NASA Astrophysics Data System (ADS)
Wang, Xiaojing; Yu, Qingquan; Zhang, Xiaodong; Zhang, Yang; Zhu, Sizheng; Wang, Xiaoguang; Wu, Bin
2018-04-01
Numerical studies on the stabilization of neoclassical tearing modes (NTMs) by electron cyclotron current drive (ECCD) have been carried out based on reduced MHD equations, focusing on the amount of the required driven current for mode stabilization and the comparison with analytical results. The dependence of the minimum driven current required for NTM stabilization on some parameters, including the bootstrap current density, radial width of the driven current, radial deviation of the driven current from the resonant surface, and the island width when applying ECCD, are studied. By fitting the numerical results, simple expressions for these dependences are obtained. Analysis based on the modified Rutherford equation (MRE) has also been carried out, and the corresponding results have the same trend as numerical ones, while a quantitative difference between them exists. This difference becomes smaller when the applied radio frequency (rf) current is smaller.
NASA Technical Reports Server (NTRS)
Manohar, G. K.; Kandalgaonkar, S. S.; Sholapurkar, S. M.
1991-01-01
The results of the measurements of point discharge current observations at Pune, India, during years 1987 and 1988 are presented by categorizing and studying their number of spells, polar current average durations, and current magnitudes in day-time and night-time conditions. While the results showed that the thunderstorm activity occupies far more day-time than the night-time the level of current magnitudes remains nearly the same in the two categories.
Electron kinematics in a plasma focus
NASA Technical Reports Server (NTRS)
Hohl, F.; Gary, S. P.
1977-01-01
The results of numerical integrations of the three-dimensional relativistic equations of motion of electrons subject to given electric and magnetic fields are presented. Fields due to two different models are studied: (1) a circular distribution of current filaments, and (2) a uniform current distribution; both the collapse and the current reduction phases are studied in each model. Decreasing current in the uniform current model yields 100 keV electrons accelerated toward the anode and, as for earlier ion computations, provides general agreement with experimental results.
NASA Technical Reports Server (NTRS)
Lyons, L. R.; Speiser, T. W.
1985-01-01
The paper derives an Ohm's law for single-particle motion in a current sheet, where the magnetic field reverses in direction across the sheet. The result is considerably different from the resistive Ohm's law often used in MHD studies of the geomagnetic tail. Single-particle analysis is extended to obtain a self-consistency relation for a current sheet which agrees with previous results. The results are applicable to the concept of reconnection in that the electric field parallel to the current is obtained for a one-dimensional current sheet with constant normal magnetic field. Dissipated energy goes directly into accelerating particles within the current sheet.
Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy.
Stigliano, Robert V; Shubitidze, Fridon; Petryk, James D; Shoshiashvili, Levan; Petryk, Alicia A; Hoopes, P Jack
2016-11-01
Magnetic nanoparticle hyperthermia therapy is a promising technology for cancer treatment, involving delivering magnetic nanoparticles (MNPs) into tumours then activating them using an alternating magnetic field (AMF). The system produces not only a magnetic field, but also an electric field which penetrates normal tissue and induces eddy currents, resulting in unwanted heating of normal tissues. Magnitude of the eddy current depends, in part, on the AMF source and the size of the tissue exposed to the field. The majority of in vivo MNP hyperthermia therapy studies have been performed in small animals, which, due to the spatial distribution of the AMF relative to the size of the animals, do not reveal the potential toxicity of eddy current heating in larger tissues. This has posed a non-trivial challenge for researchers attempting to scale up to clinically relevant volumes of tissue. There is a relative dearth of studies focused on decreasing the maximum temperature resulting from eddy current heating to increase therapeutic ratio. This paper presents two simple, clinically applicable techniques for decreasing maximum temperature induced by eddy currents. Computational and experimental results are presented to understand the underlying physics of eddy currents induced in conducting, biological tissues and leverage these insights to mitigate eddy current heating during MNP hyperthermia therapy. Phantom studies show that the displacement and motion techniques reduce maximum temperature due to eddy currents by 74% and 19% in simulation, and by 77% and 33% experimentally. Further study is required to optimise these methods for particular scenarios; however, these results suggest larger volumes of tissue could be treated, and/or higher field strengths and frequencies could be used to attain increased MNP heating when these eddy current mitigation techniques are employed.
Influence of DC arc current on the formation of cobalt-based nanostructures
NASA Astrophysics Data System (ADS)
Orpe, P. B.; Balasubramanian, C.; Mukherjee, S.
2017-08-01
The synthesis of cobalt-based magnetic nanostructures using DC arc discharge technique with varying arc current is reported here. The structural, morphological, compositional and magnetic properties of these nanostructures were studied as a function of applied arc current. Various techniques like X-ray diffraction, transmission electron microscopy, EDAX and vibrating sample magnetometry were used to carry out this study and the results are reported here. The results clearly indicate that for a given oxygen partial pressure, an arc current of 100 A favours the formation of unreacted cobalt atomic species. Also change in arc current leads to variation in phase, diversity in morphology etc. Other property changes such as thermal changes, mechanical changes etc. are not addressed here. The magnetic characterization further indicates that the anisotropy in shape plays a crucial role in deciding the magnetic properties of the nanostructured materials. We have quantified an interesting result in our experiment, that is, for a given partial pressure, 100 A arc current results in unique variation in structural and magnetic properties as compared to other arc currents.
Current in nanojunctions: Effects of reservoir coupling
NASA Astrophysics Data System (ADS)
Yadalam, Hari Kumar; Harbola, Upendra
2018-07-01
We study the effect of system reservoir coupling on currents flowing through quantum junctions. We consider two simple double-quantum dot configurations coupled to two external fermionic reservoirs and study the net current flowing between the two reservoirs. The net current is partitioned into currents carried by the eigenstates of the system and by the coherences between the eigenstates induced due to coupling with the reservoirs. We find that current carried by populations is always positive whereas current carried by coherences are negative for large couplings. This results in a non-monotonic dependence of the net current on the coupling strength. We find that in certain cases, the net current can vanish at large couplings due to cancellation between currents carried by the eigenstates and by the coherences. These results provide new insights into the non-trivial role of system-reservoir couplings on electron transport through quantum dot junctions. In the presence of weak coulomb interactions, net current as a function of system reservoir coupling strength shows similar trends as for the non-interacting case.
Radio-frequency current drive efficiency in the presence of ITBs and a dc electric field
NASA Astrophysics Data System (ADS)
Rosa, P. R. da S.; Mourão, R.; Ziebell, L. F.
2009-05-01
This paper discusses the current drive efficiency by the combined action of EC and LH waves in the presence of a dc electric field and transport, with an internal transport barrier. The transport is assumed to be produced by magnetic fluctuations. The study explores the different barrier parameters and their influence on the current drive efficiency. We study the subject by numerically solving the Fokker-Planck equation. Our main result is that the barrier depth and barrier width are important to determine the correct shape of the current density profile but not to determine the current drive efficiency, which is very little influenced by these parameters. We also found similar results for the influence of the level of magnetic fluctuations on the current density profile and on the current drive efficiency.
Kim, Jin-Seop; Yi, Seung-Ju
2014-01-01
[Purpose] This study aimed to determine whether low-frequency current therapy can be used to reduce the symptoms of idiopathic slow transit constipation (ISTC). [Subjects] Fifteen patients (ten male and five female) with idiopathic slow transit constipation were enrolled in the present study. [Results] Bowel movements per day, bowel movements per week, and constipation assessment scale scores significantly improved after low-frequency current simulation of S2-S3. [Conclusion] Our results show that stimulation with low-frequency current of the sacral dermatomes may offer therapeutic benefits for a subject of patients with ISTC. PMID:25013277
Kim, Jin-Seop; Yi, Seung-Ju
2014-06-01
[Purpose] This study aimed to determine whether low-frequency current therapy can be used to reduce the symptoms of idiopathic slow transit constipation (ISTC). [Subjects] Fifteen patients (ten male and five female) with idiopathic slow transit constipation were enrolled in the present study. [Results] Bowel movements per day, bowel movements per week, and constipation assessment scale scores significantly improved after low-frequency current simulation of S2-S3. [Conclusion] Our results show that stimulation with low-frequency current of the sacral dermatomes may offer therapeutic benefits for a subject of patients with ISTC.
Perspectives on setting limits for RF contact currents: a commentary.
Tell, Richard A; Tell, Christopher A
2018-01-15
Limits for exposure to radiofrequency (RF) contact currents are specified in the two dominant RF safety standards and guidelines developed by the Institute of Electrical and Electronics Engineers (IEEE) and the International Commission on Non-Ionizing Radiation Protection (ICNIRP). These limits are intended to prevent RF burns when contacting RF energized objects caused by high local tissue current densities. We explain what contact currents are and review some history of the relevant limits with an emphasis on so-called "touch" contacts, i.e., contact between a person and a contact current source during touch via a very small contact area. Contact current limits were originally set on the basis of controlling the specific absorption rate resulting from the current flowing through regions of small conductive cross section within the body, such as the wrist or ankle. More recently, contact currents have been based on thresholds of perceived heating. In the latest standard from the IEEE developed for NATO, contact currents have been based on two research studies in which thresholds for perception of thermal warmth or thermal pain have been measured. Importantly, these studies maximized conductive contact between the subject and the contact current source. This factor was found to dominate the response to heating wherein high resistance contact, such as from dry skin, can result in local heating many times that from a highly conductive contact. Other factors such as electrode size and shape, frequency of the current and the physical force associated with contact are found to introduce uncertainty in threshold values when comparing data across multiple studies. Relying on studies in which the contact current is minimized for a given threshold does not result in conservative protection limits. Future efforts to develop limits on contact currents should include consideration of (1) the basis for the limits (perception, pain, tissue damage); (2) understanding of the practical conditions of real world exposure for contact currents such as contact resistance, size and shape of the contact electrode and applied force at the point of contact; (3) consistency of how contact currents are applied in research studies across different researchers; (4) effects of frequency.
Associating ground magnetometer observations with current or voltage generators
NASA Astrophysics Data System (ADS)
Hartinger, M. D.; Xu, Z.; Clauer, C. R.; Yu, Y.; Weimer, D. R.; Kim, H.; Pilipenko, V.; Welling, D. T.; Behlke, R.; Willer, A. N.
2017-07-01
A circuit analogy for magnetosphere-ionosphere current systems has two extremes for drivers of ionospheric currents: ionospheric electric fields/voltages constant while current/conductivity vary—the "voltage generator"—and current constant while electric field/conductivity vary—the "current generator." Statistical studies of ground magnetometer observations associated with dayside Transient High Latitude Current Systems (THLCS) driven by similar mechanisms find contradictory results using this paradigm: some studies associate THLCS with voltage generators, others with current generators. We argue that most of this contradiction arises from two assumptions used to interpret ground magnetometer observations: (1) measurements made at fixed position relative to the THLCS field-aligned current and (2) negligible auroral precipitation contributions to ionospheric conductivity. We use observations and simulations to illustrate how these two assumptions substantially alter expectations for magnetic perturbations associated with either a current or a voltage generator. Our results demonstrate that before interpreting ground magnetometer observations of THLCS in the context of current/voltage generators, the location of a ground magnetometer station relative to the THLCS field-aligned current and the location of any auroral zone conductivity enhancements need to be taken into account.
NASA Astrophysics Data System (ADS)
Singh, Sumitra; Mahala, Pramila; Pal, Suchandan
2018-01-01
This work evaluates the effect of graphene, indium tin oxide (ITO) and Ni/Au as contact/current spreading layer/current spreading layer for GaN vertical light emitting diodes (V-LEDs). In this simulation study, the effect of these contact/current spreading layers on different performance parameters of GaN V-LEDs has been studied. By using these three different types of contact/current spreading layers, we have comparatively studied the effect on light extraction efficiency (LEE), optical output power, wall plug efficiency and radiant intensity of V-LEDs. As per the simulation results, it shows that using graphene contact/current spreading layers, it is possible to achieve better performance than using ITO and Ni/Au contact/current spreading layers. For graphene/(Ni/Au) contact/current spreading layers, the LEE is improved by 36.77% whereas for ITO/(Ni/Au) contact/current spreading layers it is improved by 13.74%. Also, by using graphene/(Ni/Au) contact/current spreading layers, the optical output power of LEDs improved by 11.11% whereas for ITO/(Ni/Au) contact/current spreading layers shown 4.16% improvement. The radiant intensity is enhanced by 37.65% for graphene/(Ni/Au) contact/current spreading layers and 13.5% for ITO/(Ni/Au) contact/current spreading layers. In this report, we have given a detailed analysis of the obtained simulation results. The simulation was carried out in SimuLED tool.
Modeling the Inner Magnetosphere: Radiation Belts, Ring Current, and Composition
NASA Technical Reports Server (NTRS)
Glocer, Alex
2011-01-01
The space environment is a complex system defined by regions of differing length scales, characteristic energies, and physical processes. It is often difficult, or impossible, to treat all aspects of the space environment relative to a particular problem with a single model. In our studies, we utilize several models working in tandem to examine this highly interconnected system. The methodology and results will be presented for three focused topics: 1) Rapid radiation belt electron enhancements, 2) Ring current study of Energetic Neutral Atoms (ENAs), Dst, and plasma composition, and 3) Examination of the outflow of ionospheric ions. In the first study, we use a coupled MHD magnetosphere - kinetic radiation belt model to explain recent Akebono/RDM observations of greater than 2.5 MeV radiation belt electron enhancements occurring on timescales of less than a few hours. In the second study, we present initial results of a ring current study using a newly coupled kinetic ring current model with an MHD magnetosphere model. Results of a dst study for four geomagnetic events are shown. Moreover, direct comparison with TWINS ENA images are used to infer the role that composition plays in the ring current. In the final study, we directly model the transport of plasma from the ionosphere to the magnetosphere. We especially focus on the role of photoelectrons and and wave-particle interactions. The modeling methodology for each of these studies will be detailed along with the results.
Assigning and Combining Probabilities in Single-Case Studies
ERIC Educational Resources Information Center
Manolov, Rumen; Solanas, Antonio
2012-01-01
There is currently a considerable diversity of quantitative measures available for summarizing the results in single-case studies. Given that the interpretation of some of them is difficult due to the lack of established benchmarks, the current article proposes an approach for obtaining further numerical evidence on the importance of the results,…
Rose, D. V.; Madrid, E. A.; Welch, D. R.; ...
2015-03-04
Numerical simulations of a vacuum post-hole convolute driven by magnetically insulated vacuum transmission lines (MITLs) are used to study current losses due to charged particle emission from the MITL-convolute-system electrodes. This work builds on the results of a previous study [E.A. Madrid et al. Phys. Rev. ST Accel. Beams 16, 120401 (2013)] and adds realistic power pulses, Ohmic heating of anode surfaces, and a model for the formation and evolution of cathode plasmas. The simulations suggest that modestly larger anode-cathode gaps in the MITLs upstream of the convolute result in significantly less current loss. In addition, longer pulse durations leadmore » to somewhat greater current loss due to cathode-plasma expansion. These results can be applied to the design of future MITL-convolute systems for high-current pulsed-power systems.« less
Current induced vortex wall dynamics in helical magnetic systems
NASA Astrophysics Data System (ADS)
Roostaei, Bahman
2015-03-01
Nontrivial topology of interfaces separating phases with opposite chirality in helical magnetic metals result in new effects as they interact with spin polarized current. These interfaces or vortex walls consist of a one dimensional array of vortex lines. We predict that adiabatic transfer of angular momentum between vortex array and spin polarized current will result in topological Hall effect in multi-domain samples. Also we predict that the motion of the vortex array will result in a new damping mechanism for magnetic moments based on Lenz's law. We study the dynamics of these walls interacting with electric current and use fundamental electromagnetic laws to quantify those predictions. On the other hand discrete nature of vortex walls affects their pinning and results in low depinning current density. We predict the value of this current using collective pinning theory.
Lee, Won Hee; Lisanby, Sarah H; Laine, Andrew F; Peterchev, Angel V
2013-01-01
This study examines the characteristics of the electric field induced in the brain by electroconvulsive therapy (ECT) with individualized current amplitude. The electric field induced by bilateral (BL), bifrontal (BF), right unilateral (RUL), and frontomedial (FM) ECT electrode configurations was computed in anatomically realistic finite element models of four nonhuman primates (NHPs). We generated maps of the electric field strength relative to an empirical neural activation threshold, and determined the stimulation strength and focality at fixed current amplitude and at individualized current amplitudes corresponding to seizure threshold (ST) measured in the anesthetized NHPs. The results show less variation in brain volume stimulated above threshold with individualized current amplitudes (16-36%) compared to fixed current amplitude (30-62%). Further, the stimulated brain volume at amplitude-titrated ST is substantially lower than that for ECT with conventional fixed current amplitudes. Thus individualizing the ECT stimulus current could compensate for individual anatomical variability and result in more focal and uniform electric field exposure across different subjects compared to the standard clinical practice of using high, fixed current for all patients.
Current Fluctuations in Stochastic Lattice Gases
NASA Astrophysics Data System (ADS)
Bertini, L.; de Sole, A.; Gabrielli, D.; Jona-Lasinio, G.; Landim, C.
2005-01-01
We study current fluctuations in lattice gases in the macroscopic limit extending the dynamic approach for density fluctuations developed in previous articles. More precisely, we establish a large deviation theory for the space-time fluctuations of the empirical current which include the previous results. We then estimate the probability of a fluctuation of the average current over a large time interval. It turns out that recent results by Bodineau and Derrida [Phys. Rev. Lett.922004180601] in certain cases underestimate this probability due to the occurrence of dynamical phase transitions.
NASA Astrophysics Data System (ADS)
Patcharoen, Theerasak; Yoomak, Suntiti; Ngaopitakkul, Atthapol; Pothisarn, Chaichan
2018-04-01
This paper describes the combination of discrete wavelet transforms (DWT) and artificial intelligence (AI), which are efficient techniques to identify the type of inrush current, analyze the origin and possible cause on the capacitor bank switching. The experiment setup used to verify the proposed techniques can be detected and classified the transient inrush current from normal capacitor rated current. The discrete wavelet transforms are used to detect and classify the inrush current. Then, output from wavelet is acted as input of fuzzy inference system for discriminating the type of switching transient inrush current. The proposed technique shows enhanced performance with a discrimination accuracy of 90.57%. Both simulation study and experimental results are quite satisfactory with providing the high accuracy and reliability which can be developed and implemented into a numerical overcurrent (50/51) and unbalanced current (60C) protection relay for an application of shunt capacitor bank protection in the future.
Walker, Courtney S; McKinney, Cliff
2015-10-01
Current research indicates that children tend to view parents with psychopathology more negatively and children who hold negative perceptions of parents are at a greater risk for psychopathology. Yet, less research examines how parental psychopathology influences offspring psychopathology through affect toward parents. The current study tested a model that examined the associations among parental psychopathology, positive affect toward parents, and emerging adult psychopathology. Associations were expected to be partly indirect via positive affect toward parents and emerging adult gender was expected to moderate these associations. Results indicated gender-moderated mediation with significant effects found for males but not females. Results from the current study emphasize the importance of examining affect toward parents as a risk factor for emerging adult psychopathology. Additionally, results of the current study demonstrate the importance of examining the role of emerging adult gender as a potential moderator in these relationships. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
1982-08-01
results of changing selected independent variables. ri The results of the projection of chemical agent density and cloud drift, including dissapation and... combination of agent effects, creates, over time, an extensive threat to wide areas of the FBHA, according to current theories. Shifting wind patterns...will be proposed in paragraph 2.7. The selection of decontamination equipment by the study team is a result of a combination of factors. First, current
Identifying Return-Current Losses in Flare Hard X-ray Spectra
NASA Technical Reports Server (NTRS)
Holman, Gordon D.
2011-01-01
I will report on theoretical studies and a data analysis program aimed at identifying and physically interpreting breaks in hard X-ray spectra resulting from return-current energy losses, as well as heating of the flare plasma resulting from these losses.
Arpinar, V E; Hamamura, M J; Degirmenci, E; Muftuler, L T
2012-07-07
Magnetic resonance electrical impedance tomography (MREIT) is a technique that produces images of conductivity in tissues and phantoms. In this technique, electrical currents are applied to an object and the resulting magnetic flux density is measured using magnetic resonance imaging (MRI) and the conductivity distribution is reconstructed using these MRI data. Currently, the technique is used in research environments, primarily studying phantoms and animals. In order to translate MREIT to clinical applications, strict safety standards need to be established, especially for safe current limits. However, there are currently no standards for safe current limits specific to MREIT. Until such standards are established, human MREIT applications need to conform to existing electrical safety standards in medical instrumentation, such as IEC601. This protocol limits patient auxiliary currents to 100 µA for low frequencies. However, published MREIT studies have utilized currents 10-400 times larger than this limit, bringing into question whether the clinical applications of MREIT are attainable under current standards. In this study, we investigated the feasibility of MREIT to accurately reconstruct the relative conductivity of a simple agarose phantom using 200 µA total injected current and tested the performance of two MREIT reconstruction algorithms. These reconstruction algorithms used are the iterative sensitivity matrix method (SMM) by Ider and Birgul (1998 Elektrik 6 215-25) with Tikhonov regularization and the harmonic B(Z) proposed by Oh et al (2003 Magn. Reason. Med. 50 875-8). The reconstruction techniques were tested at both 200 µA and 5 mA injected currents to investigate their noise sensitivity at low and high current conditions. It should be noted that 200 µA total injected current into a cylindrical phantom generates only 14.7 µA current in imaging slice. Similarly, 5 mA total injected current results in 367 µA in imaging slice. Total acquisition time for 200 µA and 5 mA experiments was about 1 h and 8.5 min, respectively. The results demonstrate that conductivity imaging is possible at low currents using the suggested imaging parameters and reconstructing the images using iterative SMM with Tikhonov regularization, which appears to be more tolerant to noisy data than harmonic B(Z).
Chong, Bin; Yu, Dongliang; Jin, Rong; Wang, Yang; Li, Dongdong; Song, Ye; Gao, Mingqi; Zhu, Xufei
2015-04-10
Anodic TiO2 nanotubes have been studied extensively for many years. However, the growth kinetics still remains unclear. The systematic study of the current transient under constant anodizing voltage has not been mentioned in the original literature. Here, a derivation and its corresponding theoretical formula are proposed to overcome this challenge. In this paper, the theoretical expressions for the time dependent ionic current and electronic current are derived to explore the anodizing process of Ti. The anodizing current-time curves under different anodizing voltages and different temperatures are experimentally investigated in the anodization of Ti. Furthermore, the quantitative relationship between the thickness of the barrier layer and anodizing time, and the relationships between the ionic/electronic current and temperatures are proposed in this paper. All of the current-transient plots can be fitted consistently by the proposed theoretical expressions. Additionally, it is the first time that the coefficient A of the exponential relationship (ionic current j(ion) = A exp(BE)) has been determined under various temperatures and voltages. And the results indicate that as temperature and voltage increase, ionic current and electronic current both increase. The temperature has a larger effect on electronic current than ionic current. These results can promote the research of kinetics from a qualitative to quantitative level.
NASA Astrophysics Data System (ADS)
Chong, Bin; Yu, Dongliang; Jin, Rong; Wang, Yang; Li, Dongdong; Song, Ye; Gao, Mingqi; Zhu, Xufei
2015-04-01
Anodic TiO2 nanotubes have been studied extensively for many years. However, the growth kinetics still remains unclear. The systematic study of the current transient under constant anodizing voltage has not been mentioned in the original literature. Here, a derivation and its corresponding theoretical formula are proposed to overcome this challenge. In this paper, the theoretical expressions for the time dependent ionic current and electronic current are derived to explore the anodizing process of Ti. The anodizing current-time curves under different anodizing voltages and different temperatures are experimentally investigated in the anodization of Ti. Furthermore, the quantitative relationship between the thickness of the barrier layer and anodizing time, and the relationships between the ionic/electronic current and temperatures are proposed in this paper. All of the current-transient plots can be fitted consistently by the proposed theoretical expressions. Additionally, it is the first time that the coefficient A of the exponential relationship (ionic current jion = A exp(BE)) has been determined under various temperatures and voltages. And the results indicate that as temperature and voltage increase, ionic current and electronic current both increase. The temperature has a larger effect on electronic current than ionic current. These results can promote the research of kinetics from a qualitative to quantitative level.
Stemless shoulder arthroplasty: current status.
Churchill, R Sean
2014-09-01
Since the original Neer humeral replacement in the 1950s, the standard primary anatomic total shoulder arthroplasty design has slowly evolved. Most recently, the humeral stem has become progressively shorter to help combat stem-related complications. Currently, there are several companies who have developed and marketed a stemless humeral arthroplasty component. Manufacturers' data for 5 stemless shoulder arthroplasty components currently on the market were analyzed and reviewed. A literature review of short-term results for stemless shoulder arthroplasty was completed. Of the stemless shoulder arthroplasty systems available on the market, 3 are currently undergoing clinical trials in the United States. The Tornier Simpliciti (Tornier, Edina, MN, USA) clinical trial began in 2011. The study with 2-year minimum follow-up results is scheduled for completion in November 2014. The Arthrex Eclipse (Arthrex, Naples, FL, USA) clinical trial was started in January 2013. The tentative study completion date is 2017. The Biomet Nano (Biomet, Warsaw, IN, USA) clinical trial began in October 2013 and also has a tentative completion date of 2017. No other clinical trial is currently under way in the United States. Early results for stemless shoulder arthroplasty indicate clinical results similar to standard stemmed shoulder arthroplasty. Radiographic analysis indicates implant stability without migration or subsidence at 2- to 3-year minimum follow-up.. Several stemless shoulder arthroplasty implants are available outside the United States. Early clinical and radiographic results are promising, but well-designed clinical studies and midterm results are lacking. Three clinical trials are currently under way in the United States with initial availability for use anticipated in 2015. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dombeck, J. P.; Cattell, C. A.; Prasad, N.; Sakher, A.; Hanson, E.; McFadden, J. P.; Strangeway, R. J.
2016-12-01
Field-aligned currents (FACs) provide a fundamental driver and means of Magnetosphere-Ionosphere (M-I) coupling. These currents need to be supported by local physics along the entire field line generally with quasi-static potential structures, but also supporting the time-evolution of the structures and currents, producing Alfvén waves and Alfvénic electron acceleration. In regions of upward current, precipitating auroral electrons are accelerated earthward. These processes can result in ion outflow, changes in ionospheric conductivity, and affect the particle distributions on the field line, affecting the M-I coupling processes supporting the individual FACs and potentially the entire FAC system. The FAST mission was well suited to study both the FACs and the electron auroral acceleration processes. We present the results of the comparisons between meso- and small-scale FACs determined from FAST using the method of Peria, et al., 2000, and our FAST auroral acceleration mechanism study when such identification is possible for the entire ˜13 year FAST mission. We also present the latest results of the electron energy (and number) flux ionospheric input based on acceleration mechanism (and FAC characteristics) from our FAST auroral acceleration mechanism study.
Internal vs Fishhook Hairpin DNA: Unzipping Locations and Mechanisms in the α-Hemolysin Nanopore
2015-01-01
Studies on the interaction of hairpin DNA with the α-hemolysin (α-HL) nanopore have determined hairpin unzipping kinetics, thermodynamics, and sequence-dependent DNA/protein interactions. Missing from these results is a systematic study comparing the unzipping process for fishhook (one-tail) vs internal (two-tail) hairpins when they are electrophoretically driven from the cis to the trans side of α-HL via a 30-mer single-stranded tail. In the current studies, fishhook hairpins showed long unzipping times with one deep blockage current level. In contrast, the internal hairpins demonstrated relatively fast unzipping and a characteristic pulse-like current pattern. These differences were further explored with respect to stem length and sequence context. Further, a series of internal hairpins with asymmetric tails were studied, for which it was determined that a second tail longer than 12 nucleotides results in internal hairpin unzipping behavior, while tail lengths of 6 nucleotides behaved like fishhook hairpins. Interestingly, these studies were able to resolve a current difference of ∼6% between hairpin DNA immobilized in the nanopore waiting to unzip vs the translocating unzipped DNA, with the latter showing a deeper current blockage level. This demonstration of different currents for immobilized and translocating DNA has not been described previously. These results were interpreted as fishhook hairpins unzipping inside the vestibule, while the internal hairpins unzip outside the vestibule of α-HL. Lastly, we used this knowledge to study the unzipping of a long double-stranded DNA (>50 base pairs) outside the vestibule of α-HL. The conclusions drawn from these studies are anticipated to be beneficial in future application of nanopore analysis of nucleic acids. PMID:25333648
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffó, Gustavo, E-mail: duffo@cnea.gov.ar; Consejo Nacional de Investigaciones Científicas y Técnicas; Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires
2015-08-15
The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cementmore » ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens.« less
Bhanpuri, Nasir H; Bertucco, Matteo; Young, Scott J; Lee, Annie A; Sanger, Terence D
2015-10-01
Abnormal motor cortex activity is common in dystonia. Cathodal transcranial direct current stimulation may alter cortical activity by decreasing excitability while anodal stimulation may increase motor learning. Previous results showed that a single session of cathodal transcranial direct current stimulation can improve symptoms in childhood dystonia. Here we performed a 5-day, sham-controlled, double-blind, crossover study, where we measured tracking and muscle overflow in a myocontrol-based task. We applied cathodal and anodal transcranial direct current stimulation (2 mA, 9 minutes per day). For cathodal transcranial direct current stimulation (7 participants), 3 subjects showed improvements whereas 2 showed worsening in overflow or tracking error. The effect size was small (about 1% of maximum voluntary contraction) and not clinically meaningful. For anodal transcranial direct current stimulation (6 participants), none showed improvement, whereas 5 showed worsening. Thus, multiday cathodal transcranial direct current stimulation reduced symptoms in some children but not to a clinically meaningful extent, whereas anodal transcranial direct current stimulation worsened symptoms. Our results do not support transcranial direct current stimulation as clinically viable for treating childhood dystonia. © The Author(s) 2015.
ERIC Educational Resources Information Center
Haas, Eric; Tran, Loan; Linquanti, Robert; Bailey, Alison
2015-01-01
The purpose of this exploratory study was to examine the extent to which a proposed home language survey in California could better identify possible English learner and multilingual students than the current home language survey. The responses to a proposed and current survey were examined for students registering for kindergarten through grade…
Swarm observations of field-aligned currents associated with pulsating auroral patches
NASA Astrophysics Data System (ADS)
Gillies, D. M.; Knudsen, D.; Spanswick, E.; Donovan, E.; Burchill, J.; Patrick, M.
2015-11-01
We have performed a superposed epoch study of in situ field-aligned currents located near the edges of regions of pulsating aurora observed simultaneously using ground-based optical data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) all-sky imager (ASI) network and magnetometers on board the Swarm satellites. A total of nine traversals of Swarm over regions of pulsating aurora identified using THEMIS ASI were studied. We determined that in the cases where a clear boundary can be identified, strong downward currents are seen just poleward and equatorward of the pulsating patches. A downward current in the range of ~1-6 μA/m2 can be seen just poleward of the boundary. A weaker upward current of ~1-3 μA/m2 is observed throughout the interior of the patch. These observations indicate that currents carried by precipitating electrons within patches could close through horizontal currents and be returned at the edges, in agreement with Oguti and Hayashi (1984) and Hosokawa et al. (2010b). In addition to confirming these earlier results and adding to their statistical significance, the contribution of this study is to quantify the upward and downward current magnitudes, in some cases using two satellites traversing the same pulsating regions. Finally, we compare Swarm's two-satellite field-aligned current product to the single-satellite results and determine that the data product can be compromised in regions of pulsating aurora, a phenomenon that occurs over widespread regions and tends to persist for long periods of time. These results underscore the importance of electrical coupling between the ionosphere and magnetosphere in regions of patchy pulsating aurora.
Kakkar, Chandan; Sripathi, Smiti; Parakh, Anushri; Shrivastav, Rajendra
2016-01-01
Introduction Urolithiasis is one of the major, recurring problem in young individuals and CT being the commonest diagnostic modality used. In order to reduce the radiation dose to the patient who are young and as stone formation is a recurring process; one of the simplest way would be, low dose CT along with tube current modulation. Aim Aim of this study was to compare the sensitivity and specificity of low dose (70mAs) with standard dose (250mAs) protocol in detecting urolithiasis and to define the tube current and mean effective patient dose by these protocols. Materials and Methods A prospective study was conducted in 200 patients over a period of 2 years with acute flank pain presentation. CT was performed in 100 cases with standard dose and another 100 with low dose protocol using tube current modulation. Sensitivity and specificity for calculus detection, percentage reduction of dose and tube current with low dose protocol was calculated. Results Urolithiasis was detected in 138 patients, 67 were examined by high dose and 71 were by low dose protocol. Sensitivity and Specificity of low dose protocol was 97.1% and 96.4% with similar results found in high BMI patients. Tube current modulation resulted in reduction of effective tube current by 12.17%. The mean effective patient dose for standard dose was 10.33 mSv whereas 2.92 mSv for low dose with 51.13–53.8% reduction in low dose protocol. Conclusion The study has reinforced that low-dose CT with tube current modulation is appropriate for diagnosis of urolithiasis with significant reduction in tube current and patient effective dose. PMID:27437322
NASA Astrophysics Data System (ADS)
Harris, Daniel L.; Vila-Concejo, Ana; Webster, Jody M.
2014-10-01
Back-reef sand aprons are conspicuous and dynamic sedimentary features in coral reef systems. The development of these features influences the evolution and defines the maturity of coral reefs. However, the hydrodynamic processes that drive changes on sand aprons are poorly understood with only a few studies directly assessing sediment entrainment and transport. Current and wave conditions on a back-reef sand apron were measured during this study and a digital elevation model was developed through topographic and bathymetric surveying of the sand apron, reef flats and lagoon. The current and wave processes that may entrain and transport sediment were assessed using second order small amplitude (Stokes) wave theory and Shields equations. The morphodynamic interactions between current flow and geomorphology were also examined. The results showed that sediment transport occurs under modal hydrodynamic conditions with waves the main force entraining sediment rather than average currents. A morphodynamic relationship between current flow and geomorphology was also observed with current flow primarily towards the lagoon in shallow areas of the sand apron and deeper channel-like areas directing current off the sand apron towards the lagoon or the reef crest. These results show that the short-term mutual interaction of hydrodynamics and geomorphology in coral reefs can result in morphodynamic equilibrium.
Forcing and variability of nonstationary rip currents
Long, Joseph W.; H.T. Özkan-Haller,
2016-01-01
Surface wave transformation and the resulting nearshore circulation along a section of coast with strong alongshore bathymetric gradients outside the surf zone are modeled for a consecutive 4 week time period. The modeled hydrodynamics are compared to in situ measurements of waves and currents collected during the Nearshore Canyon Experiment and indicate that for the entire range of observed conditions, the model performance is similar to other studies along this stretch of coast. Strong alongshore wave height gradients generate rip currents that are observed by remote sensing data and predicted qualitatively well by the numerical model. Previous studies at this site have used idealized scenarios to link the rip current locations to undulations in the offshore bathymetry but do not explain the dichotomy between permanent offshore bathymetric features and intermittent rip current development. Model results from the month‐long simulation are used to track the formation and location of rip currents using hourly statistics, and results show that the direction of the incoming wave energy strongly controls whether rip currents form. In particular, most of the offshore wave spectra were bimodal and we find that the ratio of energy contained in each mode dictates rip current development, and the alongshore rip current position is controlled by the incident wave period. Additionally, model simulations performed with and without updating the nearshore morphology yield no significant change in the accuracy of the predicted surf zone hydrodyanmics indicating that the large‐scale offshore features (e.g., submarine canyon) predominately control the nearshore wave‐circulation system.
Recent Simulation Results on Ring Current Dynamics Using the Comprehensive Ring Current Model
NASA Technical Reports Server (NTRS)
Zheng, Yihua; Zaharia, Sorin G.; Lui, Anthony T. Y.; Fok, Mei-Ching
2010-01-01
Plasma sheet conditions and electromagnetic field configurations are both crucial in determining ring current evolution and connection to the ionosphere. In this presentation, we investigate how different conditions of plasma sheet distribution affect ring current properties. Results include comparative studies in 1) varying the radial distance of the plasma sheet boundary; 2) varying local time distribution of the source population; 3) varying the source spectra. Our results show that a source located farther away leads to a stronger ring current than a source that is closer to the Earth. Local time distribution of the source plays an important role in determining both the radial and azimuthal (local time) location of the ring current peak pressure. We found that post-midnight source locations generally lead to a stronger ring current. This finding is in agreement with Lavraud et al.. However, our results do not exhibit any simple dependence of the local time distribution of the peak ring current (within the lower energy range) on the local time distribution of the source, as suggested by Lavraud et al. [2008]. In addition, we will show how different specifications of the magnetic field in the simulation domain affect ring current dynamics in reference to the 20 November 2007 storm, which include initial results on coupling the CRCM with a three-dimensional (3-D) plasma force balance code to achieve self-consistency in the magnetic field.
The Italian cross-sectional survey of the management of bone metastasis: ZeTa study
Santini, Daniele; Bertoldo, Francesco; Dell'Aquila, Emanuela; Cecchini, Isabella; Fregosi, Stefania; Bortolussi, Paolo
2012-01-01
Background Several studies have emphasized the importance of the maintenance of bone health in a comprehensive cancer care. However, no survey about approach to bone metastasis care is currently available. The ZeTa study provides a picture of the Italian oncologists' therapeutics habits in this area, in a real clinical-practice scenario. Design This study was based on online questionnaire-based interviews to Italian oncologists that included 145 questions. The aim was to collect information on the treatment of bone metastasis, the current use of bisphosphonates, the awareness of guidelines and the concerns about ONJ, the use of vitamin D supplementation. Results 445 oncologists were contacted, 283 agreed to participate. The results show that the current management of bone metastasis is still sub-optimal, as the recommendations from current clinical guidelines are not completely followed by all specialists. Conclusions This survey highlights the urgent need to improve management of bone metastasis in cancer patients. PMID:26909253
Current and future technology in radial and axial gas turbines
NASA Technical Reports Server (NTRS)
Rohlik, H. E.
1983-01-01
Design approaches and flow analysis techniques currently employed by aircraft engine manufacturers are assessed. Studies were performed to define the characteristics of aircraft and engines for civil missions of the 1990's and beyond. These studies, coupled with experience in recent years, identified the critical technologies needed to meet long range goals in fuel economy and other operating costs. Study results, recent and current research and development programs, and an estimate of future design and analytic capabilities are discussed.
Current Conveyor All-Pass Sections: Brief Review and Novel Solution
Maheshwari, Sudhanshu
2013-01-01
This study relates to the review of an important analog electronic function in form of all-pass filter's realization using assorted current conveyor types and their relative performances, which resulted in a novel solution based on a new proposed active element. The study encompasses notable proposals during last the decade or more, and provides a platform for a broader future survey on the topic for enhancing the knowledge penetration amongst the researchers in the specified field. A new active element named EXCCII (Extra-X second generation current conveyor) with buffered output is found in the study along with its use in a new first-order all-pass section, with possible realization using commercially available IC (AD-844) and results. PMID:24379741
Heart rate reactivity and current post-traumatic stress disorder when data are missing.
Jeon-Slaughter, Haekyung; Tucker, Phebe; Pfefferbaum, Betty; North, Carol S; de Andrade, Bernardo Borba; Neas, Barbara
2011-08-01
This study demonstrates that auxiliary and exclusion criteria variables increase the effectiveness of missing imputation in correcting underestimation of physiologic reactivity in relation to post-traumatic stress disorder (PTSD) caused by deleting cases with missing physiologic data. This study used data from survivors of the 1995 Oklahoma City bombing and imputed missing heart rate data using auxiliary and exclusion criteria variables. Logistic regression was used to examine heart rate reactivity in relation to current PTSD. Of 113 survivors who participated in the bombing study's 7-year follow-up interview, 42 (37%) had missing data on heart rate reactivity due to exclusion criteria (medical illness or use of cardiovascular or psychotropic medications) or non-participation. Logistic regression results based on imputed heart rate data using exclusion criteria and auxiliary (the presence of any current PTSD arousal symptoms) variables showed that survivors with current bombing-related PTSD had significantly higher heart rates at baseline and recovered more slowly back to baseline heart rate during resting periods than survivors without current PTSD, while results based on complete cases failed to show significant correlations between current PTSD and heart rates at any assessment points. Suggested methods yielded an otherwise undetectable link between physiology and current PTSD. © 2011 The Authors. Psychiatry and Clinical Neurosciences © 2011 Japanese Society of Psychiatry and Neurology.
In Vivo Measurement of Drug Efficacy in Breast Cancer
2016-10-01
analysis. At the clinical level, this study will result in pertinent data regarding several agents currently in clinical trials. At the basic science ...clinical level, this study will result in pertinent data regarding several agents currently in clinical trials. At the basic science level, we will...mg/kg BLZ-945 or encapsulated drug were tested in BALB/C mice expressing tumors in mammary fat pads, showing limited additional efficacy as seen
Rajfur, Joanna; Pasternok, Małgorzata; Rajfur, Katarzyna; Walewicz, Karolina; Fras, Beata; Bolach, Bartosz; Dymarek, Robert; Rosinczuk, Joanna; Halski, Tomasz; Taradaj, Jakub
2017-01-07
BACKGROUND In the currently available research publications on electrical therapy of low back pain, generally no control groups or detailed randomization were used, and such studies were often conducted with relatively small groups of patients, based solely on subjective questionnaires and pain assessment scales (lacking measurement methods to objectify the therapeutic progress). The available literature also lacks a comprehensive and large-scale clinical study. The purpose of this study was to assess the effects of treating low back pain using selected electrotherapy methods. The study assesses the influence of individual electrotherapeutic treatments on reduction of pain, improvement of the range of movement in lower section of the spine, and improvement of motor functions and mobility. MATERIAL AND METHODS The 127 patients qualified for the therapy (ultimately, 123 patients completed the study) and assigned to 6 comparison groups: A - conventional TENS, B - acupuncture-like TENS, C - high-voltage electrical stimulation, D - interferential current stimulation, E - diadynamic current, and F - control group. RESULTS The research showed that using electrical stimulation with interferential current penetrating deeper into the tissues results in a significant and more efficient elimination of pain, and an improvement of functional ability of patients suffering from low back pain on the basis of an analysis of both subjective and objective parameters. The TENS currents and high voltage were helpful, but not as effective. The use of diadynamic currents appears to be useless. CONCLUSIONS Selected electrical therapies (interferential current, TENS, and high voltage) appear to be effective in treating chronic low back pain.
Rajfur, Joanna; Pasternok, Małgorzata; Rajfur, Katarzyna; Walewicz, Karolina; Fras, Beata; Bolach, Bartosz; Dymarek, Robert; Rosinczuk, Joanna; Halski, Tomasz; Taradaj, Jakub
2017-01-01
Background In the currently available research publications on electrical therapy of low back pain, generally no control groups or detailed randomization were used, and such studies were often conducted with relatively small groups of patients, based solely on subjective questionnaires and pain assessment scales (lacking measurement methods to objectify the therapeutic progress). The available literature also lacks a comprehensive and large-scale clinical study. The purpose of this study was to assess the effects of treating low back pain using selected electrotherapy methods. The study assesses the influence of individual electrotherapeutic treatments on reduction of pain, improvement of the range of movement in lower section of the spine, and improvement of motor functions and mobility. Material/Methods The 127 patients qualified for the therapy (ultimately, 123 patients completed the study) and assigned to 6 comparison groups: A – conventional TENS, B – acupuncture-like TENS, C – high-voltage electrical stimulation, D – interferential current stimulation, E – diadynamic current, and F – control group. Results The research showed that using electrical stimulation with interferential current penetrating deeper into the tissues results in a significant and more efficient elimination of pain, and an improvement of functional ability of patients suffering from low back pain on the basis of an analysis of both subjective and objective parameters. The TENS currents and high voltage were helpful, but not as effective. The use of diadynamic currents appears to be useless. Conclusions Selected electrical therapies (interferential current, TENS, and high voltage) appear to be effective in treating chronic low back pain. PMID:28062862
Voltage-Clamp Studies on Uterine Smooth Muscle
Anderson, Nels C.
1969-01-01
These studies have developed and tested an experimental approach to the study of membrane ionic conductance mechanisms in strips of uterine smooth muscle. The experimental and theoretical basis for applying the double sucrose-gap technique is described along with the limitations of this system. Nonpropagating membrane action potentials were produced in response to depolarizing current pulses under current-clamp conditions. The stepwise change of membrane potential under voltage-clamp conditions resulted in a family of ionic currents with voltage- and time-dependent characteristics. In sodium-free solution the peak transient current decreased and its equilibrium potential shifted along the voltage axis toward a more negative internal potential. These studies indicate a sodium-dependent, regenerative excitation mechanism. PMID:5796366
Laboratory experiment on the 3D tide-induced Lagrangian residual current using the PIV technique
NASA Astrophysics Data System (ADS)
Chen, Yang; Jiang, Wensheng; Chen, Xu; Wang, Tao; Bian, Changwei
2017-12-01
The 3D structure of the tide-induced Lagrangian residual current was studied using the particle image velocimetry (PIV) technique in a long shallow narrow tank in the laboratory. At the mouth of the tank, a wave generator was used to make periodic wave which represents the tide movement, and at the head of the tank, a laterally sloping topography with the length of one fifth of the water tank was installed, above which the tide-induced Lagrangian residual current was studied. Under the weakly nonlinear condition in the present experiment setup, the results show that the Lagrangian residual velocity (LRV) field has a three-layer structure. The residual current flows inwards (towards the head) in the bottom layer and flows outwards in the middle layer, while in the surface layer, it flows inwards along the shallow side of the sloping topography and outwards along the deep side. The depth-averaged and breadth-averaged LRV are also analyzed based on the 3D LRV observations. Our results are in good agreement with the previous experiment studies, the analytical solutions with similar conditions and the observational results in real bays. Moreover, the volume flux comparison between the Lagrangian and Eulerian residual currents shows that the Eulerian residual velocity violates the mass conservation law while the LRV truly represents the inter-tidal water transport. This work enriches the laboratory studies of the LRV and offers valuable references for the LRV studies in real bays.
Resonant pair tunneling in double quantum dots.
Sela, Eran; Affleck, Ian
2009-08-21
We present exact results on the nonequilibrium current fluctuations for 2 quantum dots in series throughout a crossover from non-Fermi liquid to Fermi liquid behavior described by the 2 impurity Kondo model. The result corresponds to resonant tunneling of carriers of charge 2e for a critical interimpurity coupling. At low energy scales, the result can be understood from a Fermi liquid approach that we develop and use to also study nonequilibrium transport in an alternative double dot realization of the 2 impurity Kondo model under current experimental study.
Rahmani, Turaj; Rahimi, Atyeh; Nojavan, Saeed
2016-01-15
This contribution presents an experimental approach to improve analytical performance of electromembrane extraction (EME) procedure, which is based on the scrutiny of current pattern under different extraction conditions such as using different organic solvents as supported liquid membrane, electrical potentials, pH values of donor and acceptor phases, variable extraction times, temperatures, stirring rates, different hollow fiber lengths and the addition of salts or organic solvents to the sample matrix. In this study, four basic drugs with different polarities were extracted under different conditions with the corresponding electrical current patterns compared against extraction recoveries. The extraction process was demonstrated in terms of EME-HPLC analyses of selected basic drugs. Comparing the obtained extraction recoveries with the electrical current patterns, most cases exhibited minimum recovery and repeatability at the highest investigated magnitude of electrical current. . It was further found that identical current patterns are associated with repeated extraction efficiencies. In other words, the pattern should be repeated for a successful extraction. The results showed completely different electrical currents under different extraction conditions, so that all variable parameters have contributions into the electrical current pattern. Finally, the current patterns of extractions from wastewater, plasma and urine samples were demonstrated. The results indicated an increase in the electrical current when extracting from complex matrices; this was seen to decrease the extraction efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.
The Impact of Religiousness on Substance Use and Depression.
ERIC Educational Resources Information Center
Uchendu, Cajetan
This longitudinal study evaluated the effect of religiousness on substance use and depression both currently and after six months. It also evaluated the association between religious coping on substance use and depression both currently and after six months. Results reveal no relationship between religiousness and current substance use. There was…
Can Pupils Use Taught Analogies for Electric Current?
ERIC Educational Resources Information Center
Black, David; Solomon, Joan
1987-01-01
Discusses the use of analogies and models for teaching about electric current. Reports on a study in which one group of students used analogies to learn about electric current and one did not. Results indicate that, in this case, analogies did not play a significant role in student understanding. (TW)
Lightning induced currents in aircraft wiring using low level injection techniques
NASA Technical Reports Server (NTRS)
Stevens, E. G.; Jordan, D. T.
1991-01-01
Various techniques were studied to predict the transient current induced into aircraft wiring bundles as a result of an aircraft lightning strike. A series of aircraft measurements were carried out together with a theoretical analysis using computer modeling. These tests were applied to various aircraft and also to specially constructed cylinders installed within coaxial return conductor systems. Low level swept frequency CW (carrier waves), low level transient and high level transient injection tests were applied to the aircraft and cylinders. Measurements were made to determine the transfer function between the aircraft drive current and the resulting skin currents and currents induced on the internal wiring. The full threat lightning induced transient currents were extrapolated from the low level data using Fourier transform techniques. The aircraft and cylinders used were constructed from both metallic and CFC (carbon fiber composite) materials. The results show the pulse stretching phenomenon which occurs for CFC materials due to the diffusion of the lightning current through carbon fiber materials. Transmission Line Matrix modeling techniques were used to compare theoretical and measured currents.
NASA Astrophysics Data System (ADS)
Wang, Meng; Noelle, Daniel J.; Shi, Yang; Le, Anh V.; Qiao, Yu
2018-01-01
Formation of internal short circuit (ISC) may result in catastrophic thermal runaway of lithium-ion battery (LIB). Among LIB cell components, direct contact between cathode and anode current collectors is most critical to the ISC behavior, yet is still relatively uninvestigated. In the current study, we analyze the effect of heterogeneity of current collector on the temperature increase of LIB cells subjected to mechanical abuse. The cathode current collector is modified by surface notches, so that it becomes effectively brittle and the ISC site can be isolated. Results from impact tests on LIB cells with modified current collectors suggest that their temperature increase can be negligible. The critical parameters include the failure strain and the failure work of modified current collector, both of which are related to the notch depth.
A survey of current practices for sampling and examination of the nervous system in rodents and non-rodents for general and neurotoxicity (NT) studies was conducted by the Nervous System Sampling Subcommittee of the STP. For general toxicity studies most of those surveyed (>63%) ...
MicroRNA in Prostate Cancer Racial Disparities and Aggressiveness
2016-10-01
funded study and from the current protocol) who did not have extensive disease at diagnosis for PSA outcomes. Mean follow-up time is currently 58...months. Follow-up of PSA test results through medical records and Caisis database have just been updated, and a linkage with Metropolitan Detroit SEER...the cohort (from the previously funded study and from the current protocol) who did not have extensive disease at diagnosis for PSA outcomes. Mean
Singaporean Adolescents' Perceptions of Online Social Communication: An Exploratory Factor Analysis
ERIC Educational Resources Information Center
Zheng, Robert Z.; Cheok, Angeline; Khoo, Eng
2011-01-01
The current study investigated adolescents' perceptions in online social communication. Three factors were perceived by adolescents as critical to online social communication. These included self-identity, self-confidence, and self-social factors. Results showed significant differences between the factors derived from the current study and those…
Matching, Demand, Maximization, and Consumer Choice
ERIC Educational Resources Information Center
Wells, Victoria K.; Foxall, Gordon R.
2013-01-01
The use of behavioral economics and behavioral psychology in consumer choice has been limited. The current study extends the study of consumer behavior analysis, a synthesis between behavioral psychology, economics, and marketing, to a larger data set. This article presents the current work and results from the early analysis of the data. We…
Climate change impacts in Iran: assessing our current knowledge
NASA Astrophysics Data System (ADS)
Rahimi, Jaber; Malekian, Arash; Khalili, Ali
2018-02-01
During recent years, various studies have focused on investigating the direct and indirect impacts of climate changes in Iran while the noteworthy fact is the achievement gained by these researches. Furthermore, what should be taken into consideration is whether these studies have been able to provide appropriate opportunities for improving further studies in this particular field or not. To address these questions, this study systematically reviewed and summarized the current available literature (n = 150) regarding the impacts of climate change on temperature and precipitation in Iran to assess our current state of knowledge. The results revealed that while all studies discuss the probable changes in temperature and precipitation over the next decades, serious contradictions could be seen in their results; also, the general pattern of changes was different in most of the cases. This matter may have a significant effect on public beliefs in climate change, which can be a serious warning for the activists in this realm.
NASA Technical Reports Server (NTRS)
Mulhall, B. D. L.
1980-01-01
The performance, costs, organization and other characteristics of both the manual system and AIDS 2 were used to establish a baseline case. The results of the evaluation are to be used to determine the feasibility of the AIDS 3 System, as well as provide a basis for ranking alternative systems during the second phase of the JPL study. The results of the study were tabulated by subject, scope and methods, providing a descriptive, quantitative and qualitative analysis of the current operating systems employed by the FBI Identification Division.
Chani, Muhammad Tariq Saeed; Karimov, Kh S; Asiri, Abdullah M; Ahmed, Nisar; Bashir, Muhammad Mehran; Khan, Sher Bahadar; Rub, Malik Abdul; Azum, Naved
2014-01-01
This work presents the fabrication and investigation of thermoelectric cells based on composite of carbon nanotubes (CNT) and silicone adhesive. The composite contains CNT and silicon adhesive 1∶1 by weight. The current-voltage characteristics and dependences of voltage, current and Seebeck coefficient on the temperature gradient of cell were studied. It was observed that with increase in temperature gradient the open circuit voltage, short circuit current and the Seebeck coefficient of the cells increase. Approximately 7 times increase in temperature gradient increases the open circuit voltage and short circuit current up to 40 and 5 times, respectively. The simulation of experimental results is also carried out; the simulated results are well matched with experimental results.
Temperature Gradient Measurements by Using Thermoelectric Effect in CNTs-Silicone Adhesive Composite
Chani, Muhammad Tariq Saeed; Karimov, Kh. S.; Asiri, Abdullah M.; Ahmed, Nisar; Bashir, Muhammad Mehran; Khan, Sher Bahadar; Rub, Malik Abdul; Azum, Naved
2014-01-01
This work presents the fabrication and investigation of thermoelectric cells based on composite of carbon nanotubes (CNT) and silicone adhesive. The composite contains CNT and silicon adhesive 1∶1 by weight. The current-voltage characteristics and dependences of voltage, current and Seebeck coefficient on the temperature gradient of cell were studied. It was observed that with increase in temperature gradient the open circuit voltage, short circuit current and the Seebeck coefficient of the cells increase. Approximately 7 times increase in temperature gradient increases the open circuit voltage and short circuit current up to 40 and 5 times, respectively. The simulation of experimental results is also carried out; the simulated results are well matched with experimental results. PMID:24748375
Dark Currents and Their Effect on the Primary Beam in an X-band Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bane, K.L.F.; Dolgashev, V.A.; Raubenheimer, T.
2005-05-27
We numerically study properties of primary dark currents in an X-band accelerating structure. For the H60VG3 structure considered for the Next Linear Collider (NLC) we first perform a fairly complete (with some approximations) calculation of dark current trajectories. These results are used to study properties of the dark current leaving the structure. For example, at accelerating gradient of 65 MV/m, considering two very different assumptions about dark current emission around the irises, we find that the fraction of emitted current leaving the structure to be a consistent {approx} 1%. Considering that {approx} 1 mA outgoing dark current is seen inmore » measurement, this implies that {approx} 100 mA (or 10 pC per period) is emitted within the structure itself. Using the formalism of the Lienard-Wiechert potentials, we then perform a systematic calculation of the transverse kick of dark currents on a primary linac bunch. The result is {approx} 1 V kick per mA (or per 0.1 pC per period) dark current emitted from an iris. For an entire structure we estimate the total kick on a primary bunch to be {approx} 15 V. For the NLC linac this translates to a ratio of (final) vertical beam offset to beam size of about 0.2. However, with the assumptions that needed to be made--particularly the number of emitters and their distribution within a structure--the accuracy of this result may be limited to the order of magnitude.« less
Carey, Renee N; Hutchings, Sally J; Rushton, Lesley; Driscoll, Timothy R; Reid, Alison; Glass, Deborah C; Darcey, Ellie; Si, Si; Peters, Susan; Benke, Geza; Fritschi, Lin
2017-04-01
Studies in other countries have generally found approximately 4% of current cancers to be attributable to past occupational exposures. This study aimed to estimate the future burden of cancer resulting from current occupational exposures in Australia. The future excess fraction method was used to estimate the future burden of occupational cancer (2012-2094) among the proportion of the Australian working population who were exposed to occupational carcinogens in 2012. Calculations were conducted for 19 cancer types and 53 cancer-exposure pairings, assuming historical trends and current patterns continued to 2094. The cohort of 14.6 million Australians of working age in 2012 will develop an estimated 4.8 million cancers during their lifetime, of which 68,500 (1.4%) are attributable to occupational exposure in those exposed in 2012. The majority of these will be lung cancers (n=26,000), leukaemias (n=8000), and malignant mesotheliomas (n=7500). A significant proportion of future cancers will result from occupational exposures. This estimate is lower than previous estimates in the literature; however, our estimate is not directly comparable to past estimates of the occupational cancer burden because they describe different quantities - future cancers in currently exposed versus current cancers due to past exposures. The results of this study allow us to determine which current occupational exposures are most important, and where to target exposure prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.
Is a specific eyelid patch test series useful? Results of a French prospective study.
Assier, Haudrey; Tetart, Florence; Avenel-Audran, Martine; Barbaud, Annick; Ferrier-le Bouëdec, Marie-Christine; Giordano-Labadie, Françoise; Milpied, Brigitte; Amsler, Emmanuelle; Collet, Evelyne; Girardin, Pascal; Soria, Angèle; Waton, Julie; Truchetet, François; Bourrain, Jean-Luc; Gener, Gwendeline; Bernier, Claire; Raison-Peyron, Nadia
2018-06-08
Eyelids are frequent sites of contact dermatitis. No prospective study focused on eyelid allergic contact dermatitis (EACD) has yet been published, and this topic has never been studied in French patients. To prospectively evaluate the usefulness of an eyelid series in French patients patch tested because of EACD, and to describe these patients. We prospectively analysed standardized data for all patients referred to our departments between September 2014 and August 2016 for patch testing for suspected EACD as the main reason. All patients were patch tested with an eyelid series, the European baseline series (EBS), the French additional series, and their personal products. Patch testing with additional series and repeated open application tests (ROATs) or open tests were performed if necessary. A standardized assessment of the relevance was used, and the analysis of the results was focused on patients having positive test results with a current certain relevance. Two-hundred and sixty-four patients (238 women and 26 men) were included. Three-hundred and twenty-two tests gave positive results in 167 patients, 84 of whom had currently relevant reactions: 56 had currently relevant positive test reactions to the EBS, 16 had currently relevant positive test reactions to their personal products, 8 had currently relevant positive test reactions to the French additional series, and 4 had currently relevant positive test reactions to the eyelid series. Sixty-seven per cent of all relevant cases were related to cosmetic products. The most frequent allergens with current relevance were methylisothiazolinone (10.2%), fragrance mix I (3%), nickel (2.7%), hydroxyperoxides of linalool (2.7%) and limonene (2.3%), and Myroxylon pereirae (2.3%). Current atopic dermatitis was found in 9.5% of patients. The duration of dermatitis was shorter (23.2 vs 34.2 months; P = .035) in patients with currently relevant test reactions. The percentage of currently relevant tests remained the same when atopic patients or dermatitis localized only on the eyelids were taken into account. In French patients, testing for EACD with the extended baseline series and personal products, also including ROATs and use tests, appears to be adequate, considering the currently relevant positive test reactions. The regular addition of an eyelid series does not seem to be necessary. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Food waste minimization from a life-cycle perspective.
Bernstad Saraiva Schott, A; Andersson, T
2015-01-01
This article investigates potentials and environmental impacts related to household food waste minimization, based on a case study in Southern Sweden. In the study, the amount of avoidable and unavoidable food waste currently being disposed of by households was assessed through waste composition analyses and the different types of avoidable food waste were classified. Currently, both avoidable and unavoidable food waste is either incinerated or treated through anaerobic digestion. A hypothetical scenario with no generation of avoidable food waste and either anaerobic digestion or incineration of unavoidable food waste was compared to the current situation using the life-cycle assessment method, limited to analysis of global warming potential (GWP). The results from the waste composition analyses indicate that an average of 35% of household food waste is avoidable. Minimization of this waste could result in reduction of greenhouse gas emissions of 800-1400 kg/tonne of avoidable food waste. Thus, a minimization strategy would result in increased avoidance of GWP compared to the current situation. The study clearly shows that although modern alternatives for food waste treatment can result in avoidance of GWP through nutrient and energy recovery, food waste prevention yields far greater benefits for GWP compared to both incineration and anaerobic digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Isaeva, Elena; Isaev, Dmytro; Savrasova, Alina; Khazipov, Rustem; Holmes, Gregory L.
2011-01-01
Neonatal seizures are associated with a high likelihood of adverse neurological outcomes, including mental retardation, behavioral disorders, and epilepsy. Early seizures typically involve the neocortex, and post-neonatal epilepsy is often of neocortical origin. However, our understanding of the consequences of neonatal seizures for neocortical function is limited. In the present study, we show that neonatal seizures induced by flurothyl result in markedly enhanced susceptibility of the neocortex to seizure-like activity. This change occurs in young rats studied weeks after the last induced seizure and in adult rats studied months after the initial seizures. Neonatal seizures resulted in reductions in the amplitude of spontaneous inhibitory postsynaptic currents and the frequency of miniature inhibitory postsynaptic currents, and significant increases in the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and in the frequency of miniature excitatory postsynaptic currents (mEPSCs) in pyramidal cells of layer 2/3 of the somatosensory cortex. The selective N-methyl-d-aspartate (NMDA) receptor antagonist d-2-amino-5-phosphon-ovalerate eliminated the differences in amplitude and frequency of sEPSCs and mEPSCs in the control and flurothyl groups, suggesting that NMDA receptors contribute significantly to the enhanced excitability seen in slices from rats that experienced recurrent neonatal seizures. Taken together, our results suggest that recurrent seizures in infancy result in a persistent enhancement of neocortical excitability. PMID:20384780
NASA Astrophysics Data System (ADS)
Xie, L.; Pietrafesa, L. J.; Wu, K.
2003-02-01
A three-dimensional wave-current coupled modeling system is used to examine the influence of waves on coastal currents and sea level. This coupled modeling system consists of the wave model-WAM (Cycle 4) and the Princeton Ocean Model (POM). The results from this study show that it is important to incorporate surface wave effects into coastal storm surge and circulation models. Specifically, we find that (1) storm surge models without coupled surface waves generally under estimate not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment, (2) introducing wave-induced surface stress effect into storm surge models can significantly improve storm surge prediction, (3) incorporating wave-induced bottom stress into the coupled wave-current model further improves storm surge prediction, and (4) calibration of the wave module according to minimum error in significant wave height does not necessarily result in an optimum wave module in a wave-current coupled system for current and storm surge prediction.
Random mandatory drugs testing of prisoners: a biassed means of gathering information.
Gore, S M; Bird, A G; Strang, J S
1999-01-01
Our objective was to develop and test a methodology for inferring the percentage of prisoners currently using opiates from the percentage of prisoners testing positive for opiates in random mandatory drugs testing (rMDT). The study used results from Willing Anonymous Salivary HIV (WASH) studies (1994-6) in six adult Scottish prisons, and surveys (1994-5 and 1997) in 14 prisons in England and Wales. For Scottish prisons, the percentage of prisoners currently using opiates was determined by assuming, with varying empirical support, that: current users of opiates in prison were 1.5 times as many as current inside-injectors; and current inside-injectors were 0.75 times as many as ever injectors in prison. We also assumed that current inside-users' frequency of use of opiates (by any route) was equal to the frequency of inside-injecting by current inside-injectors in Aberdeen and Lowmoss Prisons in 1996, namely six times in 4 weeks. We assumed that some scheduling of heroin-use prior to weekends takes place, so that only 50% of current inside-users of opiates would test positive for opiates in rMDT: these assumptions allow us to arrive at WASH-based expectations for the total percentage of prisoners testing positive for opiates in rMDT. For England and Wales, a multiplier of 118/68 was applied which was derived from prisoners' interviews, to convert the results from ever inside-injectors, as determined by WASH studies, to the percentage of current inside users of opiates. We made the same assumptions on frequency of inside-use of opiates as in dealing with the Scottish results. We expected 202.7 opiate positive results in April to September 1997 in rMDTs at six adult prisons in Scotland, 226 were observed. We expected 227.0 at a set of 13 adult prisons and one other in England and Wales; 211 were observed. Further testing of the methodology for prisons in England and Wales will be possible when 1997 WASH data are released. So far, the methodology has performed well. From it, we infer that 24% of inmates at the six adult prisons in Scotland were current inside-users of opiates, compared to 11% at the 14 adult prisons where survey data were available in England and Wales. The corresponding April to September 1997 percentage of opiate positives in rMDT were: 13% (results from the six Scottish prisons) and 5.4% (results from 14 prisons in England and Wales), a two-fold under-estimate of % current users of opiates in prison (24% and 11%). Planning of drug rehabilitation places for prisoners should thus be based on twice the percentage of prisoners testing opiate positive in rMDT. This correction factor of two should be kept under review.
NASA Astrophysics Data System (ADS)
Wang, Fuliang; Zhao, Zhipeng; Wang, Feng; Wang, Yan; Nie, Nantian
2017-12-01
Through-silicon via (TSV) filling by electrochemical deposition is still a challenge for 3D IC packaging, and three-component additive systems (accelerator, suppressor, and leveler) were commonly used in the industry to achieve void-free filling. However, models considering three additive systems and the current density effect have not been fully studied. In this paper, a novel three-component model was developed to study the TSV filling mechanism and process, where the interaction behavior of the three additives (accelerator, suppressor, and leveler) were considered, and the adsorption, desorption, and consumption coefficient of the three additives were changed with the current density. Based on this new model, the three filling types (seam void, ‘V’ shape, and key hole) were simulated under different current density conditions, and the filling results were verified by experiments. The effect of the current density on the copper ion concentration, additives surface coverage, and local current density distribution during the TSV filling process were obtained. Based on the simulation and experimental results, the diffusion-adsorption-desorption-consumption competition behavior between the suppressor, the accelerator, and the leveler were discussed. The filling mechanisms under different current densities were also analyzed.
Laboratory septic tank performance response to electrolytic stimulation.
Zaveri, Rahul M; Flora, Joseph R V
2002-11-01
This research investigated the effects of electrolytic stimulation on the performance of two laboratory-scale septic tanks. The tanks were fed a synthetic solution that included cellulose, peptone trypticase, beef extract, and urea. After a baseline period with no passed current, currents ranging from 100 to 500 mA were passed through the electrodes. The chemical oxygen demand (COD) removal efficiency from the tanks improved when a current was passed, with higher removal efficiencies observed at higher levels of passed current. Hydrolytic reactions resulted in ammonia and phosphate levels in the tanks that were higher than the influent. At currents > 300 mA, these hydrolytic reactions were suppressed, resulting in phosphate levels similar to the influent and ammonia levels lower than the influent because of the settling of ammonia-containing components of the feed solution. A slight increase in nitrate levels was observed when a current was passed, indicating minimal stimulation of nitrification activity. Abiotic studies confirmed that the COD can be removed via electrolysis and the removal was proportional to the passed current. Under the conditions of this study, the primary benefit of electrolytic stimulation of the septic tank is enhanced COD removal.
Determining Science Teacher Candidates' Academic Knowledge and Misconceptions about Electric Current
ERIC Educational Resources Information Center
Sert Çibik, Ayse
2017-01-01
The aim of this study is two-fold. Its first aim is to determine science teacher candidates' knowledge (academic success) and misconceptions about electric current and its second aim is to compare these results across participants' year of study and gender. A total of 132 teacher candidates studying in their 2nd, 3rd, and 4th years in Gazi…
Formation of current singularity in a topologically constrained plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yao; Huang, Yi-Min; Qin, Hong
2016-02-01
Recently a variational integrator for ideal magnetohydrodynamics in Lagrangian labeling has been developed. Its built-in frozen-in equation makes it optimal for studying current sheet formation. We use this scheme to study the Hahm-Kulsrud-Taylor problem, which considers the response of a 2D plasma magnetized by a sheared field under sinusoidal boundary forcing. We obtain an equilibrium solution that preserves the magnetic topology of the initial field exactly, with a fluid mapping that is non-differentiable. Unlike previous studies that examine the current density output, we identify a singular current sheet from the fluid mapping. These results are benchmarked with a constrained Grad-Shafranovmore » solver. The same signature of current singularity can be found in other cases with more complex magnetic topologies.« less
NASA Astrophysics Data System (ADS)
Chu, Hsiao-Ping; Chang, Tsangyao; Chang, Hsu-Ling; Su, Chi-Wei; Yuan, Young
2007-10-01
Here, the Panel seemingly unrelated regressions augmented Dickey-Fuller test (SURADF) test, first introduced and advanced by Breuer et al. [Misleading inferences from panel unit-root tests with an illustration from purchasing power parity, Rev. Int. Econ. 9(3) (2001) 482-493], is used to investigate the mean-reverting behavior of the current account of 48 African countries during the 1980-2004 periods. The empirical results from numerous panel-based unit root tests, conducted earlier, indicated that the current account of each of these countries is stationary; however, when Breuer et al.'s (2001) Panel SURADF test is conducted, it is found that a unit root exists in the current account of 11 of the countries studied. These results have one extremely important policy implication for the 48 African countries studied: the current account deficit of most is sustainable, and thus signifying that those nations should have no incentive to default on their international debt.
de Araújo, Brenda R S; Linares León, José J
2018-05-15
This study presents the results of the electrochemical degradation of the emulsifier cetrimonium chloride (CTAC) on a boron-doped diamond (BDD) anode under different current densities and flow rates. Higher values of these parameters result in a more rapid removal. Nevertheless, operation at low current reduces the required applied charge and increases the chemical oxygen demand (COD) removal efficiency, as there is less development of ineffective parasitic reactions. On the other hand, high flow rates reduce the required volumetric applied charge and increase the COD removal current efficiency. In order to assist and enrich the study, an economic analysis has been performed. For short expected plant lifespans, operation at low current is advantageous due to the lower investment required, whereas for longer expected lifespans, the operational costs make the lower current densities less costly. High flow rates are always advantageous from a financial point of view. Copyright © 2018 Elsevier Ltd. All rights reserved.
Coherent Control of Nanoscale Ballistic Currents in Transition Metal Dichalcogenide ReS2.
Cui, Qiannan; Zhao, Hui
2015-04-28
Transition metal dichalcogenides are predicted to outperform traditional semiconductors in ballistic devices with nanoscale channel lengths. So far, experimental studies on charge transport in transition metal dichalcogenides are limited to the diffusive regime. Here we show, using ReS2 as an example, all-optical injection, detection, and coherent control of ballistic currents. By utilizing quantum interference between one-photon and two-photon interband transition pathways, ballistic currents are injected in ReS2 thin film samples by a pair of femtosecond laser pulses. We find that the current decays on an ultrafast time scale, resulting in an electron transport of only a fraction of one nanometer. Following the relaxation of the initially injected momentum, backward motion of the electrons for about 1 ps is observed, driven by the Coulomb force from the oppositely moved holes. We also show that the injected current can be controlled by the phase of the laser pulses. These results demonstrate a new platform to study ballistic transport of nonequilibrium carriers in transition metal dichalcogenides.
NASA Astrophysics Data System (ADS)
Gu, Xin; Jiang, Bailing; Li, Hongtao; Liu, Cancan; Shao, Lianlian
2018-05-01
Micro-arc oxidation coatings were fabricated on 6061 aluminum alloy using whereby bipolar pulse mode in the case of different negative peak current densities. The phase composition, microstructures and wear properties were studied using x-ray diffraction, scanning electron microscopy and ball-on-disk wear tester, respectively. As results indicate, by virtue of negative peak current density, the oxygen can be expelled by produced hydrogen on anode in the case of negative pulse width and via the opened discharge channel. The results of x-ray diffraction, surface and cross-sectional morphology indicated that the coating was structured compactly taking on less small-diameter micro-pores and defects with negative peak current density of 75 A dm‑2. Additionally, as the results of wear tracks and weight loss bespeak, by virtue of appropriate negative peak current density, coatings resisted the abrasive wear and showed excellent wear resistance.
NASA Astrophysics Data System (ADS)
Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald
2008-10-01
Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.
Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald
2008-10-01
Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie et al. [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.
Test results of 12/18 kA ReBCO coated conductor current leads
NASA Astrophysics Data System (ADS)
Kovalev, I. A.; Surin, M. I.; Naumov, A. V.; Novikov, M. S.; Novikov, S. I.; Ilin, A. A.; Polyakov, A. V.; Scherbakov, V. I.; Shutova, D. I.
2017-07-01
A pair of hybrid current leads (brass + stacked & soldered ReBCO tapes) rated for 12 kA in steady state and for up to 18 kA at pulsed over current conditions was designed, developed and tested at NRC ;Kurchatov Institute; (NRC ;KI;). During the experiment at LN2 temperature, the current leads (CLs) were successfully charged with 18 kA at 100 A/s ramp rate. To date, as far as we know, this is the highest current capacity achieved for 2G HTS current leads. The feasibility of ;stack-and-soldering technique; for 10 kA+ class coated conductor CLs for accelerators and fusion was demonstrated. This paper gives an overview of the leads design and presents the preliminary test results. Detailed studies of magnetic properties and current sharing process for the stacked and staggered HTS joints are also reported.
Factors affecting energy deposition and expansion in single wire low current experiments
NASA Astrophysics Data System (ADS)
Duselis, Peter U.; Vaughan, Jeffrey A.; Kusse, Bruce R.
2004-08-01
Single wire experiments were performed on a low current pulse generator at Cornell University. A 220 nF capacitor charged to 15-25 kV was used to drive single wire experiments. The capacitor and wire holder were connected in series through an external variable inductor to control the current rise rate. This external series inductance was adjustable from 0.2 to 2 μH. When coupled with the range of charging voltages this results in current rise rates from 5 to 50 A/ns. The current heated the wire through liquid and vapor phases until plasma formed around the wire. Energy deposition and expansion rates were measured as functions of the current rise rate. These results indicated better energy deposition and higher expansion rates with faster current rise rates. Effects of the wire-electrode connection method and wire polarity were also studied.
Spin current and spin transfer torque in ferromagnet/superconductor spin valves
NASA Astrophysics Data System (ADS)
Moen, Evan; Valls, Oriol T.
2018-05-01
Using fully self-consistent methods, we study spin transport in fabricable spin valve systems consisting of two magnetic layers, a superconducting layer, and a spacer normal layer between the ferromagnets. Our methods ensure that the proper relations between spin current gradients and spin transfer torques are satisfied. We present results as a function of geometrical parameters, interfacial barrier values, misalignment angle between the ferromagnets, and bias voltage. Our main results are for the spin current and spin accumulation as functions of position within the spin valve structure. We see precession of the spin current about the exchange fields within the ferromagnets, and penetration of the spin current into the superconductor for biases greater than the critical bias, defined in the text. The spin accumulation exhibits oscillating behavior in the normal metal, with a strong dependence on the physical parameters both as to the structure and formation of the peaks. We also study the bias dependence of the spatially averaged spin transfer torque and spin accumulation. We examine the critical-bias effect of these quantities, and their dependence on the physical parameters. Our results are predictive of the outcome of future experiments, as they take into account imperfect interfaces and a realistic geometry.
Comparison of entrainment in constant volume and constant flux dense currents over sloping bottoms
NASA Astrophysics Data System (ADS)
Bhaganagar, K.; Nayamatullah, M.; Cenedese, C.
2014-12-01
Three dimensional high resolution large eddy simulations (LES) are employed to simulate lock-exchange and constant flux dense flows over inclined surface with the aim of investigating, visualizing and describing the turbulent structure and the evolution of bottom-propagating compositional density current at the channel bottom. The understanding of dynamics of density current is largely determined by the amount of interfacial mixing or entrainment between the ambient and dense fluids. No previous experimental or numerical studies have been done to estimate entrainment in classical lock-exchange system. The differences in entrainment between the lock-exchange and constant flux are explored. Comparing the results of flat bed with inclined surface results, flow exhibits significant differences near the leading edge or nose of the front of the density currents due to inclination of surface. Further, the instabilities are remarkably enhanced resulting Kelvin-Helmholtz and lobe-cleft type of instabilities arises much earlier in time. In this study, a brief analysis of entrainment on lock-exchange density current is presented using different bed slopes and a set of reduced gravity values (g'). We relate the entrainment value with different flow parameters such as Froude number (Fr) and Reynolds number (Re).
Environmental risk factors for inflammatory bowel diseases: Evidence based literature review
Abegunde, Ayokunle T; Muhammad, Bashir H; Bhatti, Owais; Ali, Tauseef
2016-01-01
AIM: Advances in genetics and immunology have contributed to the current understanding of the pathogenesis of inflammatory bowel diseases (IBD). METHODS: The current opinion on the pathogenesis of IBD suggests that genetically susceptible individuals develop intolerance to dysregulated gut microflora (dysbiosis) and chronic inflammation develops as a result of environmental insults. Environmental exposures are innumerable with varying effects during the life course of individuals with IBD. Studying the relationship between environmental factors and IBD may provide the missing link to increasing our understanding of the etiology and increased incidence of IBD in recent years with implications for prevention, diagnosis, and treatment. Environmental factors are heterogeneous and genetic predisposition, immune dysregulation, or dysbiosis do not lead to the development of IBD in isolation. RESULTS: Current challenges in the study of environmental factors and IBD are how to effectively translate promising results from experimental studies to humans in order to develop models that incorporate the complex interactions between the environment, genetics, immunology, and gut microbiota, and limited high quality interventional studies assessing the effect of modifying environmental factors on the natural history and patient outcomes in IBD. CONCLUSION: This article critically reviews the current evidence on environmental risk factors for IBD and proposes directions for future research. PMID:27468219
Overview of ECRH experimental results
NASA Astrophysics Data System (ADS)
Lloyd, Brian
1998-08-01
A review of the present status of electron cyclotron heating and current drive experiments in toroidal fusion devices is presented. In addition to basic heating and current drive studies the review also addresses advances in wave physics and the application of electron cyclotron waves for instability control, transport studies, pre-ionization/start-up assist, etc. A comprehensive overview is given with particular emphasis on recent advances since the major review of Erckmann and Gasparino (1994) ( 36 1869), including results from the latest generation of high-power, high-frequency experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malashin, M. V., E-mail: m-malashin@mail.ru; Moshkunov, S. I.; Khomich, V. Yu.
2016-02-15
The current distribution in a dielectric barrier discharge in atmospheric-pressure air at a natural humidity of 40–60% was studied experimentally with a time resolution of 200 ps. The experimental results are interpreted by means of numerically simulating the discharge electric circuit. The obtained results indicate that the discharge operating in the volumetric mode develops simultaneously over the entire transverse cross section of the discharge gap.
Ergonomic approach for pillow concept design.
Cai, Dengchuan; Chen, Hsiao-Lin
2016-01-01
Sleep quality is an essential factor to human beings for health. The current paper conducted four studies to provide a suitable pillow for promoting sleep quality. Study 1 investigated the natural positions of 40 subjects during sleep to derive key-points for a pillow design. The results suggested that the supine and lateral positions were alternatively 24 times a night, and the current pillows were too high for the supine position and too low for lateral positions. Study 2 measured body dimensions related to pillow design of 40 subjects to determine pillow sizes. The results suggested that the pillow height were quite different in supine position and lateral position and needed to take into consideration for a pillow design. Study 3 created a pillow design based on the results of above studies. The pillow was a U-form in the front of view in which the pillow height in the middle area was lower for the supine position, and both sides were higher for the lateral positions. Study 4 assessed sleep quality of 6 subjects by using the proposed pillows and the current pillows. The results showed that the newly designed pillow led to significantly higher sleep quality, and the new design received an innovation patent. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
NOTE Effects of skeletal muscle anisotropy on induced currents from low-frequency magnetic fields
NASA Astrophysics Data System (ADS)
Tachas, Nikolaos J.; Samaras, Theodoros; Baskourelos, Konstantinos; Sahalos, John N.
2009-12-01
Studies which take into account the anisotropy of tissue dielectric properties for the numerical assessment of induced currents from low-frequency magnetic fields are scarce. In the present study, we compare the induced currents in two anatomical models, using the impedance method. In the first model, we assume that all tissues have isotropic conductivity, whereas in the second one, we assume anisotropic conductivity for the skeletal muscle. Results show that tissue anisotropy should be taken into account when investigating the exposure to low-frequency magnetic fields, because it leads to higher induced current values.
NASA Astrophysics Data System (ADS)
Rompas, P. T. D.; Taunaumang, H.; Sangari, F. J.
2017-03-01
One of equipment as prime movers in the marine current power plant is turbine. Marine current turbines require a data of marine currents velocity in its design. The objective of this study was to get the velocities distribution of marine currents in the Bangka strait. The method used survey, observation, and measurement in the Bangka strait. The data of seawater density conducted measurement in the Bangka strait. The data of width and depth of the strait collected from the map of Bangka strait and its depth of the sea. Problem solving of the study used a numerical model. The velocities distribution of marine current obtained from a numerical model in the form of numerical program. The results showed that the velocities distribution at seawater column when low and high tide currents which the maximum happened at 0.1 Sv were 0-0.9 and 0-1.0 m/s respectively, while at 0.3 Sv were 0-2.7 and 0-3.0 m/s respectively. The results will be a product in analyzing the potential kinetic energy that used to design profile of the turbines as prime mover for marine currents power plant in the Bangka strait, North Sulawesi, Indonesia.
Childhood Discipline, Perceptions of Parents, and Current Functioning in Female College Students
ERIC Educational Resources Information Center
Renk, Kimberly; McKinney, Cliff; Klein, Jenny; Oliveros, Arazais
2006-01-01
This study examined the relationships among the childhood discipline styles experienced by 116 female college students, their perceptions of their parents, and their current functioning. Results of this study indicated that female college students' report of childhood discipline, their perceptions of their parents, and their outcomes were related…
A Survey of Current and Projected Ethical Dilemmas of Rehabilitation Counselors
ERIC Educational Resources Information Center
Hartley, Michael T.; Cartwright, Brenda Y.
2016-01-01
Purpose: This study surveyed current and projected ethical dilemmas of rehabilitation counselors. Method: As a mixed-methods approach, the study used both quantitative and qualitative analyses. Results: Of the 211 participants who completed the survey, 116 (55.0%) reported an ethical dilemma. Based on the descriptions, common themes involved roles…
NASA Astrophysics Data System (ADS)
Lee, S.; Shiokawa, K.; McFadden, J. P.
2010-12-01
The magnetospheric electron precipitation along the upward field-aligned currents without the potential difference causes diffuse aurora, and the magnetospheric electrons accelerated by a field-aligned potential difference cause the intense and bright type of aurora, namely discrete aurora. In this study, we are trying to find out when and where the aurora can be caused with or without electron acceleration. We statistically investigate electron density, temperature, thermal current, and conductivity in the plasma sheet using the data from the electrostatic analyzer (ESA) onboard the THEMIS-D satellite launched in 2007. According to Knight (Planet. Space Sci., 1973) and Lyons (JGR, 1980), the thermal current, jth(∝ nT^(1/2) where n is electron density and T is electron temperature in the plasma sheet), represents the upper limit to field aligned current that can be carried by magnetospheric electrons without field-aligned potential difference. The conductivity, K(∝ nT^(-1/2)), represents the efficiency of the upward field-aligned current (j) that the field-aligned potential difference (V) can produce (j=KV). Therefore, estimating jth and K in the plasma sheet is important in understanding the ability of plasma sheet electrons to carry the field-aligned current which is driven by various magnetospheric processes such as flow shear and azimuthal pressure gradient. Similar study was done by Shiokawa et al. (2000) based on the auroral electron data obtained by the DMSP satellites above the auroral oval and the AMPTE/IRM satellite in the near Earth plasma sheet at 10-18 Re on February-June 1985 and March-June 1986 during the solar minimum. The purpose of our study is to examine auroral electrons with pitch angle information inside 12 Re where Shiokawa et al. (2000) did not investigate well. For preliminary result, we found that in the dawn side inner magnetosphere (source of the region 2 current), electrons can make sufficient thermal current without field-aligned potential difference, particularly during active time (AE > 100 nT). On the other hand, in the dusk side outer magnetosphere (source of the region 1), electron density and temperature are small, thus the thermal current is much smaller than the typical auroral current suggested by Iijima and Potemra (JGR, 1976). From this result, we suppose that electron acceleration is necessary on the dusk side region 1 upward field-aligned current. Our preliminary result, however, does not consider contamination of the radiation belt particles into the ESA data that is apparent inside 9 Re. In the presentation, we show the results with removal of the radiation belt particle contamination.
Modelling the effect of electrode displacement on transcranial direct current stimulation (tDCS)
NASA Astrophysics Data System (ADS)
Ramaraju, Sriharsha; Roula, Mohammed A.; McCarthy, Peter W.
2018-02-01
Objective. Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers a low-intensity, direct current to cortical areas with the purpose of modulating underlying brain activity. Recent studies have reported inconsistencies in tDCS outcomes. The underlying assumption of many tDCS studies has been that replication of electrode montage equates to replicating stimulation conditions. It is possible however that anatomical difference between subjects, as well as inherent inaccuracies in montage placement, could affect current flow to targeted areas. The hypothesis that stimulation of a defined brain region will be stable under small displacements was tested. Approach. Initially, we compared the total simulated current flowing through ten specific brain areas for four commonly used tDCS montages: F3-Fp2, C3-Fp2, Fp1-F4, and P3-P4 using the software tool COMETS. The effect of a slight (~1 cm in each of four directions) anode displacement on the simulated regional current density for each of the four tDCS montages was then determined. Current flow was calculated and compared through ten segmented brain areas to determine the effect of montage type and displacement. The regional currents, as well as the localised current densities, were compared with the original electrode location, for each of these new positions. Main results. Recommendations for montages that maximise stimulation current for the ten brain regions are considered. We noted that the extent to which stimulation is affected by electrode displacement varies depending on both area and montage type. The F3-Fp2 montage was found to be the least stable with up to 38% change in average current density in the left frontal lobe while the Fp1-F4 montage was found to the most stable exhibiting only 1% change when electrodes were displaced. Significance. These results indicate that even relatively small changes in stimulation electrode placement appear to result in surprisingly large changes in current densities and distribution.
Mao, Longfei; Verwoerd, Wynand S
2013-01-01
Saccharomyces cerevisiae possesses numerous advantageous biological features, such as being robust, easily handled, mostly non-pathogenic and having high catabolic rates, etc., which can be considered as merits for being used as a promising biocatalyst in microbial fuel cells (MFCs) for electricity generation. Previous studies have developed efficient MFC configurations to convert metabolic electron shuttles, such as cytoplasmic NADH, into usable electric current. However, no studies have elucidated the maximum potential of S. cerevisiae for current output and the underlying metabolic pathways, resulting from the interaction of thousands of reactions inside the cell during MFC operation. To address these two key issues, this study used in silico metabolic engineering techniques, flux balance analysis (FBA), and flux variability analysis with target flux minimization (FATMIN), to model the metabolic perturbation of S. cerevisiae under the MFC-energy extraction. The FBA results showed that, in the cytoplasmic NADH-dependent mediated electron transfer (MET) mode, S. cerevisiae had a potential to produce currents at up to 5.781 A/gDW for the anaerobic and 6.193 A/gDW for the aerobic environments. The FATMIN results showed that the aerobic and anaerobic metabolisms are resilient, relying on six and five contributing reactions respectively for high current production. Two reactions, catalyzed by glutamate dehydrogenase (NAD) (EC 1.4.1.3) and methylene tetrahydrofolate dehydrogenase (NAD) (EC 1.5.1.5), were shared in both current-production modes and contributed to over 80% of the identified maximum current outputs. It is also shown that the NADH regeneration was much less energy costly than biomass production rate. Taken together, our finding suggests that S. cerevisiae should receive more research effort for MFC electricity production.
Luu, Phan; Essaki Arumugam, Easwara Moorthy; Anderson, Erik; Gunn, Amanda; Rech, Dennis; Turovets, Sergei; Tucker, Don M.
2016-01-01
In pain management as well as other clinical applications of neuromodulation, it is important to consider the timing parameters influencing activity-dependent plasticity, including pulsed versus sustained currents, as well as the spatial action of electrical currents as they polarize the complex convolutions of the cortical mantle. These factors are of course related; studying temporal factors is not possible when the spatial resolution of current delivery to the cortex is so uncertain to make it unclear whether excitability is increased or decreased with anodal vs. cathodal current flow. In the present study we attempted to improve the targeting of specific cortical locations by applying current through flexible source-sink configurations of 256 electrodes in a geodesic array. We constructed a precision electric head model for 12 healthy individuals. Extraction of the individual’s cortical surface allowed computation of the component of the induced current that is normal to the target cortical surface. In an effort to replicate the long-term depression (LTD) induced with pulsed protocols in invasive animal research and transcranial magnetic stimulation studies, we applied 100 ms pulses at 1.9 s intervals either in cortical-surface-anodal or cortical-surface-cathodal directions, with a placebo (sham) control. The results showed significant LTD of the motor evoked potential as a result of the cortical-surface-cathodal pulses in contrast to the placebo control, with a smaller but similar LTD effect for anodal pulses. The cathodal LTD after-effect was sustained over 90 min following current injection. These results support the feasibility of pulsed protocols with low total charge in non-invasive neuromodulation when the precision of targeting is improved with a dense electrode array and accurate head modeling. PMID:27531976
Mao, Longfei; Verwoerd, Wynand S
2013-01-01
Saccharomyces cerevisiae possesses numerous advantageous biological features, such as being robust, easily handled, mostly non-pathogenic and having high catabolic rates, etc., which can be considered as merits for being used as a promising biocatalyst in microbial fuel cells (MFCs) for electricity generation. Previous studies have developed efficient MFC configurations to convert metabolic electron shuttles, such as cytoplasmic NADH, into usable electric current. However, no studies have elucidated the maximum potential of S. cerevisiae for current output and the underlying metabolic pathways, resulting from the interaction of thousands of reactions inside the cell during MFC operation. To address these two key issues, this study used in silico metabolic engineering techniques, flux balance analysis (FBA), and flux variability analysis with target flux minimization (FATMIN), to model the metabolic perturbation of S. cerevisiae under the MFC-energy extraction. The FBA results showed that, in the cytoplasmic NADH-dependent mediated electron transfer (MET) mode, S. cerevisiae had a potential to produce currents at up to 5.781 A/gDW for the anaerobic and 6.193 A/gDW for the aerobic environments. The FATMIN results showed that the aerobic and anaerobic metabolisms are resilient, relying on six and five contributing reactions respectively for high current production. Two reactions, catalyzed by glutamate dehydrogenase (NAD) (EC 1.4.1.3) and methylene tetrahydrofolate dehydrogenase (NAD) (EC 1.5.1.5), were shared in both current-production modes and contributed to over 80% of the identified maximum current outputs. It is also shown that the NADH regeneration was much less energy costly than biomass production rate. Taken together, our finding suggests that S. cerevisiae should receive more research effort for MFC electricity production. PMID:23969939
NASA Astrophysics Data System (ADS)
Lieske, Mike; Schlurmann, Torsten
2016-04-01
INTRODUCTION & MOTIVATION The design of structures in coastal and offshore areas and their maintenance are key components of coastal protection. Usually, assessments of processes and loads on coastal structures are derived from experiments with flow and wave parameters in separate physical models. However, Peregrin (1976) already points out that processes in natural shallow coastal waters flow and sea state processes do not occur separately, but influence each other nonlinearly. Kemp & Simons (1982) perform 2D laboratory tests and study the interactions between a turbulent flow and following waves. They highlight the significance of wave-induced changes in the current properties, especially in the mean flow profiles, and draw attention to turbulent fluctuations and bottom shear stresses. Kemp & Simons (1983) also study these processes and features with opposing waves. Studies on the wave-current interaction in three-dimensional space for a certain wave height, wave period and water depth were conducted by MacIver et al. (2006). The research focus is set on the investigation of long-crested waves on obliquely opposing and following currents in the new 3D wave-current basin. METHODOLOGY In a first step the flow analysis without waves is carried out and includes measurements of flow profiles in the sweet spot of the basin at predefined measurement positions. Five measuring points in the water column have been delineated in different water depths in order to obtain vertical flow profiles. For the characterization of the undisturbed flow properties in the basin, an uniformly distributed flow was generated in the wave basin. In the second step wave analysis without current, the unidirectional wave propagation and wave height were investigated for long-crested waves in intermediate wave conditions. In the sweet spot of the wave basin waves with three different wave directions, three wave periods and uniform wave steepness were examined. For evaluation, we applied a common 3D wave analysis method, the Bayesian Directional Spectrum method (BDM). BDM was presented by Hashimoto et al. (1988). Lastly, identification of the wave-current interaction, the results from experiment with simultaneous waves and currents are compared with results for only-currents and only-waves in order to identify and exemplify the significance of nonlinear interaction processes. RESULTS The first results of the wave-current interaction show, as expected, a reduction in the wave height in the direction of flow and an increase in wave heights against the flow with unidirectional monochromatic waves. The superposition of current and orbital velocities cannot be conducted linearly. Furthermore, the results show a current domination for low wave periods and wave domination for larger wave periods. The criterion of a current or wave domination will be presented in the presentation. ACKNOWLEDGEMENT The support of the KFKI research project "Seegangsbelastungen (Seele)" (Contract No. 03KIS107) by the German "Federal Ministry of Education and Research (BMBF)" is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Zhou, Huai-Bei
This dissertation examines the dynamic response of a magnetoplasma to an external time-dependent current source. To achieve this goal a new method which combines analytic and numerical techniques to study the dynamic response of a 3-D magnetoplasma to a time-dependent current source imposed across the magnetic field was developed. The set of the cold electron and/or ion plasma equations and Maxwell's equations are first solved analytically in (k, omega)^ace; inverse Laplace and 3 -D complex Fast Fourier Transform (FFT) techniques are subsequently used to numerically transform the radiation fields and plasma currents from the (k, omega) ^ace to the (r, t) space. The dynamic responses of the electron plasma and of the compensated two-component plasma to external current sources are studied separately. The results show that the electron plasma responds to a time -varying current source imposed across the magnetic field by exciting whistler/helicon waves and forming of an expanding local current loop, induced by field aligned plasma currents. The current loop consists of two anti-parallel field-aligned current channels concentrated at the ends of the imposed current and a cross-field current region connecting these channels. The latter is driven by an electron Hall drift. A compensated two-component plasma responds to the same current source as following: (a) For slow time scales tau > Omega_sp{i}{-1} , it generates Alfven waves and forms a non-local current loop in which the ion polarization currents dominate the cross-field current; (b) For fast time scales tau < Omega_sp{i}{-1} , the dynamic response of the compensated two-component plasma is the same as that of the electron plasma. The characteristics of the current closure region are determined by the background plasma density, the magnetic field and the time scale of the current source. This study has applications to a diverse range of space and solid state plasma problems. These problems include current closure in emf inducing tethered satellite systems (TSS), generation of ELF/VLF waves by ionospheric heating, current closure and quasineutrality in thin magnetopause transitions, and short electromagnetic pulse generation in solid state plasmas. The cross-field current in TSS builds up on a time scale corresponding to the whistler waves and results in local current closure. Amplitude modulated HF ionospheric heating generates ELF/VLF waves by forming a horizontal magnetic dipole. The dipole is formed by the current closure in the modified region. For thin transition the time-dependent cross-field polarization field at the magnetopause could be neutralized by the formation of field aligned current loops that close by a cross-field electron Hall current. A moving current source in a solid state plasma results in microwave emission if the speed of the source exceeds the local phase velocity of the helicon or Alfven waves. Detailed analysis of the above problems is presented in the thesis.
NASA Astrophysics Data System (ADS)
Liu, Yao; Wang, Xiufeng; Lin, Jing; Zhao, Wei
2016-11-01
Motor current is an emerging and popular signal which can be used to detect machining chatter with its multiple advantages. To achieve accurate and reliable chatter detection using motor current, it is important to make clear the quantitative relationship between motor current and chatter vibration, which has not yet been studied clearly. In this study, complex continuous wavelet coherence, including cross wavelet transform and wavelet coherence, is applied to the correlation analysis of motor current and chatter vibration in grinding. Experimental results show that complex continuous wavelet coherence performs very well in demonstrating and quantifying the intense correlation between these two signals in frequency, amplitude and phase. When chatter occurs, clear correlations in frequency and amplitude in the chatter frequency band appear and the phase difference of current signal to vibration signal turns from random to stable. The phase lead of the most correlated chatter frequency is the largest. With the further development of chatter, the correlation grows up in intensity and expands to higher order chatter frequency band. The analyzing results confirm that there is a consistent correlation between motor current and vibration signals in the grinding chatter process. However, to achieve accurate and reliable chatter detection using motor current, the frequency response bandwidth of current loop of the feed drive system must be wide enough to response chatter effectively.
Analysis and Countermeasure Study on DC Bias of Main Transformer in a City
NASA Astrophysics Data System (ADS)
Wang, PengChao; Wang, Hongtao; Song, Xinpu; Gu, Jun; Liu, yong; Wu, weili
2017-07-01
According to the December 2015 Guohua Beijing thermal power transformer DC magnetic bias phenomenon, the monitoring data of 24 hours of direct current is analyzed. We find that the maximum DC current is up to 25 and is about 30s for the trend cycle, on this basis, then, of the geomagnetic storm HVDC and subway operation causes comparison of the mechanism, and make a comprehensive analysis of the thermal power plant’s geographical location, surrounding environment and electrical contact etc.. The results show that the main reason for the DC bias of Guohua thermal power transformer is the operation of the subway, and the change of the DC bias current is periodic. Finally, of Guohua thermal power transformer DC magnetic bias control method is studied, the simulation results show that the method of using neutral point with small resistance or capacitance can effectively inhibit the main transformer neutral point current.
ERIC Educational Resources Information Center
Haisheng, Pan; Shibin, Wang; Deyi, Long
2016-01-01
Strengthening school-enterprise development is currently a major theme in the development of higher vocational education. The results of our survey study show that school-enterprise cooperation in Chinese higher vocational education is currently characterized by disparities in the interests of different entities, low quality of cooperation, and…
NASA Astrophysics Data System (ADS)
Hui, Qiao; Weida, Hu; Zhenhua, Ye; Xiangyang, Li; Haimei, Gong
2010-03-01
The influence of hydrogenation on the dark current mechanism of HgCdTe photovoltaic detectors is studied. The hydrogenation is achieved by exposing samples to a H2/Ar plasma atmosphere that was produced during a reactive ion etching process. A set of variable-area photomask was specially designed to evaluate the hydrogenation effect. It was found that the current-voltage characteristics were gradually improved when detectors were hydrogenated by different areas. The fitting results of experimental results at reverse bias conditions sustained that the improvement of current-voltage curves was due to the suppression of trap assisted tunneling current and the enhancement of minority lifetime in the depletion region. It was also found that the dominative forward current was gradually converted from a generation-recombination current to a diffusion current with the enlargement of the hydrogenation area, which was infered from the ideality factors by abstraction of forward resistance-voltage curves of different detectors.
Zinc electrodeposition from flowing alkaline zincate solutions: Role of hydrogen evolution reaction
NASA Astrophysics Data System (ADS)
Dundálek, Jan; Šnajdr, Ivo; Libánský, Ondřej; Vrána, Jiří; Pocedič, Jaromír; Mazúr, Petr; Kosek, Juraj
2017-12-01
The hydrogen evolution reaction is known as a parasitic reaction during the zinc electrodeposition from alkaline zincate solutions and is thus responsible for current efficiency losses during the electrolysis. Besides that, the rising hydrogen bubbles may cause an extra convection within a diffusion layer, which leads to an enhanced mass transport of zincate ions to an electrode surface. In this work, the mentioned phenomena were studied experimentally in a flow through electrolyzer and the obtained data were subsequently evaluated by mathematical models. The results prove the indisputable influence of the rising hydrogen bubbles on the additional mixing of the diffusion layer, which partially compensates the drop of the current efficiency of the zinc deposition at higher current flows. Moreover, the results show that the current density ratio (i.e., the ratio of an overall current density to a zinc limiting current density) is not suitable for the description of the zinc deposition, because the hydrogen evolution current density is always involved in the overall current density.
Yoga for military service personnel with PTSD: A single arm study.
Johnston, Jennifer M; Minami, Takuya; Greenwald, Deborah; Li, Chieh; Reinhardt, Kristen; Khalsa, Sat Bir S
2015-11-01
This study evaluated the effects of yoga on posttraumatic stress disorder (PTSD) symptoms, resilience, and mindfulness in military personnel. Participants completing the yoga intervention were 12 current or former military personnel who met the Diagnostic and Statistical Manual for Mental Disorders-Fourth Edition-Text Revision (DSM-IV-TR) diagnostic criteria for PTSD. Results were also benchmarked against other military intervention studies of PTSD using the Clinician Administered PTSD Scale (CAPS; Blake et al., 2000) as an outcome measure. Results of within-subject analyses supported the study's primary hypothesis that yoga would reduce PTSD symptoms (d = 0.768; t = 2.822; p = .009) but did not support the hypothesis that yoga would significantly increase mindfulness (d = 0.392; t = -0.9500; p = .181) and resilience (d = 0.270; t = -1.220; p = .124) in this population. Benchmarking results indicated that, as compared with the aggregated treatment benchmark (d = 1.074) obtained from published clinical trials, the current study's treatment effect (d = 0.768) was visibly lower, and compared with the waitlist control benchmark (d = 0.156), the treatment effect in the current study was visibly higher. (c) 2015 APA, all rights reserved).
Cargo Logistics Airlift Systems Study (CLASS). Volume 5: Summary
NASA Technical Reports Server (NTRS)
Burby, R. J.; Kuhlman, W. H.
1980-01-01
Findings and conclusions derived during the study of freighter aircraft requirements to the year 2008 are summarized. These results represent the stepping off point for the much needed coordinated planning efforts by government agencies, the airlines, the users, and the aircraft manufacturers. The methodology utilized in the investigations is shown. The analysis of the current system encompassed evaluations of the past and current cargo markets and on sight surveys of airport and cargo terminals. The findings that resulted provided the basis for formulating the case study procedures, developing the future scenario, and developing the future cargo market demand.
Two-dimensional relativistic space charge limited current flow in the drift space
NASA Astrophysics Data System (ADS)
Liu, Y. L.; Chen, S. H.; Koh, W. S.; Ang, L. K.
2014-04-01
Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.
ERIC Educational Resources Information Center
ManTech Technical Services Corp., Fairfax, VA.
This report presents the results of a management study of audio playback equipment operations conducted by the National Library Service, Library of Congress, its associated network of state and local machine lending agencies (MLA), and other parties that play a role in current operations. The objectives were to document current operations,…
About plasma points' generation in Z-pinch
NASA Astrophysics Data System (ADS)
Afonin, V. I.; Potapov, A. V.; Lazarchuk, V. P.; Murugov, V. M.; Senik, A. V.
1997-05-01
The streak tube study results (at visible and x-ray ranges) of dynamics of fast Z-pinch formed at explosion of metal wire in diode of high current generator are presented. Amplitude of current in the load reached ˜180 kA at increase time ˜50 ns. The results' analysis points to capability of controlling hot plasma points generation process in Z-pinch.
Do Magnetic Fields Drive High-Energy Explosive Transients?
NASA Astrophysics Data System (ADS)
Mundell, Carole
2017-10-01
I will review the current state-of-the-art in real-time, rapid response optical imaging and polarimetric followup of transient sources such as Gamma Ray Bursts. I will interpret current results within the context of the external shock model and present predictions for future mm- and cm-wave radio observatories. Recent observational results from new radio pilot studies will also be presented.
NASA Astrophysics Data System (ADS)
Duan, Zhengchao; He, Feng; Si, Xinlu; Bradley, James W.; Ouyang, Jiting
2018-02-01
Conductive solid material sampling by micro-plasma under ambient atmosphere was studied experimentally. A high-voltage pulse generator was utilized to drive discharge between a tungsten needle and metal samples. The effects of pulse width on discharge, micro-plasma and sampling were investigated. The electrical results show that two discharge current pulses can be formed in one voltage pulse. The duration of the first current pulse is of the order of 100 ns. The duration of the second current pulse depends on the width of the voltage pulse. The electrical results also show that arc micro-plasma was generated during both current pulses. The results of the emission spectra of different sampled materials indicate that the relative emission intensity of elemental metal ions will increase with pulse width. The excitation temperature and electron density of the arc micro-plasmas increase with the voltage pulse width, which contributes to the increase of relative emission intensity of metal ions. The optical images and energy dispersive spectroscopy results of the sampling spots on metal surfaces indicate that discharge with a short voltage pulse can generate a small sputtering crater.
The most intense electric currents in turbulent high speed solar wind
NASA Astrophysics Data System (ADS)
Podesta, J. J.
2017-12-01
Theory and simulations suggest that dissipation of turbulent energy in collisionless astrophysical plasmas occurs most rapidly in spatial regions where the current density is most intense. To advance understanding of plasma heating by turbulent dissipation in the solar corona and solar wind, it is of interest to characterize the properties of plasma regions where the current density takes exceptionally large values and to identify the operative dissipation processes. In the solar wind, the curl of the magnetic field cannot be measured using data from a single spacecraft, however, a suitable proxy for this quantity can be constructed from the spatial derivative of the magnetic field along the flow direction of the plasma. This new approach is used to study the properties of the most intense current carrying structures in a high speed solar wind stream near 1 AU. In this study, based on 11 Hz magnetometer data from the WIND spacecraft, the spatial resolution of the proxy technique is approximately equal to the proton inertial length. Intense current sheets or current carrying structures were identified as events where the magnitude of the current density exceeds μ+5σ, where μ and σ are the mean and standard deviation of the magnitude of the current density (or its proxy), respectively. Statistical studies show (1) the average size of these 5σ events is close to the smallest resolvable scale in the data set, the proton inertial length; (2) the linear distance between neighboring events follows a power law distribution; and (3) the average peak current density of 5σ events is around 1 pA/cm2. The analysis techniques used in these studies have been validated using simulated spacecraft data from three dimensional hybrid simulations which show that results based on the analysis of the proxy are qualitatively and quantitatively similar to results based on the analysis of the true current density.
Electrostatic ion instabilities in the presence of parallel currents and transverse electric fields
NASA Technical Reports Server (NTRS)
Ganguli, G.; Palmadesso, P. J.
1988-01-01
The electrostatic ion instabilities are studied for oblique propagation in the presence of magnetic field-aligned currents and transverse localized electric fields in a weakly collisional plasma. The presence of transverse electric fields result in mode excitation for magnetic field aligned current values that are otherwise stable. The electron collisions enhance the growth while ion collisions have a damping effect. These results are discussed in the context of observations of low frequency ion modes in the auroral ionosphere by radar and rocket experiments.
Research on resistance characteristics of YBCO tape under short-time DC large current impact
NASA Astrophysics Data System (ADS)
Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen
2017-06-01
Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.
A 7-year follow-up study on the mental health of North Korean defectors in South Korea.
Jeon, Woo-Taek; Eom, Jin-Sup; Min, Sung Kil
2013-02-01
This study was conducted to describe the relationship of past trauma and current stress on the mental health of North Korean (NK) defectors living in South Korea 7 years after a baseline assessment. Of the 200 who participated in the initial study, 106 participated in follow-up. Previous data regarding past traumatic events experienced in North Korea and during defection, past posttraumatic stress disorder (PTSD), and their current stress levels were correlated with the participants' current mental health status including depression, anxiety, and PTSD. The rate of PTSD in the sample and the scores on the PTSD symptom scale decreased significantly from the baseline. The participants' current mental health was negatively related to previous traumatic experiences in North Korea and past symptoms of PTSD, but unrelated to previous trauma experienced during defection. In addition, although current mental health was negatively related to only current culture-related stress, it was unrelated to the level of current ordinary life stress. The results of this study suggest that PTSD symptoms decreased during the 7 years between assessments, and that current culture-related stress is the most important variable related to the mental health of NK defectors living in South Korea. Copyright © 2013 International Society for Traumatic Stress Studies.
NASA Astrophysics Data System (ADS)
Hage, S.; Cartigny, M.; Hughes Clarke, J. E.; Clare, M. A.; Sumner, E.; Hubbard, S. M.; Talling, P.; Lintern, G.; Stacey, C.; Vardy, M. E.; Hunt, J.; Vendettuoli, D.; Yokokawa, M.; Hizzett, J. L.; Vellinga, A. J.; Azpiroz, M.
2017-12-01
Turbidity currents transfer globally significant amounts of sediment via submarine channels from the continental margin to deep submarine fans. Submarine channel inception is thought to result from erosive, supercritical turbidity currents that are common in proximal settings of the marine realm. Recent monitoring of submarine processes have provided the first measurements of supercritical turbidity currents (Hughes Clarke, 2016), demonstrating that they drive the upstream migration of crescentic bedforms in confined submarine channels. Although upstream-migrating bedforms are common in confined channels across the world's oceans, there is considerable debate over the type of deposits that they produce. It is important to understand what types of deposit record these supercritical bedforms to potentially identify them from geological archives. For the first time, we combine direct measurements from supercritical field-scale turbidity currents with the facies and depositional architecture resulting from such flows. We show how the subsurface architecture evolves in a highly active channel at Squamish submarine delta, British Columbia, Canada. Repeated upstream migration of bedforms is found to create two main deposit geometries. First, regular back-stepping beds result from flow deceleration on the slightly-inclined sides of the bedforms. Second, lens-shaped scour fills composed of massive deposits result from erosion of the back-stepping beds by subsequent turbidity currents. We relate our findings to a range of ancient outcrop studies to demonstrate that supercritical flows are common in proximal settings through the geological record. This study provides the first direct observation-based model to identify confined supercritical turbidity currents and their associated upslope-migrating bedforms in the sedimentary record. This is important for correctly identifying the proximal sites of ancient submarine channels that served as past conduits for globally significant quantities of sediment to reach the deep sea.
Parents' Perceptions of Play: A Comparative Study of Spousal Perspectives
ERIC Educational Resources Information Center
Warash, Barbara G.; Root, Amy E.; Devito Doris, Meghan
2017-01-01
Play is essential for growth and learning during early childhood. However, the current focus on academics in preschool education has resulted in less emphasis placed on play as a learning tool. In the current study, parents' value of play was investigated. Parent gender, child gender, and child age were examined as potential influences on parents'…
The Impact of Current Economic Crisis on Community Colleges
ERIC Educational Resources Information Center
Okpala, Comfort O.; Hopson, Linda; Okpala, Amon O.
2011-01-01
The focus of the study was to examine the impact of the recession on (1) community college funding, (2) community college student support services, and (3) on student enrollment. This study relied on data from document analysis and interview of community college personnel and students. The current crisis has resulted in a steep budget reduction to…
Field aligned current study during the solar declining- extreme minimum of 23 solar cycle
NASA Astrophysics Data System (ADS)
Nepolian, Jeni Victor; Kumar, Anil; C, Panneerselvam
Field Aligned Current (FAC) density study has been carried out during the solar declining phase from 2004 to 2006 of the 23rd solar cycle and the ambient terrestrial magnetic field of the extended minimum period of 2008 and 2009. We mainly depended on CHAMP satellite data (http://isdc.gfz-potsdam.de/) for computing the FAC density with backup of IGRF-10 model. The study indicates that, the FAC is controlled by quasi-viscous processes occurring at the flank of the earth’s magnetosphere. The dawn-dusk conventional pattern enhanced during disturbed days. The intensity of R1 current system is higher than the R2 current system. Detailed results will be discussed in the conference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldanov, B. B., E-mail: baibat@mail.ru
2016-01-15
Results of studies of a spark discharge initiated in argon in a point–plane electrode gap with limitation of the discharge current by a large ballast resistance are presented. It is shown that the current flowing through the plasma channel of such a low-current spark has the form of periodic pulses. It is experimentally demonstrated that, when a low-current spark transforms into a constricted glow discharge, current pulses disappear, the spatial structure of the cathode glow changes abruptly, and a brightly glowing positive plasma column forms in the gap.
Research on Parallel Three Phase PWM Converters base on RTDS
NASA Astrophysics Data System (ADS)
Xia, Yan; Zou, Jianxiao; Li, Kai; Liu, Jingbo; Tian, Jun
2018-01-01
Converters parallel operation can increase capacity of the system, but it may lead to potential zero-sequence circulating current, so the control of circulating current was an important goal in the design of parallel inverters. In this paper, the Real Time Digital Simulator (RTDS) is used to model the converters parallel system in real time and study the circulating current restraining. The equivalent model of two parallel converters and zero-sequence circulating current(ZSCC) were established and analyzed, then a strategy using variable zero vector control was proposed to suppress the circulating current. For two parallel modular converters, hardware-in-the-loop(HIL) study based on RTDS and practical experiment were implemented, results prove that the proposed control strategy is feasible and effective.
Unifying concept of serotonin transporter-associated currents.
Schicker, Klaus; Uzelac, Zeljko; Gesmonde, Joan; Bulling, Simon; Stockner, Thomas; Freissmuth, Michael; Boehm, Stefan; Rudnick, Gary; Sitte, Harald H; Sandtner, Walter
2012-01-02
Serotonin (5-HT) uptake by the human serotonin transporter (hSERT) is driven by ion gradients. The stoichiometry of transported 5-HT and ions is predicted to result in electroneutral charge movement. However, hSERT mediates a current when challenged with 5-HT. This discrepancy can be accounted for by an uncoupled ion flux. Here, we investigated the mechanistic basis of the uncoupled currents and its relation to the conformational cycle of hSERT. Our observations support the conclusion that the conducting state underlying the uncoupled ion flux is in equilibrium with an inward facing state of the transporter with K+ bound. We identified conditions associated with accumulation of the transporter in inward facing conformations. Manipulations that increased the abundance of inward facing states resulted in enhanced steady-state currents. We present a comprehensive kinetic model of the transport cycle, which recapitulates salient features of the recorded currents. This study provides a framework for exploring transporter-associated currents.
Unifying Concept of Serotonin Transporter-associated Currents*
Schicker, Klaus; Uzelac, Zeljko; Gesmonde, Joan; Bulling, Simon; Stockner, Thomas; Freissmuth, Michael; Boehm, Stefan; Rudnick, Gary; Sitte, Harald H.; Sandtner, Walter
2012-01-01
Serotonin (5-HT) uptake by the human serotonin transporter (hSERT) is driven by ion gradients. The stoichiometry of transported 5-HT and ions is predicted to result in electroneutral charge movement. However, hSERT mediates a current when challenged with 5-HT. This discrepancy can be accounted for by an uncoupled ion flux. Here, we investigated the mechanistic basis of the uncoupled currents and its relation to the conformational cycle of hSERT. Our observations support the conclusion that the conducting state underlying the uncoupled ion flux is in equilibrium with an inward facing state of the transporter with K+ bound. We identified conditions associated with accumulation of the transporter in inward facing conformations. Manipulations that increased the abundance of inward facing states resulted in enhanced steady-state currents. We present a comprehensive kinetic model of the transport cycle, which recapitulates salient features of the recorded currents. This study provides a framework for exploring transporter-associated currents. PMID:22072712
Ramp compression of a metallic liner driven by a shaped 5 MA current on the SPHINX machine
NASA Astrophysics Data System (ADS)
d'Almeida, T.; Lassalle, F.; Morell, A.; Grunenwald, J.; Zucchini, F.; Loyen, A.; Maysonnave, T.; Chuvatin, A.
2014-05-01
SPHINX is a 6MA, 1-us Linear Transformer Driver operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. A method for performing magnetic ramp compression experiments was developed using a compact Dynamic Load Current Multiplier inserted between the convolute and the load, to shape the initial current pulse. We present the overall experimental configuration chosen for these experiments and initial results obtained over a set of experiments on an aluminum cylindrical liner. Current profiles measured at various critical locations across the system, are in good agreement with simulated current profiles. The liner inner free surface velocity measurements agree with the hydrocode results obtained using the measured load current as the input. The potential of the technique in terms of applications and achievable ramp pressure levels lies in the prospects for improving the DLCM efficiency.
Thermodynamics analysis of diffusion in spark plasma sintering welding Cr3C2 and Ni
NASA Astrophysics Data System (ADS)
Zhang, Fan; Zhang, Jinyong; Leng, Xiaoxuan; Lei, Liwen; Fu, Zhengyi
2017-03-01
Spark plasma sintering (SPS) welding of chromium carbide (Cr3C2) and nickel (Ni) was used to investigate the atomic diffusion caused by bypassing current. It was found that the diffusion coefficient with bypassing current was enhanced by almost 3.57 times over that without bypassing current. Different from the previous researches, the thermodynamics analysis conducted herein showed that the enhancement included a current direction-independent part besides the known current direction-dependent part. A local temperature gradient (LTG) model was proposed to explain the current direction-independent effect. Assuming that the LTG was mainly due to the interfacial electric resistance causing heterogeneous Joule heating, the theoretical results were in good agreement with the experimental results both in the present and previous studies. This new LTG model provides a reasonable physical meaning for the low-temperature advantage of SPS welding and should be useful in a wide range of applications.
Interior noise reduction in a large civil helicopter
NASA Technical Reports Server (NTRS)
Howlett, J. T.; Clevenson, S. A.; Rypf, J. A.; Snyder, W. J.
1977-01-01
The results of an evaluation of the effectiveness of current noise reduction technology in attaining acceptable levels of interior noise in a large (about 20,000 kg) passenger-carrying helicopter are presented. The helicopter studied is a modified CH-53A with a specially designed, acoustically treated passenger cabin. The acoustic treatment reduced the average A-weighted interior noise levels from 115 db to 87 db. The study suggests selected improvements in the acoustic treatment which could result in additional reduction in cabin noise levels. The resulting levels would be only slightly greater than the interior noise levels of current narrow-body jet transports.
Koteshwar, Prakashini; Kakkar, Chandan; Sripathi, Smiti; Parakh, Anushri; Shrivastav, Rajendra
2016-05-01
Urolithiasis is one of the major, recurring problem in young individuals and CT being the commonest diagnostic modality used. In order to reduce the radiation dose to the patient who are young and as stone formation is a recurring process; one of the simplest way would be, low dose CT along with tube current modulation. Aim of this study was to compare the sensitivity and specificity of low dose (70mAs) with standard dose (250mAs) protocol in detecting urolithiasis and to define the tube current and mean effective patient dose by these protocols. A prospective study was conducted in 200 patients over a period of 2 years with acute flank pain presentation. CT was performed in 100 cases with standard dose and another 100 with low dose protocol using tube current modulation. Sensitivity and specificity for calculus detection, percentage reduction of dose and tube current with low dose protocol was calculated. Urolithiasis was detected in 138 patients, 67 were examined by high dose and 71 were by low dose protocol. Sensitivity and Specificity of low dose protocol was 97.1% and 96.4% with similar results found in high BMI patients. Tube current modulation resulted in reduction of effective tube current by 12.17%. The mean effective patient dose for standard dose was 10.33 mSv whereas 2.92 mSv for low dose with 51.13-53.8% reduction in low dose protocol. The study has reinforced that low-dose CT with tube current modulation is appropriate for diagnosis of urolithiasis with significant reduction in tube current and patient effective dose.
Enhanced thermo-spin effects in iron-oxide/metal multilayers
NASA Astrophysics Data System (ADS)
Ramos, R.; Lucas, I.; Algarabel, P. A.; Morellón, L.; Uchida, K.; Saitoh, E.; Ibarra, M. R.
2018-06-01
Since the discovery of the spin Seebeck effect (SSE), much attention has been devoted to the study of the interaction between heat, spin, and charge in magnetic systems. The SSE refers to the generation of a spin current upon the application of a thermal gradient and detected by means of the inverse spin Hall effect. Conversely, the spin Peltier effect (SPE) refers to the generation of a heat current as a result of a spin current induced by the spin Hall effect. Here we report a strong enhancement of both the SSE and SPE in Fe3O4/Pt multilayered thin films at room temperature as a result of an increased thermo-spin conversion efficiency in the multilayers. These results open the possibility to design thin film heterostructures that may boost the application of thermal spin currents in spintronics.
Vieira, A.
2010-01-01
Background: In relation to pharmacognosy, an objective of many ethnobotanical studies is to identify plant species to be further investigated, for example, tested in disease models related to the ethnomedicinal application. To further warrant such testing, research evidence for medicinal applications of these plants (or of their major phytochemical constituents and metabolic derivatives) is typically analyzed in biomedical databases. Methods: As a model of this process, the current report presents novel information regarding traditional anti-inflammation and anti-infection medicinal plant use. This information was obtained from an interview-based ethnobotanical study; and was compared with current biomedical evidence using the Medline® database. Results: Of the 8 anti-infection plant species identified in the ethnobotanical study, 7 have related activities reported in the database; and of the 6 anti-inflammation plants, 4 have related activities in the database. Conclusion: Based on novel and complimentary results from the ethnobotanical and biomedical database analyses, it is suggested that some of these plants warrant additional investigation of potential anti-inflammatory or anti-infection activities in related disease models, and also additional studies in other population groups. PMID:21589754
ERIC Educational Resources Information Center
Stewart, Paul; Reihman, Jacqueline; Lonky, Edward; Darvill, Thomas; Pagano, James
2004-01-01
In the current paper we describe the methodology and results of the Oswego study, in light of D.V. Cicchetti, A.S. Kaufman, and S.S. Sparrow's (this issue) criticisms regarding the validity of the human health/behavioral claims in the PCB literature. The Oswego project began as a replication of the Lake Michigan Maternal Infant Cohort study.…
Trojak, Benoit; Soudry-Faure, Agnès; Abello, Nicolas; Carpentier, Maud; Jonval, Lysiane; Allard, Coralie; Sabsevari, Foroogh; Blaise, Emilie; Ponavoy, Eddy; Bonin, Bernard; Meille, Vincent; Chauvet-Gelinier, Jean-Christophe
2016-05-17
Approximately 15 million persons in the European Union and 10 million persons in the USA are alcohol-dependent. The global burden of disease and injury attributable to alcohol is considerable: worldwide, approximately one in 25 deaths in 2004 was caused by alcohol. At the same time, alcohol use disorders remain seriously undertreated. In this context, alternative or adjunctive therapies such as brain stimulation may play a prominent role. The early results of studies using transcranial direct current stimulation found that stimulations delivered to the dorsolateral prefrontal cortex result in a significant reduction of craving and an improvement of the decision-making processes in various additive disorders. We, therefore, hypothesize that transcranial direct current stimulation can lead to a decrease in alcohol consumption in patients suffering from alcohol use disorders. We report the protocol of a randomized, double-blind, placebo-controlled, parallel-group trial, to evaluate the efficacy of transcranial direct current stimulation on alcohol reduction in patients with an alcohol use disorder. The study will be conducted in 14 centers in France and Monaco. Altogether, 340 subjects over 18 years of age and diagnosed with an alcohol use disorder will be randomized to receive five consecutive twice-daily sessions of either active or placebo transcranial direct current stimulation. One session consists in delivering a current flow continuously (anode F4; cathode F3) twice for 13 minutes, with treatments separated by a rest interval of 20 min. Efficacy will be evaluated using the change from baseline (alcohol consumption during the 4 weeks before randomization) to 24 weeks in the total alcohol consumption and number of heavy drinking days. Secondary outcome measures will include alcohol craving, clinical and biological improvements, and the effects on mood and quality of life, as well as cognitive and safety assessments, and, for smokers, an assessment of the effects of transcranial direct current stimulation on tobacco consumption. Several studies have reported a beneficial effect of transcranial direct current stimulation on substance use disorders by reducing craving, impulsivity, and risk-taking behavior, and suggest that transcranial direct current stimulation may be a promising treatment in addiction. However, to date, no studies have included sufficiently large samples and sufficient follow-up to confirm the hypothesis. Results from this large randomized controlled trial will give a better overview of the therapeutic potential of transcranial direct current stimulation in alcohol use disorders. Clinical Trials Gov, NCT02505126 (registration date: July 15 2015).
Chhatbar, Pratik Y.; Ramakrishnan, Viswanathan; Kautz, Steven; George, Mark S.; Adams, Robert J.; Feng, Wuwei
2015-01-01
Background and purpose Transcranial direct current stimulation (tDCS) has shown mixed results in post-stroke motor recovery, possibly because of tDCS dose differences. The purpose of this meta-analysis was to explore whether the outcome has a dose–response relationship with various dose-related parameters. Methods The literature was searched for double-blind, randomized, sham-controlled clinical trials investigating the role of tDCS (≥5 sessions) in post-stroke motor recovery as measured by the Fugl-Meyer Upper Extremity (FM-UE) scale. Improvements in FM-UE scores were compared between active and sham groups by calculating standardized mean differences (Hedge’s g) to derive a summary effect size. Inverse-variance-weighted linear meta-regression across individual studies was performed between various tDCS parameters and Hedge’s g to test for dose–response relationships. Results Eight studies with total of 213 stroke subjects were included. Summary Hedge’s g was statistically significant in favor of the active group (Hedge’s g = 0.61, p = 0.02) suggesting moderate effect. Specifically, studies that used bihemispheric tDCS montage (Hedge’s g = 1.30, p = 0.08) or that recruited chronic stroke patients (Hedge’s g = 1.23, p = 0.02) showed large improvements in the active group. A positive dose–response relationship was found with current density (p = 0.017) and charge density (p = 0.004), but not with current amplitude. Moreover, a negative dose–response relationship was found with electrode size (p < 0.001, smaller electrodes were more effective). Conclusions Our meta-analysis and meta-regression results suggest superior motor recovery in the active group when compared to the sham group and dose–response relationships relating to electrode size, charge density and current density. These results need to be confirmed in future dedicated studies. PMID:26433609
The oceanic influence on the rainy season of Peninsular Florida
NASA Astrophysics Data System (ADS)
Misra, Vasubandhu; Mishra, Akhilesh
2016-07-01
In this study we show that the robust surface ocean currents around Peninsular Florida, namely, the Loop and the Florida Currents, affect the terrestrial wet season of Peninsular Florida. We show this through two novel regional coupled ocean-atmosphere models with different bathymetries that dislocate and modulate the strength of these currents and thereby affect the overlying sea surface temperature (SST) and upper ocean heat content. This study show that a weaker current system produces colder coastal SSTs along the Atlantic coast of Florida that reduces the length of the wet season and the total seasonal accumulation of precipitation over Peninsular Florida relative to the regional climate model simulation, in which these currents are stronger. The moisture budget reveals that as a result of these forced changes to the temperature of the upper coastal Atlantic Ocean, overlying surface evaporation and atmospheric convection is modulated. This consequently changes the moisture flux convergence leading to the modulation of the terrestrial wet season rainfall over Peninsular Florida that manifests in changes in the length and distribution of daily rain rate of the wet season. The results of this study have implications on interpreting future changes to hydroclimate of Peninsular Florida owing to climate change and low-frequency changes to the Atlantic meridional overturning circulation that comprises the Loop and the Florida Currents as part of its upper branch.
NASA Astrophysics Data System (ADS)
Zhang, Zaiqin; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua
2018-04-01
The influence of the applied axial magnetic field on the current density distribution in the arc column and electrodes is intensively studied. However, the previous results only provide a qualitative explanation, which cannot quantitatively explain a recent experimental data on anode current density. The objective of this paper is to quantitatively determine the current constriction subjected to an axial magnetic field in high-current vacuum arcs according to the recent experimental data. A magnetohydrodynamic model is adopted to describe the high current vacuum arcs. The vacuum arc is in a diffuse arc mode with an arc current ranged from 6 kArms to 14 kArms and an axial magnetic field ranged from 20 mT to 110 mT. By a comparison of the recent experimental work of current density distribution on the anode, the modelling results show that there are two types of current constriction. On one hand, the current on the cathode shows a constriction, and this constriction is termed as the cathode-constriction. On the other hand, the current constricts in the arc column region, and this constriction is termed as the column-constriction. The cathode boundary is of vital importance in a quantitative model. An improved cathode constriction boundary is proposed. Under the improved boundary, the simulation results are in good agreement with the recent experimental data on the anode current density distribution. It is demonstrated that the current density distribution at the anode is sensitive to that at the cathode, so that measurements of the anode current density can be used, in combination with the vacuum arc model, to infer the cathode current density distribution.
Reverse Current Characteristics of InP Gunn Diodes for W-Band Waveguide Applications.
Kim, Hyun-Seok; Heo, Jun-Woo; Chol, Seok-Gyu; Ko, Dong-Sik; Rhee, Jin-Koo
2015-07-01
InP is considered as the most promising material for millimeter-wave laser-diode applications owing to its superior noise performance and wide operating frequency range of 75-110 GHz. In this study, we demonstrate the fabrication of InP Gunn diodes with a current-limiting structure using rapid thermal annealing to modulate the potential height formed between an n-type InP active layer and a cathode contact. We also explore the reverse current characteristics of the InP Gunn diodes. Experimental results indicate a maximum anode current and an oscillation frequency of 200 mA and 93.53 GHz, respectively. The current-voltage characteristics are modeled by considering the Schottky and ohmic contacts, work function variations, negative differential resistance (NDR), and tunneling effect. Although no direct indication of the NDR is observed, the simulation results match the measured data well. The modeling results show that the NDR effect is always present but is masked because of electron emission across the shallow Schottky barrier.
Papaioannou, Vasilios E; Verkerk, Arie O; Amin, Ahmed S; de Bakker, Jaques MT
2013-01-01
Heart rate variability (HRV) is an indirect estimator of autonomic modulation of heart rate and is considered a risk marker in critical illness, particularly in heart failure and severe sepsis. A reduced HRV has been found in critically ill patients and has been associated with neuro-autonomic uncoupling or decreased baroreflex sensitivity. However, results from human and animal experimental studies indicate that intracardiac mechanisms might also be responsible for interbeat fluctuations. These studies have demonstrated that different membrane channel proteins and especially the so-called ‘funny’ current (If), an hyperpolarization-activated, inward current that drives diastolic depolarization resulting in spontaneous activity in cardiac pacemaker cells, are altered during critical illness. Furthermore, membrane channels kinetics seem to have significant impact upon HRV, whose early decrease might reflect a cellular metabolic stress. In this review article we present research findings regarding intracardiac origin of HRV, at the cellular level and in both isolated sinoatrial node and whole ex vivo heart preparations. In addition, we will review results from various experimental studies that support the interrelation between If and HRV during endotoxemia. We suggest that reduced HRV during sepsis could also be associated with altered pacemaker cell membrane properties, due to ionic current remodeling. PMID:22920474
Santos, Michele Devido Dos; Cavenaghi, Vitor Breseghello; Mac-Kay, Ana Paula Machado Goyano; Serafim, Vitor; Venturi, Alexandre; Truong, Dennis Quangvinh; Huang, Yu; Boggio, Paulo Sérgio; Fregni, Felipe; Simis, Marcel; Bikson, Marom; Gagliardi, Rubens José
2017-01-01
Patients undergoing the same neuromodulation protocol may present different responses. Computational models may help in understanding such differences. The aims of this study were, firstly, to compare the performance of aphasic patients in naming tasks before and after one session of transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS) and sham, and analyze the results between these neuromodulation techniques; and secondly, through computational model on the cortex and surrounding tissues, to assess current flow distribution and responses among patients who received tDCS and presented different levels of results from naming tasks. Prospective, descriptive, qualitative and quantitative, double blind, randomized and placebo-controlled study conducted at Faculdade de Ciências Médicas da Santa Casa de São Paulo. Patients with aphasia received one session of tDCS, TMS or sham stimulation. The time taken to name pictures and the response time were evaluated before and after neuromodulation. Selected patients from the first intervention underwent a computational model stimulation procedure that simulated tDCS. The results did not indicate any statistically significant differences from before to after the stimulation.The computational models showed different current flow distributions. The present study did not show any statistically significant difference between tDCS, TMS and sham stimulation regarding naming tasks. The patients'responses to the computational model showed different patterns of current distribution.
ERIC Educational Resources Information Center
Roth, Marcus; Liebe, Nico
2011-01-01
This study examined the moderating effect of big-five based personality types on the relation between sensation seeking and three adolescent marijuana use outcomes (lifetime use, current use, attraction to marijuana use). 1,236 German adolescents, aged 14 to 16 years, participated in the current study. The results show that sensation seeking is…
Marginal regression approach for additive hazards models with clustered current status data.
Su, Pei-Fang; Chi, Yunchan
2014-01-15
Current status data arise naturally from tumorigenicity experiments, epidemiology studies, biomedicine, econometrics and demographic and sociology studies. Moreover, clustered current status data may occur with animals from the same litter in tumorigenicity experiments or with subjects from the same family in epidemiology studies. Because the only information extracted from current status data is whether the survival times are before or after the monitoring or censoring times, the nonparametric maximum likelihood estimator of survival function converges at a rate of n(1/3) to a complicated limiting distribution. Hence, semiparametric regression models such as the additive hazards model have been extended for independent current status data to derive the test statistics, whose distributions converge at a rate of n(1/2) , for testing the regression parameters. However, a straightforward application of these statistical methods to clustered current status data is not appropriate because intracluster correlation needs to be taken into account. Therefore, this paper proposes two estimating functions for estimating the parameters in the additive hazards model for clustered current status data. The comparative results from simulation studies are presented, and the application of the proposed estimating functions to one real data set is illustrated. Copyright © 2013 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bott-Suzuki, S. C.; Cordaro, S. W.; Caballero Bendixsen, L. S.
We present a study of the time varying current density distribution in solid metallic liner experiments at the 1MA level. Measurements are taken using an array of magnetic field probes which provide 2D triangulation of the average centroid of the drive current in the load at 3 discrete axial positions. These data are correlated with gated optical self-emission imaging which directly images the breakdown and plasma formation region. Results show that the current density is azimuthally non-uniform, and changes significantly throughout the 100ns experimental timescale. Magnetic field probes show clearly motion of the current density around the liner azimuth overmore » 10ns timescales. If breakdown is initiated at one azimuthal location, the current density remains non-uniform even over large spatial extents throughout the current drive. The evolution timescales are suggestive of a resistive diffusion process or uneven current distributions among simultaneously formed but discrete plasma conduction paths.« less
Bott-Suzuki, S. C.; Cordaro, S. W.; Caballero Bendixsen, L. S.; ...
2016-09-01
We present a study of the time varying current density distribution in solid metallic liner experiments at the 1MA level. Measurements are taken using an array of magnetic field probes which provide 2D triangulation of the average centroid of the drive current in the load at 3 discrete axial positions. These data are correlated with gated optical self-emission imaging which directly images the breakdown and plasma formation region. Results show that the current density is azimuthally non-uniform, and changes significantly throughout the 100ns experimental timescale. Magnetic field probes show clearly motion of the current density around the liner azimuth overmore » 10ns timescales. If breakdown is initiated at one azimuthal location, the current density remains non-uniform even over large spatial extents throughout the current drive. The evolution timescales are suggestive of a resistive diffusion process or uneven current distributions among simultaneously formed but discrete plasma conduction paths.« less
Effect of training different classes of verbal behavior to decrease aberrant verbal behavior.
Vandbakk, Monica; Arntzen, Erik; Gisnaas, Arnt; Antonsen, Vidar; Gundhus, Terje
2012-01-01
Inappropriate verbal behavior that is labeled "psychotic" is often described as insensitive to environmental contingencies. The purpose of the current study was to establish different classes of rational or appropriate verbal behavior in a woman with developmental disabilities and evaluate the effects on her psychotic or aberrant vocal verbal behavior. Similar to a previous study (Arntzen, Ro Tonnessen, & Brouwer, 2006), the results of the current study suggested that the procedure helped to establish a repertoire of appropriate functional vocal verbal behavior in the participant. Overall, the results suggested the effectiveness of an intervention based on training various classes of verbal behavior in decreasing aberrant verbal behavior.
Analysis of critical thinking ability in direct current electrical problems solving
NASA Astrophysics Data System (ADS)
Hartono; Sunarno, Widha; Sarwanto; Arya Nugraha, Dewanta
2017-11-01
This study concern on analyzing the ability of students in critical thinking skills on the subject matter of direct current electricity. Samples were taken using purposive random sampling consisted of 32 students of grade XI, Multimedia 1, SMK Negeri 3 Surakarta in academic year 2016/2017. This study used descriptive quantitative method. The data were collected using tests and interviews regarding the subject matter of direct current electricity. Based on the results, students are getting some difficulties in solving problem in indicator 4. The average of students’ correct answer is 62.8%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, M.; French Atomic Energy and Alternative Energies Commission; Tordjeman, Ph.
2015-07-01
This study was carried out to understand the response of an eddy current type flowmeter in two phase liquid-metal flow. We use the technique of ellipse fit and correlate the fluctuations in the angle of inclination of this ellipse with the void fraction. The effects of physical parameters such as coil excitation frequency and flow velocity have been studied. The results show the possibility of using an eddy current flowmeter as a gas detector for large void fractions. (authors)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, M.; CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-lez-Durance; Tordjeman, Ph.
2015-07-01
This study was carried out to understand the response of an eddy current type flowmeter in two phase liquid-metal flow. We use the technique of ellipse fit and correlate the fluctuations in the angle of inclination of this ellipse with the void fraction. The effects of physical parameters such as coil excitation frequency and flow velocity have been studied. The results show the possibility of using an eddy current flowmeter as a gas detector for large void fractions. (authors)
NASA Astrophysics Data System (ADS)
Takamoto, M.
2018-05-01
In this paper, the temporal evolution of three-dimensional relativistic current sheets in Poynting-dominated plasma is studied for the first time. Over the past few decades, a lot of efforts have been conducted on studying the evolution of current sheets in two-dimensional space, and concluded that sufficiently long current sheets always evolve into the so-called plasmoid chain, which provides a fast reconnection rate independent of its resistivity. However, it is suspected that plasmoid chain can exist only in the case of two-dimensional approximation, and would show transition to turbulence in three-dimensional space. We performed three-dimensional numerical simulation of relativistic current sheet using resistive relativistic magnetohydrodynamic approximation. The results showed that the three-dimensional current sheets evolve not into plasmoid chain but turbulence. The resulting reconnection rate is 0.004, which is much smaller than that of plasmoid chain. The energy conversion from magnetic field to kinetic energy of turbulence is just 0.01 per cent, which is much smaller than typical non-relativistic cases. Using the energy principle, we also showed that the plasmoid is always unstable for a displacement in the opposite direction to its acceleration, probably interchange-type instability, and this always results in seeds of turbulence behind the plasmoids. Finally, the temperature distribution along the sheet is discussed, and it is found that the sheet is less active than plasmoid chain. Our finding can be applied for many high-energy astrophysical phenomena, and can provide a basic model of the general current sheet in Poynting-dominated plasma.
Numerical simulation of marine currents in the Bunaken Strait, North Sulawesi, Indonesia
NASA Astrophysics Data System (ADS)
Rompas, P. T. D.; Manongko, J. D. I.
2016-04-01
This study intended for the generation of hydroelectric power at suitable area of the strait in order to provide electric current to a close environment. The project uses a three-dimensional model of taking flow into account the variation of hydrostatic pressure in the liquid vertical layers. We brought back to a two-dimensional calculation using the shallow water equations. The objectives of the study are getting simultaneous obtaining the velocities of currents by the component of velocities and distributions of the kinetic energy from the numerical results. The Bunaken strait is 5280 m width for an average depth of 130 m. Numerical calculation is simulated using horizontal meshes of 60 side meters. The numerical solutions obtained by using a time step of one second. It found that there was no great difference between 2D and 3D numerical simulations because the effect of flow velocity in the vertical direction is very small. The numerical results have shown that the average current velocities when low and high tide currents are 1.46 m/s and 0.85 m/s respectively. The kinetic energy ranged from 0.01 to 2.54 kW/m2 when low and high tide in the Bunaken strait area at discharge of 1 Sv, whereas at discharge 2 Sv, 0.11-17.40 kW/m2 and 0.11-2.77 kW/m2 (when low and high tide currents). These results can used in the design of turbines for power generation marine currents in the Bunaken strait at depths below 60 meters.
Public perceptions of a rip current hazard education program: "Break the Grip of the Rip!"
NASA Astrophysics Data System (ADS)
Houser, Chris; Trimble, Sarah; Brander, Robert; Brewster, B. Chris; Dusek, Greg; Jones, Deborah; Kuhn, John
2017-07-01
Rip currents pose a major global beach hazard; estimates of annual rip-current-related deaths in the United States alone range from 35 to 100 per year. Despite increased social research into beach-goer experience, little is known about levels of rip current knowledge within the general population. This study describes the results of an online survey to determine the extent of rip current knowledge across the United States, with the aim of improving and enhancing existing beach safety education material. Results suggest that the US-based Break the Grip of the Rip!
® campaign has been successful in educating the public about rip current safety directly or indirectly, with the majority of respondents able to provide an accurate description of how to escape a rip current. However, the success of the campaign is limited by discrepancies between personal observations at the beach and rip forecasts that are broadcasted for a large area and time. It was the infrequent beach user that identified the largest discrepancies between the forecast and their observations. Since infrequent beach users also do not seek out lifeguards or take the same precautions as frequent beach users, it is argued that they are also at greatest risk of being caught in a dangerous situation. Results of this study suggest a need for the national campaign to provide greater focus on locally specific and verified rip forecasts and signage in coordination with lifeguards, but not at the expense of the successful national awareness program.
"Unexpected" behaviour of the internal resistance of a vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Rudolph, S.; Schröder, U.; Bayanov, I. M.; Hage-Packhäuser, S.
2016-02-01
This article presents the results of experimental and theoretical studies of energy losses owing to the internal resistance of vanadium redox flow batteries (VRFBs). A dependence of the internal cell resistance (ICR) on the electric current was measured and calculated. During the cyclic operation of a test battery, the internal resistance was halved by increasing the electric current from 3 A to 9 A. This is due to a strongly non-linear dependence of an over-potential of the electrochemical reactions on the current density. However, the energy efficiency does not increase due to a squared dependence of the energy losses on the increasing electric current. The energy efficiency of the test battery versus the electric current was measured and simulated. The deviation between the simulation results and experimental data is less than ±3.5%.
Thermal spin current generation and spin transport in Pt/magnetic-insulator/Py heterostructures
NASA Astrophysics Data System (ADS)
Chen, Ching-Tzu; Safranski, Christopher; Krivorotov, Ilya; Sun, Jonathan
Magnetic insulators can transmit spin current via magnon propagation while blocking charge current. Furthermore, under Joule heating, magnon flow as a result of the spin Seeback effect can generate additional spin current. Incorporating magnetic insulators in a spin-orbit torque magnetoresistive memory device can potentially yield high switching efficiencies. Here we report the DC magneto-transport studies of these two effects in Pt/magnetic-insulator/Py heterostructures, using ferrimagnetic CoFexOy (CFO) and antiferromagnet NiO as the model magnetic insulators. We observe the presence and absence of the inverse spin-Hall signals from the thermal spin current in Pt/CFO/Py and Pt/NiO/Py structures. These results are consistent with our spin-torque FMR linewidths in comparison. We will also report investigations into the magnetic field-angle dependence of these observations.
NASA Astrophysics Data System (ADS)
Hamdipour, Mohammad
2017-12-01
By applying a voltage to a Josephson junction, the charge in superconducting layers (S-layers) will oscillate. Wavelength of the charge oscillations in S-layers is related to external current in junction, by increasing the external current, the wavelength will decrease which cause in some currents the wavelength be incommensurate with width of junction, so the CVC shows Fiske like steps. External current throwing along junction has some components, resistive, capacitive and superconducting current, beside these currents there is a current in lateral direction of junction, (x direction). On the other hand, the emitted electromagnetic wave power in THz region is related to AC component of electric field in junction, which itself is related to charge density in S-layers, which is related to currents in the system. So we expect that features of variation of current components reflect the features of emitted THz power form junction. Here we study in detail the superconductive current in a long Josephson junction (JJ), the current voltage characteristics (CVC) of junction and emitted THz power from the system. Then we compare the results. Comparing the results we see that there is a good qualitative coincidence in features of emitted THz power and supercurrent in junction.
Electric breakdown during the pulsed current spreading in the sand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru; Vetchinin, S. P.; Panov, V. A.
2016-03-15
Processes of spreading of the pulsed current from spherical electrodes and an electric breakdown in the quartz sand are studied experimentally. When the current density on the electrode exceeds the critical value, a nonlinear reduction occurs in the grounding resistance as a result of sparking in the soil. The critical electric field strengths for ionization and breakdown are determined. The ionization-overheating instability is shown to develop on the electrode, which leads to the current contraction and formation of plasma channels.
Effect of cholesterol depletion on the pore dilation of TRPV1.
Jansson, Erik T; Trkulja, Carolina L; Ahemaiti, Aikeremu; Millingen, Maria; Jeffries, Gavin Dm; Jardemark, Kent; Orwar, Owe
2013-01-02
The TRPV1 ion channel is expressed in nociceptors, where pharmacological modulation of its function may offer a means of alleviating pain and neurogenic inflammation processes in the human body. The aim of this study was to investigate the effects of cholesterol depletion of the cell on ion-permeability of the TRPV1 ion channel. The ion-permeability properties of TRPV1 were assessed using whole-cell patch-clamp and YO-PRO uptake rate studies on a Chinese hamster ovary (CHO) cell line expressing this ion channel. Prolonged capsaicin-induced activation of TRPV1 with N-methyl-D-glucamine (NMDG) as the sole extracellular cation, generated a biphasic current which included an initial outward current followed by an inward current. Similarly, prolonged proton-activation (pH 5.5) of TRPV1 under hypocalcemic conditions also generated a biphasic current including a fast initial current peak followed by a larger second one. Patch-clamp recordings of reversal potentials of TRPV1 revealed an increase of the ion-permeability for NMDG during prolonged activation of this ion channel under hypocalcemic conditions. Our findings show that cholesterol depletion inhibited both the second current, and the increase in ion-permeability of the TRPV1 channel, resulting from sustained agonist-activation with capsaicin and protons (pH 5.5). These results were confirmed with YO-PRO uptake rate studies using laser scanning confocal microscopy, where cholesterol depletion was found to decrease TRPV1 mediated uptake rates of YO-PRO. Hence, these results propose a novel mechanism by which cellular cholesterol depletion modulates the function of TRPV1, which may constitute a novel approach for treatment of neurogenic pain.
Jiang, Y Z; Tan, Y; Gao, Z; Wang, L
2014-11-01
The vacuum vessel of Sino-UNIted Spherical Tokamak was split into two insulated hemispheres, both of which were insulated from the central cylinder. The eddy currents flowing in the vacuum vessel would become asymmetrical due to discontinuity. A 3D finite elements model was applied in order to study the eddy currents. The modeling results indicated that when the Poloidal Field (PF) was applied, the induced eddy currents would flow in the toroidal direction in the center of the hemispheres and would be forced to turn to the poloidal and radial directions due to the insulated slit. Since the eddy currents converged on the top and bottom of the vessel, the current densities there tended to be much higher than those in the equatorial plane were. Moreover, the eddy currents on the top and bottom of vacuum vessel had the same direction when the current flowed in the PF coils. These features resulted in the leading phases of signals on the top and bottom flux loops when compared with the PF waveforms.
A study of cathode erosion in high power arcjets
NASA Astrophysics Data System (ADS)
Harris, William Jackson, III
Cathode erosion continues to be one of the predominant technology concerns for high power arcjets. This study will show that cathode erosion in these devices is significantly affected by several mitigating factors, including propellant composition, propellant flowrate, current level, cathode material, and power supply current ripple. In a series of 50-hour and 100-hour long duration experiments, using a water-cooled 30 kilowatt laboratory arcjet, variations in the steady-state cathode erosion rate were characterized for each of these factors using nitrogen propellant at a fixed arc current of 250 Amperes. A complementary series of measurements was made using hydrogen propellant at an arc current of 100 Amperes. The cold cathode erosion rate was also differentiated from the steady-state cathode erosion rate in a series of multi-start cathode erosion experiments. Results of these measurements are presented, along with an analysis of the significant effects of current ripple on arcjet cathode erosion. As part of this study, over a dozen refractory cathode materials were evaluated to measure their resistance to arcjet cathode erosion. Among the materials tested were W-ThO2(1%, 2%, 4%), poly and mono-crystalline W, W-LaB6, W-La2O3, W-BaO2, W-BaCaAl2O4, W-Y2O3, and ZrB2. Based on these measurements, several critical material properties were identified, such work function, density, porosity, melting point, and evaporation rate. While the majority of the materials failed to outperform traditional W-ThO2, these experimental results are used to develop a parametric model of the arcjet cathode physics. The results of this model, and the results of a finite-element thermal analysis of the arcjet cathode, are presented to better explain the relative performance of the materials tested.
Gaylord-Harden, Noni K.; So, Suzanna; Bai, Grace J.; Tolan, Patrick H.
2016-01-01
Objective The current study examined pathways in a model of desensitization, the Pathologic Adaptation Model, in adolescent males of color. Specifically, the current study examined depressive symptoms and deviant beliefs as mediators of the association between community violence exposure and subsequent violent behavior. Method The current study included 250 African American (67%) and Latino (33%) male adolescents (T1 mean age = 15.32) from the Chicago Youth Development Study. Results Consistent with the Pathologic Adaptation Model, results demonstrated that depressive symptoms mediated the association between the quadratic violence exposure term in middle adolescence and violent behaviors in late adolescence, but the direction of the mediation effect was dependent upon the levels of violence exposure in middle adolescence. However, deviant beliefs were not found to be a significant mediator. Conclusion Emotional desensitization effects may increase the likelihood of violence perpetration in adolescent males exposed to community violence, and the implications for future research and intervention efforts are discussed. PMID:27977283
Zayas, Vivian; Shoda, Yuichi
2005-08-01
Three studies tested the expectation that automatic reactions elicited by the mental representation of one's current romantic partner, mother, and self relate to adult romantic attachment. Adult romantic attachment was assessed using multiple measures, and individual differences in automatic reactions were assessed by the Implicit Association Test (IAT). Studies 1 and 2 showed that automatic reactions elicited by thoughts of current romantic partner, but not by thoughts of self, were related to adult romantic attachment assessed at a specific (i.e., within one's current romantic relationship) and general level (i.e., across all romantic relationships). The pattern of results was stronger among individuals identified as attachment-schematic. Studies 2 and 3 showed that automatic reactions elicited by thoughts of one's mother were related to adult romantic attachment assessed at a general level. In all three studies, results did not differ depending on how adult romantic attachment was conceptualized (four styles vs. two dimensions).
Cathodal transcranial direct current stimulation in children with dystonia: a sham-controlled study.
Young, Scott J; Bertucco, Matteo; Sanger, Terence D
2014-02-01
Increased motor cortex excitability is a common finding in dystonia, and transcranial direct current stimulation can reduce motor cortex excitability. In an earlier study, we found that cathodal direct-current stimulation decreased motor overflow for some children with dystonia. To investigate this observation further, we performed a sham-controlled, double-blind, crossover study of 14 children with dystonia. We found a significant reduction in overflow following real stimulation, when participants performed the experimental task with the hand contralateral to the cathode. While these results suggest that cathodal stimulation may help some children to reduce involuntary overflow, the size of the effect is small. Further research will need to investigate ways to increase the magnitude of the effect of cathodal transcranial direct current stimulation.
Current Incentives for Scientists Lead to Underpowered Studies with Erroneous Conclusions.
Higginson, Andrew D; Munafò, Marcus R
2016-11-01
We can regard the wider incentive structures that operate across science, such as the priority given to novel findings, as an ecosystem within which scientists strive to maximise their fitness (i.e., publication record and career success). Here, we develop an optimality model that predicts the most rational research strategy, in terms of the proportion of research effort spent on seeking novel results rather than on confirmatory studies, and the amount of research effort per exploratory study. We show that, for parameter values derived from the scientific literature, researchers acting to maximise their fitness should spend most of their effort seeking novel results and conduct small studies that have only 10%-40% statistical power. As a result, half of the studies they publish will report erroneous conclusions. Current incentive structures are in conflict with maximising the scientific value of research; we suggest ways that the scientific ecosystem could be improved.
Current Incentives for Scientists Lead to Underpowered Studies with Erroneous Conclusions
Higginson, Andrew D.; Munafò, Marcus R.
2016-01-01
We can regard the wider incentive structures that operate across science, such as the priority given to novel findings, as an ecosystem within which scientists strive to maximise their fitness (i.e., publication record and career success). Here, we develop an optimality model that predicts the most rational research strategy, in terms of the proportion of research effort spent on seeking novel results rather than on confirmatory studies, and the amount of research effort per exploratory study. We show that, for parameter values derived from the scientific literature, researchers acting to maximise their fitness should spend most of their effort seeking novel results and conduct small studies that have only 10%–40% statistical power. As a result, half of the studies they publish will report erroneous conclusions. Current incentive structures are in conflict with maximising the scientific value of research; we suggest ways that the scientific ecosystem could be improved. PMID:27832072
NASA Astrophysics Data System (ADS)
Lay, W.-S.; Raman, R.; Jarboe, T. R.; Nelson, B. A.; Mueller, D.; Ebrahimi, F.; Ono, M.; Jardin, S. C.; Taylor, G.
2017-10-01
At present about 20% of the total plasma current required for sustained operation has been generated by transient CHI. The present understanding suggests that it may be possible to generate all of the needed current in a ST / tokamak using transient CHI. In such a scenario, one could transition directly from a CHI produced plasma to a non-inductively sustained plasma, without the difficult intermediate step that involves non-inductive current ramp-up. STs based on this new configuration would take advantage of evolving developments in high-temperature superconductor technology to develop a simpler design ST that relies primarily on CHI for plasma current generation. Motivated by the very good results from NSTX and HIT-II, we are examining the potential application of transient CHI for reactor configurations through these studies. (1) Study of the maximum levels of start-up currents that could be generated on NSTX-U, (2) application of a single biased electrode configuration on QUEST to protect the insulator from neutron damage in a CHI reactor installation, and (3) QUEST-like, but a double biased electrode configuration for PEGASUS and NSTX-U. Results from these on-going studies will be described. This work is supported by U.S. DOE Contracts: DE-AC02-09CH11466, DE-FG02-99ER54519 AM08, and DE-SC0006757.
NASA Astrophysics Data System (ADS)
Liu, Tonghua; Wang, Wei; Qiang, Wenjiang; Shu, Guogang
2018-04-01
To study the thermal aging embrittlement of Z3CN20.09M duplex stainless steel produced in China, accelerated thermal aging experiments were carried out at 380 °C up to 9000 h. Microhardness measurements, Charpy impact and eddy current tests were performed on aged samples to characterize their thermal aging embrittlement. The results showed that the signal amplitude of eddy current decreased with the increase in aging time. Two quantitative correlations of the eddy current signal amplitude with both the Charpy impact energy, and the Vickers microhardness of the ferrite phase are obtained. The study showed that eddy current testing could be used to non-destructively evaluate the thermal aging embrittlement of cast duplex stainless steels.
Self-healing patterns in ferromagnetic-superconducting hybrids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlasko-Vlasov, V. K.; Palacious, E.; Rosenmann, D.
We study magnetic flux dynamic effects in a superconducting bridge with thin soft magnetic stripes placed either on top or under the bridge. Voltage-current (VI) measurements reveal that the edges of magnetic stripes oriented transvers or along the bridge introduce channels or barriers for vortex motion, resulting in the decrease or increase of the critical current, respectively. We demonstrate a remarkable self-healing effect whereby the magnetic pinning strength for the longitudinal stripes increases with current. The self-field of the current polarizes the magnetic stripes along their width, which enhances the stray fields at their edges and creates a dynamic vortexmore » pinning landscape to impede vortex flow. Our results highlight new strategies to engineer adaptive pinning topologies in superconducting-ferromagnetic hybrids.« less
Zhao, Yujuan; Zhao, Tiejun; Raval, Shailesh B; Krishnamurthy, Narayanan; Zheng, Hai; Harris, Chad T; Handler, William B; Chronik, Blaine A; Ibrahim, Tamer S
2015-11-01
To optimize the design of radiofrequency (RF) shielding of transmit coils at 7T and reduce eddy currents generated on the RF shielding when imaging with rapid gradient waveforms. One set of a four-element, 2 × 2 Tic-Tac-Toe head coil structure was selected and constructed to study eddy currents on the RF coil shielding. The generated eddy currents were quantitatively studied in the time and frequency domains. The RF characteristics were studied using the finite difference time domain method. Five different kinds of RF shielding were tested on a 7T MRI scanner with phantoms and in vivo human subjects. The eddy current simulation method was verified by the measurement results. Eddy currents induced by solid/intact and simple-structured slotted RF shielding significantly distorted the gradient fields. Echo-planar images, B1+ maps, and S matrix measurements verified that the proposed slot pattern suppressed the eddy currents while maintaining the RF characteristics of the transmit coil. The presented dual-optimization method could be used to design RF shielding and reduce the gradient field-induced eddy currents while maintaining the RF characteristics of the transmit coil. © 2014 Wiley Periodicals, Inc.
Radon exposure and the risk of leukemia: a review of epidemiological studies.
Laurier, D; Valenty, M; Tirmarche, M
2001-09-01
Since the 1990's, several authors estimated that radon inhalation may deliver a small amount of irradiation to the red bone marrow, and consequently may increase the risk of leukemia in humans. The objective of this review is to conduct a critical analysis of epidemiologic results currently available concerning the relationship between radon exposure and the risk of leukemia. Nineteen ecological studies, six miner cohort studies, and eight case-control studies published between 1987 and 2000 are included in this review. The limitations associated with each of these studies are discussed. The results of the ecological studies are relatively concordant and suggest an association between radon concentrations and the risk of leukemia at a geographic level. But these ecological studies present important limitations, and some are only crude analyses. Moreover, the results of the cohort and case-control studies, based on individual data, do not show any significant association between radon exposure and leukemia risk. Our conclusion is that the overall epidemiologic results currently available do not provide evidence for an association between radon exposure and leukemia.
Optically controlled resonant tunneling in a double-barrier diode
NASA Astrophysics Data System (ADS)
Kan, S. C.; Wu, S.; Sanders, S.; Griffel, G.; Yariv, A.
1991-03-01
The resonant tunneling effect is optically enhanced in a GaAs/GaAlAs double-barrier structure that has partial lateral current confinement. The peak current increases and the valley current decreases simultaneously when the device surface is illuminated, due to the increased conductivity of the top layer of the structure. The effect of the lateral current confinement on the current-voltage characteristic of a double-barrier resonant tunneling structure was also studied. With increased lateral current confinement, the peak and valley current decrease at a different rate such that the current peak-to-valley ratio increases up to three times. The experimental results are explained by solving the electrostatic potential distribution in the structure using a simple three-layer model.
Limiting current of intense electron beams in a decelerating gap
NASA Astrophysics Data System (ADS)
Nusinovich, G. S.; Beaudoin, B. L.; Thompson, C.; Karakkad, J. A.; Antonsen, T. M.
2016-02-01
For numerous applications, it is desirable to develop electron beam driven efficient sources of electromagnetic radiation that are capable of producing the required power at beam voltages as low as possible. This trend is limited by space charge effects that cause the reduction of electron kinetic energy and can lead to electron reflection. So far, this effect was analyzed for intense beams propagating in uniform metallic pipes. In the present study, the limiting currents of intense electron beams are analyzed for the case of beam propagation in the tubes with gaps. A general treatment is illustrated by an example evaluating the limiting current in a high-power, tunable 1-10 MHz inductive output tube (IOT), which is currently under development for ionospheric modification. Results of the analytical theory are compared to results of numerical simulations. The results obtained allow one to estimate the interaction efficiency of IOTs.
Grain Refinement of AZ31 Magnesium Alloy Weldments by AC Pulsing Technique
NASA Astrophysics Data System (ADS)
Kishore Babu, N.; Cross, C. E.
2012-11-01
The current study has investigated the influence of alternating current pulsing on the structure and mechanical properties of AZ31 magnesium alloy gas tungsten arc (GTA) weldments. Autogenous full penetration bead-on-plate GTA welds were made under a variety of conditions including variable polarity (VP), variable polarity mixed (VPM), alternating current (AC), and alternating current pulsing (ACPC). AC pulsing resulted in significant refinement of weld metal when compared with the unpulsed conditions. AC pulsing leads to relatively finer and more equiaxed grain structure in GTA welds. In contrast, VP, VPM, and AC welding resulted in predominantly columnar grain structures. The reason for this grain refinement may be attributed to the periodic variations in temperature gradient and solidification rate associated with pulsing as well as weld pool oscillation observed in the ACPC welds. The observed grain refinement was shown to result in an appreciable increase in fusion zone hardness, tensile strength, and ductility.
[The Importance of Hospital Hygiene: Findings of a German Nationwide Survey].
Haking, Dennis
2017-04-01
Aim of the study: The German legislature reacted to the increasing number of nosocomial infections with a set of laws to strengthen hospital hygiene. The aim of the study is to measure the current and future importance of hospital hygiene in Germany. Methods: CEOs and hygiene staff from German hospitals took part in a survey on 13 items regarding the current and future importance of hospital hygiene. Statistical analyses were conducted to identify significances regarding the professional groups. Results: The results of the study show that hospital hygiene is currently of high importance and will be rising in the future. Hospital hygiene has a high economic impact, especially as a competitive factor. The patients' fear to suffer from a nosocomial infection, especially caused by multi-resistant bacteria, is countered with intensive educational work. Conclusion: The results demonstrate that the legislators' efforts are taken note of in German hospitals and the future strategic impact of hospital hygiene in a pay-for-performance reimbursement system has become clear. © Georg Thieme Verlag KG Stuttgart · New York.
Wave scattering in spatially inhomogeneous currents
NASA Astrophysics Data System (ADS)
Churilov, Semyon; Ermakov, Andrei; Stepanyants, Yury
2017-09-01
We analytically study a scattering of long linear surface waves on stationary currents in a duct (canal) of constant depth and variable width. It is assumed that the background velocity linearly increases or decreases with the longitudinal coordinate due to the gradual variation of duct width. Such a model admits an analytical solution of the problem in hand, and we calculate the scattering coefficients as functions of incident wave frequency for all possible cases of sub-, super-, and transcritical currents. For completeness we study both cocurrent and countercurrent wave propagation in accelerating and decelerating currents. The results obtained are analyzed in application to recent analog gravity experiments and shed light on the problem of hydrodynamic modeling of Hawking radiation.
NASA Astrophysics Data System (ADS)
Entin, M. V.; Magarill, L. I.
2010-02-01
The stationary current induced by a strong running potential wave in one-dimensional system is studied. Such a wave can result from illumination of a straight quantum wire with special grating or spiral quantum wire by circular-polarized light. The wave drags electrons in the direction correlated with the direction of the system symmetry and polarization of light. In a pure system the wave induces minibands in the accompanied system of reference. We study the effect in the presence of impurity scattering. The current is an interplay between the wave drag and impurity braking. It was found that the drag current is quantized when the Fermi level gets into energy gaps.
Datta, Abhishek; Baker, Julie M; Bikson, Marom; Fridriksson, Julius
2011-07-01
Although numerous published reports have demonstrated the beneficial effects of transcranial direct-current stimulation (tDCS) on task performance, fundamental questions remain regarding the optimal electrode configuration on the scalp. Moreover, it is expected that lesioned brain tissue will influence current flow and should therefore be considered (and perhaps leveraged) in the design of individualized tDCS therapies for stroke. The current report demonstrates how different electrode configurations influence the flow of electrical current through brain tissue in a patient who responded positively to a tDCS treatment targeting aphasia. The patient, a 60-year-old man, sustained a left hemisphere ischemic stroke (lesion size = 87.42 mL) 64 months before his participation. In this study, we present results from the first high-resolution (1 mm(3)) model of tDCS in a brain with considerable stroke-related damage; the model was individualized for the patient who received anodal tDCS to his left frontal cortex with the reference cathode electrode placed on his right shoulder. We modeled the resulting brain current flow and also considered three additional reference electrode positions: right mastoid, right orbitofrontal cortex, and a "mirror" configuration with the anode over the undamaged right cortex. Our results demonstrate the profound effect of lesioned tissue on resulting current flow and the ability to modulate current pattern through the brain, including perilesional regions, through electrode montage design. The complexity of brain current flow modulation by detailed normal and pathologic anatomy suggest: (1) That computational models are critical for the rational interpretation and design of individualized tDCS stroke-therapy; and (2) These models must accurately reproduce head anatomy as shown here. Copyright © 2011 Elsevier Inc. All rights reserved.
Process Evaluation Results from an Environmentally Focused Worksite Weight Management Study
ERIC Educational Resources Information Center
DeJoy, David M.; Wilson, Mark G.; Padilla, Heather M.; Goetzel, Ron Z.; Parker, Kristin B.; Della, Lindsay J.; Roemer, Enid C.
2012-01-01
There is currently much interest in exploring environmental approaches to combat weight gain and obesity. This study presents process evaluation results from a workplace-based study that tested two levels of environmentally focused weight management interventions in a manufacturing setting. The moderate treatment featured a set of relatively…
NASA Astrophysics Data System (ADS)
Imajo, S.; Yoshikawa, A.; Uozumi, T.; Ohtani, S.; Nakamizo, A.; Chi, P. J.
2017-12-01
Pi2 magnetic oscillations on the dayside are considered to be produced by the ionospheric current that is driven by Pi2-associated electric fields from the high-latitude region, but this idea has not been quantitatively tested. The present study numerically tested the magnetospheric-ionospheric current system for Pi2 consisting of field-aligned currents (FACs) localized in the nightside auroral region, the perpendicular magnetospheric current flowing in the azimuthal direction, and horizontal ionospheric currents driven by the FACs. We calculated the spatial distribution of the ground magnetic field produced by these currents using the Biot-Savart law in a stationary state. The calculated magnetic field reproduced the observational features reported by previous studies; (1) the sense of the H component does not change a wide range of local time sectors at low latitudes; (2) the amplitude of the H component on the dayside is enhanced at the equator; (3) The D component reverses its phase near the dawn and dusk terminators; (4) the meridian of the D-component phase reversal near the dusk terminator is shifted more sunward than that near the dawn terminator; (5) the amplitude of the D component in the morning is larger than that in the early evening. We also derived the global distributions of observed equivalent currents for two Pi2 events. The spatial patterns of dayside equivalent currents were similar to the spatial pattern of numerically derived equivalent currents. The results indicate that the oscillation of the magnetospheric-ionospheric current system is a plausible explanation of Pi2s on the dayside and near the terminator. These results are included in an accepted paper by Imajo et al. [2017JGR, DOI: 10.1002/2017JA024246].
Archis, Jennifer N; Akcali, Christopher; Stuart, Bryan L; Kikuchi, David; Chunco, Amanda J
2018-01-01
Anthropogenic climate change is a significant global driver of species distribution change. Although many species have undergone range expansion at their poleward limits, data on several taxonomic groups are still lacking. A common method for studying range shifts is using species distribution models to evaluate current, and predict future, distributions. Notably, many sources of 'current' climate data used in species distribution modeling use the years 1950-2000 to calculate climatic averages. However, this does not account for recent (post 2000) climate change. This study examines the influence of climate change on the eastern coral snake ( Micrurus fulvius ). Specifically, we: (1) identified the current range and suitable environment of M. fulvius in the Southeastern United States, (2) investigated the potential impacts of climate change on the distribution of M. fulvius , and (3) evaluated the utility of future models in predicting recent (2001-2015) records. We used the species distribution modeling program Maxent and compared both current (1950-2000) and future (2050) climate conditions. Future climate models showed a shift in the distribution of suitable habitat across a significant portion of the range; however, results also suggest that much of the Southeastern United States will be outside the range of current conditions, suggesting that there may be no-analog environments in the future. Most strikingly, future models were more effective than the current models at predicting recent records, suggesting that range shifts may already be occurring. These results have implications for both M. fulvius and its Batesian mimics. More broadly, we recommend future Maxent studies consider using future climate data along with current data to better estimate the current distribution.
Effects of current on droplet generation and arc plasma in gas metal arc welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, J.; Tsai, H. L.
2006-09-01
In gas metal arc welding (GMAW), a technology using pulsed currents has been employed to achieve the one-droplet-per-pulse (ODPP) metal transfer mode with the advantages of low average currents, a stable and controllable droplet generation, and reduced spatter. In this paper, a comprehensive model was developed to study the effects of different current profiles on the droplet formation, plasma generation, metal transfer, and weld pool dynamics in GMAW. Five types of welding currents were studied, including two constant currents and three wave form currents. In each type, the transient temperature and velocity distributions of the arc plasma and the moltenmore » metal, and the shapes of the droplet and the weld pool were calculated. The results showed that a higher current generates smaller droplets, higher droplet frequency, and higher electromagnetic force that becomes the dominant factor detaching the droplet from the electrode tip. The model has demonstrated that a stable ODPP metal transfer mode can be achieved by choosing a current with proper wave form for given welding conditions.« less
Reversible Nerve Conduction Block Using Kilohertz Frequency Alternating Current
Kilgore, Kevin L.; Bhadra, Niloy
2013-01-01
Objectives The features and clinical applications of balanced-charge kilohertz frequency alternating currents (KHFAC) are reviewed. Preclinical studies of KHFAC block have demonstrated that it can produce an extremely rapid and reversible block of nerve conduction. Recent systematic analysis and experimentation utilizing KHFAC block has resulted in a significant increase in interest in KHFAC block, both scientifically and clinically. Materials and Methods We review the history and characteristics of KHFAC block, the methods used to investigate this type of block, the experimental evaluation of block, and the electrical parameters and electrode designs needed to achieve successful block. We then analyze the existing clinical applications of high frequency currents, comparing the early results with the known features of KHFAC block. Results Although many features of KHFAC block have been characterized, there is still much that is unknown regarding the response of neural structures to rapidly fluctuating electrical fields. The clinical reports to date do not provide sufficient information to properly evaluate the mechanisms that result in successful or unsuccessful treatment. Conclusions KHFAC nerve block has significant potential as a means of controlling nerve activity for the purpose of treating disease. However, early clinical studies in the use of high frequency currents for the treatment of pain have not been designed to elucidate mechanisms or allow direct comparisons to preclinical data. We strongly encourage the careful reporting of the parameters utilized in these clinical studies, as well as the development of outcome measures that could illuminate the mechanisms of this modality. PMID:23924075
Takayanagi, Yoichiro; Spira, Adam P.; Bienvenu, O. Joseph; Hock, Rebecca S.; Carras, Michelle C.; Eaton, William W.; Mojtabai, Ramin
2015-01-01
Objectives Past studies have shown that many individuals who use antidepressants do not have a current or lifetime history of mental disorders. However, recent studies suggest that the one-time retrospective evaluation of mental disorders commonly used in such studies may substantially underestimate the true lifetime prevalence of mental disorders. We examined the prevalence of mental disorders, assessed prospectively over multiple interviews, among individuals currently using antidepressants in a community sample. Methods Using data from the Baltimore Epidemiologic Catchment Area (ECA) Survey Wave 1 (1981) through Wave 4 (2004) (N = 1071), we assessed lifetime prevalence of common mood and anxiety disorders according to the DSM-III and DSM-III-R criteria, based on 4 interviews, among participants who reported current antidepressant use. Furthermore, we examined factors associated with current antidepressant use. Results Thirteen percent of participants at Wave 4 reported currently using antidepressant medications. Among antidepressant users, 69% never met criteria for major depressive disorder (MDD), and 38% never met criteria for MDD, obsessive-compulsive disorder, panic disorder, social phobia, or generalized anxiety disorder in their lifetime. Female gender, Caucasian ethnicity, recent or current physical problems (e.g., loss of bladder control, hypertension and back pain) and recent mental health facility visits were associated with antidepressant use in addition to mental disorders. Conclusions Many individuals who are prescribed and use antidepressant medications may not have met criteria for mental disorders. Our data indicate that antidepressants are commonly used in the absence of clear evidence-based indications. PMID:25188822
The Origin of the Tsushima Warm Current in a High Resolution Model
NASA Astrophysics Data System (ADS)
Park, Y.; Yeh, S.; Hwang, J.
2008-12-01
Using a high resolution global ocean circulation model results, the present study investigates the origin of the Tsushima Warm Current and related East China Sea Circulation. The simulated Tsushima Warm Current is weaker than the observations by about 30 %, but the persistence of the Taiwan-Tsushima Current System shows that the Taiwan Warm Current is the main source of the Tsushima Warm Current. The high resolution model results allow us to distinguish the Kuroshio intrusion north of Taiwan and west of Kyushu from the Taiwan-Tsushima Current System. West of Kyushu the onshore intrusion of the Kuroshio is strong between September and February, and north of Taiwan between June and November. The annual mean strength of the intrusion is 0.32 Sv west of Kyushu, and 0.22 Sv north of Taiwan. Since the simulated Tsushima Warm Current is weaker than the observation while that of the Taiwan Current is comparable to the observations, the strength of the intrusion is weaker than the reality. In addition, a linear relation is found between the transport of the Tsushima Warm Current and the sea level difference between the Korea/Tsushima Strait and the Tsugaru/Soya Straits, and we can conclude that the sea level difference is the main driving force of the current.
NASA Astrophysics Data System (ADS)
Doronzo, Domenico M.; Dellino, Pierfrancesco; Sulpizio, Roberto; Lucchi, Federico
2017-01-01
In order to obtain results from computer simulations of explosive volcanic eruptions, one either needs a statistical approach to test a wide range of initial and boundary conditions, or needs using a well-constrained field case study via stratigraphy. Here we followed the second approach, using data obtained from field mapping of the Grotta dei Palizzi 2 pyroclastic deposits (Vulcano Island, Italy) as input for numerical modeling. This case study deals with impulsive phreatomagmatic explosions of La Fossa Cone that generated ash-rich pyroclastic density currents, interacting with the topographic high of the La Fossa Caldera rim. One of the simplifications in dealing with well-sorted ash (one particle size in the model) is to highlight the topographic effects on the same pyroclastic material in an unsteady current. We demonstrate that by merging field data with 3D numerical simulation results it is possible to see key details of the dynamical current-terrain interaction, and to interpret the lithofacies variations of the associated deposits as a function of topography-induced sedimentation (settling) rate. Results suggest that a value of the sedimentation rate lower than 5 kg/m2 s at the bed load can still be sheared by the overlying current, producing tractional structures (laminae) in the deposits. Instead, a sedimentation rate higher than that threshold can preclude the formation of tractional structures, producing thicker massive deposits. We think that the approach used in this study could be applied to other case studies (both for active and ancient volcanoes) to confirm or refine such threshold value of the sedimentation rate, which is to be considered as an upper value as for the limitations of the numerical model.
Photoinduced currents in pristine and ion irradiated kapton-H polyimide
NASA Astrophysics Data System (ADS)
Sharma, Anu; Sridharbabu, Y.; Quamara, J. K.
2014-10-01
The photoinduced currents in pristine and ion irradiated kapton-H polyimide have been investigated for different applied electric fields at 200°C. Particularly the effect of illumination intensity on the maximum current obtained as a result of photoinduced polarization has been studied. Samples were irradiated by using PELLETRON facility, IUAC, New Delhi. The photo-carrier charge generation depends directly on intensity of illumination. The samples irradiated at higher fluence show a decrease in the peak current with intensity of illumination. The secondary radiation induced crystallinity (SRIC) is responsible for the increase in maximum photoinduced currents generated with intensity of illumination.
Photoinduced currents in pristine and ion irradiated kapton-H polyimide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Anu, E-mail: sharmaanu81@gmail.com; Sridharbabu, Y., E-mail: sharmaanu81@gmail.com; Quamara, J. K., E-mail: sharmaanu81@gmail.com
2014-10-15
The photoinduced currents in pristine and ion irradiated kapton-H polyimide have been investigated for different applied electric fields at 200°C. Particularly the effect of illumination intensity on the maximum current obtained as a result of photoinduced polarization has been studied. Samples were irradiated by using PELLETRON facility, IUAC, New Delhi. The photo-carrier charge generation depends directly on intensity of illumination. The samples irradiated at higher fluence show a decrease in the peak current with intensity of illumination. The secondary radiation induced crystallinity (SRIC) is responsible for the increase in maximum photoinduced currents generated with intensity of illumination.
NASA Technical Reports Server (NTRS)
Buzulukova, N.; Fok, M.-C.; Goldstein, J.; Valek, P.; McComas, D. J.; Brandt, P. C.
2010-01-01
We present a comparative study of ring current dynamics during strong and moderate storms. The ring current during the strong storm is studied with IMAGE/HENA data near the solar cycle maximum in 2000. The ring current during the moderate storm is studied using energetic neutral atom (ENA) data from the Two Wide-Angle Imaging Neutral- Atom Spectrometers (TWINS) mission during the solar minimum in 2008. For both storms, the local time distributions of ENA emissions show signatures of postmidnight enhancement (PME) during the main phases. To model the ring current and ENA emissions, we use the Comprehensive Ring Current Model (CRCM). CRCM results show that the main-phase ring current pressure peaks in the premidnight-dusk sector, while the most intense CRCM-simulated ENA emissions show PME signatures. We analyze two factors to explain this difference: the dependence of charge-exchange cross section on energy and pitch angle distributions of ring current. We find that the IMF By effect (twisting of the convection pattern due to By) is not needed to form the PME. Additionally, the PME is more pronounced for the strong storm, although relative shielding and hence electric field skewing is well developed for both events.
Ju, Xiaowei; Zhu, Lvgang; Huang, Changlin; Huang, Tao; Zuo, Xincheng; Gao, Chunfang
2013-01-01
Fatigue is synonymous with a wide spectrum of familiar physiological conditions, from pathology and general health, to sport and physical exercise. Strenuous, prolonged exercise training causes fatigue. Although several studies have investigated the effects of electrical stimulation frequency on muscle fatigue, the effects of percutaneous pulse current stimulation on fatigue in the hepatic tissue of trained rats is still unclear. In order to find an effective strategy to prevent fatigue or enhance recovery, the effects of pulse current on endurance exercise and its anti-fatigue properties in exercised rats were studied. Rats were subjected to one, three or five weeks of swimming exercise training. After exercise training, rats in the treated group received daily applications of pulse current. All rats were sacrificed after one, three or five weeks of swimming exercise, and the major biochemical indexes were measured in serum and liver. The results demonstrate that pulse current could prolong the exhaustion swimming time, as well as decrease serum ALT, AST and LD levels and liver MDA content. It also elevated serum LDH activity, liver SOD activity and glycogen content. Furthermore, pulse current increased the expression of Bcl-2 and decreased the expression of Bax. Taken together, these results show that pulse current can elevate endurance capacity and facilitate recovery from fatigue. PMID:24116026
Magnetic field oscillations of the critical current in long ballistic graphene Josephson junctions
NASA Astrophysics Data System (ADS)
Rakyta, Péter; Kormányos, Andor; Cserti, József
2016-06-01
We study the Josephson current in long ballistic superconductor-monolayer graphene-superconductor junctions. As a first step, we have developed an efficient computational approach to calculate the Josephson current in tight-binding systems. This approach can be particularly useful in the long-junction limit, which has hitherto attracted less theoretical interest but has recently become experimentally relevant. We use this computational approach to study the dependence of the critical current on the junction geometry, doping level, and an applied perpendicular magnetic field B . In zero magnetic field we find a good qualitative agreement with the recent experiment of M. Ben Shalom et al. [Nat. Phys. 12, 318 (2016), 10.1038/nphys3592] for the length dependence of the critical current. For highly doped samples our numerical calculations show a broad agreement with the results of the quasiclassical formalism. In this case the critical current exhibits Fraunhofer-like oscillations as a function of B . However, for lower doping levels, where the cyclotron orbit becomes comparable to the characteristic geometrical length scales of the system, deviations from the results of the quasiclassical formalism appear. We argue that due to the exceptional tunability and long mean free path of graphene systems a new regime can be explored where geometrical and dynamical effects are equally important to understand the magnetic field dependence of the critical current.
Spatial profile of thermoelectric effects during Peltier pulsing in Bi and Bi/MnBi eutectic
NASA Technical Reports Server (NTRS)
Silberstein, R. P.; Larson, D. J., Jr.
1987-01-01
The spatial profile of the thermal transients that occur during and following the current pulsing associated with Peltier Interface Demarcation during directional solidification is studied. Results for pure Bi are presented in detail and compared with corresponding results for the Bi/MnBi eutectic. Significant thermal transients occur throughout the sample that can be accounted for by the Peltier effect, the Thomson effect, and Joule heating. These effects are separated and their behavior is studied as a function of time, current density, and position with respect to the solid/liquid interface.
Neuronal current magnetic resonance imaging of evoked potentials and neural oscillations
NASA Astrophysics Data System (ADS)
Jiang, Xia
Despite its great success, the current functional magnetic resonance imaging (MRI) technique relies on changes in cerebral hemodynamic parameters to infer the underlying neural activities, and as a result is limited in its spatial and temporal resolutions. In this dissertation, we discuss the feasibility of neuronal current MRI (nc-MRI), a novel technique in which the small magnetic field changes caused by neuronal electrical activities are directly measured by MRI. Two studies are described. In the first study, we investigated the feasibility of detecting the magnetic field produced by sensory evoked potentials. To eliminate the blood-oxygen-level-dependent (BOLD) effect on the MRI signal, which confounded most previous studies, an octopus visual system model was developed, which, for the first time, allowed for an in vivo investigation of nc-MRI in a BOLD-free environment. Electrophysiological responses were measured in the octopus retina and optical lobe to guide the nc-MRI acquisition. Our results indicated that no nc-MRI signal change related to neuronal activation could be detected at 0.2°/0.2% threshold for signal phase/magnitude respectively, while robust electrophysiological responses were recorded. In the second study, we discuss the feasibility of detecting neural oscillations with MRI, Based on previous studies, a novel approach was proposed in which an external oscillatory field was exploited as the excitation pulse under a spin-locked condition. This approach has the advantages of increased sensitivity and lowered physiological noise. Successful detection of sub-nanotesla field was demonstrated in phantom. Our results suggest that evoked potentials are too weak for nc-MRI detection with the current hardware, and that previous positive findings were likely due to hemodynamic confounders. On the other hand, oscillatory magnetic field can be efficiently detected in phantom. Given the stronger equivalent current dipoles produced by neural oscillations compared to evoked potentials, they might be a more promising candidate for future nc-MRI studies.
Korb, Alexander S.; Hunter, Aimee M.; Cook, Ian A.; Leuchter, Andrew F.
2009-01-01
Objective To assess whether pretreatment theta current density in the rostral anterior cingulate (rACC) and medial orbitofrontal cortex (mOFC) differentiates responders from non-responders to antidepressant medication or placebo in a double-blinded study. Methods Pretreatment EEGs were collected from 72 subjects with Major Depressive Disorder (MDD) who participated in one of three placebo-controlled trials. Subjects were randomized to receive treatment with fluoxetine, venlafaxine, or placebo. Low-resolution brain electromagnetic tomography (LORETA) was used to assess theta current density in the rACC and mOFC. Results Medication responders showed elevated rACC and mOFC theta current density compared to medication non-responders (rACC: p=0.042; mOFC: p=0.039). There was no significant difference in either brain region between placebo responders and placebo non-responders. Conclusions Theta current density in the rACC and mOFC may be useful as a biomarker for prediction of response to antidepressant medication. Significance This is the first double-blinded treatment study to examine pretreatment rACC and mOFC theta current density in relation to antidepressant response and placebo response. Results support the potential clinical utility of this approach for predicting clinical outcome to antidepressant treatments in MDD. PMID:19539524
NASA Astrophysics Data System (ADS)
Ta, Wurui; Shao, Tianchong; Gao, Yuanwen
2018-04-01
High-temperature superconductor (HTS) rare-earth-barium-copper-oxide (REBCO) tapes are very promising for use in high-current cables. The cable geometry and the layout of the superconducting tapes are directly related to the performance of the HTS cable. In this paper, we use numerical methods to perform a comparison study of multiple-stage twisted stacked-tape cable (TSTC) conductors to find better cable structures that can both improve the critical current and minimize the alternating current (AC) losses of the cable. The sub-cable geometry is designed to have a stair-step shape. Three superconducting tape layouts are chosen and their transport performance and AC losses are evaluated. The magnetic field and current density profiles of the cables are obtained. The results show that arrangement of the superconducting tapes from the interior towards the exterior of the cable based on their critical current values in descending order can enhance the cable's transport capacity while significantly reducing the AC losses. These results imply that cable transport capacity improvements can be achieved by arranging the superconducting tapes in a manner consistent with the electromagnetic field distribution. Through comparison of the critical currents and AC losses of four types of HTS cables, we determine the best structural choice among these cables.
Chamberlin, Kent; Smith, Wayne; Chirgwin, Christopher; Appasani, Seshank; Rioux, Paul
2014-01-01
Objective The purpose of this study was to investigate “earthing” from an electrical perspective through measurement and analysis of the naturally occurring electron flow between the human body or a control and ground as this relates to the magnitude of the charge exchange, the relationship between the charge exchange and body functions (respiration and heart rate), and the detection of other information that might be contained in the charge exchange. Methods Sensitive, low-noise instrumentation was designed and fabricated to measure low-level current flow at low frequencies. This instrumentation was used to record current flow between human subjects or a control and ground, and these measurements were performed approximately 40 times under varied circumstances. The results of these measurements were analyzed to determine if information was contained in the current exchange. Results The currents flowing between the human body and ground were small (nanoamperes), and they correlated with subject motion. There did not appear to be any information contained in this exchange except for information about subject motion. Conclusions This study showed that currents flow between the environment (earth) and a grounded human body; however, these currents are small (nanoamperes) and do not appear to contain information other than information about subject motion. PMID:25435837
Jahromi, Hamed Dehdashti; Mahmoodi, Ali; Sheikhi, Mohammad Hossein; Zarifkar, Abbas
2016-10-20
Reduction of dark current at high-temperature operation is a great challenge in conventional quantum dot infrared photodetectors, as the rate of thermal excitations resulting in the dark current increases exponentially with temperature. A resonant tunneling barrier is the best candidate for suppression of dark current, enhancement in signal-to-noise ratio, and selective extraction of different wavelength response. In this paper, we use a physical model developed by the authors recently to design a proper resonant tunneling barrier for quantum infrared photodetectors and to study and analyze the spectral response of these devices. The calculated transmission coefficient of electrons by this model and its dependency on bias voltage are in agreement with experimental results. Furthermore, based on the calculated transmission coefficient, the dark current of a quantum dot infrared photodetector with a resonant tunneling barrier is calculated and compared with the experimental data. The validity of our model is proven through this comparison. Theoretical dark current by our model shows better agreement with the experimental data and is more accurate than the previously developed model. Moreover, noise in the device is calculated. Finally, the effect of different parameters, such as temperature, size of quantum dots, and bias voltage, on the performance of the device is simulated and studied.
Studies of blade-vortex interaction noise reduction by rotor blade modification
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.
1993-01-01
Blade-vortex interaction (BVI) noise is one of the most objectionable types of helicopter noise. This impulsive blade-slap noise can be particularly intense during low-speed landing approach and maneuvers. Over the years, a number of flight and model rotor tests have examined blade tip modification and other blade design changes to reduce this noise. Many times these tests have produced conflicting results. In the present paper, a number of these studies are reviewed in light of the current understanding of the BVI noise problem. Results from one study in particular are used to help establish the noise reduction potential and to shed light on the role of blade design. Current blade studies and some new concepts under development are also described.
Easing Concerns About Returning Genetic Test Results
Women with breast cancer participating in a research study were given the opportunity to learn their genetic research results. This Cancer Currents blog details the impact these results had on women who opted to review their results with a genetic counselor.
NASA Astrophysics Data System (ADS)
Zhang, D.; Lee, T.; Wang, F.; McPhaden, M. J.; Kessler, W. S.
2016-12-01
Meridional thermocline currents play an important role in the recharge and discharge of tropical Pacific warm water during the development and transition of ENSO cycles. Previous analyses have shown large variations of the equatorward meridional thermocline convergence/divergence on ENSO and decadal time scales in the interior ocean. The total convergence/divergence is however unknown due to the lack of long term observation in the western boundary currents. Numerical modelling studies suggested a tendency of compensation between the interior and western boundary currents, but the exact compensation is model dependent. While Argo floats provide reasonable data coverage in the interior ocean, few floats are in the western boundary currents. Recent multi-mission satellite altimeter data and advanced processing techniques have resulted in higher resolution sea surface height anomaly (SSHA) products with better accuracy closer to the coasts. This study utilizes the statistical relationship between Argo dynamic height profiles and altimeter SSHA to calculate geostrophic thermocline currents in both the interior ocean and the western boundary of the tropical Pacific. The derived thermocline currents in the western boundary are validated by a 3.5-year moored Acoustic Doppler Current Profiler (ADCP) measurement in the Mindanao Current and by a series of glider surveys (Davis et al. 2012) in the Solomon Sea. The meridional transport timeseries of the interior and western boundary currents in the thermocline show different lead-lag relationships to the Nino 3.4 index. Results will be discussed in the context of recent 2014-2015 El Nino development and the potential contribution to the Tropical Pacific Observing System (TPOS).
Computational Studies of Magnetic Nozzle Performance
NASA Technical Reports Server (NTRS)
Ebersohn, Frans H.; Longmier, Benjamin W.; Sheehan, John P.; Shebalin, John B.; Raja, Laxminarayan
2013-01-01
An extensive literature review of magnetic nozzle research has been performed, examining previous work, as well as a review of fundamental principles. This has allow us to catalog all basic physical mechanisms which we believe underlie the thrust generation process. Energy conversion mechanisms include the approximate conservation of the magnetic moment adiabatic invariant, generalized hall and thermoelectric acceleration, swirl acceleration, thermal energy transformation into directed kinetic energy, and Joule heating. Momentum transfer results from the interaction of the applied magnetic field with currents induced in the plasma plume., while plasma detachment mechanisms include resistive diffusion, recombination and charge exchange collisions, magnetic reconnection, loss of adiabaticity, inertial forces, current closure, and self-field detachment. We have performed a preliminary study of Hall effects on magnetic nozzle jets with weak guiding magnetic fields and weak expansions (p(sub jet) approx. = P(sub background)). The conclusion from this study is that the Hall effect creates an azimuthal rotation of the plasma jet and, more generally, creates helical structures in the induced current, velocity field, and magnetic fields. We have studied plasma jet expansion to near vacuum without a guiding magnetic field, and are presently including a guiding magnetic field using a resistive MHD solver. This research is progressing toward the implementation of a full generalized Ohm's law solver. In our paper, we will summarize the basic principle, as well as the literature survey and briefly review our previous results. Our most recent results at the time of submittal will also be included. Efforts are currently underway to construct an experiment at the University of Michigan Plasmadynamics and Electric Propulsion Laboratory (PEPL) to study magnetic nozzle physics for a RF-thruster. Our computational study will work directly with this experiment to validate the numerical model, in order to study magnetic nozzle physics and optimize magnetic nozzle design. Preliminary results from the PEPL experiment will also be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z. -L.
Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers—varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patternedmore » molybdenum-germanium films, obtaining good agreement. In conclusion, our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.« less
NASA Astrophysics Data System (ADS)
Fattah-Alhosseini, Arash; Khan, Hamid Yazdani
2017-06-01
This work aims at studying the influence of high current densities on the anodization of carbon steel. Anodic protective coatings were prepared on carbon steel at current densities of 100, 125, and 150 A/dm2 followed by a final heat treatment. Coatings microstructures and morphologies were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The corrosion resistance of the uncoated carbon steel substrate and the anodic coatings were evaluated in 3.5 wt pct NaCl solution through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that the anodic oxide coatings which were prepared at higher current densities had thicker coatings as a result of a higher anodic forming voltage. Therefore, the anodized coatings showed better anti-corrosion properties compared to those obtained at lower current densities and the base metal.
NASA Astrophysics Data System (ADS)
Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z.-L.; Kwok, W.-K.; Glatz, A.
2017-02-01
Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers—varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patterned molybdenum-germanium films, obtaining good agreement. Our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.
NASA Astrophysics Data System (ADS)
Sadovskyy, Ivan; Wang, Yonglei; Xiao, Zhili; Kwok, Wai-Kwong; Glatz, Andreas
Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers - varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic field dependent critical current. We compare our result directly with available experimental measurements on patterned molybdenum-germanium films, obtaining good agreement. Our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.
Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z. -L.; ...
2017-02-07
Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers—varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patternedmore » molybdenum-germanium films, obtaining good agreement. In conclusion, our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.« less
Modelling of thermal stresses in bearing steel structure generated by electrical current impulses
NASA Astrophysics Data System (ADS)
Birjukovs, M.; Jakovics, A.; Holweger, W.
2018-05-01
This work is the study of one particular candidate for white etching crack (WEC) initiation mechanism in wind turbine gearbox bearings: discharge current impulses flowing through bearing steel with associated thermal stresses and material fatigue. Using data/results from previously published works, the authors develop a series of models that are utilized to simulate these processes under various conditions/local microstructure configurations, as well as to verify the results of the previous numerical studies. Presented models show that the resulting stresses are several orders of magnitude below the fatigue limit/yield strength for the parameters used herein. Results and analysis of models provided by Scepanskis, M. et al. also indicate that certain effects predicted in their previous work resulted from a physically unfounded assumption about material thermodynamic properties and numerical model implementation issues.
Cashin, Cheryl; Phuong, Nguyen Khanh; Shain, Ryan; Oanh, Tran Thi Mai; Thuy, Nguyen Thi
2015-01-01
Vietnam is currently considering a revision of its 2008 Health Insurance Law, including the regulation of provider payment methods. This study uses a simple spreadsheet-based, micro-simulation model to analyse the potential impacts of different provider payment reform scenarios on resource allocation across health care providers in three provinces in Vietnam, as well as on the total expenditure of the provincial branches of the public health insurance agency (Provincial Social Security [PSS]). The results show that currently more than 50% of PSS spending is concentrated at the provincial level with less than half at the district level. There is also a high degree of financial risk on district hospitals with the current fund-holding arrangement. Results of the simulation model show that several alternative scenarios for provider payment reform could improve the current payment system by reducing the high financial risk currently borne by district hospitals without dramatically shifting the current level and distribution of PSS expenditure. The results of the simulation analysis provided an empirical basis for health policy-makers in Vietnam to assess different provider payment reform options and make decisions about new models to support health system objectives.
Entanglement of two qubits coupled to an XY spin chain: Role of energy current
NASA Astrophysics Data System (ADS)
Liu, Ben-Qiong; Shao, Bin; Zou, Jian
2009-12-01
We investigate the entanglement dynamics of a two-qubit system which interacts with a Heisenberg XY spin chain constrained to carry an energy current. We show an explicit connection between the decoherence factor and entanglement, and numerically and analytically study the dynamical process of entanglement in both weak- and strong-coupling cases for two initial states, the general pure state and the mixed Werner state. We provide results that the entanglement evolution depends not only on the energy current, the anisotropy parameter and the system-environment couplings but also on the size of degrees of freedom of environment. In particular, our results imply that entanglement will be strongly suppressed by the introduction of energy current on the environmental spin chain in the weak-coupling region while it is not sensitive to the energy current in the strong-coupling region. We also observe the sudden death of entanglement in the system and show how the energy current affects the phenomenon.
Kueh, Daniel; Barnett, William H; Cymbalyuk, Gennady S; Calabrese, Ronald L
2016-09-02
The dynamics of different ionic currents shape the bursting activity of neurons and networks that control motor output. Despite being ubiquitous in all animal cells, the contribution of the Na(+)/K(+) pump current to such bursting activity has not been well studied. We used monensin, a Na(+)/H(+) antiporter, to examine the role of the pump on the bursting activity of oscillator heart interneurons in leeches. When we stimulated the pump with monensin, the period of these neurons decreased significantly, an effect that was prevented or reversed when the h-current was blocked by Cs(+). The decreased period could also occur if the pump was inhibited with strophanthidin or K(+)-free saline. Our monensin results were reproduced in model, which explains the pump's contributions to bursting activity based on Na(+) dynamics. Our results indicate that a dynamically oscillating pump current that interacts with the h-current can regulate the bursting activity of neurons and networks.
Chen, Chiao-Chen; Baker, Lane A
2011-01-07
Local conductance variations can be estimated by measuring ion current magnitudes with scanning ion conductance microscopy (SICM). Factors which influence image quality and quantitation of ion currents measured with SICM have been evaluated. Specifically, effects of probe-sample separation and pipette modulation have been systematically studied for the case of imaging conductance variations at pores in a polymer membrane under transmembrane concentration gradients. The influence of probe-sample separation on ion current images was evaluated using distance-modulated (ac) feedback. Approach curves obtained using non-modulated (dc) feedback were also recorded to determine the relative influence of pipette-generated convection by comparison of ion currents measured with both ac and dc feedback modes. To better interpret results obtained, comparison to a model based on a disk-shaped geometry for nanopores in the membrane, as well as relevant position-dependent parameters of the experiment is described. These results advance our current understanding of conductance measurements with SICM.
Mefloquine blockade of Pannexin1 currents: Resolution of a conflict
Iglesias, Rodolfo; Spray, David C.; Scemes, Eliana
2010-01-01
Our laboratory has reported potent block of Pannexin1 (Panx1) currents by the antimalarial quinine derivative mefloquine. However, other laboratories have found little or no mefloquine sensitivity of Panx1 currents or processes attributable to these channels. In order to resolve this issue, we have performed extensive dose-response studies on Panx1 transfected neuroblastoma (Neuro2A) and rat insulinoma (Rin) cells comparing mefloquine obtained from three suppliers and also comparing the sensitivity to diastereomers. Results indicate a twenty-fold difference in sensitivity to the (−)-threo-(11R/2R) diastereomer compared to the erythro enatiomers and much lower potency of (±)-erythro-(R*/S*)-mefloquine obtained from one of the commercial sources. This markedly lower efficacy presumably accounts for the disparity in results from different laboratories who have applied it in Panx1 studies. PMID:20218915
Franck, Erik; De Raedt, Rudi; Dereu, Mieke; Van den Abbeele, Dirk
2007-03-01
In the present study, we have further explored implicit self-esteem in currently depressed individuals. Since suicidal ideation is associated with lower self-esteem in depressed individuals, we measured both implicit and explicit self-esteem in a population of currently depressed (CD) individuals, with and without suicidal ideation (SI), and in a group of non-depressed controls (ND). The results indicate that only CD individuals with SI show a discrepancy between their implicit and explicit self-esteem: that is, they exhibit high implicit and low explicit self-esteem. CD individuals without SI exhibit both low implicit and low explicit self-esteem; and ND controls exhibit both normal implicit and normal explicit self-esteem. These results provide new insights in the study of implicit self-esteem and the combination of implicit and explicit self-esteem in depression.
Simulation study of a new inverse-pinch high Coulomb transfer switch
NASA Technical Reports Server (NTRS)
Choi, S. H.
1984-01-01
A simulation study of a simplified model of a high coulomb transfer switch is performed. The switch operates in an inverse pinch geometry formed by an all metal chamber, which greatly reduces hot spot formations on the electrode surfaces. Advantages of the switch over the conventional switches are longer useful life, higher current capability and lower inductance, which improves the characteristics required for a high repetition rate switch. The simulation determines the design parameters by analytical computations and comparison with the experimentally measured risetime, current handling capability, electrode damage, and hold-off voltages. The parameters of initial switch design can be determined for the anticipated switch performance. Results are in agreement with the experiment results. Although the model is simplified, the switch characteristics such as risetime, current handling capability, electrode damages, and hold-off voltages are accurately determined.
Raisig, L. Miles
1966-01-01
This study is an application of the relationship of serial articles published to serial articles cited, developed in theory in the author's “Statistical Bibliography in the Health Sciences” (Bulletin 50: 450-461, July 1962). A ranked list of the indexes of significance of most of the serials indexed in Current List of Medical Literature was derived and erected from 21,000 citations secured in a random sampling of 1962 and 1961 biomedical journals regularly received in the Yale Medical Library. The author measures the gross indexing effectiveness of Current List against his indexes of significance, offers his method and results as means to reach objective standards for indexing and abstracting, and projects his results as measures of general value of the serials analyzed. PMID:5952248
Swami, Viren; Allum, Lucy
2012-02-01
This study examined ratings of physical attractiveness of the self and former and current partners. A total of 304 participants completed measures of attractiveness, relationship satisfaction, love dimensions, self-esteem and sociosexual orientation. Consistent with previous work, results showed that participants rated their current partners as more attractive than themselves and their former partners. However, results also showed that former partners were rated as more attractive than the self on a number of bodily characteristics. Finally, results showed that ratings of former partner physical attractiveness were associated with passion for the former partner, self-esteem, sociosexual orientation, and attributions of relationship termination. These results are discussed in relation to the available literature on positive illusions in intimate relationships. © 2011 The Authors. Scandinavian Journal of Psychology © 2011 The Scandinavian Psychological Associations.
Effect of Training Different Classes of Verbal Behavior to Decrease Aberrant Verbal Behavior
Vandbakk, Monica; Arntzen, Erik; Gisnaas, Arnt; Antonsen, Vidar; Gundhus, Terje
2012-01-01
Inappropriate verbal behavior that is labeled “psychotic” is often described as insensitive to environmental contingencies. The purpose of the current study was to establish different classes of rational or appropriate verbal behavior in a woman with developmental disabilities and evaluate the effects on her psychotic or aberrant vocal verbal behavior. Similar to a previous study (Arntzen, Ro Tonnessen, & Brouwer, 2006), the results of the current study suggested that the procedure helped to establish a repertoire of appropriate functional vocal verbal behavior in the participant. Overall, the results suggested the effectiveness of an intervention based on training various classes of verbal behavior in decreasing aberrant verbal behavior. PMID:22754112
Superlattice barrier varactors
NASA Technical Reports Server (NTRS)
Raman, C.; Sun, J. P.; Chen, W. L.; Munns, G.; East, J.; Haddad, G.
1992-01-01
SBV (Single Barrier Varactor) diodes have been proposed as alternatives to Schottky barrier diodes for harmonic multiplier applications. However, these show a higher current than expected. The excess current is due to X valley transport in the barrier. We present experimental results showing that the use of a superlattice barrier and doping spikes in the GaAs depletion regions on either side of the barrier can reduce the excess current and improve the control of the capacitance vs. voltage characteristic. The experimental results consist of data taken from two types of device structures. The first test structure was used to study the performance of AlAs/GaAs superlattice barriers. The wafer was fabricated into 90 micron diameter mesa diodes and the resulting current vs. voltage characteristics were measured. A 10 period superlattice structure with a total thickness of approximately 400 A worked well as an electron barrier. The structure had a current density of about one A/sq cm at one volt at room temperature. The capacitance variation of these structures was small because of the design of the GaAs cladding layers. The second test structure was used to study cladding layer designs. These wafers were InGaAs and InAlAs layers lattice matched to an InP substrate. The layers have n(+) doping spikes near the barrier to increase the zero bias capacitance and control the shape of the capacitance vs. voltage characteristic. These structures have a capacitance ratio of 5:1 and an abrupt change from maximum to minimum capacitance. The measurements were made at 80 K. Based on the information obtained from these two structures, we have designed a structure that combines the low current density barrier with the improved cladding layers. The capacitance and current-voltage characteristics from this structure are presented.
NASA Astrophysics Data System (ADS)
Anan'ev, S. S.; Bakshaev, Yu. L.; Bartov, A. V.; Blinov, P. I.; Dan'ko, S. A.; Zhuzhunashvili, A. I.; Kazakov, E. D.; Kalinin, Yu. G.; Kingsep, A. S.; Korolev, V. D.; Mizhiritskii, V. I.; Smirnov, V. P.; Tkachenko, S. I.; Chernenko, A. S.
2008-07-01
Results are presented from experimental studies of a section of a magnetically insulated transmission line (MITL) with a current density of up to 500 MA/cm2 and linear current density of up to 7 MA/cm (the parameters close to those in a fast-Z-pinch-driven fusion reactor projected at Sandia Laboratories). The experiments were performed in the S-300 facility (3 MA, 0.15 Ω, 100 ns). At high linear current densities, the surface of the ohmically heated MITL electrode can explode and a plasma layer can form near the electrode surface. As a result, the MITL can lose its transmission properties due to the shunting of the vacuum gap by the plasma produced. In this series of experiments, the dynamics of the electrode plasma and the dependence of the transmission properties of the MITL on the material and cleanness of the electrode surface were studied. It is shown experimentally that, when the current with a linear density of up to 7 MA/cm begins to flow along a model MITL, the input and output currents differ by less than 10% over a time interval of up to 230 ns for nickel electrodes and up to 350 ns for a line with a gold central electrode. No effect of the oil film present on the electrode surface on the loss of the transmission properties of the line was observed. It is also shown that electron losses insignificantly contribute to the total current balance. The experimental results are compared with calculations of the electrode explosion and the subsequent expansion of the plasma layer. A conclusion is made that the life-time of the model MITL satisfies the requirements imposed on the transmission lines intended for use in the projected thermonuclear reactor.
Research of Steel-dielectric Transition Using Subminiature Eddy-current Transducer
NASA Astrophysics Data System (ADS)
Dmitriev, S. F.; Malikov, V. N.; Sagalakov, A. M.; Ishkov, A. V.
2018-05-01
The research aims to develop a subminiature transducer for electrical steel investigation. The authors determined the capability to study steel characteristics at different depths based on variations of eddy-current transducer amplitude at the steel-dielectric boundary. A subminiature transformer-type transducer was designed, which enables to perform local investigations of ferromagnetic materials using an eddy-current method based on local studies of the steel electrical conductivity. Having the designed transducer as a basis, a hardware-software complex was built to perform experimental studies of steel at the interface boundary. Test results are reported for a specimen with continuous and discrete measurements taken at different frequencies. The article provides the key technical information about the eddy current transformer used and describes the methodology of measurements that makes it possible to control steel to dielectric transition.
Occupational noise exposure, psychosocial working conditions and the risk of tinnitus.
Frederiksen, Thomas Winther; Ramlau-Hansen, Cecilia Høst; Stokholm, Zara Ann; Grynderup, Matias Brødsgaard; Hansen, Åse Marie; Lund, Søren Peter; Kristiansen, Jesper; Vestergaard, Jesper Medom; Bonde, Jens Peter; Kolstad, Henrik Albert
2017-02-01
The purpose of this study was to evaluate the influence of occupational noise (current and cumulative doses) and psychosocial work factors (psychological demands and decision latitude) on tinnitus occurrence among workers, using objective and non-self-reported exposure measures to prevent reporting bias. In a cross-sectional study, we analyzed data from a Danish survey from 2009 to 2010 that included 534 workers from children day care units and 10 manufacturing trades. Associations between risk factors (current noise exposure, cumulative noise exposure and psychosocial working conditions) and tinnitus were analyzed with logistic regression. We found no statistically significant associations between either current [OR 0.95 (95% CI 0.89; 1.01)] or cumulative [OR 0.93 (95% CI 0.81; 1.06)] occupational noise exposure and tinnitus. Likewise, results for psychosocial working conditions showed no statistically significant association between work place decision latitude [OR 1.06 (95% CI 0.94; 1.13)] or psychological demands [OR 1.07 (95% CI 0.90; 1.26)] and tinnitus. Our results suggest that current Danish occupational noise levels (in combination with relevant noise protection) are not associated with tinnitus. Also, results indicated that the psychosocial working conditions we observed in this cohort of mainly industrial workers were not associated with tinnitus. Therefore, psychosocial working conditions comparable to those observed in this study are probably not relevant to take into account in the evaluation of workers presenting with tinnitus.
Polaron-like vortices, dissociation transition, and self-induced pinning in magnetic superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulaevskii, L. N., E-mail: lnb@lanl.gov; Lin, S.-Z.
2013-09-15
Vortices in magnetic superconductors polarize spins nonuniformly and repolarize them when moving. At a low spin relaxation rate and at low bias currents, vortices carrying magnetic polarization clouds become polaron-like and their velocities are determined by the effective drag coefficient that is significantly bigger than the Bardeen-Stephen (BS) one. As the current increases, vortices release polarization clouds and the velocity as well as the voltage in the I-V characteristics jump to values corresponding to the BS drag coefficient at a critical current J{sub c}. The nonuniform components of the magnetic field and magnetization drop as the velocity increases, resulting inmore » weaker polarization and a discontinuous dynamic dissociation depinning transition. Experimentally, the jump shows up as a depinning transition and the corresponding current at the jump is the depinning current. As the current decreases, on the way back, vortices are retrapped by polarization clouds at the current J{sub r} < J{sub c}. As a result, the polaronic effect suppresses dissipation and enhances the critical current. Borocarbides (RE)Ni{sub 2}B{sub 2}C with a short penetration length and highly polarizable rare earth spins seem to be optimal systems for a detailed study of vortex polaron formation by measuring I-V characteristics. We also propose to use a superconductor-magnet multilayer structure to study polaronic mechanism of pinning with the goal to achieve high critical currents. The magnetic layers should have large magnetic susceptibility to enhance the coupling between vortices and magnetization in magnetic layers while the relaxation of the magnetization should be slow. For Nb and a proper magnet multilayer structure, we estimate the critical current density J{sub c} {approx} 10{sup 9} A/m{sup 2} at the magnetic field B Almost-Equal-To 1 T.« less
Quantitative study of protein-protein interactions by quartz nanopipettes
NASA Astrophysics Data System (ADS)
Tiwari, Purushottam Babu; Astudillo, Luisana; Miksovska, Jaroslava; Wang, Xuewen; Li, Wenzhi; Darici, Yesim; He, Jin
2014-08-01
In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with a series of concentrations in the bath solution. Such current change is due to the adsorption of Cyt c to the inner surface of the nanopipette through specific interactions with hNgb. In contrast, a smaller current change with weak concentration dependence was observed when Cyt c was replaced with lysozyme, which does not specifically bind to hNgb. The equilibrium dissociation constant (KD) for the Cyt c-hNgb complex formation was derived and the value matched very well with the result from surface plasmon resonance measurement. This is the first quantitative study of protein-protein interactions by a conical-shaped nanopore based on charge sensing. Our results demonstrate that nanopipettes can potentially be used as a label-free analytical tool to quantitatively characterize protein-protein interactions.In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with a series of concentrations in the bath solution. Such current change is due to the adsorption of Cyt c to the inner surface of the nanopipette through specific interactions with hNgb. In contrast, a smaller current change with weak concentration dependence was observed when Cyt c was replaced with lysozyme, which does not specifically bind to hNgb. The equilibrium dissociation constant (KD) for the Cyt c-hNgb complex formation was derived and the value matched very well with the result from surface plasmon resonance measurement. This is the first quantitative study of protein-protein interactions by a conical-shaped nanopore based on charge sensing. Our results demonstrate that nanopipettes can potentially be used as a label-free analytical tool to quantitatively characterize protein-protein interactions. Electronic supplementary information (ESI) available: Determination of nanopipette diameter; surface modification scheme; numerical simulation; noise analysis; SPR experiments. See DOI: 10.1039/c4nr02964j
The effects of normal current density and the plasma spatial structuring in argon DBDs
NASA Astrophysics Data System (ADS)
Shkurenkov, I. A.; Mankelevich, Y. A.; Rakhimova, T. V.
2011-01-01
This paper presents the results of theoretical studies of high-pressure dielectric barrier discharges (DBD) in argon. Two different DBDs at the megahertz and the kilohertz power frequency range were simulated. The effect of normal current density was obtained in the numerical model for both types of the discharge. The discharge of megahertz range was uniform over the radius. The increase in the discharge current is accompanied by increase in the discharge area. The discharge of kilohertz range is not uniform over the radius. The concentric ring formation was observed during calculations. The increase in the discharge current occurs due to increase in the number of rings and as a result in the discharge area. The developed 2D model is able to describe only the first stage of the filament formation - the formation of concentric plasma rings. The filament formation starts at the edge of the current channel and spreads to its centre. Both the effect of normal current density and the filaments formation are caused by the nonstationarity at the current channel boundary.
Electron dynamics in a plasma focus. [electron acceleration
NASA Technical Reports Server (NTRS)
Hohl, F.; Gary, S. P.; Winters, P. A.
1977-01-01
Results are presented of a numerical integration of the three-dimensional relativistic equations of motion of electrons subject to given electric and magnetic fields deduced from experiments. Fields due to two different models are investigated. For the first model, the fields are those due to a circular distribution of axial current filaments. As the current filaments collapse toward the axis, large azimuthal magnetic and axial electric fields are induced. These fields effectively heat the electrons to a temperature of approximately 8 keV and accelerate electrons within the radius of the filaments to high axial velocities. Similar results are obtained for the current-reduction phase of focus formation. For the second model, the fields are those due to a uniform current distribution. Both the current-reduction and the compression phases were studied. These is little heating or acceleration of electrons during the compression phase because the electrons are tied to the magnetic field. However, during the current-reduction phase, electrons near the axis are accelerated toward the center electrode and reach energies of 100 keV. A criterion is obtained which limits the runaway electron current to about 400 A.
Direct Current Contamination of Kilohertz Frequency Alternating Current Waveforms
Franke, Manfred; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin
2014-01-01
Kilohertz Frequency Alternating Current (KHFAC) waveforms are being evaluated in a variety of physiological settings because of their potential to modulate neural activity uniquely when compared to frequencies in the sub-kilohertz range. However, the use of waveforms in this frequency range presents some unique challenges regarding the generator output. In this study we explored the possibility of undesirable contamination of the KHFAC waveforms by direct current (DC). We evaluated current- and voltage-controlled KHFAC waveform generators in configurations that included a capacitive coupling between generator and electrode, a resistive coupling and combinations of capacitive with inductive coupling. Our results demonstrate that both voltage- and current-controlled signal generators can unintentionally add DC-contamination to a KHFAC signal, and that capacitive coupling is not always sufficient to eliminate this contamination. We furthermore demonstrated that high value inductors, placed in parallel with the electrode, can be effective in eliminating DC-contamination irrespective of the type of stimulator, reducing the DC contamination to less than 1 μA. This study highlights the importance of carefully designing the electronic setup used in KHFAC studies and suggests specific testing that should be performed and reported in all studies that assess the neural response to KHFAC waveforms. PMID:24820914
Oh, S K; Song, C G; Jang, T; Kim, Kwang-Choong; Jo, Y J; Kwak, J S
2013-03-01
This study examined the effect of electron-beam (E-beam) irradiation on the AIGaN/GaN HEMTs for the reduction of gate leakage. After E-beam irradiation, the gate leakage current significantly decreased from 2.68 x 10(-8) A to 4.69 x 10(-9) A at a drain voltage of 10 V. The maximum drain current density of the AIGaN/GaN HEMTs with E-beam irradiation increased 14%, and the threshold voltage exhibited a negative shift, when compared to that of the AIGaN/GaN HEMTs before E-beam irradiation. These results strongly suggest that the reduction of gate leakage current resulted from neutralization nitrogen vacancies and removing of oxygen impurities.
Beier, M E; Ackerman, P L
2001-12-01
This study expanded the scope of knowledge typically included in intellectual assessment to incorporate domains of current-events knowledge from the 1930s to the 1990s across the areas of art/humanities, politics/economics, popular culture, and nature/science/technology. Results indicated that age of participants was significantly and positively related to knowledge about current events. Moreover, fluid intelligence was a less effective predictor of knowledge levels than was crystallized intelligence. Personality (i.e. Openness to Experience) and self-concept were also positively related to current-events knowledge. The results are consistent with an investment theory of adult intellect, which views development as an ongoing outcome of the combined influences of intelligence-as-process, personality, and interests, leading to intelligence-as-knowledge (P. L. Ackerman, 1996b).
Surveying the Commons: Current Implementation of Information Commons Web sites
ERIC Educational Resources Information Center
Leeder, Christopher
2009-01-01
This study assessed the content of 72 academic library Information Commons (IC) Web sites using content analysis, quantitative assessment and qualitative surveys of site administrators to analyze current implementation by the academic library community. Results show that IC Web sites vary widely in content, design and functionality, with few…
Student Mobility Rate: A Moving Target.
ERIC Educational Resources Information Center
Ligon, Glynn; Paredes, Vicente
One of the most elusive statistics in education today is student mobility. Current mobility statistics are based on available rather than appropriate data, resulting in the best available mobility index, rather than one that would serve real information needs. This study documents methods currently being used by school districts and other entities…
Guidelines for the Design and Conduct of Clinical Studies in Knee Articular Cartilage Repair
Mithoefer, Kai; Saris, Daniel B.F.; Farr, Jack; Kon, Elizaveta; Zaslav, Kenneth; Cole, Brian J.; Ranstam, Jonas; Yao, Jian; Shive, Matthew; Levine, David; Dalemans, Wilfried; Brittberg, Mats
2011-01-01
Objective: To summarize current clinical research practice and develop methodological standards for objective scientific evaluation of knee cartilage repair procedures and products. Design: A comprehensive literature review was performed of high-level original studies providing information relevant for the design of clinical studies on articular cartilage repair in the knee. Analysis of cartilage repair publications and synopses of ongoing trials were used to identify important criteria for the design, reporting, and interpretation of studies in this field. Results: Current literature reflects the methodological limitations of the scientific evidence available for articular cartilage repair. However, clinical trial databases of ongoing trials document a trend suggesting improved study designs and clinical evaluation methodology. Based on the current scientific information and standards of clinical care, detailed methodological recommendations were developed for the statistical study design, patient recruitment, control group considerations, study endpoint definition, documentation of results, use of validated patient-reported outcome instruments, and inclusion and exclusion criteria for the design and conduct of scientifically sound cartilage repair study protocols. A consensus statement among the International Cartilage Repair Society (ICRS) and contributing authors experienced in clinical trial design and implementation was achieved. Conclusions: High-quality clinical research methodology is critical for the optimal evaluation of current and new cartilage repair technologies. In addition to generally applicable principles for orthopedic study design, specific criteria and considerations apply to cartilage repair studies. Systematic application of these criteria and considerations can facilitate study designs that are scientifically rigorous, ethical, practical, and appropriate for the question(s) being addressed in any given cartilage repair research project. PMID:26069574
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-05-02
Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components.
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-01-01
Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components. PMID:28468324
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkattraman, Ayyaswamy
2013-11-15
The post-breakdown characteristics of field emission driven microplasma are studied theoretically and numerically. A cathode fall model assuming a linearly varying electric field is used to obtain equations governing the operation of steady state field emission driven microplasmas. The results obtained from the model by solving these equations are compared with particle-in-cell with Monte Carlo collisions simulation results for parameters including the plasma potential, cathode fall thickness, ion number density in the cathode fall, and current density vs voltage curves. The model shows good overall agreement with the simulations but results in slightly overpredicted values for the plasma potential andmore » the cathode fall thickness attributed to the assumed electric field profile. The current density vs voltage curves obtained show an arc region characterized by negative slope as well as an abnormal glow discharge characterized by a positive slope in gaps as small as 10 μm operating at atmospheric pressure. The model also retrieves the traditional macroscale current vs voltage theory in the absence of field emission.« less
Transcatheter Aortic Valve Implantation: Experience with the CoreValve Device.
Asgar, Anita W; Bonan, Raoul
2012-01-01
The field of transcatheter aortic valve implantation has been rapidly evolving. The Medtronic CoreValve first emerged on the landscape in 2004 with initial first human studies, and it is currently being studied in the Pivotal US trial. This article details the current experience with the self-expanding aortic valve with a focus on clinical results and ongoing challenges. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hasanah, L.; Suhendi, E.; Khairrurijal
2018-05-01
Tunelling current calculation on Si/Si1-xGex/Si heterojunction bipolar transistor was carried out by including the coupling between transversal and longitudinal components of electron motion. The calculation results indicated that the coupling between kinetic energy in parallel and perpendicular to S1-xGex barrier surface affected tunneling current significantly when electron velocity was faster than 1x105 m/s. This analytical tunneling current model was then used to study how the germanium concentration in base to Si/Si1-xGex/Si heterojunction bipolar transistor influenced the tunneling current. It is obtained that tunneling current increased as the germanium concentration given in base decreased.
Management of Current Psychiatric Disorders
Carbonnel, François; David, Michel; Norton, Joanna; Bourrel, Gérard; Boulenger, Jean-Philippe; Capdevielle, Delphine
2016-01-01
Objective: Describe and analyse the experience of family physicians in managing current psychiatric disorders to obtain a better understanding of the underlying reasons of under-detection and inadequate prescribing identified in studies. Methods: A qualitative study using in-depth interviews. Sample of 15 practicing family physicians, recruited by telephone from a precedent cohort (Sesame1) with a maximum variation: sex, age, single or group practice, urban or rural. Qualitative method is inspired by the completed grounded theory of a verbatim semiopragmatic analysis from 2 experts in this approach. Results: Family physicians found that current psychiatric disorders were related to psychological symptoms in reaction to life events. Their role was to make patients aware of a psychiatric symptom rather than establish a diagnosis. Their management responsibility was considered in contrasting ways: it was claimed or endured. They defined their position as facilitating compliance to psychiatrist consultations, while assuring a complementary psychotherapeutic approach. Prescribing medication was not a priority for them. Conclusions: The identified under-detection is essentially due to inherent frontline conditions and complexity of clinical forms. The family physician role, facilitating compliance to psychiatrist consultations while assuring a support psychotherapy is the main result of this study. More studies should be conducted to define more accurately the clinical reality, management and course of current psychiatric disorders in primary care.
Ionospheric control of the dawn-dusk asymmetry of the Mars magnetotail current sheet
NASA Astrophysics Data System (ADS)
Liemohn, Michael W.; Xu, Shaosui; Dong, Chuanfei; Bougher, Stephen W.; Johnson, Blake C.; Ilie, Raluca; De Zeeuw, Darren L.
2017-06-01
This study investigates the role of solar EUV intensity at controlling the location of the Mars magnetotail current sheet and the structure of the lobes. Four simulation results are examined from a multifluid magnetohydrodynamic model. The solar wind and interplanetary magnetic field (IMF) conditions are held constant, and the Mars crustal field sources are omitted from the simulation configuration. This isolates the influence of solar EUV. It is found that solar maximum conditions, regardless of season, result in a Venus-like tail configuration with the current sheet shifted to the -Y (dawnside) direction. Solar minimum conditions result in a flipped tail configuration with the current sheet shifted to the +Y (duskside) direction. The lobes follow this pattern, with the current sheet shifting away from the larger lobe with the higher magnetic field magnitude. The physical process responsible for this solar EUV control of the magnetotail is the magnetization of the dayside ionosphere. During solar maximum, the ionosphere is relatively strong and the draped IMF field lines quickly slip past Mars. At solar minimum, the weaker ionosphere allows the draped IMF to move closer to the planet. These lower altitudes of the closest approach of the field line to Mars greatly hinder the day-to-night flow of magnetic flux. This results in a buildup of magnetic flux in the dawnside lobe as the S-shaped topology on that side of the magnetosheath extends farther downtail. The study demonstrates that the Mars dayside ionosphere exerts significant control over the nightside induced magnetosphere of that planet.
Paillé, Pascal; Grima, François
2011-01-01
This study investigates the relationship between organizational citizenship behavior (OCB) and employee intention to leave the organization and current job using a sample of French employees. A survey was sent to 1,200 alumni of a business school in France. Participation in the study was voluntary. The participants were 355 working adults with French citizenship. This paper provides several interesting findings. While no relationship was found between altruism and intention to leave both the organization and the current job, sportsmanship, civic virtue and helping others emerged as the strongest predictors of intention to leave the organization and intention to leave the current job. Results are discussed.
Water-waves on linear shear currents. A comparison of experimental and numerical results.
NASA Astrophysics Data System (ADS)
Simon, Bruno; Seez, William; Touboul, Julien; Rey, Vincent; Abid, Malek; Kharif, Christian
2016-04-01
Propagation of water waves can be described for uniformly sheared current conditions. Indeed, some mathematical simplifications remain applicable in the study of waves whether there is no current or a linearly sheared current. However, the widespread use of mathematical wave theories including shear has rarely been backed by experimental studies of such flows. New experimental and numerical methods were both recently developed to study wave current interactions for constant vorticity. On one hand, the numerical code can simulate, in two dimensions, arbitrary non-linear waves. On the other hand, the experimental methods can be used to generate waves with various shear conditions. Taking advantage of the simplicity of the experimental protocol and versatility of the numerical code, comparisons between experimental and numerical data are discussed and compared with linear theory for validation of the methods. ACKNOWLEDGEMENTS The DGA (Direction Générale de l'Armement, France) is acknowledged for its financial support through the ANR grant N° ANR-13-ASTR-0007.
Propulsion technology for an advanced subsonic transport
NASA Technical Reports Server (NTRS)
Beheim, M. A.; Antl, R. J.; Povolny, J. H.
1972-01-01
Engine design studies for future subsonic commercial transport aircraft were conducted in parallel with airframe studies. These studies surveyed a broad distribution of design variables, including aircraft configuration, payload, range, and speed, with particular emphasis on reducing noise and exhaust emissions without severe economic and performance penalties. The results indicated that an engine for an advanced transport would be similar to the currently emerging turbofan engines. Application of current technology in the areas of noise suppression and combustors imposed severe performance and economic penalties.
NASA Astrophysics Data System (ADS)
Yin, Xunqiang; Shi, Junqiang; Qiao, Fangli
2018-05-01
Due to the high cost of ocean observation system, the scientific design of observation network becomes much important. The current network of the high frequency radar system in the Gulf of Thailand has been studied using a three-dimensional coastal ocean model. At first, the observations from current radars have been assimilated into this coastal model and the forecast results have improved due to the data assimilation. But the results also show that further optimization of the observing network is necessary. And then, a series of experiments were carried out to assess the performance of the existing high frequency ground wave radar surface current observation system. The simulated surface current data in three regions were assimilated sequentially using an efficient ensemble Kalman filter data assimilation scheme. The experimental results showed that the coastal surface current observation system plays a positive role in improving the numerical simulation of the currents. Compared with the control experiment without assimilation, the simulation precision of surface and subsurface current had been improved after assimilated the surface currents observed at current networks. However, the improvement for three observing regions was quite different and current observing network in the Gulf of Thailand is not effective and a further optimization is required. Based on these evaluations, a manual scheme has been designed by discarding the redundant and inefficient locations and adding new stations where the performance after data assimilation is still low. For comparison, an objective scheme based on the idea of data assimilation has been obtained. Results show that all the two schemes of observing network perform better than the original network and optimal scheme-based data assimilation is much superior to the manual scheme that based on the evaluation of original observing network in the Gulf of Thailand. The distributions of the optimal network of radars could be a useful guidance for future design of observing system in this region.
NASA Astrophysics Data System (ADS)
Zhang, Mingyang
2018-06-01
To further study the bidirectional flow problem of V2G (Vehicle to Grid) charge and discharge motor, the mathematical model of AC/DC converter and bi-directional DC/DC converter was established. Then, lithium battery was chosen as the battery of electric vehicle and its mathematical model was established. In order to improve the service life of lithium battery, bidirectional DC/DC converter adopted constant current and constant voltage control strategy. In the initial stage of charging, constant current charging was adopted with current single closed loop control. After reaching a certain value, voltage was switched to constant voltage charging controlled by voltage and current. Subsequently, the V2G system simulation model was built in MATLAB/Simulink. The simulation results verified the correctness of the control strategy and showed that when charging, constant current and constant voltage charging was achieved, the grid side voltage and current were in the same phase, and the power factor was about 1. When discharging, the constant current discharge was applied, and the grid voltage and current phase difference was r. To sum up, the simulation results are correct and helpful.
Ramp compression of a metallic liner driven by a shaped 5 MA current on the SPHINX machine
NASA Astrophysics Data System (ADS)
D'Almeida, Thierry; Lassalle, Francis; Morell, Alain; Grunenwald, Julien; Zucchini, Frédéric; Loyen, Arnaud; Maysonnave, Thomas; Chuvatin, Alexandre
2013-06-01
SPHINX is a 6MA, 1- μs Linear Transformer Driver operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being considered for improving the generator performances, there is a compact Dynamic Load Current Amplifier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse. We present the overall experimental configuration chosen for these experiments, based on electrical and hydrodynamic simulations. Initial results obtained over a set of experiments on an aluminum cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented. Details of the electrical and Photonic Doppler Velocimetry (PDV) setups used to monitor and diagnose the ramp compression experiments are provided. Current profiles measured at various locations across the system, particularly the load current, agree with simulated current profile and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements agree with the hydrocode results obtained using the measured load current as the input. Higher ramp pressure levels are foreseen in future experiments with an improved DLCM system.
A descriptive study of sexual homicide in Canada: implications for police investigation.
Beauregard, Eric; Martineau, Melissa
2013-12-01
Few empirical studies have been conducted that examine the phenomenon of sexual homicide, and among these studies, many have been limited by small sample size. Although interesting and informative, these studies may not be representative of the greater phenomenon of sexual murder and may be subject to sampling bias that could have significant effects on results. The current study aims to provide a descriptive analysis of the largest sample of sexual homicide cases across Canada in the past 62 years. In doing so, the study aims to examine offender and victim characteristics, victim targeting and access, and modus operandi. Findings show that cases of sexual homicide and sexual murderers included in the current study differ in many aspects from the portrait of the sexual murderer and his or her crime depicted in previous studies. The authors' results may prove useful to the police officers responsible for the investigation of these crimes.
Preliminary results from the hydrodynamic element of the 1994 entrapment zone study
Burau, J.R.; Stacey, M.; Gartner, J.W.
1995-01-01
This article discusses preliminary results from analyses of USGS hydrodynamic data collected as part of the 1994 Interagency Ecological Program entrapment zone study. The USGS took part in three 30-hour cruises and deployed instruments for measuring currents and salinity from April to June. This article primarily focuses on the analysis of data from five Acoustic Doppler Current ProUers (ADCPs) deployed in Carquinez Strait, Suisun Bay, and the Western Delta. From these analyses a revised conceptual model of the hydrodynamics of the entrapment/null zone has evolved. The ideas discussed in this newsletter article are essentially working hypotheses, which are presented here to stimulate discussion and further analyses. In this article we discuss the currently-held conceptual model of entrapment and present data that are inconsistent with this conceptual model. Finally, we suggest a revised conceptual model that is consistent with all of the hydrodynamic data collected to date and describe how the 1995 study incorporates our revised conceptual model into its design.
Review of current sonic boom studies.
NASA Technical Reports Server (NTRS)
Kane, E. J.
1973-01-01
Several aspects of the sonic boom phenomena are currently under investigation at The Boeing Co. This work, supported by the NASA and the FAA, includes an in-depth analysis of sonic boom measurements recorded at the BREN tower, a summary and evaluation of sonic boom investigations done in the last decade and a half, and configuration studies to determine practical lower bound sonic boom limits. The BREN tower test program yielded unique and valuable data because it was the first time that vertical profile measurements were made through caustics produced by maneuvers and atmospheric refraction. The objective of the second effort is to compile in a single reference an annotated abstract, including significant results, for each published sonic boom study and to provide a comprehensive review of the current state of the art to aid future researchers. The configuration work is devoted toward determining the feasibility of supersonic transport type airplanes with a primary design goal of acceptable sonic boom characteristics. Each of these investigations is briefly reviewed and significant results are discussed.
Shapero, Benjamin G.; Black, Shimrit K.; Liu, Richard T.; Klugman, Joshua; Bender, Rachel E.; Abramson, Lyn Y.; Alloy, Lauren B.
2013-01-01
Objective Stressful life events are associated with an increase in depressive symptoms and the onset of major depression. Importantly, research has shown that the role of stress changes over the course of depression. The present study extends the current literature by examining the effects of early life stress on emotional reactivity to current stressors. Method In a multiwave study (N = 281, mean age = 18.76; 68% female), we investigated the proximal changes that occur in depressive symptoms when individuals are faced with life stress and whether a history of childhood emotional abuse moderates this relationship. Results Results support the stress sensitivity hypothesis for early emotional abuse history. Individuals with greater childhood emotional abuse severity experienced greater increases in depressive symptoms when confronted with current dependent stressors, controlling for childhood physical and sexual abuse. Conclusions This study highlights the importance of emotional abuse as an indicator for reactivity to stressful life events. PMID:23800893
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharathi, M. N.; Vinayakprasanna, N. H.; Prakash, A. P. Gnana, E-mail: gnanaprakash@physics.uni-mysore.ac.in
The total dose effects of 80 MeV C{sup 6+} ions on the DC electrical characteristics of Silicon NPN rf power transistors have been studied in the dose range of 100 krad to 100 Mrad. The SRIM simulation was used to understand the energy loss and range of the ions in the transistor structure. The different electrical parameters such as Gummel characteristics, excess base current (ΔI{sub B} = I{sub Bpost} - I{sub Bpre}), dc forward current gain (h{sub FE}), transconductance (g{sub m}), displacement damage factor (K) and output characteristics (V{sub CE}-I{sub C}) were studied systematically before and after irradiation. The significantmore » degradation in base current (I{sub B}) and h{sub FE} was observed after irradiation. Isochronal annealing study was conducted on the irradiated transistors to analyze the recovery in different electrical parameters. These results were compared with {sup 60}C0 gamma irradiation results in the same dose range.« less
Study of DC Circuit Breaker of H2-N2 Mixture Gas for High Voltage
NASA Astrophysics Data System (ADS)
Shiba, Yuji; Morishita, Yukinaga; Kaneko, Shuhei; Okabe, Shigemitsu; Mizoguchi, Hitoshi; Yanabu, Satoru
Global warming caused by CO2 etc. is a field where the concern is very high. Especially, automobile emissions are problem for it. Therefore, the hybrid car is widely development and used recently. Hybrid car used electric power and gasoline. So, the car reduces CO2. Hybrid car has engine and motor. To rotate the motor, hybrid car has battery. This battery is large capacity. Therefore, the relay should interrupt high DC current for the switch of the motor and the engine. So, hybrid car used hydrogen gas filling relay We studied interruption test for the research of a basic characteristic of hydrogen gas. DC current has not current zero point. So, it is necessary to make the current zero by high arc voltage and forcible current zero point. The loss coefficient and arc voltage of hydrogen is high. Therefore, we studied interruption test for used high arc voltage. We studied interruption test and dielectric breakdown test of air, pure Hydrogen, and Hydrogen- nitrogen mixture gas. As a result, we realized H2-N2(80%-20%) is the best gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandhi, Diksha; Schmidt, Taly Gilat, E-mail: taly.gilat-schmidt@marquette.edu; Crotty, Dominic J.
Purpose: This technical note quantifies the dose and image quality performance of a clinically available organ-dose-based tube current modulation (ODM) technique, using experimental and simulation phantom studies. The investigated ODM implementation reduces the tube current for the anterior source positions, without increasing current for posterior positions, although such an approach was also evaluated for comparison. Methods: Axial CT scans at 120 kV were performed on head and chest phantoms on an ODM-equipped scanner (Optima CT660, GE Healthcare, Chalfont St. Giles, England). Dosimeters quantified dose to breast, lung, heart, spine, eye lens, and brain regions for ODM and 3D-modulation (SmartmA) settings.more » Monte Carlo simulations, validated with experimental data, were performed on 28 voxelized head phantoms and 10 chest phantoms to quantify organ dose and noise standard deviation. The dose and noise effects of increasing the posterior tube current were also investigated. Results: ODM reduced the dose for all experimental dosimeters with respect to SmartmA, with average dose reductions across dosimeters of 31% (breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye lens), and 11% (brain), with similar results for the simulation validation study. In the phantom library study, the average dose reduction across all phantoms was 34% (breast), 20% (lung), 8% (spine), 20% (eye lens), and 8% (brain). ODM increased the noise standard deviation in reconstructed images by 6%–20%, with generally greater noise increases in anterior regions. Increasing the posterior tube current provided similar dose reduction as ODM for breast and eye lens, increased dose to the spine, with noise effects ranging from 2% noise reduction to 16% noise increase. At noise equal to SmartmA, ODM increased the estimated effective dose by 4% and 8% for chest and head scans, respectively. Increasing the posterior tube current further increased the effective dose by 15% (chest) and 18% (head) relative to SmartmA. Conclusions: ODM reduced dose in all experimental and simulation studies over a range of phantoms, while increasing noise. The results suggest a net dose/noise benefit for breast and eye lens for all studied phantoms, negligible lung dose effects for two phantoms, increased lung dose and/or noise for eight phantoms, and increased dose and/or noise for brain and spine for all studied phantoms compared to the reference protocol.« less
NASA Astrophysics Data System (ADS)
Alhajdarwish, Mustafa Yousef
This thesis describes studies of two phenomena: Current-Induced Magnetization Switching (CIMS), and Current-Induced Generation of GHz Radiation. The CIMS part contains results of measurements of current-perpendicular-to-plane (CPP) magnetoresistance (MR) and CIMS behavior on Ferromagnetic/Nonmetal/Ferromagnetic (F1/N/F2) nanopillars. Judicious combinations of F1 and F2 metals with different bulk scattering asymmetries, and with F1/N and N/F2 interfaces having different interfacial scattering asymmetries, are shown to be able to controllably, and independently, 'invert' both the CPP-MR and the CIMS. In 'normal' CPP-MR, R(AP) > R(P), where R(AP) and R(P) are the nanopillar resistances for the anti-parallel (AP) and parallel (P) orientations of the Fi and F2 magnetic moments. In 'inverse' CPP-MR, R(P) > R(AP). In 'normal' CIMS, positive current switches the nanopillar from the P to the AP state. In 'inverse' CIMS, positive current switches the nanopillar from AP to P. All four possible combinations of CPP-MR and CIMS---(a) 'normal'-'normal', (b) 'normal'- 'inverse', 'inverse'-'normal', and (d) 'inverse'-'inverse' are shown and explained. These results rule out the self-Oersted field as the switching source, since the direction of that field is independent of the bulk or interfacial scattering asymmetries. Successful use of impurities to reverse the bulk scattering asymmetry shows the importance of scattering off of impurities within the bulk F1 and F2 metals---i.e. that the transport must be treated as 'diffusive' rather than 'ballistic'. The GHz studies consist of five parts: (1) designing a sample geometry that allows reliable measurements; (2) making nanopillar samples with this geometry; (3) constructing a system for measuring frequencies up to 12 GHz and measuring current-driven GHz radiation data with it; (4) showing 'scaling' behavior of GHz data with the critical fields and currents for nominally identical (but actually slightly different) samples, and justifying such scaling; and (5) designing and constructing a system for frequency domain studies up to 40 GHz and for time domain studies.
Hydrodynamic measurements in Suisun Bay, California, 1992-93
Gartner, Jeffrey W.; Burau, Jon R.
1999-01-01
Sea level, velocity, temperature, and salinity (conductivity and temperature) data collected in Suisun Bay, California, from December 11, 1992, through May 31, 1993, by the U.S. Geological Survey are documented in this report. Sea-level data were collected at four locations and temperature and salinity data were collected at seven locations. Velocity data were collected at three locations using acoustic Doppler current profilers and at four other locations using point velocity meters. Sea-level and velocity data are presented in three forms (1) harmonic analysis results, (2) time-series plots (sea level, current speed, and current direction versus time), and (3) time-series plots of the low-pass filtered data. Temperature and salinity data are presented as plots of raw and low-pass filtered time series. The velocity and salinity data collected during this study document a period when the residual current patterns and salt field were significantly altered by large Delta outflow (three peaks in excess of 2,000 cubic meters per second). Residual current profiles were consistently seaward with magnitudes that fluctuated primarily in concert with Delta outflow and secondarily with the spring-neap tide cycle. The freshwater inputs advected salinity seaward of Suisun Bay for most of this study. Except for a 10-day period at the beginning of the study, dynamically significant salinities (>2) were seaward of Suisun Bay, which resulted in little or no gravitational circulation transport.
Non-inductive current generation in fusion plasmas with turbulence
NASA Astrophysics Data System (ADS)
Wang, Weixing; Ethier, S.; Startsev, E.; Chen, J.; Hahm, T. S.; Yoo, M. G.
2017-10-01
It is found that plasma turbulence may strongly influence non-inductive current generation. This may have radical impact on various aspects of tokamak physics. Our simulation study employs a global gyrokinetic model coupling self-consistent neoclassical and turbulent dynamics with focus on electron current. Distinct phases in electron current generation are illustrated in the initial value simulation. In the early phase before turbulence develops, the electron bootstrap current is established in a time scale of a few electron collision times, which closely agrees with the neoclassical prediction. The second phase follows when turbulence begins to saturate, during which turbulent fluctuations are found to strongly affect electron current. The profile structure, amplitude and phase space structure of electron current density are all significantly modified relative to the neoclassical bootstrap current by the presence of turbulence. Both electron parallel acceleration and parallel residual stress drive are shown to play important roles in turbulence-induced current generation. The current density profile is modified in a way that correlates with the fluctuation intensity gradient through its effect on k//-symmetry breaking in fluctuation spectrum. Turbulence is shown to deduct (enhance) plasma self-generated current in low (high) collisionality regime, and the reduction of total electron current relative to the neoclassical bootstrap current increases as collisionality decreases. The implication of this result to the fully non-inductive current operation in steady state burning plasma regime should be investigated. Finally, significant non-inductive current is observed in flat pressure region, which is a nonlocal effect and results from turbulence spreading induced current diffusion. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.
Asymmetry of the Martian Current Sheet in a Multi-fluid MHD Model
NASA Astrophysics Data System (ADS)
Panoncillo, S. G.; Egan, H. L.; Dong, C.; Connerney, J. E. P.; Brain, D. A.; Jakosky, B. M.
2017-12-01
The solar wind carries interplanetary magnetic field (IMF) lines toward Mars, where they drape around the planet's conducting ionosphere, creating a current sheet behind the planet where the magnetic field has opposite polarity on either side. In its simplest form, the current sheet is often thought of as symmetric, extending behind the planet along the Mars-Sun line. Observations and model simulations, however, demonstrate that this idealized representation is only an approximation, and the actual scenario is much more complex. The current sheet can have 3D structure, move back and forth, and be situated dawnward or duskward of the Mars-Sun line. In this project, we utilized a library of global plasma model results for Mars consisting of a collection of multi-fluid MHD simulations where solar max/min, sub-solar longitude, and the orbital position of Mars are varied individually. The model includes Martian crustal fields, and was run for identical steady solar wind conditions. This library was created for the purpose of comparing model results to MAVEN data; we looked at the results of this model library to investigate current sheet asymmetries. By altering one variable at a time we were able to measure how these variables influence the location of the current sheet. We found that the current sheet is typically shifted toward the dusk side of the planet, and that modeled asymmetries are especially prevalent during solar min. Previous model studies that lack crustal fields have found that, for a Parker spiral IMF, the current sheet will shift dawnward, while our results typically show the opposite. This could expose certain limitations in the models used, or it could reveal an interaction between the solar wind and the plasma environment of Mars that has not yet been explored. MAVEN data may be compared to the model results to confirm the sense of the modeled asymmetry. These results help us to probe the physics controlling the Martian magnetotail and atmospheric escape from Mars.
Highly sensitive current sensor utilizing CrNi-wire supported microfiber coils
NASA Astrophysics Data System (ADS)
Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Jin, Long; Guan, Bai-ou
2013-09-01
High current sensitivity is obtained based on a microfiber that is wrapping around a chrome-nickel (CrNi) wire. Due to the strong heating effect of the CrNi wire with the flowing electric current, the mode index and the loop length of microfiber are changed, resulting in the shift of resonant wavelength. The measured current responsivity is as high as 220.65nm/A2, which is in two or three magnitude orders than the previously-obtained ones. We study the influence of component size to the structure performance, which is useful for future applications of current sensing or tuning devices.
NASA Astrophysics Data System (ADS)
Omura, Yasuhisa; Mori, Yoshiaki; Sato, Shingo; Mallik, Abhijit
2018-04-01
This paper discusses the role of trap-assisted-tunneling process in controlling the ON- and OFF-state current levels and its impacts on the current-voltage characteristics of a tunnel field-effect transistor. Significant impacts of high-density traps in the source region are observed that are discussed in detail. With regard to recent studies on isoelectronic traps, it has been discovered that deep level density must be minimized to suppress the OFF-state leakage current, as is well known, whereas shallow levels can be utilized to control the ON-state current level. A possible mechanism is discussed based on simulation results.
Four-dimensional ultrasound current source density imaging of a dipole field
NASA Astrophysics Data System (ADS)
Wang, Z. H.; Olafsson, R.; Ingram, P.; Li, Q.; Qin, Y.; Witte, R. S.
2011-09-01
Ultrasound current source density imaging (UCSDI) potentially transforms conventional electrical mapping of excitable organs, such as the brain and heart. For this study, we demonstrate volume imaging of a time-varying current field by scanning a focused ultrasound beam and detecting the acoustoelectric (AE) interaction signal. A pair of electrodes produced an alternating current distribution in a special imaging chamber filled with a 0.9% NaCl solution. A pulsed 1 MHz ultrasound beam was scanned near the source and sink, while the AE signal was detected on remote recording electrodes, resulting in time-lapsed volume movies of the alternating current distribution.
Frieden, M; Sollini, M; Bény, J-L
1999-01-01
Substance P and bradykinin, endothelium-dependent vasodilators of pig coronary artery, trigger in endothelial cells a rise in cytosolic Ca2+ concentration ([Ca2+]i) and membrane hyperpolarization. The aim of the present study was to determine the type of Ca2+-dependent K+ (KCa) currents underlying the endothelial cell hyperpolarization. The substance P-induced increase in [Ca2+]i was 30 % smaller than that induced by bradykinin, although the two peptides triggered a membrane hyperpolarization of the same amplitude. The two agonists evoked a large outward K+ current of the same conductance at maximal stimulation. Agonists applied together produced the same maximal current amplitude as either one applied alone. Iberiotoxin (50 nM) reduced by about 40 % the K+ current activated by bradykinin without modifying the substance P response. Conversely, apamin (1 μm) inhibited the substance P-induced K+ current by about 65 %, without affecting the bradykinin response. Similar results were obtained on peptide-induced membrane hyperpolarization. Bradykinin-induced, but not substance P-induced, endothelium-dependent relaxation resistant to NG-nitro-L-arginine and indomethacin was partly inhibited by 3 μm 17-octadecynoic acid (17-ODYA), an inhibitor of cytochrome P450 epoxygenase. Similarly, the bradykinin-induced K+ current was reduced by 17-ODYA. Our results show that responses to substance P and bradykinin result in a hyperpolarization due to activation of different KCa currents. A current consistent with the activation of large conductance (BKCa) channels was activated only by bradykinin, whereas a current consistent with the activation of small conductance (SKCa) channels was stimulated only by substance P. The observation that a similar electrical response is produced by different pools of channels implies distinct intracellular pathways leading to KCa current activation. PMID:10457055
Laser Communication Demonstration System (LCDS) and future mobile satellite services
NASA Technical Reports Server (NTRS)
Chen, Chien-Chung; Wilhelm, Michael D.; Lesh, James R.
1995-01-01
The Laser Communications Demonstration System (LCDS) is a proposed in-orbit demonstration of high data rate laser communications technology conceived jointly by NASA and U.S. industry. The program objectives are to stimulate industry development and to demonstrate the readiness of high data rate optical communications in Earth orbit. For future global satellite communication systems using intersatellite links, laser communications technology can offer reduced mass and power requirements and higher channel bandwidths without regulatory constraints. As currently envisioned, LCDS will consist of one or two orbiting laser communications terminals capable of demonstrating high data rate (greater than 750Mbps) transmission in a dynamic space environment. Two study teams led by Motorola and Ball Aerospace are currently in the process of conducting a Phase A/B mission definition study of LCDS under contracts with JPL/NASA. The studies consist of future application survey, concept and requirements definition, and a point design of the laser communications flight demonstration. It is planned that a single demonstration system will be developed based on the study results. The Phase A/B study is expected to be completed by the coming June, and the current results of the study are presented in this paper.
Smoking Is Associated with Acute and Chronic Prostatic Inflammation: Results from the REDUCE Study.
Moreira, Daniel M; Nickel, J Curtis; Gerber, Leah; Muller, Roberto L; Andriole, Gerald L; Castro-Santamaria, Ramiro; Freedland, Stephen J
2015-04-01
Both anti- and proinflammatory effects of cigarette smoking have been described. As prostate inflammation is common, we hypothesized smoking could contribute to prostate inflammation. Thus, we evaluated the association of smoking status with acute and chronic inflammation within the prostate of men undergoing prostate biopsy. We retrospectively analyzed 8,190 men ages 50 to 75 years with PSA levels between 2.5 and 10 ng/mL enrolled in the Reduction by Dutasteride of Prostate Cancer Events study. Smoking status was self-defined as never, former, or current. Prostate inflammation was assessed by systematic central review blinded to smoking status. The association of smoking with inflammation in the baseline, 2-year, and 4-year biopsies was evaluated with univariable and multivariable logistic regressions. At study enrollment, 1,233 (15%), 3,203 (39%), and 3,754 (46%) men were current, former, and never smokers, respectively. Current smokers were significantly younger and had smaller prostates than former and never smokers (all P < 0.05). Former smokers were significantly heavier than current and never smokers (P < 0.001). Acute and chronic prostate inflammations were identified in 1,261 (15%) and 6,352 (78%) baseline biopsies, respectively. In univariable analysis, current smokers were more likely to have acute inflammation than former (OR, 1.35; P, 0.001) and never smokers (OR, 1.36; P, 0.001). The results were unchanged at 2- and 4-year biopsies. In contrast, current smoking was linked with chronic inflammation in the baseline biopsy, but not at 2- and 4-year biopsies. In conclusion, among men undergoing prostate biopsy, current smoking was independently associated with acute and possibly chronic prostate inflammations. ©2015 American Association for Cancer Research.
Focal therapy in prostate cancer: the current situation
Jácome-Pita, FX; Sánchez-Salas, R; Barret, E; Amaruch, N; Gonzalez-Enguita, C; Cathelineau, X
2014-01-01
Prostate cancer is one of the most significant pathologies in the field of urology. The adoption of screening strategies and improvements in biopsies have resulted in an increase in early-stage tumour detection. Radical global therapies provide very good oncological results in localised prostate cancer. However, excess treatment in low- and, in some cases, intermediate-risk groups affects the quality of life of these patients. In the case of localised prostate cancer, focal therapies offer a minimally invasive option with good results with respect to established treatments. Although this is currently not a standard treatment, it represents the therapeutic approach with the greatest potential. This literature review has the following objectives: to define selection criteria for patients who are candidates for focal therapy, to assess the current situation and results of the different therapeutic options, and to define procedures in cases of recurrence and for follow-ups. We concluded that focal therapy is a viable therapeutic alternative for localised prostate cancer, specifically cryosurgery and high-intensity targeted ultrasound, which have acceptable oncologic results and a lower comorbidity compared with global treatments. Studies with a high level of scientific evidence are still needed to validate these results. Acquisition of evidence A search was carried out on the Medline (PubMed), EMBASE, Web of Science and Cochrane databases of all papers published before 31 July 2013. We included clinical studies and literature reviews that evaluated primary focal therapy for prostate cancer confirmed by biopsy and excluded focal rescue therapy studies. The keywords used were focal therapy and prostate cancer. Initially, we found 42 articles; 15 studies were excluded because they did not meet the minimum criteria for inclusion. A total of 1350 cases were treated throughout 27 studies. PMID:24944577
NASA Technical Reports Server (NTRS)
Stephens, G. K.; Sitnov, M. I.; Ukhorskiy, A. Y.; Roelof, E. C.; Tsyganenko, N. A.; Le, G.
2016-01-01
The structure of storm time currents in the inner magnetosphere, including its innermost region inside 4R(sub E), is studied for the first time using a modification of the empirical geomagnetic field model TS07D and new data from Van Allen Probes and Time History of Events and Macroscale Interactions during Substorms missions. It is shown that the model, which uses basis-function expansions instead of ad hoc current modules to approximate the magnetic field, consistently improves its resolution and magnetic field reconstruction with the increase of the number of basis functions and resolves the spatial structure and evolution of the innermost eastward current. This includes a connection between the westward ring current flowing largely at R > or approx. 3R(sub E) and the eastward ring current concentrated at R < or approx. 3R(sub E) resulting in a vortex current pattern. A similar pattern coined 'banana current' was previously inferred from the pressure distributions based on the energetic neutral atom imaging and first-principles ring current simulations. The morphology of the equatorial currents is dependent on storm phase. During the main phase, it is complex, with several asymmetries forming banana currents. Near SYM-H minimum, the banana current is strongest, is localized in the evening-midnight sector, and is more structured compared to the main phase. It then weakens during the recovery phase resulting in the equatorial currents to become mostly azimuthally symmetric.
Mars Sample Return Architecture Assessment Study
NASA Astrophysics Data System (ADS)
Centuori, S.; Hermosín, P.; Martín, J.; De Zaiacomo, G.; Colin, S.; Godfrey, A.; Myles, J.; Johnson, H.; Sachdev, T.; Ahmed, R.
2018-04-01
Current paper presents the results of ESA funded activity "Mars Sample Return Architecture Assessment Study" carried-out by DEIMOS Space, Lockheed Martin UK Ampthill, and MDA Corporation, where more than 500 mission design options have been studied.
STUDIES ON THE FORMATION AND IONIZATION OF THE COMPOUNDS OF CASEIN WITH ALKALI
Greenberg, David M.; Schmidt, Carl L. A.
1924-01-01
1. The deposition of casein on a platinum anode which takes place on the passage of a direct current through solutions of alkali caseinates was quantitatively studied, and it was found that: (a) the amount of casein which is deposited is directly proportional to the current, i.e. it obeys Faraday's law; (b) the amount of casein deposited is inversely proportional (within the limits studied) to the amount of alkali which is combined with the casein. 2. A method of determining the transport numbers of proteins insoluble at their isoelectric point has been developed. 3. A titration method for determining the amount of alkali in a casein solution is given. 4. Data from the results of transference experiments on sodium caseinate, potassium caseinate, cesium caseinate, and rubidium caseinate solutions are given. It is shown that the data are best explained on the assumption that in these solutions the carriers of the current are alkali metal cations and casein anions. 5. On the basis of our transference results an explanation is given of the results which were obtained by Robertson and by Haas in their migration experiments. PMID:19872135
Ukrainian Program for Material Science in Microgravity
NASA Astrophysics Data System (ADS)
Fedorov, Oleg
Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.
The study of ionization by electron impact of a substance simulating spent nuclear fuel components
NASA Astrophysics Data System (ADS)
Antonov, N. N.; Bochkarev, E. I.; Gavrikov, A. V.; Samokhin, A. A.; Smirnov, V. P.
2015-11-01
Plasma sources of model substances are necessary to solve problems associated with development of the spent nuclear fuel (SNF) plasma separation method. Lead was chosen to simulate kinetic and dynamic properties of the heavy SNF components. In this paper we present the results of a study of a lead vapor discharge with a lead concentration of 1012-1013 cm-3. Ionization was carried out by an electron beam (with energy of up to 500 eV per electron) inside a centimeter gap between planar electrodes. The discharge was numerically modeled using the hydrodynamic and single-particle approximation. Current-voltage characteristics and single ionization efficiency were obtained as functions of the vapors concentration and thermoelectric current. An ion current of hundreds of microamperes at the ionization efficiency near tenths of a percent was experimentally obtained. These results are in good agreement with our model.
The Science Achievement of Year 12 Students in Australia. ACER Research Monograph No. 40.
ERIC Educational Resources Information Center
Rosier, Malcolm J.; Long, Michael G.
This report sets out results for Australia arising from its participation in the Second International Science Study (SISS). The focus is on Year 12 students, including those studying science and those not currently studying science. Most of the results for the science students are presented separately for those specializing in biology, chemistry,…
NASA Astrophysics Data System (ADS)
Kaselouris, E.; Dimitriou, V.; Fitilis, I.; Skoulakis, A.; Koundourakis, G.; Clark, E. L.; Chatzakis, J.; Bakarezos, Μ; Nikolos, I. K.; Papadogiannis, N. A.; Tatarakis, M.
2018-01-01
This article addresses key features for the implementation of low current pulsed power plasma devices for the study of matter dynamics from the solid to the plasma phase. The renewed interest in such low current plasma devices lies in the need to investigate methods for the mitigation of prompt seeding mechanisms for the generation of plasma instabilities. The low current when driven into thick wires (skin effect mode) allows for the simultaneous existence of all phases of matter from solid to plasma. Such studies are important for the concept of inertial confinement fusion where the mitigation of the instability seeding mechanisms arising from the very early moments within the target’s heating is of crucial importance. Similarly, in the magnetized liner inertial fusion concept it is an open question as to how much surface non-uniformity correlates with the magneto-Rayleigh-Taylor instability, which develops during the implosion. This study presents experimental and simulation results, which demonstrate that the use of low current pulsed power devices in conjunction with appropriate diagnostics can be important for studying seeding mechanisms for the imminent generation of plasma instabilities in future research.
Schäfer, Ralf B
2012-01-15
This Special Issue focuses on the questions if and how biodiversity, ecosystem functions and resulting services could be incorporated into the Ecological Risk Assessment (ERA). Therefore, three articles provide a framework for the integration of ecosystem services into ERA of soils, sediments and pesticides. Further articles demonstrate ways how stakeholders can be integrated into an ecosystem service-based ERA for soils and describe how the current monitoring could be adapted to new assessment endpoints that are directly linked to ecosystem services. Case studies show that the current ERA may not be protective for biodiversity, ecosystem functions and resulting services and that both pesticides and salinity currently adversely affect ecosystem functions in the field. Moreover, ecological models can be used for prediction of new protection goals and could finally support their implementation into the ERA. Overall, the Special Issue stresses the urgent need to enhance current procedures of ERA if biodiversity, ecosystem functions and resulting services are to be protected. Copyright © 2011 Elsevier B.V. All rights reserved.
Remote sensing of ocean currents. [Loop Current in Gulf of Mexico
NASA Technical Reports Server (NTRS)
Maul, G. A. (Principal Investigator)
1974-01-01
The author has identified the following significant results. A time series of the Loop Current in the Gulf of Mexico, covering an annual cycle of growth, spreading, and decay, has been obtained in synchronization with ERTS-1. Computer enhanced images, which are necessary to extract useful oceanic information, show that the current can be observed either by color or sea state effects associated with the cyclonic boundary. The color effect relates to the spectral variations in the optical properties of the water and its suspended particles, and is studied by radiative transfer theory. Significant oceanic parameters identified are: the probability of forward scattering, and the ratio of scattering to total attenuation. Several spectra of upwelling diffuse light are computed as a function of the concentration of particles and yellow substance. These calculations compare favorably with experimental measurements and show that the ratio of channels method gives ambiguous interpretative results. These results are used to discuss features in images where surface measurements were obtained and are extended to tentative explanation in others.
NASA Astrophysics Data System (ADS)
Cao, G. P.; Song, R. G.
2018-02-01
Micro-arc oxidation (MAO) ceramic coatings were prepared in silicate-based electrolyte on 7075 aluminum alloy. The effects of current density on microstructure and properties of the MAO coatings were studied by scanning electron microscopy (SEM), stereoscopic microscopy, x-ray diffraction (XRD), electrochemical tests as well as tribological and wear tests. The results showed that the current density plays an important role in affecting the quality of the MAO coatings. XRD results showed that the α-Al2O3 phase first increased then decreased with increasing the current density, which matched well with the micro-hardness test and the wearing test results. On the other hand, the coalescent strength measurements revealed that the coating prepared at the current density of 12 A dm-2 is of the highest adhesion force. The potentiodynamic polarization test proved that the coating obtained under 10 A dm-2 exhibits the best corrosion resistance, which is directly related to the morphology of coating.
NASA Technical Reports Server (NTRS)
Rodi, Patrick E.; Dolling, David S.
1992-01-01
A combined experimental/computational study has been performed of sharp fin induced shock wave/turbulent boundary layer interactions at Mach 5. The current paper focuses on the experiments and analysis of the results. The experimental data include mean surface heat transfer, mean surface pressure distributions and surface flow visualization for fin angles of attack of 6, 8, 10, 12, 14 and 16-degrees at Mach 5 under a moderately cooled wall condition. Comparisons between the results and correlations developed earlier show that Scuderi's correlation for the upstream influence angle (recast in a conical form) is superior to other such correlations in predicting the current results, that normal Mach number based correlations for peak pressure heat transfer are adequate and that the initial heat transfer peak can be predicted using pressure-interaction theory.
Chebabhi, A; Fellah, M K; Kessal, A; Benkhoris, M F
2015-07-01
In this paper the performances of three reference currents and DC bus voltage control techniques for Three-Phase Four-Wire Four-Leg SAPF are compared for balanced and unbalanced load conditions. The main goals are to minimize the harmonics, reduce the magnitude of neutral current, eliminate the zero-sequence current components caused by single-phase nonlinear loads and compensate the reactive power, and on the other hand improve performances such as robustness, stabilization, trajectory pursuit, and reduce time response. The three techniques are analyzed mathematically and simulation results are compared. The techniques considered for comparative study are the PI Control, Sliding Mode Control and the Backstepping Control. Synchronous reference frame theory (SRF) in the dqo-axes is used to generate the reference currents, of the inverter. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Jet behaviors and ejection mode recognition of electrohydrodynamic direct-write
NASA Astrophysics Data System (ADS)
Zheng, Jianyi; Zhang, Kai; Jiang, Jiaxin; Wang, Xiang; Li, Wenwang; Liu, Yifang; Liu, Juan; Zheng, Gaofeng
2018-01-01
By introducing image recognition and micro-current testing, jet behavior research was conducted, in which the real-time recognition of ejection mode was realized. To study the factors influencing ejection modes and the current variation trends under different modes, an Electrohydrodynamic Direct-Write (EDW) system with functions of current detection and ejection mode recognition was firstly built. Then a program was developed to recognize the jet modes. As the voltage applied to the metal tip increased, four jet ejection modes in EDW occurred: droplet ejection mode, Taylor cone ejection mode, retractive ejection mode and forked ejection mode. In this work, the corresponding relationship between the ejection modes and the effect on fiber deposition as well as current was studied. The real-time identification of ejection mode and detection of electrospinning current was realized. The results in this paper are contributed to enhancing the ejection stability, providing a good technical basis to produce continuous uniform nanofibers controllably.
Mid-Atomic-Number Cylindrical Wire Array Precursor Plasma Studies on Zebra
Stafford, A; Safronova, A. S.; Kantsyrev, V. L.; ...
2014-12-30
The precursor plasmas from low wire number cylindrical wire arrays (CWAs) were previously shown to radiate at temperatures >300 eV for Ni-60 (94% Cu and 6% Ni) wires in experiments on the 1-MA Zebra generator. Continued research into precursor plasmas has studied additional midatomic-number materials including Cu and Alumel (95% Ni, 2% Al, 2% Mn, and 1% Si) to determine if the >300 eV temperatures are common for midatomic-number materials. Additionally, current scaling effects were observed by performing CWA precursor experiments at an increased current of 1.5 MA using a load current multiplier. Our results show an increase in amore » linear radiation yield of ~50% (16 versus 10 kJ/cm) for the experiments at increased current. However, plasma conditions inferred through the modeling of X-ray time-gated spectra are very similar for the precursor plasma in both current conditions.« less
NASA Astrophysics Data System (ADS)
Yousefi, Taher; Torab-Mostaedi, Meisam; Mobtaker, Hossein Ghasemi; Keshtkar, Ali Reza
2016-10-01
The strategy developed in this study, offers significant advantages (simplicity and cleanness of method and also a product purity and new morphology of the product) over the conventional routes for the synthesis of ThO2 nanostructure. The effect of current density on morphology was studied. The synthesized powder was characterized by means of Powder X-ray Diffraction (PXRD), Transmission Electron Microscopy (TEM, Phillips EM 2085) Brunauer-Emmett-Teller (BET) and Fourier Transform Infrared (FT-IR) spectroscopy. The results show that the current density has a great effect on the morphology of the samples. The average size of the particles decreases as the applied current density increases and the average size of the samples decreases from 50 to 15 nm when the current density increases from 2 to 5 mA cm-2.
Observation and analysis of tidal and residual current in the North Yellow Sea in the spring
NASA Astrophysics Data System (ADS)
Miao, Qingsheng; Yang, Jinkun; Yang, Yang; Wan, Fangfang; Yu, Jia
2018-02-01
In order to study the current characteristics of the North Yellow Sea (NYS), 4 moored ADCPs (Acoustic Doppler Current Profilers) were deployed and Current characteristics were analyzed based on the observations. Results show that tidal current is the dominant and M2 is the main constituent. Shallow water constituents are obvious in the near-shore area, and tidal current ellipses directions have relations with topography. Residual currents in the Bohai Strait point to the Bohai Sea interior and the magnitude have a connection with terrain. Residual current in south NYS can be divided into two layers, and energy of residual current only accounts for about 13% of the total energy. Barotropic eddy kinetic energy plays a major role and the average in NYS accounts for 87%, baroclinic mean kinetic energy is larger in north NYS, in other regions barotropic mean kinetic energy take the leading position.
Kwon, Yong Hyun; Jang, Sung Ho
2012-08-25
We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.
How Are African Americans Currently Represented in Various Social Work Venues?
ERIC Educational Resources Information Center
Briggs, Harold E.; Holosko, Michael J.; Banks, Leon; Huggins-Hoyt, Kimberly Y.; Parker, Jessica
2018-01-01
Purpose: This study explored how African Americans are currently represented in social work journals, research, and schools. Method: Journal publication content and editorship, research methods and designs, and school mission statements and course titles were examined. Results: Only 14% of publications in the top 5 social work journals targeted…
A Study of Current Trends and Issues Related to Technical/Engineering Design Graphics.
ERIC Educational Resources Information Center
Clark, Aaron C.; Scales Alice
2000-01-01
Presents results from a survey of engineering design graphics educators who responded to questions related to current trends and issues in the profession of graphics education. Concludes that there is a clear trend in institutions towards the teaching of constraint-based modeling and computer-aided manufacturing. (Author/YDS)
Complete Statistical Survey Results of 1982 Texas Competency Validation Project.
ERIC Educational Resources Information Center
Rogers, Sandra K.; Dahlberg, Maurine F.
This report documents a project to develop current statewide validated competencies for auto mechanics, diesel mechanics, welding, office occupations, and printing. Section 1 describes the four steps used in the current competency validation project and provides a standardized process for conducting future studies at the local or statewide level.…
Travel and Tourism Industry: Program Options for City College of San Francisco.
ERIC Educational Resources Information Center
City Coll. of San Francisco, CA.
In an effort to determine the current occupational outlook and resulting implications for education and training, the City College of San Francisco (CCSF), in California, undertook a study of current trends in the travel and tourism industry. This report provides findings from the project, which involved consultation with local and national…
Effect of direct electric current on contaminants removal from the peat water with continuous system
NASA Astrophysics Data System (ADS)
Amri, I.; Azis, A.; Drastinawati
2018-04-01
This research was analysed the essentially of treat peat water using an electric current. Initially, the characterization of peat water was determined including of three parameters they are pH, colour, and conductivity solution exhibited values that exceeded the water standard limit. There are two factors influencing the electric coagulation such as electric current and voltage that were observed in the continous study. The results obtained indicated that the majority of the an electric current were very effective for removing TDS, and pH. The research variable for the voltage from 23,5 to 42,5 volt and the electric current from 2,2 to 4,1. The optimum electric current and voltage was found around 1,5 Ampere and 25 volt, it was exhibited at 4 L/minute. In unit study, continous electric reactor showed that the optimal reduction on the 20 minutes treatment were found pH = 7, 256 ppm. It was meet to the minimum standard government permition.
Monitoring the quality of welding based on welding current and ste analysis
NASA Astrophysics Data System (ADS)
Mazlan, Afidatusshimah; Daniyal, Hamdan; Izzani Mohamed, Amir; Ishak, Mahadzir; Hadi, Amran Abdul
2017-10-01
Qualities of welding play an important part in industry especially in manufacturing field. Post-welding non-destructive test is one of the importance process to ensure the quality of welding but it is time consuming and costly. To reduce the chance of defects, online monitoring had been utilized by continuously sense some of welding parameters and predict welding quality. One of the parameters is welding current, which is rich of information but lack of study focus on extract them at signal analysis level. This paper presents the analysis of welding current using Short Time Energy (STE) signal processing to quantify the pattern of the current. GMAW set with carbon steel specimens are used in this experimental study with high-bandwidth and high sampling rate oscilloscope capturing the welding current. The results indicate welding current as signatures have high correlation with the welding process. Continue with STE analysis, the value below 5000 is declare as good welding, meanwhile the STE value more than 6000 is contained defect.
Somali current studied from SEASAT altimetry
NASA Technical Reports Server (NTRS)
Perigaud, C.; Minster, J. F.; Zlotnicki, V.; Balmino, G.
1984-01-01
Mesoscale variability has been obtained for the world ocean from satellite altimetry by using the repetitive tracks data of SEASAT. No significant results were obtained for the Somali current area for two main reasons: the repetitive tracks are too sparse to cover the expected eddy pattern and these data were obtained in late September and early October when the current is strongly decaying. The non-repetitive period of SEASAT offers the possibility to study a dozen of tracks parallel to the eddy axis or crossing it. These are used here to deduce the dynamic topography of the Somali current. Data error reduction and tide and orbit corrections are addressed. A local geoid was built using a collocation inverse method to combine surface gravity data and altimetry: the repetitive tracks show no variability (which confirms that the current is quasi-inexistent at that time) and can be used as data for the local geoid. This should provide a measure of the absolute dynamic topography of the Somali current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panneer Chelvam, Prem Kumar; Raja, Laxminarayan L.
2015-12-28
Electron emission from the electrode surface plays an important role in determining the structure of a direct-current microdischarge. Here we have developed a computational model of a direct-current microdischarge to study the effect of external electron injection from the cathode surface into the discharge to manipulate its properties. The model provides a self-consistent, multi-species, multi-temperature fluid representation of the plasma. A microdischarge with a metal-insulator-metal configuration is chosen for this study. The effect of external electron injection on the structure and properties of the microdischarge is described. The transient behavior of the microdischarge during the electron injection is examined. Themore » nonlinearities in the dynamics of the plasma result in a large increase of conduction current after active electron injection. For the conditions simulated a switching time of ∼100 ns from a low-current to high-current discharge state is realized.« less
Studies on space charge neutralization and emittance measurement of beam from microwave ion source.
Misra, Anuraag; Goswami, A; Sing Babu, P; Srivastava, S; Pandit, V S
2015-11-01
A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (∼5 mA at 75 keV), it is possible to reduce the beam spot size by ∼34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.
Studies on space charge neutralization and emittance measurement of beam from microwave ion source
NASA Astrophysics Data System (ADS)
Misra, Anuraag; Goswami, A.; Sing Babu, P.; Srivastava, S.; Pandit, V. S.
2015-11-01
A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (˜5 mA at 75 keV), it is possible to reduce the beam spot size by ˜34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.
Experimental study of electrolysis-induced hepatic necrosis.
Robertson, G S; Wemyss-Holden, S A; Dennison, A R; Hall, P M; Baxter, P; Maddern, G J
1998-09-01
One of the most promising but unexplored methods for treating patients with irresectable liver tumours is electrolysis. This study examined the effect of increasing 'current dose' on the volume of the lesion induced in normal rat liver. A direct current generator, connected to platinum electrodes implanted in the rat liver, was used to examine the effect of (1) varying current doses from 1 to 5 coulombs and (2) electrode separation (2 or 20 mm), on the volume of liver necrosis. There was a significant correlation (P < 0.001) between the current dose and the volume of necrosis produced for each electrode separation. Placing the electrodes 2 mm apart resulted in smaller total volumes of necrosis than placing them 20 mm apart when anode lesions were significantly larger than cathode lesions (P< 0.05). Liver enzymes (aspartate aminotransferase, alanine aminotransferase) were significantly raised 1 day after treatment (P < 0.001) and predicted the total volume of hepatic necrosis (P < 0.001). Predictable and reproducible areas of liver necrosis are produced with electrolysis. If these results extrapolate to larger animal models, this technique has potential for patients with irresectable primary and secondary liver tumours.
Study on electrochemically deposited Mg metal
NASA Astrophysics Data System (ADS)
Matsui, Masaki
An electrodeposition process of magnesium metal from Grignard reagent based electrolyte was studied by comparing with lithium. The electrodeposition of magnesium was performed at various current densities. The obtained magnesium deposits did not show dendritic morphologies while all the lithium deposits showed dendritic products. Two different crystal growth modes in the electrodeposition process of magnesium metal were confirmed by an observation using scanning electron micro scope (SEM) and a crystallographic analysis using X-ray diffraction (XRD). An electrochemical study of the deposition/dissolution process of the magnesium showed a remarkable dependency of the overpotential of magnesium deposition on the electrolyte concentration compared with lithium. This result suggests that the dependency of the overpotential on the electrolyte concentration prevent the locally concentrated current resulting to form very uniform deposits.
NASA Astrophysics Data System (ADS)
Yun, Jijun; Li, Dong; Cui, Baoshan; Guo, Xiaobin; Wu, Kai; Zhang, Xu; Wang, Yupei; Mao, Jian; Zuo, Yalu; Xi, Li
2018-04-01
Current induced domain wall motion (CIDWM) was studied in Pt/Co/Ta structures with perpendicular magnetic anisotropy and the Dyzaloshinskii–Moriya interaction (DMI) by the spin-orbit torque (SOT). We measured the strength of DMI and SOT efficiency in Pt/Co/Ta with the variation of the thickness of Ta using a current induced hysteresis loop shift method. The results indicate that the DMI stabilizes a chiral Néel-type domain wall (DW), and the DW motion can be driven by the enhanced large SOT generated from Pt and Ta with opposite signs of spin Hall angle in Pt/Co/Ta stacks. The CIDWM velocity, which is 104 times larger than the field driven DW velocity, obeys a creep law, and reaches around tens of meters per second with current density of ~106 A cm‑2. We also found that the Joule heating accompanied with current also accelerates the DW motion. Meanwhile, a domain wall tilting was observed, which increases with current density increasing. These results can be explained by the spin Hall effect generated from both heavy metals Pt and Ta, inherent DMI, and the current accompanying Joule heating effect. Our results could provide some new designing prospects to move multiple DWs by SOT for achieving racetrack memories.
Non-equilibrium Green's functions study of discrete dopants variability on an ultra-scaled FinFET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valin, R., E-mail: r.valinferreiro@swansea.ac.uk; Martinez, A., E-mail: a.e.Martinez@swansea.ac.uk; Barker, J. R., E-mail: john.barker@glasgow.ac.uk
In this paper, we study the effect of random discrete dopants on the performance of a 6.6 nm channel length silicon FinFET. The discrete dopants have been distributed randomly in the source/drain region of the device. Due to the small dimensions of the FinFET, a quantum transport formalism based on the non-equilibrium Green's functions has been deployed. The transfer characteristics for several devices that differ in location and number of dopants have been calculated. Our results demonstrate that discrete dopants modify the effective channel length and the height of the source/drain barrier, consequently changing the channel control of the charge. Thismore » effect becomes more significant at high drain bias. As a consequence, there is a strong effect on the variability of the on-current, off-current, sub-threshold slope, and threshold voltage. Finally, we have also calculated the mean and standard deviation of these parameters to quantify their variability. The obtained results show that the variability at high drain bias is 1.75 larger than at low drain bias. However, the variability of the on-current, off-current, and sub-threshold slope remains independent of the drain bias. In addition, we have found that a large source to drain current by tunnelling current occurs at low gate bias.« less
Orbital currents in a generalized Hubbard ladder
NASA Astrophysics Data System (ADS)
Fjaerestad, John O.
2004-03-01
We study a phase with orbital currents (d-density wave (DDW)/staggered flux phase) in a generalized Hubbard model on the two-leg ladder at zero temperature. Bosonization and perturbative renormalization-group calculations are used to identify a parameter region with long-range DDW order in the weakly interacting half-filled ladder. Finite-size density-matrix renormalization-group (DMRG) studies of ladders with up to 200 rungs, for rational hole dopings δ and intermediate-strength interactions, find that currents remain large in the doped DDW phase, with no evidence of decay.^1,2,3 Motivated by these results, we consider an effective bosonization description of the doped DDW phase in which quantum fluctuations in the total charge mode are neglected.^3 This leads to an analytically solvable Frenkel-Kontorova-like model which predicts that the staggered rung current and the rung electron density show periodic spatial oscillations with wavelengths 2/δ and 1/δ, respectively, with the density minima located at the zeros (domain walls) of the staggered rung current, in good agreement with the DMRG results. We comment on the question of the nature of the asymptotic current correlations in the doped DDW phase. ^1U. Schollwöck, S. Chakravarty, J. O. Fjaerestad, J. B. Marston, and M. Troyer, Phys. Rev. Lett. 90, 186401 (2003). ^2M. Troyer, invited talk at this meeting. ^3J. O. Fjaerestad, J. B. Marston, and U. Schollwöck, unpublished.
Hoseinzadeh, Edris; Rezaee, Abbas; Farzadkia, Mahdi
2018-04-01
In this study, a microbial electrochemical system (MES) was designed to evaluate the effects of a low frequency-low voltage alternating electrical current on denitrification efficacy in the presence of ibuprofen as a low biodegradable organic carbon source. Cylindrical carbon cloth and stainless steel mesh electrodes containing a consortium of heterotrophic and autotrophic bacteria were mounted in the wall of the designed laboratory-scale bioreactor. The effects of inlet nitrate concentration (50-800mgL -1 ), retention time (2.5-24h), waveform magnitude (0.1-9.6V p-p ), adjustable direct current voltage added to offset voltage (0.1-4.9V), alternating current frequency (10-60Hz), and waveforms (sinusoidal, square, and ramp) were studied in this work. The results showed that the proposed system removes 800mgL -1 nitrate up to 95% during 6.5h. Optimum conditions were obtained in the 8V p-p using a frequency of 10Hz of a sinusoidal waveform. The morphology studies confirmed bacterial morphology change when applying the alternating current. Dehydrogenase activity of biofilms formed on surface of stainless steel electrodes increased to 15.24μgTFmg biomass cm -2 d. The maximum bacterial activity was obtained at a voltage of 8V p-p . The experimental results revealed that the MES using a low frequency-low voltage alternating electrical current is a promising technique for nitrate removal from pharmaceutical wastewaters in the presence of low biodegradability of carbon sources such as ibuprofen. Copyright © 2017 Elsevier B.V. All rights reserved.
On the recovery of electric currents in the liquid core of the Earth
NASA Astrophysics Data System (ADS)
Kuslits, Lukács; Prácser, Ernő; Lemperger, István
2017-04-01
Inverse geodynamo modelling has become a standard method to get a more accurate image of the processes within the outer core. In this poster excerpts from the preliminary results of an other approach are presented. This comes around the possibility of recovering the currents within the liquid core directly, using Main Magnetic Field data. The approximation of different systems of the flow of charge is possible with various geometries. Based on previous geodynamo simulations, current coils can furnish a good initial geometry for such an estimation. The presentation introduces our preliminary test results and the study of reliability of the applied inversion algorithm for different numbers of coils, distributed in a grid simbolysing the domain between the inner-core and core-mantle boundaries. We shall also present inverted current structures using Main Field model data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganguly, A.; Haldar, A.; Sinha, J.
2014-09-15
The effect of spin torque from the spin Hall effect in Pt/Ni{sub 81}Fe{sub 19} rectangular bilayer film was investigated using time-resolved magneto-optical Kerr microscopy. Current flow through the stack resulted in a linear variation of effective damping up to ±7%, attributed to spin current injection from the Pt into the Ni{sub 81}Fe{sub 19}. The spin Hall angle of Pt was estimated as 0.11 ± 0.03. The modulation of the damping depended on the angle between the current and the bias magnetic field. These results demonstrate the importance of optical detection of precessional magnetization dynamics for studying spin transfer torque due to spinmore » Hall effect.« less
From tunneling to point contact: Correlation between forces and current
NASA Astrophysics Data System (ADS)
Sun, Yan; Mortensen, Henrik; Schär, Sacha; Lucier, Anne-Sophie; Miyahara, Yoichi; Grütter, Peter; Hofer, Werner
2005-05-01
We used a combined ultrahigh vacuum scanning tunneling and atomic force microscope (STM/AFM) to study W tip-Au(111) sample interactions in the regimes from weak coupling to strong interaction and simultaneously measure current changes from picoamperes to microamperes. Close correlation between conductance and interaction forces in a STM configuration was observed. In particular, the electrical and mechanical points of contact are determined based on the observed barrier collapse and adhesive bond formation, respectively. These points of contact, as defined by force and current measurements, coincide within measurement error. Ab initio calculations of the current as a function of distance in the tunneling regime is in quantitative agreement with experimental results. The obtained results are discussed in the context of dissipation in noncontact AFM as well as electrical contact formation in molecular electronics.
Besio, Walter G; Hadidi, Ruba; Makeyev, Oleksandr; Luna-Munguía, Hiram; Rocha, Luisa
2011-01-01
As epilepsy affects approximately one percent of the world population, electrical stimulation of brain has recently shown potential as an additive seizure control therapy. In this study we applied focal transcranial electrical stimulation (TFS) on the surface of the skull of rats via concentric ring electrodes. We recorded electric potentials with a bipolar electrode consisting of two stainless steel wires implanted into the left ventral hippocampus. TFS current was gradually increased by 20% starting at 103 μA allowing us to assess the relationship between TFS current and both potentials recorded from the bipolar electrode and the resulting electric field. Generally, increases in TFS current resulted in increases in the electric field. This allows us to estimate what extra-cranial TFS current would be sufficient to cause the activation of neurons in the hippocampus.
NASA Technical Reports Server (NTRS)
Le, Guan; Slavin, J. A.; Strangeway, Robert
2011-01-01
In this study, we use the in-situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of Region 1 (R1) and Region 2 (R2) currents. During the three-month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total R1 currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar wind-magnetosphere interaction in the same way as the field-aligned currents themselves are. Since the net currents due to the imbalance of the R1 and R2 currents require that their closure currents flow across the polar cap from dawn to dusk as Pedersen currents, our results indicate that the total amount of the cross-polar cap Pedersen currents is in the order of 0.1 MA. This study, although with a very limited dataset, is one of the first attempts to quantify the cross-polar cap Pedersen currents. Given the importance of the Joule heating due to Pedersen currents to the high-latitude ionospheric electrodynamics, quantifying the cross-polar cap Pedersen currents and associated Joule heating is needed for developing models of the magnetosphere-ionosphere coupling.
NASA Technical Reports Server (NTRS)
Le, Guan; Slavin, J. A.; Strangeway, Robert
2010-01-01
In this study, we use the in-situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of Region 1 (R1) and Region 2 (R2) currents. During the three-month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total R1 currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar windmagnetosphere interaction in the same way as the field-aligned currents themselves are. Since the net currents due to the imbalance of the R1 and R2 currents require that their closure currents flow across the polar cap from dawn to dusk as Pedersen currents, our results indicate that the total amount of the cross-polar cap Pedersen currents is in the order of approximately 0.1 MA. This study, although with a very limited dataset, is one of the first attempts to quantify the cross-polar cap Pedersen currents. Given the importance of the Joule heating due to Pedersen currents to the high-latitude ionospheric electrodynamics, quantifying the cross-polar cap Pedersen currents and associated Joule heating is needed for developing models of the magnetosphere-ionosphere coupling.
NASA Astrophysics Data System (ADS)
Mingming, SUN; Yanhui, JIA; Yongjie, HUANG; Juntai, YANG; Xiaodong, WEN; Meng, WANG
2018-04-01
In order to study the influence of three-grid assembly thermal deformation caused by heat accumulation on breakdown times and an ion extraction process, a hot gap test and a breakdown time test are carried out to obtain thermal deformation of the grids when the thruster is in 5 kW operation mode. Meanwhile, the fluid simulation method and particle-in-cell-Monte Carlo collision (PIC-MCC) method are adopted to simulate the ion extraction process according to the previous test results. The numerical calculation results are verified by the ion thruster performance test. The results show that after about 1.2 h operation, the hot gap between the screen grid and the accelerator grid reduce to 0.25–0.3 mm, while the hot gap between the accelerator grid and the decelerator grid increase from 1 mm to about 1.4 mm when the grids reach thermal equilibrium, and the hot gap is almost unchanged. In addition, the breakdown times experiment shows that 0.26 mm is the minimal safe hot gap for the grid assembly as the breakdown times improves significantly when the gap is smaller than this value. Fluid simulation results show that the plasma density of the screen grid is in the range 6 × 1017–6 × 1018 m13 and displays a parabolic characteristic, while the electron temperature gradually increases along the axial direction. The PIC-MCC results show that the current falling of an ion beam through a single aperture is significant. Meanwhile, the intercepted current of the accelerator grid and the decelerator grid both increase with the change in the hot gap. The ion beam current has optimal perveance status without thermal deformation, and the intercepted current of the accelerator grid and the decelerator grid are 3.65 mA and 6.26 mA, respectively. Furthermore, under the effect of thermal deformation, the ion beam current has over-perveance status, and the intercepted current of the accelerator grid and the decelerator grid are 10.46 mA and 18.24 mA, respectively. Performance test results indicate that the breakdown times increase obviously. The intercepted current of the accelerator grid and the decelerator grid increases to 13 mA and 16.5 mA, respectively, due to the change in the hot gap after 1.5 h operation. The numerical calculation results are well consistent with performance test results, and the error comes mainly from the test uncertainty of the hot gap.
Management of Leigh syndrome: Current status and new insights.
Chen, L; Cui, Y; Jiang, D; Ma, C Y; Tse, H-F; Hwu, W-L; Lian, Q
2018-06-01
Leigh syndrome (LS) is an inherited mitochondrial encephalopathy associated with gene mutations of oxidative phosphorylation pathway that result in early disability and death in affected young children. Currently, LS is incurable and unresponsive to many treatments, although some case reports indicate that supplements can improve the condition. Many novel therapies are being continuously tested in pre-clinical studies. In this review, we summarize the genetic basis of LS, current treatment, pre-clinical studies in animal models and the management of other mitochondrial diseases. Future therapeutical strategies and challenges are also discussed. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Automated MRI segmentation for individualized modeling of current flow in the human head.
Huang, Yu; Dmochowski, Jacek P; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C
2013-12-01
High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of the brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images requires labor-intensive manual segmentation, even when utilizing available automated segmentation tools. Also, accurate placement of many high-density electrodes on an individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. A fully automated segmentation technique based on Statical Parametric Mapping 8, including an improved tissue probability map and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on four healthy subjects and seven stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets. The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly. Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials.
Electric current focusing efficiency in a graphene electric lens.
Mu, Weihua; Zhang, Gang; Tang, Yunqing; Wang, Wei; Ou-Yang, Zhongcan
2011-12-14
In the present work, we study theoretically the electron wave's focusing phenomenon in a single-layered graphene pn junction (PNJ) and obtain the electric current density distribution of graphene PNJ, which is in good agreement with the qualitative result in previous numerical calculations (Cheianov et al 2007 Science, 315, 1252). In addition, we find that, for a symmetric PNJ, 1/4 of total electric current radiated from the source electrode can be collected by the drain electrode. Furthermore, this ratio reduces to 3/16 in a symmetric graphene npn junction. Our results obtained by the present analytical method provide a general design rule for an electric lens based on negative refractory index systems. © 2011 IOP Publishing Ltd
Experimental and analytical investigation on metal damage suffered from simulated lightning currents
NASA Astrophysics Data System (ADS)
Yakun, LIU; Zhengcai, FU; Quanzhen, LIU; Baoquan, LIU; Anirban, GUHA
2017-12-01
The damage of two typical metal materials, Al alloy 3003 and steel alloy Q235B, subjected to four representative lightning current components are investigated by laboratory and analytical studies to provide fundamental data for lightning protection. The four lightning components simulating the natural lightning consist of the first return stroke, the continuing current of interval stroke, the long continuing current, and the subsequent stroke, with amplitudes 200 kA, 8 kA, 400 A, and 100 kA, respectively. The damage depth and area suffered from different lightning components are measured by the ultrasonic scanning system. And the temperature rise is measured by the thermal imaging camera. The results show that, for both Al 3003 and steel Q235B, the first return stroke component results in the largest damage area with damage depth 0.02 mm uttermost. The long continuing current component leads to the deepest damage depth of 3.3 mm for Al 3003 and much higher temperature rise than other components. The correlation analysis between damage results and lightning parameters indicates that the damage depth has a positive correlation with charge transfer. The damage area is mainly determined by the current amplitude and the temperature rise increases linearly with the charge transfer larger.
ERIC Educational Resources Information Center
Bullock, Cheryl Davis; DeStefano, Lizanne
1998-01-01
The usefulness of the 1992 TSA in reading was studied using interviews from 26 state directors of assessment. Perceptions about TSA credibility and orientation of test components and current use of TSA results were examined. The directors suggested involving more teachers in assessment, modifying descriptors, disseminating results quicker, and…
Cost/benefit trade-offs for reducing the energy consumption of commercial air transportation (RECAT)
NASA Technical Reports Server (NTRS)
Gobetz, F. W.; Leshane, A. A.
1976-01-01
The RECAT study evaluated the opportunities for reducing the energy requirements of the U.S. domestic air passenger transport system through improved operational techniques, modified in-service aircraft, derivatives of current production models, or new aircraft using either current or advanced technology. Each of these fuel-conserving alternatives was investigated individually to test its potential for fuel conservation relative to a hypothetical baseline case in which current, in-production aircraft types are assumed to operate, without modification and with current operational techniques, into the future out to the year 2000. Consequently, while the RECAT results lend insight into the directions in which technology can best be pursued for improved air transport fuel economy, no single option studied in the RECAT program is indicative of a realistic future scenario.
Child-Langmuir flow with periodically varying anode voltage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rokhlenko, A.
Using the Lagrangian technique, we study settled Child-Langmuir flows in a one dimensional planar diodes whose anode voltages periodically vary around given positive values. Our goal is to find analytically if the average currents in these systems can exceed the famous Child-Langmuir limit found for the stationary current a long time ago. The main result of our study is that in a periodic quasi-stationary regime the average current can be larger than the Child-Langmuir maximum even by 50% compared with its adiabatic average value. The cathode current in this case has the form of rectangular pulses which are formed bymore » a very special triangular voltage modulation. This regime, i.e., periodicity, shape of pulses, and their amplitude, needs to be carefully chosen for the best performance.« less
Positive direct current corona discharges in single wire-duct electrostatic precipitators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yehia, Ashraf, E-mail: yehia30161@yahoo.com; Department of Physics, Faculty of Science, Assiut University, Assiut 71516, Arab Republic of Egypt; Abdel-Fattah, E.
This paper is aimed to study the characteristics of the positive dc corona discharges in single wire-duct electrostatic precipitators. Therefore, the corona discharges were formed inside dry air fed single wire-duct reactor under positive dc voltage at the normal atmospheric conditions. The corona current-voltage characteristics curves have been measured in parallel with the ozone concentration generated inside the reactor under different discharge conditions. The corona current-voltage characteristics curves have agreed with a semi empirical equation derived from the previous studies. The experimental results of the ozone concentration generated inside the reactor were formulated in the form of an empirical equationmore » included the different parameters that were studied experimentally. The obtained equations are valid to expect both the current-voltage characteristics curves and the corresponding ozone concentration that generates with the positive dc corona discharges inside single wire-duct electrostatic precipitators under any operating conditions in the same range of the present study.« less
Dissanayaka, Thusharika; Zoghi, Maryam; Farrell, Michael; Egan, Gary F; Jaberzadeh, Shapour
2017-08-01
Numerous studies have explored the effects of transcranial electrical stimulation (tES) - including anodal transcranial direct current stimulation (a-tDCS), cathodal transcranial direct current stimulation (c-tDCS), transcranial alternative current stimulation (tACS), transcranial random noise stimulation (tRNS) and transcranial pulsed current stimulation (tPCS) - on corticospinal excitability (CSE) in healthy populations. However, the efficacy of these techniques and their optimal parameters for producing robust results has not been studied. Thus, the aim of this systematic review was to consolidate current knowledge about the effects of various parameters of a-tDCS, c-tDCS, tACS, tRNS and tPCS on the CSE of the primary motor cortex (M1) in healthy people. Leading electronic databases were searched for relevant studies published between January 1990 and February 2017; 126 articles were identified, and their results were extracted and analysed using RevMan software. The meta-analysis showed that a-tDCS application on the dominant side significantly increases CSE (P < 0.01) and that the efficacy of a-tDCS is dependent on current density and duration of application. Similar results were obtained for stimulation of M1 on the non-dominant side (P = 0.003). The effects of a-tDCS reduce significantly after 24 h (P = 0.006). Meta-analysis also revealed significant reduction in CSE following c-tDCS (P < 0.001) and significant increases after tRNS (P = 0.03) and tPCS (P = 0.01). However, tACS effects on CSE were only significant when the stimulation frequency was ≥140 Hz. This review provides evidence that tES has substantial effects on CSE in healthy individuals for a range of stimulus parameters. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Modeling Requirements for Cohort and Register IT.
Stäubert, Sebastian; Weber, Ulrike; Michalik, Claudia; Dress, Jochen; Ngouongo, Sylvie; Stausberg, Jürgen; Winter, Alfred
2016-01-01
The project KoRegIT (funded by TMF e.V.) aimed to develop a generic catalog of requirements for research networks like cohort studies and registers (KoReg). The catalog supports such kind of research networks to build up and to manage their organizational and IT infrastructure. To make transparent the complex relationships between requirements, which are described in use cases from a given text catalog. By analyzing and modeling the requirements a better understanding and optimizations of the catalog are intended. There are two subgoals: a) to investigate one cohort study and two registers and to model the current state of their IT infrastructure; b) to analyze the current state models and to find simplifications within the generic catalog. Processing the generic catalog was performed by means of text extraction, conceptualization and concept mapping. Then methods of enterprise architecture planning (EAP) are used to model the extracted information. To work on objective a) questionnaires are developed by utilizing the model. They are used for semi-structured interviews, whose results are evaluated via qualitative content analysis. Afterwards the current state was modeled. Objective b) was done by model analysis. A given generic text catalog of requirements was transferred into a model. As result of objective a) current state models of one existing cohort study and two registers are created and analyzed. An optimized model called KoReg-reference-model is the result of objective b). It is possible to use methods of EAP to model requirements. This enables a better overview of the partly connected requirements by means of visualization. The model based approach also enables the analysis and comparison of the empirical data from the current state models. Information managers could reduce the effort of planning the IT infrastructure utilizing the KoReg-reference-model. Modeling the current state and the generation of reports from the model, which could be used as requirements specification for bids, is supported, too.
DOT National Transportation Integrated Search
2005-06-01
The 100-Car Naturalistic Driving Study was undertaken with the goal of obtaining data on driver performance and behavior in the moments leading up to a crash. The results of the current study in conjunction with Hanowski, Keisler, and Wierwille (2004...
Disruption of Helmet Streamers by Current Emergence
NASA Technical Reports Server (NTRS)
Guo, W. P.; Wu, S. T.; Tandberg-Hanssen, E.
1996-01-01
We have investigated the dynamic response of a coronal helmet streamer to the emergence from below of a current with its magnetic field in a direction opposite to the overlying streamer field. Once the emerging current moves into the closed region of the streamer, a current sheet forms between the emerging field and the streamer field, because the preexisting field and the newly emerging field have opposite polarities. Thus magnetic reconnection will occur at the flanks of the emerged structure where the current density is maximum. If the emerging current is large enough, the energy contained in the current and the reconnection will promptly disrupt the streamer. If the emerging current is small, the streamer will experience a stage of slow evolution. In this stage, slow magnetic reconnection occurring at the flanks of the emerged structure leads to the degeneration of the emerged current to a neutral point. Above this point, a new magnetic bubble will form. The resulting configuration resembles an inverse-polarity prominence. Depending on the initial input energy of the current, the resulting structure will either remain in situ, forming a quasi-static structure, or move upward, forming a coronal transient similar to coronal jets. The numerical method used in this paper can be used to construct helmet streamers containing a detached magnetic structure in their closed field region. The quasi-static solution may serve as a preevent corona for studying coronal mass ejection initiation.
Some Student Conceptions of Electromagnetic Induction
NASA Astrophysics Data System (ADS)
Thong, Wai Meng; Gunstone, Richard
2008-01-01
Introductory electromagnetism is a central part of undergraduate physics. Although there has been some research into student conceptions of electromagnetism, studies have been sparse and separated. This study sought to explore second year physics students’ conceptions of electromagnetism, to investigate to what extent the results from the present study are similar to these results from other studies, and to uncover any new forms of alternative conceptions. Data for this study came from 15 in-depth interviews. Three previously unreported alternative conceptions were identified in the study: 1) induced current varies proportionately with current in solenoid; 2) there must be contact between magnetic flux and the external coil in order for any emf to be induced in the coil; 3) coulombic or electrostatic potential difference is present in an induced electric field. These alternative conceptions were manifested in these students’ explanations of electromagnetic phenomena presented to them during the interviews.
MgB2-based superconductors for fault current limiters
NASA Astrophysics Data System (ADS)
Sokolovsky, V.; Prikhna, T.; Meerovich, V.; Eisterer, M.; Goldacker, W.; Kozyrev, A.; Weber, H. W.; Shapovalov, A.; Sverdun, V.; Moshchil, V.
2017-02-01
A promising solution of the fault current problem in power systems is the application of fast-operating nonlinear superconducting fault current limiters (SFCLs) with the capability of rapidly increasing their impedance, and thus limiting high fault currents. We report the results of experiments with models of inductive (transformer type) SFCLs based on the ring-shaped bulk MgB2 prepared under high quasihydrostatic pressure (2 GPa) and by hot pressing technique (30 MPa). It was shown that the SFCLs meet the main requirements to fault current limiters: they possess low impedance in the nominal regime of the protected circuit and can fast increase their impedance limiting both the transient and the steady-state fault currents. The study of quenching currents of MgB2 rings (SFCL activation current) and AC losses in the rings shows that the quenching current density and critical current density determined from AC losses can be 10-20 times less than the critical current determined from the magnetization experiments.
Wacker, Margarethe; Holle, Rolf; Heinrich, Joachim; Ladwig, Karl-Heinz; Peters, Annette; Leidl, Reiner; Menn, Petra
2013-07-17
Smoking is seen as the most important single risk to health today, and is responsible for a high financial burden on healthcare systems and society. This population-based cross-sectional study compares healthcare utilisation, direct medical costs, and costs of productivity losses for different smoking groups: current smokers, former smokers, and never smokers. Using a bottom-up approach, data were taken from the German KORA F4 study (2006/2008) on self-reported healthcare utilisation and work absence due to illness for 3,071 adults aged 32-81 years. Unit costs from a societal perspective were applied to utilisation. Utilisation and resulting costs were compared across different smoking groups using generalised linear models to adjust for age, sex, education, alcohol consumption and physical activity. Average annual total costs per survey participant were estimated as €3,844 [95% confidence interval: 3,447-4,233], and differed considerably between smoking groups with never smokers showing €3,237 [2,802-3,735] and former smokers causing €4,398 [3,796-5,058]. There was a positive effect of current and former smoking on the utilisation of healthcare services and on direct and indirect costs. Total annual costs were more than 20% higher (p<0.05) for current smokers and 35% higher (p<0.01) for former smokers compared with never smokers, which corresponds to annual excess costs of €743 and €1,108 per current and former smoker, respectively. Results indicate that excess costs for current and former smokers impose a large burden on society, and that previous top-down cost approaches produced lower estimates for the costs of care for smoking-related diseases. Efforts must be focused on prevention of smoking to achieve sustainable containment on behalf of the public interest.
NASA Astrophysics Data System (ADS)
Yousefieh, M.; Shamanian, M.; Saatchi, A.
2012-09-01
Taguchi design method with L9 orthogonal array was implemented to optimize the pulsed current gas tungsten arc welding parameters for the hardness and the toughness of super duplex stainless steel (SDSS, UNS S32760) welds. In this regard, the hardness and the toughness were considered as performance characteristics. Pulse current, background current, % on time, and pulse frequency were chosen as main parameters. Each parameter was varied at three different levels. As a result of pooled analysis of variance, the pulse current is found to be the most significant factor for both the hardness and the toughness of SDSS welds by percentage contribution of 71.81 for hardness and 78.18 for toughness. The % on time (21.99%) and the background current (17.81%) had also the next most significant effect on the hardness and the toughness, respectively. The optimum conditions within the selected parameter values for hardness were found as the first level of pulse current (100 A), third level of background current (70 A), first level of % on time (40%), and first level of pulse frequency (1 Hz), while they were found as the second level of pulse current (120 A), second level of background current (60 A), second level of % on time (60%), and third level of pulse frequency (5 Hz) for toughness. The Taguchi method was found to be a promising tool to obtain the optimum conditions for such studies. Finally, in order to verify experimental results, confirmation tests were carried out at optimum working conditions. Under these conditions, there were good agreements between the predicted and the experimental results for the both hardness and toughness.
In-Flight Manual Electronics Repair for Deep-Space Missions
NASA Technical Reports Server (NTRS)
Pettegrew, Richard; Easton, John; Struk, Peter; Anderson, Eric
2007-01-01
Severe limitations on mass and volume available for spares on long-duration spaceflight missions will require electronics repair to be conducted at the component level, rather than at the sub-assembly level (referred to as Orbital Replacement Unit, or 'ORU'), as is currently the case aboard the International Space Station. Performing reliable component-level repairs in a reduced gravity environment by crew members will require careful planning, and some specialty tools and systems. Additionally, spacecraft systems must be designed to enable such repairs. This paper is an overview of a NASA project which examines all of these aspects of component level electronic repair. Results of case studies that detail how NASA, the U.S. Navy, and a commercial company currently approach electronics repair are presented, along with results of a trade study examining commercial technologies and solutions which may be used in future applications. Initial design recommendations resulting from these studies are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Guowei; Sun, Qingping; Zeng, Danielle
In current work, unidirectional (UD) carbon fiber composite hatsection component with two different layups are studied under dynamic 3 point bending loading. The experiments are performed at various impact velocities, and the effects of impactor velocity and layup on acceleration histories are compared. A macro model is established with LS-Dyna for more detailed study. The simulation results show that the delamination plays an important role during dynamic 3 point bending test. Based on the analysis with high speed camera, the sidewall of hatsection shows significant buckling rather than failure. Without considering the delamination, current material model cannot capture the postmore » failure phenomenon correctly. The sidewall delamination is modeled by assumption of larger failure strain together with slim parameters, and the simulation results of different impact velocities and layups match the experimental results reasonable well.« less
NASA Astrophysics Data System (ADS)
Amma, Shin-ichi; Tokumoto, Yuki; Edagawa, Keiichi; Shibata, Naoya; Mizoguchi, Teruyasu; Yamamoto, Takahisa; Ikuhara, Yuichi
2010-05-01
Conductive nanowires were fabricated in GaN thin film by selectively doping of Al along threading dislocations. Electrical current flow localized at the nanowires was directly measured by a contact mode atomic force microscope. The current flow at the nanowires was considered to be Frenkel-Poole emission mode, suggesting the existence of the deep acceptor level along the nanowires as a possible cause of the current flow. The results obtained in this study show the possibility for fabricating nanowires using pipe-diffusion at dislocations in solid thin films.
Kueh, Daniel; Barnett, William H; Cymbalyuk, Gennady S; Calabrese, Ronald L
2016-01-01
The dynamics of different ionic currents shape the bursting activity of neurons and networks that control motor output. Despite being ubiquitous in all animal cells, the contribution of the Na+/K+ pump current to such bursting activity has not been well studied. We used monensin, a Na+/H+ antiporter, to examine the role of the pump on the bursting activity of oscillator heart interneurons in leeches. When we stimulated the pump with monensin, the period of these neurons decreased significantly, an effect that was prevented or reversed when the h-current was blocked by Cs+. The decreased period could also occur if the pump was inhibited with strophanthidin or K+-free saline. Our monensin results were reproduced in model, which explains the pump’s contributions to bursting activity based on Na+ dynamics. Our results indicate that a dynamically oscillating pump current that interacts with the h-current can regulate the bursting activity of neurons and networks. DOI: http://dx.doi.org/10.7554/eLife.19322.001 PMID:27588351
NASA Astrophysics Data System (ADS)
Tian, Yi; Chen, Mahao; Kong, Jun
2009-02-01
With the online z-axis tube current modulation (OZTCM) technique proposed by this work, full automatic exposure control (AEC) for CT systems could be realized with online feedback not only for angular tube current modulation (TCM) but also for z-axis TCM either. Then the localizer radiograph was not required for TCM any more. OZTCM could be implemented with 2 schemes as attenuation based μ-OZTCM and image noise level based μ-OZTCM. Respectively the maximum attenuation of projection readings and standard deviation of reconstructed images can be used to modulate the tube current level in z-axis adaptively for each half (180 degree) or full (360 degree) rotation. Simulation results showed that OZTCM achieved better noise level than constant tube current scan case by using same total dose in mAs. The OZTCM can provide optimized base tube current level for angular TCM to realize an effective auto exposure control when localizer radiograph is not available or need to be skipped for simplified scan protocol in case of emergency procedure or children scan, etc.
Lu, Yong; Dang, Shaokang; Wang, Xu; Zhang, Junli; Zhang, Lin; Su, Qian; Zhang, Huiping; Lin, Tianwei; Zhang, Xiaoxiao; Zhang, Yurong; Sun, Hongli; Zhu, Zhongliang; Li, Hui
2018-01-01
Ghrelin is a peptide hormone that plays an important role in promoting appetite, regulating distribution and rate of use of energy, cognition, and mood disorders, but the relevant neural mechanisms of these function are still not clear. In this study, we examined the effect of ghrelin on voltage-dependent potassium (K + ) currents in hippocampal cells of 1-3 days SD rats by whole-cell patch-clamp technique, and discussed whether NO was involved in this process. The results showed that ghrelin significantly inhibited the voltage-dependent K + currents in hippocampal cells, and the inhibitory effect was more significant when l-arginine was co-administered. In contrast, N-nitro- l-arginine methyl ester increased the ghrelin inhibited K + currents and attenuated the inhibitory effect of ghrelin. While d-arginine (D-AA) showed no significant impact on the ghrelin-induced decrease in K + current. These results show that ghrelin may play a physiological role by inhibiting hippocampal voltage dependent K + currents, and the NO pathway may be involved in this process. Copyright © 2017 Elsevier B.V. All rights reserved.
Influence of Joule heating on current-induced domain wall depinning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moretti, Simone, E-mail: simone.moretti@usal.es; Raposo, Victor; Martinez, Eduardo
2016-06-07
The domain wall depinning from a notch in a Permalloy nanostrip on top of a SiO{sub 2}/Si substrate is studied theoretically under application of static magnetic fields and the injection of short current pulses. The influence of Joule heating on current-induced domain wall depinning is explored self-consistently by coupling the magnetization dynamics in the ferromagnetic strip to the heat transport throughout the system. Our results indicate that Joule heating plays a remarkable role in these processes, resulting in a reduction in the critical depinning field and/or in a temporary destruction of the ferromagnetic order for typically injected current pulses. Inmore » agreement with experimental observations, similar pinning-depinning phase diagrams can be deduced for both current polarities when the Joule heating is taken into account. These observations, which are incompatible with the sole contribution of spin transfer torques, provide a deeper understanding of the physics underlying these processes and establish the real scope of the spin transfer torque. They are also relevant for technological applications based on current-induced domain-wall motion along soft strips.« less
Conduction mechanism of leakage current due to the traps in ZrO2 thin film
NASA Astrophysics Data System (ADS)
Seo, Yohan; Lee, Sangyouk; An, Ilsin; Song, Chulgi; Jeong, Heejun
2009-11-01
In this work, a metal-oxide-semiconductor capacitor with zirconium oxide (ZrO2) gate dielectric was fabricated by an atomic layer deposition (ALD) technique and the leakage current characteristics under negative bias were studied. From the result of current-voltage curves there are two possible conduction mechanisms to explain the leakage current in the ZrO2 thin film. The dominant mechanism is the space charge limited conduction in the high-electric field region (1.5-5.0 MV cm-1) while the trap-assisted tunneling due to the existence of traps is prevailed in the low-electric field region (0.8-1.5 MV cm-1). Conduction caused by the trap-assisted tunneling is found from the experimental results of a weak temperature dependence of current, and the trap barrier height is obtained. The space charge limited conduction is evidenced, for different temperatures, by Child's law dependence of current density versus voltage. Child's law dependence can be explained by considering a single discrete trapping level and we can obtain the activation energy of 0.22 eV.
Wang, Tang-Chuan; Tyler, Richard S; Chang, Ta-Yuan; Chen, Jui-Cheng; Lin, Chia-Der; Chung, Hsiung-Kwang; Tsou, Yung-An
2018-02-01
Subjective tinnitus is a phantom sensation experienced without any external source of sound that profoundly impacts the quality of life. Some investigations have claimed that transcranial direct current stimulation (tDCS) reduces tinnitus, but studies on tDCS have demonstrated variable results. This meta-analysis aimed to examine the effect of tDCS on patients with tinnitus. We searched for articles published through January 5, 2016, in Medline, Cochrane, EMBASE, and Google Scholar using the following keywords: tinnitus, transcranial direct current stimulation, and tDCS. The study outcomes were change in magnitude estimates of loudness (loudness), tinnitus-related distress (distress), and Tinnitus Handicap Inventory (THI). Pooled results demonstrated that tDCS did not have a beneficial effect on loudness (pooled standardized difference in means = 0.674, 95% CI, -0.089 to 1.437, P = .083). Further, the pooled results demonstrated a greater reduction in distress for the tDCS group (pooled standardized difference in means = 0.634, 95% CI, 0.021-1.247, P = .043). We conclude that the pooled results demonstrated a greater reduction in distress for groups treated with tDCS as compared with those administered a sham treatment.
Direct current contamination of kilohertz frequency alternating current waveforms.
Franke, Manfred; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin
2014-07-30
Kilohertz frequency alternating current (KHFAC) waveforms are being evaluated in a variety of physiological settings because of their potential to modulate neural activity uniquely when compared to frequencies in the sub-kilohertz range. However, the use of waveforms in this frequency range presents some unique challenges regarding the generator output. In this study we explored the possibility of undesirable contamination of the KHFAC waveforms by direct current (DC). We evaluated current- and voltage-controlled KHFAC waveform generators in configurations that included a capacitive coupling between generator and electrode, a resistive coupling and combinations of capacitive with inductive coupling. Our results demonstrate that both voltage- and current-controlled signal generators can unintentionally add DC-contamination to a KHFAC signal, and that capacitive coupling is not always sufficient to eliminate this contamination. We furthermore demonstrated that high value inductors, placed in parallel with the electrode, can be effective in eliminating DC-contamination irrespective of the type of stimulator, reducing the DC contamination to less than 1 μA. This study highlights the importance of carefully designing the electronic setup used in KHFAC studies and suggests specific testing that should be performed and reported in all studies that assess the neural response to KHFAC waveforms. Published by Elsevier B.V.
Birnbaum, Marvin L; Daily, Elaine K; O'Rourke, Ann P
2016-04-01
The principal goal of research relative to disasters is to decrease the risk that a hazard will result in a disaster. Disaster studies pursue two distinct directions: (1) epidemiological (non-interventional); and (2) interventional. Both interventional and non-interventional studies require data/information obtained from assessments of function. Non-interventional studies examine the epidemiology of disasters. Interventional studies evaluate specific interventions/responses in terms of their effectiveness in meeting their respective objectives, their contribution to the overarching goal, other effects created, their respective costs, and the efficiency with which they achieved their objectives. The results of interventional studies should contribute to evidence that will be used to inform the decisions used to define standards of care and best practices for a given setting based on these standards. Interventional studies are based on the Disaster Logic Model (DLM) and are used to change or maintain levels of function (LOFs). Relief and Recovery interventional studies seek to determine the effects, outcomes, impacts, costs, and value of the intervention provided after the onset of a damaging event. The Relief/Recovery Framework provides the structure needed to systematically study the processes involved in providing relief or recovery interventions that result in a new LOF for a given Societal System and/or its component functions. It consists of the following transformational processes (steps): (1) identification of the functional state prior to the onset of the event (pre-event); (2) assessments of the current functional state; (3) comparison of the current functional state with the pre-event state and with the results of the last assessment; (4) needs identification; (5) strategic planning, including establishing the overall strategic goal(s), objectives, and priorities for interventions; (6) identification of options for interventions; (7) selection of the most appropriate intervention(s); (8) operational planning; (9) implementation of the intervention(s); (10) assessments of the effects and changes in LOFs resulting from the intervention(s); (11) determination of the costs of providing the intervention; (12) determination of the current functional status; (13) synthesis of the findings with current evidence to define the benefits and value of the intervention to the affected population; and (14) codification of the findings into new evidence. Each of these steps in the Framework is a production function that facilitates evaluation, and the outputs of the transformation process establish the current state for the next step in the process. The evidence obtained is integrated into augmenting the respective Response Capacities of a community-at-risk. The ultimate impact of enhanced Response Capacity is determined by studying the epidemiology of the next event.
Streaming current magnetic fields in a charged nanopore.
Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W
2016-11-11
Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques.
Streaming current magnetic fields in a charged nanopore
NASA Astrophysics Data System (ADS)
Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.
2016-11-01
Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques.
On the Role of Global Magnetic Field Configuration in Affecting Ring Current Dynamics
NASA Technical Reports Server (NTRS)
Zheng, Y.; Zaharia, S. G.; Fok, M. H.
2010-01-01
Plasma and field interaction is one important aspect of inner magnetospheric physics. The magnetic field controls particle motion through gradient, curvature drifts and E cross B drift. In this presentation, we show how the global magnetic field affects dynamics of the ring current through simulations of two moderate geomagnetic storms (20 November 2007 and 8-9 March 2008). Preliminary results of coupling the Comprehensive Ring Current Model (CRCM) with a three-dimensional plasma force balance code (to achieve self-consistency in both E and B fields) indicate that inclusion of self-consistency in B tends to mitigate the intensification of the ring current as other similar coupling efforts have shown. In our approach, self-consistency in the electric field is already an existing capability of the CRCM. The magnetic self-consistency is achieved by computing the three-dimensional magnetic field in force balance with anisotropic ring current ion distributions. We discuss the coupling methodology and its further improvement. In addition, comparative studies by using various magnetic field models will be shown. Simulation results will be put into a global context by analyzing the morphology of the ring current, its anisotropy and characteristics ofthe interconnected region 2 field-aligned currents.
Effect of current stimulus on in vivo cochlear mechanics
NASA Astrophysics Data System (ADS)
Parthasarathi, Anand A.; Grosh, Karl; Zheng, Jiefu; Nuttall, Alfred L.
2003-01-01
In this paper, the influence of direct current stimulation on the acoustic impulse response of the basilar membrane (BM) is studied. A positive current applied in the scala vestibuli relative to a ground electrode in the scala tympani is found to enhance gain and increase the best frequency at a given location on the BM. An opposite effect is found for a negative current. Also, the amplitude of low-frequency cochlear microphonic at high sound levels is found to change with the concurrent application of direct current stimulus. BM vibrations in response to pure tone acoustic excitation are found to possess harmonics whose levels relative to the fundamental increase with the application of positive current and decrease with the application of negative current. A model for outer hair cell activity that couples changes in length and stiffness to transmembrane potential is used to interpret the results of these experiments and others in the literature. The importance of the in vivo mechanical and electrical loading is emphasized. Simulation results show the somewhat paradoxical finding that for outer hair cells under tension, hyperpolarization causes shortening of the cell length due to the dominance of voltage dependent stiffness changes.
Sahakyan, Aleksandr B; Vendruscolo, Michele
2013-02-21
Ring current and electric field effects can considerably influence NMR chemical shifts in biomolecules. Understanding such effects is particularly important for the development of accurate mappings between chemical shifts and the structures of nucleic acids. In this work, we first analyzed the Pople and the Haigh-Mallion models in terms of their ability to describe nitrogen base conjugated ring effects. We then created a database (DiBaseRNA) of three-dimensional arrangements of RNA base pairs from X-ray structures, calculated the corresponding chemical shifts via a hybrid density functional theory approach and used the results to parametrize the ring current and electric field effects in RNA bases. Next, we studied the coupling of the electric field and ring current effects for different inter-ring arrangements found in RNA bases using linear model fitting, with joint electric field and ring current, as well as only electric field and only ring current approximations. Taken together, our results provide a characterization of the interdependence of ring current and electric field geometric factors, which is shown to be especially important for the chemical shifts of non-hydrogen atoms in RNA bases.
Lower Current Large Deviations for Zero-Range Processes on a Ring
NASA Astrophysics Data System (ADS)
Chleboun, Paul; Grosskinsky, Stefan; Pizzoferrato, Andrea
2017-04-01
We study lower large deviations for the current of totally asymmetric zero-range processes on a ring with concave current-density relation. We use an approach by Jensen and Varadhan which has previously been applied to exclusion processes, to realize current fluctuations by travelling wave density profiles corresponding to non-entropic weak solutions of the hyperbolic scaling limit of the process. We further establish a dynamic transition, where large deviations of the current below a certain value are no longer typically attained by non-entropic weak solutions, but by condensed profiles, where a non-zero fraction of all the particles accumulates on a single fixed lattice site. This leads to a general characterization of the rate function, which is illustrated by providing detailed results for four generic examples of jump rates, including constant rates, decreasing rates, unbounded sublinear rates and asymptotically linear rates. Our results on the dynamic transition are supported by numerical simulations using a cloning algorithm.
Numerical simulation of the abrupt occurrence of strong current in the southeastern Japan Sea
NASA Astrophysics Data System (ADS)
Hirose, Naoki; Kumaki, Yutaka; Kaneda, Atsushi; Ayukawa, Kouta; Okei, Noriyuki; Ikeda, Satoshi; Igeta, Yosuke; Watanabe, Tatsuro
2017-07-01
Coastal set-net fisheries have been frequently damaged by the occurrence of sudden current (known as kyucho) in the Japan Sea. In this study, a high-resolution coastal ocean model is developed to provide a means to predict this stormy current. The 1.5 km-mesh model nested in a regional ocean data assimilation system is driven by mesoscale atmospheric conditions at 1-hour intervals. The modeled results show rapid changes of the coastal current along the San-in Coast, on the eastern side of the Tango Peninsula, and around the Noto Peninsula and Sado Island, mostly associated with strong wind events. These modeled coastal water responses are consistent with in-situ velocity measurements. The simulation also shows that the vortex separated from the Tango Peninsula frequently grows to a bay-scale anticyclonic eddy in Wakasa Bay. Evidently, the coastal branch of the Tsushima Warm Current becomes unstable due to a strong meteorological disturbance resulting in the generation of this harmful eddy.
NASA Astrophysics Data System (ADS)
Prasad, D. V. V. Krishna; Chaitanya, G. S. Krishna; Raju, R. Srinivasa
2018-05-01
The aim of the present investigation is to study the steady magnetohydrodynamic free convective Casson fluid flow of an electrically conducting gray gas near equilibrium in the optically thin limit along an infinite vertical plate in the presence of strong transverse magnetic field imposed perpendicularly to the plate, taking hall current and thermal radiation into account. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. Using the non-dimensional quantities, the governing equations have been transformed into a set of ordinary differential equations. The influence of different pertinent parameters on the flow properties is studied. A comparison is made with the available results in the literature, and our numerical results are in very good agreement with the analytical results.
NASA Astrophysics Data System (ADS)
Wang, Lei; Strehlow, Jan; Rühaak, Jan; Weiler, Florian; Diez, Yago; Gubern-Merida, Albert; Diekmann, Susanne; Laue, Hendrik; Hahn, Horst K.
2015-03-01
In breast cancer screening for high-risk women, follow-up magnetic resonance images (MRI) are acquired with a time interval ranging from several months up to a few years. Prior MRI studies may provide additional clinical value when examining the current one and thus have the potential to increase sensitivity and specificity of screening. To build a spatial correlation between suspicious findings in both current and prior studies, a reliable alignment method between follow-up studies is desirable. However, long time interval, different scanners and imaging protocols, and varying breast compression can result in a large deformation, which challenges the registration process. In this work, we present a fast and robust spatial alignment framework, which combines automated breast segmentation and current-prior registration techniques in a multi-level fashion. First, fully automatic breast segmentation is applied to extract the breast masks that are used to obtain an initial affine transform. Then, a non-rigid registration algorithm using normalized gradient fields as similarity measure together with curvature regularization is applied. A total of 29 subjects and 58 breast MR images were collected for performance assessment. To evaluate the global registration accuracy, the volume overlap and boundary surface distance metrics are calculated, resulting in an average Dice Similarity Coefficient (DSC) of 0.96 and root mean square distance (RMSD) of 1.64 mm. In addition, to measure local registration accuracy, for each subject a radiologist annotated 10 pairs of markers in the current and prior studies representing corresponding anatomical locations. The average distance error of marker pairs dropped from 67.37 mm to 10.86 mm after applying registration.
Imaging of current distributions in superconducting thin film structures
NASA Astrophysics Data System (ADS)
Dönitz, Dietmar
2006-10-01
Local analysis plays an important role in many fields of scientific research. However, imaging methods are not very common in the investigation of superconductors. For more than 20 years, Low Temperature Scanning Electron Microscopy (LTSEM) has been successfully used at the University of Tübingen for studying of condensed matter phenomena, especially of superconductivity. In this thesis LTSEM was used for imaging current distributions in different superconducting thin film structures: - Imaging of current distributions in Josephson junctions with ferromagnetic interlayer, also known as SIFS junctions, showed inhomogeneous current transport over the junctions which directly led to an improvement in the fabrication process. An investigation of improved samples showed a very homogeneous current distribution without any trace of magnetic domains. Either such domains were not present or too small for imaging with the LTSEM. - An investigation of Nb/YBCO zigzag Josephson junctions yielded important information on signal formation in the LTSEM both for Josephson junctions in the short and in the long limit. Using a reference junction our signal formation model could be verified, thus confirming earlier results on short zigzag junctions. These results, which could be reproduced in this work, support the theory of d-wave symmetry in the superconducting order parameter of YBCO. Furthermore, investigations of the quasiparticle tunneling in the zigzag junctions showed the existence of Andreev bound states, which is another indication of the d-wave symmetry in YBCO. - The LTSEM study of Hot Electron Bolometers (HEB) allowed the first successful imaging of a stable 'Hot Spot', a self-heating region in HEB structures. Moreover, the electron beam was used to induce an - otherwise unstable - hot spot. Both investigations yielded information on the homogeneity of the samples. - An entirely new method of imaging the current distribution in superconducting interference devices (SQUIDs) could be developed. It is based on vortex imaging by LTSEM that had been established several years ago. The vortex signals can be used as local detectors for the vortex-free circulating sheet-current distribution J. Compared to previous inversion methods that infer J from the measured magnetic field, this method gives a more direct measurement of the current distribution. The experimental results were in very good agreement with numerical calculations of J. The presented investigations show how versatile and useful Low Temperature Scanning Electron Microscopy can be for studying superconducting thin film structures. Thus one may expect that many more important results can be obtained with this method.
NASA Astrophysics Data System (ADS)
Flemming, Burghard W.; Kudrass, Hermann-Rudolf
2018-02-01
The existence of a continuously flowing Mozambique Current, i.e. a western geostrophic boundary current flowing southwards along the shelf break of Mozambique, was until recently accepted by oceanographers studying ocean circulation in the south-western Indian Ocean. This concept was then cast into doubt based on long-term current measurements obtained from current-meter moorings deployed across the northern Mozambique Channel, which suggested that southward flow through the Mozambique Channel took place in the form of successive, southward migrating and counter-clockwise rotating eddies. Indeed, numerical modelling found that, if at all, strong currents on the outer shelf occurred for not more than 9 days per year. In the present study, the negation of the existence of a Mozambique Current is challenged by the discovery of a large (50 km long, 12 km wide) subaqueous dune field (with up to 10 m high dunes) on the outer shelf east of the modern Zambezi River delta at water depths between 50 and 100 m. Being interpreted as representing the current-modified, early Holocene Zambezi palaeo-delta, the dune field would have migrated southwards by at least 50 km from its former location since sea level recovered to its present-day position some 7 ka ago and after the former delta had been remoulded into a migrating dune field. Because a large dune field composed of actively migrating bedforms cannot be generated and maintained by currents restricted to a period of only 9 days per year, the validity of those earlier modelling results is questioned for the western margin of the flow field. Indeed, satellite images extracted from the Perpetual Ocean display of NASA, which show monthly time-integrated surface currents in the Mozambique Channel for the 5 month period from June-October 2006, support the proposition that strong flow on the outer Mozambican shelf occurs much more frequently than postulated by those modelling results. This is consistent with more recent modelling studies comparing the application of slippage and non-slippage approaches—they suggest that, when applying partial slippage, a western boundary current can exist simultaneously with the southward migrating eddies. Considering the evidence presented in this paper, it is concluded that a quasi-persistent, though seasonally variable Mozambique Current does exist.
Kappelgaard, Anne-Marie; Mikkelsen, Søren; Knudsen, Thomas Kamp; Fuchs, Gitte Schøning
2011-01-01
Growth hormone deficiency (GHD) in children is treated with daily subcutaneous injections of GH. Poor adherence, resulting in suboptimal treatment outcomes, is common due to long-term treatment. Injection devices that are considered easy to use by patients or guardians could improve adherence. This study assessed the usability of the Norditropin FlexPro pen injector and NovoTwist needles (both Novo Nordisk A/S, Bagsvaerd, Denmark) in Japanese children and adolescents with GHD. This open-label, uncontrolled usability test included patients aged 6 to < or = 18 years with GHD currently receiving daily injections of GH with pen injectors. Patients performed repeated injections of test medium into a foam cushion. Patients or guardians completed a questionnaire on pen handling. A total of 73/74 patients (99%) rated Norditropin FlexPro easy to handle, reporting no technical complaints. In total, 60 (81%) preferred Norditropin FlexPro over their current device, with 12% preferring their current device and 7% not sure. Norditropin FlexPro was perceived as easy to use and reliable, and was well accepted and preferred over the current device for the administration of GH in children and adolescents. Patients were more confident that Norditropin FlexPro delivered the right dose compared with their current device.
NASA Astrophysics Data System (ADS)
Liu, Xiangyu; Hu, Huiyong; Wang, Meng; Zhang, Heming; Cui, Shimin; Shu, Bin; Wang, Bin
2018-01-01
In this paper, a fully-depleted (FD) Ge double-gate (DG) n-type Tunneling Field-Effect Transistors (TFET) structure is studied in detail by two-dimensional numerical simulation. The simulation results indicated that the on-state current Ion and on-off ratio of the FD Ge DG-TFET increases about 1 order of magnitude comparing with the Conventional Ge DG-TFET, and Ion=3.95×10-5 A/μm and the below 60 mV/decade subthreshold swing S=26.4 mV/decade are achieved with the length of gate LD=20 nm, the workfuntion of metal gate Φm=0.2 eV and the doping concentration of n+-type-channel ND=1×1018 cm-3. Moreover, the impacts of Φm, ND and LD are investigated. The simulation results indicated that the off-state current Ioff includes the tunneling current at the middle of channel IB the gated-induced drain leakage (GIDL) current IGIDL. With optimized Φm and ND, Ioff is reduced about 2 orders of magnitude to 2.5×10-13 A/μm with LD increasing from 40 nm to 100 nm, and on-off ratio is increased to 1.58×107.
Self-consistent current sheet structures in the quiet-time magnetotail
NASA Technical Reports Server (NTRS)
Holland, Daniel L.; Chen, James
1993-01-01
The structure of the quiet-time magnetotail is studied using a test particle simulation. Vlasov equilibria are obtained in the regime where v(D) = E(y) c/B(z) is much less than the ion thermal velocity and are self-consistent in that the current and magnetic field satisfy Ampere's law. Force balance between the plasma and magnetic field is satisfied everywhere. The global structure of the current sheet is found to be critically dependent on the source distribution function. The pressure tensor is nondiagonal in the current sheet with anisotropic temperature. A kinetic mechanism is proposed whereby changes in the source distribution results in a thinning of the current sheet.
RF current profile control studies in the alcator C-mod tokamak
NASA Astrophysics Data System (ADS)
Bonoli, P. T.; Porkolab, M.; Wukitch, S. J.; Bernabei, S.; Kaita, R.; Mikkelsen, D.; Phillips, C. K.; Schilling, G.
1999-09-01
Time dependent calculations of lower hybrid (LH) current profile control in Alcator C-Mod have been done using the TRANSP [1], FPPRF [2], and LSC [3] codes. Up to 3 MW of LH current drive power was applied in plasmas with high power ICRF minority heating (PICH=1.8-3 MW) and fast current ramp up. Using the experimentally measured temperature profiles, off-axis current generation resulted in nonmonotonic q-profiles with qmin~=1.6. Self-consistent effects of off-axis electron heating by the LH power were also included in the analysis and significant broadening of the electron temperature profile was found with qmin>~2 and a larger shear reversal radius.
A squid-based beam current monitor for FAIR/CRYRING
NASA Astrophysics Data System (ADS)
Geithner, Rene; Kurian, Febin; Reeg, Hansjörg; Schwickert, Marcus; Neubert, Ralf; Seidel, Paul; Stöhlker, Thomas
2015-11-01
A SQUID-based beam current monitor was developed for the upcoming FAIR-Project, providing a non-destructive online monitoring of the beam currents in the nA-range. The cryogenic current comparator (CCC) was optimized for lowest possible noise-limited current resolution together with a high system bandwidth. This CCC is foreseen to be installed in the CRYRING facility (CRYRING@ESR: A study group report www.gsi.de/fileadmin/SPARC/documents/Cryring/ReportCryring_40ESR.PDF), working as a test bench for FAIR. In this contribution we present results of the completed CCC for FAIR/CRYRING and also arrangements that have been done for the installation of the CCC at CRYRING, regarding the cryostat design.
NASA Astrophysics Data System (ADS)
Chen, Yi; Yang, Fei; Sun, Hao; Wu, Yi; Niu, Chunping; Rong, Mingzhe
2017-06-01
After current zero, which is the moment when the vacuum circuit breaker interrupts a vacuum arc, sheath development is the first process in the dielectric recovery process. An axial magnetic field (AMF) is widely used in the vacuum circuit breaker when the high-current vacuum arc is interrupted. Therefore, it is very important to study the influence of different AMF amplitudes on the sheath development. The objective of this paper is to study the influence of different AMF amplitudes on the sheath development from a micro perspective. Thus, the particle in cell-Monte Carlo collisions (PIC-MCC) method was adopted to develop the sheath development model. We compared the simulation results with the experimental results and then validated the simulation. We also obtained the speed of the sheath development and the energy density of the ions under different AMF amplitudes. The results showed that the larger the AMF amplitudes are, the faster the sheath develops and the lower the ion energy density is, meaning the breakdown is correspondingly more difficult.
Xu, Yunze; Li, Kaiqiang; Liu, Liang; Yang, Lujia; Wang, Xiaona; Huang, Yi
2016-01-01
In this paper, a new kind of carbon steel (CS) and stainless steel (SS) galvanic sensor system was developed for the study of rebar corrosion in different pore solution conditions. Through the special design of the CS and SS electronic coupons, the electronic resistance (ER) method and zero resistance ammeter (ZRA) technique were used simultaneously for the measurement of both the galvanic current and the corrosion depth. The corrosion processes in different solution conditions were also studied by linear polarization resistance (LPR) and the measurements of polarization curves. The test result shows that the galvanic current noise can provide detailed information of the corrosion processes. When localized corrosion occurs, the corrosion rate measured by the ER method is lower than the real corrosion rate. However, the value measured by the LPR method is higher than the real corrosion rate. The galvanic current and the corrosion current measured by the LPR method shows linear correlation in chloride-containing saturated Ca(OH)2 solution. The relationship between the corrosion current differences measured by the CS electronic coupons and the galvanic current between the CS and SS electronic coupons can also be used to evaluate the localized corrosion in reinforced concrete. PMID:27618054
Xu, Yunze; Li, Kaiqiang; Liu, Liang; Yang, Lujia; Wang, Xiaona; Huang, Yi
2016-09-08
In this paper, a new kind of carbon steel (CS) and stainless steel (SS) galvanic sensor system was developed for the study of rebar corrosion in different pore solution conditions. Through the special design of the CS and SS electronic coupons, the electronic resistance (ER) method and zero resistance ammeter (ZRA) technique were used simultaneously for the measurement of both the galvanic current and the corrosion depth. The corrosion processes in different solution conditions were also studied by linear polarization resistance (LPR) and the measurements of polarization curves. The test result shows that the galvanic current noise can provide detailed information of the corrosion processes. When localized corrosion occurs, the corrosion rate measured by the ER method is lower than the real corrosion rate. However, the value measured by the LPR method is higher than the real corrosion rate. The galvanic current and the corrosion current measured by the LPR method shows linear correlation in chloride-containing saturated Ca(OH)₂ solution. The relationship between the corrosion current differences measured by the CS electronic coupons and the galvanic current between the CS and SS electronic coupons can also be used to evaluate the localized corrosion in reinforced concrete.
Wildman, Rachel P; Tepper, Ping G; Crawford, Sybil; Finkelstein, Joel S; Sutton-Tyrrell, Kim; Thurston, Rebecca C; Santoro, Nanette; Sternfeld, Barbara; Greendale, Gail A
2012-09-01
Whether menopause-related changes in sex steroids account for midlife weight gain in women or whether weight drives changes in sex steroids remains unanswered. The objective of the study was to characterize the potential reciprocal nature of the associations between sex hormones and their binding protein with waist circumference in midlife women. The study included 1528 women (mean age 46 yr) with 9 yr of follow-up across the menopause transition from the observational Study of Women's Health Across the Nation. Waist circumference, SHBG, testosterone, FSH, and estradiol were measured. Current waist circumference predicted future SHBG, testosterone, and FSH but not vice versa. For each SD higher current waist circumference, at the subsequent visit SHBG was lower by 0.04-0.15 SD, testosterone was higher by 0.08-0.13 SD, and log(2) FSH was lower by 0.15-0.26 SD. Estradiol results were distinct from those above, changing direction across the menopause transition. Estradiol and waist circumference were negatively associated in early menopausal transition stages and positively associated in later transition stages (for each SD higher current waist circumference, future estradiol was lower by 0.15 SD in pre- and early perimenopause and higher by 0.38 SD in late peri- and postmenopause; P for interaction <0.001). In addition, they appeared to be reciprocal, with current waist circumference associated with future estradiol and current estradiol associated with future waist circumference. However, associations in the direction of current waist circumference predicting future estradiol levels were of considerably larger magnitude than the reverse. These Study of Women's Health Across the Nation data suggest that the predominant temporal sequence is that weight gain leads to changes in sex steroids rather than vice versa.
Model-guided control of hippocampal discharges by local direct current stimulation.
Mina, Faten; Modolo, Julien; Recher, Fanny; Dieuset, Gabriel; Biraben, Arnaud; Benquet, Pascal; Wendling, Fabrice
2017-05-10
Neurostimulation is an emerging treatment for drug-resistant epilepsies when surgery is contraindicated. Recent clinical results demonstrate significant seizure frequency reduction in epileptic patients, however the mechanisms underlying this therapeutic effect are largely unknown. This study aimed at gaining insights into local direct current stimulation (LDCS) effects on hyperexcitable tissue, by i) analyzing the impact of electrical currents locally applied on epileptogenic brain regions, and ii) characterizing currents achieving an "anti-epileptic" effect (excitability reduction). First, a neural mass model of hippocampal circuits was extended to accurately reproduce the features of hippocampal paroxysmal discharges (HPD) observed in a mouse model of epilepsy. Second, model predictions regarding current intensity and stimulation polarity were confronted to in vivo mice recordings during LDCS (n = 8). The neural mass model was able to generate realistic hippocampal discharges. Simulation of LDCS in the model pointed at a significant decrease of simulated HPD (in duration and occurrence rate, not in amplitude) for cathodal stimulation, which was successfully verified experimentally in epileptic mice. Despite the simplicity of our stimulation protocol, these results contribute to a better understanding of clinical benefits observed in epileptic patients with implanted neurostimulators. Our results also provide further support for model-guided design of neuromodulation therapy.
Is herpes zoster vaccination likely to be cost-effective in Canada?
Peden, Alexander D; Strobel, Stephenson B; Forget, Evelyn L
2014-05-30
To synthesize the current literature detailing the cost-effectiveness of the herpes zoster (HZ) vaccine, and to provide Canadian policy-makers with cost-effectiveness measurements in a Canadian context. This article builds on an existing systematic review of the HZ vaccine that offers a quality assessment of 11 recent articles. We first replicated this study, and then two assessors reviewed the articles and extracted information on vaccine effectiveness, cost of HZ, other modelling assumptions and QALY estimates. Then we transformed the results into a format useful for Canadian policy decisions. Results expressed in different currencies from different years were converted into 2012 Canadian dollars using Bank of Canada exchange rates and a Consumer Price Index deflator. Modelling assumptions that varied between studies were synthesized. We tabled the results for comparability. The Szucs systematic review presented a thorough methodological assessment of the relevant literature. However, the various studies presented results in a variety of currencies, and based their analyses on disparate methodological assumptions. Most of the current literature uses Markov chain models to estimate HZ prevalence. Cost assumptions, discount rate assumptions, assumptions about vaccine efficacy and waning and epidemiological assumptions drove variation in the outcomes. This article transforms the results into a table easily understood by policy-makers. The majority of the current literature shows that HZ vaccination is cost-effective at the price of $100,000 per QALY. Few studies showed that vaccination cost-effectiveness was higher than this threshold, and only under conservative assumptions. Cost-effectiveness was sensitive to vaccine price and discount rate.
Romero, Lucía; Carbonell, Beatriz; Trenor, Beatriz; Rodríguez, Blanca; Saiz, Javier; Ferrero, José M
2011-10-01
Several mathematical models of rabbit ventricular action potential (AP) have been proposed to investigate mechanisms of arrhythmias and excitation-contraction coupling. Our study aims at systematically characterizing how ionic current properties modulate the main cellular biomarkers of arrhythmic risk using two widely-used rabbit ventricular models, and comparing simulation results using the two models with experimental data available for rabbit. A sensitivity analysis of AP properties, Ca²⁺ and Na⁺ dynamics, and their rate dependence to variations (±15% and ±30%) in the main transmembrane current conductances and kinetics was performed using the Shannon et al. (2004) and the Mahajan et al. (2008a,b) AP rabbit models. The effects of severe transmembrane current blocks (up to 100%) on steady-state AP and calcium transients, and AP duration (APD) restitution curves were also simulated using both models. Our simulations show that, in both virtual rabbit cardiomyocytes, APD is significantly modified by most repolarization currents, AP triangulation is regulated mostly by the inward rectifier K⁺ current (I(K1)) whereas APD rate adaptation as well as [Na⁺](i) rate dependence is influenced by the Na⁺/K⁺ pump current (I(NaK)). In addition, steady-state [Ca²⁺](i) levels, APD restitution properties and [Ca²⁺](i) rate dependence are strongly dependent on I(NaK), the L-Type Ca²⁺ current (I(CaL)) and the Na⁺/Ca²⁺ exchanger current (I(NaCa)), although the relative role of these currents is markedly model dependent. Furthermore, our results show that simulations using both models agree with many experimentally-reported electrophysiological characteristics. However, our study shows that the Shannon et al. model mimics rabbit electrophysiology more accurately at normal pacing rates, whereas Mahajan et al. model behaves more appropriately at faster rates. Our results reinforce the usefulness of sensitivity analysis for further understanding of cellular electrophysiology and validation of cardiac AP models. Copyright © 2011 Elsevier Ltd. All rights reserved.
Automated MRI Segmentation for Individualized Modeling of Current Flow in the Human Head
Huang, Yu; Dmochowski, Jacek P.; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C.
2013-01-01
Objective High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography (HD-EEG) require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images (MRI) requires labor-intensive manual segmentation, even when leveraging available automated segmentation tools. Also, accurate placement of many high-density electrodes on individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. Approach A fully automated segmentation technique based on Statical Parametric Mapping 8 (SPM8), including an improved tissue probability map (TPM) and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on 4 healthy subjects and 7 stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets. Main results The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view (FOV) extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly. Significance Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials. PMID:24099977
Automated MRI segmentation for individualized modeling of current flow in the human head
NASA Astrophysics Data System (ADS)
Huang, Yu; Dmochowski, Jacek P.; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C.
2013-12-01
Objective. High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of the brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images requires labor-intensive manual segmentation, even when utilizing available automated segmentation tools. Also, accurate placement of many high-density electrodes on an individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. Approach. A fully automated segmentation technique based on Statical Parametric Mapping 8, including an improved tissue probability map and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on four healthy subjects and seven stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets.Main results. The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly.Significance. Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials.
ERIC Educational Resources Information Center
Eddy, Peter A.
1979-01-01
Reports the results of a national survey conducted in the US to determine: (1) languages used in the home, (2) second languages learned, (3) current use of second language, (4) attitudes toward the worth of second language study, and (5) opinions about the opportunity and requirement to study languages at various educational levels. (AM)
Quantitative study of protein-protein interactions by quartz nanopipettes.
Tiwari, Purushottam Babu; Astudillo, Luisana; Miksovska, Jaroslava; Wang, Xuewen; Li, Wenzhi; Darici, Yesim; He, Jin
2014-09-07
In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with a series of concentrations in the bath solution. Such current change is due to the adsorption of Cyt c to the inner surface of the nanopipette through specific interactions with hNgb. In contrast, a smaller current change with weak concentration dependence was observed when Cyt c was replaced with lysozyme, which does not specifically bind to hNgb. The equilibrium dissociation constant (KD) for the Cyt c-hNgb complex formation was derived and the value matched very well with the result from surface plasmon resonance measurement. This is the first quantitative study of protein-protein interactions by a conical-shaped nanopore based on charge sensing. Our results demonstrate that nanopipettes can potentially be used as a label-free analytical tool to quantitatively characterize protein-protein interactions.
Generation of mechanical vibrations in metal samples by the use of the pinch effect
NASA Astrophysics Data System (ADS)
Troitskiy, O. A.; Skvortsov, O. B.; Stashenko, V. I.
2017-07-01
The article presents the recent research in electrodynamic processes for metal samples exposed to current pulses. The pinch effect and the skin effect cause the vibration of the metal rods. The results of these studies show how current and magnetic field interact with material samples of gold, silver and copper. The analysis allowed establishing the dependences of peak acceleration on current density and conductor diameter. The dependencies can be used in metal workings and for nondestructive testing.
NASA Astrophysics Data System (ADS)
Cherry, Aaron; Knopp, Jeremy; Aldrin, John C.; Sabbagh, Harold A.; Boehnlein, Thomas; Mooers, Ryan
2013-01-01
There is a need to improve the understanding of the role of interface conditions on eddy current inspections for cracks in multilayer aircraft structures. This paper presents initial experimental and simulated results studying the influence of gaps and contact conditions between two plates with a notch in the second layer. Simulations show an amplification of the eddy current signal for a subsurface notch adjacent to an air gap as opposed to a submerged notch in a solid plate.
Thermal effects on current-related skyrmion formation in a nanobelt
NASA Astrophysics Data System (ADS)
Zhao, Xuebing; Wang, Shasha; Wang, Chao; Che, Renchao
2018-05-01
We report an in-situ Lorentz transmission electron microscopy (LTEM) investigation to study the thermal effects on the generation of magnetic skyrmions within a nanobelt. Under an action of a moderate current pulse, magnetic skyrmions appear even in the temperature range far below the critical temperature and even at zero field. Finite element simulation reveals that the Joule heating plays an essential role in this behavior. Our results also uncover the importance of the cooling conditions in the current-related in situ LTEM research.
NASA Astrophysics Data System (ADS)
Chen, Wei-Jhen; Lee, Yue-Lin; Wu, Ti-Yuan; Chen, Tzu-Ching; Hsu, Chih-Hui; Lin, Ming-Tzer
2018-01-01
This study investigated the effects of electric current and external stress on electromigration of intermetallic compounds (IMC) between solder and copper substrate. Different samples were tested under three different sets of conditions: (1) thermal aging only, (2) thermal aging with electric current ,where resistivity changes were measured using four-point probe measurements, (3) thermal aging with electric current and external stress provided using a four-point bending apparatus. The micro-structural changes in the samples were observed. The results were closely examined; particularly the coupling effect of electric current and external stress to elucidate the electromigration mechanism, as well as the formation of IMC in the samples. For thermal-aging-only samples, the IMC growth mechanism was controlled by grain boundary diffusion. Meanwhile, for thermal aging and applied electric current samples, the IMC growth mechanism was dominated by volume diffusion and interface reaction. Lastly, the IMC growth mechanism in the electric current and external stress group was dominated by grain boundary diffusion with grain growth. The results reveal that the external stress/strain and electric current play a significant role in the electromigration of copper-tin IMC. The samples exposed to tensile stress have reduced electromigration, while those subjected under compressive stress have enhanced electromigration.
Sookpeng, S; Martin, C J; Gentle, D J; Lopez-Gonzalez, M R
2014-03-01
Automatic tube current modulation (ATCM) systems are now used for the majority of CT scans. The principles of ATCM operation are different in CT scanners from different manufacturers. Toshiba and GE scanners base the current modulation on a target noise setting, while Philips and Siemens scanners use reference image and reference mAs concepts respectively. Knowledge of the relationships between patient size, dose and image noise are important for CT patient dose optimisation. In this study, the CT patient doses were surveyed for 14 CT scanners from four different CT scanner manufacturers. The patient cross sectional area, the tube current modulation and the image noise from the CT images were analysed using in-house software. The Toshiba and GE scanner results showed that noise levels are relatively constant but tube currents are dependent on patient size. As a result of this there is a wide range in tube current values across different patient sizes, and doses for large patients are significantly higher in these scanners. In contrast, in the Philips and Siemens scanners, tube currents are less dependent on patient size, the range in tube current is narrower, and the doses for larger patients are not as high. Image noise is more dependent on the patient size.
Study on Vortex-Induced Motions of A New Type of Deep Draft Multi-Columns FDPSO
NASA Astrophysics Data System (ADS)
Gu, Jia-yang; Xie, Yu-lin; Zhao, Yuan; Li, Wen-juan; Tao, Yan-wu; Huang, Xiang-hong
2018-03-01
A numerical simulation and an experimental study on vortex-induced motion (VIM) of a new type of deep draft multi-columns floating drilling production, storage and offloading (FDPSO) are presented in this paper. The main dimension, the special variable cross-section column and the cabin arrangement of the octagonal pontoon are introduced based on the result. The numerical simulation is adapted to study the effects of current incidence angles and reduced velocities on this platform's sway motion response. The 300 m water depth equivalent truncated mooring system is adopted for the model tests. The model tests are carried out to check the reliability of numerical simulation. The results consist of surge, sway and yaw motions, as well as motion trajectories. The maximum sway amplitudes for different types of offshore platform is also studied. The main results show that the peak frequencies of sway motion under different current incidence angles and reduced velocities vary around the natural frequency. The analysis result of flow field indicates that the change of distribution of vortex in vertical presents significant influences on the VIM of platform. The trend of sway amplitude ratio curve of this new type FDPSO differs from the other types of platform. Under 45° current incidence angle, the sway amplitude of this new type of FDPSO is much smaller than those of other types of offshore platform at 4.4 ≤ V r ≤ 8.9. The typical `8' shape trajectory does not appear in the platform's motion trajectories.
Self-reported concussion history: impact of providing a definition of concussion
Robbins, Clifford A; Daneshvar, Daniel H; Picano, John D; Gavett, Brandon E; Baugh, Christine M; Riley, David O; Nowinski, Christopher J; McKee, Ann C; Cantu, Robert C; Stern, Robert A
2014-01-01
Background In recent years, the understanding of concussion has evolved in the research and medical communities to include more subtle and transient symptoms. The accepted definition of concussion in these communities has reflected this change. However, it is unclear whether this shift is also reflected in the understanding of the athletic community. What is known about the subject Self-reported concussion history is an inaccurate assessment of someone’s lifetime exposure to concussive brain trauma. However, unfortunately, in many cases it is the only available tool. Hypothesis/purpose We hypothesize that athletes’ self-reported concussion histories will be significantly greater after reading them the current definition of concussion, relative to the reporting when no definition was provided. An increase from baseline to post-definition response will suggest that athletes are unaware of the currently accepted medical definition. Study design Cross-sectional study of 472 current and former athletes. Methods Investigators conducted structured telephone interviews with current and former athletes between January 2010 and January 2013, asking participants to report how many concussions they had received in their lives. Interviewers then read participants a current definition of concussion, and asked them to re-estimate based on that definition. Results The two estimates were significantly different (Wilcoxon signed rank test: z=15.636, P<0.001). Comparison of the baseline and post-definition medians (7 and 15, respectively) indicated that the post-definition estimate was approximately twice the baseline. Follow-up analyses indicated that this effect was consistent across all levels of competition examined and across type of sport (contact versus non-contact). Conclusion Our results indicate that athletes’ current understandings of concussions are not consistent with a currently accepted medical definition. We strongly recommend that clinicians and researchers preface requests for self-reported concussion history with a definition. In addition, it is extremely important that researchers report the definition they used in published manuscripts of their work. What this study adds to existing knowledge Our study shows that unprompted reporting of concussion history produces results that are significantly different from those provided after a definition has been given, suggesting one possible mechanism to improve the reliability of self-reported concussion history across multiple individuals. PMID:24891816
Association between Electronic Cigarette Use and Asthma among High School Students in South Korea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Jun Ho; Paik, Samuel Y.
Little is known about health outcomes related to electronic cigarette (EC) use, despite its growing popularity. The aim of this study is to investigate the association between EC use and asthma. The study design is a cross-sectional study. A total of 35,904 high school students were included as the final study population. The presence of asthma was based on a student’s self-reported doctor diagnosis of asthma in the past 12 months. Results showed prevalence rates of asthmatics in ‘current EC users’ (n = 2,513), ‘former EC users’ (n = 2,078), and ‘never EC users’ (n = 31,313), were 3.9% (nmore » = 98), 2.2% (n = 46) and 1.7% (n = 530), respectively. Comparing ‘current EC’ users with ‘never EC’ users, the unadjusted OR for asthma was 2.36 (95% CI: 1.89–2.94). In order to control for the effect of conventional cigarette (CC) smoking, after stratifying the subjects by the three CC smoking categories (never CC, former CC, and current CC), within the ‘never CC’ category, the unadjusted OR for asthma for ‘current EC’ users was 3.41 (95% CI: 1.79–6.49), and the adjusted OR was 2.74 (95% CI: 1.30–5.78). Severe asthma was reflected by the number of days absent from school due to asthma symptoms; current EC users had the highest adjusted OR for severe asthma compared to ‘never EC’ users. In conclusion, when compared to a reference population of high school students in South Korea, EC users have an increased association with asthma and are more likely to have had days absent from school due to severe asthma symptoms. In conclusion, the results indicate that EC use may be a risk factor for asthma. The results may be useful in developing a scientific basis for the evaluation of a potential health hazard by EC.« less
Association between Electronic Cigarette Use and Asthma among High School Students in South Korea
Cho, Jun Ho; Paik, Samuel Y.
2016-03-04
Little is known about health outcomes related to electronic cigarette (EC) use, despite its growing popularity. The aim of this study is to investigate the association between EC use and asthma. The study design is a cross-sectional study. A total of 35,904 high school students were included as the final study population. The presence of asthma was based on a student’s self-reported doctor diagnosis of asthma in the past 12 months. Results showed prevalence rates of asthmatics in ‘current EC users’ (n = 2,513), ‘former EC users’ (n = 2,078), and ‘never EC users’ (n = 31,313), were 3.9% (nmore » = 98), 2.2% (n = 46) and 1.7% (n = 530), respectively. Comparing ‘current EC’ users with ‘never EC’ users, the unadjusted OR for asthma was 2.36 (95% CI: 1.89–2.94). In order to control for the effect of conventional cigarette (CC) smoking, after stratifying the subjects by the three CC smoking categories (never CC, former CC, and current CC), within the ‘never CC’ category, the unadjusted OR for asthma for ‘current EC’ users was 3.41 (95% CI: 1.79–6.49), and the adjusted OR was 2.74 (95% CI: 1.30–5.78). Severe asthma was reflected by the number of days absent from school due to asthma symptoms; current EC users had the highest adjusted OR for severe asthma compared to ‘never EC’ users. In conclusion, when compared to a reference population of high school students in South Korea, EC users have an increased association with asthma and are more likely to have had days absent from school due to severe asthma symptoms. In conclusion, the results indicate that EC use may be a risk factor for asthma. The results may be useful in developing a scientific basis for the evaluation of a potential health hazard by EC.« less
Hsu, Guoo-Shyng Wang; Hsu, Shun-Yao
2018-04-01
Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmental friendly. A two-factor central composite design was adopted for studying the effects of electrode gap and electric current on chlorine generation efficiency of electrolyzed deep ocean water. Deep ocean water was electrolyzed in a glass electrolyzing cell equipped with platinum-plated titanium anode and cathode in a constant-current operation mode. Results showed that current density, chlorine concentration, and electrolyte temperature increased with electric current, while electric efficiency decreased with electric current and electrode gap. An electrode gap of less than 11.7 mm, and a low electric current appeared to be a more energy efficient design and operation condition for the electrolysis system. Copyright © 2017. Published by Elsevier B.V.
Skills Training to Avoid Inadvertent Plagiarism: Results from a Randomised Control Study
ERIC Educational Resources Information Center
Newton, Fiona J.; Wright, Jill D.; Newton, Joshua D.
2014-01-01
Plagiarism continues to be a concern within academic institutions. The current study utilised a randomised control trial of 137 new entry tertiary students to assess the efficacy of a scalable short training session on paraphrasing, patch writing and plagiarism. The results indicate that the training significantly enhanced students' overall…
Economic Development Threatens Groundwater in Puerto Rico: Results of a Field Study.
ERIC Educational Resources Information Center
Arbona, Sonia I.; Hunter, John M.
1995-01-01
Presents the results of a field study done on 7 wells providing 37% of the total aquifer production for 4 municipalities in Puerto Rico. Each sampled well showed signs of contamination by heavy metals, nitrate, and semivolatile organic compounds. Although found in low concentrations, current development threatens groundwater quality. (MJP)
Francis G. Wagner; Charles E. Keegan; Roger D. Fight; Susan Willits
1998-01-01
New silvicultural prescriptions for ecosystem management on both public and private timberlands in western North America will likely result in an influx of relatively small-diameter sawtimber for processing. Since sawmills currently process a majority of sawtimber harvested in western North America (more than 80% in some regions), this study concentrated on...
2013-09-16
current 0.2 Pa-s results [3). Fractography of these constant Kmax-decreasing fJK specimens showed that the threshold transition behavior directly... fractography , and mechanistic interpretation the applicability of this hypothesis to the current data needs to be validated via additional microscopy, study
Study of surge current effects on solid tantalum capacitors
NASA Technical Reports Server (NTRS)
1980-01-01
Results are presented of a 2,000 hour cycled life test program conducted to determine the effect of short term surge current screening on approximately 47 micron f/volt solid tantalum capacitors. The format provides average values and standard deviations of the parameters, capacitance, dissipation factor, and equivalent series resistance at 120 Hz, 1KHz, abd 40 KHz.
NASA Astrophysics Data System (ADS)
Czelusniak, C.; Palla, L.; Massi, M.; Carraresi, L.; Giuntini, L.; Re, A.; Lo Giudice, A.; Pratesi, G.; Mazzinghi, A.; Ruberto, C.; Castelli, L.; Fedi, M. E.; Liccioli, L.; Gueli, A.; Mandò, P. A.; Taccetti, F.
2016-03-01
This work will present preliminary results concerning the use of time-resolved ion beam induced luminescence applied to provenance studies of lapis lazuli. Measurements were performed at the pulsed beam facility at LABEC laboratory in Florence. Lapis lazuli is a semi-precious gemstone, used as ornament since the early civilizations that can be found in few places on Earth. The importance of this work lies in understanding the origin of various samples of lapis lazuli, from which it may be possible to gain insight into trade routes from ancient times. The samples studied in this work originated from Chile, Afghanistan, Tajikistan, Myanmar, and Siberia. The stones were irradiated with 3 MeV protons and the resulting luminescence was detected by a photomultiplier tube, whose output was acquired using a sampling digitizer VME module (CAEN/V1720). Wavelength discrimination was performed at 430 nm utilizing a range of beam currents. The results showed that, by changing the beam current intensity, one can study different features of lapis lazuli, and this may aid in distinguishing lapis lazuli from different provenances.
Small transport aircraft technology. [STAT
NASA Technical Reports Server (NTRS)
Galloway, T. L.
1981-01-01
The results of contracted studies identifying the potential benefits of advanced technology are presented. Current in house studies and research efforts are discussed. An overview of the proposed technology elements in STAT research is presented.
Hernández-Bule, María Luisa; Cid, María Antonia; Trillo, María Angeles; Leal, Jocelyne; Ubeda, Alejandro
2010-12-01
The capacitive-resistive electric transfer (CRet) therapy is a non-invasive technique that applies electrical currents of 0.4-0.6 MHz to the treatment of musculoskeletal injuries. Although this therapy has proved effective in clinical studies, its interaction mechanisms at the cellular level still are insufficiently investigated. Results from previous studies have shown that the application of CRet currents at subthermal doses causes alterations in cell cycle progression and decreased proliferation in hepatocarcinoma (HepG2) and neuroblastoma (NB69) human cell lines. The aim of the present study was to investigate the antiproliferative response of HepG2 to CRet currents. The results showed that 24-h intermittent treatment with 50 µA/mm(2) current density induced in HepG2 statistically significant changes in expression and activation of cell cycle control proteins p27Kip1 and cyclins D1, A and B1. The chronology of these changes is coherent with that of the alterations reported in the cell cycle of HepG2 when exposed to the same electric treatment. We propose that the antiproliferative effect exerted by the electric stimulus would be primarily mediated by changes in the expression and activation of proteins intervening in cell cycle regulation, which are among the targets of emerging chemical therapies. The capability to arrest the cell cycle through electrically-induced changes in cell cycle control proteins might open new possibilities in the field of oncology.
Inhibition of glycine receptor function of native neurons by aliphatic n-alcohols
Tao, Liang; Ye, Jiang Hong
2002-01-01
The inhibitory effects of n-alcohols (methanol to dodecanol) on glycine-activated currents were studied in neurons freshly dissociated from the ventral tegmental area of neonatal rats using whole-cell patch-clamp recording technique.Ethanol enhanced and depressed glycine-activated currents in 35% and 45%, respectively, of neurons of ventral tegmental area of neonatal rats. In this report, we extended our focus of ethanol-induced inhibition of glycine currents to other straight-chain alcohols.Aliphatic n-alcohols, which have carbon numbers less than nine, suppressed glycine currents in 45% (71/158) of the neurons. All results from this study are obtained from the 45% of cells displaying inhibition; the other 55% of the neurons were not studied.Alcohol potency increased as the number of carbon atoms increased from one to five, and was at a maximal plateau from five to nine; alcohols with 10 or more carbons did not inhibit glycine-activated currents. Thus, a ‘cutoff' point in their potency for inhibition of glycine receptor function occurred at about decanol.A coapplication of dodecanol with ethanol eliminated the inhibition resulting from ethanol. Thus, dodecanol may bind to the receptor silently and compete with ethanol.These observations indicate that straight-chain n-alcohols exhibit a ‘cutoff' point in their potency for inhibition of the glycine receptor function between nine and 10 carbon atoms. The inability of longer alcohols to change the activation properties of the receptors may contribute to the cutoff effect. PMID:12055142
The Extent to Which Dayside Reconnection Drives Field-Aligned Currents During Substorms
NASA Astrophysics Data System (ADS)
Forsyth, C.; Shortt, M. W.; Coxon, J.; Rae, J.; Freeman, M. P.; Kalmoni, N. M. E.; Jackman, C. M.; Anderson, B. J.
2016-12-01
Field-aligned currents, also known as Birkeland currents, are the agents by which energy and momentum is transferred to the ionosphere from the magnetosphere and solar wind. In order to understand this coupling, it is necessary to analyze the variations in these current systems with respect to the main energy sources of the solar wind and substorms. In this study, we perform a superposed epoch analysis of field-aligned currents determined by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) project with respect to substorm expansion phase onsets identified using the Substorm Onsets and Phases from Indices of the Electrojet (SOPHIE) technique. We examine the total upward and downward currents separately in the noon, dusk, dawn and midnight sectors. Our results show that the dusk and dawn currents have up to a 66% linear correlated with the dayside reconnection rate estimated from solar wind measurements, whereas the noon and midnight currents are not. The noon currents show little or no variation throughout the substorm cycle. The midnight currents follows the dusk currents up to 20 min before onset, after which the midnight current increases more rapidly and exponentially. At substorm onset, the exponential growth rate increases. While the midnight field-aligned currents grow exponentially after substorm onset, the auroral indices vary with a 1/6th power law. Overall, our results show that the growth and decay rates of the Region 1 and 2 current systems, which are strongest at dawn and dusk, are directly driven by the solar wind, whereas the growth and decay rates of the substorm current system, which are dominant at midnight, act independently of the upstream driver.
NASA Astrophysics Data System (ADS)
Ruan, Dajiang
The aim of this work is to investigate the effect of current density on the grain size and surface morphology of electrodeposited platinum nanowires and their applications. Platinum (Pt) nanowires were fabricated by a galvanostatic electrodeposition method in a porous anodic alumina oxide (AAO) template with different current densities. Both direct current and pulse current electrodeposition were used to synthesize the Pt nanowires. The grain size and surface morphology of the Pt nanowires were studied by field emission scanning electron microscopy (FE-SEM), transmission electron microcopy (TEM) and X-ray diffraction (XRD). The experimental results showed that the current density was the key factor to control the surface roughness. The surface of the Pt nanowires became rougher and the grain sizes were increased by increasing the current densities. From the experimental results, a growth mechanism of Pt nanowires based on progressive nucleation and crystallization was proposed in order to find out the relationship between the surface morphology and current density. The electrochemical properties and catalytic activities of these surface roughed Pt nanowires were investigated in the detection of H20 2 and for the methanol oxidation. Cyclic voltammograms of Pt nanowire modified electrodes were obtained using a potentiostat, which showed that rougher Pt nanowires have higher response and better activity than that of smooth nanowires. For H202 detection, the effect of scan rate and H202 concentration were studied and it was found that the peak current for hydrogen peroxide reduction became larger with the increasing of either scan rate or H202 concentration. It can be inferred that the process of electrocatalytic hydrogen peroxide reduction may be controlled by diffusion of hydrogen peroxide and the Pt nanowire modified glassy carbon electrode (GCE) is well suited for the detection of H202. From the relationship between the peak current and square root of scan rates for methanol oxidation, it can be inferred that the process of electrocatalytic methanol oxidation was controlled by diffusion of methanol. To understand the effect of the morphological feature on the electrocatalytic activity of the Pt nanowire catalysts, the electrochemically active surface area (ECSA) as a function of deposited current density was investigated, which suggests that Pt nanowire catalysts deposited at highest current density had the most ECSA surface morphology of the Pt nanowires. The chronoamperometric curves and electrochemical impedance spectroscopy (EIS) results confirmed that the Pt nanowire catalyst synthesized at higher current density possessed longer durability and gave more efficient electrochemical performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunawan, Budi; Neary, Vincent S.; Colby, Jonathan
This study demonstrates a site resource assessment to examine the temporal variation of the mean current, turbulence intensities, and power densities for a tidal energy site in the East River tidal strait. These variables were derived from two-months of acoustic Doppler velocimeter (ADV) measurements at the design hub height of the Verdant Power Gen5 hydrokinetic turbine. The study site is a tidal strait that exhibits semi-diurnal tidal current characteristics, with a mean horizontal current speed of 1.4 m s -1, and turbulence intensity of 15% at a reference mean current of 2 m s -1. Flood and ebb flow directionsmore » are nearly bi-directional, with higher current magnitude during flood tide, which skews the power production towards the flood tide period. The tidal hydrodynamics at the site are highly regular, as indicated by the tidal current time series that resembles a sinusoidal function. This study also shows that the theoretical force and power densities derived from the current measurements can significantly be influenced by the length of the time window used for averaging the current data. Furthermore, the theoretical power density at the site, derived from the current measurements, is one order of magnitude greater than that reported in the U.S. national resource assessment. As a result, this discrepancy highlights the importance of conducting site resource assessments based on measurements at the tidal energy converter device scale.« less
Gunawan, Budi; Neary, Vincent S.; Colby, Jonathan
2014-06-22
This study demonstrates a site resource assessment to examine the temporal variation of the mean current, turbulence intensities, and power densities for a tidal energy site in the East River tidal strait. These variables were derived from two-months of acoustic Doppler velocimeter (ADV) measurements at the design hub height of the Verdant Power Gen5 hydrokinetic turbine. The study site is a tidal strait that exhibits semi-diurnal tidal current characteristics, with a mean horizontal current speed of 1.4 m s -1, and turbulence intensity of 15% at a reference mean current of 2 m s -1. Flood and ebb flow directionsmore » are nearly bi-directional, with higher current magnitude during flood tide, which skews the power production towards the flood tide period. The tidal hydrodynamics at the site are highly regular, as indicated by the tidal current time series that resembles a sinusoidal function. This study also shows that the theoretical force and power densities derived from the current measurements can significantly be influenced by the length of the time window used for averaging the current data. Furthermore, the theoretical power density at the site, derived from the current measurements, is one order of magnitude greater than that reported in the U.S. national resource assessment. As a result, this discrepancy highlights the importance of conducting site resource assessments based on measurements at the tidal energy converter device scale.« less
Magnetic Field Observations of Partial Ring Current during Storm Recovery Phase
NASA Technical Reports Server (NTRS)
Le, G.; Russell, C. T.; Slavin, J. A.; Lucek, E. A.
2008-01-01
We present results of an extensive survey of the magnetic field observations in the inner magnetosphere using 30 years of magnetospheric magnetic field data from Polar, Cluster, ISEE, and AMPTE/CCE missions. The purpose of this study is to understand the magnetic field evolution during the recovery phase of geomagnetic storms, and its implication to the ring current recovery and loss mechanisms of ring current particles. It is now commonly believed that a strong partial ring current is formed during the storm main phase due to the enhanced earthward convection of energetic ions from nightside plasma sheet. But the presence of a strong partial ring current throughout the recovery phase remains controversial. The magnetic field generated by the ring current inflates the inner magnetosphere and causes magnetic field depressions in the equatorial magnetosphere. During the storm recovery phase, we find that the distribution of the equatorial magnetic field depression exhibits similar local time dependence as the ring current distribution obtained from the combined dataset in the earlier study. It shows that a strong partial ring current is a permanent feature throughout the recovery phase. In the early recovery phase, the partial ring current peaks near the dusk terminator as indicated by the peak of the magnetic field depression. As the recovery phase progresses, the partial ring current decays most quickly near the dusk and results in a dusk-to-midnight moving of the peak of the partial ring current. Thus the loss mechanisms work most effectively near the dusk. The magnetic field depression increases the gyroradius of ring current protons to a scale greater or comparable to the thickness of the magnetopause, which increases the chance of ion drift loss near the dusk magnetopause at larger L-shell (L greater than 5). But the drift loss mechanism alone cannot explain the loss of ring current ions especially in the smaller L-shell (L less than 5). The precipitation loss due to wave-particle interaction is most likely the dominant loss mechanism in the small L-shell as it works most effectively at the same local time.
Bombesin receptor-mediated imaging and cytotoxicity: review and current status
Sancho, Veronica; Di Florio, Alessia; Moody, Terry W.; Jensen, Robert T.
2010-01-01
The three mammalian bombesin (Bn) receptors (gastrin-releasing peptide [GRP] receptor, neuromedin B [NMB] receptor, BRS-3) are one of the classes of G protein-coupled receptors that are most frequently over-express/ectopically expressed by common, important malignancies. Because of the clinical success of somatostatin receptor-mediated imaging and cytotoxicity with neuroendocrine tumors, there is now increasing interest in pursuing a similar approach with Bn receptors. In the last few years then have been more than 200 studies in this area. In the present paper, the in vitro and in vivo results, as well as results of human studies from many of these studies are reviewed and the current state of Bn receptor-mediated imaging or cytotoxicity is discussed. Both Bn receptor-mediated imaging studies as well as Bn receptor-mediated tumoral cytotoxic studies using radioactive and non-radioactive Bn-based ligands are covered. PMID:21034419
Galanopoulos, Ilias; Ilias, Aslanidis; Karliaftis, Konstantinos; Papadopoulos, Dimitrios; Ashwood, Neil
2017-01-01
Background: It is generally accepted that rotator cuff repair gives satisfactory results in the long term, although most studies have so far shown a fairly high rate of structural failure or re-tear. The purpose of this review study is to assess whether failure of the repaired cuff to heal could negatively affect the functional outcome. Methods: This article includes an extensive Internet PubMed based research in the current English-language literature including level I to level V studies as well as systematic reviews. Results: According to this extended study research, the results are mixed; certain reports show that patients with a healed rotator cuff repair have improved function and strength compared to those with structural failure, whereas other studies support the generally perceived concept that tendon re-tear does not lead to inferior clinical outcome. Conclusion: Further high-level prospective studies with larger numbers of patients and longer follow up are needed to overcome the current debate over function between healed and failed rotator cuff repairs. PMID:28400878
Manchaiah, Vinaya; Danermark, Berth; Vinay; Ahmadi, Tayebeh; Tomé, David; Krishna, Rajalakshmi; Germundsson, Per
2015-01-01
Background The current study was aimed at understanding the social representation of hearing aids in India, Iran, Portugal, and the United Kingdom. We also compared these results to explore the cross-cultural differences and similarities among these countries. Methods The study involved a cross-sectional design, and the data were collected from four different countries using the snowball sampling method. Data were analyzed using a content analysis to identify the most-similar categories of responses reported, a co-occurrences analysis to see which of these categories are reported commonly, and a chi-square analysis to study if there was any association between positive, neutral, and negative connotations among participants in different countries. Results The current study revealed four different social representations of hearing aids from India, Iran, Portugal, and the United Kingdom, and also a global index. Conclusion The study results provide very useful insights into how hearing aids are represented in the society. These findings may have important implications for public education and also for manufacturers from the viewpoint of designing and marketing hearing aids in different countries. PMID:26504376
Castilla, Jesús; Pozo, Francisco
2017-01-01
Background Recent studies suggest that the protective effect of the current influenza vaccine could be influenced by vaccination in previous seasons. We estimated the combined effect of the previous and current influenza vaccines from the 2010–2011 season to the 2015–2016 season in Spain. Methods We performed a test-negative case-control study in patients ≥9 years old. We estimated the influenza vaccine effectiveness (IVE) against influenza A(H1N1)pdm09, A(H3N2), and B virus. Results We included 1206 influenza A(H1N1)pdm09 cases, 1358 A(H3N2) cases and 1079 B cases. IVE against A(H1N1)pdm09 virus in the pooled-season analysis was 53% (95% Confidence Interval (CI): 21% to 72%) for those vaccinated only in the current season and 50% (95%CI: 23% to 68%) for those vaccinated in the both current and previous seasons. Against the influenza A(H3N2) virus, IVE was 17% (95%CI: -43% to 52%) for those vaccinated only in the current season and 3% (95%CI: -33% to 28%) for those vaccinated in both seasons. Regarding influenza B, we obtained similar IVEs for those vaccinated only in the current and those vaccinated in both seasons: 57% (95%CI: 12% to 79%) and 56% (95%CI: 36% to 70%), respectively. Conclusion Our results suggested no interference between the previous and current influenza vaccines against A(H1N1)pdm09 and B viruses, but a possible negative interference against A(H3N2) virus. PMID:28614376
Gall, Carolin; Silvennoinen, Katri; Granata, Giuseppe; de Rossi, Francesca; Vecchio, Fabrizio; Brösel, Doreen; Bola, Michał; Sailer, Michael; Waleszczyk, Wioletta J; Rossini, Paolo M; Tatlisumak, Turgut; Sabel, Bernhard A
2015-07-01
Occipital stroke often leads to visual field loss, for which no effective treatment exists. Little is known about the potential of non-invasive electric current stimulation to ameliorate visual functions in patients suffering from unilateral occipital stroke. One reason is the traditional thinking that visual field loss after brain lesions is permanent. Since evidence is available documenting vision restoration by means of vision training or non-invasive electric current stimulation future studies should also consider investigating recovery processes after visual cortical strokes. Here, protocols of repetitive transorbital alternating current stimulation (rtACS) and transcranial direct current stimulation (tDCS) are presented and the European consortium for restoration of vision (REVIS) is introduced. Within the consortium different stimulation approaches will be applied to patients with unilateral occipital strokes resulting in homonymous hemianopic visual field defects. The aim of the study is to evaluate effects of current stimulation of the brain on vision parameters, vision-related quality of life, and physiological parameters that allow concluding about the mechanisms of vision restoration. These include EEG-spectra and coherence measures, and visual evoked potentials. The design of stimulation protocols involves an appropriate sham-stimulation condition and sufficient follow-up periods to test whether the effects are stable. This is the first application of non-invasive current stimulation for vision rehabilitation in stroke-related visual field deficits. Positive results of the trials could have far-reaching implications for clinical practice. The ability of non-invasive electrical current brain stimulation to modulate the activity of neuronal networks may have implications for stroke rehabilitation also in the visual domain. Copyright © 2015 Elsevier Inc. All rights reserved.
Root System Water Consumption Pattern Identification on Time Series Data
Figueroa, Manuel; Pope, Christopher
2017-01-01
In agriculture, soil and meteorological sensors are used along low power networks to capture data, which allows for optimal resource usage and minimizing environmental impact. This study uses time series analysis methods for outliers’ detection and pattern recognition on soil moisture sensor data to identify irrigation and consumption patterns and to improve a soil moisture prediction and irrigation system. This study compares three new algorithms with the current detection technique in the project; the results greatly decrease the number of false positives detected. The best result is obtained by the Series Strings Comparison (SSC) algorithm averaging a precision of 0.872 on the testing sets, vastly improving the current system’s 0.348 precision. PMID:28621739
Root System Water Consumption Pattern Identification on Time Series Data.
Figueroa, Manuel; Pope, Christopher
2017-06-16
In agriculture, soil and meteorological sensors are used along low power networks to capture data, which allows for optimal resource usage and minimizing environmental impact. This study uses time series analysis methods for outliers' detection and pattern recognition on soil moisture sensor data to identify irrigation and consumption patterns and to improve a soil moisture prediction and irrigation system. This study compares three new algorithms with the current detection technique in the project; the results greatly decrease the number of false positives detected. The best result is obtained by the Series Strings Comparison (SSC) algorithm averaging a precision of 0.872 on the testing sets, vastly improving the current system's 0.348 precision.
Resolving Overlimiting Current Mechanisms in Microchannel-Nanochannel Interface Devices
NASA Astrophysics Data System (ADS)
Yossifon, Gilad; Leibowitz, Neta; Liel, Uri; Schiffbauer, Jarrod; Park, Sinwook
2015-11-01
We present results demonstrating the space charge-mediated transition between classical, diffusion-limited current and surface-conduction dominant over-limiting currents in a shallow micro-nanochannel device. The extended space charge layer develops at the depleted micro-nanochannel entrance at high current and is correlated with a distinctive maximum in the dc resistance. Experimental results for a shallow surface-conduction dominated system are compared with theoretical models, allowing estimates of the effective surface charge at high voltage to be obtained. Further, we extend the study to microchannels of moderate to large depths where the role of various electro-convection mechanisms becomes dominant. In particular, electro-osmotic of the second kind and electro-osmotic instability (EOI) which competes each other at geometrically heterogeneous (e.g. undulated nanoslot interface, array of nanoslots) nanoslot devices. Also, these effects are also shown to be strongly modulated by the non-ideal permselectivity of the nanochannel.
Studies of Current Circulation at Ocean Waste Disposal Sites
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator); Davis, G.; Henry, R.
1976-01-01
The author has identified the following significant results. Acid waste plume was observed in LANDSAT imagery fourteen times ranging from during dump up to 54 hours after dump. Circulation processes at the waste disposal site are highly storm-dominated, with the majority of the water transport occurring during strong northeasterlies. There is a mean flow to the south along shore. This appears to be due to the fact that northeasterly winds produce stronger currents than those driven by southeasterly winds and by the thermohaline circulation. During the warm months (May through October), the ocean at the dump site stratifies with a distinct thermocline observed during all summer cruising at depths ranging from 10 to 21 m. During stratified conditions, the near-bottom currents were small. Surface currents responded to wind conditions resulting in rapid movement of surface drogues on windy days. Mid-depth drogues showed an intermediate behavior, moving more rapidly as wind velocities increased.
The plasma environment, charge state, and currents of Saturn's C and D rings
NASA Technical Reports Server (NTRS)
Wilson, G. R.
1991-01-01
The charge state and associated currents of Saturn's C an D rings are studied by modeling the flow of ionospheric plasma from the mid- to low-latitude ionosphere to the vicinity of the rings. It is found that the plasma density near the C and D rings, at a given radial location, will experience a one to two order of magnitude diurnal variation. The surface charge density (SCD) of these rings can show significant radial and azimuthal variations due mainly to variation in the plasma density. The SCD also depends on structural features of the rings such as thickness and the nature of the particle size distribution. The associated azimuthal currents carried by these rings also show large diurnal variations resulting in field-aligned currents which close in the ionosphere. The resulting ionospheric electric field will probably not produce a significant amount of plasma convection in the topside ionosphere and inner plasmasphere.
Utility of reactively sputtered CuN{sub x} films in spintronics devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang Yeyu; Persson, J.; NanOsc AB, Electrum 205, 164 40 Kista
2012-04-01
We have studied nitrified copper (CuN{sub x}) thin films grown by reactive sputtering in the context of spintronic devices. The Ar-to-N{sub 2} flow ratio enables tunability of the electrical resistivity and surface roughness of the CuN{sub x} films, with the former increasing to nearly 20 times that of Cu, and the latter reduced to the atomic scale. Incorporating this into a Ta/CuN{sub x}/Ta seed stack for spin valves improves the current-in-plane (CIP) magnetoresistance; maximum magnetoresistance results with CuN{sub x} seed layer and Cu interlayer. Finally, finite element modeling results are presented that suggest the use of CuN{sub x} in nanocontactmore » spin torque oscillators can enhance current densities by limiting the current spread through the device. This may positively impact threshold currents, power requirements, and device reliability.« less
NASA Astrophysics Data System (ADS)
Vvedenskii, N. V.; Kostin, V. A.; Laryushin, I. D.; Silaev, A. A.
2016-05-01
We have studied the processes of excitation of low-frequency residual currents in a plasma produced through ionisation of gases by two-colour laser pulses in laser-plasma schemes for THz generation. We have developed an analytical approach that allows one to find residual currents in the case when one of the components of a two-colour pulse is weak enough. The derived analytical expressions show that the effective generation of the residual current (and hence the effective THz generation) is possible if the ratio of the frequencies in the two-colour laser pulse is close to a rational fraction with a not very big odd sum of the numerator and denominator. The results of numerical calculations (including those based on the solution of the three-dimensional time-dependent Schrödinger equation) agree well with the analytical results.
Gomes, Marina das Neves; Cardoso, Janine Simas; Leitão, Alvaro Costa; Quaresma, Carla Holandino
2016-05-01
Direct electric current has several therapeutic uses such as antibacterial and antiprotozoal action, tissues scarring and regeneration, as well as tumor treatment. This method has shown promising results in vivo and in vitro, with significant efficacy and almost no side effects. Considering lack of studies regarding direct electric current mutagenic and/or genotoxic effects, the present work evaluated both aspects by using five different bacterial experimental assays: survival of repair-deficient mutants, Salmonella-histidine reversion mutagenesis (Ames test), forward mutations to rifampicin resistance, phage reactivation, and lysogenic induction. In these experimental conditions, cells were submitted to an approach that allows evaluation of anodic, cathodic, and electro-ionic effects generated by 2 mA of direct electric current, with doses ranging from 0.36 to 3.60 Coulombs. Our results showed these doses did not induce mutagenic or genotoxic effects. © 2016 Wiley Periodicals, Inc.
Ionospheric and Birkeland current distributions inferred from the MAGSAT magnetometer data
NASA Technical Reports Server (NTRS)
Zanetti, L. J.; Potemra, T. A.; Baumjohann, W.
1983-01-01
Ionospheric and field-aligned sheet current density distributions are presently inferred by means of MAGSAT vector magnetometer data, together with an accurate magnetic field model. By comparing Hall current densities inferred from the MAGSAT data and those inferred from simultaneously recorded ground based data acquired by the Scandinavian magnetometer array, it is determined that the former have previously been underestimated due to high damping of magnetic variations with high spatial wave numbers between the ionosphere and the MAGSAT orbit. Among important results of this study is noted the fact that the Birkeland and electrojet current systems are colocated. The analyses have shown a tendency for triangular rather than constant electrojet current distributions as a function of latitude, consistent with the statistical, uniform regions 1 and 2 Birkeland current patterns.
Bidwell, L.C.; Henry, E.A.; Willcutt, E.G.; Kinnear, M.K.; Ito, T.A.
2014-01-01
Background Numerous studies have shown that attention deficit/hyperactivity disorder (ADHD) is associated higher risk of cannabis use disorders (CUD). However, these studies are limited in that most did not: (a) differentiate the role of hyperactivity-impulsivity (HI) and inattention (IN); (b) control for associated psychopathology; and (c) consider more fine-grained CUD-related measures. Our aim was to clarify the unique and interactive contributions of inattention and hyperactivity symptoms to age of cannabis initiation and DSM-IV cannabis dependence, craving, and severity of problems related to cannabis use while statistically controlling for symptoms of comorbid psychopathology in a non-clinical sample of young adults. Methods Cannabis variables, current use of cigarettes and alcohol, current and childhood ADHD, and comorbid internalizing and externalizing psychopathology were assessed in 376 male and female undergraduates. Results Results indicate that current and childhood IN were independently associated with more severe cannabis use, craving, and problem use-related outcomes in young adulthood (p’s<.01) and that childhood HI symptoms were associated with earlier initiation of cannabis (p<.01). Further, current IN symptoms moderated the relationships between level of use and more severe outcomes (p’s<.01), such that higher IN strengthened positive associations among use and problem cannabis use. Associations with ADHD symptom dimensions and current use of alcohol and cigarettes were also present. Conclusions Thus, current and childhood inattention symptoms as well as childhood hyperactive-impulsive symptoms emerged as significant factors in cannabis-related outcomes in young adults, even after statistically controlling for important confounding variables. PMID:24332802
Chhatbar, Pratik Y; Kautz, Steven A; Takacs, Istvan; Rowland, Nathan C; Revuelta, Gonzalo J; George, Mark S; Bikson, Marom; Feng, Wuwei
2018-03-13
Transcranial direct current stimulation (tDCS) is a promising brain modulation technique for several disease conditions. With this technique, some portion of the current penetrates through the scalp to the cortex and modulates cortical excitability, but a recent human cadaver study questions the amount. This insufficient intracerebral penetration of currents may partially explain the inconsistent and mixed results in tDCS studies to date. Experimental validation of a transcranial alternating current stimulation-generated electric field (EF) in vivo has been performed on the cortical (using electrocorticography, ECoG, electrodes), subcortical (using stereo electroencephalography, SEEG, electrodes) and deeper thalamic/subthalamic levels (using DBS electrodes). However, tDCS-generated EF measurements have never been attempted. We aimed to demonstrate that tDCS generates biologically relevant EF as deep as the subthalamic level in vivo. Patients with movement disorders who have implanted deep brain stimulation (DBS) electrodes serve as a natural experimental model for thalamic/subthalamic recordings of tDCS-generated EF. We measured voltage changes from DBS electrodes and body resistance from tDCS electrodes in three subjects while applying direct current to the scalp at 2 mA and 4 mA over two tDCS montages. Voltage changes at the level of deep nuclei changed proportionally with the level of applied current and varied with different tDCS montages. Our findings suggest that scalp-applied tDCS generates biologically relevant EF. Incorporation of these experimental results may improve finite element analysis (FEA)-based models. Copyright © 2018 Elsevier Inc. All rights reserved.
Stray voltage and milk quality: a review.
Reinemann, Douglas J
2012-07-01
If animal contact voltage reaches sufficient levels, animals coming into contact with grounded devices may receive a mild electric shock that can cause a behavioral response. At voltage levels that are just perceptible to the animal, behaviors indicative of perception (eg, flinches) may result with little change in normal routines. At higher exposure levels, avoidance behaviors may result. The direct effect of animal contact with electrical current can range from: • Mild behavioral reactions indicative of sensation, to • Involuntary muscle contraction, or twitching, to • Intense behavioral responses indicative of pain. The indirect effects of these behaviors can vary considerably depending on the specifics of the contact location, level of current flow, body pathway, frequency of occurrence, and many other factors related to the daily activities of animals. There are several common situations of concern in animal environments: • Animals avoiding certain exposure locations, which may result in: X Reduced water intake if exposure is required for animals to access watering devices, X Reduced feed intake if exposure is required for animals to accesses feeding devices or locations. • Difficulty of moving or handling animals in areas of voltage/current exposure• The physiologic implications of the release of stress hormones produced by contact with painful stimuli. The severity of response will depend on the amount of electrical current (measured in milliamps) flowing through the animal’s body, the pathway it takes through the body, and the sensitivity of the individual animal. The results of the combined current dose-response experiments, voltage exposure response experiments, and measurements of body and contact resistances is consistent with the lowest (worst case) cow + contact resistance as low as 500 as estimated by Lefcourt that may occur in some unusual situations on farms (firm application of the muzzle to a wet metallic watering device and hoof contact on a clean, wet, contoured metallic plate on the floor). These studies on responses of dairy cows to electrical exposure agree well with each other and with predictions from neuroelectric theory and practice. There is a high degree of repeatability across studies in which exposures and responses have been appropriately quantified. For confirmation, a potential of 2 to 4 V (60 Hz, rms) must be measured between 2 points that an animal might contact (or animal contact measurement), and some animals should exhibit signs of avoidance behavior. The animal contact voltage measurement with an appropriate shunt resistor value provides the only reliable indication of exposure levels. Voltage readings at cow contact points should be made with a 500- or 1000- resistor across the 2 measuring leads to the cow contact points in addition to open circuit measurements. The only studies that have documented adverse effects of voltage and current on cows had both sufficient current applied to cause aversion and forced exposures (ie, animals could not eat or drink without being exposed to voltage and current) and all of the indirect responses (reduced water or intake and milk production) were behaviorally mediated. It is typical for voltage levels to vary considerably at different locations on a farm. Decreased water and/or feed intake or undesired behaviors result only if current levels are sufficient to produce aversion at locations that are critical to daily animal activity, such as feeders, waterers, and milking areas. If an aversive current occurs only a few times per day, it is not likely to have an adverse effect on cow behavior. The more often an aversive voltage occurs in areas critical to cows’ normal feeding, drinking, or resting, the more likely it is to affect cows. A number of studies have been done to investigate potential detrimental physiologic responses that may result from animals’ exposure to voltage and current. The literature review presented here summarizes 46 research trials on groups of cows exposed to know levels of voltage and/or current. Many of these were part of the same experiment but exposed cows at different levels of voltage or current. None of these trials or experiments (some using aggressive exposure of cows to mastitis organisms) showed a significant effect of voltage/current exposure on SCC or the incidence of mastitis. Many of these studies showed behavioral modification and some showed minor changes in milk yield, milk composition, or stress hormones (especially cortisol). These studies have shown that increased concentrations of the stress hormone cortisol do not occur at levels below behavioral response levels and only become apparent in some, but not all, cows at substantially higher voltage/current exposures than the threshold required for behavioral modification. This body of research indicates that while exposure to stray voltage at levels of 2 V to 4 V may be a mild stressor to dairy cows, it does not contribute to increased SCC or incidence of mastitis or reduced milk yield.
Recent research related to prediction of stall/spin characteristics of fighter aircraft
NASA Technical Reports Server (NTRS)
Nguyen, L. T.; Anglin, E. L.; Gilbert, W. P.
1976-01-01
The NASA Langley Research Center is currently engaged in a stall/spin research program to provide the fundamental information and design guidelines required to predict the stall/spin characteristics of fighter aircraft. The prediction methods under study include theoretical spin prediction techniques and piloted simulation studies. The paper discusses the overall status of theoretical techniques including: (1) input data requirements, (2) math model requirements, and (3) correlation between theoretical and experimental results. The Langley Differential Maneuvering Simulator (DMS) facility has been used to evaluate the spin susceptibility of several current fighters during typical air combat maneuvers and to develop and evaluate the effectiveness of automatic departure/spin prevention concepts. The evaluation procedure is described and some of the more significant results of the studies are presented.
Future therapeutic options in food allergy.
Eigenmann, P A
2003-12-01
Up to 5% of young children and 2% of adults suffer from food allergy. Among them many have immunoglobulin E (IgE)-mediated food allergy, a condition with potentially fatal allergic reactions. Several studies have addressed possible definite treatment options for food allergy. Immunotherapy, by the oral route or by systemic injections shows promising preliminary results, but current interpretation of these therapeutic options are mostly handicapped by studies with insufficient scientific support, or by severe side-effects. Currently, no studies can support pharmacotherapy. Finally, most promising results were recently published with anti-IgE antibodies in a human trial, or various approaches in a mouse model of food allergy (chinese herbal medicine, specific modulation of the T cell response). Rapidly evolving findings might provide hope for a cure of food allergy in the near future.
Gandhi, Diksha; Crotty, Dominic J; Stevens, Grant M; Schmidt, Taly Gilat
2015-11-01
This technical note quantifies the dose and image quality performance of a clinically available organ-dose-based tube current modulation (ODM) technique, using experimental and simulation phantom studies. The investigated ODM implementation reduces the tube current for the anterior source positions, without increasing current for posterior positions, although such an approach was also evaluated for comparison. Axial CT scans at 120 kV were performed on head and chest phantoms on an ODM-equipped scanner (Optima CT660, GE Healthcare, Chalfont St. Giles, England). Dosimeters quantified dose to breast, lung, heart, spine, eye lens, and brain regions for ODM and 3D-modulation (SmartmA) settings. Monte Carlo simulations, validated with experimental data, were performed on 28 voxelized head phantoms and 10 chest phantoms to quantify organ dose and noise standard deviation. The dose and noise effects of increasing the posterior tube current were also investigated. ODM reduced the dose for all experimental dosimeters with respect to SmartmA, with average dose reductions across dosimeters of 31% (breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye lens), and 11% (brain), with similar results for the simulation validation study. In the phantom library study, the average dose reduction across all phantoms was 34% (breast), 20% (lung), 8% (spine), 20% (eye lens), and 8% (brain). ODM increased the noise standard deviation in reconstructed images by 6%-20%, with generally greater noise increases in anterior regions. Increasing the posterior tube current provided similar dose reduction as ODM for breast and eye lens, increased dose to the spine, with noise effects ranging from 2% noise reduction to 16% noise increase. At noise equal to SmartmA, ODM increased the estimated effective dose by 4% and 8% for chest and head scans, respectively. Increasing the posterior tube current further increased the effective dose by 15% (chest) and 18% (head) relative to SmartmA. ODM reduced dose in all experimental and simulation studies over a range of phantoms, while increasing noise. The results suggest a net dose/noise benefit for breast and eye lens for all studied phantoms, negligible lung dose effects for two phantoms, increased lung dose and/or noise for eight phantoms, and increased dose and/or noise for brain and spine for all studied phantoms compared to the reference protocol.
Nayak, Rabindra S; Shafiuddin, Bareera; Pasha, Azam; Vinay, K; Narayan, Anjali; Shetty, Smitha V
2015-07-01
Technological advances in wire selection and bracket design have led to improved treatment efficiency and allowed longer time intervals between appliance adjustments. The wires remain in the mouth for a longer duration and are subjected to electrochemical reactions, mechanical forces of mastication and generalized wear. These cause different types of corrosion. This study was done to compare the galvanic currents generated between different combinations of brackets and archwires commonly used in orthodontic practices. The materials used for the study included different commercially available orthodontic archwires and brackets. The galvanic current generated by individual materials and different combinations of these materials was tested and compared. The orthodontic archwires used were 0.019″ × 0.025″ heat-activated nickel-titanium (3M Unitek), 0.019″ × 0.025″ beta-titanium (3M Unitek) and 0.019″ × 0.025″ stainless steel (3M Unitek). The orthodontic brackets used were 0.022″ MBT laser-cut (Victory Series, 3M Unitek) and metal-injection molded (Leone Company) maxillary central incisor brackets respectively. The ligature wire used for ligation was 0.009″ stainless steel ligature (HP Company). The galvanic current for individual archwires, brackets, and the different bracket-archwire-ligature combinations was measured by using a Potentiostat machine. The data were generated using the Linear Sweep Voltammetry and OriginPro 8.5 Graphing and Data Analysis Softwares. The study was conducted in two phases. Phase I comprised of five groups for open circuit potential (OCP) and galvanic current (I), whereas Phase II comprised of six groups for galvanic current alone. Mean, standard deviation and range were computed for the OCP and galvanic current (I) values obtained. Results were subjected to statistical analysis through ANOVA. In Phase I, higher mean OCP was recorded in stainless steel archwire, followed by beta-titanium archwire, heat-activated nickel titanium archwire, laser-cut bracket and metal-injection molded bracket, respectively. The difference in mean OCP recorded among the groups was found to be statistically significant in aerated phosphate buffered saline solution. The galvanic current (I) for metal-injection molded stainless steel brackets showed significantly higher values than all the other materials. Phase II results suggested that, in the couples formed by the archwire-bracket-ligature combinations, the bracket had more important contribution to the total galvanic current generated, since there were significant differences between galvanic current among the 2 brackets tested but not among the 3 wires. The galvanic current of the metal-injection molded bracket was significantly higher than that of laser-cut bracket. Highest mean current (I) was recorded in metal-injection molded bracket when used with heat-activated nickel titanium archwire while lowest mean current (I) was recorded in laser-cut bracket when used with beta-titanium archwire. The present study concluded that the bracket emerged to be the most important factor in determining the galvanic current (I). Higher mean current (I) was recorded in metal-injection molded bracket compared to laser-cut bracket. Among the three archwires, higher mean current (I) was recorded in heat-activated nickel-titanium, followed by stainless-steel and beta-titanium respectively. When coupled together; highest mean current (I) was recorded in metal-injection molded bracket when used with heat-activated nickel titanium archwire while lowest mean current (I) was recorded in laser-cut bracket when used with beta-titanium archwire.
NASA Astrophysics Data System (ADS)
Forsyth, C.; Shortt, M.; Coxon, J. C.; Rae, I. J.; Freeman, M. P.; Kalmoni, N. M. E.; Jackman, C. M.; Anderson, B. J.; Milan, S. E.; Burrell, A. G.
2018-04-01
Field-aligned currents (FACs), also known as Birkeland currents, are the agents by which energy and momentum are transferred to the ionosphere from the magnetosphere and solar wind. This coupling is enhanced at substorm onset through the formation of the substorm current wedge. Using FAC data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment and substorm expansion phase onsets identified using the Substorm Onsets and Phases from Indices of the Electrojet technique, we examine the Northern Hemisphere FACs in all local time sectors with respect to substorm onset and subdivided by season. Our results show that while there is a strong seasonal dependence on the underlying FACs, the increase in FACs following substorm onset only varies by 10% with season, with substorms increasing the hemispheric FACs by 420 kA on average. Over an hour prior to substorm onset, the dayside currents in the postnoon quadrant increase linearly, whereas the nightside currents show a linear increase starting 20-30 min before onset. After onset, the nightside Region 1, Region 2, and nonlocally closed currents and the SuperMAG AL (SML) index follow the Weimer (1994, https://doi.org/10.1029/93JA02721) model with the same time constants in each season. These results contrast earlier contradictory studies that indicate that substorms are either longer in the summer or decay faster in the summer. Our results imply that, on average, substorm FACs do not change with season but that their relative impact on the coupled magnetosphere-ionosphere system does due to the changes in the underlying currents.
Local Dynamic Stability Associated with Load Carrying
Lockhart, Thurmon E
2013-01-01
Objectives Load carrying tasks are recognized as one of the primary occupational factors leading to slip and fall injuries. Nevertheless, the mechanisms associated with load carrying and walking stability remain illusive. The objective of the current study was to apply local dynamic stability measure in walking while carrying a load, and to investigate the possible adaptive gait stability changes. Methods Current study involved 25 young adults in a biomechanics research laboratory. One tri-axial accelerometer was used to measure three-dimensional low back acceleration during continuous treadmill walking. Local dynamic stability was quantified by the maximum Lyapunov exponent (maxLE) from a nonlinear dynamics approach. Results Long term maxLE was found to be significant higher under load condition than no-load condition in all three reference axes, indicating the declined local dynamic stability associated with load carrying. Conclusion Current study confirmed the sensitivity of local dynamic stability measure in load carrying situation. It was concluded that load carrying tasks were associated with declined local dynamic stability, which may result in increased risk of fall accident. This finding has implications in preventing fall accidents associated with occupational load carrying. PMID:23515183
Evaluation of constant current alternating current iontophoresis for transdermal drug delivery.
Yan, Guang; Li, S Kevin; Higuchi, William I
2005-12-10
Previous studies in our laboratory have demonstrated that alternating current (AC) iontophoresis can significantly decrease skin electric resistance and enhance the transport of charged permeants across skin. Flux variability of neutral permeants during AC iontophoresis was also found to be less than that of conventional direct current (DC) iontophoresis. The objectives of the present study were to evaluate flux enhancement of constant current AC transdermal iontophoresis and compare the AC flux with that of constant current DC iontophoresis. Iontophoresis studies of AC amplitude of 1, 2, and 5 mA were conducted in side-by-side diffusion cells with donor solution of 0.015, 0.15, and 1.0 M tetraethylammonium (TEA) chloride and receiver solution of phosphate buffered saline (PBS) using human epidermal membrane (HEM). Conventional constant current DC iontophoresis of 0.2 mA was also performed under similar conditions. TEA and mannitol were the model permeants. The following are the major findings in the present study. The flux of TEA increased proportionally with the AC current for all three TEA chloride concentrations and at the AC frequency used in the present study. When the permeant and its counter ion were the only ionic species in the donor chamber, the fluxes during DC iontophoresis were weakly dependent of its donor concentration. The fluxes of TEA during constant current AC iontophoresis were moderately related to the donor concentration with the highest TEA flux observed under the 1.0 M TEA chloride condition although the relationship between flux and donor concentration was not linear. A trend of decreasing electroosmotic transport with increasing donor TEA chloride concentration was observed with significant sample-to-sample variability during DC iontophoresis. Mannitol permeability was also observed to decrease with increasing TEA chloride concentration in the donor under the AC conditions, but data variability under AC was significantly smaller than that under DC. The results in the present study indicate that constant current AC iontophoresis under conditions tolerable to human (2 and 5 mA) can provide predictable fluxes that were lower than but of comparable magnitude as those of conventional constant current DC iontophoresis (0.2 mA).
Excitation of propagating spin waves by pure spin current
NASA Astrophysics Data System (ADS)
Demokritov, Sergej
Recently it was demonstrated that pure spin currents can be utilized to excite coherent magnetization dynamics, which enables development of novel magnetic nano-oscillators. Such oscillators do not require electric current flow through the active magnetic layer, which can help to reduce the Joule power dissipation and electromigration. In addition, this allows one to use insulating magnetic materials and provides an unprecedented geometric flexibility. The pure spin currents can be produced by using the spin-Hall effect (SHE). However, SHE devices have a number of shortcomings. In particular, efficient spin Hall materials exhibit a high resistivity, resulting in the shunting of the driving current through the active magnetic layer and a significant Joule heating. These shortcomings can be eliminated in devices that utilize spin current generated by the nonlocal spin-injection (NLSI) mechanism. Here we review our recent studies of excitation of magnetization dynamics and propagating spin waves by using NLSI. We show that NLSI devices exhibit highly-coherent dynamics resulting in the oscillation linewidth of a few MHz at room temperature. Thanks to the geometrical flexibility of the NLSI oscillators, one can utilize dipolar fields in magnetic nano-patterns to convert current-induced localized oscillations into propagating spin waves. The demonstrated systems exhibit efficient and controllable excitation and directional propagation of coherent spin waves characterized by a large decay length. The obtained results open new perspectives for the future-generation electronics using electron spin degree of freedom for transmission and processing of information on the nanoscale.
Energy breakdown in capacitive deionization
Hemmatifar, Ali; Palko, James W.; Stadermann, Michael; ...
2016-08-12
We explored the energy loss mechanisms in capacitive deionization (CDI). We hypothesize that resistive and parasitic losses are two main sources of energy losses. We measured contribution from each loss mechanism in water desalination with constant current (CC) charge/discharge cycling. Resistive energy loss is expected to dominate in high current charging cases, as it increases approximately linearly with current for fixed charge transfer (resistive power loss scales as square of current and charging time scales as inverse of current). On the other hand, parasitic loss is dominant in low current cases, as the electrodes spend more time at higher voltages.more » We built a CDI cell with five electrode pairs and standard flow between architecture. We performed a series of experiments with various cycling currents and cut-off voltages (voltage at which current is reversed) and studied these energy losses. To this end, we measured series resistance of the cell (contact resistances, resistance of wires, and resistance of solution in spacers) during charging and discharging from voltage response of a small amplitude AC current signal added to the underlying cycling current. We performed a separate set of experiments to quantify parasitic (or leakage) current of the cell versus cell voltage. We then used these data to estimate parasitic losses under the assumption that leakage current is primarily voltage (and not current) dependent. Our results confirmed that resistive and parasitic losses respectively dominate in the limit of high and low currents. We also measured salt adsorption and report energy-normalized adsorbed salt (ENAS, energy loss per ion removed) and average salt adsorption rate (ASAR). As a result, we show a clear tradeoff between ASAR and ENAS and show that balancing these losses leads to optimal energy efficiency.« less
Estimation of steady-state leakage current in polycrystalline PZT thin films
NASA Astrophysics Data System (ADS)
Podgorny, Yury; Vorotilov, Konstantin; Sigov, Alexander
2016-09-01
Estimation of the steady state (or "true") leakage current Js in polycrystalline ferroelectric PZT films with the use of the voltage-step technique is discussed. Curie-von Schweidler (CvS) and sum of exponents (Σ exp ) models are studied for current-time J (t) data fitting. Σ exp model (sum of three or two exponents) gives better fitting characteristics and provides good accuracy of Js estimation at reduced measurement time thus making possible to avoid film degradation, whereas CvS model is very sensitive to both start and finish time points and give in many cases incorrect results. The results give rise to suggest an existence of low-frequency relaxation processes in PZT films with characteristic duration of tens and hundreds of seconds.
Joiner, Thomas E; Conwell, Yeates; Fitzpatrick, Kathleen Kara; Witte, Tracy K; Schmidt, Norman B; Berlim, Marcelo T; Fleck, Marcelo P A; Rudd, M David
2005-05-01
T. E. Joiner's (2004, in press) theory of suicidal behavior suggests that past suicidal behavior plays an important role in future suicidality. However, the mechanism by which this risk is transferred and the causal implications have not been well studied. The current study provides evaluation of the nature and limits of this relationship across 4 populations, with varying degrees of suicidal behavior. Across settings, age groups, and impairment levels, the association between past suicidal behavior and current suicidal symptoms held, even when controlling for strong covariates like hopelessness and symptoms of various Axis I and II syndromes. Results provide additional support for the importance of past suicidality as a substantive risk factor for later suicidal behavior. Copyright 2005 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
He, Min; Peng, Licong; Zhu, Zhaozhao; Li, Gang; Cai, Jianwang; Li, Jianqi; Wei, Hongxiang; Gu, Lin; Wang, Shouguo; Zhao, Tongyun; Shen, Baogen; Zhang, Ying
2017-11-01
Taking advantage of the electron-current ability to generate, stabilize, and manipulate skyrmions prompts the application of skyrmion multilayers in room-temperature spintronic devices. In this study, the robust high-density skyrmions are electromagnetically generated from Pt/Co/Ta multilayers using Lorentz transmission electron microscopy. The skyrmion density is tunable and can be significantly enhanced. Remarkably, these generated skyrmions after optimized manipulation sustain at zero field with both the in-plane current and perpendicular magnetic field being switched off. The skyrmion generation and manipulation method demonstrated in this study opens up an alternative way to engineer skyrmion-based devices. The results also provide key data for further theoretical study to discover the nature of the interaction between the electric current and different spin configurations.
Novel MCP-Based Electron Source Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haughey, M.; Shiltsev V., Shiltsev V.; Stancari, G.
Microchannel plates (MCPs) were recently proposed as novel type of cathodes for electron guns [1], suitable for applications in design of electron lenses. We report results of the first systematic study of microchannel plate based photomultiplier time response and maximum cur-rent density tests using different sources of light pulses. The Burle 85011-501 MCP-PMT is found to have good time response properties being capable of producing na-nosecond long pulses with modest maximum current density and performance strongly dependent on magnetic field strength.
ERIC Educational Resources Information Center
Stoever, Edward C., Jr.
The National Association of Geology Teachers (NAGT) conducted an assessment of the implications of current studies encompassing the theories of continental drift, polar wandering, sea-floor spreading, and plate tectonics to K-12 education, and presented in this document recommendations for the incorporation of these concepts into school curricula.…
The mortality reducing effect of aspirin in colorectal cancer patients: Interpreting the evidence.
Frouws, Martine A; van Herk-Sukel, Myrthe P P; Maas, Huub A; Van de Velde, Cornelis J H; Portielje, Johanneke E A; Liefers, Gerrit-Jan; Bastiaannet, Esther
2017-04-01
In 1971 the first study appeared that suggested a relationship between aspirin and cancer. Currently publications on the subject of aspirin and cancer are numerous, with both a beneficial effect of aspirin on cancer incidence and a beneficial effect on cancer survival. This review focusses on the relation between the use of aspirin and improved survival in colorectal cancer patients. Various study designs have been used, with the main part being observational studies and post hoc meta-analyses of cancer outcomes in cardiovascular prevention trials. The results of these studies are unambiguously pointing towards an effect of aspirin on colorectal cancer survival, and several randomised controlled trials are currently ongoing. Some clinicians feel that the current evidence is conclusive and that the time has come for aspirin to be prescribed as adjuvant therapy. However, until this review, not much attention has been paid to the specific types of bias associated with these studies. One of these biases is confounding by indication, because aspirin is indicated for patients as secondary prevention for cardiovascular disease. This review aims to provide perspective on these biases and provide tools for the interpretation of the current evidence. Albeit promising, the current evidence is not sufficient to already prescribe aspirin as adjuvant therapy for colorectal cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Localization of attention related cortical structures by evoked potentials].
Szelenberger, W
2000-01-01
Attention is an ambiguous concept, difficult to direct implementation in neurophysiological studies. The paper presents application of the Continuous Attention Test (CAT) items as stimuli in event related potential (ERP) studies on attention. Stimuli with high demand of attention result in enlarged N1 component in occipital derivations. Spatial analysis revealed increased positivity in frontal derivations. Three-dimensional image of cortical current density by means of Low Resolution Electromagnetic Tomography (LORETA) revealed sources of N1 component in occipital, parietal and postero-temporal derivations with the maximal current value at 17 Brodmann area. After target stimuli increase of current density in frontal derivations was observed, with the maximal value in the left 9 Brodmann area.
2010-03-01
AFIT/GEM/ENV/10-M01 Abstract Rising global energy demand and natural disasters continuously threaten energy supplies and prices. As a result , the...light bulbs. The study used the Process-Sum and Economic Input-Output Life-cycle Assessment (EIO- LCA ) methods. The results of the study found that... results for this phase of the analysis. Summary This chapter has detailed the methodology used in this study. Using both LCCA and EIO- LCA allowed for
Space Technology 5 (ST-5) Observations of the Imbalance of Region 1 and 2 Field-Aligned Currents
NASA Technical Reports Server (NTRS)
Le, Guan
2010-01-01
Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this study, we use the in-situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of Region 1 (R1) and Region 2 (R2) currents. During the three-month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total RI currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar wind-magnetosphere interaction in the same way as the field-aligned currents themselves are. Since the net currents due to the imbalance of the R1 and R2 currents require that their closure currents flow across the polar cap from dawn to dusk as Pedersen currents, our results indicate that the total amount of the cross-polar cap Pedersen currents is in the order of approx. 0.1 MA. This study, although with a very limited dataset, is one of the first attempts to quantify the cross-polar cap Pedersen currents. Given the importance of the Joule heating due to Pedersen currents to the high-latitude ionospheric electrodynamics, quantifying the cross-polar cap Pedersen currents and associated Joule heating is needed for developing models of the magnetosphere-ionosphere coupling.
Modifying cochlear implant design: advantages of placing a return electrode in the modiolus.
Ho, Steven Y; Wiet, Richard J; Richter, Claus-Peter
2004-07-01
A modiolar return electrode significantly increases the current flow across spiral ganglion cells into the modiolus, and may decrease the cochlear implant's power requirements. Ideal cochlear implants should maximize current flow into the modiolus to stimulate auditory neurons. Previous efforts to facilitate current flow through the modiolus included the fabrication and use of precurved electrodes designed to "hug" the modiolus and silastic positioners designed to place the electrodes closer to the modiolus. In contrast to earlier efforts, this study explores the effects of return electrode placement on current distributions in the modiolus. The effects of return electrode positioning on current flow in the modiolus were studied in a Plexiglas model of the cochlea. Results of model measurements were confirmed by measurements in the modiolus of human temporal bones. The return electrode was placed either within the modiolus, or remotely, outside the temporal bone, simulating contemporary cochlear implant configurations using monopolar stimulation. Cochlear model results clearly show that modiolar current amplitudes can be influenced significantly by the location of the return electrode, being larger when placed into the modiolus. Temporal bone data show similar findings. Voltages recorded in the modiolus are, on average, 2.8 times higher with the return electrode in the modiolus compared with return electrode locations outside the temporal bone. Placing a cochlear implant's return electrode in the modiolus should significantly reduce its power consumption. Reducing power requirements should lead to improved efficiency, safer long-term use, and longer device life.
NASA Technical Reports Server (NTRS)
Cochran, Donna J.; O'Bryan, Martha V.; Buchner, Stephen P.; Poivey, Christian; Ladbury, Ray L.; LaBel, Kenneth A.
2007-01-01
Sensitivity of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.
Examining differences in drinking patterns among Jewish and Arab university students in Israel.
Sznitman, Sharon R; Bord, Shiran; Elias, Wafa; Gesser-Edelsburg, Anat; Shiftan, Yoram; Baron-Epel, Orna
2015-01-01
Worldwide there is a dearth of studies examining drinking patterns in Arabs and how these compare to other populations. The few studies that exist have suggested distinct drinking patterns in Arabs, with not only high rates of abstinence but also high rates of heavy drinking among current drinkers. No studies have yet examined potential socio-cognitive mechanisms that may contribute to this distinct drinking pattern. Israel represents a unique and valuable resource for studying Arab population drinking patterns because Israeli Arabs are nonimmigrants living in areas where exposure to Western lifestyles, including alcohol consumption, is prevalent. The current study was set out to examine differences in alcohol consumption in a convenience sample of 1310 Jewish and Arab students from Israeli universities and colleges and to explore alcohol expectancies as potential mediators of ethno-religious differences. Logistic regressions were used to produce odds ratios and 95% confidence intervals to test differences between Jewish and Arab students on binary outcomes (lifetime, last month, and heavy drinking). Mediation of ethno-religious differences by alcohol expectancies was tested with bootstrapping procedures. Results show that while Israeli Arab students tend to be more likely to abstain from alcohol than Israeli Jewish students, among current drinkers, Israeli Arab students are at a particular high risk of heavy drinking. Results also show that this is partly mediated by the expectancy that alcohol only influences the drinker at high levels of intake. The current study confirms distinct Arab drinking patterns found in previous studies. The present study is the first demonstration that drinking expectations mediate ethno-religious differences in heavy drinking among Israeli Arabs and Jews. This work contributes to the understanding of ethno-religious group differences in harmful drinking, potentially informing future etiologic research and public health interventions aimed at reducing alcohol-related harm.
Career Preparation: A Longitudinal, Process-Oriented Examination
Stringer, Kate; Kerpelman, Jennifer; Skorikov, Vladimir
2011-01-01
Preparing for an adult career through careful planning, choosing a career, and gaining confidence to achieve career goals is a primary task during adolescence and early adulthood. The current study bridged identity process literature and career construction theory (Savickas, 2005) by examining the commitment component of career adaptability, career preparation (i.e., career planning, career decision-making, and career confidence), from an identity process perspective (Luyckx, Goossens, & Soenens, 2006). Research has suggested that career preparation dimensions are interrelated during adolescence and early adulthood; however, what remains to be known is how each dimension changes over time and the interrelationships among the dimensions during the transition from high school. Drawing parallels between career preparation and identity development dimensions, the current study addressed these questions by examining the patterns of change in each career preparation dimension and parallel process models that tested associations among the slopes and intercepts of the career preparation dimensions. Results showed that the career preparation dimensions were not developing similarly over time, although each dimension was associated cross-sectionally and longitudinally with the other dimensions. Results also suggested that career planning and decision-making precede career confidence. The results of the current study supported career construction theory and showed similarities between the processes of career preparation and identity development. PMID:21804641
Career Preparation: A Longitudinal, Process-Oriented Examination.
Stringer, Kate; Kerpelman, Jennifer; Skorikov, Vladimir
2011-08-01
Preparing for an adult career through careful planning, choosing a career, and gaining confidence to achieve career goals is a primary task during adolescence and early adulthood. The current study bridged identity process literature and career construction theory (Savickas, 2005) by examining the commitment component of career adaptability, career preparation (i.e., career planning, career decision-making, and career confidence), from an identity process perspective (Luyckx, Goossens, & Soenens, 2006). Research has suggested that career preparation dimensions are interrelated during adolescence and early adulthood; however, what remains to be known is how each dimension changes over time and the interrelationships among the dimensions during the transition from high school. Drawing parallels between career preparation and identity development dimensions, the current study addressed these questions by examining the patterns of change in each career preparation dimension and parallel process models that tested associations among the slopes and intercepts of the career preparation dimensions. Results showed that the career preparation dimensions were not developing similarly over time, although each dimension was associated cross-sectionally and longitudinally with the other dimensions. Results also suggested that career planning and decision-making precede career confidence. The results of the current study supported career construction theory and showed similarities between the processes of career preparation and identity development.
Scientific progress - wireless phones and brain cancer: current state of the science.
Carlo, G L; Jenrow, R S
2000-07-11
The current science is not definitive about health risks from wireless phones; however, the legitimate questions about safety that have arisen from recent studies make claims of absolute safety no longer supportable. The objective of this paper is to outline for primary care providers the results of the most current research on the possible impact of wireless phone use on human health. Presented are study results from Wireless Technology Research (WTR) program, the 7-year, $27 million effort funded by the wireless industry in the United States, that represents the world's most comprehensive research effort addressing this issue to date. Science-based recommendations for consumer interventions and future research are presented. Original studies performed under the WTR program as well as other relevant research from around the world. This article presents a synopsis of the peer-reviewed in vitro and in vivo laboratory research, and the peer-reviewed epidemiology studies supported by the WTR, as well as a summary of other relevant work. Only peer-reviewed scientific studies are presented, primarily WTR-sponsored research. In addition, results of the WTR literature surveillance program, which identified other relevant toxicology and epidemiology studies on an ongoing basis, are presented. These studies are presented in the context of their usefulness in providing intervention recommendations for consumers. Following a qualitative synthesis of specific relevant non-WTR research and a critical assessment of the WTR results, the following represents the current state of scientific understanding relevant to the public health impact of wireless phones: laboratory studies appear to have confirmed that radio frequency radiation from wireless phone antennas is insufficient to cause DNA breakage; however, this same radiation appears to cause genetic damage in human blood as measured through the formation of micronuclei. An increase in the rate of brain cancer mortality among hand-held cellular phone users as compared to car phone users, though not statistically significant, was observed in the WTR cohort study. A statistically significant increase in the risk of neuro-epithelial brain tumors was observed among cellular phone users in another case-control study. As new data emerge, our understanding of this complex problem will improve; however, at present there is a critical need for ongoing and open evaluation of the public health impact of new science, and communication of this science and derivative intervention options to those who are potentially affected.
Gas metal arc welding fume generation using pulsed current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castner, H.R.
1994-12-31
This paper describes a study of the effects of pulsed welding current on the amount of welding fume and ozone produced during gas metal arc welding (GMAW) using a range of welding procedures and pulse parameters. The results reported in this paper show that pulsed current can reduce GMAW fumes compared to steady current. This research also shows that welding parameters need to be properly controlled if pulsed current is to be used to reduce welding fumes. Fume and ozone generation rates were measured during this study for GMAW of mild steel using copper-coated ER70S-3 electrode wire and 95%Ar-5%CO{sub 2}more » and 85%Ar-15%CO{sub 2} shielding gases. Welds were made with both steady current and pulsed current over a wide range of welding parameters. Fume generation rates for steady current were found to be typically between 0.2 g/min and 0.8 g/min which agrees with other researchers. No significant difference was found in the chemical composition of welding fumes from pulsed current compared to the composition of fumes generated by steady current. New technology that can reduce arc welding fumes is of significant interest to a wide range of companies that use arc welding processes and this research should assist these users in evaluating the potential for the application of this technology to their own operations.« less
Estimated prevalence of exposure to occupational carcinogens in Australia (2011-2012).
Carey, Renee N; Driscoll, Timothy R; Peters, Susan; Glass, Deborah C; Reid, Alison; Benke, Geza; Fritschi, Lin
2014-01-01
Although past studies of workplace exposures have contributed greatly to our understanding of carcinogens, significant knowledge gaps still exist with regard to the actual extent of exposure among current workers, with no routinely collected population-based data being available in most countries. This study, the Australian Work Exposures Study (AWES), aimed to investigate the current prevalence of occupational exposure to carcinogens. A random sample of men and women aged between 18 and 65, who were currently in paid employment, were invited to participate in a telephone interview collecting information about their current job and various demographic factors. Interviews were conducted using a web-based application (OccIDEAS). OccIDEAS uses the expert exposure method in which participants are asked about their job tasks and predefined algorithms are used to automatically assign exposures. Responses were obtained from 5023 eligible Australian residents, resulting in an overall response rate of 53%. 1879 respondents (37.6%) were assessed as being exposed to at least one occupational carcinogen in their current job. Extrapolation of these figures to the Australian working population suggested 3.6 million (40.3%) current workers could be exposed to carcinogens in their workplace. Exposure prevalence was highest among farmers, drivers, miners and transport workers, as well as men and those residing in regional areas. This study demonstrates a practical, web-based approach to collecting population information on occupational exposure to carcinogens and documents the high prevalence of current exposure to occupational carcinogens in the general population.
High-voltage electrode optimization towards uniform surface treatment by a pulsed volume discharge
NASA Astrophysics Data System (ADS)
Ponomarev, A. V.; Pedos, M. S.; Scherbinin, S. V.; Mamontov, Y. I.; Ponomarev, S. V.
2015-11-01
In this study, the shape and material of the high-voltage electrode of an atmospheric pressure plasma generation system were optimised. The research was performed with the goal of achieving maximum uniformity of plasma treatment of the surface of the low-voltage electrode with a diameter of 100 mm. In order to generate low-temperature plasma with the volume of roughly 1 cubic decimetre, a pulsed volume discharge was used initiated with a corona discharge. The uniformity of the plasma in the region of the low-voltage electrode was assessed using a system for measuring the distribution of discharge current density. The system's low-voltage electrode - collector - was a disc of 100 mm in diameter, the conducting surface of which was divided into 64 radially located segments of equal surface area. The current at each segment was registered by a high-speed measuring system controlled by an ARM™-based 32-bit microcontroller. To facilitate the interpretation of results obtained, a computer program was developed to visualise the results. The program provides a 3D image of the current density distribution on the surface of the low-voltage electrode. Based on the results obtained an optimum shape for a high-voltage electrode was determined. Uniformity of the distribution of discharge current density in relation to distance between electrodes was studied. It was proven that the level of non-uniformity of current density distribution depends on the size of the gap between electrodes. Experiments indicated that it is advantageous to use graphite felt VGN-6 (Russian abbreviation) as the material of the high-voltage electrode's emitting surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akyol, Mustafa; Department of Physics, University of Çukurova, Adana 01330; Yu, Guoqiang
2015-04-20
We study the effect of the oxide layer on current-induced perpendicular magnetization switching properties in Hf|CoFeB|MgO and Hf|CoFeB|TaO{sub x} tri-layers. The studied structures exhibit broken in-plane inversion symmetry due to a wedged CoFeB layer, resulting in a field-like spin-orbit torque (SOT), which can be quantified by a perpendicular (out-of-plane) effective magnetic field. A clear difference in the magnitude of this effective magnetic field (H{sub z}{sup FL}) was observed between these two structures. In particular, while the current-driven deterministic perpendicular magnetic switching was observed at zero magnetic bias field in Hf|CoFeB|MgO, an external magnetic field is necessary to switch the CoFeBmore » layer deterministically in Hf|CoFeB|TaO{sub x}. Based on the experimental results, the SOT magnitude (H{sub z}{sup FL} per current density) in Hf|CoFeB|MgO (−14.12 Oe/10{sup 7} A cm{sup −2}) was found to be almost 13× larger than that in Hf|CoFeB|TaO{sub x} (−1.05 Oe/10{sup 7} A cm{sup −2}). The CoFeB thickness dependence of the magnetic switching behavior, and the resulting H{sub z}{sup FL} generated by in-plane currents are also investigated in this work.« less
[Effect of pulse magnetic field on distribution of neuronal action potential].
Zheng, Yu; Cai, Di; Wang, Jin-Hai; Li, Gang; Lin, Ling
2014-08-25
The biological effect on the organism generated by magnetic field is widely studied. The present study was aimed to observe the change of sodium channel under magnetic field in neurons. Cortical neurons of Kunming mice were isolated, subjected to 15 Hz, 1 mT pulse magnetic stimulation, and then the currents of neurons were recorded by whole-cell patch clamp. The results showed that, under magnetic stimulation, the activation process of Na(+) channel was delayed, and the inactivation process was accelerated. Given the classic three-layer model, the polarization diagram of cell membrane potential distribution under pulse magnetic field was simulated, and it was found that the membrane potential induced was associated with the frequency and intensity of magnetic field. Also the effect of magnetic field-induced current on action potential was simulated by Hodgkin-Huxley (H-H) model. The result showed that the generation of action potential was delayed, and frequency and the amplitudes were decreased when working current was between -1.32 μA and 0 μA. When the working current was higher than 0 μA, the generation frequency of action potential was increased, and the change of amplitudes was not obvious, and when the working current was lower than -1.32 μA, the time of rising edge and amplitudes of action potential were decreased drastically, and the action potential was unable to generate. These results suggest that the magnetic field simulation can affect the distribution frequency and amplitude of action potential of neuron via sodium channel mediation.
Magnetic Field Observations of Partial Ring Current during Storm Recovery Phase
NASA Technical Reports Server (NTRS)
Le, Guan; Russell, C. T.; Slavin, J. A.; Lucek, E. A.
2007-01-01
We present results of an extensive survey of the magnetic field observations in the inner magnetosphere using 30 years of magnetospheric magnetic field data from Polar, Cluster, ISEE, and AMPTE/CCE missions. The purpose of this study is to understand the magnetic field evolution during the recovery phase of geomagnetic storms, and its implication to the ring current recovery and loss mechanisms of ring current particles. Our previous work on global ring current distribution [Le et al., 2004] has shown that a significant partial ring current is always present at all Dst levels (regardless of storm phases) even for quiet time ring current. The total current carried by the partial ring current is much stronger than (during stormtime) or at least comparable to (during quiet time) the symmetric ring current. It is now commonly believed that a strong partial ring current is formed during the storm main phase due to the enhanced earthward convection of energetic ions from nightside plasma sheet. But the presence of a strong partial ring current throughout the recovery phase remains controversial. The magnetic field generated by the ring current inflates the inner magnetosphere and causes magnetic field depressions in the equatorial magnetosphere. During the storm recovery phase, we find that the distribution of the equatorial magnetic field depression exhibits similar local time dependence as the ring current distribution obtained from the combined dataset in the earlier study. It shows that a strong partial ring current is a permanent feature throughout the recovery phase. In the early recovery phase, the partial ring current peaks near the dusk terminator as indicated by the peak of the magnetic field depression. As the recovery phase progresses, the partial ring current decays most quickly near the dusk and results in a dusk-to-midnight moving of the peak of the partial ring current. Thus the loss mechanisms work most effectively near the dusk. The magnetic field depression increases the gyroradius of ring current protons to a scale greater or comparable to the thickness of the magnetopause, which increases the chance of ion drift loss near the dusk magnetopause at larger L-shell (L>5). But the drift loss mechanism alone cannot explain the loss of ring current ions especially in the smaller L-shell (L<5). The precipitation loss due to wave-particle interaction is most likely the dominant loss mechanism in the small L-shell as it works most effectively at the same local time.
Masala, Carla; Solari, Paolo; Sollai, Giorgia; Crnjar, Roberto; Liscia, Anna
2009-12-01
The study on transduction mechanisms underlying bitter stimuli is a particularly intriguing challenge for taste researchers. The present study investigates, in the labellar chemosensilla of the blowfly Protophormia terraenovae, the transduction mechanism by which saccharin evokes the response of the "deterrent" cell, with particular attention to the contribution of K(+) and Ca(2+) current and the role of cyclic nucleotides, since second messengers modulate Ca(2+), Cl(-) and K(+) currents to different extents. As assessed by extracellular single-sensillum recordings, our results show that the addition of a Ca(2+) chelator such as EGTA or the Ca(2+) current blockers SK&F-96365, Mibefradil, Nifedipine and W-7 decrease the response of the "deterrent" cell to saccharin. A similar decreasing effect was also obtained following the addition of 4-aminopyridine, a K(+) current blocker. On the contrary, the membrane-permeable cyclic nucleotide 8-bromoguanosine 3',5'-cyclic monophosphate (8Br-cGMP) activates this cell and shows an additive effect when presented mixed with saccharin. Our results are consistent with the hypothesis that in the labellar chemosensilla of the blowfly both Ca(2+) and K(+) ions are involved in the transduction mechanism of the "deterrent" cell in response to saccharin. Our results also suggest a possible pathway common to saccharin and 8Br-cGMP.
NASA Technical Reports Server (NTRS)
Browning, G. L.; Tzur, I.; Roble, R. G.
1987-01-01
A time-dependent model is introduced that can be used to simulate the interaction of a thunderstorm with its global electrical environment. The model solves the continuity equation of the Maxwell current, which is assumed to be composed of the conduction, displacement, and source currents. Boundary conditions which can be used in conjunction with the continuity equation to form a well-posed initial-boundary value problem are determined. Properties of various components of solutions of the initial-boundary value problem are analytically determined. The results indicate that the problem has two time scales, one determined by the background electrical conductivity and the other by the time variation of the source function. A numerical method for obtaining quantitative results is introduced, and its properties are studied. Some simulation results on the evolution of the displacement and conduction currents during the electrification of a storm are presented.
California coast nearshore processes study
NASA Technical Reports Server (NTRS)
Pirie, D. M. (Principal Investigator)
1972-01-01
The author has identified the following significant results. In the Santa Barbara Channel the effect of the California and the Anacapa Currents are clearly seen in image 1109-18073M. The large triangular shaped lobe of suspended particulate matter that stretches almost to Anacapa Island from the Ventura River area is disrupted approximately midchannel by the east-moving Anacapa Current. In the Point Conception area a lobe of suspended material approximately 20 miles long can be seen moving eastward as a result of the California Current. In the San Francisco Bay area the major results include the detection and delineation of the San Francisco Bay, the location and vector of suspended sediment in the San Francisco Bay, and the ability to differentiate morphologic units within the San Francisco Bay tidelands. Several densitometer line traces seaward of the Golden Gate Bridge on image 1075-18173-4 outline the San Francisco Bay and give evidence of good water penetration.
Velasco-Alvarez, Nancy; Gutiérrez-Rojas, Mariano; González, Ignacio
2017-12-01
The effects of electric current on membranes associated with metabolism modifications in Aspergillus brasiliensis (niger) ATCC 9642 were studied. A 450-mL electrochemical cell with titanium ruthenium-oxide coated electrodes and packed with 15g of perlite, as inert support, was inoculated with A. brasiliensis spores and incubated in a solid inert-substrate culture (12 d; 30°C). Then, 4.5days after starting the culture, a current of 0.42mAcm -2 was applied for 24h. The application of low-intensity electric current increased the molecular oxygen consumption rate in the mitochondrial respiratory chain, resulting in high concentrations of reactive oxygen species, promoting high lipoperoxidation levels, according to measured malondialdehyde, and consequent alterations in membrane permeability explained the high n-hexadecane (HXD) degradation rates observed here (4.7-fold higher than cultures without current). Finally, cell differentiation and spore production were strongly stimulated. The study contributes to the understanding of the effect of current on the cell membrane and its association with HXD metabolism. Copyright © 2017. Published by Elsevier B.V.
Case, Kathleen; Loukas, Alexandra; Harrell, Melissa; Wilkinson, Anna; Springer, Andrew; Pérez, Adriana; Creamer, MeLisa; Perry, Cheryl L.
2017-01-01
Objective To examine the associations between sensation seeking and ever and current e-cigarette use in Texas young adults (18–29 years old). Current cigarette use was examined as a potential effect modifier of the associations. Participants Participants included college students enrolled in four-year and two-year colleges in four metropolitan areas in Texas (n=5,418) who completed the survey between November 2014 and February 2015. Methods This cross-sectional study utilized mixed effects logistic regression to determine the associations between mean sensation seeking scores and ever and current e-cigarette use after controlling for covariates. Results After controlling for covariates, significant associations between sensation seeking and both ever and current e-cigarette use were observed, however, these associations were significant for non-current smokers only (AOR=1.55, 95% CI=1.39, 1.73; AOR=1.82, 95% CI=1.54, 2.15, respectively). Conclusions Sensation seeking is an important factor in identifying college students who may be at increased risk for e-cigarette use behaviors. Keywords: Electronic cigarettes, sensation seeking, current cigarette use PMID:28095126
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.
2011-01-01
Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration that accompanies the radial compression of the plasma in conical theta pinches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Y.; Ekstroem, A.
1997-01-01
This study is devoted to investigating the possibility of controlling the overcurrent of a forced-commutated voltage source converter (VSC) by PWM when the ac system is undergoing large unbalanced disturbance. The converter is supposed to be used as a static var compensator at a high power level. A novel control strategy is proposed for controlling the reactive current and the dc side voltage independently. Digital simulation results are presented and compared with the results by using just the reactive current control with fundamental switching frequency.
Remote sensing of ocean current boundary layer. [Loop Current in Gulf of Mexico
NASA Technical Reports Server (NTRS)
Maul, G. A. (Principal Investigator)
1973-01-01
The author has identified the following significant results. A time series of the Loop Current in the Gulf of Mexico, covering an annual cycle of growth, spreading, and decay, has been obtained in synchronization with ERTS-1. Computer enhanced images, which are necessary to extract useful oceanic information, show that the current can be observed either by color or sea state effects associated with the cyclonic boundary. The color effect relates to the spectral variations in the optical properties of the water and its suspended particles, and is studied by radiative transfer theory. Significant oceanic parameters identified are: the probability of forward scattering, and the ratio of scattering to total attenuation. Several spectra of upwelling diffuse light are computed as a function of the concentration of particles and yellow substance. These calculations compare favorably with experimental measurements and show that the ratio of channels method gives ambiguous interpretative results. These results are used to discuss features in images where surface measurements were obtained and are extended to tentative explanation in others.
Generation of field-aligned currents and Alfven waves by 3D magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Z.W.; Lee, L.C.; Otto, A.
1995-07-01
The authors have carried out a three-dimensional compressible MHD simulation to study the generation of field-aligned currents (FAC`s) and Alfven waves by magnetic reconnection for locally antiparallel magnetic fields across the current sheet. Reconnection is triggered by a localized resistivity. The results indicate that both FAC`s and Alfven waves are generated by the three-dimensional reconnection process. Two pairs of FAC`s are generated on each side of current sheet. The polarities of the resulting FAC pair in the leading bulge region are opposite to those of a FAC pair in the trailing quasi-steady region. It is further found that a largemore » portion of the FAC`s ({approximately}40%) is located in the closed field line region. They examine the Walen relation between FAC and parallel vorticity and find that Alfven waves are generated and propagate away from the reconnection site. They discuss the relevance of the results to the observed Region 1 FAC`s at noon. 15 refs., 4 figs.« less
NASA Astrophysics Data System (ADS)
Zhou, Pengwei; Zhong, Yunbo; Wang, Huai; Long, Qiong; Li, Fu; Sun, Zongqian; Dong, Licheng; Fan, Lijun
2013-10-01
The influence of an external parallel strong parallel magnetic field (respect to current) on the electrocodeposition of nano-silicon particles into an iron matrix has been studied in this paper. Test results show that magnetic field has a great influence on the distribution of silicon, as well as the surface morphology and the thickness of the composite coatings. When no magnetic field was applied, a high current density was needed to get high concentration of silicon particles, while that could be easily obtained at a low current density with a 2 T parallel magnetic field. However, Owing to the unevenness of the current density J-distribution on the surface of the electrode in 8 T, the thicker and rougher composite deposits appear in the edge region (L or R region), and the thinner and smoother ones appear in the middle region (M). Meanwhile, the distribution curve of silicon content looks like a “pan” along the center line of coatings. A possible mechanism combining to the numerical simulation results was suggested out to illustrate the obtained experiment results.
Graphene as current spreading layer on AlGaInP light emitting diodes
NASA Astrophysics Data System (ADS)
Guo, Xia; Feng, Yajie; Liu, Qiaoli; Hu, Anqi; He, Xiaoying; Hu, Zonghai
2018-05-01
Due to high transmittance and high mobility, graphene is one of the promising candidates for a current spreading layer, which is crucial to light emitting diode (LED) performance. In this paper, improved AlGaInP LED performance was reported after graphene was applied on the GaP surface. Due to its lowered work function difference than with the GaN material, the electrical properties remain the same without additional voltage bias. The light output power is enhanced by about 40% under the current injection of 5 mA at room temperature, which was confirmed by the light emission profile analysis in this study. Such results indicate that raphene is a promising candidate as a current spreading layer under low current injection.
ERIC Educational Resources Information Center
Hindy, Kamal T.; And Others
1992-01-01
An atmospheric pollution study applies direct current plasma atomic emission spectrometry (DCP-AES) to samples of total suspended particulate matter collected in two industrial areas and one residential area, and cement dust collected near major cement factories. These samples were analyzed for vanadium, tin, and mercury. The results indicate the…
NASA Astrophysics Data System (ADS)
Akishev, Yu. S.; Balakirev, A. A.; Karal'nik, V. B.; Medvedev, M. A.; Petryakov, A. V.; Trushkin, N. I.; Shafikov, A. G.
2017-12-01
Results of experiments on the study of dynamics of an overvoltage discharge at the low pressure p = 0.5-2.5 Torr up to its transition to the high-current low-voltage regime are presented, and the instability mechanism leading to a sharp voltage drop across the discharge is suggested.
ERIC Educational Resources Information Center
Ata, Rheanna N.; Ludden, Alison Bryant; Lally, Megan M.
2007-01-01
The current study expands upon body image research to examine how gender, self-esteem, social support, teasing, and family, friend, and media pressures relate to body image and eating-related attitudes and behaviors among male and female adolescents (N = 177). Results indicated that adolescents were dissatisfied with their current bodies: males…
ERIC Educational Resources Information Center
Australian Council for Educational Research, Hawthorn.
The first two papers in this volume discusses the results of questionnaires intended for primary and secondary teachers to elicit information on current issues in the teaching of English in Australia. It was learned that secondary teachers reached consensus only on the very broadest levels. They all agreed that literature, communication, and…
Development and investigation of silicon converter beta radiation 63Ni isotope
NASA Astrophysics Data System (ADS)
Krasnov, A. A.; Legotin, S. A.; Murashev, V. N.; Didenko, S. I.; Rabinovich, O. I.; Yurchuk, S. Yu; Omelchenko, Yu K.; Yakimov, E. B.; Starkov, V. V.
2016-02-01
In this paper the results of the creation and researching characteristics of, experimental betavoltaic converters (BVC), based on silicon are discussed. It was presented the features of structural and technological performance of planar 2 D- structure of BVC. To study the parameters of the converter stream the beta particles of the radioisotope was simulated by 63Ni electron flux from scanning electron microscope. It was investigated the dependence of the collecting electrons efficiency from the beam energy current-voltage characteristic was measured when irradiated by an electron beam, from which the value of the short-circuit current density equal to 126 nA / cm2 and the value of the open circuit voltage of 150 mV were obtained. The maximum power density at 70 mV is 9.5 nW / cm2, and the conversion efficiency is 2.1%. It was presented the results of experimental studies of the current-voltage characteristics of samples by irradiating a film 63Ni. The values of load voltage 111 mV and short circuit current density of 27 nA / cm2 were obtained. Maximum power density was 1.52 nW / cm2.
Bimodal Programming: A Survey of Current Clinical Practice.
Siburt, Hannah W; Holmes, Alice E
2015-06-01
The purpose of this study was to determine the current clinical practice in approaches to bimodal programming in the United States. To be specific, if clinicians are recommending bimodal stimulation, who programs the hearing aid in the bimodal condition, and what method is used for programming the hearing aid? An 11-question online survey was created and sent via email to a comprehensive list of cochlear implant programming centers in the United States. The survey was sent to 360 recipients. Respondents in this study represented a diverse group of clinical settings (response rate: 26%). Results indicate little agreement about who programs the hearing aids, when they are programmed, and how they are programmed in the bimodal condition. Analysis of small versus large implant centers indicated small centers are less likely to add a device to the contralateral ear. Although a growing number of cochlear implant recipients choose to wear a hearing aid on the contralateral ear, there is inconsistency in the current clinical approach to bimodal programming. These survey results provide evidence of large variability in the current bimodal programming practices and indicate a need for more structured clinical recommendations and programming approaches.
NASA Technical Reports Server (NTRS)
1988-01-01
The design parameters of a space vehicle resulting from studies conducted at the University of Michigan are presented. The vehicle is identified as a Circulating Autonomous Mars-Earth Luxury Orbital Transport (CAMELOT). This report documents the results of the current study based on several key changes in the spacecraft systems and layout. Subjects discussed are propulsion, docking, power systems, habitat design, and orbital assembly.
On the coverage of the pMSSM by simplified model results
NASA Astrophysics Data System (ADS)
Ambrogi, Federico; Kraml, Sabine; Kulkarni, Suchita; Laa, Ursula; Lessa, Andre; Waltenberger, Wolfgang
2018-03-01
We investigate to which extent the SUSY search results published by ATLAS and CMS in the context of simplified models actually cover the more realistic scenarios of a full model. Concretely, we work within the phenomenological MSSM (pMSSM) with 19 free parameters and compare the constraints obtained from SModelS v1.1.1 with those from the ATLAS pMSSM study in arXiv:1508.06608. We find that about 40-45% of the points excluded by ATLAS escape the currently available simplified model constraints. For these points we identify the most relevant topologies which are not tested by the current simplified model results. In particular, we find that topologies with asymmetric branches, including 3-jet signatures from gluino-squark associated production, could be important for improving the current constraining power of simplified models results. Furthermore, for a better coverage of light stops and sbottoms, constraints for decays via heavier neutralinos and charginos, which subsequently decay visibly to the lightest neutralino are also needed.
NASA Technical Reports Server (NTRS)
Shen, Hayley H.
1991-01-01
Liquid fuel combustion process is greatly affected by the rate of droplet evaporation. The heat and mass exchanges between gas and liquid couple the dynamics of both phases in all aspects: mass, momentum, and energy. Correct prediction of the evaporation rate is therefore a key issue in engineering design of liquid combustion devices. Current analytical tools for characterizing the behavior of these devices are based on results from a single isolated droplet. Numerous experimental studies have challenged the applicability of these results in a dense spray. To account for the droplets' interaction in a dense spray, a number of theories have been developed in the past decade. Herein, two tasks are examined. One was to study how to implement the existing theoretical results, and the other was to explore the possibility of experimental verifications. The current theoretical results of group evaporation are given for a monodispersed cluster subject to adiabatic conditions. The time evolution of the fluid mechanic and thermodynamic behavior in this cluster is derived. The results given are not in the form of a subscale model for CFD codes.
Effect of vacuum arc cathode spot distribution on breaking capacity of the arc-extinguishing chamber
NASA Astrophysics Data System (ADS)
Ding, Can; Yuan, Zhao; He, Junjia
2017-10-01
A DC circuit breaker performs a key function in breaking an intermediate-frequency (IF) current since breaking a pure IF current is equivalent to breaking a very small DC with a reverse IF current. In this study, it is found that cathode spots show a ring-shaped distribution at 2000 Hz. An arc with an uneven distribution of cathode spots has been simulated. The simulation results show that the distribution of cathode spots significantly affect the microparameter distribution of arc plasma. The current distribution on the anode side differs from that on the cathode side under the total radial electric field. Specifically, the anode current distribution is both uneven and concentrated. The applied axial magnetic field, which cannot reduce the concentrated anode current distribution effectively, might increase the concentration of the anode current. Finally, the uneven distribution of cathode spots reduces the breaking capacity of the arc-extinguishing chamber.
Disruption of crystalline structure of Sn3.5Ag induced by electric current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Han-Chie; Lin, Kwang-Lung, E-mail: matkllin@mail.ncku.edu.tw; Wu, Albert T.
2016-03-21
This study presented the disruption of the Sn and Ag{sub 3}Sn lattice structures of Sn3.5Ag solder induced by electric current at 5–7 × 10{sup 3} A/cm{sup 2} with a high resolution transmission electron microscope investigation and electron diffraction analysis. The electric current stressing induced a high degree of strain on the alloy, as estimated from the X-ray diffraction (XRD) peak shift of the current stressed specimen. The XRD peak intensity of the Sn matrix and the Ag{sub 3}Sn intermetallic compound diminished to nearly undetectable after 2 h of current stressing. The electric current stressing gave rise to a high dislocation density ofmore » up to 10{sup 17}/m{sup 2}. The grain morphology of the Sn matrix became invisible after prolonged current stressing as a result of the coalescence of dislocations.« less
Communication Is Key: Unpacking "Use of Assessment Results to Improve Student Learning"
ERIC Educational Resources Information Center
Smith, Kristen L.; Good, Megan Rodgers; Sanchez, Elizabeth Hawk; Fulcher, Keston H.
2015-01-01
Although higher education institutions often engage in assessment practices, use of assessment results to improve student learning is rare (Blaich & Wise, 2011). We surmised that this rarity could be partially explained by unclear communication regarding what "use of results" means. The current study qualitatively investigated how…
Higashibata, Takahiro; Wakai, Kenji; Okada, Rieko; Nakagawa, Hiroko; Hamajima, Nobuyuki
2016-11-01
The aim of the present study was to examine the associations of current smoking with five other unhealthy lifestyle behaviors among urban civil servants in Japan according to sex and occupational category. The study included 10,232 urban civil servants in Japan who presented for a health check-up in 2011. We analyzed data on anthropometric measurements and self-reported lifestyle factors. Current smokers had a higher BMI than never smokers in white-collar workers, but not in blue-collar workers of both sexes. There were strong associations of current smoking with irregular breakfasting regardless of sex and occupational category. In males, current smokers were less likely to take exercise than ex-smokers in both occupational categories. The associations of current smoking with other unhealthy behaviors were modified by sex and occupational category. These results are useful for understanding the health risks among smokers according to sex and occupational category.
Design and Experimental Study of a Current Transformer with a Stacked PCB Based on B-Dot.
Wang, Jingang; Si, Diancheng; Tian, Tian; Ren, Ran
2017-04-10
An electronic current transformer with a B-dot sensor is proposed in this study. The B-dot sensor can realize the current measurement of the transmission line in a non-contact way in accordance with the principle of magnetic field coupling. The multiple electrodes series-opposing structure is applied together with differential input structures and active integrating circuits, which can allow the sensor to operate in differential mode. Maxwell software is adopted to model and simulate the sensor. Optimization of the sensor structural parameters is conducted through finite-element simulation. A test platform is built to conduct the steady-state characteristic, on-off operation, and linearity tests for the designed current transformer under the power-frequency current. As shown by the test results, in contrast with traditional electromagnetic CT, the designed current transformer can achieve high accuracy and good phase-frequency; its linearity is also very good at different distances from the wire. The proposed current transformer provides a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system, thereby satisfying the development demands of the smart power grid.
Design and Experimental Study of a Current Transformer with a Stacked PCB Based on B-Dot
Wang, Jingang; Si, Diancheng; Tian, Tian; Ren, Ran
2017-01-01
An electronic current transformer with a B-dot sensor is proposed in this study. The B-dot sensor can realize the current measurement of the transmission line in a non-contact way in accordance with the principle of magnetic field coupling. The multiple electrodes series-opposing structure is applied together with differential input structures and active integrating circuits, which can allow the sensor to operate in differential mode. Maxwell software is adopted to model and simulate the sensor. Optimization of the sensor structural parameters is conducted through finite-element simulation. A test platform is built to conduct the steady-state characteristic, on-off operation, and linearity tests for the designed current transformer under the power-frequency current. As shown by the test results, in contrast with traditional electromagnetic CT, the designed current transformer can achieve high accuracy and good phase-frequency; its linearity is also very good at different distances from the wire. The proposed current transformer provides a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system, thereby satisfying the development demands of the smart power grid. PMID:28394298
Ring current proton decay by charge exchange
NASA Technical Reports Server (NTRS)
Smith, P. H.; Hoffman, R. A.; Fritz, T.
1975-01-01
Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behbahani, R. A.; Aghamir, F. M.
The behavior of current drop and its correlation with ion beam emission during the radial phase of a high inductance low energy Mather type plasma focus device have been studied. The study includes two ranges of filling gas pressure, namely the low range of 0.2-0.8 mbar and the high range of 0.8-1.5 mbar. Two different current simulation processes were performed to aid the interpretation of the experimental results. Within the low range of operating pressure, an acceptable match between the computed and experimental current signals was achieved when the effects of anomalous resistances were contemplated. While in the high rangemore » of pressure, the computed and experimental current traces were in line even without considering the effects of anomalous resistances. The analysis shows that by decreasing the filling gas pressure the effects of instabilities are intensified. The computed and experimental current traces, along with ion beam signals gathered from a faraday cup, show that there is a strong correlation between the intensity of ion beam and its duration with the current drop during the radial phase.« less
NASA Astrophysics Data System (ADS)
Bhattarai, Arjun; Wai, Nyunt; Schweiss, Rüdiger; Whitehead, Adam; Scherer, Günther G.; Ghimire, Purna C.; Nguyen, Tam D.; Hng, Huey Hoon
2017-08-01
Uniform flow distribution through the porous electrodes in a flow battery cell is very important for reducing Ohmic and mass transport polarization. A segmented cell approach can be used to obtain in-situ information on flow behaviour, through the local voltage or current mapping. Lateral flow of current within the thick felts in the flow battery can hamper the interpretation of the data. In this study, a new method of segmenting a conventional flow cell is introduced, which for the first time, splits up both the porous felt as well as the current collector. This dual segmentation results in higher resolution and distinct separation of voltages between flow inlet to outlet. To study the flow behavior for an undivided felt, monitoring the OCV is found to be a reliable method, instead of voltage or current mapping during charging and discharging. Our approach to segmentation is simple and applicable to any size of the cell.
Interannual variability of mass transport in the Canary region from LADCP data
NASA Astrophysics Data System (ADS)
Comas-Rodríguez, Isis; Hernández-Guerra, Alonso; Vélez-Belchí, Pedro; Fraile-Nuez, Eugenio
2010-05-01
The variability of the Canary Current is a widely studied topic regarding its role as eastern boundary of the North Atlantic Subtropical Gyre. The Canary region provides indeed an interesting study area in terms of estimating variability scales of the Subtropical Gyre as well as the water masses dynamics. RAPROCAN (RAdial PROfunda de CANarias - Canary deep hydrographic section) is a project based on the reaching of these goals through the obtaining of hydrographic measures during cruises taking place approximately along 29°N, to the North of the Canary Archipelago, twice a year since 2006. The full depth sampling carried out allows the study of temperature and salinity distribution and the calculation of mass transports across the section. The transport estimates are compared to those obtained from previous measurements and estimates in the region. Therefore, transports and their variability through the last decade are quantified. The most significant advance made to previous works is the use of LADCP (Lowered Acoustic Doppler Current Profiler) data informing the initial geostrophic calculations. Thus, corrections are applied to each geostrophic profile considering the reference velocity obtained from LADCP data. ADCP-referenced transport estimates are obtained, providing a successful comparison between the velocity fields obtained from the hydrographic measures. While this work shows the interannual variability observed in winter since 1997, preliminary results confirm previous hypotheses about the magnitude of the Canary Current. Those results including LADCP data also provide new aspects in the circulation distribution across the Canary Archipelago. Also moored current meter data were taken into account in the up close study of the Current through the Lanzarote Passage. Interesting conclusions were drawn that certify the usefulness of LADCP data in referencing geostrophic calculations, while corroborating the results obtained through this methodology. Hence, this work permits the quantification of mass fluxes across the section as well as the study of the water masses located in the Canary Basin and the further analysis of the Subtropical Gyre variability with regards to its significance in the circulation and dynamics concerning the North Atlantic Ocean.
Morso, Lars; Schiøttz-Christensen, Berit; Søndergaard, Jens; Andersen, Nils-Bo de Vos; Pedersen, Flemming; Olsen, Kim Rose; Jensen, Morten Sall; Hill, Jonathan; Christiansen, David Høyrup
2018-06-08
Prior studies indicate that stratified care for low back pain results in better clinical outcome and reduced costs in healthcare compared to current practice. Stratified care may be associated with clinical benefits for patients with low back pain at a lower cost, but evidence is sparse. Hence this study aims to evaluate the clinical effects and cost-effectiveness of stratified care in patients with non-specific low back pain compared to current practice. The study is a two-armed randomised controlled trial in primary care in the Regions of Southern and Central Denmark (2.5 million citizens). Patients with non-specific low back will be recruited by paticpating GPs. Patients are randomised to either (1) stratified care or (2) current practice at participating physiotherapy clinics. In the stratified care arm, the intervention is based on the patient's STarT Back Tool classification and trained accordingly, whereas physiotherapists in the current pratice arm are blinded to the STarT score. Primary outcomes in the trial will be group differences in time off work, improvement in LBP disability measured by the Roland Morris Disability Questionnaire (RMDQ) and patient-reported global change. Secondary measures will be pain intensity, patient satisfaction, data on patient healthcare resource utilisation and quality-adjusted life year based on the EQ-5D-5L. Stratified care that effectively targets treatment to relevant sub-groups of patients has potentially great impact on the treatment pathways of low back pain. Thus, if effective, this could result in better patient outcomes and at the same time reduce the costs for treatment of low back pain. ClinicalTrials.gov , NCT02612467 . Registered on 16 November 2015.
Approximation of wave action flux velocity in strongly sheared mean flows
NASA Astrophysics Data System (ADS)
Banihashemi, Saeideh; Kirby, James T.; Dong, Zhifei
2017-08-01
Spectral wave models based on the wave action equation typically use a theoretical framework based on depth uniform current to account for current effects on waves. In the real world, however, currents often have variations over depth. Several recent studies have made use of a depth-weighted current U˜ due to [Skop, R. A., 1987. Approximate dispersion relation for wave-current interactions. J. Waterway, Port, Coastal, and Ocean Eng. 113, 187-195.] or [Kirby, J. T., Chen, T., 1989. Surface waves on vertically sheared flows: approximate dispersion relations. J. Geophys. Res. 94, 1013-1027.] in order to account for the effect of vertical current shear. Use of the depth-weighted velocity, which is a function of wavenumber (or frequency and direction) has been further simplified in recent applications by only utilizing a weighted current based on the spectral peak wavenumber. These applications do not typically take into account the dependence of U˜ on wave number k, as well as erroneously identifying U˜ as the proper choice for current velocity in the wave action equation. Here, we derive a corrected expression for the current component of the group velocity. We demonstrate its consistency using analytic results for a current with constant vorticity, and numerical results for a measured, strongly-sheared current profile obtained in the Columbia River. The effect of choosing a single value for current velocity based on the peak wave frequency is examined, and we suggest an alternate strategy, involving a Taylor series expansion about the peak frequency, which should significantly extend the range of accuracy of current estimates available to the wave model with minimal additional programming and data transfer.
Do, Elizabeth K.; Prom-Wormley, Elizabeth C.; Eaves, Lindon J.; Silberg, Judy L.; Miles, Donna R.; Maes, Hermine H.
2016-01-01
Little is known regarding the underlying relationship between smoking initiation and current quantity smoked during adolescence into young adulthood. It is possible that the influences of genetic and environmental factors on this relationship vary across sex and age. To investigate this further, the current study applied a common causal contingency model to data from a Virginia-based twin study to determine: (1) if the same genetic and environmental factors are contributing to smoking initiation and current quantity smoked; (2) whether the magnitude of genetic and environmental factor contributions are the same across adolescence and young adulthood; and (3) if qualitative and quantitative differences in the sources of variance between males and females exist. Study results found no qualitative or quantitative sex differences in the relationship between smoking initiation and current quantity smoked, though relative contributions of genetic and environmental factors changed across adolescence and young adulthood. More specifically, smoking initiation and current quantity smoked remain separate constructs until young adulthood, when liabilities are correlated. Smoking initiation is explained by genetic, shared, and unique environmental factors in early adolescence and by genetic and unique environmental factors in young adulthood; while current quantity smoked is explained by shared environmental and unique environmental factors until young adulthood, when genetic and unique environmental factors play a larger role. PMID:25662421
Do, Elizabeth K; Prom-Wormley, Elizabeth C; Eaves, Lindon J; Silberg, Judy L; Miles, Donna R; Maes, Hermine H
2015-02-01
Little is known regarding the underlying relationship between smoking initiation and current quantity smoked during adolescence into young adulthood. It is possible that the influences of genetic and environmental factors on this relationship vary across sex and age. To investigate this further, the current study applied a common causal contingency model to data from a Virginia-based twin study to determine: (1) if the same genetic and environmental factors are contributing to smoking initiation and current quantity smoked; (2) whether the magnitude of genetic and environmental factor contributions are the same across adolescence and young adulthood; and (3) if qualitative and quantitative differences in the sources of variance between males and females exist. Study results found no qualitative or quantitative sex differences in the relationship between smoking initiation and current quantity smoked, though relative contributions of genetic and environmental factors changed across adolescence and young adulthood. More specifically, smoking initiation and current quantity smoked remain separate constructs until young adulthood, when liabilities are correlated. Smoking initiation is explained by genetic, shared, and unique environmental factors in early adolescence and by genetic and unique environmental factors in young adulthood; while current quantity smoked is explained by shared environmental and unique environmental factors until young adulthood, when genetic and unique environmental factors play a larger role.
Perspectives on voice treatment for unilateral vocal fold paralysis.
Walton, Chloe; Carding, Paul; Flanagan, Kieran
2018-06-01
Unilateral vocal fold paralysis (UVFP) is a common cause of neurogenic dysphonia resulting in glottal insufficiency. To restore glottal sufficiency and reduce the presenting dysphonia, treatment involving either surgical intervention, voice therapy or a combination of the two is typically provided. Currently, there is no consensus for the most effective voice treatment for UVFP. This results in an inability to compare current studies, and a lack of treatment effectiveness for the management of UVFP. This study aims to review the most recent literature for the management of dysphonia due to UVFP to establish the current evidence base for voice treatment options. There was found to be a lack of consistency in the rationale, selection and timing of the surgical intervention and/or voice therapy being provided for patients with UVFP. Further consensus is required for the rationale and selection of voice treatment prescriptions for the management of UVFP in order to improve treatment effectiveness and voice outcomes in patients with UVFP.
Antonelli, Raissa; de Araújo, Karla Santos; Pires, Ricardo Francisco; Fornazari, Ana Luiza de Toledo; Granato, Ana Claudia; Malpass, Geoffroy Roger Pointer
2017-10-28
The present paper presents the study of (1) the optimization of electrochemical-free chlorine production using an experimental design approach, and (2) the application of the optimum conditions obtained for the application in photo-assisted electrochemical degradation of simulated textile effluent. In the experimental design the influence of inter-electrode gap, pH, NaCl concentration and current was considered. It was observed that the four variables studied are significant for the process, with NaCl concentration and current being the most significant variables for free chlorine production. The maximum free chlorine production was obtained at a current of 2.33 A and NaCl concentrations in 0.96 mol dm -3 . The application of the optimized conditions with simultaneous UV irradiation resulted in up to 83.1% Total Organic Carbon removal and 100% of colour removal over 180 min of electrolysis. The results indicate that a systematic (statistical) approach to the electrochemical treatment of pollutants can save time and reagents.
Fluctuation between grandiose and vulnerable narcissism.
Gore, Whitney L; Widiger, Thomas A
2016-10-01
Current literature on narcissistic personality disorder has emphasized a distinction between grandiose and vulnerable narcissism. Some researchers have further suggested that narcissistic persons fluctuate between grandiose and vulnerable narcissism. However, this perception has been confined largely to clinical experience with no systematic research testing the hypothesis. Clinicians and clinical psychology professors in the current study identified 143 persons who fit a description of either a grandiose or a vulnerable narcissist and indicated the extent to which these persons ever demonstrated traits of the complementary variant. The results supported the fluctuation hypothesis, particularly for episodes of vulnerable narcissism in persons identified as a grandiose narcissist. Correlations of the grandiose and vulnerable narcissism traits with a brief five-factor model measure corroborated past trait descriptions of the 2 respective variants of narcissism. The results of the current study are compared with existing cross-sectional and longitudinal research, and suggestions for future research are provided. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Jeřábek, Jan; Šotner, Roman; Vrba, Kamil
2011-11-01
A universal filter with dual-output current follower (DO-CF), two transconductance amplifiers (OTAs) and two passive elements is presented in this paper. The filter is tunable, of the single-input multiple-output (SIMO) type, and operates in the current mode. Our solution utilizes a low-impedance input node and high-impedance outputs. All types of the active elements used can be realized using our UCC-N1B 0520 integrated circuit and therefore the paper contains not only simulation results that were obtained with the help of behavioral model of the UCC-N1B 0520 element, but also the characteristics that were gained by measurement with the mentioned circuit. The presented simulation and measurement results prove the quality of designed filter. Similar multi-loop structures are very-well known, but there are some drawbacks that are not discussed in similar papers. This paper also contains detailed study of parasitic influences on the filter performance.
The physical and empirical basis for a specific clear-air turbulence risk index
NASA Technical Reports Server (NTRS)
Keller, J. L.
1986-01-01
The fundamental emphasis of this research was to develop a technique which would be a significant improvement over those currently used for flight planning to avoid clear air turbulence (CAT). The technique should, ideally, be both quantitative in determining potential intensity and specific in locating regions of relatively high risk. Furthermore, it should not rely on specialized data but be functional using the currently available rawinsonde observation (raob) system. Encouraging results documented in an earlier investigation were considered compelling enough to warrant a closer look into the possibilities of a Specific Clear Air Turbulence Risk (SCATR) index approach to the clear air turbulence problem. Unlike that research, which considered sustained periods of flight in light to moderate clear air turbulence, this study focuses on several cases of documented severe CAT. Results of these case studies suggest that a SCATR index is not an unrealizable goal and that uses of such an index, event in its current prototype level of development, are also apparent.
Low-current traveling wave tube for use in the microwave power module
NASA Technical Reports Server (NTRS)
Palmer, Raymond W.; Ramins, Peter; Force, Dale A.; Dayton, James A.; Ebihara, Ben T.; Gruber, Robert P.
1993-01-01
The results of a traveling-wave-tube/multistage depressed-collector (TWT-MDC) design study in support of the Advanced Research Projects Agency/Department of Defense (ARPA/DOD) Microwave Power Module (MPM) Program are described. The study stressed the possible application of dynamic and other tapers to the RF output circuit of the MPM traveling wave tube as a means of increasing the RF and overall efficiencies and reducing the required beam current (perveance). The results indicate that a highly efficient, modified dynamic velocity taper (DVT) circuit can be designed for the broadband MPM application. The combination of reduced cathode current (lower perveance) and increased RF efficiency leads to (1) a substantially higher overall efficiency and reduction in the prime power to the MPM, and (2) substantially reduced levels of MDC and MPM heat dissipation, which simplify the cooling problems. However, the selected TWT circuit parameters need to be validated by cold test measurements on actual circuits.
Cell kill by megavoltage protons with high LET.
Kuperman, Vadim Y
2016-07-21
The aim of the current study is to develop a radiobiological model which describes the effect of linear energy transfer (LET) on cell survival and relative biological effectiveness (RBE) of megavoltage protons. By assuming the existence of critical sites within a cell, analytical expression for cell survival S as a function of LET is derived. The obtained results indicate that in cases where dose per fraction is small, [Formula: see text] is a linear-quadratic (LQ) function of dose while both alpha and beta radio-sensitivities are non-linearly dependent on LET. In particular, in the current model alpha increases with increasing LET while beta decreases. Conversely, in the case of large dose per fraction, the LQ dependence of [Formula: see text] on dose is invalid. The proposed radiobiological model predicts cell survival probability and RBE which, in general, deviate from the results obtained by using conventional LQ formalism. The differences between the LQ model and that described in the current study are reflected in the calculated RBE of protons.
Marijuana and actual driving performance
DOT National Transportation Integrated Search
1993-11-01
This report concerns the effects of marijuana smoking on actual driving performance. It presents the results of one pilot and three actual driving studies. The pilot study's major purpose was to establish the THC dose current marijuana users smoke to...
Mapping telemedicine efforts: surveying regional initiatives in Denmark.
Kierkegaard, Patrick
2015-05-01
The aim of this study is to survey telemedicine services currently in operation across Denmark. The study specifically seeks to answer the following questions: What initiatives are deployed within the different regions? What are the motivations behind the projects? What technologies are being utilized? What medical disciplines are being supported using telemedicine systems? All data were surveyed from the Telemedicinsk Landkort, a newly created database designed to provide a comprehensive and systematic overview of all telemedicine technologies in Denmark. The results of this study suggest that a growing numbers of telemedicine initiatives are currently in operation across Denmark but that considerable variations exist in terms of regional efforts as the number of operational telemedicine projects varied from region to region. The results of this study provide a timely picture of the factors that are shaping the telemedicine landscape of Denmark and suggest potential strategies to help policymakers increase and improve national telemedicine deployment.
Complexities in Ferret Influenza Virus Pathogenesis and Transmission Models
Eckert, Alissa M.; Tumpey, Terrence M.; Maines, Taronna R.
2016-01-01
SUMMARY Ferrets are widely employed to study the pathogenicity, transmissibility, and tropism of influenza viruses. However, inherent variations in inoculation methods, sampling schemes, and experimental designs are often overlooked when contextualizing or aggregating data between laboratories, leading to potential confusion or misinterpretation of results. Here, we provide a comprehensive overview of parameters to consider when planning an experiment using ferrets, collecting data from the experiment, and placing results in context with previously performed studies. This review offers information that is of particular importance for researchers in the field who rely on ferret data but do not perform the experiments themselves. Furthermore, this review highlights the breadth of experimental designs and techniques currently available to study influenza viruses in this model, underscoring the wide heterogeneity of protocols currently used for ferret studies while demonstrating the wealth of information which can benefit risk assessments of emerging influenza viruses. PMID:27412880
Complexities in Ferret Influenza Virus Pathogenesis and Transmission Models.
Belser, Jessica A; Eckert, Alissa M; Tumpey, Terrence M; Maines, Taronna R
2016-09-01
Ferrets are widely employed to study the pathogenicity, transmissibility, and tropism of influenza viruses. However, inherent variations in inoculation methods, sampling schemes, and experimental designs are often overlooked when contextualizing or aggregating data between laboratories, leading to potential confusion or misinterpretation of results. Here, we provide a comprehensive overview of parameters to consider when planning an experiment using ferrets, collecting data from the experiment, and placing results in context with previously performed studies. This review offers information that is of particular importance for researchers in the field who rely on ferret data but do not perform the experiments themselves. Furthermore, this review highlights the breadth of experimental designs and techniques currently available to study influenza viruses in this model, underscoring the wide heterogeneity of protocols currently used for ferret studies while demonstrating the wealth of information which can benefit risk assessments of emerging influenza viruses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Darby, Kathleen; Davis, Cindy; Likes, Wendy; Bell, John
2009-08-01
In addition to the physical suffering experienced by cancer survivors, there are considerable financial hardships and access barriers to quality health care. The current study explored the financial burden of breast cancer on African American medically underserved women. Four focus groups were conducted in three major cities across Tennessee. Research participants (N=36) were recruited by the staff of cancer support and treatment programs in the area. Findings revealed that participants' lack of insurance or inadequate insurance resulted in missed, delayed, or fewer treatment opportunities. The financial burden of cancer was not limited to the acute treatment phase. The women in the current study reported extreme economic hardship resulting from this disease into long-term survivorship. This exploratory study confirms the importance of providing care across the continuum to address the complex needs of low-income cancer survivors.
ELF exposure from mobile and cordless phones for the epidemiological MOBI-Kids study.
Calderón, Carolina; Ichikawa, Hiroki; Taki, Masao; Wake, Kanako; Addison, Darren; Mee, Terry; Maslanyj, Myron; Kromhout, Hans; Lee, Ae-Kyoung; Sim, Malcolm R; Wiart, Joe; Cardis, Elisabeth
2017-04-01
This paper describes measurements and computational modelling carried out in the MOBI-Kids case-control study to assess the extremely low frequency (ELF) exposure of the brain from use of mobile and cordless phones. Four different communication systems were investigated: Global System for Mobile (GSM), Universal Mobile Telecommunications System (UMTS), Digital Enhanced Cordless Telecommunications (DECT) and Wi-Fi Voice over Internet Protocol (VoIP). The magnetic fields produced by the phones during transmission were measured under controlled laboratory conditions, and an equivalent loop was fitted to the data to produce three-dimensional extrapolations of the field. Computational modelling was then used to calculate the induced current density and electric field strength in the brain resulting from exposure to these magnetic fields. Human voxel phantoms of four different ages were used: 8, 11, 14 and adult. The results indicate that the current densities induced in the brain during DECT calls are likely to be an order of magnitude lower than those generated during GSM calls but over twice that during UMTS calls. The average current density during Wi-Fi VoIP calls was found to be lower than for UMTS by 30%, but the variability across the samples investigated was high. Spectral contributions were important to consider in relation to current density, particularly for DECT phones. This study suggests that the spatial distribution of the ELF induced current densities in brain tissues is determined by the physical characteristics of the phone (in particular battery position) while the amplitude is mainly dependent on communication system, thus providing a feasible basis for assessing ELF exposure in the epidemiological study. The number of phantoms was not large enough to provide definitive evidence of an increase of induced current density with age, but the data that are available suggest that, if present, the effect is likely to be very small. Copyright © 2017 Elsevier Ltd. All rights reserved.
Streaming current magnetic fields in a charged nanopore
Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.
2016-01-01
Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques. PMID:27833119
Insulin Regulates GABAA Receptor-Mediated Tonic Currents in the Prefrontal Cortex.
Trujeque-Ramos, Saraí; Castillo-Rolón, Diego; Galarraga, Elvira; Tapia, Dagoberto; Arenas-López, Gabina; Mihailescu, Stefan; Hernández-López, Salvador
2018-01-01
Recent studies, have shown that insulin increases extrasynaptic GABA A receptor-mediated currents in the hippocampus, causing alterations of neuronal excitability. The prefrontal cortex (PFC) is another brain area which is involved in cognition functions and expresses insulin receptors. Here, we used electrophysiological, molecular, and immunocytochemical techniques to examine the effect of insulin on the extrasynaptic GABA A receptor-mediated tonic currents in brain slices. We found that insulin (20-500 nM) increases GABA A -mediated tonic currents. Our results suggest that insulin promotes the trafficking of extrasynaptic GABA A receptors from the cytoplasm to the cell membrane. Western blot analysis and immunocytochemistry showed that PFC extrasynaptic GABA A receptors contain α-5 and δ subunits. Insulin effect on tonic currents decreased the firing rate and neuronal excitability in layer 5-6 PFC cells. These effects of insulin were dependent on the activation of the PI3K enzyme, a key mediator of the insulin response within the brain. Taken together, these results suggest that insulin modulation of the GABA A -mediated tonic currents can modify the activity of neural circuits within the PFC. These actions could help to explain the alterations of cognitive processes associated with changes in insulin signaling.
NASA Astrophysics Data System (ADS)
Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Li, Na; Guo, Kun; Zhou, Yuyang; Xu, Jing; Chen, Wei; Jia, Yufeng; Huang, Bin
2017-02-01
In this paper, we first systematically investigate the current output performance of stainless steel electrodes (SS) modified by carbon coating (CC), polyaniline coating (PANI), neutral red grafting (NR), surface hydrophilization (SDBS), and heat treatment (HEAT). The maximum current density of 13.0 A m-2 is obtained on CC electrode (3.0 A m-2 of the untreated anode). Such high performance should be attributed to its large effective surface area, which is 2.3 times that of the unmodified electrode. Compared with SS electrode, about 3-fold increase in current output is achieved with PANI. Functionalization with hydrophilic group and electron medium result in the current output rising to 1.5-2 fold, through enhancing bioadhesive and electron transport rate, respectively. CC modification is the best choice of single modification for SS electrode in this study. However, this modification is not perfect because of its poor hydrophilicity. So CC electrode is modified by SDBS for further enhancing the current output to 16 A m-2. These results could provide guidance for the choice of suitable single modification on SS electrodes and a new method for the perfection of electrode performance through composite modification.
Ma, Xue-Ling; Zhang, Feng; Wang, Yu-Xiang; He, Cong-Cong; Tian, Kun; Wang, Hong-Gang; An, Di; Heng, Bin; Liu, Yan-Qiang
2016-07-25
In the present study, we established an in vitro model of hypoxic-ischemia via exposing primary neurons of newborn rats to oxygen-glucose deprivation (OGD) and observing the effects of genistein, a soybean isoflavone, on hypoxic-ischemic neuron viability, apoptosis, voltage-activated potassium (Kv) and sodium (Nav) currents, and glutamate receptor subunits. The results indicated that OGD exposure reduced the viability and increased the apoptosis of brain neurons. Meanwhile, OGD exposure caused changes in the current-voltage curves and current amplitude values of voltage-activated potassium and sodium currents; OGD exposure also decreased GluR2 expression and increased NR2 expression. However, genistein at least partially reversed the effects caused by OGD. The results suggest that hypoxic-ischemia-caused neuronal apoptosis/death is related to an increase in K(+) efflux, a decrease in Na(+) influx, a down-regulation of GluR2, and an up-regulation of NR2. Genistein may exert some neuroprotective effects via the modulation of Kv and Nav currents and the glutamate signal pathway, mediated by GluR2 and NR2. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Tidal influence on subtropical estuarine methane emissions
NASA Astrophysics Data System (ADS)
Sturm, Katrin; Grinham, Alistair; Werner, Ursula; Yuan, Zhiguo
2014-05-01
The relatively unstudied subtropical estuaries, particularly in the Southern Hemisphere, represent an important gap in our understanding of global greenhouse gas (GHG) emissions. These systems are likely to form an important component of GHG budgets as they occupy a relatively large surface area, over 38 000 km2 in Australia. Here, we present studies conducted in the Brisbane River estuary, a representative system within the subtropical region of Queensland, Australia. This is a highly modified system typical of 80% of Australia's estuaries. Generally, these systems have undergone channel deepening and straightening for safer shipping access and these modifications have resulted in large increases in tidal reach. The Brisbane River estuary's natural tidal reach was 16 km and this is now 85 km and tidal currents influence double the surface area (9 km2 to 18 km2) in this system. Field studies were undertaken to improve understanding of the driving factors behind methane water-air fluxes. Water-air fluxes in estuaries are usually calculated with the gas exchange coefficient (k) for currents and wind as well as the concentration difference across the water-air interface. Tidal studies in the lower and middle reaches of the estuary were performed to monitor the influence of the tidal stage (a proxy for kcurrent) on methane fluxes. Results for both investigated reaches showed significantly higher methane fluxes during the transition time of tides, the time of greatest tidal currents, than during slack tide periods. At these tidal transition times with highest methane chamber fluxes, lowest methane surface water concentrations were monitored. Modelled fluxes using only wind speed (kwind) were at least one order of magnitude lower than observed from floating chambers, demonstrating that current speed was likely the driving factor of water-air fluxes. An additional study was then conducted sampling the lower, middle and upper reaches during a tidal transition period. Although dissolved methane surface water concentrations were highest in the upper reaches of the estuary, experiencing the lowest tidal currents, fluxes measured using chambers were lower relative to middle and lower reaches. This supports the tidal study findings as higher tidal currents were experienced in the middle and lower reaches. The dominant driver behind estuarine methane water-air fluxes in this system was tidal current speed. Future studies need to take into account flux rates during both transition and slack tide periods to quantify total flux rates.
Electromigration failures under bidirectional current stress
NASA Astrophysics Data System (ADS)
Tao, Jiang; Cheung, Nathan W.; Hu, Chenming
1998-01-01
Electromigration failure under DC stress has been studied for more than 30 years, and the methodologies for accelerated DC testing and design rules have been well established in the IC industry. However, the electromigration behavior and design rules under time-varying current stress are still unclear. In CMOS circuits, as many interconnects carry pulsed-DC (local VCC and VSS lines) and bidirectional AC current (clock and signal lines), it is essential to assess the reliability of metallization systems under these conditions. Failure mechanisms of different metallization systems (Al-Si, Al-Cu, Cu, TiN/Al-alloy/TiN, etc.) and different metallization structures (via, plug and interconnect) under AC current stress in a wide frequency range (from mHz to 500 MHz) has been study in this paper. Based on these experimental results, a damage healing model is developed, and electromigration design rules are proposed. It shows that in the circuit operating frequency range, the "design-rule current" is the time-average current. The pure AC component of the current only contributes to self-heating, while the average (DC component) current contributes to electromigration. To ensure longer thermal-migration lifetime under high frequency AC stress, an additional design rule is proposed to limit the temperature rise due to self-joule heating.
Studying for Success: Diaries of Students' Study Behaviours
ERIC Educational Resources Information Center
Tomes, Jennifer L.; Wasylkiw, Louise; Mockler, Brittany
2011-01-01
The current study examined students' study behaviours using a diary methodology. Given the limitations of previous investigations, participants were asked to complete daily study diaries for 10 days prior to a course test to assess students' actual study behaviours. Results showed that students engaged in a diverse set of behaviours with only some…
Linear calculations of edge current driven kink modes with BOUT++ code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, G. Q., E-mail: ligq@ipp.ac.cn; Xia, T. Y.; Lawrence Livermore National Laboratory, Livermore, California 94550
This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linearmore » growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density.« less
THE EVOLUTION OF THE ELECTRIC CURRENT DURING THE FORMATION AND ERUPTION OF ACTIVE-REGION FILAMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jincheng; Yan, Xiaoli; Qu, Zhongquan
We present a comprehensive study of the electric current related to the formation and eruption of active region filaments in NOAA AR 11884. The vertical current on the solar surface was investigated by using vector magnetograms (VMs) observed by HMI on board the Solar Dynamics Observatory. To obtain the electric current along the filament's axis, we reconstructed the magnetic fields above the photosphere by using nonlinear force-free field extrapolation based on photospheric VMs. Spatio-temporal evolutions of the vertical current on the photospheric surface and the horizontal current along the filament's axis were studied during the long-term evolution and eruption-related period,more » respectively. The results show that the vertical currents of the entire active region behaved with a decreasing trend and the magnetic fields also kept decreasing during the long-term evolution. For the eruption-related evolution, the mean transverse field strengths decreased before two eruptions and increased sharply after two eruptions in the vicinity of the polarity inversion lines underneath the filament. The related vertical current showed different behaviors in two of the eruptions. On the other hand, a very interesting feature was found: opposite horizontal currents with respect to the current of the filament's axis appeared and increased under the filament before the eruptions and disappeared after the eruptions. We suggest that these opposite currents were carried by the new flux emerging from the photosphere bottom and might be the trigger mechanism for these filament eruptions.« less
Current and efficiency of Brownian particles under oscillating forces in entropic barriers
NASA Astrophysics Data System (ADS)
Nutku, Ferhat; Aydιner, Ekrem
2015-04-01
In this study, considering the temporarily unbiased force and different forms of oscillating forces, we investigate the current and efficiency of Brownian particles in an entropic tube structure and present the numerically obtained results. We show that different force forms give rise to different current and efficiency profiles in different optimized parameter intervals. We find that an unbiased oscillating force and an unbiased temporal force lead to the current and efficiency, which are dependent on these parameters. We also observe that the current and efficiency caused by temporal and different oscillating forces have maximum and minimum values in different parameter intervals. We conclude that the current or efficiency can be controlled dynamically by adjusting the parameters of entropic barriers and applied force. Project supported by the Funds from Istanbul University (Grant No. 45662).
Buczkowski, Krzysztof; Basinska, Małgorzata A; Ratajska, Anna; Lewandowska, Katarzyna; Luszkiewicz, Dorota; Sieminska, Alicja
2017-01-27
Tobacco smoking is the single most important modifiable factor in increased morbidity and premature mortality. Numerous factors-including genetics, personality, and environment-affect the development and persistence of tobacco addiction, and knowledge regarding these factors could improve smoking cessation rates. This study compared personality traits between never, former, and current smokers, using the Five-Factor Model of Personality in a country with a turbulent smoking reduction process. : In this cross-sectional study, 909 Polish adults completed the Revised Neuroticism-Extraversion-Openness Personality Inventory. Our results showed that current smokers' scores for extraversion, one of the five global dimensions of personality, were higher relative to never smokers. Neuroticism, openness to experience, agreeableness, and conscientiousness did not differ significantly according to smoking status. Facet analysis, which described each dimension in detail, showed that current smokers' activity and excitement seeking (facets of extraversion) scores were higher relative to those of never and former smokers. In turn, current smokers' dutifulness and deliberation (facets of conscientiousness) scores were lower than those found in former and never smokers. Never smokers scored the highest in self-consciousness (a facet of neuroticism) and compliance (a component of agreeableness). The study conducted among Polish individuals showed variation in personality traits according to their smoking status; however, this variation differed from that reported in countries in which efforts to reduce smoking had begun earlier relative to Poland. Knowledge regarding personality traits could be useful in designing smoking prevention and cessation programs tailored to individuals' needs.
NASA Astrophysics Data System (ADS)
Doronzo, Domenico; Dellino, Pierfrancesco; Sulpizio, Roberto; Lucchi, Federico
2017-04-01
In order to obtain significant volcanological results from computer simulations of explosive eruptions, one either needs a systematic statistical approach to test a wide range of initial and boundary conditions, or needs using a well-constrained field case study. Here we followed the second approach, using data obtained from field mapping of the Grotta dei Palizzi 2 pyroclastic deposits (Vulcano Island, Italy) as input for numerical modeling. This case study deals with impulsive phreatomagmatic explosions that generated ash-rich pyroclastic density currents, interacting with the high topographic obstacle of the La Fossa Caldera rim. We demonstrate that by merging field data with 3D numerical simulation it is possible to highlight the details of the dynamical current-terrain interaction, and to interpret the lithofacies variations of the associated deposits as a function of topography-induced sedimentation rate. Results suggest that a value of the sedimentation rate lower than 5 kg/m2s at the bed load can still be sheared by the overlying current, producing tractional structures in the deposit. Instead, a sedimentation rate in excess of that threshold can preclude the formation of tractional structures, producing thick massive deposits. We think that the approach used in this study could be applied to other case studies to confirm or refine such threshold value of the sedimentation rate, which is to be considered as an upper value as for the limitations of the numerical model.
Cathodic current enhancement via manganese and oxygen related reactions in marine biofilms
NASA Astrophysics Data System (ADS)
Strom, Matthew James
Corrosion is a threat that has economic, and environmental impacts worldwide. Many types of corrosive attack are the subject of ongoing research. One of these areas of research is microbiologically influenced corrosion, which is the enhancement and/or initiation of corrosion events caused by microorganisms. It is well known that colonies of microorganisms can enhance cathodic currents through biofilm formation. The aim of the present work was to elucidate the role of manganese in enhancing cathodic currents in the presence of biofilms. Repeated polarizations conducted in Delaware Bay waters, on biofilm coated Cr identified potentially sustainable reduction reactions. The reduction of MnO2 and the enhancement of the oxygen reduction reaction (ORR) were proven to be factors that influence cathodic current enhancement. The removal of ambient oxygen during polarizations resulted in a shutdown of cathodic current enhancement. These field data led to an exploration of the synergistic relationship between MnO2 and the ORR. Laboratory studies of the catalysis of peroxide disproportionation by MnO2 were monitored using a hanging mercury drop electrode. Experiments were run at an ambient sweater pH of 8 and pH 9, which simulated the near-surface conditions typical of cathodes immersed in seawater. Rapid reoxidation at the more basic pH was shown to allow manganese to behave as a persistent catalyst under the typical electrochemical surface conditions of a cathode. As a result a mechanism for ORR enhancement by manganese was proposed as a unique mechanism for cathodic current enhancement in biofilms. A separate field study of Delaware biofilms on stainless steel coupled to a sacrificial Al anode was carried out to identify the ORR enhancement mechanism and sustainable redox reactions at the cathode. Chemical treatments of glutaraldehyde and formaldoxime were applied to cathodes with biofilms to distinguish between enzymatic and MnO2 related ORR enhancement. The results ruled out the enzymatic catalysis of ORR and supported the catalysis by MnO2. Sustainable redox reactions at the cathode were evaluated by monitoring the cathodic current of biofilm coated stainless steel for a year under different polarization intensities. The results showed that sustainable cathodic reactions were present in marine biofilms but their influence on the cathodic current was negligible until a potential was reached where the ORR could take place. Additionally seasonal variability was observed in the enhanced cathodic current in Delaware Bay biofilms. This was attributed to the seasonal variability of manganese in the water column.
Psychosocial Determinants of Tobacco Use among School Going Adolescents in Delhi, India
Kumar, Varun; Talwar, Richa; Roy, Neelam; Raut, Deepak; Singh, Saudan
2014-01-01
Background. Tobacco use is one of the major preventable causes of premature death and disease in the world. Many psychosocial factors were found to influence tobacco use. Therefore the present study was designed to determine the role of psychosocial factors associated with tobacco use among school going adolescents in Delhi, India. Methods. Cross-sectional study was conducted from February 2013 to September 2013 in four government schools in South district of Delhi, India. The questionnaire contains questions adapted from GYTS (Global Youth Tobacco Survey) to find the prevalence and pattern of tobacco use among adolescents. Data were analyzed using SPSS version 21. Results. The prevalence of ever and current tobacco use was found in 16.4% and 13.1%. Current smoking and current tobacco chewing were found in 10.2% and 9.4% students, respectively. The risk of current tobacco use was found to be higher among males (P value = 0.000) and in those who got higher pocket money (P value = 0.000). Psychosocial factors like lower general self-efficacy and maladjustments with peers, teachers, and schools were also found to be significant predictors of current tobacco use. Conclusion. The study has revealed higher prevalence of ever and current tobacco use among adolescent students in Delhi, India. PMID:25431738
Jaatinen, Leena; Young, Eleanore; Hyttinen, Jari; Vörös, János; Zambelli, Tomaso; Demkó, László
2016-03-20
This study presents the effect of external electric current on the cell adhesive and mechanical properties of the C2C12 mouse myoblast cell line. Changes in cell morphology, viability, cytoskeleton, and focal adhesion structure were studied by standard staining protocols, while single-cell force spectroscopy based on the fluidic force microscopy technology provided a rapid, serial quantification and detailed analysis of cell adhesion and its dynamics. The setup allowed measurements of adhesion forces up to the μN range, and total detachment distances over 40 μm. Force-distance curves have been fitted with a simple elastic model including a cell detachment protocol in order to estimate the Young's modulus of the cells, as well as to reveal changes in the dynamic properties as functions of the applied current dose. While the cell spreading area decreased monotonously with increasing current doses, small current doses resulted only in differences related to cell elasticity. Current doses above 11 As/m(2), however, initiated more drastic changes in cell morphology, viability, cellular structure, as well as in properties related to cell adhesion. The observed differences, eventually leading to cell death toward higher doses, might originate from both the decrease in pH and the generation of reactive oxygen species.
Current situation and industrialization of Taiwan nanotechnology
NASA Astrophysics Data System (ADS)
Su, Hsin-Ning; Lee, Pei-Chun; Tsai, Min-Hua; Chien, Kuo-Ming
2007-12-01
Nanotechnology is projected to be a very promising field, and the impact of nanotechnology on society is increasingly significant as the research funding and manufactured goods increase exponentially. A clearer picture of Taiwan's current and future nanotechnology industry is an essential component for future planning. Therefore, this investigation studies the progress of industrializing nanotechnology in Taiwan by surveying 150 companies. Along with understanding Taiwan's current nanotechnology industrialization, this paper also suggests ways to promote Taiwan's nanotechnology. The survey results are summarized and serve as the basis for planning a nanotechnology industrialization strategy.
Silicon-Based Lithium-Ion Capacitor for High Energy and High Power Application
NASA Technical Reports Server (NTRS)
Wu, James J.; Demattia, Brianne; Loyselle, Patricia; Reid, Concha; Kohout, Lisa
2017-01-01
Si-based Li-ion capacitor has been developed and demonstrated. The results show it is feasible to improve both power density and energy density in this configuration. The applied current density impacts the power and energy density: low current favors energy density while high current favors power density. Active carbon has a better rate capability than Si. Next StepsFuture Directions. Si electrode needs to be further studied and improved. Further optimization of SiAC ratio and evaluation of its impact on energy density and power density.
Wave-induced drift of large floating sheets
NASA Astrophysics Data System (ADS)
Christensen, K. H.; Weber, J. E.
In this article we study the wave-induced drift of large, flexible shallow floating objects, referred to as sheets. When surface waves propagate through a sheet, they provide a mean stress on the sheet, resulting in a mean drift. In response, the sheet generates an Ekman current. The drift velocity of the sheet is determined by (i) the wave-induced stress, (ii) the viscous stress due to the Ekman current, and (iii) the Coriolis force. The sheet velocity and the current beneath the sheet are determined for constant and depth-varying eddy viscosities.
Phyto-toponyms of Arbutus unedo L. and their distribution in Sardinia (Italy)
Pinna, Claudia; Carta, Luisa; Deiana, Vitale; Camarda, Ignazio
2017-01-01
The study shows the results of an inventory of place names connected to Arbutus unedo L., a Mediterranean species, widespread throughout Sardinia. The main aim was to compare the past distribution of place names, referring to the strawberry tree, to the current distribution of the species on the island. In addition, we investigated the meaning and the diversity of these local place names in the various communities. The result was a collection of 432 phyto-toponyms. 248 of them were used for an analysis of their distribution in the habitats, indicated on the Map of the Nature System in Sardinia, defined on the basis of the current vegetation typology. The persistence of the species in the various habitats was either confirmed or negated with in site investigations and interviews. 47.5% of municipalities have place names related to the strawberry tree. Of the 248 phyto-toponyms, 127 fall in the habitats where the species currently persists proving a correspondence between their regional distribution and the current distribution of the species. The remaining 121 phyto-toponyms fall in habitats where the strawberry tree is currently absent. Most of them are found in man-made habitats where man has transformed the forest cover which previously included the strawberry tree. This study also contributes to promoting and conserving the linguistic heritage of local communities. PMID:28704491
Study on the performance of 2.6 μm In0.83Ga0.17As detector with different etch gases
NASA Astrophysics Data System (ADS)
Li, Ping; Tang, Hengjing; Li, Tao; Li, Xue; Shao, Xiumei; Ma, Yingjie; Gong, Haimei
2017-09-01
In order to obtain a low-damage recipe in the ICP processing, ICP-induced damage using Cl2/CH4 etch gases in extended wavelength In0.83Ga0.17As detector materials was studied in this paper. The effect of ICP etching on In0.83Ga0.17As samples was characterized qualitatively by the photoluminescence (PL) technology. The etch damage of In0.83Ga0.17As samples was characterized quantitatively by the Transmission Line Model (TLM), current voltage (IV) measurement, signal and noise testing and the Fourier Transform Infrared Spectroscopy (FTIR) technologies. The results showed that the Cl2/CH4 etching processing could lead better detector performance than that Cl2/N2, such as a larger square resistance, a lower dark current, a lower noise voltage and a higher peak detectivity. The lower PL signal intensity and lower dark current could be attributed to the hydrogen decomposed by the CH4 etch gases in the plasma etching process. These hydrogen particles generated non-radiative recombination centers in inner materials to weaken the PL intensity and passivated dangling bond at the surface to reduce the dark current. The larger square resistance resulted from the lower etch damage. The lower dark current meant that the detectors have less dangling bonds and leakage channels.
NASA Astrophysics Data System (ADS)
van der Molen, Johan
2015-04-01
Tidal power generation through submerged turbine-type devices is in an advanced stage of testing, and large-scale applications are being planned in areas with high tidal current speeds. The potential impact of such large-scale applications on the hydrography can be investigated using hydrodynamical models. In addition, aspects of the potential impact on the marine ecosystem can be studied using biogeochemical models. In this study, the coupled hydrodynamics-biogeochemistry model GETM-ERSEM is used in a shelf-wide application to investigate the potential impact of large-scale tidal power generation in the Pentland Firth. A scenario representing the currently licensed power extraction suggested i) an average reduction in M2 tidal current velocities of several cm/s within the Pentland Firth, ii) changes in the residual circulation of several mm/s in the vicinity of the Pentland Firth, iii) an increase in M2 tidal amplitude of up to 1 cm to the west of the Pentland Firth, and iv) a reduction of several mm in M2 tidal amplitude along the east coast of the UK. A second scenario representing 10 times the currently licensed power extraction resulted in changes that were approximately 10 times as large. Simulations including the biogeochemistry model for these scenarios are currently in preparation, and first results will be presented at the the conference, aiming at impacts on primary production and benthic production.
Laboratory reconnection experiments
NASA Astrophysics Data System (ADS)
Grulke, Olaf
Laboratory experiments dedicated for the study of magnetic reconnection have been contributed considerably to a more detailed understanding of the involved processes. Their strength is to disentangle parameter dependencies, to diagnose in detail the plasma and field response, and to form an excellent testbed for the validation of numerical simulations. In the present paper recent results obtained from the new cylindrical reconnection experiment VINETA II are presented. The experimental setup allows to independently vary plasma parameters, reconnection drive strength/timescale, and current sheet amplitude. Current research objectives focus on two major scientific issues: Guide field effects on magnetic reconnection and the evolution of electromagnetic fluctuations. The superimposed homogeneous magnetic guide field has a strong influence on the spatiotemporal evolution of the current sheet, predominantly due to magnetic pitch angle effects, which leads to a strong elongation of the sheet along the separatrices and results in axial gradients of the reconnection rates. Within the current sheet, incoherent electromagnetic fluctuations are observed. Their magnetic signature is characterized by a broad spectrum somewhat centered around the lower-hybrid frequency and extremely short spatial correlation lengths being typically smaller than the local ion sound radius. The fluctuation amplitude correlates with the local current density and, thus, for low guide fields, displays also axial gradients. Despite the quantitatively different parameter regime and geometry the basic fluctuation properties are in good agreement with studies conducted at the MRX experiment (PPPL).
Control of plasma profiles and stability through localised Electron Cyclotron Current Drive
NASA Astrophysics Data System (ADS)
Merkulov, Oleksiy
2006-06-01
The work presented in this thesis addresses several topics from the physics of the magnetically confined plasma inside a tokamak. At the moment, the tokamak is the most successful concept for becoming a future thermonuclear reactor. However, there are plenty of physics and engineering problems to surpass before the prototype can become an economically and environmentally feasible device. The plasma in the tokamak experiences periodic oscillations of the central temperature and density when the safety factor, q, drops below unity on-axis. These oscillations are called the sawtooth instability and are the subject of the first part of this thesis. The sawtooth oscillations are characterised by the relatively slow rise phase, when the central temperature increases, and a following crash phase, when the central temperature drops. The energy, particles and plasma current are redistributed during the sawtooth crash. Obviously, this leads to a confinement degradation and moreover, the sawtooth instability can trigger potentially other more dangerous instabilities, such as a neoclassical tearing mode. The sawtooth period control is realised on the basis of the sawtooth trigger model, derived by Porcelli. The main idea of this model is that the sawtooth crash is triggered when the magnetic shear at the q=1 surface, s1, reaches a critical value which depends on the local plasma parameters. The magnetic shear, s, is a measure for the rate of change in the direction of the field line as a function of the position in the plasma. The sawtooth period can be changed by affecting the evolution of s1. The effects of the electron cyclotron current drive (ECCD) on the shear evolution are studied with a simple model for the poloidal field evolution. The results of the model are summarised in a form of a criterion for the amount of the non-inductive current drive required for sawtooth period control. The effects of the ECCD have been studied in the TEXTOR tokamak in order to confirm the outcome of the model. The observations are complicated by the unavoidable presence of concurrent heating, which also affects the sawtooth period. The effects of additional heating have been separated from the effects of current drive by normalising the sawtooth period, as a function of the power deposition radius, to a case with heating only. The results are in qualitative agreement with the predictions of the theory and confirm that the shear around the q=1 surface determines the moment of the sawtooth crash. The next topic addresses the current diffusion in the presence of the ECCD. It is known that the synergy between non-inductively driven current and the ohmic current can affect the current penetration. However, the standard method of calculations, which assumes neoclassical plasma resistivity, cannot describe the synergistic effects. We propose a model which combines a Fokker-Planck code and magnetic diffusion calculation in a self-consistent manner; where the plasma resistivity is approximated from the Fokker-Planck code at every time step. In this way the parallel electric field is no longer a constant input profile for the Fokker-Planck code, but is a result of calculations of the magnetic diffusion. This model allowed us to identify situations where the synergy between the driven and the ohmic currents becomes significant and affects the current penetration. Both the ECCD power and the electron density have been varied over a wide range of parameters, thus changing the well known non-linearity criterion for ECCD after Harvey. This criterion indicates the non-linear behaviour of the current drive efficiency and also appears to be a good predictor for the synergistic effects. The results are compared with the standard method of calculations which were supplied by the ASTRA transport code. The standard method and the Fokker-Planck code with the self-consistent electric field show similar results in the absence of the synergy and therefore for low values of the Harvey parameter. For co-ECCD and high values of the Harvey parameter substantial synergy between ECCD and the ohmic current is observed and leads to the generation of a large population of suprathermal electrons and slows down the current penetration. The synergy between counter-ECCD and the inductive current results in a decrease of the total driven current and a much smaller population of suprathermal electrons. Another plasma stability problem has been studied during the current ramp-up phase. Quiet and MHD free current ramp-up is a necessary requirement for a long and efficient flat-top phase. The current penetration in the plasma scenarios with various plasma ramp-up rates has been modelled with the ASTRA transport code. It is shown that in the absence of MHD activity the predictions of the ASTRA code are in a agreement with the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Y; Liu, B; Kalra, M
Purpose: X-rays from CT scans can increase cancer risk to patients. Lifetime Attributable Risk of Cancer Incidence for adult patients has been investigated and shown to decrease as patient age. However, a new risk model shows an increasing risk trend for several radiosensitive organs for middle age patients. This study investigates the feasibility of a general method for optimizing tube current modulation (TCM) functions to minimize risk by reducing radiation dose to radiosensitive organs of patients. Methods: Organ-based TCM has been investigated in literature for eye lens dose and breast dose. Adopting the concept in organ-based TCM, this study seeksmore » to find an optimized tube current for minimal total risk to breasts and lungs by reducing dose to these organs. The contributions of each CT view to organ dose are determined through simulations of CT scan view-by-view using a GPU-based fast Monte Carlo code, ARCHER. A Linear Programming problem is established for tube current optimization, with Monte Carlo results as weighting factors at each view. A pre-determined dose is used as upper dose boundary, and tube current of each view is optimized to minimize the total risk. Results: An optimized tube current is found to minimize the total risk of lungs and breasts: compared to fixed current, the risk is reduced by 13%, with breast dose reduced by 38% and lung dose reduced by 7%. The average tube current is maintained during optimization to maintain image quality. In addition, dose to other organs in chest region is slightly affected, with relative change in dose smaller than 10%. Conclusion: Optimized tube current plans can be generated to minimize cancer risk to lungs and breasts while maintaining image quality. In the future, various risk models and greater number of projections per rotation will be simulated on phantoms of different gender and age. National Institutes of Health R01EB015478.« less
Multi-species genetic connectivity in a terrestrial habitat network.
Marrotte, Robby R; Bowman, Jeff; Brown, Michael G C; Cordes, Chad; Morris, Kimberley Y; Prentice, Melanie B; Wilson, Paul J
2017-01-01
Habitat fragmentation reduces genetic connectivity for multiple species, yet conservation efforts tend to rely heavily on single-species connectivity estimates to inform land-use planning. Such conservation activities may benefit from multi-species connectivity estimates, which provide a simple and practical means to mitigate the effects of habitat fragmentation for a larger number of species. To test the validity of a multi-species connectivity model, we used neutral microsatellite genetic datasets of Canada lynx ( Lynx canadensis ), American marten ( Martes americana ), fisher ( Pekania pennanti ), and southern flying squirrel ( Glaucomys volans ) to evaluate multi-species genetic connectivity across Ontario, Canada. We used linear models to compare node-based estimates of genetic connectivity for each species to point-based estimates of landscape connectivity (current density) derived from circuit theory. To our knowledge, we are the first to evaluate current density as a measure of genetic connectivity. Our results depended on landscape context: habitat amount was more important than current density in explaining multi-species genetic connectivity in the northern part of our study area, where habitat was abundant and fragmentation was low. In the south however, where fragmentation was prevalent, genetic connectivity was correlated with current density. Contrary to our expectations however, locations with a high probability of movement as reflected by high current density were negatively associated with gene flow. Subsequent analyses of circuit theory outputs showed that high current density was also associated with high effective resistance, underscoring that the presence of pinch points is not necessarily indicative of gene flow. Overall, our study appears to provide support for the hypothesis that landscape pattern is important when habitat amount is low. We also conclude that while current density is proportional to the probability of movement per unit area, this does not imply increased gene flow, since high current density tends to be a result of neighbouring pixels with high cost of movement (e.g., low habitat amount). In other words, pinch points with high current density appear to constrict gene flow.
Inter-model analysis of tsunami-induced coastal currents
NASA Astrophysics Data System (ADS)
Lynett, Patrick J.; Gately, Kara; Wilson, Rick; Montoya, Luis; Arcas, Diego; Aytore, Betul; Bai, Yefei; Bricker, Jeremy D.; Castro, Manuel J.; Cheung, Kwok Fai; David, C. Gabriel; Dogan, Gozde Guney; Escalante, Cipriano; González-Vida, José Manuel; Grilli, Stephan T.; Heitmann, Troy W.; Horrillo, Juan; Kânoğlu, Utku; Kian, Rozita; Kirby, James T.; Li, Wenwen; Macías, Jorge; Nicolsky, Dmitry J.; Ortega, Sergio; Pampell-Manis, Alyssa; Park, Yong Sung; Roeber, Volker; Sharghivand, Naeimeh; Shelby, Michael; Shi, Fengyan; Tehranirad, Babak; Tolkova, Elena; Thio, Hong Kie; Velioğlu, Deniz; Yalçıner, Ahmet Cevdet; Yamazaki, Yoshiki; Zaytsev, Andrey; Zhang, Y. J.
2017-06-01
To help produce accurate and consistent maritime hazard products, the National Tsunami Hazard Mitigation Program organized a benchmarking workshop to evaluate the numerical modeling of tsunami currents. Thirteen teams of international researchers, using a set of tsunami models currently utilized for hazard mitigation studies, presented results for a series of benchmarking problems; these results are summarized in this paper. Comparisons focus on physical situations where the currents are shear and separation driven, and are thus de-coupled from the incident tsunami waveform. In general, we find that models of increasing physical complexity provide better accuracy, and that low-order three-dimensional models are superior to high-order two-dimensional models. Inside separation zones and in areas strongly affected by eddies, the magnitude of both model-data errors and inter-model differences can be the same as the magnitude of the mean flow. Thus, we make arguments for the need of an ensemble modeling approach for areas affected by large-scale turbulent eddies, where deterministic simulation may be misleading. As a result of the analyses presented herein, we expect that tsunami modelers now have a better awareness of their ability to accurately capture the physics of tsunami currents, and therefore a better understanding of how to use these simulation tools for hazard assessment and mitigation efforts.
Do substorms energise the ring current?
NASA Astrophysics Data System (ADS)
Sandhu, J. K.; Rae, J.; Freeman, M. P.; Forsyth, C.; Jackman, C. M.; Lam, M. M.
2017-12-01
The substorm phenomenon is a highly dynamic and variable process that results in the global reconfiguration and redistribution of energy within the magnetosphere. There are many open questions surrounding substorms, particularly how the energy released during a substorm is distributed throughout the magnetosphere, and how the energy loss varies from one substorm to the next. In this study, we explore whether energy lost during the substorm plays a role in energising the ring current. Using observations of the particle energy flux from RBSPICE/RBSP, we are able to quantitatively observe how the energy is distributed spatially and across the different ion species (H+, He+, and O+). Furthermore, we can observe how the total energy content of the ring current changes during the substorm process, using substorm phases defined by the SOPHIE algorithm. This analysis provides information on how the energy released from a substorm is partitioned throughout the magnetosphere, and on the processes determining the energy provided to the ring current. Overall, our results show that the substorm-ring current coupling is more complex than originally thought, and we discuss the reasons behind this complex response.
Malavera, Alejandra; Vasquez, Alejandra; Fregni, Felipe
2015-01-01
Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that has been extensively studied. While there have been initial positive results in some clinical trials, there is still variability in tDCS results. The aim of this article is to review and discuss patents assessing novel methods to optimize the use of tDCS. A systematic review was performed using Google patents database with tDCS as the main technique, with patents filling date between 2010 and 2015. Twenty-two patents met our inclusion criteria. These patents attempt to address current tDCS limitations. Only a few of them have been investigated in clinical trials (i.e., high-definition tDCS), and indeed most of them have not been tested before in human trials. Further clinical testing is required to assess which patents are more likely to optimize the effects of tDCS. We discuss the potential optimization of tDCS based on these patents and the current experience with standard tDCS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korolev, Yu. D.; Landl, N. V., E-mail: landl@lnp.hcei.tsc.ru; Geyman, V. G.
Results from studies of a low-current glow discharge with a hollow cathode are presented. A specific feature of the discharge conditions was that a highly emissive tablet containing cesium carbonate was placed in the cathode cavity. In the absence of a tablet, the discharge ignition voltage was typically ≥3.5 kV, while the burning voltage was in the range of 500–600 V. The use of the tablet made it possible to decrease the ignition voltage to 280 V and maintain the discharge burning voltage at a level of about 130 V. A model of the current sustainment in a hollow-cathode dischargemore » is proposed. Instead of the conventional secondary emission yield, the model uses a generalized emission yield that takes into account not only ion bombardment of the cathode, but also the emission current from an external source. The model is used to interpret the observed current−voltage characteristics. The results of calculations agree well with the experimental data. It is shown that, in some discharge modes, the external emission current from the cathode can reach 25% of the total discharge current.« less
Wave-Current Interactions in a wind-jet region
NASA Astrophysics Data System (ADS)
Ràfols, Laura; Grifoll, Manel; Espino, Manuel; Cerralbo, Pablo; Sairouní, Abdel; Bravo, Manel; Sánchez-Arcilla, Agustín
2017-04-01
The Wave-Current Interactions (WCI) are investigated examining the influences of coupling two numerical models. The Regional Ocean Model System (ROMS; Shchepetkin and McWilliams, 2005) and the Simulating Waves Nearshore (SWAN; Booij et al. 1999) are used in a high resolution domain (350 m). For the initial and boundary conditions, data from the IBI-MFC products have been used and the atmospheric forcing fields have been obtained from the Catalan Meteorological Service (SMC). Results from uncoupled numerical models are compared with one-way and two-way coupling simulations. The study area is located at the northern margin of the Ebro Shelf (NW Mediterranean Sea), where episodes of strong cross-shelf wind occur. The results show that during these episodes, the water currents obtained in the two-way simulation have better agreement with the observations compared with the other simulations. Additionally, when the water currents are considered, the wave energy (and thus the significant wave heigh) decrease when the current flows in the same direction as waves propagate. The relative importance of the different terms of the momentum balance equation is also analyzed.
Reports show fewer pallets entering landfills
Robert J. Bush; Philip A. Araman
2010-01-01
Information from a series of Virginia Tech studies reveals current trends in core utilization by the pallet industry. The most recent report released this year studied trends from 2006. Virginia Tech researchers compared these results to five previous studies going all the way back to 1992.
Expanding on the relationship between continuing current and in-cloud leader growth
NASA Astrophysics Data System (ADS)
Lapierre, Jeff L.; Sonnenfeld, Richard G.; Stock, Michael; Krehbiel, Paul R.; Edens, Harald E.; Jensen, Daniel
2017-04-01
When lightning connects to the ground, there is a large surge of current, called the return stroke, which is occasionally followed by a longer-lasting steady current, called continuing current (CC). In a previous study of negative cloud-to-ground (-CG) flashes, we observed the growth rate of in-cloud positive leaders in an attempt to identify occurrences of CC. However, there was no observed change in positive leader growth rate during CC of negative CG flashes. In this study, we use the Langmuir Electric Field Array, Lightning Mapping Array, and Flash-Continuous Broadband Digital Interferometer data to extend the previous study to the growth of the negative leader during positive CG flashes. We have found that in contrast with previous results, negative leader growth during positive CG flashes does show increases in growth rates coincident with CC. Finally, we find that the growth rate magnitudes for positive and negative leaders are typically ˜2-4 km/10 ms and ˜25-40 km/10 ms, respectively. These contrasting results highlight the differences between positive and negative leaders and provide strong evidence as to why -CC and +CC behave differently. Negative leaders inject higher amounts of current and allow the channel to remain conductive throughout the duration of CC. Whereas for positive leaders, the channel becomes nonconductive relatively quickly. It is therefore disconnected from the channel to the ground, and, due to the positive leader's continued growth, an electric potential is built up until a K event is produced that re-ionizes the channel.
Prevalence and factors associated with depressive symptoms in Malay women.
Din, Meriam Omar; Noor, Noraini M
2009-12-01
Due to a dearth of research on depressive symptoms in Malaysia, particularly in Malay women, a community study was conducted to examine the prevalence and factors associated with current depressive symptoms in rural and urban Malay women with low socioeconomic status. Four hundred eighty-seven women (N rural = 242, N urban = 245) were interviewed. Information on socio-demographic variables, potential risk factors (family history of mental health problems, lifetime major depressive symptoms, and current life stressors), and current depressive symptoms (measured by the Centre for Epidemiologic Studies Depression Scale, CES-D) was collected. The prevalence of current depressive symptoms (CES-D scores > or = 16) reported was 34.5%, while the prevalence of lifetime major depressive symptoms was 27.5%. A significantly higher rate of current depressive symptoms was observed in urban women compared to rural women, chi(2) (1, N = 487) = 3.99, p < .05. However, no significant difference was found in the two groups of women in the prevalence of lifetime major depressive symptoms. The results of the multiple hierarchical regression analysis indicated that three potential factors (family history of mental health problems, lifetime major depressive symptoms, and current life stressors) were positively associated with current depressive symptoms, accounting for 17.8% of the variance, over and above the socio-demographic variables. The prevalence of depressive symptoms reported in the study was comparable to past studies. Among the factors associated with current depressive symptoms, the single most important was lifetime major depressive symptoms, followed by current life stressors, and family history of mental health problems. Among the socio-demographic variables used, perceived health status was the most important. The factors associated with depressive symptoms found in this study are consistent with past findings in the West, implying the universality of the phenomenon and common factors related to depressive symptoms in women.
NASA Astrophysics Data System (ADS)
Kurt, Huseyin
2005-08-01
We present two CPP-MR studies of spin-valves based upon ferromagnetic/nonmagnetic/ferromagnetic (F/N/F) trilayers. We measure the spin-diffusion lengths of N = Pd, Pt, and Au at 4.2K, and both the specific resistances (sample area A times resistance R) and spin-memory-loss of N/Cu interfaces. Pd, Pt and Au are of special device interest because they give perpendicular anisotropy when sandwiching very thin Co layers. Comparing our spin-memory-loss data at Pd/Cu and Pt/Cu interfaces with older data for Nb/Cu and W/Cu gives insight into the importance of spin-orbit coupling in producing such loss. We reproduce and extend prior studies by Eid of 'magnetic activity' at the interface of Co and N-metals (or combinations of N-metals), when the other side of the N-metal contacts a superconductor (S). Our data suggest that magnetic activity may require strong spin-flipping at the N/S interface. We present five studies of a new phenomenon, CIMS, in F1/N/F2 trilayers, with F1 a thick 'polarizing' layer and F2 a thin 'switching' layer. In all prior studies of CIMS, positive current caused the magnetization of F2 to switch from parallel (P) to anti-parallel (AP) to that of F1- 'normal' switching. By judicious addition of impurities to F-metals, we are able to controllably produce both 'normal' and 'inverse' switching- where positive current switches the magnetization of F2 from AP to P to that of F1. In the samples studied, whether the switching is normal or inverse is set by the 'net polarization' produced by F1 and is independent of the properties of F2. As scattering in the bulk of F1 and F2 is essential to producing our results, these results cannot be described by ballistic models, which allow scattering only at interfaces. Most CIMS experiments use Cu as the N-layer due to its low resistivity and long spin-diffusion length. We show that Ag and Au have low enough resistivities and long enough spin-diffusion lengths to be useful alternatives to Cu for some devices. While most technical applications of CIMS require low switching currents, some, like read-heads, require high switching currents. We show that use of a synthetic antiferromagnet can increase the switching current. Manschot et al. recently predicted that the positive critical current for switching from P to AP could be reduced by up to a factor of five by using asymmetric current leads. In magnetically uncoupled samples, we find that highly asymmetric current leads do not significantly reduce the switching current. A CIMS equation given by Katine et al. predicts that lowering the demagnetization field should reduce the switching current. To test this prediction, we compare switching currents for Co/Au/Co(t)/Au nanopillars with t = 1 to 4 nm (where the easy axis should be normal to the layer planes at least for t = 1 and 2 nm) with those for Co/Cu/Co(t)/Au nanopillars (where the easy axis should be in the layer planes). We do not find significant differences in switching currents for the two systems.
Performances and first science results with the VEGA/CHARA visible instrument
NASA Astrophysics Data System (ADS)
Mourard, D.; Tallon, M.; Bério, Ph.; Bonneau, D.; Chesneau, O.; Clausse, J. M.; Delaa, O.; Nardetto, N.; Perraut, K.; Spang, A.; Stee, Ph.; Tallon-Bosc, I.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.
2010-07-01
This paper presents the current status of the VEGA (Visible spEctroGraph and polArimeter) instrument installed at the coherent focus of the CHARA Array, Mount Wilson CA. Installed in september 2007, the first science programs have started during summer 2008 and first science results are now published. Dedicated to high angular (0.3mas) and high spectral (R=30000) astrophysical studies, VEGA main objectives are the study of circumstellar environments of hot active stars or interactive binary systems and a large palette of new programs dedicated to fundamental stellar parameters. We will present successively the main characteristics of the instrument and its current performances in the CHARA environment, a short summary of two science programs and finally we will develop some studies showing the potential and difficulties of the 3 telescopes mode of VEGA/CHARA.