a novel mini-vector pANY1 which can simultaneously meet the requirements of all these cloning strategies. In addition, the selection of appropriate restriction digestion sites is difficult in some cases because of the presence of internal sites. In this study, an annealing of PCR products (APP)-based sticky-end cloning strategy was introduced to avoid this issue. Additionally, false positives occur during molecular cloning, which increases the workload of isolating positive clones. The plasmid pANY1 contains a ccdB cassette between multiple cloning sites, which efficiently avoids these false positives. Therefore, this mini-vector should serve as a useful tool with wide applications in biosciences, agriculture, food technologies, etc. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Meta-review of protein network regulating obesity between validated obesity candidate genes in the white adipose tissue of high-fat diet-induced obese C57BL/6J mice.

    PubMed

    Kim, Eunjung; Kim, Eun Jung; Seo, Seung-Won; Hur, Cheol-Goo; McGregor, Robin A; Choi, Myung-Sook

    2014-01-01

    Worldwide obesity and related comorbidities are increasing, but identifying new therapeutic targets remains a challenge. A plethora of microarray studies in diet-induced obesity models has provided large datasets of obesity associated genes. In this review, we describe an approach to examine the underlying molecular network regulating obesity, and we discuss interactions between obesity candidate genes. We conducted network analysis on functional protein-protein interactions associated with 25 obesity candidate genes identified in a literature-driven approach based on published microarray studies of diet-induced obesity. The obesity candidate genes were closely associated with lipid metabolism and inflammation. Peroxisome proliferator activated receptor gamma (Pparg) appeared to be a core obesity gene, and obesity candidate genes were highly interconnected, suggesting a coordinately regulated molecular network in adipose tissue. In conclusion, the current network analysis approach may help elucidate the underlying molecular network regulating obesity and identify anti-obesity targets for therapeutic intervention.

  13. An Investigation of G-Quadruplex Structural Polymorphism in the Human Telomere Using a Combined Approach of Hydrodynamic Bead Modeling and Molecular Dynamics Simulation

    PubMed Central

    2015-01-01

    Guanine-rich oligonucleotides can adopt noncanonical tertiary structures known as G-quadruplexes, which can exist in different forms depending on experimental conditions. High-resolution structural methods, such as X-ray crystallography and NMR spectroscopy, have been of limited usefulness in resolving the inherent structural polymorphism associated with G-quadruplex formation. The lack of, or the ambiguous nature of, currently available high-resolution structural data, in turn, has severely hindered investigations into the nature of these structures and their interactions with small-molecule inhibitors. We have used molecular dynamics in conjunction with hydrodynamic bead modeling to study the structures of the human telomeric G-quadruplex-forming sequences at the atomic level. We demonstrated that molecular dynamics can reproduce experimental hydrodynamic measurements and thus can be a powerful tool in the structural study of existing G-quadruplex sequences or in the prediction of new G-quadruplex structures. PMID:24779348

  14. The phylogenetic relationships of endemic Australasian trichostrongylin families (Nematoda: Strongylida) parasitic in marsupials and monotremes.

    PubMed

    Chilton, Neil B; Huby-Chilton, Florence; Koehler, Anson V; Gasser, Robin B; Beveridge, Ian

    2015-10-01

    The phylogenetic relationships of the endemic (or largely endemic) Australasian trichostrongylin nematode families Herpetostrongylidae, Mackerrastrongylidae and Nicollinidae as well as endemic trichostrongylin nematodes currently placed in the families Trichostrongylidae and Molineidae were examined using the complete large subunit (28S) ribosomal RNA gene. The Herpetostrongylinae proved to be monophyletic. However, representatives of the Nicollinidae nested with the Herpetostrongylinae. The Mackerrastrongylidae was also a monophyletic group and included Peramelistrongylus, currently classified within the Trichostrongylidae. The Globocephaloidinae, currently considered to be a subfamily of the Herpetostrongylidae, was excluded from the family in the current analysis. Ollulanus and Libyostrongylus, included for the first time in a molecular phylogenetic analysis, were placed within the Trichostrongylidae. This study provided strong support for the Herpetostrongylidae (including within it the Nicollinidae, but excluding the Globocephaloidinae) and the Mackerrastrongylidae as monophyletic assemblages. Additional studies are required to resolve the relationships of the remaining endemic Australasian trichostrongylin genera.

  15. A structural perspective on the interactions of TRAF6 and Basigin during the onset of melanoma: A molecular dynamics simulation study.

    PubMed

    Biswas, Ria; Ghosh, Semanti; Bagchi, Angshuman

    2017-11-01

    Metastatic melanoma is the most fatal type of skin cancer. The roles of matrix metalloproteinases (MMPs) have well been established in the onset of melanoma. Basigin (BSG) belongs to the immunoglobulin superfamily and is critical for induction of extracellular MMPs during the onset of various cancers including melanoma. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an E3-ligase that interacts with BSG and mediates its membrane localization, which leads to MMP expression in melanoma cells. This makes TRAF6 a potential therapeutic target in melanoma. We here conducted protein-protein interaction studies on TRAF6 and BSG to get molecular level insights of the reactions. The structure of human BSG was constructed by protein threading. Molecular-docking method was applied to develop the TRAF6-BSG complex. The refined docked complex was further optimized by molecular dynamics simulations. Results from binding free energy, surface properties, and electrostatic interaction analysis indicate that Lys340 and Glu417 of TRAF6 play as the anchor residues in the protein interaction interface. The current study will be helpful in designing specific modulators of TRAF6 to control melanoma metastasis. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Molecular Studies of HTLV-1 Replication: An Update

    PubMed Central

    Martin, Jessica L.; Maldonado, José O.; Mueller, Joachim D.; Zhang, Wei; Mansky, Louis M.

    2016-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus discovered. Studies on HTLV-1 have been instrumental for our understanding of the molecular pathology of virus-induced cancers. HTLV-1 is the etiological agent of an adult T-cell leukemia (ATL) and can lead to a variety of neurological pathologies, including HTLV-1-associated-myelopathy/tropical spastic paraparesis (HAM/TSP). The ability to treat the aggressive ATL subtypes remains inadequate. HTLV-1 replicates by (1) an infectious cycle involving virus budding and infection of new permissive target cells and (2) mitotic division of cells harboring an integrated provirus. Virus replication initiates host antiviral immunity and the checkpoint control of cell proliferation, but HTLV-1 has evolved elegant strategies to counteract these host defense mechanisms to allow for virus persistence. The study of the molecular biology of HTLV-1 replication has provided crucial information for understanding HTLV-1 replication as well as aspects of viral replication that are shared between HTLV-1 and human immunodeficiency virus type 1 (HIV-1). Here in this review, we discuss the various stages of the virus replication cycle—both foundational knowledge as well as current updates of ongoing research that is important for understanding HTLV-1 molecular pathogenesis as well as in developing novel therapeutic strategies. PMID:26828513

  17. Optical depth of molecular gas in starburst galaxies - Is M82 the prototype?

    NASA Technical Reports Server (NTRS)

    Verter, F.; Rickard, L. J.

    1989-01-01

    An attempt is made to survey the CO(2-1) emission toward the centers of 17 IR-luminous galaxies which have previously been detected in CO(1-0). These galaxies span a wide range of size and L(FIR)/L(B) ratio, many have multiple-wavelength studies establishing them as starbursts, and some bear a morphological resemblance to M 82. Nine galaxies are detected and useful upper limits are placed on the remaining eight. Using the CO(2-1)/CO(1-0) ratio of antenna temperature as a diagnostic of optical depth, it is found that all of the galaxies contain predominantly optically thick molecular gas. This implies that the phase of starburst during which the molecular gas is optically thin, currently witnessed in M 82, is either uncommon or short-lived.

  18. Conventional and molecular diagnostic strategies for prosthetic joint infections.

    PubMed

    Esteban, Jaime; Sorlí, Luisa; Alentorn-Geli, Eduard; Puig, Lluís; Horcajada, Juan P

    2014-01-01

    An accurate diagnosis of prosthetic joint infection (PJI) is the mainstay for an optimized clinical management. This review analyzes different diagnostic strategies of PJI, with special emphasis on molecular diagnostic tools and their current and future applications. Until now, the culture of periprosthetic tissues has been considered the gold standard for the diagnosis of PJI. However, sonication of the implant increases the sensitivity of those cultures and is being increasingly adopted by many centers. Molecular diagnostic methods compared with intraoperative tissue culture, especially if combined with sonication, have a higher sensitivity, a faster turnaround time and are not influenced by previous antimicrobial therapy. However, they still lack a system for detection of antimicrobial susceptibility, which is crucial for an optimized and less toxic therapy of PJI. More studies are needed to assess the clinical value of these methods and their cost-effectiveness.

  19. Study of Nanocomposites of Amino Acids and Organic Polyethers by Means of Mass Spectrometry and Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Zobnina, V. G.; Kosevich, M. V.; Chagovets, V. V.; Boryak, O. A.

    A problem of elucidation of structure of nanomaterials based on combination of proteins and polyether polymers is addressed on the monomeric level of single amino acids and oligomers of PEG-400 and OEG-5 polyethers. Efficiency of application of combined approach involving experimental electrospray mass spectrometry and computer modeling by molecular dynamics simulation is demonstrated. It is shown that oligomers of polyethers form stable complexes with amino acids valine, proline, histidine, glutamic, and aspartic acids. Molecular dynamics simulation has shown that stabilization of amino acid-polyether complexes is achieved due to winding of the polymeric chain around charged groups of amino acids. Structural motives revealed for complexes of single amino acids with polyethers can be realized in structures of protein-polyether nanoparticles currently designed for drug delivery.

  20. Resonant tunneling via a Ru-dye complex using a nanoparticle bridge junction.

    PubMed

    Nishijima, Satoshi; Otsuka, Yoichi; Ohoyama, Hiroshi; Kajimoto, Kentaro; Araki, Kento; Matsumoto, Takuya

    2018-06-15

    Nonlinear current-voltage (I-V) characteristics is an important property for the realization of information processing in molecular electronics. We studied the electrical conduction through a Ru-dye complex (N-719) on a 2-aminoethanethiol (2-AET) monolayer in a nanoparticle bridge junction system. The nonlinear I-V characteristics exhibited a threshold voltage at around 1.2 V and little temperature dependence. From the calculation of the molecular states using density functional theory and the energy alignment between the electrodes and molecules, the conduction mechanism in this system was considered to be resonant tunneling via the HOMO level of N-719. Our results indicate that the weak electronic coupling of electrodes and molecules is essential for obtaining nonlinear I-V characteristics with a clear threshold voltage that reflect the intrinsic molecular state.

Top