Sample records for current surface water

  1. Corrosive microenvironments at lead solder surfaces arising from galvanic corrosion with copper pipe.

    PubMed

    Nguyen, Caroline K; Stone, Kendall R; Dudi, Abhijeet; Edwards, Marc A

    2010-09-15

    As stagnant water contacts copper pipe and lead solder (simulated soldered joints), a corrosion cell is formed between the metals in solder (Pb, Sn) and the copper. If the resulting galvanic current exceeds about 2 μA/cm(2), a highly corrosive microenvironment can form at the solder surface, with pH < 2.5 and chloride concentrations at least 11 times higher than bulk water levels. Waters with relatively high chloride tend to sustain high galvanic currents, preventing passivation of the solder surface, and contributing to lead contamination of potable water supplies. The total mass of lead corroded was consistent with predictions based on the galvanic current, and lead leaching to water was correlated with galvanic current. If the concentration of sulfate in the water increased relative to chloride, galvanic currents and associated lead contamination could be greatly reduced, and solder surfaces were readily passivated.

  2. Observations of currents and density structure across a buoyant plume front

    USGS Publications Warehouse

    Gelfenbaum, G.; Stumpf, R.P.

    1993-01-01

    Observations of the Mobile Bay, Alabama, plume during a flood event in April 1991 reveal significant differences in the current field on either side of a front associated with the buoyant plume. During a strong southeasterly wind, turbid, low salinity water from Mobile Bay was pushed through an opening in the west side of the ebb-tidal delta and moved parallel to the coast. A stable front developed between the low salinity water of the buoyant plume (11‰) and the high salinity coastal water (>23‰) that was being forced landward by the prevailing winds. Despite the shallow water depth of 6 m, measurements of currents, temperature, and salinity show large shears and density gradients in both the vertical and the horizontal directions. At a station outside of the buoyant plume, currents at 0.5 m and 1.5 m below the surface were in the same direction as the wind. Inside the plume, however, currents at 0.5 m below the surface were parallel to the coast, 45°, off the direction of the wind and the magnitude was 45% larger than the magnitude of the surface currents outside the plume. Beneath the level of the plume, the currents were identical to the wind-driven currents in the ambient water south of the front. Our observations suggest that the wind-driven surface currents of the ambient water converged with the buoyant plume at the front and were subducted beneath the plume. The motion of the ambient coastal surface water was in the direction of the local wind stress, however, the motion of the plume had no northerly component of motion. The plume also did not show any flow toward the front, suggesting a balance between the northerly component of wind stress and the southerly component of buoyant spreading. In addition, the motion of the plume did not appear to affect the motion of the underlying ambient water, suggesting a lack of mixing between the two waters.

  3. Migration area of the Tsushima Warm Current Branches within the Sea of Japan: Implications from transport of 228Ra

    NASA Astrophysics Data System (ADS)

    Inoue, M.; Shirotani, Y.; Furusawa, Y.; Fujimoto, K.; Kofuji, H.; Yoshida, K.; Nagao, S.; Yamamoto, M.; Hamajima, Y.; Honda, N.; Morimoto, A.; Takikawa, T.; Shiomoto, A.; Isoda, Y.; Minakawa, M.

    2017-07-01

    We investigated lateral profiles of 228Ra (half-life; 5.75 years) activity and 228Ra/226Ra (1600 years) activity ratio using 241 surface water samples collected in/around the Sea of Japan and the East China Sea (ECS) during June-October of 2009-2014. In the ECS, the 228Ra/226Ra ratio in the surface waters exhibited markedly wide variation (<0.05-3.5) in June, predominantly reflecting the mixing between the 228Ra-rich continental shelf water and the 228Ra-depleted Kuroshio Current water. In July, the surface waters of the central Sea of Japan (135-138°E) became separated into three currents: the Offshore Branch of the Tsushima Warm Current (OBTWC) (228Ra/226Ra =0.7-1.2) at 39-41°N, the Coastal Branch of the TWC (CBTWC) ( 0.7) on the southern side, and sub-Arctic Current ( 0.7) on the northern side. From the central to northeastern Sea of Japan, the 228Ra/226Ra ratio at the surface (0.8-1.0) was within a range between that of the CBTWC and OBTWC. The fraction of continental shelf water in the CBTWC, OBTWC, and in their combined current was estimated to be 11-16%, 8%, and 10-11%, respectively.

  4. Migration of the FDNPP-derived 134Cs and 137Cs along with 226Ra and 228Ra concentrations across the northwestern North Pacific Ocean.

    PubMed

    Inoue, M; Shirotani, Y; Nagao, S; Kofuji, H; Volkov, Y N; Nishioka, J

    2016-10-01

    We examined lateral distributions of 134 Cs, 137 Cs, 226 Ra, and 228 Ra in the surface seawaters around the Kuril Islands and the Kamchatka Peninsula in the northwestern North Pacific Ocean during June 2014. The sampling area included three water current areas, the Oyashio Current, the current from the Okhotsk Sea, and the coastal current along the east Kamchatka Peninsula. 226 Ra and 228 Ra distributions differed along the three currents. Low levels of 134 Cs were detected in the surface waters of the Oyashio Current (0.09-0.35 mBq/L), but it was <∼0.1 mBq/L at the surface along the other two currents. This indicates that the distribution of Fukushima Dai-ichi Nuclear Power Plant (FDNPP)-derived radiocesium in surface waters off the Kamchatka and along the Kuril Islands is predominantly governed by the Oyashio current system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. River Discharge and Bathymetry Estimation from Hydraulic Inversion of Surface Currents and Water Surface Elevation Observations

    NASA Astrophysics Data System (ADS)

    Simeonov, J.; Holland, K. T.

    2015-12-01

    We developed an inversion model for river bathymetry and discharge estimation based on measurements of surface currents, water surface elevation and shoreline coordinates. The model uses a simplification of the 2D depth-averaged steady shallow water equations based on a streamline following system of coordinates and assumes spatially uniform bed friction coefficient and eddy viscosity. The spatial resolution of the predicted bathymetry is related to the resolution of the surface currents measurements. The discharge is determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. The inversion model was tested using in situ and remote sensing measurements of the Kootenai River east of Bonners Ferry, ID. The measurements were obtained in August 2010 when the discharge was about 223 m3/s and the maximum river depth was about 6.5 m. Surface currents covering a 10 km reach with 8 m spatial resolution were estimated from airborne infrared video and were converted to depth-averaged currents using acoustic Doppler current profiler (ADCP) measurements along eight cross-stream transects. The streamwise profile of the water surface elevation was measured using real-time kinematic GPS from a drifting platform. The value of the friction coefficient was obtained from forward calibration simulations that minimized the difference between the predicted and measured velocity and water level along the river thalweg. The predicted along/cross-channel water depth variation was compared to the depth measured with a multibeam echo sounder. The rms error between the measured and predicted depth along the thalweg was found to be about 60cm and the estimated discharge was 5% smaller than the discharge measured by the ADCP.

  6. Environmental Report on the Northwest Pacific for the Marine Seismic System (MSS)

    DTIC Science & Technology

    1980-12-01

    Kuroshio Cur rent is I oca t ed. F. Surface Currents Surface current circulation in the Northwest Pacific consists of the eastward-flowing warm water...overlying surface waters back to early late Miocene time. Prior to this, and through the Oligocene , the seamount was buried beneath a nearly equally

  7. Assessing metaldehyde concentrations in surface water catchments and implications for drinking water abstraction

    NASA Astrophysics Data System (ADS)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; Cherry, Katherine

    2015-04-01

    Metaldehyde is an active ingredient in agricultural pesticides such as slug pellets, which are heavily applied to UK farmland during the autumn application season. There is current concern that existing drinking water treatment processes may be inadequate in reducing potentially high levels of metaldehyde in surface waters to below the UK drinking water quality regulation limit of 0.1 µg/l. In addition, current water quality monitoring methods can miss short term fluctuations in metaldehyde concentration caused by rainfall driven runoff, hampering prediction of the potential risk of exposure. Datasets describing levels, fate and transport of metaldehyde in river catchments are currently very scarce. This work presents results from an ongoing study to quantify the presence of metaldehyde in surface waters within a UK catchment used for drinking water abstraction. High resolution water quality data from auto-samplers installed in rivers are coupled with radar rainfall, catchment characteristics and land use data to i) understand which hydro-meteorological characteristics of the catchment trigger the peak migration of metaldehyde to surface waters; ii) assess the relationship between measured metaldehyde levels and catchment characteristics such as land use, topographic index, proximity to water bodies and runoff generation area; iii) describe the current risks to drinking water supply and discuss mitigation options based on modelling and real-time control of water abstraction. Identifying the correlation between catchment attributes and metaldehyde generation will help in the development of effective catchment management strategies, which can help to significantly reduce the amount of metaldehyde finding its way into river water. Furthermore, the effectiveness of current water quality monitoring strategy in accurately quantifying the generation of metaldehyde from the catchment and its ability to benefit the development of effective catchment management practices has also been investigated.

  8. Reimagining cost recovery in Pakistan's irrigation system through willingness-to-pay estimates for irrigation water from a discrete choice experiment

    NASA Astrophysics Data System (ADS)

    Bell, Andrew Reid; Shah, M. Azeem Ali; Ward, Patrick S.

    2014-08-01

    It is widely argued that farmers are unwilling to pay adequate fees for surface water irrigation to recover the costs associated with maintenance and improvement of delivery systems. In this paper, we use a discrete choice experiment to study farmer preferences for irrigation characteristics along two branch canals in Punjab Province in eastern Pakistan. We find that farmers are generally willing to pay well in excess of current surface water irrigation costs for increased surface water reliability and that the amount that farmers are willing to pay is an increasing function of their existing surface water supply as well as location along the main canal branch. This explicit translation of implicit willingness-to-pay (WTP) for water (via expenditure on groundwater pumping) to WTP for reliable surface water demonstrates the potential for greatly enhanced cost recovery in the Indus Basin Irrigation System via appropriate setting of water user fees, driven by the higher WTP of those currently receiving reliable supplies.

  9. Reimagining cost recovery in Pakistan's irrigation system through willingness-to-pay estimates for irrigation water from a discrete choice experiment

    PubMed Central

    Bell, Andrew Reid; Shah, M Azeem Ali; Ward, Patrick S

    2014-01-01

    It is widely argued that farmers are unwilling to pay adequate fees for surface water irrigation to recover the costs associated with maintenance and improvement of delivery systems. In this paper, we use a discrete choice experiment to study farmer preferences for irrigation characteristics along two branch canals in Punjab Province in eastern Pakistan. We find that farmers are generally willing to pay well in excess of current surface water irrigation costs for increased surface water reliability and that the amount that farmers are willing to pay is an increasing function of their existing surface water supply as well as location along the main canal branch. This explicit translation of implicit willingness-to-pay (WTP) for water (via expenditure on groundwater pumping) to WTP for reliable surface water demonstrates the potential for greatly enhanced cost recovery in the Indus Basin Irrigation System via appropriate setting of water user fees, driven by the higher WTP of those currently receiving reliable supplies. PMID:25552779

  10. Principal sources and dispersal patterns of suspended particulate matter in nearshore surface waters of the northeast Pacific Ocean and the Hawaiian Islands

    NASA Technical Reports Server (NTRS)

    Carlson, P. R. (Principal Investigator); Conomos, T. J.; Janda, R. J.; Peterson, D. H.

    1973-01-01

    The author has identified the following significant results. ERTS-1 multispectral scanner imagery of the nearshore surface waters of the Northeast Pacific Ocean is proving to be a useful tool for determining source and dispersal of suspended particulate matter. The principal sources of the turbid water, seen best on the green and red bands, are river and stream effluents and actively eroding coastlines; secondary sources are waste effluents and production of planktonic organisms, but these may sometimes be masked by the very turbid plumes of suspended sediment being discharged into the nearshore zone during times of high river discharge. The configuration and distribution of the plumes of turbid water also can be used to infer near-surface current directions. Comparison of imagery of the nearshore water off the northern California coast from October 1972 and January 1973 shows a reversal of the near-surface currents, from predominantly south-setting in the fall (California Current) to north-setting in the winter (Davidson Current).

  11. Laboratory-based geoelectric monitoring of water infiltration in consolidated ground

    NASA Astrophysics Data System (ADS)

    Yang, Lining; Sun, Qiang; Yang, Haiping

    2018-04-01

    Infiltration usually plays a significant role in construction failures and transfer of contaminants. Therefore, it is very important to monitor underground water migration. In this study, a soil infiltration experiment was carried out using an indoor model test. The water infiltration characteristics were recorded and analyzed based on the response of the geoelectric field, including the primary field potential, self-potential, excitation current and apparent resistivity. The phreatic water surface and the infiltration velocity were determined. The inversion results were compared with direct observations. The results showed that the changes in the geoelectric field parameters explain the principles of groundwater flow. The infiltration velocity and the phreatic surface can be determined based on the primary field potential response and the excitation current. When the phreatic surface reached the location of the electrodes, the primary field potential and self-potential decreased rapidly whereas the excitation current increased rapidly. The height of the phreatic surface and the infiltration time exhibited a linear relationship for both the observation data and the calculations of the excitation current. The apparent resistivity described the infiltration status in the soil and tracked the phreatic surface accurately.

  12. Potential Chemical Effects of Changes in the Source of Water Supply for the Albuquerque Bernalillo County Water Utility Authority

    USGS Publications Warehouse

    Bexfield, Laura M.; Anderholm, Scott K.

    2008-01-01

    Chemical modeling was used by the U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority (henceforth, Authority), to gain insight into the potential chemical effects that could occur in the Authority's water distribution system as a result of changing the source of water used for municipal and industrial supply from ground water to surface water, or to some mixture of the two sources. From historical data, representative samples of ground-water and surface-water chemistry were selected for modeling under a range of environmental conditions anticipated to be present in the distribution system. Mineral phases calculated to have the potential to precipitate from ground water were compared with the compositions of precipitate samples collected from the current water distribution system and with mineral phases calculated to have the potential to precipitate from surface water and ground-water/surface-water mixtures. Several minerals that were calculated to have the potential to precipitate from ground water in the current distribution system were identified in precipitate samples from pipes, reservoirs, and water heaters. These minerals were the calcium carbonates aragonite and calcite, and the iron oxides/hydroxides goethite, hematite, and lepidocrocite. Several other minerals that were indicated by modeling to have the potential to precipitate were not found in precipitate samples. For most of these minerals, either the kinetics of formation were known to be unfavorable under conditions present in the distribution system or the minerals typically are not formed through direct precipitation from aqueous solutions. The minerals with potential to precipitate as simulated for surface-water samples and ground-water/surface-water mixtures were quite similar to the minerals with potential to precipitate from ground-water samples. Based on the modeling results along with kinetic considerations, minerals that appear most likely to either dissolve or newly precipitate when surface water or ground-water/surface-water mixtures are delivered through the Authority's current distribution system are carbonates (particularly aragonite and calcite). Other types of minerals having the potential to dissolve or newly precipitate under conditions present throughout most of the distribution system include a form of silica, an aluminum hyroxide (gibbsite or diaspore), or the Fe-containing mineral Fe3(OH)8. Dissolution of most of these minerals (except perhaps the Fe-containing minerals) is not likely to substantially affect trace-element concentrations or aesthetic characteristics of delivered water, except perhaps hardness. Precipitation of these minerals would probably be of concern only if the quantities of material involved were large enough to clog pipes or fixtures. The mineral Fe3(OH)8 was not found in the current distribution system. Some Fe-containing minerals that were identified in the distribution system were associated with relatively high contents of selected elements, including As, Cr, Cu, Mn, Pb, and Zn. However, these Fe-containing minerals were not identified as minerals likely to dissolve when the source of water was changed from ground water to surface water or a ground-water/surface-water mixture. Based on the modeled potential for calcite precipitation and additional calculations of corrosion indices ground water, surface water, and ground-water/surface-water mixtures are not likely to differ greatly in corrosion potential. In particular, surface water and ground-water/surface-water mixtures do not appear likely to dissolve large quantities of existing calcite and expose metal surfaces in the distribution system to substantially increased corrosion. Instead, modeling calculations indicate that somewhat larger masses of material would tend to precipitate from surface water or ground-water/surface-water mixtures compared to ground water alone.

  13. Evaluation of flood inundation in Crystal Springs Creek, Portland, Oregon

    USGS Publications Warehouse

    Stonewall, Adam; Hess, Glen

    2016-05-25

    Efforts to improve fish passage have resulted in the replacement of six culverts in Crystal Springs Creek in Portland, Oregon. Two more culverts are scheduled to be replaced at Glenwood Street and Bybee Boulevard (Glenwood/Bybee project) in 2016. Recently acquired data have allowed for a more comprehensive understanding of the hydrology of the creek and the topography of the watershed. To evaluate the impact of the culvert replacements and recent hydrologic data, a Hydrologic Engineering Center-River Analysis System hydraulic model was developed to estimate water-surface elevations during high-flow events. Longitudinal surface-water profiles were modeled to evaluate current conditions and future conditions using the design plans for the culverts to be installed in 2016. Additional profiles were created to compare with the results from the most recent flood model approved by the Federal Emergency Management Agency for Crystal Springs Creek and to evaluate model sensitivity.Model simulation results show that water-surface elevations during high-flow events will be lower than estimates from previous models, primarily due to lower estimates of streamflow associated with the 0.01 and 0.002 annual exceedance probability (AEP) events. Additionally, recent culvert replacements have resulted in less ponding behind crossings. Similarly, model simulation results show that the proposed replacement culverts at Glenwood Street and Bybee Boulevard will result in lower water-surface elevations during high-flow events upstream of the proposed project. Wider culverts will allow more water to pass through crossings, resulting in slightly higher water-surface elevations downstream of the project during high-flows than water-surface elevations that would occur under current conditions. For the 0.01 AEP event, the water-surface elevations downstream of the Glenwood/Bybee project will be an average of 0.05 ft and a maximum of 0.07 ft higher than current conditions. Similarly, for the 0.002 AEP event, the water-surface elevations will be an average of 0.04 ft and a maximum of 0.19 ft higher than current conditions.

  14. Fronts and Thermohaline Structure of the Brazil Current Confluence System

    NASA Astrophysics Data System (ADS)

    Severov, Dimitri

    and Thermohaline Structure of the Brazil Current Confluence System (BCCS) are stud-ied from climatic data, "Marathon Exp. Leg.8, 1984"data, and two Sea surface temperature (SST) data bases: "Meteor satellite"(1989-1994) and "ds277-Reynolds" (1981-2000).The South Atlantic Central Water (SACW) is divided in two main types: tropical (TW) and subtropical water (ST). Water masses, fronts, inter-frontal and frontal zones are analysed and classified: a) the water masses: Tropical Low-Salinity Water, Tropical Surface Water, Tropical Tropospheric Water, Subtropical Low-Salinity Water, Subtropical Surface Water, Subtropical Tropospheric Water. T,S characteristics of intermediate, deep and bottom water defined by different authors are confirmed and completed; b) the Inter-frontal Zones: Tropical/Brazil Current Zone, Sub-tropical Zone and Subantarctic Zone; c) the Frontal Zones: Subtropical, Subantarctic and Polar, and d) the Fronts: Subtropical Front of the Brazil Current, Principal Subtropical Front, North Subtropical Front, Subtropical Surface Front, South Subtropical Front, Subantarctic Surface Front, Subantarctic Front and Polar Front. Several stable T-S relationships are found below the friction layer and at the Fronts. The maximum gradient of the oceanographic characteris-tics occurs at the Brazil Current Front, which can be any of the subtropical fronts, depending on season. Minimum mean depth of the pycnocline coincides with the fronts of the BCCS, indicating the paths of low-salinity shelf waters into the open ocean. D. N. Severov (a) , V. Pshennikov (b) and A.V. Remeslo (c) a -Sección Oceanologé Facultad de Ciencia, Universidad de la Republica, Igué 4225, 11400 ıa, a Montevideo, Uruguay. Tel. (598-2) 525-8618, Fax (598-2) 525-8617, mail: dima@fcien.edu.uy b -Instituto de Física, Facultad de Ciencias, Universidad de la Republica, Igué 4225, 11400 Mon-a tevideo, Uruguay, mail: seva@fisica.edu.uy c -Atlantic Research Inst. For Fisheries Oceanology (Atlant/NIRO), Kaliningrad, Russia

  15. A numerical study on the effects of wave-current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989

    NASA Astrophysics Data System (ADS)

    Liu, Huiqing; Xie, Lian

    2009-06-01

    The effects of wave-current interactions on ocean surface waves induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal waters are examined by using a three-dimensional (3D) wave-current coupled modeling system. The 3D storm surge modeling component of the coupled system is based on the Princeton Ocean Model (POM), the wave modeling component is based on the third generation wave model, Simulating WAves Nearshore (SWAN), and the inundation model is adopted from [Xie, L., Pietrafesa, L. J., Peng, M., 2004. Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J. Coastal Res., 20, 1209-1223]. The results indicate that the change of water level associated with the storm surge is the primary cause for wave height changes due to wave-surge interaction. Meanwhile, waves propagating on top of surge cause a feedback effect on the surge height by modulating the surface wind stress and bottom stress. This effect is significant in shallow coastal waters, but relatively small in offshore deep waters. The influence of wave-current interaction on wave propagation is relatively insignificant, since waves generally propagate in the direction of the surface currents driven by winds. Wave-current interactions also affect the surface waves as a result of inundation and drying induced by the storm. Waves break as waters retreat in regions of drying, whereas waves are generated in flooded regions where no waves would have occurred without the flood water.

  16. Aqueous processing of composite lithium ion electrode material

    DOEpatents

    Li, Jianlin; Armstrong, Beth L.; Daniel, Claus; Wood, III, David L.

    2017-06-20

    A method of making a battery electrode includes the steps of dispersing an active electrode material and a conductive additive in water with at least one dispersant to create a mixed dispersion; treating a surface of a current collector to raise the surface energy of the surface to at least the surface tension of the mixed dispersion; depositing the dispersed active electrode material and conductive additive on a current collector; and heating the coated surface to remove water from the coating.

  17. Aqueous processing of composite lithium ion electrode material

    DOEpatents

    Li, Jianlin; Armstrong, Beth L; Daniel, Claus; Wood, III, David L

    2015-02-17

    A method of making a battery electrode includes the steps of dispersing an active electrode material and a conductive additive in water with at least one dispersant to create a mixed dispersion; treating a surface of a current collector to raise the surface energy of the surface to at least the surface tension of the mixed dispersion; depositing the dispersed active electrode material and conductive additive on a current collector; and heating the coated surface to remove water from the coating.

  18. South Atlantic circulation in a world ocean model

    NASA Astrophysics Data System (ADS)

    England, Matthew H.; Garçon, Véronique C.

    1994-09-01

    The circulation in the South Atlantic Ocean has been simulated within a global ocean general circulation model. Preliminary analysis of the modelled ocean circulation in the region indicates a rather close agreement of the simulated upper ocean flows with conventional notions of the large-scale geostrophic currents in the region. The modelled South Atlantic Ocean witnesses the return flow and export of North Atlantic Deep Water (NADW) at its northern boundary, the inflow of a rather barotropic Antarctic Circumpolar Current (ACC) through the Drake Passage, and the inflow of warm saline Agulhas water around the Cape of Good Hope. The Agulhas leakage amounts to 8.7 Sv, within recent estimates of the mass transport shed westward at the Agulhas retroflection. Topographic steering of the ACC dominates the structure of flow in the circumpolar ocean. The Benguela Current is seen to be fed by a mixture of saline Indian Ocean water (originating from the Agulhas Current) and fresher Subantarctic surface water (originating in the ACC). The Benguela Current is seen to modify its flow and fate with depth; near the surface it flows north-westwards bifurcating most of its transport northward into the North Atlantic Ocean (for ultimate replacement of North Atlantic surface waters lost to the NADW conveyor). Deeper in the water column, more of the Benguela Current is destined to return with the Brazil Current, though northward flows are still generated where the Benguela Current extension encounters the coast of South America. At intermediate levels, these northward currents trace the flow of Antarctic Intermediate Water (AAIW) equatorward, though even more AAIW is seen to recirculate poleward in the subtropical gyre. In spite of the model's rather coarse resolution, some subtle features of the Brazil-Malvinas Confluence are simulated rather well, including the latitude at which the two currents meet. Conceptual diagrams of the recirculation and interocean exchange of thermocline, intermediate and deep waters are constructed from an analysis of flows bound between isothermal and isobaric surfaces. This analysis shows how the return path of NADW is partitioned between a cold water route through the Drake Passage (6.5 Sv), a warm water route involving the Agulhas Current sheeding thermocline water westward (2.5 Sv), and a recirculation of intermediate water originating in the Indian Ocean (1.6 Sv).

  19. ARSENIC SORUCE IDENTIFICATION AT THE GROUND WATER-SURFACE WATER INTERACTION ZONE AT A CONTAMINATED SITE

    EPA Science Inventory

    One of the challenges in assessing the current impact of the discharge of arsenic contaminated ground water into a surface water body is differentiating the arsenic ground-water flux versus dissolution of in-place contaminated sediments. A field investigation has been carried ou...

  20. Salinity minima, water masses and surface circulation in the Eastern Tropical Pacific off Mexico and surrounding areas

    NASA Astrophysics Data System (ADS)

    Portela, Esther; Beier, Emilio; Godínez, Victor; Castro, Rubén; Desmond Barton, Eric

    2016-04-01

    The seasonal variations of the water masses and their interactions are analyzed in the Tropical Pacific off Mexico (TPOM) and four contiguous areas of on the basis of new extensive hydrographic database. The regional water masses intervals are redefined in terms of Absolute Salinity (SA) in g kg-1 and Conservative Temperature (Θ) according to TEOS - 10. The California Current System Water (CCSW) mass is introduced as an improved description of the former California Current Water (CCW) together with the Subarctic Water (SAW) to describe better the characteristics of the components of the California Current System. Hydrographic data, Precipitation-Evaporation balance and geostrophic currents were used to investigate the origin and seasonality of two salinity minima in the area. The shallow salinity minimum of around 33.5 g kg-1 originated in the California Current System and became saltier but less dense water as it traveled to the southeast. It can be identified as a mixture of CCSW and tropical waters. The surface salinity minimum of 32 - 33 g kg-1 was seen as a sharp surface feature in the TPOM from August to November. It was produced by the arrival of tropical waters from the south in combination with the net precipitation in the area during these months. This result provides new evidence of the presence of the poleward-flowing Mexican Coastal Current and, for the first time, of its seasonal pattern of variation.

  1. Sectoral contributions to surface water stress in the coterminous United States

    NASA Astrophysics Data System (ADS)

    Averyt, K.; Meldrum, J.; Caldwell, P.; Sun, G.; McNulty, S.; Huber-Lee, A.; Madden, N.

    2013-09-01

    Here, we assess current stress in the freshwater system based on the best available data in order to understand possible risks and vulnerabilities to regional water resources and the sectors dependent on freshwater. We present watershed-scale measures of surface water supply stress for the coterminous United States (US) using the water supply stress index (WaSSI) model which considers regional trends in both water supply and demand. A snapshot of contemporary annual water demand is compared against different water supply regimes, including current average supplies, current extreme-year supplies, and projected future average surface water flows under a changing climate. In addition, we investigate the contributions of different water demand sectors to current water stress. On average, water supplies are stressed, meaning that demands for water outstrip natural supplies in over 9% of the 2103 watersheds examined. These watersheds rely on reservoir storage, conveyance systems, and groundwater to meet current water demands. Overall, agriculture is the major demand-side driver of water stress in the US, whereas municipal stress is isolated to southern California. Water stress introduced by cooling water demands for power plants is punctuated across the US, indicating that a single power plant has the potential to stress water supplies at the watershed scale. On the supply side, watersheds in the western US are particularly sensitive to low flow events and projected long-term shifts in flow driven by climate change. The WaSSI results imply that not only are water resources in the southwest in particular at risk, but that there are also potential vulnerabilities to specific sectors, even in the ‘water-rich’ southeast.

  2. Water Resources Data for Illinois - Water Year 2005 (Includes Historical Data)

    USGS Publications Warehouse

    LaTour, J.K.; Weldon, E.A.; Dupre, D.H.; Halfar, T.M.

    2006-01-01

    This annual Water-Data Report for Illinois contains current water year (Oct. 1, 2004, to Sept. 30, 2005) and historical data of discharge, stage, water quality and biology of streams; stage of lakes and reservoirs; levels and quality of ground water; and records of precipitation, air temperature, dew point, solar radiation, and wind speed. The current year's (2005) data provided in this report include (1) discharge for 182 surface-water gaging stations and for 9 crest-stage partial-record stations; (2) stage for 33 surface-water gaging stations; (3) water-quality records for 10 surface-water stations; (4) sediment-discharge records for 14 surface-water stations; (5) water-level records for 98 ground-water wells; (6) water-quality records for 17 ground-water wells; (7) precipitation records for 48 rain gages; (8) records of air temperature, dew point, solar radiation and wind speed for 1 meteorological station; and (9) biological records for 6 sample sites. Also included are miscellaneous data collected at various sites not in the systematic data-collection network. Data were collected and compiled as a part of the National Water Information System (NWIS) maintained by the U.S. Geological Survey in cooperation with Federal, State, and local agencies.

  3. Tidally-driven Surface Flow in a Georgia Estuarine Saltmarsh

    NASA Astrophysics Data System (ADS)

    Young, D.; Bruder, B. L.; Haas, K. A.; Webster, D. R.

    2016-02-01

    Estuarine saltmarshes are diverse, valuable, and productive ecosystems. Vegetation dampens wave and current energy, thereby allowing the estuaries to serve as a nursery habitat for shellfish and fish species. Tidally-driven flow transports nutrients into and out of the estuary, nourishing inshore and offshore vegetation and animals. The effects of vegetation on the marsh hydrodynamics and on the estuary creek and channel flow are, unfortunately, poorly understood, and the knowledge that does exist primarily originates from modeling studies. Field studies addressing marsh surface flows are limited due to the difficulty of accurately measuring the water surface elevation and acquiring concurrent velocity measurements in the dense marsh vegetation. This study partially bridges the gap between the model observations of marsh flow driven by water surface elevation gradients and flume studies of flow through vegetation. Three current meters and three pressure transducers were deployed for three days along a transect perpendicular to the main channel (Little Ogeechee River) in a saltmarsh adjacent to Rose Dhu Island (Savannah, Georgia, USA). The pressure transducer locations were surveyed daily with static GPS yielding highly accurate water surface elevation data. During flood and ebb tide, water surface elevation differences between the marsh and Little Ogeechee River were observed up to 15 cm and pressure gradients were observed up to 0.0017 m of water surface elevation drop per m of linear distance. The resulting channel-to-saltmarsh pressure gradients substantially affected tidal currents at all current meters. At one current meter, the velocity was nearly perpendicular to the Little Ogeechee River bank. The velocity at this location was effectively modeled as a balance between the pressure gradient and marsh vegetation-induced drag force using the Darcy-Weisbach/Lindner's equations developed for flow-through-vegetation analysis in open channel flow.

  4. Simultaneous measurement of displacement current and absorption spectra of Langmuir film

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobin; Kubota, Tohru; Iwamoto, Mitsumasa

    1995-07-01

    A Maxwell-displacement-current measuring system coupled with the system used for the measurement of absorption spectra of monolayers on a water surface has been developed. Using this system, the displacement current and the absorbance across monolayers of squarylium dye at the air/water surface were detected. It was found that the change in J aggregate in the monolayers with monolayer compression was detectable using the system.

  5. Estimation of real-time N load in surface water using dynamic data driven application system

    Treesearch

    Y. Ouyang; S.M. Luo; L.H. Cui; Q. Wang; J.E. Zhang

    2011-01-01

    Agricultural, industrial, and urban activities are the major sources for eutrophication of surface water ecosystems. Currently, determination of nutrients in surface water is primarily accomplished by manually collecting samples for laboratory analysis, which requires at least 24 h. In other words, little to no effort has been devoted to monitoring real-time variations...

  6. Feasibility Study of Contamination Remediation at Naval Weapons Station, Concord, California. Volume 1. Remedial Action Alternatives.

    DTIC Science & Technology

    1988-09-01

    laboratory contaminants. The surface water sampling program was augmented by clam bioaccumulation 0 studies. In these studies, clams were placed in...water and clam bioaccumulation data indicate that several of the metals found in the contaminated surface soils are also ele- vated in the surface...waters and are potentially bioavailable to aquatic organ- isms and may currently impair water quality in these areas. However, clam bioaccumulation data

  7. DEVELOPMENT OF A CT EQUATION TAKING INTO CONSIDERATION THE EFFECT OF LOT VARIABILITY ON THE INACTIVATION OF CRYPTOSPORIDIUM PARVUM OOCYSTS WITH OZONE

    EPA Science Inventory

    Cryptosporidium parvum oocysts are prevalent in surface water and ground water under the influence of surface water, and are difficult to inactivate using free chlorine, the most common disinfectant currently used for treating drinking water. In contrast, it has been shown...

  8. USE OF CONTINUOUS DATALOGGERS TO ASSESS THE TEMPORAL AND SPATIAL VARIATION OF GROUND WATER/SURFACE WATER INTERACTION BEFORE AND AFTER STREAM RESTORATION

    EPA Science Inventory

    Minebank Run is a degraded second-order flashy urban stream in Baltimore County which is slated to undergo restoration in August 2003 to re-establish geomorphic stability. We are currently conducting an intensive investigation of surface water/ground water interaction and nutrien...

  9. Lagrangian drifter design for the determination of surface currents by remote sensing. [for pollution trajectory determination in estuaries

    NASA Technical Reports Server (NTRS)

    Gordon, H. H.; Munday, J. C., Jr.

    1977-01-01

    In estuaries, the interaction of wind, tidal current, and mixing of fresh and saline water produces a variable depth profile of current, with foam lines and convergence zones between water types. Careful measurement of surface currents via Lagrangian drifters requires a drifter design appropriate to both the depth of current to be measured and the tide and wind conditions of interest. The use of remote sensing to track drifters contributes additional constraints on drifter design. Several designs of biodegradable drifters which emit uranine dye plumes, resolvable in aerial imagery to 1:60,000 scale, were tested for wind drag in field conditions against data from calibrated current meters. A 20 cm-vaned wooden drifter and a window shade drifter set to 1.5 m depth had negligible wind drag in winds to 8 m/sec. Prediction of oil slick trajectories using surface current data and a wind factor should be approached cautiously, as surface current data may be wind-contaminated, while the usual 3.5% wind factor is appropriate only for currents measured at depth.

  10. Millennial-scale ocean current intensity changes off southernmost Chile and implications for Drake Passage throughflow

    NASA Astrophysics Data System (ADS)

    Lamy, F.; Arz, H. W.; Kilian, R.; Baeza Urrea, O.; Caniupan, M.; Kissel, C.; Lange, C.

    2012-04-01

    The Antarctic Circumpolar Current (ACC) plays an essential role in the thermohaline circulation and global climate. Today a large volume of ACC water passes through the Drake Passage, a major geographic constrain for the circumpolar flow. Satellite tracked surface drifters have shown that Subantarctic Surface water of the ACC is transported northeastward across the Southeast Pacific from ~53°S/100°W towards the Chilean coast at ~40°S/75°W where surface waters bifurcate and flow northward into the Peru Chile Current (PCC) finally reaching the Eastern Tropical Pacific, and southwards into the Cape Horn Current (CHC). The CHC thus transports a significant amount of northern ACC water towards the Drake Passage and reaches surface current velocities of up to 35 cm/s within a narrow belt of ~100-150 km width off the coast. Also at deeper water levels, an accelerated southward flow occurs along the continental slope off southernmost South America that likewise substantially contributes to the Drake Passage throughflow. Here we report on high resolution geochemical and grain-size records from core MD07-3128 (53°S; 1032 m water depth) which has been retrieved from the upper continental slope off the Pacific entrance of the Magellan Strait beneath the CHC. Magnetic grain-sizes and grain-size distributions of the terrigenous fraction reveal large amplitude changes between the Holocene and the last glacial, as well as millennial-scale variability (most pronounced during Marine Isotope Stage). Magnetic grain-sizes, silt/clay ratios, fine sand contents, sortable silt contents, and sortable silt mean grain-sizes are substantially higher during the Holocene suggesting strongly enhanced current activity. The high absolute values imply flow speeds larger than 25 cm/s as currently observed in the CHC surface current. Furthermore, winnowing processes through bottom current activity and changes in the availability of terrigenous material (ice-sheet extension and related supply of silt/clay, efficiency of the fjords in trapping sediment) might have contributed to the observed grain-size variations. Assuming that surface and bottom current strength changes are the major controlling factors, our data suggest a strongly enhanced CHC and deeper flow during the Holocene compared to the mean of the last glacial. During MIS 3, several phases of stronger current flow mostly correlate with warm sea surface temperatures at the site and, within age uncertainties, with millennial-scale warm phases in Antarctic ice cores. Taken together our data can be interpreted in terms of strongly reduced contributions of northern ACC water to the Drake Passage throughflow during the glacial in general and during millennial-scale cold phases in particular. At the same time, advection of northern ACC water into the PCC was probably enhanced. These results are consistent with model runs showing largely reduced volume transport through the Drake Passage during the last glacial maximum and an increasing throughflow during the last deglaciation that might have affected the strengthening of the Atlantic Meridional Overturning Circulation.

  11. Reconstruction of paleoenvironmental changes based on the planktonic foraminiferal assemblages off Shimokita (Japan) in the northwestern North Pacific

    NASA Astrophysics Data System (ADS)

    Kuroyanagi, Azumi; Kawahata, Hodaka; Narita, Hisashi; Ohkushi, Ken'ichi; Aramaki, Takafumi

    2006-08-01

    Planktonic foraminifera live in the upper ocean, and their assemblages can record the surrounding environment. To reconstruct changes in water masses and the timing of flow of the Oyashio and Tsugaru currents through the Tsugaru Strait after the Last Glacial Maximum, when the Japan Sea had been almost isolated from the surrounding seas, we investigated at high resolution the planktonic foraminiferal fauna in seafloor sediments off the Shimokita (core MD01-2409: 41°33.9'N, 141°52.1'E), in the northwestern North Pacific, over the last 26,900 years. Factor analysis of the foraminiferal assemblage suggests that the water mass changed significantly as a result of the deglacial sea-level rise and opening of the straits into the Japan Sea. Mass accumulation rates of some selected foraminiferal species that inhabit characteristic environments (e.g., warm stratified water, Oyashio Current, Tsushima Current) corroborate these changes in water mass and water column structure. We also used the ratio of the dextral form to total Neogloboquadrina pachyderma as an indicator of subsurface (below the pycnocline) water temperature. We recognized five distinct periods of oceanographic change at the study site, which is just east of the Tsugaru Strait: (1) Oyashio Current affecting both surface and subsurface waters (26.9-15.7 thousand calendar years before present (cal. kyr BP)); (2) vertical mixing and subsurface warming as the Oyashio Current began to flow into the Japan Sea through the Tsugaru Strait (15.7-10.6 cal. kyr BP); (3) outflow of the Tsugaru Current from the Japan Sea into the Pacific, leading to baroclinic conditions, with the surface layer under the influence of the Tsugaru and the subsurface layers of the Oyashio Current (10.6-9.0 cal. kyr BP); (4) stratification of the water column developed as the flow of the Tsugaru Current increased (9.0-6.2 cal. kyr BP); and (5) warming of the subsurface layer, disruption of the stratification, and dominance of the Tsugaru Current in both surface and subsurface layers, similar to the present situation (6.2-1.5 cal. kyr BP). The timing of flow of the Oyashio and Tsugaru currents through the strait at the study site off Shimokita is generally compatible with the results of studies in the Japan Sea. The flow of the Tsugaru Current led to progressive warming of the waters, from the surface to the subsurface layers and from the Japan Sea side to the Pacific side of the Tsugaru Strait, beginning in 8.3-6.8 cal. kyr BP on the western side, and in 6.2 cal. kyr BP on the eastern side of the strait. By 4.8 cal. kyr BP on the western side, and by ˜ 3.4 cal. kyr BP on the eastern side of the strait, warm water prevailed in both surface and subsurface layers.

  12. Water resources of Lincoln County coastal area, Oregon

    USGS Publications Warehouse

    Frank, F.J.; Laenen, Antonius

    1976-01-01

    Water supplies for all municipalities in Lincoln County currently (1975) are obtained from surface-water sources. Because of rapid economic development of the coastal area, it is expected that additional water will be needed in the future. Additional water can be supplied (1) by reservoirs on major streams; (2) by the expansion, in some locations, of present surface-water facilities on small streams; and (3) locally, by an additional small volume of supplemental water from ground-water sources.

  13. Water quality standards for the protection of human health and aquatic ecosystems in Korea: current state and future perspective.

    PubMed

    Kwak, Jin Il; Nam, Sun-Hwa; An, Youn-Joo

    2018-02-01

    Since the Korean Ministry of the Environment established the Master Plan for Water Environment (2006-2015), the need to revise the water quality standards (WQSs) has driven government projects to expand the standards for the protection of human health and aquatic ecosystems. This study aimed to provide an historical overview of how these WQSs were established, amended, and expanded over the past 10 years in Korea. Here, major projects related to national monitoring in rivers and the amendment of WQSs were intensely reviewed, including projects on the categorization of hazardous chemicals potentially discharged into surface water, the chemical ranking and scoring methodology for surface water (CRAFT, Chemical RAnking of surFace water polluTants), whole effluent toxicity (WET) management systems, the 4th, 5th, and 6th revisions of the water quality standards for the protection of human health, and efforts toward developing the 7th revision. In this review, we assimilated the past and current status as well as future perspectives of Korean surface WQSs. This research provides information that aids our understanding of how surface WQSs have been expanded, and how scientific approaches to ensure water quality have been applied at each step of the process in Korea.

  14. Nearshore circulation and water-column properties in the Skagit River Delta, northern Puget Sound, Washington: juvenile Chinook Salmon habitat availability in the Swinomish Channel

    USGS Publications Warehouse

    Grossman, Eric E.; Stevens, Andrew W.; Gelfenbaum, Guy; Curran, Christopher

    2007-01-01

    Time-series and spatial measurements of nearshore hydrodynamic processes and water properties were made in the Swinomish Channel to quantify the net direction and rates of surface water transport that influence habitat for juvenile Chinook salmon along their primary migratory corridor between the Skagit River and Padilla Bay in northern Puget Sound, Washington. During the spring outmigration of Skagit River Chinook between March and June 2007, currents measured with fixed acoustic doppler current profilers (ADCP) at the south and north end of the Swinomish Channel and with roving ADCP revealed that the currents are highly asymmetric with a dominant flow to the north (toward Padilla Bay). Maximum surface current velocities reached 1.5 m/s and were generally uniform across the channel near McGlinn Island Causeway. Transport times for surface water to travel the 11 km from the southern end of Swinomish Channel at McGlinn Island to Padilla Bay ranged from 2.1 hours to 5.5 days. The mean travel time was ~1 day, while 17 percent of the time, transport of water and passive particles occurred within 3.75 hours. Surface water in the Swinomish Channel during this time was generally very saline 20-27 psu, except south of the Rainbow Bridge in the town of La Conner where it ranged 0-15 psu depending on tide and Skagit River discharge. This salinity regime restricts suitable low salinity (

  15. Hydrogen Isotopic Constraints on the Evolution of Surface and Subsurface Water on Mars

    NASA Technical Reports Server (NTRS)

    Usui, T.; Kurokawa, H.; Wang, J.; Alexander, C. M. O’D.; Simon, J. I.; Jones, J. H.

    2017-01-01

    The geology and geomorphology of Mars provide clear evidence for the presence of liquid water on its surface during the Noachian and Hesperien eras (i.e., >3 Ga). In contrast to the ancient watery environment, today the surface of Mars is relatively dry. The current desert-like surface conditions, however, do not necessarily indicate a lack of surface or near-surface water/ice. In fact, massive deposits of ground ice and/or icy sediments have been proposed based on subsurface radar sounder observations. Hence, accurate knowledge of both the evolution of the distribution of water and of the global water inventory is crucial to our understanding of the evolution of the climate and near-surface environments and the potential habitability of Mars. This study presents insights from hydrogen isotopes for the interactive evolution of Martian water reservoirs. In particular, based on our new measurement of the D/H ratio of 4 Ga-old Noachian water, we constrain the atmospheric loss and possible exchange of surface and subsurface water through time.

  16. The characteristics and dynamics of wave-driven flow across a platform coral reef in the Red Sea

    NASA Astrophysics Data System (ADS)

    Lentz, S. J.; Churchill, J. H.; Davis, K. A.; Farrar, J. T.; Pineda, J.; Starczak, V.

    2016-02-01

    Current dynamics across a platform reef in the Red Sea near Jeddah, Saudi Arabia, are examined using 18 months of current profile, pressure, surface wave, and wind observations. The platform reef is 700 m long, 200 m across with spatial and temporal variations in water depth over the reef ranging from 0.6 to 1.6 m. Surface waves breaking at the seaward edge of the reef cause a 2-10 cm setup of sea level that drives cross-reef currents of 5-20 cm s-1. Bottom stress is a significant component of the wave setup balance in the surf zone. Over the reef flat, where waves are not breaking, the cross-reef pressure gradient associated with wave setup is balanced by bottom stress. The quadratic drag coefficient for the depth-average flow decreases with increasing water depth from Cda = 0.17 in 0.4 m of water to Cda = 0.03 in 1.2 m of water. The observed dependence of the drag coefficient on water depth is consistent with open-channel flow theory and a hydrodynamic roughness of zo = 0.06 m. A simple one-dimensional model driven by incident surface waves and wind stress accurately reproduces the observed depth-averaged cross-reef currents and a portion of the weaker along-reef currents over the focus reef and two other Red Sea platform reefs. The model indicates the cross-reef current is wave forced and the along-reef current is partially wind forced.

  17. Sectoral contributions to surface water stress in the coterminous United States

    Treesearch

    K. Averyt; J. Meldrum; P. Caldwell; G. Sun; S. McNulty; A. Huber-Lee; N. Madden

    2013-01-01

    Here, we assess current stress in the freshwater system based on the best available data in order to understand possible risks and vulnerabilities to regional water resources and the sectors dependent on freshwater. We present watershed-scale measures of surface water supply stress for the coterminous United States (US) using the water supply stress index (WaSSI) model...

  18. The Water Cycle from Space: Use of Satellite Data in Land Surface Hydrology and Water Resource Management

    NASA Technical Reports Server (NTRS)

    Laymon, Charles; Blankenship, Clay; Khan, Maudood; Limaye, Ashutosh; Hornbuckle, Brian; Rowlandson, Tracy

    2010-01-01

    This slide presentation reviews how our understanding of the water cycle is enhanced by our use of satellite data, and how this informs land surface hydrology and water resource management. It reviews how NASA's current and future satellite missions will provide Earth system data of unprecedented breadth, accuracy and utility for hydrologic analysis.

  19. Observations of the southern East Madagascar Current and undercurrent and countercurrent system

    NASA Astrophysics Data System (ADS)

    Nauw, J. J.; van Aken, H. M.; Webb, A.; Lutjeharms, J. R. E.; de Ruijter, W. P. M.

    2008-08-01

    In April 2001 four hydrographic sections perpendicular to the southern East Madagascar Current were surveyed as part of the Agulhas Current Sources Experiment. Observations with a vessel mounted and a lowered ADCP produced information on the current field while temperature, salinity, oxygen and nutrient data obtained with a CTD-Rosette system, gave information on the water mass structure of the currents southeast of Madagascar. The peak velocity in the pole-ward East Madagascar Current through these four sections had a typical magnitude of ˜110 cm/s, while the width of this current was of the order of 120 km. The mean pole-ward volume transport rate of this current during the survey above the 5°C isotherm was estimated to be 37 ± 10 Sv. On all four sections an undercurrent was observed at intermediate depths below the East Madagascar Current. Its equator-ward transport rate amounted to 2.8 ± 1.4 Sv. Offshore of the East Madagascar Current the shallow South Indian Ocean Countercurrent was observed. This eastward frontal jet coincided with the barotropic and thermohaline front that separates the saline Subtropical Surface Water from the fresher Tropical Surface Water in the East Madagascar Current. The near-surface geostrophic flow of the East Madagascar Current, derived from satellite altimetry data from 1992 to 2005, suggests a strong variability of this transport due to eddy variability and interannual changes. The long-term pole-ward mean transport of the East Madagascar Current, roughly estimated from those altimetry data amounts to 32 Sv. The upper-ocean water mass of the East Madagascar Current was very saline in 2001, compared to WOCE surveys from 1995. Comparison of our undercurrent data with those of the WOCE surveys in 1995 confirms that the undercurrent is a recurrent feature. Its water mass properties are relatively saline, due to the presence of water originating from the Red Sea outflow at intermediate levels. The saline water was advected from the Mozambique Channel to the eastern slope of Madagascar.

  20. Observations of internal waves in the Gulf of California by SEASAT SAR

    NASA Technical Reports Server (NTRS)

    Fu, L. L.; Holt, B.

    1983-01-01

    Internal waves which are among the most commonly observed oceanic phenomena in the SEASAT SAR imagery are discussed. These waves are associated with the vertical displacements of constant water density surfaces in the ocean. Their amplitudes are maximum at depths where the water density changes most rapidly usually at depths from 50 to 100 m, whereas the horizontal currents associated with these waves are maximum at the sea surface where the resulting oscillatory currents modulate the sea surface roughness and produce the signatures detected by SAR.

  1. Observations of internal waves in the Gulf of California by SEASAT SAR

    NASA Astrophysics Data System (ADS)

    Fu, L. L.; Holt, B.

    1983-07-01

    Internal waves which are among the most commonly observed oceanic phenomena in the SEASAT SAR imagery are discussed. These waves are associated with the vertical displacements of constant water density surfaces in the ocean. Their amplitudes are maximum at depths where the water density changes most rapidly usually at depths from 50 to 100 m, whereas the horizontal currents associated with these waves are maximum at the sea surface where the resulting oscillatory currents modulate the sea surface roughness and produce the signatures detected by SAR.

  2. Evaluation of automated urban surface water extraction from Sentinel-2A imagery using different water indices

    NASA Astrophysics Data System (ADS)

    Yang, Xiucheng; Chen, Li

    2017-04-01

    Urban surface water is characterized by complex surface continents and small size of water bodies, and the mapping of urban surface water is currently a challenging task. The moderate-resolution remote sensing satellites provide effective ways of monitoring surface water. This study conducts an exploratory evaluation on the performance of the newly available Sentinel-2A multispectral instrument (MSI) imagery for detecting urban surface water. An automatic framework that integrates pixel-level threshold adjustment and object-oriented segmentation is proposed. Based on the automated workflow, different combinations of visible, near infrared, and short-wave infrared bands in Sentinel-2 image via different water indices are first compared. Results show that object-level modified normalized difference water index (MNDWI with band 11) and automated water extraction index are feasible in urban surface water mapping for Sentinel-2 MSI imagery. Moreover, comparative results are obtained utilizing optimal MNDWI from Sentinel-2 and Landsat 8 images, respectively. Consequently, Sentinel-2 MSI achieves the kappa coefficient of 0.92, compared with that of 0.83 from Landsat 8 operational land imager.

  3. Earth Observations taken by the Expedition 27 Crew

    NASA Image and Video Library

    2011-04-02

    ISS027-E-009771 (2 April 2011) --- Bassas da India is featured in this image photographed by an Expedition 27 crew member on the International Space Station. The vantage point of crew members onboard the space station provides many dramatic views of Earth?s surface. This detailed photograph of the Bassas da India, an uninhabited atoll in the Indian Ocean (between the Mozambique coast of Africa and the island of Madagascar) has an almost surreal quality due to varying degrees of sunglint. Sunglint is an optical phenomena caused by light reflecting off of a water surface directly back towards the observer. Variations in the roughness of the water surface?presence or absence of waves due to wind and water currents?will cause differences in the intensity of the sunglint. The presence of other materials, such as oils or surfactants, can also change the properties of the water surface. Here the presence of currents is highlighted as darker patches or streaks (left and upper right). In contrast, shallow water in the lagoon (center) presents a more uniform, mirror-like appearance in sunglint suggesting that there are no subsurface currents present. Wave crests visible around the atoll are likely the result of both surface winds and subsurface currents. The Bassas da India atoll is part of the French Southern and Antarctic Lands. It is uninhabited due to its complete submergence during high tide ? there is no vegetation established on the atoll for the same reason. The atoll is approximately 10 kilometers in diameter, and covers an area (including the lagoon) of approximately 80 square kilometers.

  4. U. S. drinking-water regulations: Treatment technologies and cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lykins, B.W. Jr.; Clark, R.M.

    The Safe Drinking Water Act and its Amendments have imposed a large number of new regulations on the US drinking-water industry. A major set of regulations currently under consideration will control disinfectants and disinfection by-products. Included in the development of these regulations is an Information Collection Rule and an Enhanced Surface Water Treatment Rule. These rules will require monitoring for microorganisms such as Giardia, Cryptosporidium, and viruses. Certain surface-water systems may be required to remove microbiological contaminants above levels currently required by the Surface Water Treatment Rule. Also included in these rules will be monitoring requirements for disinfection by-products andmore » evaluation of precursor removal technologies. As various regulations are promulgated, regulators and those associated with the drinking-water industry need to be cognizant of the potential impact of treatment to control one contaminant or group of contaminants on control of other contaminants. Compliance with drinking-water regulations mandated under the Safe Drinking Water Act and its amendments has been estimated to cost about $1.6 billion.« less

  5. Eddies on the boundary between the Kuroshio current and coastal waters observed by HF ocean surface radar

    NASA Astrophysics Data System (ADS)

    Nadai, A.

    2016-02-01

    The HF ocean surface radar (HFOSR) is one of the powerful tools to measure the ocean current parameters like surface currents. Three observations of the Kuroshio current in the Tokara straight using HFOSR had done by the National Institute of Information and Comunications Technology (NICT: the former name is the Communications Research Laboratory). The first-order echoes on Doppler spectra of HFOSR shows broaden and splitting shape in the region of the border between the Kuroshio currents and coastal waters. The surface velocity maps show the existence of eddy on the border. The investigation of the mechanism of broadening first order-echoes by Nadai (2006) revealed that the modulation of wave fields from surface currents like eddy is the cause of broadening and the measured current fields also influenced the modulated wave fields. Moreover, Nadai (2006) also suggested that the influence is able to reduce using the average of two radial velocities extracted by the first-order echoes. In this paper, the results of current field observation around the border between the Kuroshio current and coastal waters are presented. Many small scale eddies are observed at the border of the Kuroshio current and coastal waters. The typical radius of the eddies is about 10km. Usury the observation of such a small scale eddy is difficult, but the eddies with same scale are observed by airborne synthetic aperture radar in the same area at different time. The eddies shows strong rotation as the typical tangential speed is about 1m/s. While the typical speed of the Kuroshio current is about 1.5m/s, the typical speed of the eddy movements is about 0.7m/s. No eddies generated in the radar coverage, but one or two eddies entered in the radar coverage a day. Therefore the origin of these eddies will exist in the upstream area of the radar coverage. Using the compensation method for the influence of the modulated wave field suggested by Nadai (2006), the eddies shows weak divergence. It is important to consider the mixing between the water of Kuroshio region and East China Sea. However the vertical structure is needed for more precise discussion.

  6. Strongly-sheared wind-forced currents in the nearshore regions of the central Southern California Bight

    USGS Publications Warehouse

    Noble, Marlene A.; Rosenberger, Kurt; Robertson, George L.

    2015-01-01

    Contrary to many previous reports, winds do drive currents along the shelf in the central portion of the Southern California Bight (SCB). Winds off Huntington Beach CA are the dominant forcing for currents over the nearshore region of the shelf (water depths less than 20 m). Winds control about 50–70% of the energy in nearshore alongshelf surface currents. The wind-driven current amplitudes are also anomalously high. For a relatively weak 1 dyne/cm2 wind stress, the alongshelf surface current amplitudes in this region can reach 80 cm/s or more. Mid-depth current amplitudes for the same wind stress are around 30–40 cm/s. These wind-driven surface current amplitudes are much larger than previously measured over other nearshore shelf regions, perhaps because this program is one of the few that measured currents within a meter of the surface. The near-bed cross-shelf currents over the nearshore region of the Huntington Beach shelf have an Ekman response to winds in that they upwell (downwell) for down (up) coast winds. This response disappears further offshore. Hence, there is upwelling in the SCB, but it does not occur across the entire shelf. Subthermocline water in the nearshore region that may contain nutrients and plankton move onshore when winds are southeastward, but subthermocline water over the shelf break is not transported to the beach. The currents over the outer shelf are not predominately controlled by winds, consistent with previous reports. Instead, they are mainly driven by cross-shelf pressure gradients that are independent of local wind stress.

  7. Water resources of Soledad, Poway, and Moosa basins, San Diego County, California

    USGS Publications Warehouse

    Evenson, K.D.

    1989-01-01

    Reclaimed water is being considered as as supplemental water supply in the Soledad, Poway, and Moosa basins, San Diego County. This report describes the geology, soils, hydrology, and cultural factors in each of the basins as they relate to use of reclaimed water. Imported water is currently the major water-supply source in the basins. Groundwater supplies are used to a limited extent for both agricultural and domestic needs. Surface water flows are intermittent and, therefore, have not been developed for use in the basins. All three of the basins have the potential for use of reclaimed water, but only the Moosa basin is currently implementing a plan for such use. Concentrations of dissolved solids, chloride, and sulfate in both ground and surface water commonly exceed local basin objectives. As of 1985, plans for use of reclaimed water are oriented toward improving the quality of the groundwater. (USGS)

  8. Improvement of water management in a vapor feed direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Masdar, M. Shahbudin; Tsujiguchi, Takuya; Nakagawa, Nobuyoshi

    Water transport in a vapor feed direct methanol fuel cell was improved by fixing a hydrophobic air filter (HAF) at the cathode. Effects of the HAF properties and the fixed positions, i.e., just on the cathode surface or by providing a certain space from the surface, of the HAF on the water transport as well as the power generation performance were investigated. The water transport was evaluated by measuring the partial pressure of water, PH2O , and methanol, PCH3OH , at the anode gas layer using in situ mass spectrometry with a capillary probe and also the water and methanol fluxes across the electrode structure using a conventional method. The HAF with the highest hydrophobicity and the highest flow resistance had the strongest effect on increasing the water back diffusion from the cathode to the anode through the membrane and increasing the current density. It was noted that the HAF fixation by providing a space from the cathode surface was more effective in increasing JWCO and the current density than that of the direct placement on the cathode surface. There was an optimum distance for the HAF placement depending on the humidity of the outside air.

  9. Arabian Sea as seen from STS-62

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The photo depicts many of the types of ocean features seen when illuminated by sunglint. These features include a shear line, bilge dump, currents, and ship wakes. Winds, currents and oils effect the smoothness of the surface of the water. The oils smooth the water which reflect the sun more than the rougher surrounding water. This is seen in the bright curved line which is a bilge dump of oily water from a ship. The oils then start to take the form of the currents and in this case are also being blown by the surface winds. The shear line is approximately 240 miles west of Bombay, India. This shear line appears to be a result of two water masses, moving at slightly different speeds, having converged. Ship wakes, such as those in the photo, which cross a shear line, often give us an indication of the relative strength of a shear.

  10. The Significant Surface-Water Connectivity of “Geographically Isolated Wetlands”

    EPA Science Inventory

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of g...

  11. A New Technique for the Retrieval of Near Surface Water Vapor Using DIAL Measurements

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Kooi, Susan; Ferrare, Richard; Winker, David; Hair, Johnathan; Nehrir, Amin; Notari, Anthony; Hostetler, Chris

    2015-01-01

    Water vapor is one of the most important atmospheric trace gas species and influences radiation, climate, cloud formation, surface evaporation, precipitation, storm development, transport, dynamics, and chemistry. For improvements in NWP (numerical weather prediction) and climate studies, global water vapor measurements with higher accuracy and vertical resolution are needed than are currently available. Current satellite sensors are challenged to characterize the content and distribution of water vapor in the Boundary Layer (BL) and particularly near the first few hundred meters above the surface within the BL. These measurements are critically needed to infer surface evaporation rates in cloud formation and climate studies. The NASA Langley Research Center Lidar Atmospheric Sensing Experiment (LASE) system, which uses the Differential Absorption Lidar (DIAL) technique, has demonstrated the capability to provide high quality water vapor measurements in the BL and across the troposphere. A new retrieval technique is investigated to extend these DIAL water vapor measurements to the surface. This method uses signals from both atmospheric backscattering and the strong surface returns (even over low reflectivity oceanic surfaces) using multiple gain channels to cover the large signal dynamic range. Measurements can be made between broken clouds and in presence of optically thin cirrus. Examples of LASE measurements from a variety of conditions encountered during NASA hurricane field experiments over the Atlantic Ocean are presented. Comparisons of retrieved water vapor profiles from LASE near the surface with dropsonde measurements show very good agreement. This presentation also includes a discussion of the feasibility of developing space-based DIAL capability for high resolution water vapor measurements in the BL and above and an assessment of the technology needed for developing this capability.

  12. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1990-01-01

    A series of experimental investigations that focused on isolating the primary factors that control the behavior of unfrozen surface water during glaze ice accretion were conducted. Detailed microvideo observations were made of glaze ice accretions on 2.54 cm diam cylinders in a closed-loop refrigerated wind tunnel. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film, a rough zone where surface tension effects caused coalescence of surface water into stationary beads, and a zone where surface water ran back as rivulets. The location of the transition from the smooth to the rough zone was found to migrate towards the stagnation point with time. Comparative tests were conducted to study the effect of the substrate thermal and roughness properties on ice accretion. The importance of surface water behavior was evaluated by the addition of a surface tension reducing agent to the icing tunnel water supply, which significantly altered the accreted glaze ice shape. Measurements were made to determine the contact angle behavior of water droplets on ice. A simple multizone modification to current glaze ice accretion models was proposed to include the observed surface roughness behavior.

  13. Chemical composition of natural waters of contaminated area: The case for the Imandra Lake catchment (the Kola Peninsula)

    NASA Astrophysics Data System (ADS)

    Evtyugina, Z. A.; Guseva, N. V.; Kopylova, J. G.; A, Vorobeva D.

    2016-03-01

    The study of the current chemical composition of natural waters in the eastern and western parts of the Imandra Lake catchment was performed using ion chromatography, potentiometry and inductively coupled plasma mass spectrometry. It was found that the content of trace elements in the surface water is considerably higher than that in the groundwater. The nickel and copper concentrations exceed the background levels over 19 and 2 times respectively in groundwater, and 175 and 61 times in the surface waters. These data show that the Severonikel influences negatively air and surface water.

  14. Direct-current resistivity profiling at the Pecos River Ecosystem Project study site near Mentone, Texas, 2006

    USGS Publications Warehouse

    Teeple, Andrew; McDonald, Alyson K.; Payne, Jason; Kress, Wade H.

    2009-01-01

    The U.S. Geological Survey, in cooperation with Texas A&M University AgriLife, did a surface geophysical investigation at the Pecos River Ecosystem Project study site near Mentone in West Texas intended to determine shallow (to about 14 meters below the water [river] surface) subsurface composition (lithology) in and near treated (eradicated of all saltcedar) and control (untreated) riparian zone sites during June-August 2006. Land-based direct-current resistivity profiling was applied in a 240-meter section of the riverbank at the control site, and waterborne direct-current continuous resistivity profiling (CRP) was applied along a 2.279-kilometer reach of the river adjacent to both sites to collect shallow subsurface resistivity data. Inverse modeling was used to obtain a nonunique estimate of the true subsurface resistivity from apparent resistivity calculated from the field measurements. The land-based survey showed that the sub-surface at the control site generally is of relatively low resis-tivity down to about 4 meters below the water surface. Most of the section from about 4 to 10 meters below the water surface is of relatively high resistivity. The waterborne CRP surveys convey essentially the same electrical representation of the lithology at the control site to 10 meters below the water surface; but the CRP surveys show considerably lower resistivity than the land-based survey in the subsection from about 4 to 10 meters below the water surface. The CRP surveys along the 2.279-kilometer reach of the river adjacent to both the treated and control sites show the same relatively low resistivity zone from the riverbed to about 4 meters below the water surface evident at the control site. A slightly higher resistivity zone is observed from about 4 to 14 meters below the water surface along the upstream approximately one-half of the profile than along the downstream one-half. The variations in resistivity could not be matched to variations in lithology because sufficient rock samples were not available.

  15. Pesticide use in the wheat-maize double cropping systems of the North China Plain: Assessment, field study, and implications.

    PubMed

    Brauns, Bentje; Jakobsen, Rasmus; Song, Xianfang; Bjerg, Poul L

    2018-03-01

    In the North China Plain (NCP), rising inputs of pesticides have intensified the environmental impact of farming activities in recent decades by contributing to surface water and groundwater contamination. In response to this, the Chinese government imposed stricter regulations on pesticide approval and application, and better monitoring strategies are being developed. However, sufficient and well-directed research on the accumulation and impact of different pesticides is needed for informed decision-making. In this study, current pesticide use, and recent and current research on water contamination by pesticides in the NCP are reviewed and assessed. Additionally, a small-scale field study was performed to determine if residuals from currently-used pesticides in the NCP can be detected in surface water, and in connected shallow groundwater. The contaminants of interest were commonly used pesticides on winter wheat-summer maize fields (the dominant cropping system in the NCP), such as 2,4-D and atrazine. Sampling took place in May, July, and October 2013; and March 2014. Results from our literature research showed that sampling is biased towards surface water monitoring. Furthermore, most studies focus on organic chlorinated pesticides (OCPs) like the isomers of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH), which were banned in China in 1983. However, currently-used herbicides like 2,4-D and atrazine were detected in river water and groundwater in all samplings of our field study. The highest concentrations of 2,4-D and atrazine were found in the river water, ranging up to 3.00 and 0.96μg/L, respectively. The monitoring of banned compounds was found to be important because several studies indicate that they are still accumulating in the environment and/or are still illegally in use. However, supported by our own data, we find that the monitoring in groundwater and surface water of currently permitted pesticides in China needs equal attention, and should therefore be increased. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The Significant Surface-Water Connectivity of “Geographically Isolated Wetlands”

    EPA Science Inventory

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of grouping wetlands b...

  17. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1988-01-01

    Microvideo observations of glaze ice accretions on 1-in-diameter cylinders in a closed-loop refrigerated wind tunnel were obtained to study factors controlling the behavior of unfrozen surface water during glaze ice accretion. Three zones of surface water behavior were noted, each with a characteristic roughness. The effect of substrate thermal and roughness properties on ice accretions was also studied. The contact angle and hysteresis were found to increase sharply at temperatures just below 0 C, explaining the high resistance to motion of water beads observed on accreting glaze ice surfaces. Based on the results, a simple multizone modification to the current glaze ice accretion model is proposed.

  18. CERES SSF Current Info

    Atmospheric Science Data Center

    2013-05-17

    ... Surface Albedo Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...

  19. Emerging technologies to remove nonpoint phosphorus sources from surface water and groundwater

    USDA-ARS?s Scientific Manuscript database

    New innovative remediation practices are currently being developed that address phosphorus transfers from soils and applied sources to surface and ground waters. These practices include reactive barriers placed along field ditches and drainage ways, retention filters at the end of tile drains, mater...

  20. Characterization of the Deep Water Surface Wave Variability in the California Current Region

    NASA Astrophysics Data System (ADS)

    Villas Bôas, Ana B.; Gille, Sarah T.; Mazloff, Matthew R.; Cornuelle, Bruce D.

    2017-11-01

    Surface waves are crucial for the dynamics of the upper ocean not only because they mediate exchanges of momentum, heat, energy, and gases between the ocean and the atmosphere, but also because they determine the sea state. The surface wave field in a given region is set by the combination of local and remote forcing. The present work characterizes the seasonal variability of the deep water surface wave field in the California Current region, as retrieved from over two decades of satellite altimetry data combined with wave buoys and wave model hindcast (WaveWatch III). In particular, the extent to which the local wind modulates the variability of the significant wave height, peak period, and peak direction is assessed. During spring/summer, regional-scale wind events of up to 10 m/s are the dominant forcing for waves off the California coast, leading to relatively short-period waves (8-10 s) that come predominantly from the north-northwest. The wave climatology throughout the California Current region shows average significant wave heights exceeding 2 m during most of the year, which may have implications for the planning and retrieval methods of the Surface Water and Ocean Topography (SWOT) satellite mission.

  1. Mapping inter-annual dynamics of open surface water bodies in Oklahoma from Landsat images in 1984 to 2015 at 30-m spatial resolution

    NASA Astrophysics Data System (ADS)

    Zou, Z.; Xiao, X.; Menarguez, M.; Dong, J.; Qin, Y.

    2016-12-01

    Open surface water bodies are important water resource for public supply, irrigation, livestock, and wildlife in Oklahoma. The inter-annual variation of Oklahoma water bodies directly affect the water availability for public supply, irrigation and cattle industry. In this study, tens of thousands of Landsat TM/ETM+ images from 1984 to 2015 were used to track the dynamics of open surface water bodies. Both water-related spectral indices and vegetation indices were used to map water bodies for individual images. The resultant maps show that Oklahoma year-long open surface water bodies varied significantly over the last 32 years, with an average annual water body area equals to 2300 km2, accounting for 1.27 % of the Oklahoma state area (181,037 km2). 4.3 million year-long water body pixels were detected in the 32-year accumulated water frequency map, corresponding to 3100 km2. Only 45% ( 1400 km2) of the those pixels had water throughout the 32 years, while the rest 55% pixels had a dry-up period. The smaller water bodies have a higher risk to dry up and a lower probability to have water throughout the years. Drought years could significantly decrease the number of small water bodies and shrink the area of large water bodies, while pluvial years could create large number of small seasonal water bodies. The significant influencing factors of current year water bodies include the precipitation and temperature of current year and the water body condition of the previous year. This water body dynamics study could be used to support water resource management, crop and livestock production, and biodiversity conservation in Oklahoma.

  2. The decolouration of methyl orange using aluminum foam, ultrasound and direct electric current

    NASA Astrophysics Data System (ADS)

    Liu, C. M.; Huang, X. Y.; Zhang, H. Y.; Dai, J. D.; Ning, C. C.

    2018-01-01

    The decolouration of methyl orange (MO) using aluminum (Al) foam, ultrasound and direct electric current (DC) is investigated. The decolouration rate (DR) of MO using only Al foam is low because there is a passivation oxide layer on the Al foam surface. Due to the low utilization of ultrasound in MO water solution medium, the DR of MO using only ultrasonic irradiation is also poor. The DR of MO is greatly increased when Al foam, ultrasonic irradiation and DC are used together. There is good synergistic effect between Al foam, ultrasound and DC in decolouration of MO. This enhancement of DR may be related to the cavitation, cleaning of Al foam surface and water electrolysis. Due to the surface charge on wire carrying stationary current, Al foam with DC acts like a serious anodes and cathodes and makes water electrolysis giving hydrogen gas to cleavage azo bond. The DC applied on Al foam is beneficial for reductive decolouration of MO. Our results show that DC is a new way for the reductive decolouration MO in water.

  3. Monitoring Ecological Impacts of Environmental Surface Waters using Cell-based Metabolomics

    EPA Science Inventory

    Optimized cell-based metabolomics has been used to study the impacts of contaminants in surface waters on human and fish metabolomes. This method has proven to be resource- and time-effective, as well as sustainable for long term and large scale studies. In the current study, cel...

  4. Differences in staining intensities affect reported occurrences and concentrations of Giardia spp. in surface drinking water sources

    EPA Science Inventory

    Aim USEPA Method 1623, or its equivalent, is currently used to monitor for protozoan contamination of surface drinking water sources worldwide. At least three approved staining kits used for detecting Cryptosporidium and Giardia are commercially available. This study focuses on ...

  5. Nearshore currents on the southern Namaqua shelf of the Benguela upwelling system

    NASA Astrophysics Data System (ADS)

    Fawcett, A. L.; Pitcher, G. C.; Shillington, F. A.

    2008-05-01

    Nearshore currents of the southern Namaqua shelf were investigated using data from a mooring situated three and a half kilometres offshore of Lambert's Bay, downstream of the Cape Columbine upwelling cell, on the west coast of South Africa. This area is susceptible to harmful algal blooms (HABs) and wind-forced variations in currents and water column structure are critical in determining the development, transport and dissipation of blooms. Time series of local wind data, and current and temperature profile data are described for three periods, considered to be representative of the latter part of the upwelling season (27 January-22 February), winter conditions (5-29 May) and the early part of the upwelling season (10 November-12 December) in 2005. Differences observed in mean wind strength and direction between data sets are indicative of seasonal changes in synoptic meteorological conditions. These quasi-seasonal variations in wind forcing affect nearshore current flow, leading to mean northward flow in surface waters early in the upwelling season when equatorward, upwelling-favourable winds are persistent. Mean near-surface currents are southward during the latter part of the upwelling season, consistent with more prolonged periods of relaxation from equatorward winds, and under winter conditions when winds were predominantly poleward. Within these seasonal variations in mean near-surface current direction, two scales of current variability were evident within all data sets: strong inertial oscillations were driven by diurnal winds and introduced vertical shear into the water column enhancing mixing across the thermocline, while sub-inertial current variability was driven by north-south wind reversals at periods of 2-5 days. Sub-inertial currents were found to lag wind reversals by approximately 12 h, with a tendency for near-surface currents to flow poleward in the absence of wind forcing. Consistent with similar sites along the Californian and Iberian coasts, the headland at Cape Columbine is considered to influence currents and circulation patterns during periods of relaxation from upwelling-favourable winds, favouring the development of a nearshore poleward current, leading to poleward advection of warm water, the development of stratification, and the creation of potentially favourable conditions for HAB development.

  6. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona

    USGS Publications Warehouse

    Scanlon, Bridget R.; Reedy, Robert C.; Faunt, Claudia; Pool, Donald R.; Uhlman, Kristine;

    2016-01-01

    Projected longer‐term droughts and intense floods underscore the need to store more water to manage climate extremes. Here we show how depleted aquifers have been used to store water by substituting surface water use for groundwater pumpage (conjunctive use, CU) or recharging groundwater with surface water (Managed Aquifer Recharge, MAR). Unique multi‐decadal monitoring from thousands of wells and regional modeling datasets for the California Central Valley and central Arizona were used to assess CU and MAR. In addition to natural reservoir capacity related to deep water tables, historical groundwater depletion further expanded aquifer storage by ~44 km3 in the Central Valley and by ~100 km3 in Arizona, similar to or exceeding current surface reservoir capacity by up to three times. Local river water and imported surface water, transported through 100s of km of canals, is substituted for groundwater (≤15 km3/yr, CU) or is used to recharge groundwater (MAR, ≤1.5 km3/yr) during wet years shifting to mostly groundwater pumpage during droughts. In the Central Valley, CU and MAR locally reversed historically declining water‐level trends, which contrasts with simulated net regional groundwater depletion. In Arizona, CU and MAR also reversed historically declining groundwater level trends in Active Management Areas. These rising trends contrast with current declining trends in irrigated areas that lack access to surface water to support CU or MAR. Use of depleted aquifers as reservoirs could expand with winter flood irrigation or capturing flood discharges to the Pacific (0 – 1.6 km3/yr, 2000–2014) with additional infrastructure in California. Because flexibility and expanded portfolio options translate to resilience, CU and MAR enhance drought resilience through multi‐year storage, complementing shorter term surface reservoir storage, and facilitating water markets.

  7. Real-time estimation of TP load in a Mississippi Delta Stream using a dynamic data driven application system

    Treesearch

    Ying Ouyang; Theodor D. Leininger; Jeff Hatten

    2013-01-01

    Elevated phosphorus (P) in surface waters can cause eutrophication of aquatic ecosystems and can impair water for drinking, industry, agriculture, and recreation. Currently, no effort has been devoted to estimating real-time variation and load of total P (TP) in surface waters due to the lack of suitable and/or cost-effective wireless sensors. However, when considering...

  8. Wind-driven changes of surface current, temperature, and chlorophyll observed by satellites north of New Guinea

    NASA Astrophysics Data System (ADS)

    Radenac, Marie-Hélène; Léger, Fabien; Messié, Monique; Dutrieux, Pierre; Menkes, Christophe; Eldin, Gérard

    2016-04-01

    Satellite observations of wind, sea level and derived currents, sea surface temperature (SST), and chlorophyll are used to expand our understanding of the physical and biological variability of the ocean surface north of New Guinea. Based on scarce cruise and mooring data, previous studies differentiated a trade wind situation (austral winter) when the New Guinea Coastal Current (NGCC) flows northwestward and a northwest monsoon situation (austral summer) when a coastal upwelling develops and the NGCC reverses. This circulation pattern is confirmed by satellite observations, except in Vitiaz Strait where the surface northwestward flow persists. We find that intraseasonal and seasonal time scale variations explain most of the variance north of New Guinea. SST and chlorophyll variabilities are mainly driven by two processes: penetration of Solomon Sea waters and coastal upwelling. In the trade wind situation, the NGCC transports cold Solomon Sea waters through Vitiaz Strait in a narrow vein hugging the coast. Coastal upwelling is generated in westerly wind situations (westerly wind event, northwest monsoon). Highly productive coastal waters are advected toward the equator and, during some westerly wind events, toward the eastern part of the warm pool. During El Niño, coastal upwelling events and northward penetration of Solomon Sea waters combine to influence SST and chlorophyll anomalies.

  9. Temporal and spatial variations of sea surface temperature in the East China Sea

    NASA Astrophysics Data System (ADS)

    Tseng, Chente; Lin, Chiyuan; Chen, Shihchin; Shyu, Chungzen

    2000-03-01

    Sea surface temperature of the East China Sea (ECS) were analyzed using the NOAA/AVHRR SST images. These satellite images reveal surface features of ECS including mainly the Kuroshio Current, Kuroshio Branch Current, Taiwan Warm Current, China coastal water, Changjiang diluted water and Yellow Sea mixed cold water. The SST of ECS ranges from 27 to 29°C in summer; some cold eddies were found off northeast Taiwan and to the south of Changjiang mouth. SST anomalies at the center of these eddies were about 2-5°C. The strongest front usually occurs in May each year and its temperature gradient is about 5-6°C over a cross-shelf distance of 30 nautical miles. The Yellow Sea mixed cold water also provides a contrast from China Coastal waters shoreward of the 50 m isobath; cross-shore temperature gradient is about 6-8°C over 30 nautical miles. The Kuroshio intrudes into ECS preferably at two locations. The first is off northeast Taiwan; the subsurface water of Kuroshio is upwelled onto the shelf while the main current is deflected seaward. The second site is located at 31°N and 128°E, which is generally considered as the origin of the Tsushima Warm Current. More quantitatively, a 2-year time series of monthly SST images is examined using EOF analysis to determine the spatial and temporal variations in the northwestern portion of ECS. The first spatial EOF mode accounts for 47.4% of total spatial variance and reveals the Changjiang plume and coastal cold waters off China. The second and third EOF modes account for 16.4 and 9.6% of total variance, respectively, and their eigenvector images show the intrusion of Yellow Sea mixed cold waters and the China coastal water. The fourth EOF mode accounts for 5.4% of total variance and reveals cold eddies around Chusan Islands. The temporal variance EOF analysis is less revealing in this study area.

  10. Characteristics of the cold-water belt formed off Soya Warm Current

    NASA Astrophysics Data System (ADS)

    Ishizu, Miho; Kitade, Yujiro; Matsuyama, Masaji

    2008-12-01

    We examined the data obtained by acoustic Doppler current profiler, conductivity-temperature-depth profiler, and expendable bathythermograph observations, which were collected in the summers of 2000, 2001, and 2002, to clarify the characteristics of the cold-water belt (CWB), i.e., lower-temperature water than the surrounding water extending from the southwest coast of Sakhalin along the offshore side of Soya Warm Current (SWC) and to confirm one of the formation mechanisms of the CWB as suggested by our previous study, i.e., the upwelling due to the convergence of bottom Ekman transport off the SWC region. The CWB was observed at about 30 km off the coast, having a thickness of 14 m and a minimum temperature of 12°C at the sea surface. The CWB does not have the specific water mass, but is constituted of three representative water types off the northeast coast of Hokkaido in summer, i.e., SWC water, Fresh Surface Okhotsk Sea Water, and Okhotsk Sea Intermediate Water. In a comparison of the horizontal distributions of current and temperature, the CWB region is found to be advected to the southeast at an average of 40 ± 29% of the maximum current velocity of the SWC. The pumping speed due to the convergence of the bottom Ekman transport is estimated as (1.5-3.0) × 10-4 m s-1. We examined the mixing ratio of the CWB, and the results implied that the water mass of the CWB is advected southeastward and mixes with a water mass upwelling in a different region off SWC.

  11. Eddy formation and surface flow field in the Luzon Strait area during the summer of 2009

    NASA Astrophysics Data System (ADS)

    Liu, Ze; Hou, Yijun; Xie, Qiang

    2015-09-01

    The formation of mesoscale eddies and the structure of the surface flow field in the Luzon Strait area were examined using in-situ CTD data, Argo float data, and multi-satellite remote sensing data collected from May to August 2009. The results show that vigorous water exchange between Kuroshio water and South China Sea (SCS) water began to emerge over the 200 m water column throughout the strait. Based on an objective definition of surface currents, float A69 tracked an anti-cyclonic eddy southwest of Taiwan Island under a Lagrangian current measurement. The salinity inside the anti-cyclonic eddy was higher than in typical SCS water but lower than in Kuroshio mainstream water, indicating that this eddy was induced by Kuroshio frontal intrusion through the Luzon Strait and into the SCS. From hydrographic data, we propose that continuous horizontal diffusion with high-salinity characteristics in the subsurface layer could extend to 119°E or even further west. The high-temperature filament, large positive sea level anomaly and clockwise geostrophic current all confirmed the existence of this warm eddy in May and June. A strongly negative wind stress curl maintained the eddy until it died. The surface flow field during July and August was rather complicated. Float A83 described an east-west orientated shuttle run in the 20°N section that was not reported by previous studies. At the same time, float A80 indicated a Kuroshio bend into the north-central region of Luzon Strait but it did not cross 120.5°E. The water mass rejoining the Kuroshio mainstream from the southern tip of Taiwan Island was less saline, indicating an entrainment of water from SCS by the Kuroshio bend.

  12. A multi-decadal study of Polar and Atlantic Water changes on the North Iceland shelf during the last Millennium

    NASA Astrophysics Data System (ADS)

    Perner, Kerstin; Moros, Matthias; Simon, Margit; Berben, Sarah; Griem, Lisa; Dokken, Trond; Wacker, Lukas; Jansen, Eystein

    2017-04-01

    The region offshore North Iceland is known to be sensitive to broad scale climatic and oceanographic changes in the North Atlantic Ocean. Changes in surface and subsurface water conditions link to the varying influence of Polar-sourced East Icelandic Current (EIC) and Atlantic-sourced North Irminger Icelandic Current (NIIC). Cold/fresh Polar waters from the East Greenland Current feed the surface flowing EIC, while warm/saline Subpolar Mode Waters (SPMW) from the Irminger Current (IC) feed the subsurface flowing NIIC. Here, we present a new and well-dated multi-proxy record that allows high-resolution reconstruction of surface and subsurface water mass changes on the western North Iceland shelf. An age-depth model for the last Millennium has been developed based on the combined information from radionuclide measurements (137Cs, 210Pb) dating, 25 AMS 14C radiocarbon dates, and identified Tephra horizons. Our dating results provide further support to previous assumptions that North of Iceland a conventional reservoir age correction application of 400 years (ΔR=0) is inadequate (e.g., Eikíksson et al., 2000; Wanamaker Jr. et al., 2012). The combined evidence from radionuclide dating and the identified Tephra horizons point to a ΔR of c. 360 years during the last Millennium. Our benthic and planktic foraminiferal assemblage and stable oxygen isotope (18O) record of Neogloboquadrina pachyderma s. (NPS) resolve the last Millennium at a centennial to multi-decadal resolution. Comparison of abundance changes of the Atlantic Water related species Cassidulina neoteretis and NPS, as well as the 18O record agree well with the instrumental data time series from the monitoring station Hunafloi nearby. This provides further support that our data is representative of relative temperature and salinity changes in surface and subsurface waters. Hence, this new record allows a more detailed investigation on the timing of Polar (EIC) and Atlantic (NIIC, IC) Water contribution to the North Iceland shelf that links to large-scale atmospheric and oceanic changes in the North Atlantic region. We find, during the time of the Medieval Climate Anomaly (MCA), an increased influence of Atlantic waters on surface water conditions, suggesting a stronger inflow of the NIIC, and thus of SPMW from the IC. This influence decreases markedly at the transition from the MCA to the Little Ice Age (LIA) and remains weak during the 20th Century, which likely relates to an enhanced inflow of cold/fresh Polar surface waters to the North Iceland shelf. During the MCA and LIA subsurface water conditions remain predominantly influenced by SPMW from the IC. However, from c. 1950 AD towards the present, this influence and thus likely subsurface water temperatures, decrease on the western North Iceland shelf.

  13. Arabian Sea as seen from STS-62

    NASA Image and Video Library

    1994-03-05

    STS062-86-196 (4-18 March 1994) --- This photo depicts many of the types of ocean features seen when illuminated by sunglint. These features include a shear line, bilge dump, currents and ship wakes. Winds, currents and oils effect the smoothness of the surface of the water. The oils smooth the water which reflect the sun more than the rougher surround water. This is seen in the bright curved line which is a bilge dump of oily water from a ship. The oils then start to take the form of the currents and in this case are also being blown by the surface winds. The shear line is approximately 240 miles west of Bombay, India. This shear line appears to be a result of two water masses, moving at slightly different speeds, having converged. Ship wakes, such as those in the photo, which cross a shear line, often give us an indication of the relative strenght of a a shear.

  14. Coast of Isla Cerralvo, Baja, California as seen from STS-62

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Though it did not reproduce well, this photo gives scientific information to aid in studying all types of Earth's processes. It documents ocean features in the sunglint in the Gulf of California, off the Isla Cerralvo, southern Baja, California. Biological oils collect on the surface of the water and take the form of the currents. The sun reflects off the oily surface and shows current patterns, eddies and ship wakes. The small bright spot on the edge of the eddy is a ship dumping oily water from its bilges. The line in the brighter area is a light wind gust roughening the surface.

  15. Spatial variability of surface-sediment porewater pH and related water-column characteristics in deep waters of the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Shao, Changgao; Sui, Yi; Tang, Danling; Legendre, Louis

    2016-12-01

    This study analyzes the pH of surface-sediment porewater (i.e. 2-3 cm below the water-sediment interface), and concentrations of CaCO3 and organic carbon (OC) in 1192 sediment cores from the northern South China Sea, in water depths ranging from 137 to 3702 m. This is the first study in the literature to analyze the large-scale spatial variability of deep-water surface-sediment pH over a large ocean basin. The data showed strong spatial variations in pH. The lowest pH values (<7.3) were observed south of Hainan Island, an area that is affected by summer upwelling and freshwater runoff from the Pearl and Red Rivers. Moderately low pH values (generally 7.3-7.5) occurred in two other areas: a submarine canyon, where sediments originated partly from the Pearl River and correspond to a paleo-delta front during the last glacial period; and southwest of Taiwan Island, where waters are affected by the northern branch of the Kuroshio intrusion current (KIC) and runoff from Taiwan rivers. The surface sediments with the highest pH (⩾7.5, and up to 8.3) were located in a fourth area, which corresponded to the western branch of the KIC where sediments have been intensively eroded by bottom currents. The pH of surface-sediment porewater was significantly linearly related to water depth, bottom-water temperature, and CaCO3 concentration (p < 0.05 for the whole sampling area). This study shows that the pH of surface-sediment porewater can be sensitive to characteristics of the overlying water column, and suggests that it will respond to global warming as changes in surface-ocean temperature and pH progressively reach deeper waters.

  16. Tidal influence on subtropical estuarine methane emissions

    NASA Astrophysics Data System (ADS)

    Sturm, Katrin; Grinham, Alistair; Werner, Ursula; Yuan, Zhiguo

    2014-05-01

    The relatively unstudied subtropical estuaries, particularly in the Southern Hemisphere, represent an important gap in our understanding of global greenhouse gas (GHG) emissions. These systems are likely to form an important component of GHG budgets as they occupy a relatively large surface area, over 38 000 km2 in Australia. Here, we present studies conducted in the Brisbane River estuary, a representative system within the subtropical region of Queensland, Australia. This is a highly modified system typical of 80% of Australia's estuaries. Generally, these systems have undergone channel deepening and straightening for safer shipping access and these modifications have resulted in large increases in tidal reach. The Brisbane River estuary's natural tidal reach was 16 km and this is now 85 km and tidal currents influence double the surface area (9 km2 to 18 km2) in this system. Field studies were undertaken to improve understanding of the driving factors behind methane water-air fluxes. Water-air fluxes in estuaries are usually calculated with the gas exchange coefficient (k) for currents and wind as well as the concentration difference across the water-air interface. Tidal studies in the lower and middle reaches of the estuary were performed to monitor the influence of the tidal stage (a proxy for kcurrent) on methane fluxes. Results for both investigated reaches showed significantly higher methane fluxes during the transition time of tides, the time of greatest tidal currents, than during slack tide periods. At these tidal transition times with highest methane chamber fluxes, lowest methane surface water concentrations were monitored. Modelled fluxes using only wind speed (kwind) were at least one order of magnitude lower than observed from floating chambers, demonstrating that current speed was likely the driving factor of water-air fluxes. An additional study was then conducted sampling the lower, middle and upper reaches during a tidal transition period. Although dissolved methane surface water concentrations were highest in the upper reaches of the estuary, experiencing the lowest tidal currents, fluxes measured using chambers were lower relative to middle and lower reaches. This supports the tidal study findings as higher tidal currents were experienced in the middle and lower reaches. The dominant driver behind estuarine methane water-air fluxes in this system was tidal current speed. Future studies need to take into account flux rates during both transition and slack tide periods to quantify total flux rates.

  17. Radiological monitoring plan for the Oak Ridge Y-12 Plant: Surface Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-10-01

    The Y-12 Plant conducts a surface water monitoring program in response to DOE Orders and state of Tennessee requirements under the National Pollutant Discharge Elimination System (NPDES). The anticipated codification of DOE Order 5400.5 for radiation protection of the public and the environment (10 CFR Part 834) will require an environmental radiation protection plan (ERPP). The NPDES permit issued by the state of Tennessee requires a radiological monitoring plan (RMP) for Y-12 Plant surface waters. In a May 4, 1995 memo, the state of Tennessee, Division of Water Pollution Control, stated their desired needs and goals regarding the content ofmore » RMPs, associated documentation, and data resulting from the RMPs required under the NPDES permitting system (L. Bunting, General Discussion, Radiological Monitoring Plans, Tennessee Division of Water Pollution Control, May 4,1995). Appendix A provides an overview of how the Y-12 Plant will begin to address these needs and goals. It provides a more complete, documented basis for the current Y-12 Plant surface water monitoring program and is intended to supplement documentation provided in the Annual Site Environmental Reports (ASERs), NPDES reports, Groundwater Quality Assessment Reports, and studies conducted under the Y-12 Plant Environmental Restoration (ER) Program. The purpose of this update to the Y-12 Plant RMP is to satisfy the requirements of the current NPDES permit, DOE Order 5400.5, and 10 CFR Part 834, as current proposed, by defining the radiological monitoring plan for surface water for the Y-12 Plant. This plan includes initial storm water monitoring and data analysis. Related activities such as sanitary sewer and sediment monitoring are also summarized. The plan discusses monitoring goals necessary to determine background concentrations of radionuclides, to quantify releases, determine trends, satisfy regulatory requirements, support consequence assessments, and meet requirements that releases be ``as low as reasonably achievable`` (ALARA).« less

  18. Dynamic behaviour of natural oil droplets through the water column in deep-water environment: the case of the Lower Congo Basin

    NASA Astrophysics Data System (ADS)

    Jatiault, R.; Dhont, D.; Loncke, L.; Durrieu De Madron, X.; Dubucq, D.; Channelliere, C.; Bourrin, F.

    2017-12-01

    Key words: Hydrocarbon seepage, Oil Slick, Lower Congo Basin, Underwater deflection, Deep-water Pockmark, Ascent speedThe space-borne imagery provides a significant means to locate active oil seeps and to estimate the expelled volume in the marine environment. The analysis of numerous overlapping satellite images revealed an abundant volume of 4400 m3 of oil naturally reaching the sea surface per year, expelled from more than a hundred seep sites through the Lower Congo Basin. The active seepage area is located in the distal compressional province of the basin where salt napes and squeezed diapirs. The integration of current data was used to link accurately sea surface manifestations of natural oil leakages with active fluid flow features on the seafloor. A mooring with ADCPs (Acoustic Doppler Current Profilers) distributed throughout the water column provided an efficient calibration tool to evaluate the horizontal deflection of oil droplets. Using a Eulerian propagation model that considered a range of probable ascent speeds, we estimated the oil migration pathways through the water column using two different approaches. The first approach consisted in simulating the backwards trajectory of oil droplets using sea surface oil slicks locations and concomitant current measurements. The second method analyzed the spatial spreading of the surfacing signatures of natural oil slicks based on 21 years of satellite observations. The location of the surfacing points of oil droplets at the sea surface is restricted to a circle of 2.5 km radius around the release point at the seafloor. Both approaches provided a range of ascent speeds of oil droplets between 3 to 8 cm.s-1. The low deflection values validate the near-vertical links between the average surfacing area of oil slicks at the sea surface with specific seafloor disturbances (i.e. pockmarks or mounds) known to expel fluids.

  19. Water exchange between Algeciras Bay and the Strait of Gibraltar: A study based on HF coastal radar

    NASA Astrophysics Data System (ADS)

    Chioua, J.; Dastis, C.; González, C. J.; Reyes, E.; Mañanes, R.; Ruiz, M. I.; Álvarez, E.; Yanguas, F.; Romero, J.; Álvarez, O.; Bruno, M.

    2017-09-01

    This study analyses the water mass exchanges at subinertial scale between Algeciras Bay and the adjacent Strait of Gibraltar. The mechanisms triggering this exchange process is investigated with the aid of recently-acquired data on surface currents obtained using a system of HF coastal radars deployed on the eastern side of the Strait, and remotely-sensed images of sea surface temperature (SST) and chlorophyll from the MODIS sensor of the Aqua satellite. HF radar data on surface currents are analyzed by the application of real empirical orthogonal function (EOF) decomposition, which produces three EOF modes explaining more than 70% of the variance of the surface currents at the mouth of the Bay (modes 2, 3, and 6). Mode 2 is related to the fluctuations of the Atlantic Jet in the central zone of the Strait, mainly due to a combined effect of the atmospheric pressure fluctuations in the Western Mediterranean Sea and local wind in the eastern side of the Strait; mode 3 is related to the coastal currents induced by zonal wind forcing on the north-western coast of the Strait and Alboran Sea; and mode 6 seems to be related to water transport induced by winds blowing with a significant north component into and out of the Bay.

  20. Regional potentiometric surface of the Ozark aquifer in Arkansas, Kansas, Missouri, and Oklahoma, November 2014–January 2015

    USGS Publications Warehouse

    Nottmeier, Anna M.

    2015-12-21

    The Ozark aquifer, within the Ozark Plateaus aquifer system (herein referred to as the “Ozark system”), is the primary groundwater source in the Ozark Plateaus physiographic province (herein referred to as the “Ozark Plateaus”) of Arkansas, Kansas, Missouri, and Oklahoma. Groundwater from the Ozark system has historically been an important part of the water resource base, and groundwater availability is a concern in some areas; dependency on the Ozark aquifer as a water supply has caused evolving, localized issues. The construction of a regional potentiometric-surface map of the Ozark aquifer is needed to aid assessment of current and future groundwater use and availability. The regional potentiometric-surface mapping is part of the U.S. Geological Survey (USGS) Groundwater Resources Program initiative (http://water.usgs.gov/ogw/gwrp/activities/regional.html) and the Ozark system groundwater availability project (http://ar.water.usgs.gov/ozarks), which seeks to quantify current groundwater resources, evaluate changes in these resources over time, and provide the information needed to simulate system response to future human-related and environmental stresses.The Ozark groundwater availability project objectives include assessing (1) growing demands for groundwater and associated declines in groundwater levels as agricultural, industrial, and public supply pumping increases to address needs; (2) regional climate variability and pumping effects on groundwater and surface-water flow paths; (3) effects of a gradual shift to a greater surface-water dependence in some areas; and (4) shale-gas production requiring groundwater and surface water for hydraulic fracturing. Data compiled and used to construct the regional Ozark aquifer potentiometric surface will aid in the assessment of those objectives.

  1. Deflection of natural oil droplets through the water column in deep-water environments: The case of the Lower Congo Basin

    NASA Astrophysics Data System (ADS)

    Jatiault, Romain; Dhont, Damien; Loncke, Lies; de Madron, Xavier Durrieu; Dubucq, Dominique; Channelliere, Claire; Bourrin, François

    2018-06-01

    Numerous recurrent seep sites were identified in the deep-water environment of the Lower Congo Basin from the analysis of an extensive dataset of satellite-based synthetic-aperture radar images. The integration of current data was used to link natural oil slicks with active seep-related seafloor features. Acoustic Doppler current profiler measurements across the water column provided an efficient means to evaluate the horizontal deflection of oil droplets rising through the water column. Eulerian propagation model based on a range of potential ascension velocities helped to approximate the path for rising oil plume through the water column using two complementary methods. The first method consisted in simulating the reversed trajectory of oil droplets between sea-surface oil slick locations observed during current measurements and seep-related seafloor features while considering a range of ascension velocities. The second method compared the spatial spreading of natural oil slicks from 21 years of satellite monitoring observations for water depths ranging from 1200 to 2700 m against the modeled deflections during the current measurement period. The mapped oil slick origins are restricted to a 2.5 km radius circle from associated seep-related seafloor features. The two methods converge towards a range of ascension velocities for oil droplets through the water column, estimated between 3 and 8 cm s-1. The low deflection values validate that the sub-vertical projection of the average surface area of oil slicks at the sea surface can be used to identify the origin of expelled hydrocarbon from the seafloor, which expresses as specific seafloor disturbances (i.e. pockmarks or mounds) known to expel fluids.

  2. Water Quality on the Prairie Band Potawatomi Reservation, Northeastern Kansas, June 1996 through August 2006

    USGS Publications Warehouse

    Schmidt, Heather C. Ross; Mehl, Heidi E.; Pope, Larry M.

    2007-01-01

    This report describes surface- and ground-water-quality data collected on the Prairie Band Potawatomi Reservation in northeastern Kansas from November 2003 through August 2006 (hereinafter referred to as the 'current study period'). Data from this study period are compared to results from June 1996 through August 2003, which are published in previous reports as part of a multiyear cooperative study with the Prairie Band Potawatomi Nation. Surface and ground water are valuable resources to the Prairie Band Potawatomi Nation as tribal members currently (2007) use area streams to fulfill subsistence hunting and fishing needs and because ground water potentially could support expanding commercial enterprise and development. Surface-water-quality samples collected from November 2003 through August 2006 were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, fecal-indicator bacteria, suspended-sediment concentration, and total suspended solids. Ground-water samples were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, and fecal-indicator bacteria. Chemical oxygen demand and volatile organic compounds were analyzed in all three samples from one monitoring well located near a construction and demolition landfill on the reservation, and in one sample from another well in the Soldier Creek drainage basin. Previous reports published as a part of this ongoing study identified total phosphorus, triazine herbicides, and fecal coliform bacteria as exceeding their respective water-quality criteria in surface water on the reservation. Previous ground-water assessments identified occasional sample concentrations of dissolved solids, sodium, sulfate, boron, iron, and manganese as exceeding their respective water-quality criteria. Fifty-six percent of the 55 surface-water samples collected during the current study period and analyzed for total phosphorus exceeded the goal of 0.1 mg/L (milligram per liter) established by the U.S. Environmental Protection Agency (USEPA) to limit cultural eutrophication in flowing water. Concentrations of dissolved solids frequently exceeded the USEPA Secondary Drinking-Water Regulation (SDWR) of 500 mg/L in samples from two sites. Concentrations of sodium exceeded the Drinking-Water Advisory of 20 mg/L set by USEPA in almost 50 percent of the surface-water samples. All four samples analyzed for atrazine concentrations showed some concentration of the pesticide, but none exceeded the Maximum Contaminant Level (MCL) established for drinking water by USEPA of 3.0 ?g/L (micrograms per liter) as an annual average. A triazine herbicide screen was used on 55 surface-water samples, and triazine compounds were frequently detected. Triazine herbicides and their degradates are listed on the USEPA Contaminant Candidate List. In 41 percent of surface-water samples, densities of Escherichia coli (E. coli) bacteria exceeded the primary contact, single-sample maximum in public-access bodies of water (1,198 colonies per 100 milliliters of water for samples collected between April 1 and October 31) set by the Kansas Department of Health and Environment (KDHE). Nitrite plus nitrate concentrations in all three water samples from 1 of 10 monitoring wells exceeded the MCL of 10 mg/L established by USEPA for drinking water. Arsenic concentrations in all three samples from one well exceeded the proposed MCL of 10 ?g/L established by USEPA for drinking water. Boron also exceeded the drinking-water advisory in three samples from one well, and iron concentrations were higher than the SDWR in water from four wells. There was some detection of pesticides in ground-water samples from three of the wells, and one detection of the volatile organic compound diethyl ether in one well. Concentrations of dissolved solids exceeded the SDWR in 20 percent of ground-water samples collected during the current study period, and concentration

  3. Water quality in the Cambridge, Massachusetts, drinking-water source area, 2005-8

    USGS Publications Warehouse

    Smith, Kirk P.; Waldron, Marcus C.

    2015-01-01

    During 2005-8, the U.S. Geological Survey, in cooperation with the Cambridge, Massachusetts, Water Department, measured concentrations of sodium and chloride, plant nutrients, commonly used pesticides, and caffeine in base-flow and stormwater samples collected from 11 tributaries in the Cambridge drinking-water source area. These data were used to characterize current water-quality conditions, to establish a baseline for future comparisons, and to describe trends in surface-water quality. The data also were used to assess the effects of watershed characteristics on surface-water quality and to inform future watershed management.

  4. Application of LANDSAT satellite imagery and oceanographic data for verification of an upwelling mathematical model. [Atlantic Coast of Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Tanaka, K.; Almeida, E. G.

    1978-01-01

    The author has identified the following significant results. Data obtained during the cruise of the Cabo Frio and from LANDSAT imagery are used to discuss the characteristics of a linear model which simulates wind induced currents calculated from meteorological conditions at the time of the mission. There is a significant correspondance between the model of simulated horizontal water circulation, sea surface temperature, and surface currents observed on LANDSAT imagery. Close approximations were also observed between the simulation of vertical water movement (upwelling) and the oceanographic measurements taken along a series of points of the prevailing currents.

  5. Potentiometric surface in the Central Oklahoma (Garber-Wellington) aquifer, Oklahoma, 2009

    USGS Publications Warehouse

    Mashburn, Shana L.; Magers, Jessica

    2011-01-01

    A study of the hydrogeology of the Central Oklahoma aquifer was started in 2008 to provide the Oklahoma Water Resources Board (OWRB) hydrogeologic data and a groundwater flow model that can be used as a tool to help manage the aquifer. The 1973 Oklahoma water law requires the OWRB to do hydrologic investigations of Oklahoma's aquifers (termed 'groundwater basins') and to determine amounts of water that may be withdrawn by permitted water users. 'Maximum annual yield' is a term used by OWRB to describe the total amount of water that can be withdrawn from a specific aquifer in any year while allowing a minimum 20-year life of the basin (Oklahoma Water Resources Board, 2010). Currently (2010), the maximum annual yield has not been determined for the Central Oklahoma aquifer. Until the maximum annual yield determination is made, water users are issued a temporary permit by the OWRB for 2 acre-feet/acre per year. The objective of the study, in cooperation with the Oklahoma Water Resources Board, was to study the hydrogeology of the Central Oklahoma aquifer to provide information that will enable the OWRB to determine the maximum annual yield of the aquifer based on different proposed management plans. Groundwater flow models are typically used by the OWRB as a tool to help determine the maximum annual yield. This report presents the potentiometric surface of the Central Oklahoma aquifer based on water-level data collected in 2009 as part of the current (2010) hydrologic study. The U.S. Geological Survey (USGS) Hydrologic Investigations Atlas HA-724 by Christenson and others (1992) presents the 1986-87 potentiometric-surface map. This 1986-87 potentiometric-surface map was made as part of the USGS National Water-Quality Assessment pilot project for the Central Oklahoma aquifer that examined the geochemical and hydrogeological processes operating in the aquifer. An attempt was made to obtain water-level measurements for the 2009 potentiometric-surface map from the wells used for the 1986-87 potentiometric-surface map. Well symbols with circles on the 2009 potentiometric-surface map (fig. 1) indicate wells that were used for the 1986-87 potentiometric-surface map.

  6. Biomimetic Water-Collecting Fabric with Light-Induced Superhydrophilic Bumps.

    PubMed

    Wang, Yuanfeng; Wang, Xiaowen; Lai, Chuilin; Hu, Huawen; Kong, Yeeyee; Fei, Bin; Xin, John H

    2016-02-10

    To develop an efficient water-collecting surface that integrates both fast water-capturing and easy drainage properties is of high current interest for addressing global water issues. In this work, a superhydrophobic surface was fabricated on cotton fabric via manipulation of both the surface roughness and surface energy. This was followed by a subsequent spray coating of TiO2 nanosol that created light-induced superhydrophilic bumps with a unique raised structure as a result of the interfacial tension of the TiO2 nanosol sprayed on the superhydrophobic fiber surface. These raised TiO2 bumps induce both a wettability gradient and a shape gradient, synergistically accelerating water coalescence and water collection. The in-depth study revealed that the quantity and the distribution of the TiO2 had a significant impact on the final water collection efficiency. This inexpensive and facilely fabricated fabric biomimicks the desert beetle's back and spider silk, which are capable of fog harvesting without additional energy consumption.

  7. Recent distribution of lead in the Indian Ocean reflects the impact of regional emissions.

    PubMed

    Echegoyen, Yolanda; Boyle, Edward A; Lee, Jong-Mi; Gamo, Toshitaka; Obata, Hajime; Norisuye, Kazuhiro

    2014-10-28

    Humans have injected lead (Pb) massively into the earth surface environment in a temporally and spatially evolving pattern. A significant fraction is transported by the atmosphere into the surface ocean where we can observe its transport by ocean currents and sinking particles. This study of the Indian Ocean documents high Pb concentrations in the northern and tropical surface waters and extremely low Pb levels in the deep water. North of 20°S, dissolved Pb concentrations decrease from 42 to 82 pmol/kg in surface waters to 1.5-3.3 pmol/kg in deep waters. South of 20°S, surface water Pb concentrations decrease from 21 pmol/kg at 31°S to 7 pmol/kg at 62°S. This surface Pb concentration gradient reflects a southward decrease in anthropogenic Pb emissions. The upper waters of the north and central Indian Ocean have high Pb concentrations resulting from recent regional rapid industrialization and a late phase-out of leaded gasoline, and these concentrations are now higher than currently seen in the central North Pacific and North Atlantic oceans. The Antarctic sector of the Indian Ocean shows very low concentrations due to limited regional anthropogenic Pb emissions, high scavenging rates, and rapid vertical mixing, but Pb still occurs at higher levels than would have existed centuries ago. Penetration of Pb into the northern and central Indian Ocean thermocline waters is minimized by limited ventilation. Pb concentrations in the deep Indian Ocean are comparable to the other oceans at the same latitude, and deep waters of the central Indian Ocean match the lowest observed oceanic Pb concentrations.

  8. Groundwater and surface water dynamics of Na and Cl in an urban stream: effects of road salts

    EPA Science Inventory

    AbstractRoad salts are a growing environmental and health concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na and Cl in an urban stream, Minebank Run (MBR), MD. We observed an increasing salinity trend in this restored stream. Current b...

  9. Near-Inertial Surface Currents and their influence on Surface Dispersion in the Northeastern Gulf of Mexico near the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Gough, M.; Reniers, A.; MacMahan, J. H.; Howden, S. D.

    2014-12-01

    The continental shelf along the northeastern Gulf of Mexico is transected by the critical latitude (30°N) for inertial motions. At this latitude the inertial period is 24 hours and diurnal surface current oscillations can amplify due to resonance with diurnal wind and tidal forcing. Tidal amplitudes are relatively small in this region although K1 tidal currents can be strong over the shelf west of the DeSoto Canyon where the K1 tide propagates onshore as a Sverdrup wave. Other sources of diurnal motions include internal tidal currents, Poincaré waves, and basin resonance. It is therefore very difficult to separate inertial wind-driven motions from other diurnal motions. Spatiotemporal surface currents were measured using hourly 6 km resolution HF radar data collected in June 2010 during the Deepwater Horizon oil spill and July 2012 during the Grand Lagrangian Deployment (GLAD). Surface currents were also measured using GLAD GPS-tracked drifters. NDBC buoy wind data were used to determine wind-forcing, and OSU Tidal Inversion Software (OTIS) were used to predict tidal currents. The relative spatiotemporal influence of diurnal wind and tidal forcing on diurnal surface current oscillations is determined through a series of comparative analyses: phase and amplitude of bandpassed timeseries, wavelet analyses, wind-driven inertial oscillation calculations, and tidal current predictions. The wind-driven inertial ocean response is calculated by applying a simple "slab" model where wind-forcing is allowed to excite a layer of low-density water riding over high density water. The spatial variance of diurnal motions are found to be correlated with satellite turbidity imagery indicating that stratification influences the sea surface inertial response to wind-forcing. Surface dispersion is found to be minimized in regions of high diurnal variance suggesting that mean surface transport is restricted in regions of inertial motions associated with stratification.

  10. Developing the greatest Blue Economy: Water productivity, fresh water depletion, and virtual water trade in the Great Lakes basin

    NASA Astrophysics Data System (ADS)

    Mayer, A. S.; Ruddell, B. L.; Mubako, S. T.

    2016-12-01

    The Great Lakes basin hosts the world's most abundant surface fresh water reserve. Historically an industrial and natural resource powerhouse, the region has suffered economic stagnation in recent decades. Meanwhile, growing water resource scarcity around the world is creating pressure on water-intensive human activities. This situation creates the potential for the Great Lakes region to sustainably utilize its relative water wealth for economic benefit. We combine economic production and trade datasets with water consumption data and models of surface water depletion in the region. We find that, on average, the current economy does not create significant impacts on surface waters, but there is some risk that unregulated large water uses can create environmental flow impacts if they are developed in the wrong locations. Water uses drawing on deep groundwater or the Great Lakes themselves are unlikely to create a significant depletion, and discharge of groundwater withdrawals to surface waters offsets most surface water depletion. This relative abundance of surface water means that science-based management of large water uses to avoid accidentally creating "hotspots" is likely to be successful in avoiding future impacts, even if water use is significantly increased. Commercial water uses are the most productive, with thermoelectric, mining, and agricultural water uses in the lowest tier of water productivity. Surprisingly for such a water-abundant economy, the region is a net importer of water-derived goods and services. This, combined with the abundance of surface water, suggests that the region's water-based economy has room to grow in the 21st century.

  11. Surface Current Measurements In Terra Nova Bay By Hf Radar

    NASA Astrophysics Data System (ADS)

    Flocco, D.; Falco, P.; Wadhams, P.; Spezie, G.

    We present the preliminary results of a field experiment carried out within frame- work of the CLIMA project of the Italian National Programme for Antarctic Research (PNRA) and in cooperation with the Scott Polar Research Institute of Cambridge. Dur- ing the second period (02/12/1999-23/01/2000) of the XV Italian expedition a coastal radar was used to characterize the current field in the area of Terra Nova Bay (TNB). One of the aims of the CLIMA (Climatic Long-term Interactions for the Mass balance in Antarctica) project is to determine the role of the polynya in the sea ice mass bal- ance, water structure and local climate. The OSCR-II experiment was planned in order to provide surface current measurements in the area of TNB polynya, one of the most important coastal polynya of the Ross Sea. OSCR (Ocean Surface Current Radar) is a shore based, remote sensing system designed to measure sea surface currents in coastal waters. Two radar sites (a master and a slave) provide with radial current mea- surements; data combined from both sites yield the total current vector. Unfortunately the master and slave stations did not work together throughout the whole period of the experiment. A description of the experiment and a discussion of the results, will be proposed.

  12. Displacement of Tethered Hydro-Acoustic Modems by Uniform Horizontal Currents

    DTIC Science & Technology

    2009-12-01

    smooth and plane surfaces (in incompressible flow ) in air and in water (From [4]) ..............22  Figure 13.  Drag of streamline bodies, tested in...from a stationary sea- surface buoy or Unmanned Surface Vehicle (USV) weighted by a dense object at the free end (Figure 2). The equations of static...forces on the free end are caused by an attached ballast or float. The moored cable has a free -moving sub- surface buoy positioned at a water depth

  13. Seasonal cycle of circulation in the Antarctic Peninsula and the off-shelf transport of shelf waters into southern Drake Passage and Scotia Sea

    NASA Astrophysics Data System (ADS)

    Jiang, Mingshun; Charette, Matthew A.; Measures, Christopher I.; Zhu, Yiwu; Zhou, Meng

    2013-06-01

    The seasonal cycle of circulation and transport in the Antarctic Peninsula shelf region is investigated using a high-resolution (˜2 km) regional model based on the Regional Oceanic Modeling System (ROMS). The model also includes a naturally occurring tracer with a strong source over the shelf (radium isotope 228Ra, t1/2=5.8 years) to investigate the sediment Fe input and its transport. The model is spun-up for three years using climatological boundary and surface forcing and then run for the 2004-2006 period using realistic forcing. Model results suggest a persistent and coherent circulation system throughout the year consisting of several major components that converge water masses from various sources toward Elephant Island. These currents are largely in geostrophic balance, driven by surface winds, topographic steering, and large-scale forcing. Strong off-shelf transport of the Fe-rich shelf waters takes place over the northeastern shelf/slope of Elephant Island, driven by a combination of topographic steering, extension of shelf currents, and strong horizontal mixing between the ACC and shelf waters. These results are generally consistent with recent and historical observational studies. Both the shelf circulation and off-shelf transport show a significant seasonality, mainly due to the seasonal changes of surface winds and large-scale circulation. Modeled and observed distributions of 228Ra suggest that a majority of Fe-rich upper layer waters exported off-shelf around Elephant Island are carried by the shelfbreak current and the Bransfield Strait Current from the shallow sills between Gerlache Strait and Livingston Island, and northern shelf of the South Shetland Islands, where strong winter mixing supplies much of the sediment derived nutrients (including Fe) input to the surface layer.

  14. An analysis of dynamical factors influencing 2013 giant jellyfish bloom near Qinhuangdao in the Bohai Sea, China∗

    NASA Astrophysics Data System (ADS)

    Wu, Lingjuan; Wang, Jia; Gao, Song; Zheng, Xiangrong; Huang, Rui

    2017-02-01

    The explosive growth of Nemopilema nomurai occurred near the coastal waters of Qinhuangdao in July 2013. However, it did not take place in 2012. In this paper, the dynamical factors of wind, ocean current and sea temperature on giant jellyfish bloom in 2013 is analyzed by a comprehensive investigation. The numerical experiments are based on a numerical trajectory model of the jellyfish particles, which are released into the waters from Feiyan Shoal to New Yellow River Mouth, where is speculated as the most likely remote source of Qinhuangdao jellyfish bloom. The results show that in surface layer the jellyfish drift is jointly driven by the surface wind and surface current. For example, in northeastern Bohai Bay, the giant jellyfish moved northwestward in surface layer with influence of the westward wind and current anomalies during the second half of May in 2013, then approached the south of Jingtang Port by early June, and accumulated near Qinhuangdao in early July. The 2012 scenario during the same period was quite different. The jellyfish particles influencing waters near Qinhuangdao decreased with depth and there was few (no) particles influencing Qinhuangdao in middle (bottom) layer because the anticyclonic residual circulation weakened with depth in Bohai Bay. Besides, in the potential source waters of jellyfish, sea temperature in 2012 was more suitable for jellyfish bloom than that in 2013 if there was adequate bait. Hence, the specified direction of wind and current pattern in the Bohai Sea in surface layer (especially in the northeastern Bohai Bay during the second half of May) was more important for jellyfish bloom near Qinhuangdao than the sea temperature in the potential source.

  15. Blueprint for a coupled model of sedimentology, hydrology, and hydrogeology in streambeds

    NASA Astrophysics Data System (ADS)

    Partington, Daniel; Therrien, Rene; Simmons, Craig T.; Brunner, Philip

    2017-06-01

    The streambed constitutes the physical interface between the surface and the subsurface of a stream. Across all spatial scales, the physical properties of the streambed control surface water-groundwater interactions. Continuous alteration of streambed properties such as topography or hydraulic conductivity occurs through erosion and sedimentation processes. Recent studies from the fields of ecology, hydrogeology, and sedimentology provide field evidence that sedimentological processes themselves can be heavily influenced by surface water-groundwater interactions, giving rise to complex feedback mechanisms between sedimentology, hydrology, and hydrogeology. More explicitly, surface water-groundwater exchanges play a significant role in the deposition of fine sediments, which in turn modify the hydraulic properties of the streambed. We explore these feedback mechanisms and critically review the extent of current interaction between the different disciplines. We identify opportunities to improve current modeling practices. For example, hydrogeological models treat the streambed as a static rather than a dynamic entity, while sedimentological models do not account for critical catchment processes such as surface water-groundwater exchange. We propose a blueprint for a new modeling framework that bridges the conceptual gaps between sedimentology, hydrogeology, and hydrology. Specifically, this blueprint (1) fully integrates surface-subsurface flows with erosion, transport, and deposition of sediments and (2) accounts for the dynamic changes in surface elevation and hydraulic conductivity of the streambed. Finally, we discuss the opportunities for new research within the coupled framework.

  16. Analysis of the sensitivity of in vitro bioassays for androgenic, progestagenic, glucocorticoid, thyroid and estrogenic activity: Suitability for drinking and environmental waters.

    PubMed

    Leusch, Frederic D L; Neale, Peta A; Hebert, Armelle; Scheurer, Marco; Schriks, Merijn C M

    2017-02-01

    The presence of endocrine disrupting chemicals in the aquatic environment poses a risk for ecosystem health. Consequently there is a need for sensitive tools, such as in vitro bioassays, to monitor endocrine activity in environmental waters. The aim of the current study was to assess whether current in vitro bioassays are suitable to detect endocrine activity in a range of water types. The reviewed assays included androgenic (n=11), progestagenic (n=6), glucocorticoid (n=5), thyroid (n=5) and estrogenic (n=8) activity in both agonist and antagonist mode. Existing in vitro bioassay data were re-evaluated to determine assay sensitivity, with the calculated method detection limit compared with measured hormonal activity in treated wastewater, surface water and drinking water to quantify whether the studied assays were sufficiently sensitive for environmental samples. With typical sample enrichment, current in vitro bioassays are sufficiently sensitive to detect androgenic activity in treated wastewater and surface water, with anti-androgenic activity able to be detected in most environmental waters. Similarly, with sufficient enrichment, the studied mammalian assays are able to detect estrogenic activity even in drinking water samples. Fewer studies have focused on progestagenic and glucocorticoid activity, but some of the reviewed bioassays are suitable for detecting activity in treated wastewater and surface water. Even less is known about (anti)thyroid activity, but the available data suggests that the more sensitive reviewed bioassays are still unlikely to detect this type of activity in environmental waters. The findings of this review can help provide guidance on in vitro bioassay selection and required sample enrichment for optimised detection of endocrine activity in environmental waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Modeling of Dense Water Production and Salt Transport from Alaskan Coastal Polynyas

    NASA Technical Reports Server (NTRS)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2000-01-01

    The main significance of this paper is that a realistic, three-dimensional, high-resolution primitive equation model has been developed to study the effects of dense water formation in Arctic coastal polynyas. The model includes realistic ambient stratification, realistic bottom topography, and is forced by time-variant surface heat flux, surface salt flux, and time-dependent coastal flow. The salt and heat fluxes, and the surface ice drift, are derived from satellite observations (SSM/I and NSCAT sensors). The model is used to study the stratification, salt transport, and circulation in the vicinity of Barrow Canyon during the 1996/97 winter season. The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model using the wind-transport regression. The results show that for the 1996/97 winter the northeastward coastal current exports 13% to 26% of the salt produced by coastal polynyas upstream of Barrow Canyon in 20 to 30 days. The salt export occurs more rapidly during less persistent polynyas. The inclusion of ice-water stress in the model makes the coastal current slightly weaker and much wider due to the combined effects of surface drag and offshore Ekman transport.

  18. Arctic Marine Water Isotope Characteristics: In-situ, Continuous Surface and Water Column Isoscapes (δ18O and δ2H) and Linkages into the Marine Food Web

    NASA Astrophysics Data System (ADS)

    Welker, J. M.; Klein, E. S.; Collins, E.; Iken, K.; Hopcroft, R. R.; Norcross, B.

    2016-12-01

    The Arctic is under going rapid and profound sea ice, temperature, food web, ocean current, precipitation and synoptic weather changes. Delineating these changes requires a suite of tools, especially those that have the ability to depict the interactive nature of the marine system. Understanding the marine water isotope cycle is paramount to recognizing the unique isotopic properties of this region and to characterize possibly the reorganization of the Arctic. The Arctic marine water isotope system has been primarily examined with shore-based stations and or episodic station sampling; without continuous surface water sampling in combination with station-specific water column and organismic measurements. New technologies that allow in situ and continuous water isotope measurements (vapor and liquid) and the integration of inorganic and organic water isotope geochemistry provide a means to reveal in more detail the fundamental traits of the Arctic marine water isotope system. In July and August of 2016, we are measuring seawater surface (8 m depth) isotopes (δ18O and δ2H) in-situ and continuously (Picarro CWS system) along a research transect (60oN to 77oN) from the Gulf of Alaska to the Arctic Ocean Basin. These continuous surface water isotope measurements are being combined with periodic water column isotope profiling and corresponding organic δ18O and δ2H measurements of pelagic and benthic organisms (microbes to fish) to depths of up to 2600m. We measured surface seawater δ18O that from -1‰ to -6‰; while seawater profiles followed vertical separation in the water column; possibly reflecting divergent currents of the Arctic. Station based δ18O and δ2H values of surface water did not vary by more than 1‰ δ18O over the course of our 24-36 hour sampling periods. The δ18O and δ2H values of marine organism throughout the water column and by trophic level will be analyzed and a seawater-food web model will be developed in addition to surface and water column isoscapes. Our Arctic marine water isotope cycle research is providing the most detailed depiction ever of the western Arctic and sub-Arctic surface water, water column and marine food web O/H isotope properties. Our findings will provide an important new understanding of the Arctic and the high definition of its water isotope cycle.

  19. A seepage meter designed for use in flowing water

    USGS Publications Warehouse

    Rosenberry, D.O.

    2008-01-01

    Seepage meters provide one of the most direct means to measure exchange of water across the sediment-water interface, but they generally have been unsuitable for use in fluvial settings. Although the seepage bag can be placed inside a rigid container to minimize velocity head concerns, the seepage cylinder installed in the sediment bed projects into and disrupts the flow field, altering both the local-scale fluid exchange as well as measurement of that exchange. A low-profile seepage meter designed for use in moving water was tested in a seepage meter flux tank where both current velocity and seepage velocity could be controlled. The conical seepage cylinder protrudes only slightly above the sediment bed and is connected via tubing to a seepage bag or flowmeter positioned inside a rigid shelter that is located nearby where current velocity is much slower. Laboratory and field tests indicate that the net effect of the small protrusion of the seepage cylinder into the surface water flow field is inconsequentially small for surface water currents up to 65 cm s-1. Current velocity affects the variability of seepage measurements; seepage standard deviation increased from ???2 to ???6 cm d-1 as current velocity increased from 9 to 65 cm s-1. Substantial bias can result if the shelter is not placed to minimize hydraulic gradient between the bag and the seepage cylinder.

  20. Vegetated Treatment Systems for Removing Contaminants Associated with Surface Water Toxicity in Agriculture and Urban Runoff.

    PubMed

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael

    2017-05-15

    Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.

  1. Phlogopite Decomposition, Water, and Venus

    NASA Technical Reports Server (NTRS)

    Johnson, N. M.; Fegley, B., Jr.

    2005-01-01

    Venus is a hot and dry planet with a surface temperature of 660 to 740 K and 30 parts per million by volume (ppmv) water vapor in its lower atmosphere. In contrast Earth has an average surface temperature of 288 K and 1-4% water vapor in its troposphere. The hot and dry conditions on Venus led many to speculate that hydrous minerals on the surface of Venus would not be there today even though they might have formed in a potentially wetter past. Thermodynamic calculations predict that many hydrous minerals are unstable under current Venusian conditions. Thermodynamics predicts whether a particular mineral is stable or not, but we need experimental data on the decomposition rate of hydrous minerals to determine if they survive on Venus today. Previously, we determined the decomposition rate of the amphibole tremolite, and found that it could exist for billions of years at current surface conditions. Here, we present our initial results on the decomposition of phlogopite mica, another common hydrous mineral on Earth.

  2. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona

    NASA Astrophysics Data System (ADS)

    Scanlon, Bridget R.; Reedy, Robert C.; Faunt, Claudia C.; Pool, Donald; Uhlman, Kristine

    2016-03-01

    Projected longer-term droughts and intense floods underscore the need to store more water to manage climate extremes. Here we show how depleted aquifers have been used to store water by substituting surface water use for groundwater pumpage (conjunctive use, CU) or recharging groundwater with surface water (managed aquifer recharge, MAR). Unique multi-decadal monitoring from thousands of wells and regional modeling datasets for the California Central Valley and central Arizona were used to assess CU and MAR. In addition to natural reservoir capacity related to deep water tables, historical groundwater depletion further expanded aquifer storage by ˜44 km3 in the Central Valley and by ˜100 km3 in Arizona, similar to or exceeding current surface reservoir capacity by up to three times. Local river water and imported surface water, transported through 100s of km of canals, is substituted for groundwater (≤15 km3 yr-1, CU) or is used to recharge groundwater (MAR, ≤1.5 km3 yr-1) during wet years shifting to mostly groundwater pumpage during droughts. In the Central Valley, CU and MAR locally reversed historically declining water-level trends, which contrasts with simulated net regional groundwater depletion. In Arizona, CU and MAR also reversed historically declining groundwater level trends in active management areas. These rising trends contrast with current declining trends in irrigated areas that lack access to surface water to support CU or MAR. Use of depleted aquifers as reservoirs could expand with winter flood irrigation or capturing flood discharges to the Pacific (0-1.6 km3 yr-1, 2000-2014) with additional infrastructure in California. Because flexibility and expanded portfolio options translate to resilience, CU and MAR enhance drought resilience through multi-year storage, complementing shorter term surface reservoir storage, and facilitating water markets.

  3. Surface Effect Takeoff and Landing System (SETOLS)

    DTIC Science & Technology

    1974-04-01

    State-of-the-Art 33 4. Program Tranisfer ~34 5. Future Research 34 6. Current Organizational Contacts and Identification 36 I REFE~RENCES 37 DEFENSE...ability to taxi over water, mud, low tree stumps, and empty and water-filled ditches. The flight tests indicated no significant changes in the...flight Lested from hard--surface runways, turf, water, snow, and fine sand. The aircraft also demonstrated the ability to taxi across mud, low tree

  4. Effects of road salts on groundwater and surface water dynamics of socium and chloride in an urban restored stream

    EPA Science Inventory

    Road salts are a growing environmental concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na+ and Cl− in Minebank Run (MBR), an urban stream in Maryland, USA. We observed an increasing salinity trend in this restored stream. Current basef...

  5. The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.

    2002-05-01

    Water is perhaps the most important and most pervasive chemical on our planet. The influence of water permeates virtually all areas of biochemical, chemical and physical importance, and is especially evident in phenomena occurring at the interfaces of solid surfaces. Since 1987, when Thiel and Madey (TM) published their review titled "The Interaction of Water with Solid Surfaces: Fundamental Aspects" in Surface Science Reports, there has been considerable progress made in further understanding the fundamental interactions of water with solid surfaces. In the decade and a half, the increased capability of surface scientists to probe at the molecular-level has resultedmore » in more detailed information of the properties of water on progressively more complicated materials and under more stringent conditions. This progress in understanding the properties of water on solid surfaces is evident both in areas for which surface science methodology has traditionally been strong (catalysis and electronic materials) and also in new areas not traditionally studied by surface scientists, such as electrochemistry, photoconversion, mineralogy, adhesion, sensors, atmospheric chemistry, and tribology. Researchers in all these fields grapple with very basic questions regarding the interactions of water with solid surfaces, such as how is water adsorbed, what are the chemical and electrostatic forces that constitute the adsorbed layer, how is water thermally or non-thermally activated, and how do coadsorbates influence these properties of water. The attention paid to these and other fundamental questions in the past decade and a half has been immense. In this review, experimental studies published since the TM review are assimilated with those covered by TM to provide a current picture of the fundamental interactions of water with solid surfaces.« less

  6. Distribution of a pelagic tunicate, Salpa fusiformis in warm surface current of the eastern Korean waters and its impingement on cooling water intakes of Uljin nuclear power plant.

    PubMed

    Chae, Jinho; Choi, Hyun Woo; Lee, Woo Jin; Kim, Dongsung; Lee, Jae Hac

    2008-07-01

    Impingement of a large amount of gelatinous plankton, Salpa fusiformis on the seawater intake system-screens in a nuclear power plant at Uljin was firstly recorded on 18th June 2003. Whole amount of the clogged animals was estimated were presumptively at 295 tons and the shortage of cooling seawater supply by the animal clogging caused 38% of decrease in generation capability of the power plant. Zooplankton collection with a multiple towing net during the day and at night from 5 to 6 June 2003 included various gelatinous zooplanktons known to be warm water species such as salps and siphonophores. Comparatively larger species, Salpa fusiformis occupied 25.4% in individual density among the gelatinous plankton and showed surface distribution in the depth shallower than thermocline, performing little diel vertical migration. Temperature, salinity and satellite data also showed warm surface current predominated over the southern coastal region near the power plant in June. The results suggested that warm surface current occasionally extended into the neritic region may transfer S. fusiformis, to the waters off the power plant. The environmental factors and their relation to ecobiology of the large quantity of salpa population that are being sucked into the intake channel of the power plant are discussed.

  7. Modeling river discharge and sediment transport in the Wax Lake-Atchafalaya basin with remote sensing parametrization.

    NASA Astrophysics Data System (ADS)

    Simard, M.; Liu, K.; Denbina, M. W.; Jensen, D.; Rodriguez, E.; Liao, T. H.; Christensen, A.; Jones, C. E.; Twilley, R.; Lamb, M. P.; Thomas, N. A.

    2017-12-01

    Our goal is to estimate the fluxes of water and sediments throughout the Wax Lake-Atchafalaya basin. This was achieved by parametrization of a set of 1D (HEC-RAS) and 2D (DELFT3D) hydrology models with state of the art remote sensing measurements of water surface elevation, water surface slope and total suspended sediment (TSS) concentrations. The model implementations are spatially explicit, simulating river currents, lateral flows to distributaries and marshes, and spatial variations of sediment concentrations. Three remote sensing instruments were flown simultaneously to collect data over the Wax Lake-Atchafalaya basin, and along with in situ field data. A Riegl Lidar was used to measure water surface elevation and slope, while the UAVSAR L-band radar collected data in repeat-pass interferometric mode to measure water level change within adjacent marshes and islands. These data were collected several times as the tide rose and fell. AVRIS-NG instruments measured water surface reflectance spectra, used to estimate TSS. Bathymetry was obtained from sonar transects and water level changes were recorded by 19 water level pressure transducers. We used several Acoustic Doppler Current Profiler (ADCP) transects to estimate river discharge. The remotely sensed measurements of water surface slope were small ( 1cm/km) and varied slightly along the channel, especially at the confluence with bayous and the intra-coastal waterway. The slope also underwent significant changes during the tidal cycle. Lateral fluxes to island marshes were mainly observed by UAVSAR close to the distributaries. The extensive remote sensing measurements showed significant disparity with the hydrology model outputs. Observed variations in water surface slopes were unmatched by the model and tidal wave propagation was much faster than gauge measurements. The slope variations were compensated for in the models by tuning local lateral fluxes, bathymetry and riverbed friction. Overall, the simpler 1D model could best simulate observed tidal wave propagation and water surface slope. The complexity of the 2D model requires further quantification of parameter sensitivity and improvement of the parametrization routine.

  8. Bacterial community diversity and variation in spray water sources and the tomato fruit surface.

    PubMed

    Telias, Adriana; White, James R; Pahl, Donna M; Ottesen, Andrea R; Walsh, Christopher S

    2011-04-21

    Tomato (Solanum lycopersicum) consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water) when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an important step forward towards the development of science-based metrics for Good Agricultural Practices.

  9. Cavitation induced Becquerel effect.

    PubMed

    Prevenslik, T V

    2003-06-01

    The observation of an electrical current upon the ultraviolet (UV) illumination of one of a pair of identical electrodes in liquid water, called the Becquerel effect, was made over 150 years ago. More recently, an electrical current was found if the water surrounding one electrode was made to cavitate by focused acoustic radiation, the phenomenon called the cavitation induced Becquerel effect. Since cavitation is known to produce UV light, the electrode may simply absorb the UV light and produce the current by the photo-emission theory of photoelectrochemistry. But the current was found to be semi-logarithmic with the standard electrode potential which is characteristic of the oxidation of the electrode surface in the photo-decomposition theory, and not the photo-emission theory. High bubble collapse temperatures may oxidize the electrode, but this is unlikely because melting was not observed on the electrode surfaces. At ambient temperature, oxidation may proceed by chemical reaction provided a source of vacuum ultraviolet (VUV) radiation is available to produce the excited OH* states of water to react with the electrode. The source of VUV radiation is shown to be the spontaneous emission of coherent infrared (IR) radiation from water molecules in particles that form in bubbles because of surface tension, the spontaneous IR emission induced by cavity quantum electrodynamics. The excited OH* states are produced as the IR radiation accumulates to VUV levels in the bubble wall molecules.

  10. Evaporation Rates for Liquid Water and Ice Under Current Martian Conditions

    NASA Technical Reports Server (NTRS)

    Sears, D. W. G.; Moore, S. R.; Meier, A.; Chittenden, J.; Kareev, M.; Farmer, C. B.

    2004-01-01

    A number of studies have been concerned with the evaporation rates under martian conditions in order to place limits on the possible survival time of both liquid water and ice exposed on the surface of Mars. Such studies also aid in assessing the efficacy of an overlying layer of dust or loose regolith material in providing a barrier to free evaporation and thus prolong the lifetime of water in locations where its availability to putative living organisms would be significant. A better quantitative understanding of the effects of phase changes of water in the near surface environment would also aid the evaluation of the possible role of water in the formation of currently observed features, such as gullies in cliff walls and relatively short-term changes in the albedo of small surface areas ('dark stains'). Laboratory measurements aimed at refinement of our knowledge of these values are described here. The establishment of accurate values for evaporation rates and their dependence on the physical conditions of temperature, pressure and energy input, is an important benchmark for the further investigation of the efficacy of barriers to free evaporation in providing a prolonged period of survival of the water, particularly as a liquid.

  11. Langmuir circulation inhibits near-surface water turbulence

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-07-01

    In the surface ocean, breaking waves are a major source of air bubbles and turbulent kinetic energy. During the presence of a consistent surface wind, these wave-generated bubbles, along with other surface material like seaweed or foam, can be drawn into long rows along the surface. Driving this organization is Langmuir circulation, a phenomenon in which the wind and waves cause surface waters to rotate helically, moving like a wire wrapped around a pole in the windward direction. These spiral currents oscillate between clockwise and counterclockwise rotations, such that in some places the surface waters are pushed together and in others they are pulled apart. Researchers have previously found that at sites of convergence the bubbles produced by breaking waves are pushed to depths of 15 meters or more, with important implications for air-sea gas mixing and other processes.

  12. LLWBCS changes through surface mesoscale activity and baroclinic tides in the Solomon Sea

    NASA Astrophysics Data System (ADS)

    Gourdeau, L.; Djath, B.; Ganachaud, A. S.; Tchilibou, M. L.; Verron, J. A.; Jouanno, J.

    2016-02-01

    In the south west Pacific, the Solomon Sea is on the pathway of the Low Latitudes Western Boundary Currents that connect the subtropics to the equator. Changes in their strengths, or in their water mass properties may have implication for ENSO and its low frequency modulation. During their transit in the Solomon Sea, the salinity maximum at thermocline level, characteristic of the South Pacific Tropical Waters (SPTW), is largely eroded. Different mechanisms could explain such salt erosion whose current/bathymetry interaction, internal tides, eddy activity. The Solomon Sea is an area of high level of eddy kinetic energy (EKE), especially in the surface layers, and its complex bathymetry is favourable for generation and dissipation of internal tides. Based on high resolution modelling, glider, and altimetric data mesoscale eddies observed at the surface are analysed in their 4D aspects. Their role on water mass transformation is explored. These eddies may affect the surface layers (σ<23.3) and the upper thermocline waters (23.3< σ <24.3), but they cannot explained the erosion of the salinity maximum below. Simulations with and without explicit tides provide a description of baroclinic tides in the Solomon Sea. Their role on water mixing is evaluated, especially for the SPTW.

  13. EXPLORATORY OCCURRENCE STUDY OF NEWLY EMERGING PATHOGENS IN POTABLE WATER

    EPA Science Inventory

    Recent attention has focused on the potential transmission via drinking water of two bacterial pathogens, Aeromonas and Helicobacter pylori, both of which are included in the current Contaminant Candidate List. Aeromonas bacteria occur naturally in surface waters and have been i...

  14. On the methane paradox: Transport from shallow water zones rather than in situ methanogenesis is the major source of CH4 in the open surface water of lakes

    NASA Astrophysics Data System (ADS)

    Encinas Fernández, Jorge; Peeters, Frank; Hofmann, Hilmar

    2016-10-01

    Estimates of global methane (CH4) emissions from lakes and the contributions of different pathways are currently under debate. In situ methanogenesis linked to algae growth was recently suggested to be the major source of CH4 fluxes from aquatic systems. However, based on our very large data set on CH4 distributions within lakes, we demonstrate here that methane-enriched water from shallow water zones is the most likely source of the basin-wide mean CH4 concentrations in the surface water of lakes. Consistently, the mean surface CH4 concentrations are significantly correlated with the ratio between the surface area of the shallow water zone and the entire lake, fA,s/t, but not with the total surface area. The categorization of CH4 fluxes according to fA,s/t may therefore improve global estimates of CH4 emissions from lakes. Furthermore, CH4 concentrations increase substantially with water temperature, indicating that seasonally resolved data are required to accurately estimate annual CH4 emissions.

  15. The Surface of Mars: A Post-Viking View.

    ERIC Educational Resources Information Center

    Carr, Michael H.

    1983-01-01

    Highlights current information on the martian surface. Topics include a planetary overview (atmosphere, dust storms, water vapor/ice, soil analysis) and surface features (craters, volcanoes, canyons/channels, polar regions, wind-related features). Similarities/differences between Mars and Earth are also discussed. (JN)

  16. Characterization of the Martian surface deposits by the Mars Pathfinder rover, Sojourner.

    NASA Astrophysics Data System (ADS)

    Matijevic, J. R.; Crisp, J.; Bickler, D. B.; Banes, R. S.; Cooper, B. K.; Eisen, H. J.; Gensler, J.; Haldemann, A.; Hartman, F.; Jewett, K. A.; Matthies, L. H.; Laubach, S. L.; Mishkin, A. H.; Morrison, J. C.; Nguyen, T. T.; Sirota, A. R.; Stone, H. W.; Stride, S.; Sword, L. F.; Tarsala, J. A.; Thompson, A. D.; Wallace, M. T.; Welch, R.; Wellman, E.; Wilcox, B. H.; Ferguson, D.; Jenkins, P.; Kolecki, J.; Landis, G. A.; Wilt, D.; Rover Team

    1997-12-01

    The Mars Pathfinder rover discovered pebbles on the surface and in rocks that may be sedimentary - not volcanic - in origin. Surface pebbles may have been rounded by Ares flood waters or liberated by weathering of sedimentary rocks called conglomerates. Conglomerates imply that water existed elsewhere and earlier than the Ares flood. Most soil-like deposits are similar to moderately dense soils on Earth. Small amounts of dust are currently settling from the atmosphere.

  17. Experimental Measurements of the Water Evaporation Rate of a Physical Model

    NASA Astrophysics Data System (ADS)

    Turza, Róbert; Füri, Belo B.

    2017-03-01

    As the number of indoor swimming pools and wellness centers are currently growing, it is necessary to concentrate on the parameters of indoor environments. These parameters are necessary for the design of the HVAC systems that operate these premises. In indoor swimming-pool facilities, the energy demand is large due to ventilation losses from exhaust air. Since water evaporates from a pool's surface, exhaust air has a high water content and specific enthalpy. In this paper the results of the water evaporation rate measured from swimming pool surfaces at higher thermal water temperatures are described.

  18. Florida Current surface temperature and salinity variability during the last millennium

    NASA Astrophysics Data System (ADS)

    Lund, David C.; Curry, William

    2006-06-01

    The salinity and temperature of the Florida Current are key parameters affecting the transport of heat into the North Atlantic, yet little is known about their variability on centennial timescales. Here we report replicated, high-resolution foraminiferal records of Florida Current surface hydrography for the last millennium from two coring sites, Dry Tortugas and the Great Bahama Bank. The oxygen isotopic composition of Florida Current surface water (δ18Ow) near Dry Tortugas increased 0.4‰ during the course of the Little Ice Age (LIA) (˜1200-1850 A.D.), equivalent to a salinity increase of 0.8-1.5. On the Great Bahama Bank, where surface waters are influenced by the North Atlantic subtropical gyre, δ18Ow increased by 0.3‰ during the last 200 years. Although a portion (˜0.1‰) of this shift may be an artifact of anthropogenically driven changes in surface water ΣCO2, the remaining δ18Ow signal implies a 0.4-1 increase in salinity after 200 years B.P. The simplest explanation of the δ18Ow data is southward migration of the Atlantic Hadley circulation during the LIA. Scaling of the δ18Ow records to salinity using the modern low-latitude δ18Ow-S slope produces an unrealistic reversal in the salinity gradient between the two sites. Only if δ18Ow is scaled to salinity using a high-latitude δ18Ow-S slope can the records be reconciled. Variable atmospheric 14C paralleled Dry Tortugas δ18Ow, suggesting that solar irradiance paced centennial-scale migration of the Inter-Tropical Convergence Zone and changes in Florida Current salinity during the last millennium.

  19. Quantifying riverine surface currents from time sequences of thermal infrared imagery

    USGS Publications Warehouse

    Puleo, J.A.; McKenna, T.E.; Holland, K.T.; Calantoni, J.

    2012-01-01

    River surface currents are quantified from thermal and visible band imagery using two methods. One method utilizes time stacks of pixel intensity to estimate the streamwise velocity at multiple locations. The other method uses particle image velocimetry to solve for optimal two-dimensional pixel displacements between successive frames. Field validation was carried out on the Wolf River, a small coastal plain river near Landon, Mississippi, United States, on 26-27 May 2010 by collecting imagery in association with in situ velocities sampled using electromagnetic current meters deployed 0.1 m below the river surface. Comparisons are made between mean in situ velocities and image-derived velocities from 23 thermal and 6 visible-band image sequences (5 min length) during daylight and darkness conditions. The thermal signal was a small apparent temperature contrast induced by turbulent mixing of a thin layer of cooler water near the river surface with underlying warmer water. The visible-band signal was foam on the water surface. For thermal imagery, streamwise velocities derived from the pixel time stack and particle image velocimetry technique were generally highly correlated to mean streamwise current meter velocities during darkness (r 2 typically greater than 0.9) and early morning daylight (r 2 typically greater than 0.83). Streamwise velocities from the pixel time stack technique had high correlation for visible-band imagery during early morning daylight hours with respect to mean current meter velocities (r 2 > 0.86). Streamwise velocities for the particle image velocimetry technique for visible-band imagery had weaker correlations with only three out of six correlations performed having an r 2 exceeding 0.6. Copyright 2012 by the American Geophysical Union.

  20. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn

    2015-10-15

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surfacemore » and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.« less

  1. A biome-scale assessment of the impact of invasive alien plants on ecosystem services in South Africa.

    PubMed

    van Wilgen, B W; Reyers, B; Le Maitre, D C; Richardson, D M; Schonegevel, L

    2008-12-01

    This paper reports an assessment of the current and potential impacts of invasive alien plants on selected ecosystem services in South Africa. We used data on the current and potential future distribution of 56 invasive alien plant species to estimate their impact on four services (surface water runoff, groundwater recharge, livestock production and biodiversity) in five terrestrial biomes. The estimated reductions in surface water runoff as a result of current invasions were >3000 million m(3) (about 7% of the national total), most of which is from the fynbos (shrubland) and grassland biomes; the potential reductions would be more than eight times greater if invasive alien plants were to occupy the full extent of their potential range. Impacts on groundwater recharge would be less severe, potentially amounting to approximately 1.5% of the estimated maximum reductions in surface water runoff. Reductions in grazing capacity as a result of current levels of invasion amounted to just over 1% of the potential number of livestock that could be supported. However, future impacts could increase to 71%. A 'biodiversity intactness index' (the remaining proportion of pre-modern populations) ranged from 89% to 71% for the five biomes. With the exception of the fynbos biome, current invasions have almost no impact on biodiversity intactness. Under future levels of invasion, however, these intactness values decrease to around 30% for the savanna, fynbos and grassland biomes, but to even lower values (13% and 4%) for the two karoo biomes. Thus, while the current impacts of invasive alien plants are relatively low (with the exception of those on surface water runoff), the future impacts could be very high. While the errors in these estimates are likely to be substantial, the predicted impacts are sufficiently large to suggest that there is serious cause for concern.

  2. Fast electrochemical deposition of Ni(OH)2 precursor involving water electrolysis for fabrication of NiO thin films

    NASA Astrophysics Data System (ADS)

    Koyama, Miki; Ichimura, Masaya

    2018-05-01

    Ni(OH)2 precursor films were deposited by galvanostatic electrochemical deposition (ECD), and NiO thin films were fabricated by annealing in air. The effects of the deposition current densities were studied in a range that included current densities high enough to electrolyze water and generate hydrogen bubbles. The films fabricated by ECD involving water electrolysis had higher transparency and smoother surface morphology than those deposited with lower current densities. In addition, the annealed NiO films clearly had preferred (111) orientation when the deposition was accompanied by water electrolysis. p-type conduction was confirmed for the annealed films.

  3. Subtidal currents over the central California slope: Evidence for offshore veering of the undercurrent and for direct, wind-driven slope currents

    USGS Publications Warehouse

    Noble, M.A.; Ramp, S.R.

    2000-01-01

    In February 1991, an array of six current-meter moorings was deployed for one year across the central California outer shelf and slope. The main line of the array extended 30 km offshore of the shelf break, out to water depths of 1400 m. A more sparsely-instrumented line, displaced 30 km to the northwest, extended 14 km offshore. Though shorter, the northern line spanned similar water depths because the gradient of the topography steepened in the northern region. A poleward flow pattern, typical of the California undercurrent, was seen across both lines in the array over most of the year. The poleward flow was surface intensified. In general, the portion of the undercurrent that crossed the southern line had larger amplitudes and penetrated more deeply into the water column than the portion that crossed the northern line. Transport over the year ranged from 0 to 2.5 Sverdrups (Sv) poleward across the southern line; 0 to 1 Sv poleward across the northern line. We suggest the difference in transport was caused by topographic constraints, which tended to force the poleward flow offshore of the northern measurement sites. The slope of the topography steepened too abruptly to allow the poleward flow to follow isobaths when currents were strong. When current velocities lessened, a more coherent flow pattern was seen across both lines in the array. In general, the poleward flow patterns in the undercurrent were not affected by local winds or by the local alongshore pressure gradient. Nor was a strong seasonal pattern evident. Rather unexpectedly, a small but statistically significant fraction of the current variance over the mid- and outer slope was driven by the surface wind stress. An alongshelf wind stress caused currents to flow along the slope, parallel to the wind field, down to depths of 400 m below the surface and out to distances of 2 Rossby radii past the shelf break. The transfer functions were weak, 3-4 cm/s per dyn cm-2, but comparable to wind-driven current amplitudes of 4-6 cm/s per unit wind stress over the middle shelf. Equatorward, alongshelf winds also caused water from 200-300 m over the slope to upwell onto the shelf as the surface water moved offshore.

  4. Surface Crystallization of Cloud Droplets: Implications for Climate Change and Ozone Depletion

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Djikaev, Y. S.; Reiss, H.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    The process of supercooled liquid water crystallization into ice is still not well understood. Current experimental data on homogeneous freezing rates of ice nucleation in supercooled water droplets show considerable scatter. For example, at -33 C, the reported freezing nucleation rates vary by as much as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Until now, experimental data on the freezing of supercooled water has been analyzed under the assumption that nucleation of ice took place in the interior volume of a water droplet. Here, the same data is reanalyzed assuming that the nucleation occurred "pseudoheterogeneously" at the air (or oil)-liquid water interface of the droplet. Our analysis suggest that the scatter in the nucleation data can be explained by two main factors. First, the current assumption that nucleation occurs solely inside the volume of a water droplet is incorrect. Second, because the nucleation process most likely occurs on the surface, the rates of nuclei formation could differ vastly when oil or air interfaces are involved. Our results suggest that ice freezing in clouds may initiate on droplet surfaces and such a process can allow for low amounts of liquid water (approx. 0.002 g per cubic meters) to remain supercooled down to -40 C as observed in the atmosphere.

  5. Observing mass exchange with the Lofoten Basin using surface drifters

    NASA Astrophysics Data System (ADS)

    Dugstad, Johannes S.; LaCasce, Joe; Koszalka, Inga M.; Fer, Ilker

    2017-04-01

    The Lofoten Basin in the Nordic Seas plays a central role in the global overturning circulation, acting as a reservoir for northward-flowing Atlantic water. Substantial heat loss occurs here, permitting the waters to become denser and eventually sink nearer the Arctic. Idealized modeling studies and theoretical arguments suggest the warm water enters the Lofoten Basin via eddy transport from the boundary current over the adjacent continental slope. But there is no observational evidence that this is the major contribution to mass exchange between the warm Atlantic Current and the Basin. How the basin waters exit also remains a mystery. Surface drifters offer an unique possibility to study the pathways of the boundary-basin exchange of mass and heat. We thereby examine trajectories of surface drifters released in the Nordic Seas in the POLEWARD and PROVOLO experiments, and supplemented by historical data from the Global Drifter Array. Contrary to the idea that the boundary current eddies are the main source, the results suggest that fluid is entering the Lofoten Basin from all sides. However, the drifters exit preferentially in the northeast corner of the basin. This asymmetry likely contributes to the extended residence times of the warm Atlantic waters in the Lofoten Basin. We consider various measures to quantify the effect, and test whether this is captured in a high resolution numerical model.

  6. Characterization of the surface wave variability in the California Current region from satellite altimetry.

    NASA Astrophysics Data System (ADS)

    Villas Boas, A. B.; Gille, S. T.; Mazloff, M. R.

    2016-02-01

    Surface gravity waves play a crucial role in upper-ocean dynamics, and they are an important mechanism by which the ocean exchanges energy with the overlying atmosphere. Surface waves are largely wind forced and can also be modulated by ocean currents via nonlinear wave-current interactions, leading to either an amplification or attenuation of the wave amplitude. Even though individual waves cannot be detected by present satellite altimeters, surface waves have the potential to produce a sea-state bias in altimeter measurements and can impact the sea-surface-height spectrum at high wavenumbers or frequencies. Knowing the wave climatology is relevant for the success of future altimeter missions, such as the Surface Water and Ocean Topography (SWOT). We analyse the seasonal, intra-annual and interannual variability of significant wave heights retrieved from over two decades of satellite altimeter data and assess the extent to which the variability of the surface wave field in the California Current region is modulated by the local wind and current fields.

  7. California Drought Recovery Assessment Using GRACE Satellite Gravimetry Information

    NASA Astrophysics Data System (ADS)

    Love, C. A.; Aghakouchak, A.; Madadgar, S.; Tourian, M. J.

    2015-12-01

    California has been experiencing its most extreme drought in recent history due to a combination of record high temperatures and exceptionally low precipitation. An estimate for when the drought can be expected to end is needed for risk mitigation and water management. A crucial component of drought recovery assessments is the estimation of terrestrial water storage (TWS) deficit. Previous studies on drought recovery have been limited to surface water hydrology (precipitation and/or runoff) for estimating changes in TWS, neglecting the contribution of groundwater deficits to the recovery time of the system. Groundwater requires more time to recover than surface water storage; therefore, the inclusion of groundwater storage in drought recovery assessments is essential for understanding the long-term vulnerability of a region. Here we assess the probability, for varying timescales, of California's current TWS deficit returning to its long-term historical mean. Our method consists of deriving the region's fluctuations in TWS from changes in the gravity field observed by NASA's Gravity Recovery and Climate Experiment (GRACE) satellites. We estimate the probability that meteorological inputs, precipitation minus evaporation and runoff, over different timespans will balance the current GRACE-derived TWS deficit (e.g. in 3, 6, 12 months). This method improves upon previous techniques as the GRACE-derived water deficit comprises all hydrologic sources, including surface water, groundwater, and snow cover. With this empirical probability assessment we expect to improve current estimates of California's drought recovery time, thereby improving risk mitigation.

  8. Quantifying the potential for reservoirs to secure future surface water yields in the world’s largest river basins

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Parkinson, Simon; Gidden, Matthew; Byers, Edward; Satoh, Yusuke; Riahi, Keywan; Forman, Barton

    2018-04-01

    Surface water reservoirs provide us with reliable water supply, hydropower generation, flood control and recreation services. Yet reservoirs also cause flow fragmentation in rivers and lead to flooding of upstream areas, thereby displacing existing land-use activities and ecosystems. Anticipated population growth and development coupled with climate change in many regions of the globe suggests a critical need to assess the potential for future reservoir capacity to help balance rising water demands with long-term water availability. Here, we assess the potential of large-scale reservoirs to provide reliable surface water yields while also considering environmental flows within 235 of the world’s largest river basins. Maps of existing cropland and habitat conservation zones are integrated with spatially-explicit population and urbanization projections from the Shared Socioeconomic Pathways to identify regions unsuitable for increasing water supply by exploiting new reservoir storage. Results show that even when maximizing the global reservoir storage to its potential limit (∼4.3–4.8 times the current capacity), firm yields would only increase by about 50% over current levels. However, there exist large disparities across different basins. The majority of river basins in North America are found to gain relatively little firm yield by increasing storage capacity, whereas basins in Southeast Asia display greater potential for expansion as well as proportional gains in firm yield under multiple uncertainties. Parts of Europe, the United States and South America show relatively low reliability of maintaining current firm yields under future climate change, whereas most of Asia and higher latitude regions display comparatively high reliability. Findings from this study highlight the importance of incorporating different factors, including human development, land-use activities, and climate change, over a time span of multiple decades and across a range of different scenarios when quantifying available surface water yields and the potential for reservoir expansion.

  9. Seasonal variations of thermocline circulation and ventilation in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    You, Yuzhu

    1997-05-01

    Two seasonal hydrographic data sets, including temperature, salinity, dissolved oxygen, and nutrients, are used in a mixing model which combines cluster analysis with optimum multiparameter analysis to determine the spreading and mixing of the thermocline waters in the Indian Ocean. The mixing model comprises a system of four major source water masses, which were identified in the thermocline through cluster analysis. They are Indian Central Water (ICW), North Indian Central Water (NICW) interpreted as aged ICW, Australasian Mediterranean Water (AAMW), and Red Sea Water (RSW)/Persian Gulf Water (PGW). The mixing ratios of these water masses are quantified and mapped on four isopycnal surfaces which span the thermocline from 150 to 600 m in the northern Indian Ocean, on two meridional sections along 60°E and 90°E, and on two zonal sections along 10°S and 6°N. The mixing ratios and pathways of the thermocline water masses show large seasonal variations, particularly in the upper 400-500 m of the thermocline. The most prominent signal of seasonal variation occurs in the Somali Current, the western boundary current, which appears only during the SW (summer) monsoon. The northward spreading of ICW into the equatorial and northern Indian Ocean is by way of the Somali Current centered at 300-400 m on the σθ=26.7 isopycnal surface during the summer monsoon and of the Equatorial Countercurrent during the NE (winter) monsoon. More ICW carried into the northern Indian Ocean during the summer monsoon is seen clearly in the zonal section along 6°N. NICW spreads southward through the western Indian Ocean and is stronger during the winter monsoon. AAMW appears in both seasons but is slightly stronger during the summer in the upper thermocline. The westward flow of AAMW is by way of the South Equatorial Current and slightly bends to the north on the σθ=26.7 isopycnal surface during the summer monsoon, indicative of its contribution to the western boundary current. Outflow of RSW/PGW seems effectively blocked by the continuation of strong northward jet of the Somali Current along the western Arabian Sea during the summer, giving a rather small contribution of only up to 20% in the Arabian Sea. A schematic summer and winter thermocline circulation emerges from this study. Both hydrography and water - mass mixing ratios suggest that the contribution of the water from the South Indian Ocean and from the Indo-Pacific through flow controls the circulation and ventilation in the western boundary region during the summer. However, during the winter the water is carried into the eastern boundary by the Equatorial Countercurrent and leaks into the eastern Bay of Bengal, from where the water is advected into the northwestern Indian Ocean by the North Equatorial Current. The so-called East Madagascar Current as a southward flow occurs only during the summer, as is suggested by both hydrography and water-mass mixing patterns from this paper. During the winter (austral summer) the current seems reversal to a northward flow along east of Madagascar, somewhat symmetrical to the Somali Current in the north.

  10. 40 CFR 192.01 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Administrator of the Environmental Protection Agency. (i) Secretary means the Secretary of Energy. (j... water below the ground surface in a zone of saturation. (r) Underground source of drinking water means... system; and (A) Currently supplies drinking water for human consumption; or (B) Contains fewer than 10...

  11. 40 CFR 192.01 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Administrator of the Environmental Protection Agency. (i) Secretary means the Secretary of Energy. (j... water below the ground surface in a zone of saturation. (r) Underground source of drinking water means... system; and (A) Currently supplies drinking water for human consumption; or (B) Contains fewer than 10...

  12. Quantifying area changes of internationally important wetlands due to water consumption in LCA.

    PubMed

    Verones, Francesca; Pfister, Stephan; Hellweg, Stefanie

    2013-09-03

    Wetlands harbor diverse species assemblages but are among the world's most threatened ecosystems. Half of their global area was lost during the last century. No approach currently exists in life cycle impact assessment that acknowledges the vulnerability and importance of wetlands globally and provides fate factors for water consumption. We use data from 1184 inland wetlands, all designated as sites of international importance under the Ramsar Convention, to develop regionalized fate factors (FF) for consumptive water use. FFs quantify the change of wetland area caused per m(3)/yr water consumed. We distinguish between surface water-fed and groundwater-fed wetlands and develop FFs for surface water and groundwater consumption. FFs vary over 8 (surface water-fed) and 6 (groundwater-fed) orders of magnitude as a function of the site characteristics, showing the importance of local conditions. Largest FFs for surface water-fed wetlands generally occur in hyper-arid zones and smallest in humid zones, highlighting the dependency on available surface water flows. FFs for groundwater-fed wetlands depend on hydrogeological conditions and vary largely with the total amount of water consumed from the aquifer. Our FFs translate water consumption into wetland area loss and thus become compatible with life cycle assessment methodologies of land use.

  13. Airborne Remote Sensing of River Flow and Morphology

    NASA Astrophysics Data System (ADS)

    Zuckerman, S.; Anderson, S. P.; McLean, J.; Redford, R.

    2014-12-01

    River morphology, surface slope and flow are some of the fundamental measurements required for surface water monitoring and hydrodynamic research. This paper describes a method of combining bathymetric lidar with space-time processing of mid-wave infrared (MWIR) imagery to simultaneously measure bathymetry, currents and surface slope from an airborne platform. In May 2014, Areté installed a Pushbroom Imaging Lidar for Littoral Surveillance (PILLS) and a FLIR SC8000 MWIR imaging system sampling at 2 Hz in a small twin-engine aircraft. Data was collected over the lower Colorado River between Picacho Park and Parker. PILLS is a compact bathymetric lidar based on streak-tube sensor technology. It provides channel and bank topography and water surface elevation at 1 meter horizontal scales and 25 cm vertical accuracy. Surface currents are derived from the MWIR imagery by tracking surface features using a cross correlation algorithm. This approach enables the retrieval of currents along extended reaches at the forward speed of the aircraft with spatial resolutions down to 5 m with accuracy better than 10 cm/s. The fused airborne data captures current and depth variability on scales of meters over 10's of kilometers collected in just a few minutes. The airborne MWIR current retrievals are combined with the bathymetric lidar data to calculate river discharge which is then compared with real-time streamflow stations. The results highlight the potential for improving our understanding of complex river environments with simultaneous collections from multiple airborne sensors.

  14. CHARACTERIZATION OF ENDEMIC DISEASE: HEALTH EFFECTS ASSOCIATED WITH DIFFERENCES IN SOURCE WATER QUALITY AND TREATMENT

    EPA Science Inventory

    A study in Canada by Payment et al. found that up to 35% of gastrointestinal illness in a community served by surface water was associated with drinking water that met current drinking water standards. A similar follow-up study by the same investigators tended to repeat the resul...

  15. Approaches for integrated assessment of ecological and eutrophication status of surface waters in Nordic Countries.

    PubMed

    Andersen, Jesper H; Aroviita, Jukka; Carstensen, Jacob; Friberg, Nikolai; Johnson, Richard K; Kauppila, Pirkko; Lindegarth, Mats; Murray, Ciarán; Norling, Karl

    2016-10-01

    We review approaches and tools currently used in Nordic countries (Denmark, Finland, Norway and Sweden) for integrated assessment of 'ecological status' sensu the EU Water Framework Directive as well as assessment of 'eutrophication status' in coastal and marine waters. Integration principles for combining indicators within biological quality elements (BQEs) and combining BQEs into a final-integrated assessment are discussed. Specific focus has been put on combining different types of information into indices, since several methods are currently employed. As a consequence of the variety of methods used, comparisons across both BQEs and water categories (river, lakes and coastal waters) can be difficult. Based on our analyses, we conclude that some principles and methods for integration can be critical and that a harmonised approach should be developed. Further, we conclude that the integration principles applied within BQEs are critical and in need of harmonisation if we want a better understanding of potential transition in ecological status between surface water types, e.g. when riverine water enters a downstream lake or coastal water body.

  16. Assessing the ability of mechanistic volatilization models to simulate soil surface conditions: a study with the Volt'Air model.

    PubMed

    Garcia, L; Bedos, C; Génermont, S; Braud, I; Cellier, P

    2011-09-01

    Ammonia and pesticide volatilization in the field is a surface phenomenon involving physical and chemical processes that depend on the soil surface temperature and water content. The water transfer, heat transfer and energy budget sub models of volatilization models are adapted from the most commonly accepted formalisms and parameterizations. They are less detailed than the dedicated models describing water and heat transfers and surface status. The aim of this work was to assess the ability of one of the available mechanistic volatilization models, Volt'Air, to accurately describe the pedo-climatic conditions of a soil surface at the required time and space resolution. The assessment involves: (i) a sensitivity analysis, (ii) an evaluation of Volt'Air outputs in the light of outputs from a reference Soil-Vegetation-Atmosphere Transfer model (SiSPAT) and three experimental datasets, and (iii) the study of three tests based on modifications of SiSPAT to establish the potential impact of the simplifying assumptions used in Volt'Air. The analysis confirmed that a 5 mm surface layer was well suited, and that Volt'Air surface temperature correlated well with the experimental measurements as well as with SiSPAT outputs. In terms of liquid water transfers, Volt'Air was overall consistent with SiSPAT, with discrepancies only during major rainfall events and dry weather conditions. The tests enabled us to identify the main source of the discrepancies between Volt'Air and SiSPAT: the lack of gaseous water transfer description in Volt'Air. They also helped to explain why neither Volt'Air nor SiSPAT was able to represent lower values of surface water content: current classical water retention and hydraulic conductivity models are not yet adapted to cases of very dry conditions. Given the outcomes of this study, we discuss to what extent the volatilization models can be improved and the questions they pose for current research in water transfer modeling and parameterization. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Assessing the Benefits Provided by SWOT Data Towards Estimating Reservoir Residence Time in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Bonnema, M.; Hossain, F.

    2016-12-01

    The Mekong River Basin is undergoing rapid hydropower development. Nine dams are planned on the main stem of the Mekong and many more on its extensive tributaries. Understanding the effects that current and future dams have on the river system and water cycle as a whole is vital for the millions of people living in the basin. reservoir residence time, the amount of time water spends stored in a reservoir, is a key parameter in investigating these impacts. The forthcoming Surface Water and Ocean Topography (SWOT) mission is poised to provide an unprecedented amount of surface water observations. SWOT, when augmented by current satellite missions, will provide the necessary information to estimate the residence time of reservoirs across the entire basin in a more comprehensive way than ever before. In this study, we first combine observations from current satellite missions (altimetry, spectral imaging, precipitation) to estimate the residence times of existing reservoirs. We then use this information to project how future reservoirs will increase the residence time of the river system. Next, we explore how SWOT observations can be used to improve residence time estimation by examining the accuracy of reservoir surface area and elevation observations as well as the accuracy of river discharge observations.

  18. Microbial Monitoring of Surface Water in South Africa: An Overview

    PubMed Central

    Luyt, Catherine D.; Tandlich, Roman; Muller, Wilhelmine J.; Wilhelmi, Brendan S.

    2012-01-01

    Infrastructural problems force South African households to supplement their drinking water consumption from water resources of inadequate microbial quality. Microbial water quality monitoring is currently based on the Colilert®18 system which leads to rapidly available results. Using Escherichia coli as the indicator microorganism limits the influence of environmental sources on the reported results. The current system allows for understanding of long-term trends of microbial surface water quality and the related public health risks. However, rates of false positive for the Colilert®18-derived concentrations have been reported to range from 7.4% to 36.4%. At the same time, rates of false negative results vary from 3.5% to 12.5%; and the Colilert medium has been reported to provide for cultivation of only 56.8% of relevant strains. Identification of unknown sources of faecal contamination is not currently feasible. Based on literature review, calibration of the antibiotic-resistance spectra of Escherichia coli or the bifidobacterial tracking ratio should be investigated locally for potential implementation into the existing monitoring system. The current system could be too costly to implement in certain areas of South Africa where the modified H2S strip test might be used as a surrogate for the Colilert®18. PMID:23066390

  19. Evaluation of an operational water cycle prediction system for the Laurentian Great Lakes and St. Lawrence River

    NASA Astrophysics Data System (ADS)

    Fortin, Vincent; Durnford, Dorothy; Smith, Gregory; Dyck, Sarah; Martinez, Yosvany; Mackay, Murray; Winter, Barbara

    2017-04-01

    Environment and Climate Change Canada (ECCC) is implementing new numerical guidance products based on fully coupled numerical models to better inform the public as well as specialized users on the current and future state of various components of the water cycle, including stream flow and water levels. Outputs from this new system, named the Water Cycle Prediction System (WCPS), have been available for the Great Lakes and St. Lawrence River watershed since June 2016. WCPS links together ECCC's weather forecasting model, GEM, the 2-D ice model C-ICE, the 3-D lake and ocean model NEMO, and a 2-D hydrological model, WATROUTE. Information concerning the water cycle is passed between the models at intervals varying from a few minutes to one hour. It currently produces two forecasts per day for the next three days of the complete water cycle in the Great Lakes region, the largest freshwater lake system in the world. Products include spatially-varying precipitation, evaporation, river discharge, water level anomalies, surface water temperatures, ice coverage, and surface currents. These new products are of interest to water resources and management authority, flood forecasters, hydroelectricity producers, navigation, environmental disaster managers, search and rescue teams, agriculture, and the general public. This presentation focuses on the evaluation of various elements forecasted by the system, and weighs the advantages and disadvantages of running the system fully coupled.

  20. Maintenance of Coastal Surface Blooms by Surface Temperature Stratification and Wind Drift

    PubMed Central

    Ruiz-de la Torre, Mary Carmen; Maske, Helmut; Ochoa, José; Almeda-Jauregui, César O.

    2013-01-01

    Algae blooms are an increasingly recurrent phenomenon of potentially socio-economic impact in coastal waters globally and in the coastal upwelling region off northern Baja California, Mexico. In coastal upwelling areas the diurnal wind pattern is directed towards the coast during the day. We regularly found positive Near Surface Temperature Stratification (NSTS), the resulting density stratification is expected to reduce the frictional coupling of the surface layer from deeper waters and allow for its more efficient wind transport. We propose that the net transport of the top layer of approximately 2.7 kilometers per day towards the coast helps maintain surface blooms of slow growing dinoflagellate such as Lingulodinium polyedrum. We measured: near surface stratification with a free-rising CTD profiler, trajectories of drifter buoys with attached thermographs, wind speed and direction, velocity profiles via an Acoustic Doppler Current Profiler, Chlorophyll and cell concentration from water samples and vertical migration using sediment traps. The ADCP and drifter data agree and show noticeable current shear within the first meters of the surface where temperature stratification and high cell densities of L. polyedrum were found during the day. Drifters with 1m depth drogue moved towards the shore, whereas drifters at 3 and 5 m depth showed trajectories parallel or away from shore. A small part of the surface population migrated down to the sea floor during night thus reducing horizontal dispersion. The persistent transport of the surface bloom population towards shore should help maintain the bloom in favorable environmental conditions with high nutrients, but also increasing the potential socioeconomic impact of the blooms. The coast wise transport is not limited to blooms but includes all dissolved and particulate constituents in surface waters. PMID:23593127

  1. Maintenance of coastal surface blooms by surface temperature stratification and wind drift.

    PubMed

    Ruiz-de la Torre, Mary Carmen; Maske, Helmut; Ochoa, José; Almeda-Jauregui, César O

    2013-01-01

    Algae blooms are an increasingly recurrent phenomenon of potentially socio-economic impact in coastal waters globally and in the coastal upwelling region off northern Baja California, Mexico. In coastal upwelling areas the diurnal wind pattern is directed towards the coast during the day. We regularly found positive Near Surface Temperature Stratification (NSTS), the resulting density stratification is expected to reduce the frictional coupling of the surface layer from deeper waters and allow for its more efficient wind transport. We propose that the net transport of the top layer of approximately 2.7 kilometers per day towards the coast helps maintain surface blooms of slow growing dinoflagellate such as Lingulodinium polyedrum. We measured: near surface stratification with a free-rising CTD profiler, trajectories of drifter buoys with attached thermographs, wind speed and direction, velocity profiles via an Acoustic Doppler Current Profiler, Chlorophyll and cell concentration from water samples and vertical migration using sediment traps. The ADCP and drifter data agree and show noticeable current shear within the first meters of the surface where temperature stratification and high cell densities of L. polyedrum were found during the day. Drifters with 1m depth drogue moved towards the shore, whereas drifters at 3 and 5 m depth showed trajectories parallel or away from shore. A small part of the surface population migrated down to the sea floor during night thus reducing horizontal dispersion. The persistent transport of the surface bloom population towards shore should help maintain the bloom in favorable environmental conditions with high nutrients, but also increasing the potential socioeconomic impact of the blooms. The coast wise transport is not limited to blooms but includes all dissolved and particulate constituents in surface waters.

  2. Earth Observation

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011843 (24 June 2013) --- Gravity waves and sunglint on Lake Superior are featured in this image photographed by an Expedition 36 crew member on the International Space Station. From the vantage point of the space station, crew members frequently observe Earth atmospheric and surface phenomena in ways impossible to view from the ground. Two such phenomena?gravity waves and sunglint?are illustrated in this photograph of northeastern Lake Superior. The Canadian Shield of southern Ontario (bottom) is covered with extensive green forest canopy typical of early summer. Offshore, and to the west and southwest of Pukaskwa National Park several distinct sets of parallel cloud bands are visible. Gravity waves are produced when moisture-laden air encounters imbalances in air density, such as might be expected when cool air flows over warmer air; this can cause the flowing air to oscillate up and down as it moves, causing clouds to condense as the air rises (cools) and evaporate away as the air sinks (warms). This produces parallel bands of clouds oriented perpendicular to the wind direction. The orientation of the cloud bands visible in this image, parallel to the coastlines, suggests that air flowing off of the land surfaces to the north is interacting with moist, stable air over the lake surface, creating gravity waves. The second phenomenon?sunglint?effects the water surface around and to the northeast of Isle Royale (upper right). Sunglint is caused by light reflection off a water surface; some of the reflected light travels directly back towards the observer, resulting in a bright mirror-like appearance over large expanses of water. Water currents and changes in surface tension (typically caused by presence of oils or surfactants) alter the reflective properties of the water, and can be highlighted by sunglint. For example, surface water currents are visible to the east of Isle Royale that are oriented similarly to the gravity waves ? suggesting that they too are the product of winds moving off of the land surface.

  3. Hydrocarbon Plume Dynamics in the Worldś Most Spectacular Hydrocarbon Seeps, Santa Barbara Channel, California

    NASA Astrophysics Data System (ADS)

    Mau, S.; Reed, J.; Clark, J.; Valentine, D.

    2006-12-01

    Large quantities of natural gas are emitted from the seafloor into the coastal ocean near Coal Oil Point, Santa Barbara Channel (SBC), California. Methane, ethane, and propane were quantified in the surface water at 79 stations in a 270 km2 area in order to map the surficial hydrocarbon plume and to quantify air-sea exchange of these gases. A time series was initiated for 14 stations to identify the variability of the mapped plume, and biologically-mediated oxidation rates of methane were measured to quantify the loss of methane in surface water. The hydrocarbon plume was found to comprise ~70 km2 and extended beyond study area. The plume width narrowed from 3 km near the source to 0.7 km further from the source, and then expanded to 6.7 km at the edge of the study area. This pattern matches the cyclonic gyre which is the normal current flow in this part of the Santa Barbara Channel - pushing water to the shore near the seep field and then broadening the plume while the water turns offshore further from the source. Concentrations of gaseous hydrocarbons decrease as the plume migrates. Time series sampling shows similar plume width and hydrocarbon concentrations when normal current conditions prevail. In contrast, smaller plume width and low hydrocarbon concentrations were observed when an additional anticyclonic eddy reversed the normal current flow, and a much broader plume with higher hydrocarbon concentrations was observed during a time of diminished speed within the current gyre. These results demonstrate that surface currents control hydrocarbon plume dynamics in the SBC, though hydrocarbon flux to the atmosphere is likely less dependent on currents. Estimates of air- sea hydrocarbon flux and biological oxidation rates will also be presented.

  4. Water at surfaces with tunable surface chemistries

    NASA Astrophysics Data System (ADS)

    Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.

    2018-03-01

    Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.

  5. Coupling Stable Water Isotopes in Vapor and Precipitation to Raindrop Size Distributions at a Mid-latitude Tall-tower Site to Evaluate the Role of Rain Evaporation in Boundary Layer Moisture Recycling

    NASA Astrophysics Data System (ADS)

    Kaushik, A.; Noone, D.

    2016-12-01

    The continental boundary layer moisture balance plays an important role in regulating water and energy exchange between the surface and the atmosphere, yet the mechanisms associated with moistening and drying are both poorly observed and modeled. Stable water isotope ratio measurements can provide insights into air mass origins, convection dynamics and mechanisms dominating atmosphere-land surface water fluxes. Profiles can be exploited to improve estimates of boundary layer moistening associated with evaporation of falling precipitation and contributions from surface evapotranspiration. We present two years of in situ tower-based measurements of isotope ratios of water vapor and precipitation (δD and δ18O) and raindrop size distributions from the Boulder Atmospheric Observatory (BAO) tall-tower site in Erie, Colorado. Isotope vapor measurements were made at 1 Hz with a full cycle from the surface to 300 meters recorded every 80 minutes. At the surface and 300m, water samples were collected during precipitation events and raindrop sizes were measured continuously using Parsivel instruments. We use this unique suite of measurements and, in particular, exploit the differences between the surface and 300m observations to constrain the surface layer hydrological mass balance during and after rain events, and evaluate parameterization choices for rain evaporation and moisture recycling in current isotope-enabled climate models. Aggregate raindrop size measurements showed shifts from populations of smaller raindrops at 300m to larger raindrops at the surface, contrary to what is expected for rain evaporation. Convective storms resulted in more uniform signatures between the surface and 300m, as well as longer isotope equilibration and adjustment time scales, whereas low Dexcess signatures (<9 to negative) during stratiform drizzle events were indicative of a greater degree of rain evaporation. Our observational results suggest that water vapor-rain equilibration is rarely achieved, and modification of the kinetic fractionation factor is necessary to better capture drop-size related isotope changes. This has implications not only for refining current global climate models, but also for interpreting proxy records connected to rainfall signatures that aid in understanding past hydrology.

  6. Velocity profile, water-surface slope, and bed-material size for selected streams in Colorado

    USGS Publications Warehouse

    Marchand, J.P.; Jarrett, R.D.; Jones, L.L.

    1984-01-01

    Existing methods for determining the mean velocity in a vertical sampling section do not address the conditions present in high-gradient, shallow-depth streams common to mountainous regions such as Colorado. The report presents velocity-profile data that were collected for 11 streamflow-gaging stations in Colorado using both a standard Price type AA current meter and a prototype Price Model PAA current meter. Computational results are compiled that will enable mean velocities calculated from measurements by the two current meters to be compared with each other and with existing methods for determining mean velocity. Water-surface slope, bed-material size, and flow-characteristic data for the 11 sites studied also are presented. (USGS)

  7. Summary of water-surface-elevation data for 116 U.S. Geological Survey lake and reservoir stations in Texas and comparison to data for water year 2006

    USGS Publications Warehouse

    Asquith, William H.; Vrabel, Joseph; Roussel, Meghan C.

    2007-01-01

    The U.S. Geological Survey (USGS), in cooperation with numerous Federal, State, municipal, and local agencies, currently (2007) collects data for more than 120 lakes and reservoirs in Texas through a realtime, data-collection network. The National Water Information System that processes and archives water-resources data for the Nation provides a central source for retrieval of real-time as well as historical data. This report provides a brief description of the real-time, data-collection network and graphically summarizes the period-of-record daily mean water-surface elevations for 116 active and discontinued USGS lake and reservoir stations in Texas. The report also graphically depicts selected statistics (minimum, maximum, and mean) of daily mean water-surface-elevation data. The data for water year 2006 are compared to the selected statistics.

  8. No inter-gyre pathway for sea-surface temperature anomalies in the North Atlantic.

    PubMed

    Foukal, Nicholas P; Lozier, M Susan

    2016-04-22

    Recent Lagrangian analyses of surface drifters have questioned the existence of a surface current connecting the Gulf Stream (GS) to the subpolar gyre (SPG) and have cast doubt on the mechanism underlying an apparent pathway for sea-surface temperature (SST) anomalies between the two regions. Here we use modelled Lagrangian trajectories to determine the fate of surface GS water and satellite SST data to analyse pathways of GS SST anomalies. Our results show that only a small fraction of the surface GS water reaches the SPG, the water that does so mainly travels below the surface mixed layer, and GS SST anomalies do not propagate into the SPG on interannual timescales. Instead, the inter-gyre heat transport as part of the Atlantic Meridional Overturning Circulation must be accomplished via subsurface pathways. We conclude that the SST in the SPG cannot be predicted by tracking SST anomalies along the GS.

  9. No inter-gyre pathway for sea-surface temperature anomalies in the North Atlantic

    PubMed Central

    Foukal, Nicholas P.; Lozier, M. Susan

    2016-01-01

    Recent Lagrangian analyses of surface drifters have questioned the existence of a surface current connecting the Gulf Stream (GS) to the subpolar gyre (SPG) and have cast doubt on the mechanism underlying an apparent pathway for sea-surface temperature (SST) anomalies between the two regions. Here we use modelled Lagrangian trajectories to determine the fate of surface GS water and satellite SST data to analyse pathways of GS SST anomalies. Our results show that only a small fraction of the surface GS water reaches the SPG, the water that does so mainly travels below the surface mixed layer, and GS SST anomalies do not propagate into the SPG on interannual timescales. Instead, the inter-gyre heat transport as part of the Atlantic Meridional Overturning Circulation must be accomplished via subsurface pathways. We conclude that the SST in the SPG cannot be predicted by tracking SST anomalies along the GS. PMID:27103496

  10. Spectroscopic analyses of Fe and water in clays: A Martian surface weathering study

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, Carle M.; Edwards, J. O.; Coyne, L. M.; Chang, S.

    1991-01-01

    Martian surface morphology suggests the presence of liquid H2O on Mars in the past. Reflectance spectra of the Martian surface include features which correspond to the crystal field transitions of iron, as well as features supporting the presence of ice and minerals containing structural OH and surface water. Researchers initiated further spectroscopic studies of surface iron and water and structural OH in clays in order to determine what remotely obtained spectra can indicate about the presence of clays on Mars based on a clearer understanding of the factors influencing the spectral features. Current technology allows researchers to better correlate the low frequency fundamental stretching and bending vibrations of O-H bonds with the diagnostic near infrared overtone and combination bands used in mineral characterization and identification.

  11. Determining the impacts of climate change and catchment development on future water availability in Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Post, David

    2010-05-01

    In a water-scarce country such as Australia, detailed, accurate and reliable assessments of current and future water availability are essential in order to adequately manage the limited water resource. This presentation describes a recently completed study which provided an assessment of current water availability in Tasmania, Australia, and also determined how this water availability would be impacted by climate change and proposed catchment development by the year 2030. The Tasmania Sustainable Yields Project (http://www.csiro.au/partnerships/TasSY.html) assessed current water availability through the application of rainfall-runoff models, river models, and recharge and groundwater models. These were calibrated to streamflow records and parameterised using estimates of current groundwater and surface water extractions and use. Having derived a credible estimate of current water availability, the impacts of future climate change on water availability were determined through deriving changes in rainfall and potential evapotranspiration from 15 IPCC AR4 global climate models. These changes in rainfall were then dynamically downscaled using the CSIRO-CCAM model over the relatively small study area (50,000 square km). A future climate sequence was derived by modifying the historical 84-year climate sequence based on these changes in rainfall and potential evapotranspiration. This future climate sequence was then run through the rainfall-runoff, river, recharge and groundwater models to give an estimate of water availability under future climate. To estimate the impacts of future catchment development on water availability, the models were modified and re-run to reflect projected increases in development. Specifically, outputs from the rainfall-runoff and recharge models were reduced over areas of projected future plantation forestry. Conversely, groundwater recharge was increased over areas of new irrigated agriculture and new extractions of water for irrigation were implemented in the groundwater and river models. Results indicate that historical average water availability across the project area was 21,815 GL/year. Of this, 636 GL/year of surface water and 38 GL/year of groundwater are currently extracted for use. By 2030, rainfall is projected to decrease by an average of 3% over the project area. This decrease in rainfall and concurrent increase in potential evapotranspiration leads to a decrease in water availability of 5% by 2030. As a result of lower streamflows, under current cease-to-take rules, currently licensed extractions are projected to decrease by 3% (19 GL/year). This however is offset by an additional 120 GL/year of extractions for proposed new irrigated agriculture. These new extractions, along with the increase in commercial forest plantations lead to a reduction in total surface water of 1% in addition to the 5% reduction due to climate change. Results from this study are being used by the Tasmanian and Australian governments to guide the development of a sustainable irrigated agriculture industry in Tasmania. In part, this is necessary to offset the loss of irrigated agriculture from the southern Murray-Darling Basin where climate change induced reductions in rainfall are projected to be far worse.

  12. Elephant overflows: Multi-annual variability in Weddell Sea Deep Water driven by surface forcing

    NASA Astrophysics Data System (ADS)

    Meijers, Andrew; Meredith, Michael; Abrahamsen, Povl; Naviera-Garabato, Alberto; Ángel Morales Maqueda, Miguel; Polzin, Kurt

    2015-04-01

    The volume of the deepest and densest water mass in Drake Passage, Lower Weddell Sea Deep Water (LWSDW), is shown to have been decreasing over the last 20 years of observations, with an associated reduction in density driven by freshening. Superimposed on this long term trend is a multi-annual oscillation with a period of 3-5 years. This variability only appears in Drake Passage; observations in the east of the Scotia Sea show a similar long term trend, but with no apparent multi-annual variability. Clues as to the source of this variability may be found on the continental slope at approximately 1000 m immediately north of Elephant Island on the northern tip of the Antarctic Peninsula. Here there is an intermittent westward flowing cold/fresh slope current whose volume and properties are strongly correlated with the LWSDW multi-annual variability, although leading the LWSDW by around one year. As the slope current and LWSDW are separated from each other both geographically and in water mass characteristics, their co-variability implies that they are responding to a common forcing, while the lag between deep LWSDW and shallow slope current provides information on the timescale of this response. A newly available high resolution temperature and salinity multi-year time series from the Elephant Island slope at 1000 m is compared with reanalysis and model derived surface fluxes, sea ice extent and wind stress. We find that there are strong positive relationships between the surface wind stress and heat flux over the shelf at the tip of the Antarctic Peninsula and the properties of the slope current at 1000 m on seasonal to annual timescales. We use tracer release experiments in the Southern Ocean State Estimate (SOSE) model to investigate the lag between the slope current and LWSDW timeseries and hypothesise that the observed multi-annual variability in both water masses is driven by surface forcing over the shelf and the overflow of modified water from the slope in the north-west Weddell Sea. The lag observed between the two time series is due to the difference in water mass paths to the observation points in Drake Passage. We discuss the role of atmospheric modes of variability such as ENSO and SAM, as well as climate trends, on this relationship and their potential impact on future LWSDW export.

  13. Modeling hydrodynamics, water quality, and benthic processes to predict ecological effects in Narragansett Bay

    EPA Science Inventory

    The environmental fluid dynamics code (EFDC) was used to study the three dimensional (3D) circulation, water quality, and ecology in Narragansett Bay, RI. Predictions of the Bay hydrodynamics included the behavior of the water surface elevation, currents, salinity, and temperatur...

  14. The Enterococcus QPCR Method for Recreational Water Quality Testing: Testing Background, Performance and Issues

    EPA Science Inventory

    Currently accepted culture-based monitoring methods for fecal indicator bacteria in surface waters take at least 24 hr to determine if unacceptable levels of fecal pollution have reached our recreational beaches. During this waiting period changing water conditions may result eit...

  15. Surface water-quality assessment of the lower Kansas River basin, Kansas and Nebraska: analysis of available water-quality data through 1986

    USGS Publications Warehouse

    Jordan, P.R.; Stamer, J.K.

    1991-01-01

    Beginning in 1986, the U.S. Congress appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water-Quality Assessment (NAWQA) Program. The long-term goals of the full-scale program are to: (1) provide a nationally consistent description of current water-quality conditions for a large part of the Nation's surface- and ground-water resources; (2) define long-term trends (or lack of trends) in water quality; and (3) identify, describe, and explain, insofar as possible, the major factors that affect current conditions and trends in water quality. This information, obtained on a continuing basis, will be made available to water managers, policy makers, and the public to provide an improved scientific basis for evaluating the effectiveness of water-quality-management programs and for predicting the likely effects of contemplated changes in land-and water-management practices. At present (1990), the assessment program is in a pilot phase in seven areas that represent diverse hydrologic environments and water-quality conditions.This report completes one of the first activities undertaken as part of the lower Kansas River basin pilot study, which was to compile, screen, and interpret available water-quality data for the study unit through 1986. The report includes information on the sources and types of water-quality data available, the utility of available water-quality data for assessment purposes, and a description of current water-quality conditions and trends and their relation to natural and human factors.

  16. Hydrographic characterization of southeast Arabian Sea during the wane of southwest monsoon and spring intermonsoon.

    PubMed

    Vimal Kumar, K G; Dinesh Kumar, P K; Smitha, B R; Habeeb Rahman, H; Josia, Jacob; Muraleedharan, K R; Sanjeevan, V N; Achuthankutty, C T

    2008-05-01

    Seasonal variation of the hydrography along the southeast Arabian Sea is described using data collected onboard FORV Sagar Sampada in September--October 2003 (later phase of Southwest monsoon, SWM) and March--April 2004 (Spring inter monsoon, SIM). During the later phase of the SWM, upwelling was in the withdrawal phase and the frontal structure was clearer in the northern sections (13 and 15 degrees N lat) indicating strong upwelling in the area. The driving force of upwelling is identified as the combination of alongshore wind stress and remote forcing with a latitudinal variability. Although a more prominent upwelling was found in the north, a maximum surface Chlorophyll-a was found in the south (10 degrees N). During the SIM, the area was characterized by oligotrophic water with relatively high Sea Surface Temperature (>29 degrees C) and low salinity (33.8 to 35.4). During March, the surface hydrography was found to be controlled mainly by the intrusion of low-saline waters from the south, while during September by the high saline water from the north. The presence of various water masses [Arabian Sea High Salinity Water (ASHSW), Persian Gulf Water (PGW), Red Sea Water (RSW)] and their seasonal variations in the region is discussed and their decreasing influence towards the south is noted during both periods of observation. During the SWM, the dynamic topography showed the equator-ward flow of the West India Coastal Current (WICC) at the surface and a pole-ward coastal under current at sub-thermocline depth. During the SIM, surface circulation revealed the WICC flowing pole-ward north of 13 degrees N, but equator-ward flow in the south, with a clockwise circulation around the Lakshadweep High.

  17. Response of the surface tropical Atlantic Ocean to wind forcing

    NASA Astrophysics Data System (ADS)

    Castellanos, Paola; Pelegrí, Josep L.; Campos, Edmo J. D.; Rosell-Fieschi, Miquel; Gasser, Marc

    2015-05-01

    We use 10 years of satellite data (sea level pressure, surface winds and absolute dynamic topography [ADT]) together with Argo-inferred monthly-mean values of near-surface velocity and water transport, to examine how the tropical system of near-surface zonal currents responds to wind forcing. The data is analyzed using complex Hilbert empirical orthogonal functions, confirming that most of the variance has annual periodicity, with maximum amplitudes in the region spanned by the seasonal displacement of the Inter-Tropical Convergence Zone (ITCZ). The ADT mirrors the shape of the upper isopycnals, hence becoming a good indicator of the amount of water stored in the upper ocean. Within about 3° from the Equator, where the Coriolis force is small, there is year-long meridional Ekman-transport divergence that would lead to the eastward transport of the Equatorial Undercurrent and its northern and southern branches. Beyond 3° of latitude, and at least as far as 20°, the convergence of the Ekman transport generally causes a poleward positive ADT gradient, which sustains the westward South Equatorial Current (SEC). The sole exception occurs in summer, between 8°N and 12°N, when an Ekman-transport divergence develops and depletes de amount of surface water, resulting in an ADT ridge-valley system which reverses the ADT gradient and drives the eastward North Equatorial Countercurrent (NECC) at latitudes 4-9°N; in late fall, divergence ceases and the NECC drains the ADT ridge, so the ADT gradient again becomes positive and the SEC reappears. The seasonal evolution of a tilted ITCZ controls the surface water fluxes: the wind-induced transports set the surface divergence-convergence, which then drive the ADT and, through the ADT gradients, create the geostrophic jets that close the water balance.

  18. Probabilistic modeling of the flows and environmental risks of nano-silica.

    PubMed

    Wang, Yan; Kalinina, Anna; Sun, Tianyin; Nowack, Bernd

    2016-03-01

    Nano-silica, the engineered nanomaterial with one of the largest production volumes, has a wide range of applications in consumer products and industry. This study aimed to quantify the exposure of nano-silica to the environment and to assess its risk to surface waters. Concentrations were calculated for four environmental (air, soil, surface water, sediments) and two technical compartments (wastewater, solid waste) for the EU and Switzerland using probabilistic material flow modeling. The corresponding median concentration in surface water is predicted to be 0.12 μg/l in the EU (0.053-3.3 μg/l, 15/85% quantiles). The concentrations in sediments in the complete sedimentation scenario were found to be the largest among all environmental compartments, with a median annual increase of 0.43 mg/kg · y in the EU (0.19-12 mg/kg · y, 15/85% quantiles). Moreover, probabilistic species sensitivity distributions (PSSD) were computed and the risk of nano-silica in surface waters was quantified by comparing the predicted environmental concentration (PEC) with the predicted no-effect concentration (PNEC) distribution, which was derived from the cumulative PSSD. This assessment suggests that nano-silica currently poses no risk to aquatic organisms in surface waters. Further investigations are needed to assess the risk of nano-silica in other environmental compartments, which is currently not possible due to a lack of ecotoxicological data. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Antibiotic, Pharmaceutical, and Wastewater-Compound Data for Michigan, 1998-2005

    USGS Publications Warehouse

    Haack, Sheridan Kidd

    2010-01-01

    Beginning in the late 1990's, the U.S. Geological Survey began to develop analytical methods to detect, at concentrations less than 1 microgram per liter (ug/L), emerging water contaminants such as pharmaceuticals, personal-care chemicals, and a variety of other chemicals associated with various human and animal sources. During 1998-2005, the U.S. Geological Survey analyzed the following Michigan water samples: 41 samples for antibiotic compounds, 28 samples for pharmaceutical compounds, 46 unfiltered samples for wastewater compounds (dissolved and suspended compounds), and 113 filtered samples for wastewater compounds (dissolved constituents only). The purpose of this report is to summarize the status of emerging contaminants in Michigan waters based on data from several different project-specific sample-collection efforts in Michigan during an 8-year period. During the course of the 8-year sampling effort, antibiotics were determined at 20 surface-water sites and 2 groundwater sites, pharmaceuticals were determined at 11 surface-water sites, wastewater compounds in unfiltered water were determined at 31 surface-water sites, and wastewater compounds in filtered water were determined at 40 surface-water and 4 groundwater sites. Some sites were visited only once, but others were visited multiple times. A variety of quality-assurance samples also were collected. This report describes the analytical methods used, describes the variations in analytical methods and reporting levels during the 8-year period, and summarizes all data using current (2009) reporting criteria. Very few chemicals were detected at concentrations greater than current laboratory reporting levels, which currently vary from a low of 0.005 ug/L for some antibiotics to 5 ug/L for some wastewater compounds. Nevertheless, 10 of 51 chemicals in the antibiotics analysis, 9 of 14 chemicals in the pharmaceuticals analysis, 34 of 67 chemicals in the unfiltered-wastewater analysis, and 56 of 62 chemicals in the filtered-wastewater analysis were detected. Antibiotics were detected at 7 of 20 tested surface-water sites, but none were detected in 2 groundwater samples. Pharmaceuticals were detected at 7 of 11 surface-water sites. Wastewater compounds were detected at 25 of 31 sites for which unfiltered water samples were analyzed and at least once at all 40 surface-water sites and all 4 groundwater sites for which filtered water samples were analyzed. Overall, the chemicals detected most frequently in Michigan waters were similar to those reported frequently in other studies nationwide. Patterns of chemical detections were site specific and appear to be related to local sources, overall land use, and hydrologic conditions at the time of sampling. Field-blank results provide important information for the design of future sampling programs in Michigan and demonstrate the need for careful field-study design. Field-replicate results indicated substantial confidence regarding the presence or absence of the many chemicals tested. Overall, data reported herein indicate that a wide array of antibiotic, pharmaceutical, and organic wastewater compounds occur in Michigan waters. Patterns of occurrence, with respect to hydrologic, land use, and source variables, generally appear to be similar for Michigan as for other sampled waters across the United States. The data reported herein can serve as a basis for future studies in Michigan.

  20. Designing a dynamic data driven application system for estimating real-time load of dissolved organic carbon in a river

    Treesearch

    Ying Ouyang

    2012-01-01

    Understanding the dynamics of naturally occurring dissolved organic carbon (DOC) in a river is central to estimating surface water quality, aquatic carbon cycling, and global climate change. Currently, determination of the DOC in surface water is primarily accomplished by manually collecting samples for laboratory analysis, which requires at least 24 h. In other words...

  1. Interannual Variations of Surface Currents and Transports in the Sicily Channel Derived From Coastal Altimetry

    NASA Astrophysics Data System (ADS)

    Jebri, Fatma; Zakardjian, Bruno; Birol, Florence; Bouffard, Jérôme; Jullion, Loïc.; Sammari, Cherif

    2017-11-01

    A 20 year coastal altimetry data set (X-TRACK) is used, for the first time, to gain insight into the long-term interannual variations of the surface circulation in the Sicily Channel. First, a spectral along with a time/space diagram analysis are applied to the monthly means. They reveal a regionally coherent current patterns from track to track with a marked interannual variability that is unequally shared between the Atlantic Tunisian Current and Atlantic Ionian Stream inflows in the Sicily Channel and the Bifurcation Tyrrhenian Current outflow northeast of Sicily. Second, an empirical altimetry-based transport-like technique is proposed to quantify volume budgets inside the closed boxes formed by the crossing of the altimetry tracks and coastlines over the study area. A set of hydrographic measurements is used to validate the method. The inferred altimetry transports give a well-balanced mean eastward Atlantic Waters baroclinic flow of 0.4 Sv and standard deviations of 0.2 Sv on a yearly basis throughout the Sicily Channel and toward the Ionian Sea, which is fairly coherent with those found in the literature. Furthermore, the analysis allows to quantify the intrusions of Atlantic Waters over the Tunisian Shelf (0.12 ± 0.1 Sv) and highlights two main modes of variability of the main surface waters path over the Sicily Channel through the Bifurcation Atlantic Tunisian Current and Atlantic Ionian Stream systems. Some physical mechanisms are finally discussed with regards to changes in the observed currents and transports.

  2. Integration of Rs/gis for Surface Water Pollution Risk Modeling. Case Study: Al-Abrash Syrian Coastal Basin

    NASA Astrophysics Data System (ADS)

    Yaghi, Y.; Salim, H.

    2017-09-01

    Recently the topic of the quality of surface water (rivers - lakes) and the sea is an important topics at different levels. It is known that there are two major groups of pollutants: Point Source Pollution (PSP) and non-point Source pollution (NPSP). Historically most of the surface water pollution protection programs dealing with the first set of pollutants which comes from sewage pipes and factories drainage. With the growing need for current and future water security must stand on the current reality of the coastal rivers basin in terms of freshness and cleanliness and condition of water pollution. This research aims to assign the NPS pollutants that reach Al Abrash River and preparation of databases and producing of risk Pollution map for NPS pollutants in order to put the basin management plan to ensure the reduction of pollutants that reach the river. This research resulted of establishing of Databases of NPSP (Like pesticides and fertilizers) and producing of thematic maps for pollution severity and pollution risk based on the pollution models designed in GIS environment and utilizing from remote sensing data. Preliminary recommendations for managing these pollutants were put.

  3. Reactions of water and C1 molecules on carbide and metal-modified carbide surfaces

    DOE PAGES

    Wan, Weiming; Tackett, Brian M.; Chen, Jingguang G.

    2017-02-23

    The formation of carbides can significantly modify the physical and chemical properties of the parent metals. In the current review, we summarize the general trends in the reactions of water and C1 molecules over transition metal carbide (TMC) and metal-modified TMC surfaces and thin films. Although the primary focus of the current review is on the theoretical and experimental studies of reactions of C1 molecules (CO, CO 2, CH 3OH, etc.), the reactions of water will also be reviewed because water plays an important role in many of the C1 transformation reactions. This review is organized by discussing separately thermalmore » reactions and electrochemical reactions, which provides insights into the application of TMCs in heterogeneous catalysis and electrocatalysis, respectively. In thermal reactions, we discuss the thermal decomposition of water and methanol, as well as the reactions of CO and CO 2 over TMC surfaces. In electrochemical reactions, we summarize recent studies in the hydrogen evolution reaction, electrooxidation of methanol and CO, and electroreduction of CO 2. Lastly, future research opportunities and challenges associated with using TMCs as catalysts and electrocatalysts are also discussed.« less

  4. EFFECTS OF ELECTRICAL CURRENTS ON THE ABSORPTION OF WATER BY EGGS OF NEREIS LIMBATA

    PubMed Central

    Osterhout, W. J. V.

    1950-01-01

    Unfertilized eggs of the marine worm Nereis limbata subjected to electrical currents (direct or alternating) undergo remarkable changes. Certain minute granules just inside the surface of the egg absorb water and swell to more than 300 times their original size and thereby produce a mass of jelly which surrounds the egg with a zone about as wide as the original diameter of the egg. The amount of direct current is too small to produce any change of color in eggs stained with neutral red. In direct current the jelly appears first on the side toward the anode and moves toward the anode. In alternating current it appears on opposite sides facing the electrodes. It might be thought that the current changes the chemical character of the granules so that they are able to absorb very large quantities of water but this seems unlikely. If the current is shut off after 1 minute the swelling continues. This might be explained on the ground that each jelly precursor granule is covered with a waterproof film which is removed by the current. It does not seem probable that the effect is due to heat produced by the current since the exposure is so short. It seems possible that the current may strip off micelles from the waterproof covering of the granules and allow water to penetrate. The fact that alternating current is more effective than direct current might be explained on the ground that the egg may be represented as a capacity in parallel with a resistance so constituted that relatively little direct current can enter. The non-aqueous film which covers the surface of the protoplasm appears to be liquid rather than solid. PMID:15406375

  5. Observation of water mass characteristics in the southwestern Mariana Trench

    NASA Astrophysics Data System (ADS)

    Xu, H.; Xie, Q.; Hong, B.

    2016-12-01

    The identification of large water mass characteristic can help oceanographer to better understand the oceanic circulation structures and other physical processes in open oceans. In current stage, the water mass characteristics were recognized well by extensive observation in the upper ocean, however, it was rarely studied in deep oceans, especially for deep trench with > 6000 m depth. In this study, we use observed data collected by CTDs during several surveys to investigate the water mass physical characteristic and transport in the world deepest trench, `Challenger Deep', in the southwestern Mariana Trench. The preliminary results show complex vertical structures of water mass in this trench. From surface to 4500 m, the water masses are occupied by typical tropical surface water, NPTUW, NPMW, NPIW and NPDW. Under 4500m, the water mass shows mixing characteristics of NPDW and AABW, which indicate AABW can be transported by form the deep ocean of the South Ocean to Northwestern Pacific and it can affect local water mass characteristics. The baroclinic geostrophic current calculated from the CTDs data shows the westerly transport of water mass can reach about 1.0 SV in the trench which is close to previous results.

  6. Sacrificial amphiphiles: Eco-friendly chemical herders as oil spill mitigation chemicals.

    PubMed

    Gupta, Deeksha; Sarker, Bivas; Thadikaran, Keith; John, Vijay; Maldarelli, Charles; John, George

    2015-06-01

    Crude oil spills are a major threat to marine biota and the environment. When light crude oil spills on water, it forms a thin layer that is difficult to clean by any methods of oil spill response. Under these circumstances, a special type of amphiphile termed as "chemical herder" is sprayed onto the water surrounding the spilled oil. The amphiphile forms a monomolecular layer on the water surface, reducing the air-sea surface tension and causing the oil slick to retract into a thick mass that can be burnt in situ. The current best-known chemical herders are chemically stable and nonbiodegradable, and hence remain in the marine ecosystem for years. We architect an eco-friendly, sacrificial, and effective green herder derived from the plant-based small-molecule phytol, which is abundant in the marine environment, as an alternative to the current chemical herders. Phytol consists of a regularly branched chain of isoprene units that form the hydrophobe of the amphiphile; the chain is esterified to cationic groups to form the polar group. The ester linkage is proximal to an allyl bond in phytol, which facilitates the hydrolysis of the amphiphile after adsorption to the sea surface into the phytol hydrophobic tail, which along with the unhydrolyzed herder, remains on the surface to maintain herding action, and the cationic group, which dissolves into the water column. Eventual degradation of the phytol tail and dilution of the cation make these sacrificial amphiphiles eco-friendly. The herding behavior of phytol-based amphiphiles is evaluated as a function of time, temperature, and water salinity to examine their versatility under different conditions, ranging from ice-cold water to hot water. The green chemical herder retracted oil slicks by up to ~500, 700, and 2500% at 5°, 20°, and 35°C, respectively, during the first 10 min of the experiment, which is on a par with the current best chemical herders in practice.

  7. Sacrificial amphiphiles: Eco-friendly chemical herders as oil spill mitigation chemicals

    PubMed Central

    Gupta, Deeksha; Sarker, Bivas; Thadikaran, Keith; John, Vijay; Maldarelli, Charles; John, George

    2015-01-01

    Crude oil spills are a major threat to marine biota and the environment. When light crude oil spills on water, it forms a thin layer that is difficult to clean by any methods of oil spill response. Under these circumstances, a special type of amphiphile termed as “chemical herder” is sprayed onto the water surrounding the spilled oil. The amphiphile forms a monomolecular layer on the water surface, reducing the air–sea surface tension and causing the oil slick to retract into a thick mass that can be burnt in situ. The current best-known chemical herders are chemically stable and nonbiodegradable, and hence remain in the marine ecosystem for years. We architect an eco-friendly, sacrificial, and effective green herder derived from the plant-based small-molecule phytol, which is abundant in the marine environment, as an alternative to the current chemical herders. Phytol consists of a regularly branched chain of isoprene units that form the hydrophobe of the amphiphile; the chain is esterified to cationic groups to form the polar group. The ester linkage is proximal to an allyl bond in phytol, which facilitates the hydrolysis of the amphiphile after adsorption to the sea surface into the phytol hydrophobic tail, which along with the unhydrolyzed herder, remains on the surface to maintain herding action, and the cationic group, which dissolves into the water column. Eventual degradation of the phytol tail and dilution of the cation make these sacrificial amphiphiles eco-friendly. The herding behavior of phytol-based amphiphiles is evaluated as a function of time, temperature, and water salinity to examine their versatility under different conditions, ranging from ice-cold water to hot water. The green chemical herder retracted oil slicks by up to ~500, 700, and 2500% at 5°, 20°, and 35°C, respectively, during the first 10 min of the experiment, which is on a par with the current best chemical herders in practice. PMID:26601197

  8. Innovative Technique for High-Accuracy Remote Monitoring of Surface Water

    NASA Astrophysics Data System (ADS)

    Gisler, A.; Barton-Grimley, R. A.; Thayer, J. P.; Crowley, G.

    2016-12-01

    Lidar (light detection and ranging) provides absolute depth and topographic mapping capability compared to other remote sensing methods, which is useful for mapping rapidly changing environments such as riverine systems and agricultural waterways. Effectiveness of current lidar bathymetric systems is limited by the difficulty in unambiguously identifying backscattered lidar signals from the water surface versus the bottom, limiting their depth resolution to 0.3-0.5 m. Additionally these are large, bulky systems that are constrained to expensive aircraft-mounted platforms and use waveform-processing techniques requiring substantial computation time. These restrictions are prohibitive for many potential users. A novel lidar device has been developed that allows for non-contact measurements of water depth down to 1 cm with an accuracy and precision of < 1 cm by exploiting the polarization properties of the light-surface interaction. This system can transition seamlessly from ranging over land to shallow to deep water allowing for shoreline charting, measuring water volume, mapping bottom topology, and identifying submerged objects. The scalability of the technique opens up the ability for handheld or UAS-mounted lidar bathymetric systems, which provides for potential applications currently unavailable to the community. The high laser pulse repetition rate allows for very fine horizontal resolution while the photon-counting technique permits real-time depth measurement and object detection. The enhanced measurement capability, portability, scalability, and relatively low-cost creates the opportunity to perform frequent high-accuracy monitoring and measuring of aquatic environments which is crucial for monitoring water resources on fast timescales. Results from recent campaigns measuring water depth in flowing creeks and murky ponds will be presented which demonstrate that the method is not limited by rough water surfaces and can map underwater topology through moderately turbid water.

  9. Bacterial community diversity and variation in spray water sources and the tomato fruit surface

    PubMed Central

    2011-01-01

    Background Tomato (Solanum lycopersicum) consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water) when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. Results The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Conclusions Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an important step forward towards the development of science-based metrics for Good Agricultural Practices. PMID:21510867

  10. Past and future water use in Pacific Coast states.

    Treesearch

    Laurie L. Houston; Michio Watanabe; Jeffrey D. Kline; Ralph J. Alig

    2003-01-01

    We examine socioeconomic factors affecting water demand and expected trends in these factors. Based on these trends, we identify past, current, and projected withdrawal of surface water for various uses in Pacific Coast States (California, Idaho, Oregon, and Washington), including public, domestic, commercial, industrial, thermoelectric, livestock, and irrigation....

  11. RAPID MEASUREMENT OF BACTERIAL FECAL INDICATORS IN SURFACE WATERS BY QUANTITATIVE POLYMERASE CHAIN REACTION (QPCR) ANALYSIS

    EPA Science Inventory

    Current methods for determining fecal contamination of recreational waters rely on the culture of bacterial indicators and require at least 24 hours to determine whether the water is unsafe for use. By the time monitoring results are available, exposures have already occurred. N...

  12. CHARACTERIZATION OF ENDEMIC DISEASE: HEALTH EFFECTS ASSOCIATED WITH DIFFERENCES IN SOURCE WATER QUALITY AND TREATMENT PROCESS

    EPA Science Inventory

    A study in Canada by Payment et al. found that up to 35% of gastrointestinal illness in a community served by surface water was associated with drinking water that met current drinking water standards. A similar follow-up study by the same investigators tended to repeat the resul...

  13. Modeling Hydrodynamics and Heat Transport in Upper Klamath Lake, Oregon, and Implications for Water Quality

    USGS Publications Warehouse

    Wood, Tamara M.; Cheng, Ralph T.; Gartner, Jeffrey W.; Hoilman, Gene R.; Lindenberg, Mary K.; Wellman, Roy E.

    2008-01-01

    The three-dimensional numerical model UnTRIM was used to model hydrodynamics and heat transport in Upper Klamath Lake, Oregon, between mid-June and mid-September in 2005 and between mid-May and mid-October in 2006. Data from as many as six meteorological stations were used to generate a spatially interpolated wind field to use as a forcing function. Solar radiation, air temperature, and relative humidity data all were available at one or more sites. In general, because the available data for all inflows and outflows did not adequately close the water budget as calculated from lake elevation and stage-capacity information, a residual inflow or outflow was used to assure closure of the water budget. Data used for calibration in 2005 included lake elevation at 3 water-level gages around the lake, water currents at 5 Acoustic Doppler Current Profiler (ADCP) sites, and temperature at 16 water-quality monitoring locations. The calibrated model accurately simulated the fluctuations of the surface of the lake caused by daily wind patterns. The use of a spatially variable surface wind interpolated from two sites on the lake and four sites on the shoreline generally resulted in more accurate simulation of the currents than the use of a spatially invariant surface wind as observed at only one site on the lake. The simulation of currents was most accurate at the deepest site (ADCP1, where the velocities were highest) using a spatially variable surface wind; the mean error (ME) and root mean square error (RMSE) for the depth-averaged speed over a 37-day simulation from July 26 to August 31, 2005, were 0.50 centimeter per second (cm/s) and 3.08 cm/s, respectively. Simulated currents at the remaining sites were less accurate and, in general, underestimated the measured currents. The maximum errors in simulated currents were at a site near the southern end of the trench at the mouth of Howard Bay (ADCP7), where the ME and RMSE in the depth-averaged speed were 3.02 and 4.38 cm/s, respectively. The range in ME of the temperature simulations over the same period was ?0.94 to 0.73 degrees Celsius (?C), and the RMSE ranged from 0.43 to 1.12?C. The model adequately simulated periods of stratification in the deep trench when complete mixing did not occur for several days at a time. The model was validated using boundary conditions and forcing functions from 2006 without changing any calibration parameters. A spatially variable wind was used. Data for the model validation periods in 2006 included lake elevation at 4 gages around the lake, currents collected at 2 ADCP sites, and temperature collected at 21 water-quality monitoring locations. Errors generally were larger than in 2005. ME and RMSE in the simulated velocity at ADCP1 were 2.30 cm/s and 3.88 cm/s, respectively, for the same 37-day simulation over which errors were computed for 2005. The ME in temperature over the same period ranged from ?0.56 to 1.5?C and the RMSE ranged from 0.41 to 1.86?C. Numerical experiments with conservative tracers were used to demonstrate the prevailing clockwise circulation patterns in the lake, and to show the influence of water from the deep trench located along the western shoreline of the lake on fish habitat in the northern part of the lake. Because water exiting the trench is split into two pathways, the numerical experiments indicate that bottom water from the trench has a stronger influence on water quality in the northern part of the lake, and surface water from the trench has a stronger influence on the southern part of the lake. This may be part of the explanation for why episodes of low dissolved oxygen tend to be more severe in the northern than in the southern part of the lake.

  14. Monitoring Earth's reservoir and lake dynamics from space

    NASA Astrophysics Data System (ADS)

    Donchyts, G.; Eilander, D.; Schellekens, J.; Winsemius, H.; Gorelick, N.; Erickson, T.; Van De Giesen, N.

    2016-12-01

    Reservoirs and lakes constitute about 90% of the Earth's fresh surface water. They play a major role in the water cycle and are critical for the ever increasing demands of the world's growing population. Water from reservoirs is used for agricultural, industrial, domestic, and other purposes. Current digital databases of lakes and reservoirs are scarce, mainly providing only descriptive and static properties of the reservoirs. The Global Reservoir and Dam (GRanD) database contains almost 7000 entries while OpenStreetMap counts more than 500 000 entries tagged as a reservoir. In the last decade several research efforts already focused on accurate estimates of surface water dynamics, mainly using satellite altimetry, However, currently they are limited only to less than 1000 (mostly large) water bodies. Our approach is based on three main components. Firstly, a novel method, allowing automated and accurate estimation of surface area from (partially) cloud-free optical multispectral or radar satellite imagery. The algorithm uses satellite imagery measured by Landsat, Sentinel and MODIS missions. Secondly, a database to store reservoir static and dynamic parameters. Thirdly, a web-based tool, built on top of Google Earth Engine infrastructure. The tool allows estimation of surface area for lakes and reservoirs at planetary-scale at high spatial and temporal resolution. A prototype version of the method, database, and tool will be presented as well as validation using in-situ measurements.

  15. Water Resources Data - New Jersey, Water Year 1999, Volume 3, Water-Quality Data

    USGS Publications Warehouse

    DeLuca, M.J.; Romanok, K.M.; Riskin, M.L.; Mattes, G.L.; Thomas, A.M.; Gray, B.J.

    2000-01-01

    Water-resources data for the 1999 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 3 contains a summary of surface and ground water hydrologic conditions for the 1999 water year, a listing of current water-resource projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 133 surface-water stations, 46 miscellaneous surface-water sites, 30 ground-water stations, 41 miscellaneous ground-water sites, and records of daily statistics of temperature and other physical measurements from 17 continuous-monitoring stations. Locations of water-quality stations are shown in figures 11 and 17-20. Locations of miscellaneous water-quality sites are shown in figures 29-32 and 34. These data represent the part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Jersey.

  16. Analytical characterization of selective benthic flux components in estuarine and coastal waters

    USGS Publications Warehouse

    King, Jeffrey N.

    2011-01-01

    Benthic flux is the rate of flow across the bed of a water body, per unit area of bed. It is forced by component mechanisms, which interact. For example, pressure gradients across the bed, forced by tide, surface gravity waves, density gradients, bed–current interaction, turbulence, and terrestrial hydraulic gradients, drive an advective benthic flux of water and constituents between estuarine and coastal waters, and surficial aquifers. Other mechanisms also force benthic flux, such as chemical gradients, bioturbation, and dispersion. A suite of component mechanisms force a total benthic flux at any given location, where each member of the suite contributes a component benthic flux. Currently, the types and characteristics of component interactions are not fully understood. For example, components may interact linearly or nonlinearly, and the interaction may be constructive or destructive. Benthic flux is a surface water–groundwater interaction process. Its discharge component to a marine water body is referred to, in some literature, as submarine groundwater discharge. Benthic flux is important in characterizing water and constituent budgets of estuarine and coastal systems. Analytical models to characterize selective benthic flux components are reviewed. Specifically, these mechanisms are for the component associated with the groundwater tidal prism, and forced by surface gravity wave setup, surface gravity waves on a plane bed, and the terrestrial hydraulic gradient. Analytical models are applied to the Indian River Lagoon, Florida; Great South Bay, New York; and the South Atlantic Bight in South Carolina and portions of North Carolina.

  17. Phytoplankton community structure and nitrogen nutrition in Leeuwin Current and coastal waters off the Gascoyne region of Western Australia

    NASA Astrophysics Data System (ADS)

    Hanson, Christine E.; Waite, Anya M.; Thompson, Peter A.; Pattiaratchi, Charitha B.

    2007-04-01

    Within the coastal waters of the eastern Indian Ocean adjacent to Western Australia, we tested the hypothesis that regenerated production (and, by inference, the microbial food web) would predominate in oligotrophic Leeuwin Current (LC) and offshore (OS) surface waters. Conversely, we expected that new production would be more important within the ˜5 times more productive shelf countercurrents (Ningaloo and Capes Currents; NC&CC) and the LC&OS deep chlorophyll maximum (DCM). Phytoplankton species composition and abundance were assessed using both light microscopy and chemotaxonomic methods, and isotopic nitrogen uptake experiments ( 15NO 3-, 15NH 4+) were performed at trace (0.05 μM) and saturating (5.0 μM) levels. Phytoplankton community structure was statistically distinct between LC&OS and countercurrent regions. Picoplankton (unicellular cyanobacteria and prochlorophytes) accounted for a mean of 55-65% of pigment biomass in LC&OS waters, with haptophytes as the other primary contributor (21-32%). Conversely, within countercurrent and shelf regions, diatoms (up to 22%) and haptophytes (up to 57%) were more abundant, although cyanobacteria still played an important role (up to 40% of pigment biomass). Absolute NO 3- uptake rates for all samples ranged between 0.5 and 7.1 nmol L -1 h -1, and in countercurrent waters were not significantly different at the surface (3.0±2.1 nmol L -1 h -1; mean±SD) compared to the DCM (2.7±2.3 nmol L -1 h -1). However, in LC&OS waters, rates were significantly lower at the surface (1.2±0.7 nmol L -1 h -1) than the DCM (3.9±2.5 nmol L -1 h -1; p=0.05). These values represent conservative estimates for the region due to methodological difficulties encountered with nitrogen uptake experiments in these oligotrophic waters. In contrast with the distinct community composition between different water types, mean estimates of the f-ratio were similar across sampling depths and water types: 0.17±0.07 at the surface and 0.16±0.06 at the DCM of shelf countercurrent waters, and 0.14±0.05 at the surface and 0.14±0.09 at the DCM of LC&OS waters. These results demonstrate the importance of ammonium-based production in both oligotrophic LC&OS waters and the more productive upwelling-influenced countercurrents. They also highlight the utility of chemotaxonomic methods in studying pelagic ecosystem structure along the Gascoyne region of Western Australia.

  18. The oceanic boundary layer driven by wave breaking with stochastic variability. Part 1. Direct numerical simulations

    NASA Astrophysics Data System (ADS)

    Sullivan, Peter P.; McWilliams, James C.; Melville, W. Kendall

    2004-05-01

    We devise a stochastic model for the effects of breaking waves and fit its distribution functions to laboratory and field data. This is used to represent the space time structure of momentum and energy forcing of the oceanic boundary layer in turbulence-resolving simulations. The aptness of this breaker model is evaluated in a direct numerical simulation (DNS) of an otherwise quiescent fluid driven by an isolated breaking wave, and the results are in good agreement with laboratory measurements. The breaker model faithfully reproduces the bulk features of a breaking event: the mean kinetic energy decays at a rate approaching t(-1) , and a long-lived vortex (eddy) is generated close to the water surface. The long lifetime of this vortex (more than 50 wave periods) makes it effective in energizing the surface region of oceanic boundary layers. Next, a comparison of several different DNS of idealized oceanic boundary layers driven by different surface forcing (i.e. constant current (as in Couette flow), constant stress, or a mixture of constant stress plus stochastic breakers) elucidates the importance of intermittent stress transmission to the underlying currents. A small amount of active breaking, about 1.6% of the total water surface area at any instant in time, significantly alters the instantaneous flow patterns as well as the ensemble statistics. Near the water surface a vigorous downwelling upwelling pattern develops at the head and tail of each three-dimensional breaker. This enhances the vertical velocity variance and generates both negative- and positive-signed vertical momentum flux. Analysis of the mean velocity and scalar profiles shows that breaking effectively increases the surface roughness z_o by more than a factor of 30; for our simulations z_o/lambda {≈} 0.04 to 0.06, where lambda is the wavelength of the breaking wave. Compared to a flow driven by a constant current, the extra mixing from breakers increases the mean eddy viscosity by more than a factor of 10 near the water surface. Breaking waves alter the usual balance of production and dissipation in the turbulent kinetic energy (TKE) budget; turbulent and pressure transports and breaker work are important sources and sinks in the budget. We also show that turbulent boundary layers driven by constant current and constant stress (i.e. with no breaking) differ in fundamental ways. The additional freedom provided by a constant-stress boundary condition permits finite velocity variances at the water surface, so that flows driven by constant stress mimic flows with weakly and statistically homogeneous breaking waves.

  19. Ephemeral liquid water at the surface of the martian North Polar Residual Cap: Results of numerical modelling

    NASA Astrophysics Data System (ADS)

    Losiak, Anna; Czechowski, Leszek; Velbel, Michael A.

    2015-12-01

    Gypsum, a mineral that requires water to form, is common on the surface of Mars. Most of it originated before 3.5 Gyr when the Red Planet was more humid than now. However, occurrences of gypsum dune deposits around the North Polar Residual Cap (NPRC) seem to be surprisingly young: late Amazonian in age. This shows that liquid water was present on Mars even at times when surface conditions were as cold and dry as the present-day. A recently proposed mechanism for gypsum formation involves weathering of dust within ice (e.g., Niles, P.B., Michalski, J. [2009]. Nat. Geosci. 2, 215-220.). However, none of the previous studies have determined if this process is possible under current martian conditions. Here, we use numerical modelling of heat transfer to show that during the warmest days of the summer, solar irradiation may be sufficient to melt pure water ice located below a layer of dark dust particles (albedo ⩽ 0.13) lying on the steepest sections of the equator-facing slopes of the spiral troughs within martian NPRC. During the times of high irradiance at the north pole (every 51 ka; caused by variation of orbital and rotational parameters of Mars e.g., Laskar, J. et al. [2002]. Nature 419, 375-377.) this process could have taken place over larger parts of the spiral troughs. The existence of small amounts of liquid water close to the surface, even under current martian conditions, fulfils one of the main requirements necessary to explain the formation of the extensive gypsum deposits around the NPRC. It also changes our understanding of the degree of current geological activity on Mars and has important implications for estimating the astrobiological potential of Mars.

  20. Oceanographic, Air-sea Interaction, and Environmental Aspects of Artificial Upwelling Produced by Wave-Inertia Pumps for Potential Hurricane Intensity Mitigation

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Dean, C.

    2017-12-01

    The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean heat content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and air-sea interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the sea surface temperature drops below the air temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent heat air-sea fluxes and reduces the net longwave irradiance from the sea surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the sea surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the sea surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the thermocline. On the way down, the jet partially mixes with the surrounding water reducing the temperature of the upper ocean. The OHC thus can either reduce or increase, depending on the wave-inertia pump parameters. Based on the model results, we discuss feasibility of the implementation of the artificial upwelling system for hurricane intensity mitigation.

  1. Assessing the performance of formulations for nonlinear feedback of surface gravity waves on ocean currents over coastal waters

    NASA Astrophysics Data System (ADS)

    Wang, Pengcheng; Sheng, Jinyu; Hannah, Charles

    2017-08-01

    This study presents applications of a two-way coupled wave-circulation modelling system over coastal waters, with a special emphasis of performance assessments of two different methods for nonlinear feedback of ocean surface gravity waves on three-dimensional (3D) ocean currents. These two methods are the vortex force (VF) formulation suggested by Bennis et al. (2011) and the latest version of radiation stress (RS) formulation suggested by Mellor (2015). The coupled modelling system is first applied to two idealized test cases of surf-zone scales to validate implementations of these two methods in the coupled wave-circulation system. Model results show that the latest version of RS has difficulties in producing the undertow over the surf zone. The coupled system is then applied to Lunenburg Bay (LB) of Nova Scotia during Hurricane Juan in 2003. The coupled system using both the VF and RS formulations generates much stronger and more realistic 3D circulation in the Bay during Hurricane Juan than the circulation-only model, demonstrating the importance of surface wave forces to the 3D ocean circulation over coastal waters. However, the RS formulation generates some weak unphysical currents outside the wave breaking zone due to a less reasonable representation for the vertical distribution of the RS gradients over a slopping bottom. These weak unphysical currents are significantly magnified in a two-way coupled system when interacting with large surface waves, degrading the model performance in simulating currents at one observation site. Our results demonstrate that the VF formulation with an appropriate parameterization of wave breaking effects is able to produce reasonable results for applications over coastal waters during extreme weather events. The RS formulation requires a complex wave theory rather than the linear wave theory for the approximation of a vertical RS term to improve its performance under both breaking and non-breaking wave conditions.

  2. Water Resources Data, New Jersey, Water Year 2003; Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Hoppe, Heidi L.; Heckathorn, Heather A.; Riskin, Melissa L.; Gray, Bonnie J.; Melvin, Emma-Lynn; Liu, Nicholas A.

    2004-01-01

    Water-resources data for the 2003 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2003 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 123 continuing-record surface-water stations, 35 ground-water sites, records of daily statistics of temperature and other physical measurements from 20 continuous-recording stations, and 5 special-study sites consisting of 2 surface-water sites, 1 spring site, and 240 groundwater sites. Locations of water-quality stations are shown in figures 21-25. Locations of special-study sites are shown in figures 49-53. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  3. Albuquerque, New Mexico, USA: A sunbelt city rapidly outgrowing its aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turin, H.J.; Gaume, A.N.; Bitner, M.J.

    1997-02-01

    Albuquerque, New Mexico, is located along the Rio Grande in central New Mexico, at an elevation of 5280 feet. Albuquerque`s climate reflects its high desert setting; average annual precipitation in the basin is only 8 to 10 inches. The Albuquerque metropolitan area is part of the rapidly growing {open_quotes}sunbelt{close_quotes} region of the southwestern United States and is undergoing rapid development. The municipal, industrial, and residential water needs of the entire population are currently met by groundwater, while agricultural needs within the basin are met by surface water diverted from the Rio Grande. While the city is blessed with an extremelymore » productive aquifer, current metropolitan area annual groundwater extractions of 170,000 acre-feet far exceed the sustainable yield of the aquifer. Continued drawdown will lead to greater pumping costs, ground surface subsidence problems, and eventual aquifer depletion. At the same time, industrial and non-point-source contamination and naturally occurring arsenic levels are raising concerns about groundwater quality. New Mexico water law has required the City to acquire surface water rights and allocations on the Rio Grande sufficient to offset estimated losses from the river induced by the City`s groundwater extraction. It has become increasingly clear that the induced recharge had been greatly overestimated, and that the City is thus not actually consuming its surface water as intended. The City, in cooperation with local, state, and federal agencies, has explored a variety of conjunctive use proposals, all designed to permit the City to use its surface water more directly. The City Council is presently considering a strategy calling for full use of the city`s surface water resources and creation of a groundwater drought reserve. Implementation of this strategy will require regulatory approval and major capital investment, both of which require political support.« less

  4. Observed impact of upwelling events on water properties and biological activity off the southwest coast of New Caledonia.

    PubMed

    Ganachaud, Alexandre; Vega, Andrés; Rodier, Martine; Dupouy, Cécile; Maes, Christophe; Marchesiello, Patrick; Eldin, Gerard; Ridgway, Ken; Le Borgne, Robert

    2010-01-01

    The upwelling events that follow strong trade wind episodes have been described in terms of their remarkable signature in the sea surface temperature southwest off New Caledonia. Upwelling brings deeper, and colder waters to the surface, causing 2-4 degrees C drops in temperature in a few hours, followed by a slower relaxation over several days. Upwelling may sporadically bring nutrients to the surface under certain conditions, and increase the biological productivity. Two multidisciplinary hydrographic cruises allow the impact of upwelling on the chemical and biological properties of the water to be documented. Both cruises took place in austral summer (December 2004 and December 2005), but the first cruise occurred during a strong upwelling event, while the second cruise occurred in calm conditions. The water properties and planktonic composition show important contrasts, with a strong southeastward current (the "ALIS current of New Caledonia") competing with the upwelling system. Our analysis suggests that, while observed productivities are far less than those of typical upwelling systems, some wind events in New Caledonia may contribute to biological activity. A currentmeter mooring, deployed during the second cruise, documents the ocean response to a changing wind field and the local impact of upwelling on currents and temperatures on the water column. The results are discussed, with the help of climatology, Argo float profiler data, satellite data and of a high-resolution numerical simulation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  5. Pathways of upwelling deep waters to the surface of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Tamsitt, Veronica; Drake, Henri; Morrison, Adele; Talley, Lynne; Dufour, Carolina; Gray, Alison; Griffies, Stephen; Mazloff, Matthew; Sarmiento, Jorge; Wang, Jinbo; Weijer, Wilbert

    2017-04-01

    Upwelling of Atlantic, Indian and Pacific deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of anthropogenic carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. Here we go beyond the two-dimensional view of Southern Ocean upwelling, to show detailed Southern Ocean upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution ocean and climate models. The northern deep waters enter the Antarctic Circumpolar Current (ACC) via narrow southward currents along the boundaries of the three ocean basins, before spiraling southeastward and upward through the ACC. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the southern ACC boundary, with a spatially nonuniform distribution, regionalizing warm water supply to Antarctic ice shelves and the delivery of nutrient and carbon-rich water to the sea surface. The timescale for half of the deep water to upwell from 30°S to the mixed layer is on the order of 60-90 years, which has important implications for the timescale for signals to propagate through the deep ocean. In addition, we quantify the diabatic transformation along particle trajectories, to identify where diabatic processes are important along the upwelling pathways.

  6. Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles.

    PubMed

    Kozbial, Andrew; Trouba, Charlie; Liu, Haitao; Li, Lei

    2017-01-31

    Elucidating the intrinsic water wettability of the graphitic surface has increasingly attracted research interests, triggered by the recent finding that the well-established hydrophobicity of graphitic surfaces actually results from airborne hydrocarbon contamination. Currently, static water contact angle (WCA) is often used to characterize the intrinsic water wettability of graphitic surfaces. In the current paper, we show that because of the existence of defects, static WCA does not necessarily characterize the intrinsic water wettability. Freshly exfoliated graphite of varying qualities, characterized using atomic force microscopy and Raman spectroscopy, was studied using static, advancing, and receding WCA measurements. The results showed that graphite of different qualities (i.e., defect density) always has a similar advancing WCA, but it could have very different static and receding WCAs. This finding indicates that defects play an important role in contact angle measurements, and the static contact angle does not always represent the intrinsic water wettability of pristine graphite. On the basis of the experimental results, a qualitative model is proposed to explain the effect of defects on static, advancing, and receding contact angles. The model suggests that the advancing WCA reflects the intrinsic water wettability of pristine (defect-free) graphite. Our results showed that the advancing WCA for pristine graphite is 68.6°, which indicates that graphitic carbon is intrinsically mildly hydrophilic.

  7. Water and sediment dynamics in the Red River mouth and adjacent coastal zone

    NASA Astrophysics Data System (ADS)

    van Maren, D. S.

    2007-02-01

    The coastline of the Red River Delta is characterized by alternating patterns of rapid accretion and severe erosion. The main branch of the Red River, the Ba Lat, is presently expanding seaward with a main depositional area several km downstream and offshore the Ba Lat River mouth. Sediment deposition rates are approximately 6 m in the past 50 years. Field measurements were done to determine the processes that regulate marine dispersal and deposition of sediment supplied by the Ba Lat. These measurements reveal that the waters surrounding the Ba Lat delta are strongly stratified with a pronounced southward-flowing surface layer. This southward-flowing surface layer is a coastal current which is generated by river plumes that flow into the coastal zone north of the Ba Lat. However, outflow of turbid river water is not continuous and most sediment enters the coastal zone when the alongshore surface velocities are low. As a consequence, most sediment settles from suspension close to the river mouth. In addition to the southward surface flow, the southward near-bottom currents are also stronger than northward currents. Contrasting with the residual flow near-surface, this southward flow component near-bottom is caused by tidal asymmetry. Because most sediment is supplied by the Ba Lat when wave heights are low, sediment is able to consolidate and therefore the long-term deposition is southward of, but still close to, the Ba Lat mouth.

  8. Fundamentals of in Situ Digital Camera Methodology for Water Quality Monitoring of Coast and Ocean

    PubMed Central

    Goddijn-Murphy, Lonneke; Dailloux, Damien; White, Martin; Bowers, Dave

    2009-01-01

    Conventional digital cameras, the Nikon Coolpix885® and the SeaLife ECOshot®, were used as in situ optical instruments for water quality monitoring. Measured response spectra showed that these digital cameras are basically three-band radiometers. The response values in the red, green and blue bands, quantified by RGB values of digital images of the water surface, were comparable to measurements of irradiance levels at red, green and cyan/blue wavelengths of water leaving light. Different systems were deployed to capture upwelling light from below the surface, while eliminating direct surface reflection. Relationships between RGB ratios of water surface images, and water quality parameters were found to be consistent with previous measurements using more traditional narrow-band radiometers. This current paper focuses on the method that was used to acquire digital images, derive RGB values and relate measurements to water quality parameters. Field measurements were obtained in Galway Bay, Ireland, and in the Southern Rockall Trough in the North Atlantic, where both yellow substance and chlorophyll concentrations were successfully assessed using the digital camera method. PMID:22346729

  9. Spiraling pathways of global deep waters to the surface of the Southern Ocean.

    PubMed

    Tamsitt, Veronica; Drake, Henri F; Morrison, Adele K; Talley, Lynne D; Dufour, Carolina O; Gray, Alison R; Griffies, Stephen M; Mazloff, Matthew R; Sarmiento, Jorge L; Wang, Jinbo; Weijer, Wilbert

    2017-08-02

    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60-90 years.Deep waters of the Atlantic, Pacific and Indian Oceans upwell in the Southern Oceanbut the exact pathways are not fully characterized. Here the authors present a three dimensional view showing a spiralling southward path, with enhanced upwelling by eddy-transport at topographic hotspots.

  10. Concentration and quantification of somatic and F+ coliphages from recreational waters.

    PubMed

    McMinn, Brian R; Huff, Emma M; Rhodes, Eric R; Korajkic, Asja

    2017-11-01

    Somatic and F+ coliphages are promising alternative fecal indicators, but current detection methods are hindered by lower levels of coliphages in surface waters compared to traditional bacterial fecal indicators. We evaluated the ability of dead-end hollow fiber ultrafiltration (D- HFUF) and single agar layer (SAL) procedure to concentrate and enumerate coliphages from 1L and 10L volumes of ambient surface waters (lake, river, marine), river water with varying turbidities (3.74-118.7 NTU), and a simulated combined sewer overflow (CSO) event. Percentage recoveries for surface waters were 40-79% (somatic) and 35-94% (F+). The method performed equally well in all three matrices at 1L volumes, but percent recoveries were significantly higher in marine waters at 10L volumes when compared to freshwater. Percent recoveries at 1L and 10L were similar, except in river water where recoveries were significantly lower at higher volume. In highly turbid waters, D-HFUF-SAL had a recovery range of 25-77% (somatic) and 21-80% (F+). The method produced detectable levels of coliphages in diluted wastewater and in unspiked surface waters, emphasizing its applicability to CSO events and highlighting its utility in recovery of low coliphage densities from surface waters. Thus D-HFUF-SAL is a good candidate method for routine water quality monitoring of coliphages. Published by Elsevier B.V.

  11. Simulation of Wave-Current Interaction Using a Three-Dimensional Hydrodynamic Model Coupled With a Phase Averaged Wave Model

    NASA Astrophysics Data System (ADS)

    Marsooli, R.; Orton, P. M.; Georgas, N.; Blumberg, A. F.

    2016-02-01

    The Stevens Institute of Technology Estuarine and Coastal Ocean Model (sECOM) has been coupled with a more advanced surface wave model to simulate wave‒current interaction, and results have been validated in estuarine and nearshore waters. sECOM is a three‒dimensional, hydrostatic, free surface, primitive equation model. It solves the Navier‒Stokes equations and the conservation equations for temperature and salinity using a finite‒difference method on an Arakawa C‒grid with a terrain‒following (sigma) vertical coordinate and orthogonal curvilinear horizontal coordinate system. The model is coupled with the surface wave model developed by Mellor et al. (2008), which solves the spectral equation and takes into account depth and current refraction, and deep and shallow water. The wave model parameterizes the energy distribution in frequency space and the wave‒wave interaction process by using a specified spectrum shape. The coupled wave‒hydrodynamic model considers the wave‒current interaction through wave‒induced bottom stress, depth‒dependent radiation stress, and wave effects on wind‒induced surface stress. The model is validated using the data collected at a natural sandy beach at Duck, North Carolina, during the DUCK94 experiment. This test case reveals the capability of the model to simulate the wave‒current interaction in nearshore coastal systems. The model is further validated using the data collected in Jamaica Bay, a semi‒enclosed body of water located in New York City region. This test reveals the applicability of the model to estuarine systems. These validations of the model and comparisons to its prior wave model, the Great Lakes Environmental Research Laboratory (GLERL) wave model (Donelan 1977), are presented and discussed. ReferencesG.L. Mellor, M.A. Donelan, and L‒Y. Oey, 2008, A Surface Wave Model for Coupling with Numerical Ocean Circulation Models. J. Atmos. Oceanic Technol., 25, 1785‒1807.Donelan, M. A 1977. A simple numerical model for wave and wind stress application. Report, National Water Research Institute, Burlington, Ontario, Canada, 28 pp.

  12. Spaceborne Microwave Imagers

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1991-01-01

    Monograph presents comprehensive overview of science and technology of spaceborne microwave-imaging systems. Microwave images used as versatile orbiting, remote-sensing systems to investigate atmospheres and surfaces of planets. Detect surface objects through canopies of clouds, measure distributions of raindrops in clouds that their views penetrate, find meandering rivers in rain forests and underground water in arid regions, and provide information on ocean currents, wakes, ice/water boundaries, aircraft, ships, buoys, and bridges.

  13. Unmanned surface vessel (USV) systems for bridge inspection : final report.

    DOT National Transportation Integrated Search

    2016-08-01

    The use of unmanned surface vehicles (USVs) for bridge inspection has been explored. The following issues were considered: (1) the requirements of and : current techniques utilized in on-water bridge inspection; (2) USV design and configuration consi...

  14. Onset and demise of Cretaceous oceanic anoxic events: The coupling of surface and bottom oceanic processes in two pelagic basins of the western Tethys

    NASA Astrophysics Data System (ADS)

    Gambacorta, G.; Bersezio, R.; Weissert, H.; Erba, E.

    2016-06-01

    The upper Albian-lower Turonian pelagic successions of the Tethys record processes acting during the onset, core, and recovery from perturbed conditions across oceanic anoxic event (OAE) 1d, OAE 2, and the mid-Cenomanian event I (MCE I) relative to intervening intervals. Five sections from Umbria-Marche and Belluno Basins (Italy) were analyzed at high resolution to assess processes in surface and deep waters. Recurrent facies stacking patterns (SP) and their associations record periods of bottom current activity coupled with surface changes in trophic level. Climate changes appear to have been influential on deep circulation dynamics. Under greenhouse conditions, vigorous bottom currents were arguably induced by warm and dense saline deep waters originated on tropical shelves in the Tethys and/or proto-Atlantic Ocean. Tractive facies postdating intermittent anoxia during OAE 1d and in the interval bracketed by MCE I and OAE 2 are indicative of feeble bottom currents, though capable of disrupting stratification and replenish deep water with oxygen. The major warming at the onset of OAE 2 might have enhanced the formation of warm salty waters, possibly producing local hiatuses at the base of the Bonarelli Level and winnowing at the seafloor. Hiatuses detected at the top of the Bonarelli Level possibly resulted from most effective bottom currents during the early Turonian thermal maximum. Times of minimal sediment displacement correlate with cooler climatic conditions and testify a different mechanism of deep water formation, as further suggested by a color change to reddish lithologies of the post-OAE 1d and post-OAE 2 intervals.

  15. Coastal loading and transport of Escherichia coli at an embayed beach in Lake Michigan

    USGS Publications Warehouse

    Ge, Z.; Nevers, M.B.; Schwab, D.J.; Whitman, R.L.

    2010-01-01

    A Chicago beach in southwest Lake Michigan was revisited to determine the influence of nearshore hydrodynamic effects on the variability of Escherichia coli (E. coli) concentration in both knee-deep and offshore waters. Explanatory variables that could be used for identifying potential bacteria loading mechanisms, such as bed shear stress due to a combined wave-current boundary layer and wave runup on the beach surface, were derived from an existing wave and current database. The derived hydrodynamic variables, along with the actual observed E. coli concentrations in the submerged and foreshore sands, were expected to reveal bacteria loading through nearshore sediment resuspension and swash on the beach surface, respectively. Based on the observation that onshore waves tend to result in a more active hydrodynamic system at this embayed beach, multiple linear regression analysis of onshore-wave cases further indicated the significance of sediment resuspension and the interaction of swash with gull-droppings in explaining the variability of E. coli concentration in the knee-deep water. For cases with longshore currents, numerical simulations using the Princeton Ocean Model revealed current circulation patterns inside the embayment, which can effectively entrain bacteria from the swash zone into the central area of the embayed beach water and eventually release them out of the embayment. The embayed circulation patterns are consistent with the statistical results that identified that 1) the submerged sediment was an additional net source of E. coli to the offshore water and 2) variability of E. coli concentration in the knee-deep water contributed adversely to that in the offshore water for longshore-current cases. The embayed beach setting and the statistical and numerical methods used in the present study have wide applicability for analyzing recreational water quality at similar marine and freshwater sites. ?? 2010 American Chemical Society.

  16. Hydrogeology and analysis of ground-water withdrawal from the Catahoula aquifer system in the Natchez area, Adams County, Mississippi

    USGS Publications Warehouse

    Strom, E.W.; Burt, D.E.; Oakley, W.T.

    1995-01-01

    The city of Natchez, located in Adams County, Mississippi, relies on ground water for public supply and industrial needs. Most public supply and industrial wells are developed in Catahoula Formation sands of Miocene age. In 1991, an investigation began to describe the hydrogeology, analyze the effects of ground-water withdrawal from currently pumped wells, and project the possible effects of increased ground-water withdrawals on water levels in the Catahoula aquifer system within the Natchez area. The study area covers about 80 square miles in Adams County, southwestern Mississippi. The study area contains several aquifers; however, the most important aquifers in terms of water supply are the Mississippi River alluvial aquifer and the Catahoula aquifer system. In the Natchez area, the Catahoula aquifer system consists of three main sand intervals that form the upper, middle, and lower Catahoula aquifers. Ground-water withdrawal from the Catahoula aquifer system in the study area currently (March 1995) is from 24 wells screened in the three aquifers. The current daily rate of withdrawal is about 9.2 million gallons of water per day. Analysis of the effect of ground-water withdrawal from these wells was made using the Theis nonequilibrium equation and applying the principle of superposition. The calculated drawdown surfaces under current conditions indicate cones of depression surrounding the principal wells. In the upper Catahoula sand, most of the drawdown is concentrated about 1 mile east of the downtown Natchez area, where a maximum drawdown of 95x11 feet was calculated. Most of the drawdown in the middle Catahoula sand occurred in the same general vicinity as in the upper sand, with a maximum calculated drawdown of about 113 feet. Drawdown in the lower Catahoula sand was concentrated about 4x11 miles northeast of downtown Natchez, with a maximum calculated drawdown of about 31 feet. Drawdown-surface maps were made using calculations based on current pumping rates for 10 years and 20 years beyond March 1995. Planned changes in the pumping configuration were incorporated into these analyses. The drawdown surface calculated for 10 years beyond March 1995 indicates an average total increase in drawdown of about 7.3 feet for the upper Catahoula sand, with a maximum increase of about 28 feet. An average total increase in drawdown of only 1.2 feet was calculated for the middle Catahoula sand due to the planned discontinued pumping of many of the wells. An average total increase in drawdown of about 19 feet was calculated for the lower Catahoula sand, with a maximum increase of about 41 feet. The drawdown surface calculated for 20 years beyond March 1995 indicates an average total additional increase in drawdown over the 10 year drawdown surface of about 1.9, 0.6, and 2.7 feet for the upper, middle, and lower Catahoula sands, respectively.

  17. Preliminary lightning observations over Greece

    NASA Astrophysics Data System (ADS)

    Chronis, Themis G.

    2012-02-01

    The first Precision Lightning Network, monitoring the Cloud-to-Ground (CG) lightning stroke activity over Greece and surrounding waters is operated and maintained by the Hellenic National Meteorological Service. This paper studies the regional (land/water interface), seasonal and diurnal variability of the CG strokes as a function of density, polarity and peak current. Additional investigation uniquely links the CG stroke current to sea surface salinity and cloud electrical capacitance. In brief, this study's major findings area as follows: (1) The seasonal maps of thunder days agree well with the regional climatic convective characteristics of the study area, (2) the CG diurnal variability is consistent with the global lightning activity observations over land and ocean, (3) the maxima of monthly averaged CG counts are located over land and water during typical summer and fall months respectively for both polarities, (4) CG peak currents show a distinct seasonality with larger currents during relatively colder months and smaller currents during summer months, and (5) strong linear trends between -CGs and sea surface salinity; (6) this trend is absent for +CGs data analysis of the employed database relate to the thunderstorm's RC constant and agrees with previous numerical modeling studies.

  18. Numerical simulation of wave-current interaction using the SPH method

    NASA Astrophysics Data System (ADS)

    He, Ming; Gao, Xi-feng; Xu, Wan-hai

    2018-05-01

    In this paper, the smoothed particle hydrodynamics (SPH) method is used to build a numerical wave-current tank (NWCT). The wave is generated by using a piston-type wave generator and is absorbed by using a sponge layer. The uniform current field is generated by simultaneously imposing the directional velocity and hydrostatic pressure in both inflow and outflow regions set below the NWCT. Particle cyclic boundaries are also implemented for recycling the Lagrangian fluid particles. Furthermore, to shorten the time to reach a steady state, a temporary rigid-lid treatment for the water surface is proposed. It turns out to be very effective for weakening the undesired oscillatory flow at the beginning stage of the current generation. The calculated water surface elevation and horizontal-velocity profile are validated against the available experimental data. Satisfactory agreements are obtained, demonstrating the good capability of the NWCT.

  19. Fractal behavior of soil water storage at multiple depths

    NASA Astrophysics Data System (ADS)

    Ji, Wenjun; Lin, Mi; Biswas, Asim; Si, Bing C.; Chau, Henry W.; Cresswell, Hamish P.

    2016-08-01

    Spatiotemporal behavior of soil water is essential to understand the science of hydrodynamics. Data intensive measurement of surface soil water using remote sensing has established that the spatial variability of soil water can be described using the principle of self-similarity (scaling properties) or fractal theory. This information can be used in determining land management practices provided the surface scaling properties are kept at deep layers. The current study examined the scaling properties of sub-surface soil water and their relationship to surface soil water, thereby serving as supporting information for plant root and vadose zone models. Soil water storage (SWS) down to 1.4 m depth at seven equal intervals was measured along a transect of 576 m for 5 years in Saskatchewan. The surface SWS showed multifractal nature only during the wet period (from snowmelt until mid- to late June) indicating the need for multiple scaling indices in transferring soil water variability information over multiple scales. However, with increasing depth, the SWS became monofractal in nature indicating the need for a single scaling index to upscale/downscale soil water variability information. In contrast, all soil layers during the dry period (from late June to the end of the growing season in early November) were monofractal in nature, probably resulting from the high evapotranspirative demand of the growing vegetation that surpassed other effects. This strong similarity between the scaling properties at the surface layer and deep layers provides the possibility of inferring about the whole profile soil water dynamics using the scaling properties of the easy-to-measure surface SWS data.

  20. The distribution of ground ice on Mars

    NASA Technical Reports Server (NTRS)

    Mellon, M. T.; Jakosky, B. M.

    1993-01-01

    A wealth of geologic evidence indicates that subsurface water ice has played an important role in the evolution of Martian landforms. Theoretical models of the stability of ground ice show that in the near-surface regolith ice is currently stable at latitudes poleward of about +/- 40 deg and below a depth of a few centimeters to a meter, with some variations with longitude. If ice is not previously present at a particular location where it is stable, atmospheric water will diffuse into the regolith and condense as ice, driven by the annual subsurface thermal oscillations. The lower boundary of this ice deposit is found to occur at a depth (typically a few meters) where the annual thermal oscillations give way to the geothermal gradient. In the equatorial regions near-surface ice is currently not stable, resulting in the sublimation of any existing ice and subsequent loss to the atmosphere. However, subliming ice might be maintained at a steady-state depth, where diffusion and loss to the atmosphere are balanced by resupply from a possible deeper source of water (either deeper, not yet depleted, ice deposits or ground water). This depth is typically a few tens to hundreds of meters and depends primarily on the surface temperature and the nature of the geothermal gradient, being deeper for a higher surface temperature and a lower geothermal gradient. Such an equatorial deposit is characterized by the regolith ice content being low nearer the surface and increasing with depth in the deposit. Oscillations in the orbit will affect this picture of ground ice in two ways: by causing periodic changes in the pattern of near-surface stability and by producing subsurface thermal waves that may be capable of driving water ice deeper into the regolith.

  1. Distribution and risk assessment of banned and other current-use pesticides in surface and groundwaters consumed in an agricultural catchment dominated by cocoa crops in the Ankobra Basin, Ghana.

    PubMed

    Affum, Andrews Obeng; Acquaah, Samuel Osafo; Osae, Shiloh Dede; Kwaansa-Ansah, Edward Ebow

    2018-08-15

    The existence of pesticides, such as organochlorine pesticides, parathion-ethyl, methamidophos which is banned globally and some current-use non-banned pesticides of organophosphorus and synthetic pyrethroids in freshwater sources is an ecological and public health concern in many countries, including Ghana. Prompted by this concern, the exposure levels and risk assessment of these pesticides to humans and non-target organisms via groundwater and surface water sources in an agricultural catchment dominated by cocoa crops in the Ankobra Basin, Ghana, were investigated. The individual concentrations of the banned pesticides in the surface water and groundwater samples varied from < LOD to 0.110 μg/L and < LOD to 0.055 μg/L, respectively, while the concentrations of the non-banned pesticides ranged from < LOD to 0.925 μg/L and < LOD to 2 μg/L, respectively. The mean concentrations of chlorpyrifos, cypermethrin, p,p'-DDT and pirimiphos-methyl in some water sources exceeded the EU limit of 0.1 μg/L. Some surface water sources were more contaminated with DDTs, endrin, dieldrin, methoxychlor, chlorpyrifos, and HCH isomers than were freshwater sources in river basins in some countries of the world. Chlorpyrifos, p,p'-DDT and methoxychlor were ubiquitous in both water sources. The hydrochemical and compositional profiles of the pesticides indicate that water-exchange and secondary porosities in the bedrock likely contributed to the occurrence of the pesticides in the water sources. The pesticides were of low risk to humans that consume the water, but considering the US EPA safe limit for carcinogenic effects of 10 -6 , the high levels of DDTs, β-HCH, and dieldrin in some of the surface water and groundwater sources may cause cancer in children or infants. The toxicity of pesticide mixtures to surface water non-target organisms decreased in the order of fish > Daphnia magna > algae. The pesticides in the water sources were anthropogenic in origin and recently used. DDT and HCH in the water were of technical-grade origin. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Ammonia, phosphate, phenol, and copper(II) removal from aqueous solution by subsurface and surface flow constructed wetland.

    PubMed

    Mojiri, Amin; Ahmad, Zakiah; Tajuddin, Ramlah Mohd; Arshad, Mohd Fadzil; Gholami, Ali

    2017-07-01

    Water pollution is a global problem. During current study, ammonia, phosphate, phenol, and copper(II) were removed from aqueous solution by subsurface and surface flow constructed wetland. In current investigation, distilled water was polluted with four contaminants including ammonia, phosphate, copper (Cu), and phenol. Response surface methodology and central composite design were applied to optimize pollutant removal during treatment by subsurface flow constructed wetland (SSFCW). Contact time (12 to 80 h) and initial pollutant concentration (20 to 85 mg/L) were selected as independent factors; some upper and lower ranges were also monitored for accuracy. In SSFCW, water hyacinth transplanted in two substrate layers, namely zeolite and cockle shell. SSFCW removed 87.7, 81.4, 74.7, and 54.9% of ammonia, phosphate, Cu, and phenol, respectively, at optimum contact time (64.5 h) and initial pollutant concentration (69.2 mg/L). Aqueous solution was moved to a surface flow constructed wetland (SFCW) after treating via SSFCW at optimum conditions. In SFCW, Typha was transplanted to a fixed powdered substrate layer, including bentonite, zeolite, and cockle shell. SFCW could develop performance of this combined system and could improve elimination efficacy of the four contaminants to 99.99%. So this combined CW showed a good performance in removing pollutants. Graphical abstract Wetlands arrangement for treating aqueous solution in current study.

  3. Thermally stratified pools and their use by steelhead in northern California streams

    Treesearch

    Jennifer L. Nielsen; Thomas E. Lisle; Vicki Ozaki

    1994-01-01

    Abstract - Thermal stratification occurred in pools of three rivers in northern California when inflow of cold water was sufficiently great or currents were sufficiently weak to prevent thorough mixing of water of contrasting temperatures. Surface water temperatures in such pools were commonly 3-9°C higher than those at the bottom. Cold water entered pools from...

  4. Prevalence and characteristics of ESBL-producing E. coli in Dutch recreational waters influenced by wastewater treatment plants.

    PubMed

    Blaak, Hetty; de Kruijf, Patrick; Hamidjaja, Raditijo A; van Hoek, Angela H A M; de Roda Husman, Ana Maria; Schets, Franciska M

    2014-07-16

    Outside health care settings, people may acquire ESBL-producing bacteria through different exposure routes, including contact with human or animal carriers or consumption of contaminated food. However, contact with faecally contaminated surface water may also represent a possible exposure route. The current study investigated the prevalence and characteristics of ESBL-producing Escherichia coli in four Dutch recreational waters and the possible role of nearby waste water treatment plants (WWTP) as contamination source. Isolates from recreational waters were compared with isolates from WWTP effluents, from surface water upstream of the WWTPs, at WWTP discharge points, and in connecting water bodies not influenced by the studied WWTPs. ESBL-producing E. coli were detected in all four recreational waters, with an average concentration of 1.3 colony forming units/100ml, and in 62% of all samples. In surface waters not influenced by the studied WWTPs, ESBL-producing E. coli were detected in similar concentrations, indicating the existence of additional ESBL-E. coli contamination sources. Isolates with identical ESBL-genes, phylogenetic background, antibiotic resistance profiles, and sequence type, were obtained from effluent and different surface water sites in the same watershed, on the same day; occasionally this included isolates from recreational waters. Recreational waters were identified as a potential exposure source of ESBL-producing E. coli. WWTPs were shown to contribute to the presence of these bacteria in surface waters, but other (yet unidentified) sources likely co-contribute. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Status of surface-water modeling in the U.S. Geological Survey

    USGS Publications Warehouse

    Jennings, Marshall E.; Yotsukura, Nobuhiro

    1979-01-01

    The U.S. Geological Survey is active in the development and use of models for the analysis of various types of surface-water problems. Types of problems for which models have been, or are being developed, include categories such as the following: (1)specialized hydraulics, (2)flow routing in streams, estuaries, lakes, and reservoirs, (3) sedimentation, (4) transport of physical, chemical, and biological constituents, (5) surface exchange of heat and mass, (6) coupled stream-aquifer flow systems, (7) physical hydrology for rainfall-runoff relations, stream-system simulations, channel geometry, and water quality, (8) statistical hydrology for synthetic streamflows, floods, droughts, storage, and water quality, (9) management and operation problems, and (10) miscellaneous hydrologic problems. Following a brief review of activities prior to 1970, the current status of surface-water modeling is given as being in a developmental, verification, operational, or continued improvement phase. A list of recently published selected references, provides useful details on the characteristics of models.

  6. Application of current and future satellite missions to hydrologic prediction in transboundary rivers

    NASA Astrophysics Data System (ADS)

    Biancamaria, S.; Clark, E.; Lettenmaier, D. P.

    2010-12-01

    More than 256 major global river basins, which cover about 45% of the continental land surface, are shared among two or more countries. The flow of such a large part of the global runoff across international boundaries has led to tension in many cases between upstream and downstream riparian countries. Among many examples, this is the case of the Ganges and the Brahmaputra Rivers, which cross the boundary between India and Bangladesh. Hydrological data (river discharge, reservoir storage) are viewed as sensitive by India (the upstream country) and are therefore not shared with Bangladesh, which can only monitor river discharge and water depth at the international border crossing. These measurements only allow forecasting of floods in the interior and southern portions of the country two to three days in advance. These forecasts are not long enough either for agricultural water management purposes (for which knowledge of upstream reservoir storage is essential) or for disaster preparedness purposes. Satellite observations of river spatial extent, surface slope, reservoir area and surface elevation have the potential to make tremendous changes in management of water within the basins. In this study, we examine the use of currently available satellite measurements (in India) and in-situ measurements in Bangladesh to increase forecast lead time in the Ganges and Brahmaputra Rivers. Using nadir altimeters, we find that it is possible to forecast the discharge of the Ganges River at the Bangladesh border with lead time 3 days and mean absolute error of around 25%. On the Ganges River, 2-day forecasts are possible with a mean absolute error of around 20%. When combined with optical/infra-red MODIS images, it is possible to map water elevations along the river and its floodplain upstream of the boundary, and to compute water storage. However, the high frequency of clouds in this region results in relatively large errors in the water mask. Due to the nadir altimeter temporal repeat (10 days for current satellites) and to gaps in the water mask, water volume estimates are meaningful only at the monthly scale. Furthermore, this information is limited to channels with wider than 250-500 m. The future Surface Water and Ocean Topography (SWOT) mission, which is intended to be launched in 2020, will provide global maps of water elevations, with a spatial resolution of 100 m and errors on the water elevation equal to or below 10 cm. The SWOT Ka band interferometric Synthetic Aperture Radar (SAR), will not be affected by cloud cover (aside from infrequent heavy rain); therefore, estimation of the water volume change on the Ganges and on the Brahmaputra upstream to the Bangladesh provided by SWOT should be much more accurate in space and time than can currently be achieved. We discuss the implications of future SWOT observations in the context of our preliminary work on the Ganges-Brahmaputra Rivers using current generation satellite data.

  7. EVALUATION OF A PILOT-SCALE ULTRAVIOLET (UV) LIGHT AND OZONE TREATMENT SYSTEM FOR REMOVAL OF MTBE FROM DRINKING WATER SOURCES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is currently evaluating package plant advanced oxidation process (AOP) systems to treat methyl tertiary butyl ether (MTBE) in drinking water supplies (e.g., surface water, groundwater). MTBE has been identified as a potential carcin...

  8. Climatic Influences on Southern Makassar Strait Salinity Over the Past Century

    NASA Astrophysics Data System (ADS)

    Murty, S. A.; Goodkin, N. F.; Halide, H.; Natawidjaja, D.; Suwargadi, B.; Suprihanto, I.; Prayudi, D.; Switzer, A. D.; Gordon, A. L.

    2017-12-01

    The Indonesian Throughflow (ITF) is a globally important ocean current that fuels heat and buoyancy fluxes throughout the Indo-Pacific and is known to covary in strength with the El Niño Southern Oscillation at interannual time scales. A climate system with a less well-quantified impact on the ITF is the East Asian Winter Monsoon (EAWM), which drives less saline surface waters from the South China Sea (SCS) into the Makassar Strait, obstructing surface ITF flow. We present a subannually resolved record of sea surface salinity (SSS) from 1927 to 2011 based on coral δ18O from the Makassar Strait that reveals variability in the relative contributions of different source waters to the surface waters of the Makassar Strait during the boreal winter monsoon. We find that the EAWM (January-March) strongly influences interannual SSS variability during boreal winter over the twentieth century (r = 0.54, p << 0.0001), impacting surface water circulation in the SCS and Indonesian Seas.

  9. Mapping Global Ocean Surface Albedo from Satellite Observations: Models, Algorithms, and Datasets

    NASA Astrophysics Data System (ADS)

    Li, X.; Fan, X.; Yan, H.; Li, A.; Wang, M.; Qu, Y.

    2018-04-01

    Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.

  10. Water-Surface Elevations, Discharge, and Water-Quality Data for Selected Sites in the Warm Springs Area near Moapa, Nevada

    USGS Publications Warehouse

    Beck, David A.; Ryan, Roslyn; Veley, Ronald J.; Harper, Donald P.; Tanko, Daron J.

    2006-01-01

    The U.S. Geological Survey, in cooperation with Southern Nevada Water Authority and the Nevada Division of Water Resources, operates and maintains a surface-water monitoring network of 6 continuous-record stream-flow gaging stations and 11 partial-record stations in the Warm Springs area near Moapa, Nevada. Permanent land-surface bench marks were installed within the Warm Springs area by the Las Vegas Valley Water District, the Southern Nevada Water Authority, and the U.S. Geological Survey to determine water-surface elevations at all network monitoring sites. Vertical datum elevation and horizontal coordinates were established for all bench marks through a series of Differential Global Positioning System surveys. Optical theodolite surveys were made to transfer Differential Global Positioning System vertical datums to reference marks installed at each monitoring site. The surveys were completed in June 2004 and water-surface elevations were measured on August 17, 2004. Water-surface elevations ranged from 1,810.33 feet above North American Vertical Datum of 1988 at a stream-gaging station in the Pederson Springs area to 1,706.31 feet at a station on the Muddy River near Moapa. Discharge and water-quality data were compiled for the Warm Springs area and include data provided by the U.S. Geological Survey, Nevada Division of Water Resources, U.S. Fish and Wildlife Service, Moapa Valley Water District, Desert Research Institute, and Converse Consultants. Historical and current hydrologic data-collection networks primarily are related to changes in land- and water-use activities in the Warm Springs area. These changes include declines in ranching and agricultural use, the exportation of water to other areas of Moapa Valley, and the creation of a national wildlife refuge. Water-surface elevations, discharge, and water-quality data compiled for the Warm Springs area will help identify (1) effects of changing vegetation within the former agricultural lands, (2) effects of restoration activities in the wildlife refuge, and (3) potential impacts of ground-water withdrawals.

  11. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000.

    PubMed

    Durack, Paul J; Wijffels, Susan E; Matear, Richard J

    2012-04-27

    Fundamental thermodynamics and climate models suggest that dry regions will become drier and wet regions will become wetter in response to warming. Efforts to detect this long-term response in sparse surface observations of rainfall and evaporation remain ambiguous. We show that ocean salinity patterns express an identifiable fingerprint of an intensifying water cycle. Our 50-year observed global surface salinity changes, combined with changes from global climate models, present robust evidence of an intensified global water cycle at a rate of 8 ± 5% per degree of surface warming. This rate is double the response projected by current-generation climate models and suggests that a substantial (16 to 24%) intensification of the global water cycle will occur in a future 2° to 3° warmer world.

  12. Small scale patches of suspended matter and phytoplankton in the Elbe River estuary, German Bight and tidal flats

    NASA Technical Reports Server (NTRS)

    Doerffer, R.; Fischer, J.; Stoessel, M.; Brockmann, C.; Grassl, H.

    1989-01-01

    Landsat 5 TM measurements are found suitable for study of small scale features in coastal waters; three independent factors, namely suspended matter concentration, atmospheric scattering, and sea-surface temperature, were extracted from all seven TM channels on the basis of factor analysis. The distribution of suspended matter in near-surface water layer and sea surface temperature is observable with a spatial resolution of at least 120 x 120 sq m. The high correlation between water depth and suspended matter distribution established by ship-gathered data supports the presently hypothesized control by bottom topography and wind-modified tidal currents of eddy and front formation.

  13. An Assessment of Regional Water Resources and Agricultural Sustainability in the Mississippi River Alluvial Aquifer System of Mississippi and Arkansas Under Current and Future Climate

    NASA Astrophysics Data System (ADS)

    Rigby, J.; Reba, M.

    2011-12-01

    The Lower Mississippi River Alluvial Plain is a highly productive agricultural region for rice, soy beans, and cotton that depends heavily on irrigation. Development of the Mississippi River Alluvial Aquifer (MRAA), one of the more prolific agricultural aquifers in the country, has traditionally been the primary source for irrigation in the region yielding over 1,100 Mgal/day to irrigation wells. Increasingly, the realities of changing climate and rapidly declining water tables have highlighted the necessity for new water management practices. Tail-water recovery and reuse is a rapidly expanding practice due in part to the efforts and cost-sharing of the NRCS, but regional studies of the potential for such practices to alleviate groundwater mining under current and future climate are lacking. While regional studies of aquifer geology have long been available, including assessments of regional groundwater flow, much about the aquifer is still not well understood including controls on recharge rates, a crucial component of water management design. We review the trends in regional availability of surface and groundwater resources, their current status, and the effects of recent changes in management practices on groundwater decline in Mississippi and Arkansas. Global and regional climate projections are used to assess scenarios of sustainable aquifer use under current land use and management along with the potential for more widely practiced surface water capture and reuse to alleviate groundwater decline. Finally, we highlight crucial knowledge gaps and challenges associated with the development of water management practices for sustainable agricultural use in the region.

  14. Observations of large-amplitude cross-shore internal bores near the shelf break, Santa Monica Bay, CA

    USGS Publications Warehouse

    Noble, M.A.; Xu, J. P.

    2003-01-01

    Two sets of moorings were deployed along a cross-shelf transect in central Santa Monica bay for four months in the winter of 1998-1999. Both sites had an array of instruments attached to tripods set on the seafloor to monitor currents over the entire water column, surface waves, near-bed temperature, water clarity and suspended sediment. A companion mooring had temperature sensors spaced approximately 10 m apart to measure temperature profiles between the surface and the seafloor. One array was deployed in 70 m of water at a site adjacent to the shelf break, just northwest of a major ocean outfall. The other was deployed on the mid shelf in 35 m of water approximately 6 km from the shelf break site. The subtidal currents in the region flowed parallel to the isobaths with fluctuating time scales around 10 days, a typical coastal-ocean pattern. However, during the falling phase of the barotropic spring tide, sets of large-amplitude, sheared cross-shore current pulses with a duration of 2-5 h were observed at the shelf break site. Currents in these pulses flowed exclusively offshore in a thin layer near the bed with amplitudes reaching 30-40 cm/s. Simultaneously, currents with amplitudes around 15-20 cm/s flowed exclusively onshore in the thicker layer between the offshore flow layer and the sea surface. The net offshore transport was about half the onshore transport. Near-surface isotherms were depressed 30-40 m. These pulses were likely internal bores generated by tidal currents. Bed stresses associated with these events exceeded 3 dynes/cm2. These amplitudes are large enough to resuspend and transport not only fine-grained material, but also medium to coarse sands from the shelf toward the slope. Consequently, the seafloor over the shelf break was swept clear of fine sediments. The data suggest that the internal bores dissipate and are reduced in amplitude as they propagate across this relatively narrow shelf. There is evidence that they reach the 35 m site, but other coastal ocean processes obscure their distinctive characteristics.

  15. Water-resources investigations in Pennsylvania; programs and activities of the U.S. Geological Survey, 1993

    USGS Publications Warehouse

    McLanahan, L. O.

    1993-01-01

    Current activities of the Pennsylvania District of the USGS are described and include information on current projects, such as project objectives, approach, progress and plans, project location, cooperators, period of project, and project chief. Basic-data programs for surface water, ground water, and quality of water also are described. Also included is information on the basic mission and programs of the USGS; program funding and cooperation for fiscal year 1993; the USGS water- data program, National Water-Data Exchange, and National Water-Data Storage and Retrieval System; and Pennsylvania data-collection programs and hydrologic investigations. List of publications of the Pennsylvania District and maps published by the USGS, as well as information on how to obtain them, are included.

  16. Ionization state of L-phenylalanine at the air-water interface.

    PubMed

    Griffith, Elizabeth C; Vaida, Veronica

    2013-01-16

    The ionization state of organic molecules at the air-water interface and the related problem of the surface pH of water have significant consequences on the catalytic role of the surface in chemical reactions and are currently areas of intense research and controversy. In this work, infrared reflection-absorption spectroscopy (IRRAS) is used to identify changes in the ionization state of L-phenylalanine in the surface region versus the bulk aqueous solution. L-phenylalanine has the unique advantage of possessing two different hydrophilic groups, a carboxylic acid and an amine base, which can deprotonate and protonate respectively depending on the ionic environment they experience at the water surface. In this work, the polar group vibrations in the surface region are identified spectroscopically in varying bulk pH solutions, and are subsequently compared with the ionization state of the polar groups of molecules residing in the bulk environment. The polar groups of L-phenylalanine at the surface transition to their deprotonated state at bulk pH values lower than the molecules residing in the bulk, indicating a decrease in their pK(a) at the surface, and implying an enhanced hydroxide ion concentration in the surface region relative to the bulk.

  17. Seasonal and Interannual Variation of Currents and Water Properties off the Mid-East Coast of Korea

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Chang, K. I.; Nam, S.

    2016-02-01

    Since 1999, physical parameters such as current, temperature, and salinity off the mid-east coast of Korea have been continuously observed from the long-term buoy station called `East-Sea Real-time Ocean monitoring Buoy (ESROB)'. Applying harmonic analysis to 6-year-long (2007-2012) depth-averaged current data from the ESROB, a mean seasonal cycle of alongshore currents, characterized by poleward current in average and equatorward current in summer, is extracted which accounts for 5.8% of the variance of 40 hours low-pass filtered currents. In spite of the small variance explained, a robust seasonality of summertime equatorward reversal typifies the low-passed alongshore currents along with low-density water. To reveal the dynamics underlying the seasonal variation, each term of linearized, depth-averaged momentum equations is estimated using the data from ESROB, adjacent tide gauge stations, and serial hydrographic stations. The result indicates that the reversal of alongshore pressure gradient is a major driver of the equatorward reversals in summer. The reanalysis wind product (MERRA) and satellite altimeter-derived sea surface height (AVISO) data show correlated features between positive (negative) wind stress curl and sea surface depression (uplift). Quantitative estimates reveal that the wind-stress curl accounts for 42% of alongshore sea level variation. Summertime low-density water originating from the northern coastal region is a footprint of the buoyancy-driven equatorward current. An interannual variation (anomalies from the mean seasonal cycle) of alongshore currents and its possible driving mechanisms will be discussed.

  18. Presence and risk assessment of pharmaceuticals in surface water and drinking water.

    PubMed

    Sanderson, Hans

    2011-01-01

    Trace amounts of pharmaceuticals have been detected in surface waters in the nano- to microgram per liter range, and in drinking water in the nanogram/L range. The environmental risks of pharmaceuticals in surface waters have been evaluated and generally found to be low if the wastewater is treated before release to the environment. The human health risks of trace amounts of pharmaceuticals in drinking water have however not been evaluated in any great depth. Preliminary screening level assessments suggest risk to be low--but the public and decision-makers are concerned and would like the matter investigated more thoroughly, especially with regards to mixture effects, chronic long-term effects and sensitive sub-populations. The World Health Organization is currently evaluating the need for credible health based guidance associated with low concentrations of pharmaceuticals in drinking water. The aim of this paper is to summarize the state-of-the-science and the ongoing international debate on the topic.

  19. The significant surface-water connectivity of "geographically isolated wetlands"

    USGS Publications Warehouse

    Calhoun, Aram J.K.; Mushet, David M.; Alexander, Laurie C.; DeKeyser, Edward S.; Fowler, Laurie; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Richter, Stephen; Walls, Susan

    2017-01-01

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of grouping wetlands based on the singular condition of being surrounded by uplands. The most recent research on wetlands considered to be “geographically isolated” shows the difficulties in grouping an ecological resource that does not reliably indicate lack of surface water connectivity in order to meet legal, regulatory, or scientific needs. Additionally, the practice of identifying “geographically isolated wetlands” based on distance from a stream can result in gross overestimates of the number of wetlands lacking ecologically important surface-water connections. Our findings do not support use of the overly simplistic label of “geographically isolated wetlands”. Wetlands surrounded by uplands vary in function and surface-water connections based on wetland landscape setting, context, climate, and geographic region and should be evaluated as such. We found that the “geographically isolated” grouping does not reflect our understanding of the hydrologic variability of these wetlands and hence does not benefit conservation of the Nation’s diverse wetland resources. Therefore, we strongly discourage use of categorizations that provide overly simplistic views of surface-water connectivity of wetlands fully embedded in upland landscapes.

  20. The cavitation induced Becquerel effect and the hot spot theory of sonoluminescence.

    PubMed

    Prevenslik, T V

    2003-06-01

    Over 150 years ago, Becquerel discovered the ultraviolet illumination of one of a pair of identical electrodes in liquid water produced an electric current, the phenomenon called the Becquerel effect. Recently, a similar effect was observed if the water surrounding one electrode is made to cavitate by focused acoustic radiation, which by similarity is referred to as the cavitation induced Becquerel effect. The current in the cavitation induced Becquerel effect was found to be semi-logarithmic with the standard electrode potential that is consistent with the oxidation of the electrode surface by the photo-decomposition theory of photoelectrochemistry. But oxidation of the electrode surface usually requires high temperatures, say as in cavitation. Absent high bubble temperatures, cavitation may produce vacuum ultraviolet (VUV) light that excites water molecules in the electrode film to higher H(2)O(*) energy states, the excited states oxidizing the electrode surface by chemical reaction. Solutions of the Rayleigh-Plesset equation during bubble collapse that include the condensation of water vapor show any increase in temperature or pressure of the water vapor by compression heating is compensated by the condensation of vapor to the bubble wall, the bubbles collapsing almost isothermally. Hence, the cavitation induced Becquerel effect is likely caused by cavitation induced VUV light at ambient temperature.

  1. Variability of High-Resolution Sea Surface Heights on a Broad, Shallow Continental Shelf

    NASA Astrophysics Data System (ADS)

    Crout, R. L.; Rice, A. E.

    2017-12-01

    Recent satellite altimeter technologies and processing methodologies are allowing investigation of the dynamics of the continental shelf as never before. The region seaward of 20 km from the coast is a region where winds, tides, currents, river discharge, and bathymetry interact. All of these are important parameters to understand when applying coastal altimetry to coastal sea level monitoring. Processing of 8 years (July 2008 to July 2016) of Jason-2 altimeter 20 Hz data from the L2 AVISO-PISTACH experimental products yields nearly 300 crossings of the broad continental shelf to the southeast of Delaware Bay from Cape May, NJ. Removal of a mean surface yields individual crossings that, plotted together, form an envelope that shows high water level variability near the coast. Water level changes near the coast begin at a hinge point that occurs approximately 50 km from shore in less than 30 meters of water. Comparison of individual Jason-2 passes with regional weather patterns, cold front passages, local winds, tides, surface currents, river discharge, and regional oceanography provides information regarding the forcing factors for these regional water levels. The water levels farther than 20 km from shore show similar patterns to the low pass filtered tide data at Cape May, NJ and respond primarily to regional forcing.

  2. Assessment of Water-Quality Monitoring and a Proposed Water-Quality Monitoring Network for the Mosquito Lagoon Basin, East-Central Florida

    USGS Publications Warehouse

    Kroening, Sharon E.

    2008-01-01

    Surface- and ground-water quality data from the Mosquito Lagoon Basin were compiled and analyzed to: (1) describe historical and current monitoring in the basin, (2) summarize surface- and ground-water quality conditions with an emphasis on identifying areas that require additional monitoring, and (3) develop a water-quality monitoring network to meet the goals of Canaveral National Seashore (a National Park) and to fill gaps in current monitoring. Water-quality data were compiled from the U.S. Environmental Protection Agency's STORET system, the U.S. Geological Survey's National Water Information System, or from the agency which collected the data. Most water-quality monitoring focused on assessing conditions in Mosquito Lagoon. Significant spatial and/or seasonal variations in water-quality constituents in the lagoon were quantified for pH values, fecal coliform bacteria counts, and concentrations of dissolved oxygen, total nitrogen, total phosphorus, chlorophyll-a, and total suspended solids. Trace element, pesticide, and ground-water-quality data were more limited. Organochlorine insecticides were the major class of pesticides analyzed. A surface- and ground-water-quality monitoring network was designed for the Mosquito Lagoon Basin which emphasizes: (1) analysis of compounds indicative of human activities, including pesticides and other trace organic compounds present in domestic and industrial waste; (2) greater data collection in the southern part of Mosquito Lagoon where spatial variations in water-quality constituents were quantified; and (3) additional ground-water-quality data collection in the surficial aquifer system and Upper Floridan aquifer. Surface-water-quality data collected as part of this network would include a fixed-station monitoring network of eight sites in the southern part of the basin, including a canal draining Oak Hill. Ground-water quality monitoring should be done routinely at about 20 wells in the surficial aquifer system and Upper Floridan aquifer, distributed between developed and undeveloped parts of the basin. Water samples collected should be analyzed for a wide range of constituents, including physical properties, nutrients, suspended sediment, and constituents associated with increased urban development such as pesticides, other trace organic compounds associated with domestic and industrial waste, and trace elements.

  3. Pollution of surface water in Europe

    PubMed Central

    Key, A.

    1956-01-01

    This paper discusses pollution of surface water in 18 European countries. For each an account is given of its physical character, population, industries, and present condition of water supplies; the legal, administrative, and technical means of controlling pollution are then described, and an outline is given of current research on the difficulties peculiar to each country. A general discussion of various aspects common to the European problem of water pollution follows; standards of quality are suggested; some difficulties likely to arise in the near future are indicated, and international collaboration, primarily by the exchange of information, is recommended to check or forestall these trends. PMID:13374532

  4. Estimating Agricultural Water Use using the Operational Simplified Surface Energy Balance Evapotranspiration Estimation Method

    NASA Astrophysics Data System (ADS)

    Forbes, B. T.

    2015-12-01

    Due to the predominantly arid climate in Arizona, access to adequate water supply is vital to the economic development and livelihood of the State. Water supply has become increasingly important during periods of prolonged drought, which has strained reservoir water levels in the Desert Southwest over past years. Arizona's water use is dominated by agriculture, consuming about seventy-five percent of the total annual water demand. Tracking current agricultural water use is important for managers and policy makers so that current water demand can be assessed and current information can be used to forecast future demands. However, many croplands in Arizona are irrigated outside of areas where water use reporting is mandatory. To estimate irrigation withdrawals on these lands, we use a combination of field verification, evapotranspiration (ET) estimation, and irrigation system qualification. ET is typically estimated in Arizona using the Modified Blaney-Criddle method which uses meteorological data to estimate annual crop water requirements. The Modified Blaney-Criddle method assumes crops are irrigated to their full potential over the entire growing season, which may or may not be realistic. We now use the Operational Simplified Surface Energy Balance (SSEBop) ET data in a remote-sensing and energy-balance framework to estimate cropland ET. SSEBop data are of sufficient resolution (30m by 30m) for estimation of field-scale cropland water use. We evaluate our SSEBop-based estimates using ground-truth information and irrigation system qualification obtained in the field. Our approach gives the end user an estimate of crop consumptive use as well as inefficiencies in irrigation system performance—both of which are needed by water managers for tracking irrigated water use in Arizona.

  5. The Upper Colorado River; National Water-Quality Assessment Program; surface-water-monitoring network

    USGS Publications Warehouse

    Spahr, Norman E.; Driver, Nancy E.; Stephens, Verlin C.

    1996-01-01

    The U.S. Geological Survey began full implementation of the National Water-Quality Assessment (NAWQA) program in 1991. The long-term goals of the NAWQA program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams, rivers, and aquifers; (2) describe how water quality is changing over time; and (3) improve understanding of the primary natural and human factors that affect water-quality conditions (Leahy and others, 1990). To meet these goals, 60 study units representing the Nation's most important river basins and aquifers are being investigated. The program design balances the unique assessment requirements of individual study units with a nationally consistent design structure that incorporates a multiscale, interdisciplinary approach for assessment of surface and ground water.

  6. The ESPAT tool: a general-purpose DSS shell for solving stochastic optimization problems in complex river-aquifer systems

    NASA Astrophysics Data System (ADS)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel; Tilmant, Amaury

    2015-04-01

    Stochastic programming methods are better suited to deal with the inherent uncertainty of inflow time series in water resource management. However, one of the most important hurdles in their use in practical implementations is the lack of generalized Decision Support System (DSS) shells, usually based on a deterministic approach. The purpose of this contribution is to present a general-purpose DSS shell, named Explicit Stochastic Programming Advanced Tool (ESPAT), able to build and solve stochastic programming problems for most water resource systems. It implements a hydro-economic approach, optimizing the total system benefits as the sum of the benefits obtained by each user. It has been coded using GAMS, and implements a Microsoft Excel interface with a GAMS-Excel link that allows the user to introduce the required data and recover the results. Therefore, no GAMS skills are required to run the program. The tool is divided into four modules according to its capabilities: 1) the ESPATR module, which performs stochastic optimization procedures in surface water systems using a Stochastic Dual Dynamic Programming (SDDP) approach; 2) the ESPAT_RA module, which optimizes coupled surface-groundwater systems using a modified SDDP approach; 3) the ESPAT_SDP module, capable of performing stochastic optimization procedures in small-size surface systems using a standard SDP approach; and 4) the ESPAT_DET module, which implements a deterministic programming procedure using non-linear programming, able to solve deterministic optimization problems in complex surface-groundwater river basins. The case study of the Mijares river basin (Spain) is used to illustrate the method. It consists in two reservoirs in series, one aquifer and four agricultural demand sites currently managed using historical (XIV century) rights, which give priority to the most traditional irrigation district over the XX century agricultural developments. Its size makes it possible to use either the SDP or the SDDP methods. The independent use of surface and groundwater can be examined with and without the aquifer. The ESPAT_DET, ESPATR and ESPAT_SDP modules were executed for the surface system, while the ESPAT_RA and the ESPAT_DET modules were run for the surface-groundwater system. The surface system's results show a similar performance between the ESPAT_SDP and ESPATR modules, with outperform the one showed by the current policies besides being outperformed by the ESPAT_DET results, which have the advantage of the perfect foresight. The surface-groundwater system's results show a robust situation in which the differences between the module's results and the current policies are lower due the use of pumped groundwater in the XX century crops when surface water is scarce. The results are realistic, with the deterministic optimization outperforming the stochastic one, which at the same time outperforms the current policies; showing that the tool is able to stochastically optimize river-aquifer water resources systems. We are currently working in the application of these tools in the analysis of changes in systems' operation under global change conditions. ACKNOWLEDGEMENT: This study has been partially supported by the IMPADAPT project (CGL2013-48424-C2-1-R) with Spanish MINECO (Ministerio de Economía y Competitividad) funds.

  7. SPRINGFIELD SURFACE WATER ACTION MONITORING PARTNERSHIP(SSWAMP)

    EPA Science Inventory

    The objectives of this project are as follows: 1) To determine the baseline chemical and biological characteristics of the water bodies and to determine the baseline levels of nutrients, metals and organic contaminants in the sediments. To determine the current level of mercur...

  8. 40 CFR 264.18 - Location standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...) The impact of such concentrations on the current or potential uses of and water quality standards established for the affected surface waters; and (D) The impact of hazardous constituents on the sediments of...

  9. Concentration and Quantification of Somatic and F+ Coliphage from Recreational Waters

    EPA Science Inventory

    Somatic and F+ coliphages are promising alternative fecal indicators, but current detection methods are hindered by lower levels of coliphages in surface waters compared to traditional bacterial fecal indicators. We evaluated the ability of dead-end hollow fiber ultrafiltration (...

  10. Freezing Behavior of a Supercooled Water Droplet Impacting on Surface Using Dual-Luminescent Imaging Technique

    NASA Astrophysics Data System (ADS)

    Tanaka, Mio; Morita, Katsuaki; Yamamoto, Makoto; Sakaue, Hirotaka

    2015-11-01

    A collision of a supercooled-water droplet on an object creates ice accretion on its surface. These icing problems can be seen in any cold environments and may lead to severe damages on aircrafts, ships, power cables, trees, road signs, and architectures. To solve these problems, various studies on ice-prevention and ice-prediction techniques have been conducted. It is very important to know the detail freezing mechanism of supercooled water droplets to propose or improve those techniques. The icing mechanism of a single supercooled-water droplet impacting on object surface would give us great insights for constructing those techniques. In the present study, we use a dual-luminescent imaging technique to measure the time-resolved temperatures of a supercooled water droplet impacting with different speed. The technique we applied consists of high-speed color camera and two luminescent probes. We will report the current status of this experiment in the presentation.

  11. Dynamics of ice nucleation on water repellent surfaces.

    PubMed

    Alizadeh, Azar; Yamada, Masako; Li, Ri; Shang, Wen; Otta, Shourya; Zhong, Sheng; Ge, Liehui; Dhinojwala, Ali; Conway, Ken R; Bahadur, Vaibhav; Vinciquerra, A Joseph; Stephens, Brian; Blohm, Margaret L

    2012-02-14

    Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications.

  12. Areas Contributing Recharge to Wells in the Tafuna-Leone Plain, Tutuila, American Samoa

    USGS Publications Warehouse

    Izuka, Scot K.; Perreault, Jeff A.; Presley, Todd K.

    2007-01-01

    To address the concerns about the potential for contamination of drinking-water wells in the Tafuna-Leone Plain, Tutuila, American Samoa, a numerical ground-water flow model was developed and used to delineate areas contributing recharge to the wells (ACRWs). Surveys and analyses were conducted to obtain or compile certain essential hydrogeologic information needed for the model, such as groundwater production statistics, ground-water levels under current production, and an assessment of the distribution of groundwater recharge. The ground-water surveys indicate that total production from all wells in the Tafuna-Leone Plain between 1985 and 2005 averaged 6.1 Mgal/d and showed a gradual increase. A synoptic survey indicates that current water levels in the Tafuna-Leone Plain are highest near its inland boundary, decrease toward the coast, and are slightly depressed in high-production well fields. Ground-water levels showed little effect from the increased production because hydraulic conductivites are high and withdrawal is small relative to recharge. Analysis of ground-water recharge using a soil water-budget analysis indicates that the Tafuna-Leone Plain and adjacent areas receive about 280 Mgal/d of water from rainfall, of which 24 percent runs off to the ocean, 26 percent is removed by evapotranspiration, and 50 percent goes to ground-water recharge. Ground-water recharge per unit area is generally higher at the mountain crests than at the coast, but the highest recharge per unit area is in the mountain-front recharge zone at the juncture between the Tafuna-Leone Plain and the adjacent mountains. Surface water from the mountains also contributes to ground-water recharge in the eastern Tafuna-Leone Plain, in a process analogous to mountain-front recharge described in arid areas. Analysis of stream-gage data indicates that in the mountains of Tutuila, ground water discharges and contributes substantially to the total flow of the streams. In contrast, multiple lines of evidence indicate that in the eastern Tafuna-Leone Plain, surface water recharges the highly permeable underlying aquifer. Steady-state model simulations representing current ground-water production conditions in the Tafuna-Leone Plain indicate that most ACRWs extend less than a mile from the production wells; thus, travel distance between any point within an ACRW and its well is short. A simulation representing a condition in which all wells are operating at maximum capacity resulted in larger ACRWs, which demonstrates that increasing ground-water withdrawal from existing wells, or building and developing new wells, increases the surface area that could potentially contribute contaminants. In some places, such as in Malaeimi Valley, water can travel quickly via surface-water routes to an area where the water can infiltrate within the ACRWs of a well field.

  13. Simulated natural hydrologic regime of an intermountain playa conservation site

    USGS Publications Warehouse

    Sanderson, J.S.; Kotliar, N.B.; Steingraeber, D.A.; Browne, C.

    2008-01-01

    An intermountain playa wetland preserve in Colorado's San Luis Valley was studied to assess how its current hydrologic function compares to its natural hydrologic regime. Current hydrologic conditions were quantified, and on-site effects of off-site water use were assessed. A water-budget model was developed to simulate an unaltered (i.e., natural) hydrologic regime, and simulated natural conditions were compared to observed conditions. From 1998-2002, observed stream inflows accounted for ??? 80% of total annual water inputs. No ground water discharged to the wetland. Evapotranspiration (ET) accounted for ??? 69% of total annual water loss. Simulated natural conditions differed substantially from current altered conditions with respect to depth, variability, and frequency of flooding. During 1998-2002, observed monthly mean surface-water depth was 65% lower than under simulated natural conditions. Observed monthly variability in water depth range from 129% greater (May) to 100% less (September and October) than simulated. As observed, the wetland dried completely (i.e., was ephemeral) in all years; as simulated, the wetland was ephemeral in two of five years. For the period 1915-2002, the simulated wetland was inundated continuously for as long as 16 years and nine months. The large differences in observed and simulated surface-water dynamics resulted from differences between altered and simulated unaltered stream inflows. The maximum and minimum annual total stream inflows observed from 1998-2005 were 3.1 ?? 106 m3 and 0 m3, respectively, versus 15.5 ?? 106 m3 and 3.2 ?? 106 m3 under simulated natural conditions from 1915-2002. The maximum simulated inflow was 484% greater than observed. These data indicate that the current hydrologic regime of this intermountain playa differs significantly from its natural hydrologic regime, which has important implications for planning and assessing conservation success. ?? 2008, The Society of Wetland Scientists.

  14. Suspended particulate loads and transports in the nepheloid layer of the abyssal Atlantic Ocean

    USGS Publications Warehouse

    Biscaye, P.E.; Eittreim, S.L.

    1977-01-01

    Vertical profiles of light scattering from over 1000 L-DGO nephelometer stations in the Atlantic Ocean have been used to calculate mass concentrations of suspended particles based on a calibration from the western North American Basin. From these data are plotted the distributions of particulate concentrations at clear water and in the more turbid near-bottom water. Clear water is the broad minimum in concentration and light scattering that occurs at varying mid-depths in the water column. Concentrations at clear water are as much as one-to-two orders of magnitude lower than those in surface water but still reflect a similar geographic distribution: relatively higher concentrations at ocean margins, especially underneath upwelling areas, and the lowest concentrations underneath central gyre areas. These distributions within the clear water reflect surface-water biogenic productivity, lateral injection of particles from shelf areas and surface circulation patterns and require that the combination of downward vertical and horizontal transport processes of particles retain this pattern throughout the upper water column. Below clear water, the distribution of standing crops of suspended particulate concentrations in the lower water column are presented. The integration of mass of all particles per unit area (gross particulate standing crop) reflects a relative distribution similar to that at the surface and at clear water levels, superimposed on which is the strong imprint of boundary currents along the western margins of the Atlantic. Reducing the gross particulate standing crop by the integral of the concentration of clear water yields a net particulate standing crop. The distribution of this reflects primarily the interaction of circulating abyssal waters with the ocean bottom, i.e. a strong nepheloid layer which is coincident with western boundary currents and which diminishes in intensity equatorward. The resuspended particulate loads in the nepheloid layer of the basins west of the Mid-Atlantic Ridge, resulting from interaction of abyssal currents with the bottom, range from ??? 2 ?? 106 tons in the equatorial Guyana Basin to ??? 50 ?? 106 tons in the North American Basin. The total resuspended particulate load in the western basins (111 ?? 106 tons) is almost an order of magnitude greater than that in the basins east of the Mid-Atlantic Ridge (13 ?? 106 tons). The net northward flux of resuspended particles carried in the AABW drops from ??? 8 ?? 106 tons/year between the southern and northern ends of the Brazil Basin and remains ??? 1 ?? 106 tons/year across the Guyana Basin. ?? 1977.

  15. Flood-inundation maps for the Tippecanoe River near Delphi, Indiana

    USGS Publications Warehouse

    Menke, Chad D.; Bunch, Aubrey R.; Kim, Moon H.

    2013-01-01

    Digital flood-inundation maps for an 11-mile reach of the Tippecanoe River that extends from County Road W725N to State Road 18 below Oakdale Dam, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at USGS streamgage 03333050, Tippecanoe River near Delphi, Ind. Current conditions at the USGS streamgages in Indiana may be obtained online at http://waterdata.usgs.gov/in/nwis/current/?type=flow. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, water-surface profiles were simulated for the stream reach by means of a hydraulic one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation at USGS streamgage 03333050, Tippecanoe River near Delphi, Ind., and USGS streamgage 03332605, Tippecanoe River below Oakdale Dam, Ind. The hydraulic model was then used to simulate 13 water-surface profiles for flood stages at 1-foot intervals reference to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. A flood inundation map was generated for each water-surface profile stage (13 maps in all) so that, for any given flood stage, users will be able to view the estimated area of inundation. The availability of these maps, along with current stage from USGS streamgages and forecasted stream stages from the NWS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  16. Role of gravity in the formation of bacterial colonies with a hydrophobic surface layer

    NASA Astrophysics Data System (ADS)

    Puzyr, A. P.; Tirranen, L. K.; Krylova, T. Y.; Borodina, E. V.

    A simple technique for determining hydrophobic-hydrophilic properties of bacterial colonies surface, which involves putting a drop of liquid with known properties (e.g. water, oil) on their surface, has been described. This technique allows quick estimate of wettability of bacterial colony surface, i.e. its hydrophobic-hydrophilic properties. The behaviour of water drops on colonies of bacteria Bacillus five strains (of different types) has been studied. It was revealed that 1) orientation in the Earth gravity field during bacterial growth can define the form of colonies with hydrophobic surface; 2) the form and size of the colony are dependent on the extention ability, most probably, of the hydrophobic layer; 3) the Earth gravity field (gravity) serves as a 'pump' providing and keeping water within the colony. We suppose that at growing colonies on agar media the inflow of water-soluble nutrient materials takes place both due to diffusion processes and directed water current produced by the gravity. The revealed effect probably should be taken into consideration while constructing the models of colonies growing on dense nutrient media. The easily determined hydrophobic properties of colonies surface can become a systematic feature after collecting more extensive data on the surface hydrophobic-hydrophilic properties of microorganism colonies of other types and species.

  17. Influence of the hydrodynamic conditions on the accessibility of Aristeus antennatus and other demersal species to the deep water trawl fishery off the Balearic Islands (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Amores, Angel; Rueda, Lucía; Monserrat, Sebastià; Guijarro, Beatriz; Pasqual, Catalina; Massutí, Enric

    2014-10-01

    Monthly catches per unit of effort (CPUE) of adult red shrimp (Aristeus antennatus), reported in the deep water bottom trawl fishery developed on the Sóller fishing ground off northern Mallorca (Western Mediterranean), and the mean ocean surface vorticity in the surrounding areas are compared between 2000 and 2010. A good correlation is found between the rises in the surrounding surface vorticity and the drops in the CPUE of the adult red shrimp. This correlation could be explained by assuming that most of the surface vorticity episodes could reach the bottom, increasing the seabed velocities and producing sediment resuspension, which could affect the near bottom water turbidity. A. antennatus would respond to this increased turbidity disappearing from the fishing grounds, probably moving downwards to the deeper waters. This massive displacement of red shrimp specimens away from the fishing grounds would consequently decrease their accessibility to fishing exploitation. Similar although more intense responses have been observed during the downslope shelf dense water current episodes that occurred in a submarine canyon, northeast of the Iberian peninsula. The proposed mechanism suggesting how the surface vorticity observed can affect the bottom sediments is investigated using a year-long moored near-bottom current meter and a sediment trap moored near the fishing grounds. The relationship between vorticity and catches is also explored for fish species (Galeus melastomus, Micromesistius poutassou, Phycis blennoides) and other crustacean (Geryon longipes and Nephrops norvegicus), considered as by-catch of the deep water fishery in the area. Results appear to support the suggestion that the water turbidity generated by the vorticity episodes is significant enough to affect the dynamics of the demersal species.

  18. Water quality in the vicinity of Mosquito Creek Lake, Trumbull County, Ohio, in relation of the chemistry of locally occurring oil, natural gas, and brine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, G.J.; Burruss, R.C.; Ryder, R.T.

    1998-12-31

    The purpose of this report is to describe current water quality and the chemistry of oil, natural gas, and brine in the Mosquito Creek Lake area. Additionally, these data are used to characterize water quality in the Mosquito Creek Lake area in relation to past oil and natural gas well drilling and production. To meet the overall objective, several goals for this investigation were established. These include (1) collect water-quality and subsurface-gas data from shallow sediments and rock that can be used for future evaluation of possible effects of oil and natural gas well drilling and production on water supplies,more » (2) characterize current surface-water and ground-water quality as it relates to the natural occurrence and (or) release of oil, gas, and brine (3) sample and chemically characterize the oil in the shallow Mecca Oil Pool, gas from the Berea and Cussewago Sandstone aquifers, and the oil, gas, and brine from the Clinton sandstone, and (4) identify areas where aquifers are vulnerable to contamination from surface spills at oil and natural gas drilling and production sites.« less

  19. Validation of HF Radar ocean surface currents in the Ibiza Channel using lagrangian drifters, moored current meter and underwater gliders

    NASA Astrophysics Data System (ADS)

    Lana, Arancha; Fernández, Vicente; Orfila, Alejandro; Troupin, Charles; Tintoré, Joaquín

    2015-04-01

    SOCIB High Frequency (HF) radar is one component of a multi-platform system located in the Balearic Islands and made up of Lagrangian platforms (profilers and drifting buoys), fixed stations (sea-level, weather, mooring and coastal), beach monitoring (camera), gliders, a research vessel as well as an ocean forecast system (waves and hydrodynamics). The HF radar system overlooks the Ibiza Channel, known as a 'choke point" where Atlantic and Mediterranean water masses interact and where meridional exchanges of water mass properties between the Balearic and the Algerian sub-basins take place. In order to determine the reliability of surface velocity measurements in this area, a quality assessment of the HF Radar is essential. We present the results of several validation experiments performed in the Ibiza Channel in 2013 and 2014. Of particular interest is an experiment started in September 2014 when a set of 13 surface drifters with different shapes and drogue lengths were released in the area covered by the HF radar. The drifter trajectories can be examined following the SOCIB Deployment Application (DAPP): http://apps.socib.es/dapp. Additionally, a 1-year long time series of surface currents obtained from a moored surface current-meter located in the Ibiza Channel, inside the area covered by the HF radar, was also used as a useful complementary validation exercise. Direct comparison between both radial surface currents from each radar station and total derived velocities against drifters and moored current meter velocities provides an assessment of the HF radar data quality at different temporal periods and geographical areas. Statistics from these comparisons give good correlation and low root-mean-square deviation. The results will be discussed for different months, geographical areas and types of surface drifters and wind exposure. Moreover, autonomous underwater glider constitutes an additional source of information for the validation of the observed velocity structures and some statistics will be presented.

  20. Earth Observations taken by the Expedition 22 Crew

    NASA Image and Video Library

    2010-01-12

    ISS022-E-024557 (12 Jan. 2010) --- Male Atoll and Maldive Islands in the Indian Ocean are featured in this image photographed by an Expedition 22 crew member on the International Space Station. This detailed photograph features one of the numerous atolls in the Maldive Island chain. The Maldives are an island nation, comprised of twenty-six atolls that stretch in a north-to-south chain for almost 900 kilometers southwest of the Indian subcontinent. The silvery, almost pink sheen on the normally blue water of the equatorial Indian Ocean is the result of sunglint. Sunglint occurs when sunlight is reflected off of a water surface directly back towards the observer ? in this case a crew member on the space station. Full sunglint in images typically results in bright silver to white coloration of the water surface. Sunglint images can have different hues depending on the roughness of the water surface and atmospheric conditions. They also can reveal numerous details of water circulation which are otherwise invisible. This image was taken during the Indian Ocean Northeast monsoon season - predominant winds in this area create sinuous surface water patterns on the leeward side, and between, the islets (left). A south-flowing current flows in the deeper water through the Maldives most of the year (right), with fan-shaped surface currents formed by local tides pulsing in and out of the shallow water near the islands (top and bottom). The largest island seen here (center) is 6 kilometers long, and is one of the outer ring of larger islands that make up the 70 kilometers-long, oval-shaped Male Atoll. Shores facing deeper water have well-defined beaches. Numerous small, elliptical coral reef islets are protected within the ring of shallow water to the northeast (left). These islets are mostly awash at high tide, with dry ground appearing in tiny patches only. A small boat was navigating between the islets at the time the image was taken as indicated by its v-shaped wake at bottom left. Images like these illustrate why the Republic of Maldives is one of the most outspoken countries in stressing the dangers of rising sea levels.

  1. A concept of ephemeral wetlands as water-transmitting landscape units in Canada's Western Boreal Plain

    NASA Astrophysics Data System (ADS)

    Hurley, Alexander; Kettridge, Nicholas; Devito, Kevin; Hokanson, Kelly; Krause, Stefan

    2017-04-01

    Hydrologic connectivity in the sub-humid Western Boreal Plain is largely controlled by storage-threshold dynamics where deep and coarse glacial deposits with high infiltration and storage capacities are prevalent. Here, vertical fluxes generally dominate over surface runoff, which has return periods of several years. Within this landscape, small, ephemeral wetlands with shallow peat soils are embedded in a matrix of other landscape units. They are typically gently-sloped and found in low-lying areas within forests or along margins of other wetlands. These ephemeral wetlands frequently saturate, and thus promote lateral water transfer as surface runoff or subsurface flows to adjacent and downstream systems. In the Western Boreal Plain, the importance of such water transmitting units (WTUs) is exacerbated by regional, multi-year water deficits resulting from inter-annual precipitation variability, and high evapotranspirative (ET) demand coinciding with most of the annual precipitation. Hence, the occurrence of WTUs may be key to maintaining the ecohydrological functioning of systems with temporary or missing connections to ground- or surface water. We present a conceptual model of these shallow, ephemeral wetlands based on our current understanding of dominant, ecohydrological processes promoting water transmission and highlight current knowledge gaps. Ongoing research focuses on quantifying individual water balance components, identifying potential feedback mechanisms between vegetation, soil properties and layering, and how climate modulates them. Key questions are: (1) What are dominant water balance components and their seasonal and internal dynamics? (2) Do vegetation structure and community composition decrease ET losses from the soil surface and wetland vegetation by shading and sheltering (i.e. decoupling from turbulent atmospheric exchange)? (3) Do adjacent upland and wetland systems depend on water transmission to maintain their functioning and productivity? (4) Are saturation and lateral water transport enhanced by the formation of surface-near ice layers by decreasing storage capacity, and does spatial variability of soil properties affect this process? Ultimately, this work will contribute to a growing knowledge base on the ecohydrological functioning of landscape units and catchment dynamics of the Western Boreal Plain.

  2. Pond and Irrigation Model (PIM): a tool for simultaneously evaluating pond water availability and crop irrigation demand

    Treesearch

    Ying Ouyang; Gary Feng; Theodor D. Leininger; John Read; Johnie N. Jenkins

    2018-01-01

    Agricultural ponds are an important alternative source of water for crop irrigation to conserve surface and ground water resources. In recent years more such ponds have been constructed in Mississippi and around the world. There is currently, however, a lack of a tool to simultaneously estimate crop irrigation demand and pond water availability. In this study, a Pond-...

  3. Primary Production and Respiration in the Louisiana Coastal Current Drive Patterns of Metabolism and Oxygen on the Louisiana Shelf

    NASA Astrophysics Data System (ADS)

    Lehrter, J. C.; Fung, M.

    2017-12-01

    Nutrients loads delivered by the Mississippi River to the Louisiana continental shelf (LCS) stimulate phytoplankton production of organic matter and coupled community respiration. These processes ultimately consume oxygen in bottom waters and promote the development of hypoxia and anoxia on the LCS. Several recent studies have emphasized the importance of nearshore (<15 m depth) phytoplankton production and respiration as a principal driver of heterotrophy and oxygen concentration patterns across this shelf. However, no studies to date have measured these nearshore rates. Other studies have invoked a more classical pattern of surface water primary production fueling water-column and bottom water respiration directly beneath through vertical deposition of organic matter. Yet, patterns of heterotrophy that have been observed across most of the LCS do not seem to support this hypothesis. In this study, we investigated these two different ideas by measuring primary production and respiration rates in distinct water masses at stations spanning salinity and depth gradients on the LCS in spring and summer of 2017. Over the course of this study, we have consistently observed highest primary production and respiration rates in nearshore waters of the Louisiana Coastal Current. This narrow band of low salinity water deriving from the Mississippi and Atchafalaya rivers exhibits maximum production rates exceeding 200 mmol C m-3 d-1 and maximum P/R > 10. Other water masses investigated, which included: surface water at offshore locations (> 15 m depth), sub-surface chlorophylla maxima, mid-water O2 minima and maxima, and bottom water, had average production and respiration rates that were 4-10 fold lower than in the nearshore zone and P/R < 1. These results and a scaling analysis demonstrate the potential for organic matter subsidies from the Louisiana Coastal Current to fuel respiration across the wider shelf and downcoast of the river inputs. Further, the results support recent physical and modeling analyses indicating that mid-water O2 minima and maxima observed on the LCS are primarily derived from lateral advection as opposed to developing in place as a result of excess primary production, sinking, and respiration.

  4. Natural attenuation of chlorinated volatile organic compounds in ground water at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington

    USGS Publications Warehouse

    Dinicola, Richard S.; Cox, S.E.; Landmeyer, J.E.; Bradley, P.M.

    2002-01-01

    The U.S. Geological Survey (USGS) evaluated the natural attenuation of chlorinated volatile organic compounds (CVOCs) in ground water beneath the former landfill at Operable Unit 1 (OU 1), Naval Undersea Warfare Center, Division Keyport, Washington. The predominant contaminants in ground water are trichloroethene (TCE) and its degradation byproducts cis-1,2-dichloroethene (cisDCE) and vinyl chloride (VC). The Navy planted two hybrid poplar plantations on the landfill in spring of 1999 to remove and control the migration of CVOCs in shallow ground water. Previous studies provided evidence that microbial degradation processes also reduce CVOC concentrations in ground water at OU 1, so monitored natural attenuation is a potential alternative remedy if phytoremediation is ineffective. This report describes the current (2000) understanding of natural attenuation of CVOCs in ground water at OU 1 and the impacts that phytoremediation activities to date have had on attenuation processes. The evaluation is based on ground-water and surface-water chemistry data and hydrogeologic data collected at the site by the USGS and Navy contractors between 1991 and 2000. Previously unpublished data collected by the USGS during 1996-2000 are presented. Natural attenuation of CVOCs in shallow ground water at OU 1 is substantial. For 1999-2000 conditions, approximately 70 percent of the mass of dissolved chlorinated ethenes that was available to migrate from the landfill was completely degraded in shallow ground water before it could migrate to the intermediate aquifer or discharge to surface water. Attenuation of CVOC concentrations appears also to be substantial in the intermediate aquifer, but biodegradation appears to be less significant; those conclusions are less certain because of the paucity of data downgradient of the landfill beneath the tide flats. Attenuation of CVOC concentrations is also substantial in surface water as it flows through the adjacent marsh and out to the tide flats. Attenuation processes other than dilution reduce the CVOC flux in marsh surface water by about 40 percent by the time the water discharges to the tide flats. Despite the importance of natural attenuation processes at reducing both the contaminant concentrations and the contaminant mass at OU 1, natural attenuation alone was not effective enough in the year 2000 to meet current numerical remediation goals for the site. That was in part due to the relatively short distance between the landfill and the adjacent marsh, and in part due to the extremely high CVOC concentrations directly beneath the landfill. Phytoremediation activities had some apparent effect on contaminant concentrations in ground water and surface water, but ground-water redox conditions to date (2000) were not affected by the February 1999 asphalt removal for tree planting. The poplar trees in the phytoremediation plantations were not yet mature in 2000, so the lack of discernible changes to date is understandable. Concentration changes of some redox-sensitive compounds suggest that increased recharge following asphalt removal diluted ambient landfill ground water. CVOC concentrations increased in some downgradient wells in both the northern and southern plantations after asphalt removal, whereas CVOC concentrations decreased in some upgradient wells in the southern plantation. A clear increase in CVOC concentrations in marsh surface water followed asphalt removal, apparently from increased contaminant discharge in ground water beneath the southern plantation. The results of the natural attenuation evaluation suggest than minor modifications to the current sampling plan may be beneficial to understanding the future impacts of phytoremediation and natural attenuation on the fate and distribution of CVOCs at OU 1.

  5. Molecular organization of phospholipid monolayers on the water surface by Maxwell displacement current measurement

    NASA Astrophysics Data System (ADS)

    Sulaiman, Khaulah; Majid, Wan Haliza Abdul; Muhamad, Muhamad Rasat

    2006-02-01

    The monolayer of organic molecules at the air-water interface has been studied using the Maxwell displacement current (MDC) technique. The materials used in this study were the biological materials of phosphatidyl ethanolamine (PE) and phosphatidic acids (PA). The configuration of the experimental set-up consists of the metal/air-gap/monolayer/metal coupled with the Langmuir method. This measurement enables the detection of current without destroying the monolayer. The phase transition and molecular orientation of the phospholipid monolayers were investigated using MDC measurement without mechanical contact between electrodes and the materials. Direct evidence of phase transition from gaseous to the polar ordering phase can be obtained across phospholipid monolayers even though at very low surface pressure. Relaxation process of the phospholipid monolayers was investigated by using the step compression on the MDC signals.

  6. Electrical Breakdown in Water Vapor

    NASA Astrophysics Data System (ADS)

    Škoro, N.; Marić, D.; Malović, G.; Graham, W. G.; Petrović, Z. Lj.

    2011-11-01

    In this paper investigations of the voltage required to break down water vapor are reported for the region around the Paschen minimum and to the left of it. In spite of numerous applications of discharges in biomedicine, and recent studies of discharges in water and vapor bubbles and discharges with liquid water electrodes, studies of the basic parameters of breakdown are lacking. Paschen curves have been measured by recording voltages and currents in the low-current Townsend regime and extrapolating them to zero current. The minimum electrical breakdown voltage for water vapor was found to be 480 V at a pressure times electrode distance (pd) value of around 0.6 Torr cm (˜0.8 Pa m). The present measurements are also interpreted using (and add additional insight into) the developing understanding of relevant atomic and particularly surface processes associated with electrical breakdown.

  7. Water-resources optimization model for Santa Barbara, California

    USGS Publications Warehouse

    Nishikawa, Tracy

    1998-01-01

    A simulation-optimization model has been developed for the optimal management of the city of Santa Barbara's water resources during a drought. The model, which links groundwater simulation with linear programming, has a planning horizon of 5 years. The objective is to minimize the cost of water supply subject to: water demand constraints, hydraulic head constraints to control seawater intrusion, and water capacity constraints. The decision variables are montly water deliveries from surface water and groundwater. The state variables are hydraulic heads. The drought of 1947-51 is the city's worst drought on record, and simulated surface-water supplies for this period were used as a basis for testing optimal management of current water resources under drought conditions. The simulation-optimization model was applied using three reservoir operation rules. In addition, the model's sensitivity to demand, carry over [the storage of water in one year for use in the later year(s)], head constraints, and capacity constraints was tested.

  8. Effect of surficial disturbance on exchange between groundwater and surface water in nearshore margins

    USGS Publications Warehouse

    Rosenberry, Donald O.; Toran, Laura; Nyquist, Jonathan E.

    2010-01-01

    Low‐permeability sediments situated at or near the sediment‐water interface can influence seepage in nearshore margins, particularly where wave energy or currents are minimal. Seepage meters were used to quantify flow across the sediment‐water interface at two lakes where flow was from surface water to groundwater. Disturbance of the sediment bed substantially increased seepage through the sandy sediments of both lakes. Seepage increased by factors of 2.6 to 7.7 following bed disturbance at seven of eight measurement locations at Mirror Lake, New Hampshire, where the sediment representing the greatest restriction to flow was situated at the sediment‐water interface. Although the veneer of low‐permeability sediment was very thin and easily disturbed, accumulation on the bed surface was aided by a physical setting that minimized wind‐generated waves and current. At Lake Belle Taine, Minnesota, where pre‐disturbance downward seepage was smaller than at Mirror Lake, but hydraulic gradients were very large, disturbance of a 20 to 30 cm thick medium sand layer resulted in increases in seepage of 2 to 3 orders of magnitude. Exceptionally large seepage rates, some exceeding 25,000 cm/d, were recorded following bed disturbance. Since it is common practice to walk on the bed while installing or making seepage measurements, disruption of natural seepage rates may be a common occurrence in nearshore seepage studies. Disturbance of the bed should be avoided or minimized when utilizing seepage meters in shallow, nearshore settings, particularly where waves or currents are infrequent or minimal.

  9. Water mass characteristic in the outflow region of the Indonesian throughflow during and post 2016 negative Indian ocean dipole event

    NASA Astrophysics Data System (ADS)

    Bayhaqi, A.; Iskandar, I.; Surinati, D.; Budiman, A. S.; Wardhana, A. K.; Dirhamsyah; Yuan, D.; Lestari, D. O.

    2018-05-01

    Strong El Niño and positive Indian Ocean Dipole (pIOD) events in 2015/2016 followed by relatively strong negative Indian Ocean Dipole (nIOD) and weak La Niña in 2016 events have affected hydrography conditions in the Indonesian Throughflow (ITF) region. Two research cruises were conducted using RV Baruna Jaya VIII in August and November 2016. These cruises aim to evaluate possible impact of those two climate mode events on the water mass characteristic in the outflow region of the ITF. Hydrographic data from those two cruises were combined with the sea surface temperature (SST) from the Advanced Very High Resolution Radiometer (AVHRR) and surface wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF). The results showed that in the 2016 anomaly year, the cooler sea surface temperature was observed during the negative IOD (nIOD) event while the warmer temperature was found in the post of nIOD event. The observed water mass characteristics in the outflow region of the ITF revealed that the upper layer was dominated by the Indian Ocean water mass, while the Pacific Ocean water mass was observed in the deeper layer. The observed current data across the Sumba Strait showed that the South Java Coastal Current (SJCC) was observed in the upper layer, propagating eastward toward the Savu Sea. A few days later, the observed currents in the upper layer of the Ombai Strait revealed the ITF flow towards the Indian Ocean. Meanwhile, the lower layer showed an eastward flow towards the Ombai Strait.

  10. Atmospheric signature of the Agulhas current

    NASA Astrophysics Data System (ADS)

    Stela Nkwinkwa Njouodo, Arielle; Koseki, Shunya; Rouault, Mathieu; Keenlyside, Noel

    2017-04-01

    Satellite observation and Climate Forecast System Reanalysis (CFSR) are used to map the influence of the Agulhas current on local annual precipitation in Southern Africa. The pressure adjustment mechanism is applied over the Agulhas current region. Results unfold that the narrow band of precipitation above the Agulhas Current is collocated with surface wind convergence, sea surface temperature (SST) Laplacian and sea level pressure (SLP) Laplacian. Relationship between SLP Laplacian and wind convergence is found, with 0.54 correlation coefficient statistically significant. In the free troposphere, the band of precipitation above the Agulhas current is collocated with the wind divergence and the upward motion of wind velocity. The warm waters from the Agulhas current can influence local precipitation.

  11. Indian-Southern Ocean Latitudinal Transect (ISOLAT): A proposal for the recovery of high-resolution sedimentary records in the western Indian Ocean sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Mackensen, A.; Zahn, R.; Hall, I.; Kuhn, G.; Koc, N.; Francois, R.; Hemming, S.; Goldstein, S.; Rogers, J.; Ehrmann, W.

    2003-04-01

    Quantifying oceanic variability at timescales of oceanic, atmospheric, and cryospheric processes are the fundamental objectives of the international IMAGES program. In this context the Southern Ocean plays a leading role in that it is involved, through its influence on global ocean circulation and carbon budget, with the development and maintenance of the Earth's climate system. The seas surrounding Antarctica contain the world's only zonal circum-global current system that entrains water masses from the three main ocean basins, and maintains the thermal isolation of Antarctica from warmer surface waters to the north. Furthermore, the Southern Ocean is a major site of bottom and intermediate water formation and thus actively impacts the global thermohaline circulation (THC). This proposal is an outcome of the IMAGES Southern Ocean Working Group and constitutes one component of a suite of new IMAGES/IODP initiatives that aim at resolving past variability of the Antarctic Circumpolar Current (ACC) on orbital and sub-orbital timescales and its involvement with rapid global ocean variability and climate instability. The primary aim of this proposal is to determine millennial- to sub-centennial scale variability of the ACC and the ensuing Atlantic-Indian water transports, including surface transports and deep-water flow. We will focus on periods of rapid ocean and climate change and assess the role of the Southern Ocean in these changes, both in terms of its thermohaline circulation and biogeochemical inventories. We propose a suite of 11 sites that form a latitudinal transect across the ACC in the westernmost Indian Ocean sector of the Southern Ocean. The transect is designed to allow the reconstruction of ACC variability across a range of latitudes in conjunction with meridional shifts of the surface ocean fronts. The northernmost reaches of the transect extend into the Agulhas Current and its retroflection system which is a key component of the THC warm water return flow to the Atlantic. The principal topics are: (i) the response of the ACC to climate variability; (ii) the history of the Southern Ocean surface ocean fronts during periods of rapid climate change; (iii) the history of North Atlantic Deep Water (NADW) export to the deep South Indian Ocean; (iv) the variability of Southern Ocean biogeochemical fluxes and their influence on Circumpolar Deep Water (CDW) carbon inventories and atmospheric chemistry; and (v) the variability of surface ocean fronts and the Indian-Atlantic surface ocean density flux. To achieve these objectives we will generate fine-scale records of palaeoceanographic proxies that are linked to a variety of climatically relevant ocean parameters. Temporal resolution of the records, depending on sedimentation rates, will range from millennial to sub-centennial time scales. Highest sedimentation rates are expected at coring sites located on current-controlled sediment drifts, whereas dense sampling of cores with moderate sedimentation rates will enable at least millennial-scale events to be resolved.

  12. Connecting the surface to near-shore bottom waters in the California Current ecosystem: a study of Northern California interannual to decadal oceanographic variability

    NASA Astrophysics Data System (ADS)

    Fish, C.; Hill, T. M.; Davis, C. V.; Lipski, D.; Jahncke, J.

    2017-12-01

    Elucidating both surface and bottom water ecosystem impacts of temperature change, acidification, and food web disruption are needed to understand anthropogenic processes in the ocean. The Applied California Current Ecosystem Studies (ACCESS) partnership surveys the California Current within the Greater Farallones and Cordell Bank National Marine Sanctuaries three times annually, sampling water column hydrography and discrete water samples from 0 m and 200 m depth at five stations along three primary transects. The transects span the continental shelf with stations as close as 13 km from the coastline to 65 km. This time series extends from 2004 to 2017, integrating information on climate, productivity, zooplankton abundance, oxygenation, and carbonate chemistry. We focus on the interpretation of the 2012-2017 carbonate chemistry data and present both long term trends over the duration of the time series as well as shorter term variability (e.g., ENSO, `warm blob' conditions) to investigate the region's changing oceanographic conditions. For example, we document oscillations in carbonate chemistry, oxygenation, and foraminiferal abundance in concert with interannual oceanographic variability and seasonal (upwelling) cycles. We concentrate on results from near Cordell Bank that potentially impact deep sea coral ecosystems.

  13. Evaluation of altimetry-derived surface current products using Lagrangian drifter trajectories in the eastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Liu, Yonggang; Weisberg, Robert H.; Vignudelli, Stefano; Mitchum, Gary T.

    2014-05-01

    Lagrangian particle trajectory models based on several altimetry-derived surface current products are used to hindcast the drifter trajectories observed in the eastern Gulf of Mexico during May to August 2010 (the Deepwater Horizon oil spill incident). The performances of the trajectory models are gauged in terms of Lagrangian separation distances (d) and a nondimensional skill score (s), respectively. A series of numerical experiments show that these altimetry-based trajectory models have about the same performance, with a certain improvement by adding surface wind Ekman components, especially over the shelf region. However, their hindcast skills are slightly better than those of the data assimilative numerical model output. After 3 days' simulation the altimetry-based trajectory models have mean d values of 75-83 and 34-42 km (s values of 0.49-0.51 and 0.35-0.43) in the Gulf of Mexico deep water area and on the West Florida Continental Shelf, respectively. These satellite altimetry data products are useful for providing essential information on ocean surface currents of use in water property transports, offshore oil and gas operations, hazardous spill mitigation, search and rescue, etc.

  14. Modeling the dispersal of Levantine Intermediate Water and its role in Mediterranean deep water formation

    NASA Astrophysics Data System (ADS)

    Wu, Peili; Haines, Keith

    1996-03-01

    This paper demonstrates the importance of Levantine Intermediate Water (LIW) in the deep water formation process in the Mediterranean using the modular ocean general circulation model at 0.25° resolution, 19 vertical levels, over the entire Mediterranean with an open Gibraltar strait. LIW formation is strongly prescribed in the Rhodes Gyre region by Haney [1971] relaxation, while in other regions, surface salinity relaxation is much reduced by applying the `mixed' thermohaline surface boundary conditions. Isopycnal diagnostics are used to trace water mass movements, and volume fluxes are monitored at straits. Low viscosity and diffusion are used to permit baroclinic eddies to play a role in water mass dispersal. The overall water budget is measured by an average flux at Gibraltar of 0.8 Sv, of which 0.7 Sv is exchanged with the eastern basin at Sicily. LIW (density around 28.95) spreads rapidly after formation throughout the entire Levantine due to baroclinic eddies. Toward the west, LIW accumulates in the northern and central Ionian, with some entering the Adriatic through Otranto and some mixing southward in eddies and exiting to the western Mediterranean through Sicily. LIW is converted to deep water in the south Adriatic at an average rate of 0.4 Sv. Water exchange through the Otranto strait appears to be buoyancy driven, with a strong bias to the end of winter (March-April), while at Sicily the exchange has a strong symmetric seasonal cycle, with maximum transport of 1.1 Sv in December indicating the effects of wind driving. LIW pathways in the west are complex and variable. In the Tyrrhenian, intermediate water becomes uniform on isopycnal surfaces due to eddy stirring. West of Sardinia, two LIW boundary currents are formed in the Balearic basin; one flows northward up the west coast of Sardinia and Corsica, and one westward along the northern African coast. The northward current is consistent with observations, while the westward current is intermittent for the first 10 years, often breaking up into eddies which enter the basin interior. Some observations of high-salinity waters near the African coast may support this interpretation. LIW retains a subsurface salinity maximum of 38.4-38.5 practical salinity units (psu) when reaching the northwestern Mediterranean, contrasting with surface waters fresher than 38.0 psu. West Mediterranean deep water is formed below 1500 m depth with climatological characteristics, when it is mixed and cooled during winter convection in Lions Gyre.

  15. Indian Ocean Surface Circulations and Their Connection to Indian Ocean Dipole, Identified From Ocean Surface Currents Analysis Real Time (OSCAR) Data

    DTIC Science & Technology

    2008-06-01

    31 1. Seasonal Development .......................................................................32 2. Winter Monsoon...summary of the monsoon system in the Indian Ocean. The top part indicates the wind cycle; the lower part shows the major currents that develop in...energy interests in the Indian Ocean’s waters. The rapid economic progress in developing nations, such as India and South Africa, also adds up their

  16. Dependence of the Onset of the Runaway Greenhouse Effect on the Latitudinal Surface Water Distribution of Earth-Like Planets

    NASA Astrophysics Data System (ADS)

    Kodama, T.; Nitta, A.; Genda, H.; Takao, Y.; O'ishi, R.; Abe-Ouchi, A.; Abe, Y.

    2018-02-01

    Liquid water is one of the most important materials affecting the climate and habitability of a terrestrial planet. Liquid water vaporizes entirely when planets receive insolation above a certain critical value, which is called the runaway greenhouse threshold. This threshold forms the inner most limit of the habitable zone. Here we investigate the effects of the distribution of surface water on the runaway greenhouse threshold for Earth-sized planets using a three-dimensional dynamic atmosphere model. We considered a 1 bar atmosphere whose composition is similar to the current Earth's atmosphere with a zonally uniform distribution of surface water. As previous studies have already showed, we also recognized two climate regimes: the land planet regime, which has dry low-latitude and wet high-latitude regions, and the aqua planet regime, which is globally wet. We showed that each regime is controlled by the width of the Hadley circulation, the amount of surface water, and the planetary topography. We found that the runaway greenhouse threshold varies continuously with the surface water distribution from about 130% (an aqua planet) to 180% (the extreme case of a land planet) of the present insolation at Earth's orbit. Our results indicate that the inner edge of the habitable zone is not a single sharp boundary, but a border whose location varies depending on planetary surface condition, such as the amount of surface water. Since land planets have wider habitable zones and less cloud cover, land planets would be good targets for future observations investigating planetary habitability.

  17. Surface velocity divergence model of air/water interfacial gas transfer in open-channel flows

    NASA Astrophysics Data System (ADS)

    Sanjou, M.; Nezu, I.; Okamoto, T.

    2017-04-01

    Air/water interfacial gas transfer through a free surface plays a significant role in preserving and restoring water quality in creeks and rivers. However, direct measurements of the gas transfer velocity and reaeration coefficient are still difficult, and therefore a reliable prediction model needs to be developed. Varying systematically the bulk-mean velocity and water depth, laboratory flume experiments were conducted and we measured surface velocities and dissolved oxygen (DO) concentrations in open-channel flows to reveal the relationship between DO transfer velocity and surface divergence (SD). Horizontal particle image velocimetry measurements provide the time-variations of surface velocity divergence. Positive and negative regions of surface velocity divergence are transferred downstream in time, as occurs in boil phenomenon on natural river free-surfaces. The result implies that interfacial gas transfer is related to bottom-situated turbulence motion and vertical mass transfer. The original SD model focuses mainly on small-scale viscous motion, and this model strongly depends on the water depth. Therefore, we modify the SD model theoretically to accommodate the effects of the water depth on gas transfer, introducing a non-dimensional parameter that includes contributions of depth-scale large-vortex motion, such as secondary currents, to surface renewal events related to DO transport. The modified SD model proved effective and reasonable without any dependence on the bulk mean velocity and water depth, and has a larger coefficient of determination than the original SD model. Furthermore, modeling of friction velocity with the Reynolds number improves the practicality of a new formula that is expected to be used in studies of natural rivers.

  18. Surface-water investigations at Barrow, Alaska

    USGS Publications Warehouse

    Jones, Stanley H.

    1972-01-01

    The U.S. Public Health Service is currently developing plans for a long-term water supply and sewage treatment system for the village of Barrow, Alaska. To assist in planning, the U.S. Geological Survey was requested to initiate a cooperative streamflow data-collection program with the U.S. Public Health Service in June 1972 to determine the availability of surface water and the areal distribution of runoff in the Barrow area. This basic-data report summarizes the streamflow data collected from June 1 through July 10, 1972, at three gaging stations in the Barrow area (fig. 1) and discusses the future data-collection program.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, R.W.; Dussert, B.W.; Kovacic, S.L.

    Laboratory studies have identified the cause of the pH rise, which occurs during water treatment with activated carbon, as an interaction between the naturally occurring anions and protons in the water and the carbon surface. The interaction can be described as an ion exchange type of phenomenon, in which the carbon surface sorbs the anions and corresponding hydronium ions from the water. These studies have shown that the anion sorption and resulting pH increase is independent of the raw material used for the activated carbon production, e.g. bituminous or subbituminous coal, peat, wood or coconut. Also, the pH excursions occurmore » with virgin, reactivated, and acid washed granular carbons. Current pH control technologies focus on adjustment of the wastewater pH prior to discharge or recycle of the initial effluent water until the pH increase abates. However, improved water pH control options have been realized by altering the carbon surface through controlled oxidation rather than the water chemistry or extended preprocessing at the treatment site.« less

  20. Structure of a Water Monolayer on the Anatase TiO2(101) Surface

    NASA Astrophysics Data System (ADS)

    Patrick, Christopher E.; Giustino, Feliciano

    2014-07-01

    Titanium dioxide (TiO2) plays a central role in the study of artificial photosynthesis, owing to its ability to perform photocatalytic water splitting. Despite over four decades of intense research efforts in this area, there is still some debate over the nature of the first water monolayer on the technologically relevant anatase TiO2(101) surface. In this work, we use first-principles calculations to reverse engineer the experimental high-resolution x-ray photoelectron spectra measured for this surface by Walle et al. [J. Phys. Chem. C 115, 9545 (2011)] and find evidence supporting the existence of a mix of dissociated and molecular water in the first monolayer. Using both semilocal and hybrid functional calculations, we revise the current understanding of the adsorption energetics by showing that the energetic cost of water dissociation is reduced via the formation of a hydrogen-bonded hydroxyl-water complex. We also show that such a complex can provide an explanation of an unusual superstructure observed in high-resolution scanning tunneling microscopy experiments.

  1. Lightweight dew-/frost-point hygrometer based on a surface-acoustic-wave sensor for balloon-borne atmospheric water vapor profile sounding

    NASA Astrophysics Data System (ADS)

    Hansford, Graeme M.; Freshwater, Ray A.; Eden, Louise; Turnbull, Katharine F. V.; Hadaway, David E.; Ostanin, Victor P.; Jones, Roderic L.

    2006-01-01

    The design of a very lightweight dew-/frost-point hygrometer for balloon-borne atmospheric water vapor profiling is described. The instrument is based on a surface-acoustic-wave sensor. The low instrument weight is a key feature, allowing flights on meteorological balloons which brings many more flight opportunities. The hygrometer shows consistently good performance in the troposphere and while water vapor measurements near the tropopause and in the stratosphere are possible with the current instrument, the long-time response in these regions hampers realistic measurements. The excellent intrinsic sensitivity of the surface-acoustic-wave sensor should permit considerable improvement in the hygrometer performance in the very dry regions of the atmosphere.

  2. Statistical approaches used to assess and redesign surface water-quality-monitoring networks.

    PubMed

    Khalil, B; Ouarda, T B M J

    2009-11-01

    An up-to-date review of the statistical approaches utilized for the assessment and redesign of surface water quality monitoring (WQM) networks is presented. The main technical aspects of network design are covered in four sections, addressing monitoring objectives, water quality variables, sampling frequency and spatial distribution of sampling locations. This paper discusses various monitoring objectives and related procedures used for the assessment and redesign of long-term surface WQM networks. The appropriateness of each approach for the design, contraction or expansion of monitoring networks is also discussed. For each statistical approach, its advantages and disadvantages are examined from a network design perspective. Possible methods to overcome disadvantages and deficiencies in the statistical approaches that are currently in use are recommended.

  3. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    NASA Astrophysics Data System (ADS)

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-10-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives.

  4. ESTIMATION OF GIARDIA CT VALUES AT HIGH PH FOR THE SURFACE WATER TREATMENT RULE

    EPA Science Inventory

    The U.S. Environmental Protection Agency currently recommends Ct (disinfectant concentration multiplied by the exposure time) values to achieve required levels of inactivation of Giardia lamblia cysts by different disinfectants including free chlorine. Current guidance covers ina...

  5. Quantifying Water Stress Using Total Water Volumes and GRACE

    NASA Astrophysics Data System (ADS)

    Richey, A. S.; Famiglietti, J. S.; Druffel-Rodriguez, R.

    2011-12-01

    Water will follow oil as the next critical resource leading to unrest and uprisings globally. To better manage this threat, an improved understanding of the distribution of water stress is required today. This study builds upon previous efforts to characterize water stress by improving both the quantification of human water use and the definition of water availability. Current statistics on human water use are often outdated or inaccurately reported nationally, especially for groundwater. This study improves these estimates by defining human water use in two ways. First, we use NASA's Gravity Recovery and Climate Experiment (GRACE) to isolate the anthropogenic signal in water storage anomalies, which we equate to water use. Second, we quantify an ideal water demand by using average water requirements for the domestic, industrial, and agricultural water use sectors. Water availability has traditionally been limited to "renewable" water, which ignores large, stored water sources that humans use. We compare water stress estimates derived using either renewable water or the total volume of water globally. We use the best-available data to quantify total aquifer and surface water volumes, as compared to groundwater recharge and surface water runoff from land-surface models. The work presented here should provide a more realistic image of water stress by explicitly quantifying groundwater, defining water availability as total water supply, and using GRACE to more accurately quantify water use.

  6. Porous graphene materials for water remediation.

    PubMed

    Niu, Zhiqiang; Liu, Lili; Zhang, Li; Chen, Xiaodong

    2014-09-10

    Water remediation has been a critical issue over the past decades due to the expansion of wastewater discharge to the environment. Currently, a variety of functional materials have been successfully prepared for water remediation applications. Among them, graphene is an attractive candidate due to its high specific surface area, tunable surface behavior, and high strength. This Concept paper summarizes the design strategy of porous graphene materials and their applications in water remediation, such as the cleanup of oil, removal of heavy metal ions, and elimination of water soluble organic contaminants. The progress made so far will guide further development in structure design strategy of porous materials based on graphene and exploration of such materials in environmental remediation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. STS-65 Earth observation of island wake at Oahu, Hawaii, taken from OV-102

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, shows Oahu, Hawaii. The island wake emerging to the lower left side of Oahu is caused by wind currents blowing from the northeast being obstructed by the northwest-southeast trending, cloud covered, Koolau mountain range. The lighter colored water indicates a more smooth surface with a slower water current that the darker, rougher, faster moving water current. Pearl Harbor is visible to the south of the Koolau Range. To the right, or east, of Pearl Harbor is the city of Honolulu. The circular, brown feature to the east of Honolulu is the dormant volcano Diamond Head.

  8. An update of the federal drinking water regs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pontius, F.W.

    1995-02-01

    Previous reviews have summarized the regulations promulgated for volatile organic chemicals (VOCs), fluoride, surface water treatment, total coliform bacteria, lead and copper, and Phase 2 and Phase 5 synthetic organic contaminants (SOCs) and inorganic contaminants (IOCs). Current developments related to these rules and anticipated new rules are reviewed in this article. Current numerical drinking water standards and best available technology (BAT) are summarized. The status of all current, proposed, and anticipated regulations is also summarized. Dates for anticipated agency actions are based on the US Environmental Protection Agency's (USEPA's) published regulatory agenda and on information released by the agency throughmore » December 1994; these dates can change as the agency reconsiders its regulatory policies.« less

  9. Rapid fluctuations in flow and water-column properties in Asan Bay, Guam: implications for selective resilience of coral reefs in warming seas

    USGS Publications Warehouse

    Storlazzi, Curt D.; Field, Michael E.; Cheriton, Olivia M.; Presto, M.K.; Logan, J.B.

    2013-01-01

    Hydrodynamics and water-column properties were investigated off west-central Guam from July 2007 through January 2008. Rapid fluctuations, on time scales of 10s of min, in currents, temperature, salinity, and acoustic backscatter were observed to occur on sub-diurnal frequencies along more than 2 km of the fore reef but not at the reef crest. During periods characterized by higher sea-surface temperatures (SSTs), weaker wind forcing, smaller ocean surface waves, and greater thermal stratification, rapid decreases in temperature and concurrent rapid increases in salinity and acoustic backscatter coincided with onshore-directed near-bed currents and offshore-directed near-surface currents. During the study, these cool-water events, on average, lasted 2.3 h and decreased the water temperature 0.57 °C, increased the salinity 0.25 PSU, and were two orders of magnitude more prevalent during the summer season than the winter. During the summer season when the average satellite-derived SST anomaly was +0.63 °C, these cooling events, on average, lowered the temperature 1.14 °C along the fore reef but only 0.11 °C along the reef crest. The rapid shifts appear to be the result of internal tidal bores pumping cooler, more saline, higher-backscatter oceanic water from depths >50 m over cross-shore distances of 100 s of m into the warmer, less saline waters at depths of 20 m and shallower. Such internal bores appear to have the potential to buffer shallow coral reefs from predicted increases in SSTs by bringing cool, offshore water to shallow coral environments. These cooling internal bores may also provide additional benefits to offset stress such as supplying food to thermally stressed corals, reducing stress due to ultraviolet radiation and/or low salinity, and delivering coral larvae from deeper reefs not impacted by surface thermal stress. Thus, the presence of internal bores might be an important factor locally in the resilience of select coral reefs facing increased thermal stress.

  10. Rapid fluctuations in flow and water-column properties in Asan Bay, Guam: implications for selective resilience of coral reefs in warming seas

    NASA Astrophysics Data System (ADS)

    Storlazzi, C. D.; Field, M. E.; Cheriton, O. M.; Presto, M. K.; Logan, J. B.

    2013-12-01

    Hydrodynamics and water-column properties were investigated off west-central Guam from July 2007 through January 2008. Rapid fluctuations, on time scales of 10s of min, in currents, temperature, salinity, and acoustic backscatter were observed to occur on sub-diurnal frequencies along more than 2 km of the fore reef but not at the reef crest. During periods characterized by higher sea-surface temperatures (SSTs), weaker wind forcing, smaller ocean surface waves, and greater thermal stratification, rapid decreases in temperature and concurrent rapid increases in salinity and acoustic backscatter coincided with onshore-directed near-bed currents and offshore-directed near-surface currents. During the study, these cool-water events, on average, lasted 2.3 h and decreased the water temperature 0.57 °C, increased the salinity 0.25 PSU, and were two orders of magnitude more prevalent during the summer season than the winter. During the summer season when the average satellite-derived SST anomaly was +0.63 °C, these cooling events, on average, lowered the temperature 1.14 °C along the fore reef but only 0.11 °C along the reef crest. The rapid shifts appear to be the result of internal tidal bores pumping cooler, more saline, higher-backscatter oceanic water from depths >50 m over cross-shore distances of 100 s of m into the warmer, less saline waters at depths of 20 m and shallower. Such internal bores appear to have the potential to buffer shallow coral reefs from predicted increases in SSTs by bringing cool, offshore water to shallow coral environments. These cooling internal bores may also provide additional benefits to offset stress such as supplying food to thermally stressed corals, reducing stress due to ultraviolet radiation and/or low salinity, and delivering coral larvae from deeper reefs not impacted by surface thermal stress. Thus, the presence of internal bores might be an important factor locally in the resilience of select coral reefs facing increased thermal stress.

  11. Northern Regions of Russia as Alternative Sources of Pure Water for Sustainable Development: Challenges and Solutions

    NASA Astrophysics Data System (ADS)

    Tsukerman, V. A.; Gudkov, A. V.; Ivanov, S. V.

    The paper discusses problems associated with the existing crisis of water scarcity in the modern conditions of the global water use. Available alternative sources of fresh water may be underground and surface waters of the North and the Arctic. Investigated the current situation and condition of fresh water resources in the technological and industrial development of the North and Arctic. The necessity of developing and using green technologies and measures to prevent pollution of surface and ground water from industrial sectors of the Northern regions is shown. Studied modern technologies and techniques for monitoring groundwater and determination of their age in order to avoid and prevent the effects of environmental contaminants. The ways of use of innovative production technologies of fresh and clean water of north Russia for sustainable development, and delivery of water in the needy regions of the world are investigated.

  12. Quantifying Current and Future Groundwater Storage in Snowmelt Dominated High Elevation Meadows of the Sierra Nevada Mountains, CA

    NASA Astrophysics Data System (ADS)

    Lowry, C.; Ciruzzi, D. M.

    2016-12-01

    In a warming climate, snowmelt dominated mountain systems such as the Sierra Nevada Mountains of California have limited water storage potential. Receding glaciers and recent drought in the Sierra Nevada Mountains has resulted in reduced stream flow, restricting water availability for mountain vegetation. These geologic settings provide limited opportunities for groundwater storage due to a thin soil layer overlying expansive granitic bedrock. Yet high elevation meadows, which have formed in small depressions within the granitic bedrock, represent the only long-term storage reservoirs for water within the region. Through the use of field observations and numerical modeling this research investigates the role of meadow geometry, sediment properties, and topographic gradient to retain snowmelt derived groundwater recharge. These controlling factors affecting groundwater storage dynamics and surface-water outflows are evaluated under both current and dryer climatic conditions. Results show differential changes in seasonal storage of snowmelt and surface-water outflow under varying climate scenarios. The magnitude and timing of water storage and release is highly dependent on bedrock geometry and position within the watershed. Results show decrease of up to 20% in groundwater storage under dryer future climates resulting in a shift from long-term storage to steady release of water from these meadows. Testing of prior assumptions, such as uniform thickness, on meadow groundwater storage are shown to overestimate storage, resulting in higher volumes of water being released to streams earlier than observed in previous simulations. These results have implications for predicting water availability for downstream users as well as providing water for root water uptake of meadow vegetation under both current and future conditions.

  13. Water tribology on graphene.

    PubMed

    N'guessan, Hartmann E; Leh, Aisha; Cox, Paris; Bahadur, Prashant; Tadmor, Rafael; Patra, Prabir; Vajtai, Robert; Ajayan, Pulickel M; Wasnik, Priyanka

    2012-01-01

    Classical experiments show that the force required to slide liquid drops on surfaces increases with the resting time of the drop, t(rest), and reaches a plateau typically after several minutes. Here we use the centrifugal adhesion balance to show that the lateral force required to slide a water drop on a graphene surface is practically invariant with t(rest). In addition, the drop's three-phase contact line adopts a peculiar micrometric serrated form. These observations agree well with current theories that relate the time effect to deformation and molecular re-orientation of the substrate surface. Such molecular re-orientation is non-existent on graphene, which is chemically homogenous. Hence, graphene appears to provide a unique tribological surface test bed for a variety of liquid drop-surface interactions.

  14. Drought-induced uplift in the western United States as observed by the EarthScope Plate Boundary Observatory GPS network

    NASA Astrophysics Data System (ADS)

    Borsa, A. A.; Agnew, D. C.; Cayan, D. R.

    2014-12-01

    The western United States (WUS) has been experiencing severe drought since 2013. The solid earth response to the accompanying loss of surface and near-surface water mass should be a broad region of uplift. We use seasonally-adjusted time series from continuously operating GPS stations in the EarthScope Plate Boundary Observatory and several smaller networks to measure this uplift, which reaches 15 mm in the California Coastal Ranges and Sierra Nevada and has a median value of 4 mm over the entire WUS. The pattern of mass loss due to the drought, which we recover from an inversion of uplift observations, ranges up to 50 cm of water equivalent and is consistent with observed decreases in precipitation and streamflow. We estimate the total deficit to be 240 Gt, equivalent to a uniform 10 cm layer of water over the entire region, or the magnitude of the current annual mass loss from the Greenland Ice Sheet. In the WUS, interannual changes in crustal loading are driven by changes in cool-season precipitation, which cause variations in surface water, snowpack, soil moisture, and groundwater. The results here demonstrate that the existing network of continuous GPS stations can be used to recover loading changes due to both wet and dry climate patterns. This suggests a new role for GPS networks such as that of the Plate Boundary Observatory. The exceptional stability of the GPS monumentation means that this network is also capable of monitoring the long-term effects of regional climate change. Surface displacement observations from GPS have the potential to expand the capabilities of the current hydrological observing network for monitoring current and future hydrological changes, with obvious social and economic benefits.

  15. Current and future groundwater recharge in West Africa as estimated from a range of coupled climate model outputs

    NASA Astrophysics Data System (ADS)

    Verhoef, Anne; Cook, Peter; Black, Emily; Macdonald, David; Sorensen, James

    2017-04-01

    This research addresses the terrestrial water balance for West Africa. Emphasis is on the prediction of groundwater recharge and how this may change in the future, which has relevance to the management of surface and groundwater resources. The study was conducted as part of the BRAVE research project, "Building understanding of climate variability into planning of groundwater supplies from low storage aquifers in Africa - Second Phase", funded under the NERC/DFID/ESRC Programme, Unlocking the Potential of Groundwater for the Poor (UPGro). We used model output data of water balance components (precipitation, surface and subsurface run-off, evapotranspiration and soil moisture content) from ERA-Interim/ERA-LAND reanalysis, CMIP5, and high resolution model runs with HadGEM3 (UPSCALE; Mizielinski et al., 2014), for current and future time-periods. Water balance components varied widely between the different models; variation was particularly large for sub-surface runoff (defined as drainage from the bottom-most soil layer of each model). In-situ data for groundwater recharge obtained from the peer-reviewed literature were compared with the model outputs. Separate off-line model sensitivity studies with key land surface models were performed to gain understanding of the reasons behind the model differences. These analyses were centered on vegetation, and soil hydraulic parameters. The modelled current and future recharge time series that had the greatest degree of confidence were used to examine the spatiotemporal variability in groundwater storage. Finally, the implications for water supply planning were assessed. Mizielinski, M.S. et al., 2014. High-resolution global climate modelling: the UPSCALE project, a large-simulation campaign. Geoscientific Model Development, 7(4), pp.1629-1640.

  16. Bathymetric survey and estimation of storage capacity of lower Sixmile Creek reservoir, Ithaca, New York

    USGS Publications Warehouse

    Wernly, John F.; Zajd, Jr., Henry J.; Coon, William F.

    2016-10-05

    During 2015, the U.S. Geological Survey, in cooperation with the City of Ithaca, New York, and the New York State Department of State, conducted a bathymetric survey of the lower Sixmile Creek reservoir in Tompkins County, New York. A former water-supply reservoir for the City of Ithaca, the reservoir is no longer a functional component of Ithaca’s water-supply system, having been replaced by a larger reservoir less than a mile upstream in 1911. Excessive sedimentation has substantially reduced the reservoir’s water-storage capacity and made the discharge gate at the base of the 30-foot dam, which creates the reservoir, inoperable. U.S. Geological Survey personnel collected bathymetric data by using an acoustic Doppler current profiler. Across more than half of the approximately 14-acre reservoir, depths were manually measured because of interference from aquatic vegetation with the acoustic Doppler current profiler. City of Ithaca personnel created a bottom-elevation surface from these depth data. A second surface was created from depths that were manually measured by City of Ithaca personnel during 1938. Surface areas and storage capacities were computed at 1-foot increments of elevation for both bathymetric surveys. The results indicate that the current storage capacity of the reservoir at its normal water-surface elevation is about 84 acre-feet and that sediment accumulated between 1938 and 2015 has decreased the reservoir’s capacity by about 68 acre-feet. This sediment load is attributed to annual inputs from the watershed above the reservoir, as well as from an episodic landslide that filled a large part of the reservoir along its northern edge in 1949.

  17. A note on specific variability of long surface gravity waves and drag coefficient in coastal upwelling zone

    NASA Astrophysics Data System (ADS)

    Krzyścin, Janusz

    1990-01-01

    In this paper we solve analytically wave kinematic equations and the wave energy transport equation, for basic long surface gravity wave in the coastal upwelling zone. Using Gent and Taylor's (1978) parameterization of drag coefficient (which includes interaction between long surface waves and the air flow) we find variability of this coefficient due to wave amplification and refraction caused by specific surface water current in the region. The drag coefficient grows towards the shore. The growth is faster for stronger current. When the angle between waves and the current is less than 90° the growth is mainly connected with the waves steepness, but when the angle is larger, it is caused by relative growth of the wave phase velocity.

  18. Impact of land cover change on the environmental hydrology characteristics in Kelantan river basin, Malaysia

    NASA Astrophysics Data System (ADS)

    Saadatkhah, Nader; Mansor, Shattri; Khuzaimah, Zailani; Asmat, Arnis; Adnan, Noraizam; Adam, Siti Noradzah

    2016-09-01

    Changing the land cover/ land use has serious environmental impacts affecting the ecosystem in Malaysia. The impact of land cover changes on the environmental functions such as surface water, loss water, and soil moisture is considered in this paper on the Kelantan river basin. The study area at the east coast of the peninsular Malaysia has suffered significant land cover changes in the recent years. The current research tried to assess the impact of land cover changes in the study area focused on the surface water, loss water, and soil moisture from different land use classes and the potential impact of land cover changes on the ecosystem of Kelantan river basin. To simulate the impact of land cover changes on the environmental hydrology characteristics, a deterministic regional modeling were employed in this study based on five approaches, i.e. (1) Land cover classification based on Landsat images; (2) assessment of land cover changes during last three decades; (3) Calculation the rate of water Loss/ Infiltration; (4) Assessment of hydrological and mechanical effects of the land cover changes on the surface water; and (5) evaluation the impact of land cover changes on the ecosystem of the study area. Assessment of land cover impact on the environmental hydrology was computed with the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) based on the transient infiltration, and subsequently changes in the surface water, due to precipitation events. The results showed the direct increased in surface water from development area, agricultural area, and grassland regions compared with surface water from other land covered areas in the study area. The urban areas or lower planting density areas tend to increase for surface water during the monsoon seasons, whereas the inter flow from forested and secondary jungle areas contributes to the normal surface water.

  19. Hydrologic effects of ground- and surface-water withdrawals in the Milford area, Elkhart and Kosciusko counties, Indiana

    USGS Publications Warehouse

    Lindgren, H.A.; Peters, J.G.; Cohen, D.A.; Crompton, E.J.

    1985-01-01

    Results of plans 1, 2, 3, and 4 indicate that the outwash system provides adequate water for current (1982) needs and substantial growth for irrigation. However, maximum irrigational development might cause temporary, local competition for water in several parts of the area. Plan 5 indicates .that water use could increase substantially before effects of pumping would prevail year-round.

  20. Testing the Carcinogenic Potential of Water Disinfectant Byproducts in a Human Colon Mucosal Culture System

    EPA Science Inventory

    Epidemiological studies have linked the consumption of disinfected surface waters to an increased risk of colorectal cancer. Approximately 600 disinfection byproducts (DBPs) have been identified for a number of disinfectants currently in use. An in-depth mechanism-based structure...

  1. THE CHALLENGE OF ACQUIRING ALPINE LARGE VOLUME LAKE WATER SAMPLES FOR ULTRA TRACE LEVEL ANALYSIS

    EPA Science Inventory

    The National Exposure Research Laboratory-Las Vegas, Nevada is interested in the emerging field technology of in-situ extraction of contaminants from surface water. A current research project involves ultra-trace level determination of agricultural pesticides from alpine lakes. T...

  2. Identifying Carcinogenic Potentials of Drinking Water Disinfection Byproducts using Normal Human Colonocyte Cultures

    EPA Science Inventory

    Epidemiological studies have linked the consumption of disinfected surface waters to an increased risk of colorectal cancer. Approximately 600 byproducts (DBPs) have been identified for the major disinfectants currently in use and represent less than half of the total organic car...

  3. Optimization of Adenovirus 40 and 41 Recovery from Tap Water

    EPA Science Inventory

    Currently, the U.S. Environmental Protection Agency’s Information Collection Rule (ICR) for the primary concentration of viruses from drinking and surface waters uses the 1MDS filter; however, a more cost effective option, the NanoCeram® filter, has been shown to recover comparab...

  4. Emerging contaminants in surface waters in China—a short review

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Fan, Maohong; Zhang, Guangming

    2014-07-01

    Emerging contaminants (ECs) have drawn attention to many countries due to their persistent input and potential threat to human health and the environment. This article reviews the current contamination sources and their status for surface waters in China. The contamination levels of ECs in surface waters are in the range ng L-1 to μg L-1 in China, apparently about the same as the situation in other countries. ECs enter surface water via runoff, drainage, rainfall, and wastewater treatment effluent. The frequency of occurrence of ECs increased rapidly from 2006 to 2011; a significant reason is the production and consumption of pharmaceuticals and personal care products. As for the distribution of EC pollution in China, the frequency of occurrence of ECs in eastern regions is higher than in western regions. A majority of EC studies have focused on surface waters of the Haihe River and Pearl River watersheds due to their highly developed industries and intense human activity. Legislative and administrative regulation of ECs is lacking in China. To remove ECs, a number of technologies, such as absorption by activated carbon, membrane filtration technology, and advanced oxidation processes, have been researched.

  5. Energy-Efficient Underwater Surveillance by Means of Hybrid Aquacopters

    DTIC Science & Technology

    2014-12-01

    life-cycle analysis, photovoltaic device maximum power point tracking (MPPT), and surface treatments for antifouling of the solar cells can be...108 3. Power Conversion and Storage...15 Figure 10. Shallow Water Analysis and Forecast System product, displaying regional ocean current vectors overlaying a sea surface

  6. Impact of Unconventional Energy Development using Hydraulic Fracturing on Louisiana Water Resources Availability.

    NASA Astrophysics Data System (ADS)

    Unruh, H. G., Sr.; Habib, E. H.; Borrok, D. M.

    2017-12-01

    Unconventional oil and gas extraction around United States has been deployed significantly in the recent years. The current study focuses on the impact of Hydraulic fracturing (HF) on the sustainability of water resources in Louisiana. This impact is measured by quantifying the stress for current and future scenarios of HF water use in the two-main shale plays in Louisiana, the Haynesville and Tuscaloosa. The assessment is conducted at the HUC-12 fine catchment spatial scale. Initially, sectored stress metrics were calculated for surface and groundwater, respectively, without including HF water use. Demand sectors involved in this first stress estimation are power generation, public supply, industrial, etc. Once both stress metrics were estimated with the reported water sources and uses in Louisiana corresponding to the 2010 year, several scenarios for both sources were evaluated. In the first scenario, a peak year (2011) of HF water use was added as a water demand new category into the stress calculation matrices. The results indicate that a significant variability in the calculated stress metric with and without HF is reflected only for the groundwater sector. On the other hand, surface water sector doesn't seem to be affected for the HF water use. However, this apparent abundant surface water in the catchment, the location of the wells is not always adjacent to the body of water, and then trucking or piping of water may be required. For this reason, availability of groundwater in situ is a relevant factor in terms of production cost. Additional tested scenarios consist of increasing the number of wells in both shale play locations. Existing wells scenario calculates the stress including the water use of the total number of wells that currently exist in both shale plays in a short period (one year). The other additional tested scenario consists of increase of 100% of the required number of wells to extract the expected total shale play capacity. Results of the additional scenarios follow the same pattern as the first scenario. This analysis can be useful for water management authorities to consider recycled flow-back as an alternative resource for HF water use. Additionally, a cost analysis can be developed in a future study analyzing the economic feasibility of treating and reusing the wastewater as a source in the HF process.

  7. Microscopic Analysis of Current and Mechanical Properties of Nafion® Studied by Atomic Force Microscopy

    PubMed Central

    Hiesgen, Renate; Helmly, Stefan; Galm, Ines; Morawietz, Tobias; Handl, Michael; Friedrich, K. Andreas

    2012-01-01

    The conductivity of fuel cell membranes as well as their mechanical properties at the nanometer scale were characterized using advanced tapping mode atomic force microscopy (AFM) techniques. AFM produces high-resolution images under continuous current flow of the conductive structure at the membrane surface and provides some insight into the bulk conducting network in Nafion membranes. The correlation of conductivity with other mechanical properties, such as adhesion force, deformation and stiffness, were simultaneously measured with the current and provided an indication of subsurface phase separations and phase distribution at the surface of the membrane. The distribution of conductive pores at the surface was identified by the formation of water droplets. A comparison of nanostructure models with high-resolution current images is discussed in detail. PMID:24958429

  8. Ocean-Atmosphere Interaction Over Agulhas Extension Meanders

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Xie, Xiaosu; Niiler, Pearn P.

    2007-01-01

    Many years of high-resolution measurements by a number of space-based sensors and from Lagrangian drifters became available recently and are used to examine the persistent atmospheric imprints of the semi-permanent meanders of the Agulhas Extension Current (AEC), where strong surface current and temperature gradients are found. The sea surface temperature (SST) measured by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and the chlorophyll concentration measured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) support the identification of the meanders and related ocean circulation by the drifters. The collocation of high and low magnitudes of equivalent neutral wind (ENW) measured by Quick Scatterometer (QuikSCAT), which is uniquely related to surface stress by definition, illustrates not only the stability dependence of turbulent mixing but also the unique stress measuring capability of the scatterometer. The observed rotation of ENW in opposition to the rotation of the surface current clearly demonstrates that the scatterometer measures stress rather than winds. The clear differences between the distributions of wind and stress and the possible inadequacy of turbulent parameterization affirm the need of surface stress vector measurements, which were not available before the scatterometers. The opposite sign of the stress vorticity to current vorticity implies that the atmosphere spins down the current rotation through momentum transport. Coincident high SST and ENW over the southern extension of the meander enhance evaporation and latent heat flux, which cools the ocean. The atmosphere is found to provide negative feedback to ocean current and temperature gradients. Distribution of ENW convergence implies ascending motion on the downwind side of local SST maxima and descending air on the upwind side and acceleration of surface wind stress over warm water (deceleration over cool water); the convection may escalate the contrast of ENW over warm and cool water set up by the dependence of turbulent mixing on stability; this relation exerts a positive feedback to the ENW-SST relation. The temperature sounding measured by the Atmospheric Infrared Sounder(AIRS) is consistent with the spatial coherence between the cloud-top temperature provided by the International Satellite Cloud Climatology Project (ISCCP) and SST. Thus ocean mesoscale SST anomalies associated with the persistent meanders may have a long-term effect well above the midlatitude atmospheric boundary layer, an observation not addressed in the past.

  9. Response of the Rio Grande and shallow ground water in the Mesilla Bolson to irrigation, climate stress, and pumping

    USGS Publications Warehouse

    Walton, J.; Ohlmacher, G.; Utz, D.; Kutianawala, M.

    1999-01-01

    The El Paso-Ciudad Juarez metropolitan area obtains its water from the Rio Grande and intermontane-basin aquifers. Shallow ground water in this region is in close communications with the surface water system. A major problem with both systems is salinity. Upstream usage of the water in the Rio Grande for irrigation and municipalities has led to concentration of soluble salts to the point where the surface water commonly exceeds drinking water standards. Shallow ground water is recharged by surface water (primarily irrigation canals and agricultural fields) and discharges to surface water (agricultural drains) and deeper ground water. The source of water entering the Rio Grande varies seasonally. During the irrigation season, water is released from reservoirs and mixes with the return flow from irrigation drains. During the non-irrigation season (winter), flow is from irrigation drains and river water quality is indicative of shallow ground water. The annual cycle can be ascertained from the inverse correlation between ion concentrations and discharge in the river. Water-quality data indicate that the salinity of shallow ground water increases each year during a drought. Water-management strategies in the region can affect water quality. Increasing the pumping rate of water-supply wells will cause shallow ground water to flow into the deeper aquifers and degrade the water quality. Lining the canals in the irrigation system to stop water leakage will lead to water quality degradation in shallow ground water and, eventually, deep ground water by removing a major source of high quality recharge that currently lowers the salinity of the shallow ground water.

  10. The Role of Surface Water Flow in Gas Fluxes from a Subtropical Rice Field

    NASA Astrophysics Data System (ADS)

    Huynh, K. T.; Suvocarev, K.; Reavis, C.; Runkle, B.; Variano, E. A.

    2016-12-01

    Wetlands are the single largest source of methane emissions, but the underlying processes behind this flux are not yet fully understood. Typically, methane fluxes from wetlands have been attributed to ebullition (bubbling) and to transport through vegetation. However, a third major pathway-hydrodynamic transport-has been seen in a temperate wetland in the Sacramento-San Joaquin Delta. We wish to explore whether this additional pathway is also important to a subtropical rice paddy site where the diel thermal cycle is less pronounced than in the temperate site. Measurements in the surface water of a rice field were collected over two weeks. Specific measurements collected included dissolved and atmospheric methane concentration, surface water velocity, and air and water temperature. These were used to augment a long-term dataset of micrometeorology and gas fluxes. Together, these data demonstrate the role that surface water motions play in the fluxes between soil and atmosphere. Data are analyzed to reveal the fraction of total methane flux that is governed by advective/diffusive transport through surface water, and daily cycles in this behavior. Results will be used to advance predictions of atmospheric methane gas concentrations and could be foundational for developing methane management solutions. Closing this gap in knowledge is key to improving calculations of current global greenhouse gas emissions.

  11. UV Light Inactivation of Human and Plant Pathogens in Unfiltered Surface Irrigation Water

    PubMed Central

    Jones, Lisa A.; Worobo, Randy W.

    2014-01-01

    Fruit and vegetable growers continually battle plant diseases and food safety concerns. Surface water is commonly used in the production of fruits and vegetables and can harbor both human- and plant-pathogenic microorganisms that can contaminate crops when used for irrigation or other agricultural purposes. Treatment methods for surface water are currently limited, and there is a need for suitable treatment options. A liquid-processing unit that uses UV light for the decontamination of turbid juices was analyzed for its efficacy in the treatment of surface waters contaminated with bacterial or oomycete pathogens, i.e., Escherichia coli, Salmonella enterica, Listeria monocytogenes, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, and Phytophthora capsici. Five-strain cocktails of each pathogen, containing approximately 108 or 109 CFU/liter for bacteria or 104 or 105 zoospores/liter for Ph. capsici, were inoculated into aliquots of two turbid surface water irrigation sources and processed with the UV unit. Pathogens were enumerated before and after treatment. In general, as the turbidity of the water source increased, the effectiveness of the UV treatment decreased, but in all cases, 99.9% or higher inactivation was achieved. Log reductions ranged from 10.0 to 6.1 and from 5.0 to 4.2 for bacterial pathogens and Ph. capsici, respectively. PMID:24242253

  12. UV light inactivation of human and plant pathogens in unfiltered surface irrigation water.

    PubMed

    Jones, Lisa A; Worobo, Randy W; Smart, Christine D

    2014-02-01

    Fruit and vegetable growers continually battle plant diseases and food safety concerns. Surface water is commonly used in the production of fruits and vegetables and can harbor both human- and plant-pathogenic microorganisms that can contaminate crops when used for irrigation or other agricultural purposes. Treatment methods for surface water are currently limited, and there is a need for suitable treatment options. A liquid-processing unit that uses UV light for the decontamination of turbid juices was analyzed for its efficacy in the treatment of surface waters contaminated with bacterial or oomycete pathogens, i.e., Escherichia coli, Salmonella enterica, Listeria monocytogenes, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, and Phytophthora capsici. Five-strain cocktails of each pathogen, containing approximately 10(8) or 10(9) CFU/liter for bacteria or 10(4) or 10(5) zoospores/liter for Ph. capsici, were inoculated into aliquots of two turbid surface water irrigation sources and processed with the UV unit. Pathogens were enumerated before and after treatment. In general, as the turbidity of the water source increased, the effectiveness of the UV treatment decreased, but in all cases, 99.9% or higher inactivation was achieved. Log reductions ranged from 10.0 to 6.1 and from 5.0 to 4.2 for bacterial pathogens and Ph. capsici, respectively.

  13. Review: Groundwater management and groundwater/surface-water interaction in the context of South African water policy

    NASA Astrophysics Data System (ADS)

    Levy, Jonathan; Xu, Yongxin

    2012-03-01

    Groundwater/surface-water interaction is receiving increasing focus in Africa due to its importance to ecologic systems and sustainability. In South Africa's 1998 National Water Act (NWA), water-use licenses, including groundwater, are granted only after defining the Reserve, the amount of water needed to supply basic human needs and preserve some ecological integrity. Accurate quantification of groundwater contributions to ecosystems for successful implementation of the NWA proves challenging; many of South Africa's aquifers are in heterogeneous and anisotropic fractured-rock settings. This paper reviews the current conceptualizations and investigative approaches regarding groundwater/surface-water interactions in the context of South African policies. Some selected pitfall experiences are emphasized. The most common approach in South Africa is estimation of average annual fluxes at the scale of fourth-order catchments (˜500 km2) with baseflow separation techniques and then subtracting the groundwater discharge rate from the recharge rate. This approach might be a good start, but it ignores spatial and temporal variability, potentially missing local impacts associated with production-well placement. As South Africa's NWA has already been emulated in many countries including Zambia, Zimbabwe and Kenya, the successes and failures of the South African experience dealing with the groundwater/surface-water interaction will be analyzed to guide future policy directions.

  14. The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review

    PubMed Central

    Pan, Yunlu; Zhao, Xuezeng

    2014-01-01

    Summary The drag of fluid flow at the solid–liquid interface in the micro/nanoscale is an important issue in micro/nanofluidic systems. Drag depends on the surface wetting, nanobubbles, surface charge and boundary slip. Some researchers have focused on the relationship between these interface properties. In this review, the influence of an applied voltage on the surface wettability, nanobubbles, surface charge density and slip length are discussed. The contact angle (CA) and contact angle hysteresis (CAH) of a droplet of deionized (DI) water on a hydrophobic polystyrene (PS) surface were measured with applied direct current (DC) and alternating current (AC) voltages. The nanobubbles in DI water and three kinds of saline solution on a PS surface were imaged when a voltage was applied. The influence of the surface charge density on the nanobubbles was analyzed. Then the slip length and the electrostatic force on the probe were measured on an octadecyltrichlorosilane (OTS) surface with applied voltage. The influence of the surface charge on the boundary slip and drag of fluid flow has been discussed. Finally, the influence of the applied voltage on the surface wetting, nanobubbles, surface charge, boundary slip and the drag of liquid flow are summarized. With a smaller surface charge density which could be achieved by applying a voltage on the surface, larger and fewer nanobubbles, a larger slip length and a smaller drag of liquid flow could be found. PMID:25161839

  15. The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review.

    PubMed

    Pan, Yunlu; Bhushan, Bharat; Zhao, Xuezeng

    2014-01-01

    The drag of fluid flow at the solid-liquid interface in the micro/nanoscale is an important issue in micro/nanofluidic systems. Drag depends on the surface wetting, nanobubbles, surface charge and boundary slip. Some researchers have focused on the relationship between these interface properties. In this review, the influence of an applied voltage on the surface wettability, nanobubbles, surface charge density and slip length are discussed. The contact angle (CA) and contact angle hysteresis (CAH) of a droplet of deionized (DI) water on a hydrophobic polystyrene (PS) surface were measured with applied direct current (DC) and alternating current (AC) voltages. The nanobubbles in DI water and three kinds of saline solution on a PS surface were imaged when a voltage was applied. The influence of the surface charge density on the nanobubbles was analyzed. Then the slip length and the electrostatic force on the probe were measured on an octadecyltrichlorosilane (OTS) surface with applied voltage. The influence of the surface charge on the boundary slip and drag of fluid flow has been discussed. Finally, the influence of the applied voltage on the surface wetting, nanobubbles, surface charge, boundary slip and the drag of liquid flow are summarized. With a smaller surface charge density which could be achieved by applying a voltage on the surface, larger and fewer nanobubbles, a larger slip length and a smaller drag of liquid flow could be found.

  16. An evaluation of ERTS data for oceanographic uses through Great Lakes studies

    NASA Technical Reports Server (NTRS)

    Strong, A. E. (Principal Investigator); Stumpf, H. G.

    1974-01-01

    The author has identified the following significant results. Prevailing wind direction on Lake Michigan is southwesterly, although during winter northwesterly stresses are common. Along the western shore the current favors a northward direction. ERTS-1 observations indicate that the southward-flowing current along the Michigan shoreline of the thumb is only reversed by southerly resultant wind stress. Along the Canadian shoreline, a northward current was observed north of Kettle Point. ERTS-1 data also reveal that a preferred southward-flowing current is found along the Detroit shoreline of Lake St. Clair. Eastward flow of surface water from the shallow western basin of Lake Erie into the middle basin is most obvious during northwesterly and northerly wind stresses. The reverse wind direction especially east and southeasterly, appear to hold the effluents from the Detroit and Maumee Rivers in the western basin. Across-lake winds from the north and south induce eddy-like circulation in surface waters of Lake Ontario. Counterclockwise alongshore flow persists in the western basin under most wind conditions.

  17. Acoustical environment measurement at a very shallow port: Trial case in Hashirimizu Port

    NASA Astrophysics Data System (ADS)

    Ogasawara, Hanako; Mori, Kazuyoshi

    2016-07-01

    Recently, the needs for coastal environment measurement has been increasing for many purposes, such as fishing, weather forecasting, ocean noise measurement for power plants, and coastal security. Acoustical measurement is one of the solutions because it can cover a wide area with few sensors, and it is possible to monitor long term or in real time. In this study, a small-scale reciprocal sound travel experiment was carried out in Hashirimizu Port for coastal environment measurement, such as current speed and water temperature. Since the distance between the surface and the transducer becomes short according to the tidal effect, the direct signal is canceled by the surface-reflected signal under a specific condition. However, even under such a condition, mean water temperature could be estimated from the reciprocal travel time using bottom-reflected signals. The current along the travel path was a reasonable value. It is possible to obtain a special current speed with another reciprocal path, which is in a direction perpendicular to the current travel path.

  18. Columbia River Component Data Gap Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. C. Hulstrom

    2007-10-23

    This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.

  19. Potential and limitations of satellite laser altimetry for monitoring water surface dynamics: ICESat for US lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Liu; Qigang, Jiang; Zhang, Xuesong

    Elevation measurements from the Ice, Cloud and Land Elevation Satellite (ICESat) have been applied to monitor dynamics of lakes and other surface water bodies. Despite such potential, the true utility of ICESat--more generally, satellite laser altimetry--for tracking surface water dynamics over time has not been adequately assessed, especially in the continental or global contexts. Here, we analyzed ICESat elevation data for the conterminous United States and examined the potential and limitations of satellite laser altimetry in measuring water-level dynamics. Owing to a lack of spatially-explicit ground-based water-level data, we first resorted to high-fidelity land elevation data acquired by airborne lidarmore » to quantify ICESat’s ranging accuracy. We then performed trend and frequency analyses to evaluate how reliably ICESat could capture water-level dynamics over a range of temporal scales, as compared to in-situ gauge measurements. Our analyses showed that ICESat had a vertical ranging error of 0.16 m at the footprint level—a limit on the detectable range of water-level dynamics. The sparsity of data over time was identified as a major factor limiting the use of ICESat for water dynamics studies. Of all the US lakes, only 361 had quality ICESat measurements for more than two flight passes. Even for those lakes with sufficient temporal coverage, ICESat failed to capture the true interannual water-level dynamics in 68% of the cases. Our frequency analysis suggested that even with a repeat cycle of two months, ICESat could capture only 60% of the variations in water-level dynamics for at most 34 % of the US lakes. To capture 60% of the water-level variation for most of the US lakes, a weekly repeat cycle (e.g., less than 5 days) is needed – a requirement difficult to meet in current designs of spaceborne laser altimetry. Overall, our results highlight that current or near-future satellite laser missions, though with high ranging accuracies, are unlikely to fulfill the general needs in remotely monitoring water surface dynamics for lakes or reservoirs.« less

  20. Gas-solid carbonation as a current alternative origin for carbonates in Martian regolith

    NASA Astrophysics Data System (ADS)

    Garenne, A.; Montes-Hernandez, G.; Beck, P.; Schmitt, B.; Brissaud, O.

    2011-12-01

    Carbonates are abundant sedimentary minerals at the surface and sub-surface of Earth and they have been proposed as tracers of liquid water in extraterrestrial environments (e.g. at Mars surface). Its formation mechanism is since generally associated with aqueous alteration processes. Recently, carbonates minerals have been discovered on Mars surface by different orbital or rovers missions. In particular, the phoenix mission has measured from 1 to 5% of calcium carbonate (calcite type). These occurrences have been reported in area were the relative humidity is significantly high (Boynton et al., 2009). The small concentration of carbonates suggests an alternative process than carbonation in aqueous conditions. Such an observation might rather point toward a possible formation mechanism by dust-gas reaction under current Martian conditions. For this reason, in the present study, we designed an experimental setup consisting of an infrared microscope coupled to a cryogenic reaction cell (IR-CryoCell setup) in order to investigate the gas-solid carbonation of three different mineral precursors for carbonates (Ca and Mg hydroxides, and a hydrated Ca silicate formed from Ca2SiO4) at low temperature (from -10 to 25°C) and at reduced CO2 pressure (from 100 to 1000 mbar). These mineral materials are crucial precursors to form respective Ca and Mg carbonates in humid environments (0 < relative humidity < 100%) at dust-CO2 or dust-water ice-CO2 interfaces. The results have revealed a significant and fast carbonation process for Ca hydroxide and hydrated Ca silicate. Conversely, slight carbonation process was observed for Mg hydroxide. These results suggest that gas-solid carbonation process or carbonate formation at the dust-water ice-CO2 interfaces could be a currently active Mars surface process. We note that the carbonation process at low temperature (<0°C) described in the present study could also have important implications on the dust-water ice-CO2 interactions in cold terrestrial environments (e.g. Antarctic).

  1. Northeast Coast, Hokkaido, Japan

    NASA Image and Video Library

    1992-04-02

    The northeast coast of Hokkaido and Kunashir Island, Japan (44.0N, 143.0E) are seen bordered by drifting sea ice. The sea ice has formed a complex pattern of eddies in response to surface water currents and winds. Photos of this kind aid researchers in describing local ocean current patterns and the effects of wind speed and direction on the drift of surface material, such as ice floes or oil. Kunashir is the southernmost of the Kuril Islands.

  2. Rainfall Effects on the Kuroshio Current East of Taiwan

    NASA Astrophysics Data System (ADS)

    Hsu, Po-Chun; Lin, Chen-Chih; Ho, Chung-Ru

    2017-04-01

    Changes of sea surface salinity (SSS) in the open oceans are related to precipitation and evaporation. SSS has been an indicator of water cycle. It may be related to the global change. The Kuroshio Current, a western boundary current originating from the North Equatorial Current, transfers warm and higher salinity to higher latitudes. It flows northward along the east coasts of Luzon Island and Taiwan Island to Japan. In this study, effects of heavy rainfall on the Kuroshio surface salinity east of Taiwan are investigated. Sea surface salinity (SSS) data taken by conductivity temperature depth (CTD) sensor on R/V Ocean Researcher I cruises, conductivity sensor on eight glider cruises, and Aquarius satellite data are used in this study. The rain rate data derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) are also employed. A glider is a kind of autonomous underwater vehicle, which uses small changes in its buoyancy in conjunction with wings to convert vertical motion to horizontal in the underwater without requiring input from an operator. It can take sensors to measure salinity, temperature, and pressure. The TRMM/TMI data from remote sensing system are daily and are mapped to 0.25-degree grid. The results show a good correlation between the rain rate and SSS with a correlation coefficient of 0.86. The rainfall causes SSS of the Kuroshio surface water drops 0.176 PSU per 1 mm/hr rain rate.

  3. Evaluating the impact of irrigation on surface water - groundwater interaction and stream temperature in an agricultural watershed.

    PubMed

    Essaid, Hedeff I; Caldwell, Rodney R

    2017-12-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures relative to natural PreIrr conditions improving fish thermal habitat. However, the decrease in groundwater discharge in the IrrGW scenario resulting from large-scale groundwater withdrawal for irrigation led to warmer than natural stream temperatures and possible degradation of fish habitat. Published by Elsevier B.V.

  4. Evaluating the impact of irrigation on surface water – groundwater interaction and stream temperature in an agricultural watershed

    USGS Publications Warehouse

    Essaid, Hedeff I.; Caldwell, Rodney R.

    2017-01-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures relative to natural PreIrr conditions improving fish thermal habitat. However, the decrease in groundwater discharge in the IrrGW scenario resulting from large-scale groundwater withdrawal for irrigation led to warmer than natural stream temperatures and possible degradation of fish habitat.

  5. Pathways and hydrography in the Mesoamerican Barrier Reef System Part 2: Water masses and thermohaline structure

    NASA Astrophysics Data System (ADS)

    Carrillo, L.; Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Largier, J. L.

    2016-06-01

    Hydrographic data from two oceanographic cruises conducted during March 2006 and January/February 2007 are used to investigate the thermohaline structure related to the observed circulation along the Mesoamerican Barrier Reef System (MBRS). From our observations we identify three water masses in the MBRS: the Caribbean Surface Water (CSW), North Atlantic Subtropical Underwater (SUW), and Tropical Atlantic Central Water (TACW). Little vertical structure in temperature is observed in the upper 100 m of the water column, but important differences are observed in the salinity distribution both horizontally and with depth. Freshwater inputs to the system from the mainland can be traced in the surface layer, with two possible sources: one from surface rivers located along the southern portion of the MBRS, and the other originating from an underground river system located along the northern portion of the MBRS. The thermohaline structure in the MBRS reflects the dynamics of the observed circulation. Uplifted isopycnals along most of the central and northern coastline of the MBRS reflect the effects of the strong geostrophic circulation flowing northward, i.e. the Yucatan Current. To the south along the MBRS, much weaker velocities are observed, with the Honduras Gyre dominating the flow in this region as presented during January/February 2007. These two regions are separated by onshore and divergent alongshore flow associated with the impingement of the Cayman Current on the shore and the MBRS.

  6. Surface-Water Conditions in Georgia, Water Year 2005

    USGS Publications Warehouse

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link to the National Water Inventory System Web (NWISWeb) Interface.

  7. Phosphorus Adsorption and Desorption During and After Swine Manure Spill Simulations

    USDA-ARS?s Scientific Manuscript database

    Manure spills contribute phosphorus (P) to surface waters during catastrophic events and little is known about the effectiveness of the current manure spill remediation methods with regard to the water column and sediments within the fluvial system. Therefore, the objectives of this study were to (1...

  8. Transport and Fate of Phosphorus During and After Manure Spill Simulations

    USDA-ARS?s Scientific Manuscript database

    Manure spills contribute phosphorus (P) to surface waters during catastrophic events and little is known about the effectiveness of the current manure spill remediation methods with regard to the water column and sediments within the fluvial system. Therefore, the objectives of this study were to (1...

  9. NOVEL CHROMATOGRAPHIC SEPARATION AND CARBON SOLID PHASE EXTRACTION OF ACETANILIDE HERBICIDE DEGRADATION PRODUCTS

    EPA Science Inventory

    Six acetanilide herbicides are currently registered for use in the U.S. Over the past several years, ethanesufonic acid (ESA) and oxanilic acid (OA) degradatoin products of these acetanilide herbicides have been found in U.S. ground waters and surface waters. "Alachlor ESA and ...

  10. Two year measurement of nitrous oxide emission from high frequency surface and subsurface drip irrigations in pomegranate orchard

    USDA-ARS?s Scientific Manuscript database

    Building resiliency in California agriculture means utilizing adaptive farming practices that will produce better yields while overcoming the State’s current challenges, such as diminishing water supply and deteriorating water quality. In addition, California agriculture also needs to take proactive...

  11. Implementing dynamic root optimization in Noah-MP for simulating phreatophytic root water uptake

    USDA-ARS?s Scientific Manuscript database

    Plants are known to adjust their root systems to adapt to changing subsurface water conditions. However, most current land surface models (LSMs) use a prescribed, static root profile, which cuts off the interactions between soil moisture and root dynamics. In this paper, we implemented an optimality...

  12. 2D instabilities of surface gravity waves on a linear shear current

    NASA Astrophysics Data System (ADS)

    Francius, Marc; Kharif, Christian

    2016-04-01

    Periodic 2D surface water waves propagating steadily on a rotational current have been studied by many authors (see [1] and references therein). Although the recent important theoretical developments have confirmed that periodic waves can exist over flows with arbitrary vorticity, their stability and their nonlinear evolution have not been much studied extensively so far. In fact, even in the rather simple case of uniform vorticity (linear shear), few papers have been published on the effect of a vertical shear current on the side-band instability of a uniform wave train over finite depth. In most of these studies [2-5], asymptotic expansions and multiple scales method have been used to obtain envelope evolution equations, which allow eventually to formulate a condition of (linear) instability to long modulational perturbations. It is noted here that this instability is often referred in the literature as the Benjamin-Feir or modulational instability. In the present study, we consider the linear stability of finite amplitude two-dimensional, periodic water waves propagating steadily on the free surface of a fluid with constant vorticity and finite depth. First, the steadily propagating surface waves are computed with steepness up to very close to the highest, using a Fourier series expansions and a collocation method, which constitutes a simple extension of Fenton's method [6] to the cases with a linear shear current. Then, the linear stability of these permanent waves to infinitesimal 2D perturbations is developed from the fully nonlinear equations in the framework of normal modes analysis. This linear stability analysis is an extension of [7] to the case of waves in the presence of a linear shear current and permits the determination of the dominant instability as a function of depth and vorticity for a given steepness. The numerical results are used to assess the accuracy of the vor-NLS equation derived in [5] for the characteristics of modulational instabilities due to resonant four-wave interactions, as well as to study the influence of vorticity and nonlinearity on the characteristics of linear instabilities due to resonant five-wave and six-wave interactions. Depending on the dimensionless depth, superharmonic instabilities due to five-wave interactions can become dominant with increasing positive vorticiy. Acknowledgments: This work was supported by the Direction Générale de l'Armement and funded by the ANR project n°. ANR-13-ASTR-0007. References [1] A. Constantin, Two-dimensionality of gravity water flows of constant non-zero vorticity beneath a surface wave train, Eur. J. Mech. B/Fluids, 2011, 30, 12-16. [2] R. S. Johnson, On the modulation of water waves on shear flows, Proc. Royal Soc. Lond. A., 1976, 347, 537-546. [3] M. Oikawa, K. Chow, D. J. Benney, The propagation of nonlinear wave packets in a shear flow with a free surface, Stud. Appl. Math., 1987, 76, 69-92. [4] A. I Baumstein, Modulation of gravity waves with shear in water, Stud. Appl. Math., 1998, 100, 365-90. [5] R. Thomas, C. Kharif, M. Manna, A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity, Phys. Fluids, 2012, 24, 127102. [6] M. M Rienecker, J. D Fenton, A Fourier approximation method for steady water waves , J. Fluid Mech., 1981, 104, 119-137 [7] M. Francius, C. Kharif, Three-dimensional instabilities of periodic gravity waves in shallow water, J. Fluid Mech., 2006, 561, 417-437

  13. Extending the Diffuse Layer Model of Surface Acidity Constant Behavior: IV. Diffuse Layer Charge/Potential Relationships

    EPA Science Inventory

    Most current electrostatic surface complexation models describing ionic binding at the particle/water interface rely on the use of Poisson - Boltzmann (PB) theory for relating diffuse layer charge densities to diffuse layer electrostatic potentials. PB theory is known to contain ...

  14. Earth Observations taken by the Expedition 23 Crew

    NASA Image and Video Library

    2010-05-04

    ISS023-E-032396 (4 May 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 23 flight engineer, photographed the tail end of the Mississippi Delta showing the oil slick in the Gulf of Mexico on May 4, 2010. Part of the river delta and nearby Louisiana coast appear dark in the sunglint. This phenomenon is caused by sunlight reflecting off the water surface, in a mirror-like manner, directly back towards the astronaut observer onboard the International Space Station (ISS). The sunglint improves the identification of the oil spill which is creating a different water texture (and therefore a contrast) between the smooth and rougher water of the reflective ocean surface. Other features which cause a change in surface roughness that can be seen in sunglint are wind gusts, naturally occurring oils that will be gathered by and take the form of water currents or wave patterns, and less windy areas behind islands.

  15. Earth Observations taken by the Expedition 23 Crew

    NASA Image and Video Library

    2010-05-04

    ISS023-E-032400 (4 May 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 23 flight engineer, photographed the Mississippi Delta showing the oil slick in the Gulf of Mexico on May 4, 2010. Part of the river delta and nearby Louisiana coast appear dark in the sunglint. This phenomenon is caused by sunlight reflecting off the water surface, in a mirror-like manner, directly back towards the astronaut observer onboard the International Space Station (ISS). The sunglint improves the identification of the oil spill which is creating a different water texture (and therefore a contrast) between the smooth and rougher water of the reflective ocean surface. Other features which cause a change in surface roughness that can be seen in sunglint are wind gusts, naturally occurring oils that will be gathered by and take the form of water currents or wave patterns, and less windy areas behind islands.

  16. Earth Observations taken by the Expedition 23 Crew

    NASA Image and Video Library

    2010-05-04

    ISS023-E-032398 (4 May 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 23 flight engineer, photographed the Mississippi Delta showing the oil slick in the Gulf of Mexico on May 4, 2010. Part of the river delta and nearby Louisiana coast appear dark in the sunglint. This phenomenon is caused by sunlight reflecting off the water surface, in a mirror-like manner, directly back towards the astronaut observer onboard the International Space Station (ISS). The sunglint improves the identification of the oil spill which is creating a different water texture (and therefore a contrast) between the smooth and rougher water of the reflective ocean surface. Other features which cause a change in surface roughness that can be seen in sunglint are wind gusts, naturally occurring oils that will be gathered by and take the form of water currents or wave patterns, and less windy areas behind islands.

  17. Influence of the Yukon River on the Bering Sea

    NASA Technical Reports Server (NTRS)

    Dean, K.; Mcroy, C. P.

    1986-01-01

    The relationships between the discharge of the Yukon River to the currents and biological productivity in the northern Bering Sea were studied. Specific objectives were: to develop thermal, sediment, and chlorophyll surface maps using Thematic Mapper (TM) data of the discharge of the Yukon River and the Alaskan Coastal Current during the ice free season; to develop a historical model of the distribution of the Yukon River discharge and the Alaskan Coastal Current using LANDSAT Multispectral band scanner (MSS) and NOAA satellite imagery; and to use high resolution TM data to define the surface dynamics of the front between the Alaskan Coastal Current and the Bering Shelf/Anadyr Current. LANDSAT MSS, TM, and Advanced Very High Resolution Radiometer (AVHRR) data were recorded during the 1985 ice free period. The data coincided with shipboard measurements acquired by Inner Shelf Transfer and Recycling (ISTAR) project scientists. An integrated model of the distribution of turbid water discharged from the Yukon River was compiled. A similar model is also being compiled for the Alaskan Coastal and Bering Shelf/Anadyr water masses based on their thermal expressions seen on AVHRR imagery.

  18. Experimental and numerical simulation of three-dimensional gravity currents on smooth and rough bottom

    NASA Astrophysics Data System (ADS)

    La Rocca, Michele; Adduce, Claudia; Sciortino, Giampiero; Pinzon, Allen Bateman

    2008-10-01

    The dynamics of a three-dimensional gravity current is investigated by both laboratory experiments and numerical simulations. The experiments take place in a rectangular tank, which is divided into two square reservoirs with a wall containing a sliding gate of width b. The two reservoirs are filled to the same height H, one with salt water and the other with fresh water. The gravity current starts its evolution as soon as the sliding gate is manually opened. Experiments are conducted with either smooth or rough surface on the bottom of the tank. The bottom roughness is created by gluing sediment material of different diameters to the surface. Five diameter values for the surface roughness and two salinity conditions for the fluid are investigated. The mathematical model is based on shallow-water theory together with the single-layer approximation, so that the model is strictly hyperbolic and can be put into conservative form. Consequently, a finite-volume-based numerical algorithm can be applied. The Godunov formulation is used together with Roe's approximate Riemann solver. Comparisons between the numerical and experimental results show satisfactory agreement. The behavior of the gravity current is quite unusual and cannot be interpreted using the usual model framework adopted for two-dimensional and axisymmetric gravity currents. Two main phases are apparent in the gravity current evolution; during the first phase the front velocity increases, and during the second phase the front velocity decreases and the dimensionless results, relative to the different densities, collapse onto the same curve. A systematic discrepancy is seen between the numerical and experimental results, mainly during the first phase of the gravity current evolution. This discrepancy is attributed to the limits of the mathematical formulation, in particular, the neglect of entrainment in the mathematical model. An interesting result arises from the influence of the bottom surface roughness; it both reduces the front velocity during the second phase of motion and attenuates the differences between the experimental and numerical front velocities during the first phase of motion.

  19. Ceres Evolution: From Thermodynamic Modeling and Now Dawn Observation

    NASA Astrophysics Data System (ADS)

    McCord, T. B.; Combe, J. P.; Castillo, J. C.; Raymond, C. A.; De Sanctis, M. C.; Jaumann, R.; Ammannito, E.; Russell, C. T.

    2015-12-01

    Thermodynamic modeling indicated that Ceres has experienced planetary processes, including extensive melting of its ~25% water and differentiation, (McCord and Sotin, JGR, 2005; Castillo and McCord, Icarus, 2009). Early telescopic studies showed Ceres' surface to be spectrally similar to carboneous-chondrite-like material, i.e., aqueously altered silicates darkened by carbon, with a water-OH-related absorption near 3.06 µm. Later observations improved the spectra and suggested more specific interpretations: Structural water in clay minerals, phyllosilicates, perhaps ammoniated, iron-rich clays, carbonates, brucite, all implying extensive aqueous alteration, perhaps in the presence of CO2. Telescopic observations and thermodynamic models predicted Dawn would find a very different body compared to Vesta (e.g. McCord et al., SSR, 2011), as current Dawn observations are confirming. Ceres' original water ice should have melted early in its evolution, with the resulting differentiation and mineralization strongly affecting Ceres' composition, size and shape over time. The ocean should have become very salty and perhaps may still be liquid in places. The surface composition from telescopes seems to reflect this complex history. The mineralization with repeated mixing of the crust with the early liquid interior and with in-fall from space would create a complex surface that will present an interpretation challenge for Dawn. The Dawn spacecraft is currently collecting observations of Ceres' landforms, elemental and mineralogical/molecular composition and gravity field from orbit. Early results suggest a heavily cratered but distorted and lumpy body with features and composition consistent with internal activity, perhaps recent or current, associated with water and perhaps other volatiles. We will present and interpret the latest Dawn Ceres findings and how they affect our earlier understanding of Ceres evolution from modeling and telescope observations.

  20. Nanoscale Structure at Mineral-Fluid Interfaces

    NASA Astrophysics Data System (ADS)

    Sturchio, N. C.; Sturchio, N. C.; Fenter, P.; Cheng, L.; Park, C.; Zhang, Z.; Zhang, Z.; Nagy, K. L.; Schlegel, M. L.

    2001-12-01

    The nature of nanoparticles and their role in the natural environment is currently a subject of renewed interest. The high surface area (and surface area-to-volume ratio) of nanoparticles exerts a widespread influence on geochemical reactions and transport processes. A thorough understanding of the nanoscale world remains largely hypothetical, however, because of the challenges associated with characterizing nanoscale structures and processes. Recent insights gained from high-resolution synchrotron x-ray reflectivity measurements at the solid-fluid interfaces of macroscopic (i.e., mm-scale) mineral particles may provide relevant guidelines for expected nanoparticle surface structures. For example, at calcite-water and barite-water interfaces, undercoordinated surface cations bond with water species of variable protonation, and modest relaxations (to several hundredths of a nanometer) affect the outermost unit cells [1,2]. Undercoordinated tetrahedral ions at aluminosilicate surfaces also bond with water species, whereas interstitial or interlayer alkali or alkaline earth ions at the surface may readily exchange with hydronium or other ions; modest relaxations also affect the outermost unit cells [3,4]. Modulation of liquid water structure out to about one nanometer has been observed at the (001) cleavage surface of muscovite in deionized water, and may be present at other mineral-fluid interfaces [4]. Dissolution mechanisms at the orthoclase-water interface have been clarified by combining x-ray reflectivity and scanning force microscopy measurements [5]. Further progress in understanding nanoscale structures and processes at macroscopic mineral-water interfaces is likely to benefit nanoparticle studies. [1] Fenter et al. (2000) Geochim. Cosmochim. Acta 64, 1221-1228. [2] Fenter et al. (2001) J. Phys. Chem. B 105(34), 8112-8119. [3] Fenter et al. (2000) Geochim. Cosmochim. Acta 64, 3663-3673. [4] Cheng et al. (2001) Phys. Rev. Lett., (in press). [5] Teng et al. (2001) Geochim. Cosmochim. Acta 65, (in press).

  1. Spatial-temporal variability in groundwater abstraction across Uganda: Implications to sustainable water resources management

    NASA Astrophysics Data System (ADS)

    Nanteza, J.; Thomas, B. F.; Mukwaya, P. I.

    2017-12-01

    The general lack of knowledge about the current rates of water abstraction/use is a challenge to sustainable water resources management in many countries, including Uganda. Estimates of water abstraction/use rates over Uganda, currently available from the FAO are not disaggregated according to source, making it difficult to understand how much is taken out of individual water stores, limiting effective management. Modelling efforts have disaggregated water use rates according to source (i.e. groundwater and surface water). However, over Sub-Saharan Africa countries, these model use estimates are highly uncertain given the scale limitations in applying water use (i.e. point versus regional), thus influencing model calibration/validation. In this study, we utilize data from the water supply atlas project over Uganda to estimate current rates of groundwater abstraction across the country based on location, well type and other relevant information. GIS techniques are employed to demarcate areas served by each water source. These areas are combined with past population distributions and average daily water needed per person to estimate water abstraction/use through time. The results indicate an increase in groundwater use, and isolate regions prone to groundwater depletion where improved management is required to sustainably management groundwater use.

  2. The unintended energy impacts of increased nitrate contamination from biofuels production.

    PubMed

    Twomey, Kelly M; Stillwell, Ashlynn S; Webber, Michael E

    2010-01-01

    Increases in corn cultivation for biofuels production, due to the Energy Independence and Security Act of 2007, are likely to lead to increases in nitrate concentrations in both surface and groundwater resources in the United States. These increases might trigger the requirement for additional energy consumption for water treatment to remove the nitrates. While these increasing concentrations of nitrate might pose a human health concern, most water resources were found to be within current maximum contaminant level (MCL) limits of 10 mg L(-1) NO(3)-N. When water resources exceed this MCL, energy-intensive drinking water treatment is required to reduce nitrate levels below 10 mg L(-1). Based on prior estimates of water supplies currently exceeding the nitrate MCL, we calculate that advanced drinking water treatment might require an additional 2360 million kWh annually (for nitrate affected areas only)--a 2100% increase in energy requirements for water treatment in those same areas--to mitigate nitrate contamination and meet the MCL requirement. We predict that projected increases in nitrate contamination in water may impact the energy consumed in the water treatment sector, because of the convergence of several related trends: (1) increasing cornstarch-based ethanol production, (2) increasing nutrient loading in surface water and groundwater resources as a consequence of increased corn-based ethanol production, (3) additional drinking water sources that exceed the MCL for nitrate, and (4) potentially more stringent drinking water standards for nitrate.

  3. A Seamless Framework for Global Water Cycle Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Wood, E. F.; Chaney, N.; Fisher, C. K.; Caylor, K. K.

    2013-12-01

    The Global Earth Observation System of Systems (GEOSS) Water Strategy ('From Observations to Decisions') recognizes that 'water is essential for ensuring food and energy security, for facilitating poverty reduction and health security, and for the maintenance of ecosystems and biodiversity', and that water cycle data and observations are critical for improved water management and water security - especially in less developed regions. The GEOSS Water Strategy has articulated a number of goals for improved water management, including flood and drought preparedness, that include: (i) facilitating the use of Earth Observations for water cycle observations; (ii) facilitating the acquisition, processing, and distribution of data products needed for effective management; (iii) providing expertise, information systems, and datasets to the global, regional, and national water communities. There are several challenges that must be met to advance our capability to provide near real-time water cycle monitoring, early warning of hydrological hazards (floods and droughts) and risk assessment under climate change, regionally and globally. Current approaches to monitoring and predicting hydrological hazards are limited in many parts of the world, and especially in developing countries where national capacity is limited and monitoring networks are inadequate. This presentation describes the development of a seamless monitoring and prediction framework at all time scales that allows for consistent assessment of water variability from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental, global water cycle monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict current hydrological conditions, flood potential and the state of drought. Seasonal climate model forecasts are downscaled and bias-corrected to drive the land surface model to provide hydrological forecasts and drought products out 6-9 months. The system relies on historic reconstructions of water variability over the 20th century, which forms the background climatology to which current conditions can be assessed. Future changes in water availability and drought risk are quantified based on bias-corrected and downscaled climate model projections that are used to drive the land surface models. For regions with lack of on-the-ground data we are field-testing low-cost environmental sensors and along with new satellite products for terrestrial hydrology and vegetation, integrating these into the system for improved monitoring and prediction. We provide an overview of the system and some examples of real-world applications to flood and drought events, with a focus on Africa.

  4. Study of a DC gas discharge with a copper cathode in a water flow

    NASA Astrophysics Data System (ADS)

    Tazmeev, G. Kh.; Timerkaev, B. A.; Tazmeev, Kh. K.

    2017-07-01

    A dc gas discharge between copper electrodes in the current range of 5-20 A was studied experimentally. The discharge gap length was varied within 45-70 mm. The cathode was a 10-mm-diameter rod placed in the water flowing out from a dielectric tube. Three discharge configurations differing in the position of the cathode upper end with respect to the water surface were considered: (i) above water; (ii) flush with the water surface, and (iii) under water. The electric and optical characteristics of the discharge in the second configuration were studied in more detail. It is established that the discharge properties are similar to those of an electric arc. Considerable cathode erosion was observed in the third configuration. It is revealed that fine-dispersed copper grains form in the course of erosion.

  5. A Water Rich Mars Surface Mission Scenario

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen; Andrews, Alida; Joosten, Kent; Watts, Kevin

    2017-01-01

    The surface of Mars once had abundant water flowing on its surface, but now there is a general perception that this surface is completely dry. Several lines of research have shown that there are sources of potentially large quantities of water at many locations on the surface, including regions considered as candidates for future human missions. Traditionally, system designs for these human missions are constrained to tightly recycle water and oxygen, and current resource utilization strategies involve ascent vehicle oxidizer production only. But the assumption of relatively abundant extant water may change this. Several scenarios were constructed to evaluate water requirements for human Mars expeditions to assess the impact to system design if locally produced water is available. Specifically, we have assessed water resources needed for 1) ascent vehicle oxidizer and fuel production, 2) open-loop water and oxygen life support requirements along with more robust usage scenarios, and 3) crew radiation protection augmentation. In this assessment, production techniques and the associated chemistry to transform Martian water and atmosphere into these useful commodities are identified, but production mass and power requirements are left to future analyses. The figure below illustrates the type of water need assessment performed and that will be discussed. There have been several sources of feedstock material discussed in recent literature that could be used to produce these quantities of water. This paper will focus on Mars surface features that resemble glacier-like forms on Earth. Several lines of evidence indicate that some of these features are in fact buried ice, likely remnants from an earlier ice age on Mars. This paper examines techniques and hardware systems used in the polar regions of Earth to access this buried ice and withdraw water from it. These techniques and systems will be described to illustrate options available. A technique known as a Rodriguez Well is assessed as a likely method for extracting water from these bodies of ice. The figure below is a sample of results from this assessment that will be discussed.

  6. California State Waters Map Series: offshore of San Francisco, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Johnson, Samuel Y.; Dartnell, Peter; Greene, H. Gary; Erdey, Mercedes D.; Golden, Nadine E.; Hartwell, Stephen R.; Endris, Charles A.; Manson, Michael W.; Sliter, Ray W.; Kvitek, Rikk G.; Watt, Janet Tilden; Ross, Stephanie L.; Bruns, Terry R.; Cochrane, Guy R.; Cochran, Susan A.

    2015-01-01

    Circulation over the continental shelf in the Offshore of San Francisco map area is dominated by the southward-flowing California Current, an eastern limb of the North Pacific Gyre that flows from Oregon to Baja California. At its midpoint offshore of central California, the California Current transports subarctic surface waters southeastward, about 150 to 1,300 km from shore. Seasonal northwesterly winds that are, in part, responsible for the California Current, generate coastal upwelling. Ocean temperatures offshore of central California have increased over the past 50 years, driving an ecosystem shift from the productive subarctic regime towards a depopulated subtropical environment.

  7. Surface chemical properties of eutectic and frozen NaCl solutions probed by XPS and NEXAFS.

    PubMed

    Křepelová, Adéla; Huthwelker, Thomas; Bluhm, Hendrik; Ammann, Markus

    2010-12-17

    We study the surface of sodium chloride-water mixtures above, at, and below the eutectic temperature using X-ray photoelectron spectroscopy (XPS) and electron-yield near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The NaCl frozen solutions are mimicking sea-salt deposits in ice or snow. Sea-salt particles emitted from the oceans are a major contributor to the global aerosol burden and can act as a catalyst for heterogeneous chemistry or as cloud condensation nuclei. The nature of halogen ions at ice surfaces and their influence on surface melting of ice are of significant current interest. We found that the surface of the frozen solution, depending on the temperature, consists of ice and different NaCl phases, that is, NaCl, NaCl·2H(2)O, and surface-adsorbed water.

  8. A numerical study of wave-current interaction through surface and bottom stresses: Coastal ocean response to Hurricane Fran of 1996

    NASA Astrophysics Data System (ADS)

    Xie, L.; Pietrafesa, L. J.; Wu, K.

    2003-02-01

    A three-dimensional wave-current coupled modeling system is used to examine the influence of waves on coastal currents and sea level. This coupled modeling system consists of the wave model-WAM (Cycle 4) and the Princeton Ocean Model (POM). The results from this study show that it is important to incorporate surface wave effects into coastal storm surge and circulation models. Specifically, we find that (1) storm surge models without coupled surface waves generally under estimate not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment, (2) introducing wave-induced surface stress effect into storm surge models can significantly improve storm surge prediction, (3) incorporating wave-induced bottom stress into the coupled wave-current model further improves storm surge prediction, and (4) calibration of the wave module according to minimum error in significant wave height does not necessarily result in an optimum wave module in a wave-current coupled system for current and storm surge prediction.

  9. Flood-inundation maps for the St. Marys River at Fort Wayne, Indiana

    USGS Publications Warehouse

    Menke, Chad D.; Kim, Moon H.; Fowler, Kathleen K.

    2012-01-01

    Digital flood-inundation maps for a 9-mile reach of the St. Marys River that extends from South Anthony Boulevard to Main Street at Fort Wayne, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Fort Wayne. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at the USGS streamgage 04182000 St. Marys River near Fort Wayne, Ind. Current conditions at the USGS streamgages in Indiana may be obtained from the National Water Information System: Web Interface. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system. The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, water-surface profiles were simulated for the stream reach by means of a hydraulic one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relation at the USGS streamgage 04182000 St. Marys River near Fort Wayne, Ind. The hydraulic model was then used to simulate 11 water-surface profiles for flood stages at 1-ft intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. A flood inundation map was generated for each water-surface profile stage (11 maps in all) so that for any given flood stage users will be able to view the estimated area of inundation. The availability of these maps along with current stage from USGS streamgages and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post flood recovery efforts.

  10. Update to permeable pavement research at the Edison ...

    EPA Pesticide Factsheets

    Abstract: The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable pavers; porous concrete; and permeable asphalt. The parking lot is instrumented with water content reflectometers and thermistors for continuous monitoring and has four lined sections for each surface to capture permeable pavement infiltrate for water quality analyses.Previous technical releases concerning the demonstration site focused on monitoring techniques, observed chloride and nutrient concentrations, and infiltration and evaporation rates. Thispresentation summarizes past findings and addresses current water quality efforts. This presentation summarizes past findings and addresses current water quality efforts.

  11. Concentration and Detection of Cryptosporidium Oocysts in Surface Water Samples by Method 1622 Using Ultrafiltration and Capsule Filtration

    USGS Publications Warehouse

    Simmons, O. D.; Sobsey, M.D.; Heaney, C.D.; Schaefer, F. W.; Francy, D.S.

    2001-01-01

    The protozoan parasite Cryptosporidium parvum is known to occur widely in both source and drinking water and has caused waterborne outbreaks of gastroenteritis. To improve monitoring, the U.S. Environmental Protection Agency developed method 1622 for isolation and detection of Cryptosporidium oocysts in water. Method 1622 is performance based and involves filtration, concentration, immunomagnetic separation, fluorescent-antibody staining and 4???,6-diamidino-2-phenylindole (DAPI) counterstaining, and microscopic evaluation. The capsule filter system currently recommended for method 1622 was compared to a hollow-fiber ultrafilter system for primary concentration of C. parvum oocysts in seeded reagent water and untreated surface waters. Samples were otherwise processed according to method 1622. Rates of C. parvum oocyst recovery from seeded 10-liter volumes of reagent water in precision and recovery experiments with filter pairs were 42% (standard deviation [SD], 24%) and 46% (SD, 18%) for hollow-fiber ultrafilters and capsule filters, respectively. Mean oocyst recovery rates in experiments testing both filters on seeded surface water samples were 42% (SD, 27%) and 15% (SD, 12%) for hollow-fiber ultrafilters and capsule filters, respectively. Although C. parvum oocysts were recovered from surface waters by using the approved filter of method 1622, the recovery rates were significantly lower and more variable than those from reagent grade water. In contrast, the disposable hollow-fiber ultrafilter system was compatible with subsequent method 1622 processing steps, and it recovered C. parvum oocysts from seeded surface waters with significantly greater efficiency and reliability than the filter suggested for use in the version of method 1622 tested.

  12. Increased salinization of fresh water in the northeastern United States

    PubMed Central

    Kaushal, Sujay S.; Groffman, Peter M.; Likens, Gene E.; Belt, Kenneth T.; Stack, William P.; Kelly, Victoria R.; Band, Lawrence E.; Fisher, Gary T.

    2005-01-01

    Chloride concentrations are increasing at a rate that threatens the availability of fresh water in the northeastern United States. Increases in roadways and deicer use are now salinizing fresh waters, degrading habitat for aquatic organisms, and impacting large supplies of drinking water for humans throughout the region. We observed chloride concentrations of up to 25% of the concentration of seawater in streams of Maryland, New York, and New Hampshire during winters, and chloride concentrations remaining up to 100 times greater than unimpacted forest streams during summers. Mean annual chloride concentration increased as a function of impervious surface and exceeded tolerance for freshwater life in suburban and urban watersheds. Our analysis shows that if salinity were to continue to increase at its present rate due to changes in impervious surface coverage and current management practices, many surface waters in the northeastern United States would not be potable for human consumption and would become toxic to freshwater life within the next century. PMID:16157871

  13. Molecular Dynamics Simulations of Adhesion at Epoxy Interfaces

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Clancy, Thomas C.; Hinkley, J. A.; Gates. T. S.

    2008-01-01

    The effect of moisture on adhesives used in aerospace applications can be modeled with chemically specific techniques such as molecular dynamics simulation. In the present study, the surface energy and work of adhesion are calculated for epoxy surfaces and interfaces, respectively, by using molecular dynamics simulation. Modifications are made to current theory to calculate the work of adhesion at the epoxy-epoxy interface with and without water. Quantitative agreement with experimental values is obtained for the surface energy and work of adhesion at the interface without water. The work of adhesion agrees qualitatively with the experimental values for the interface with water: the magnitude is reduced 15% with respect to the value for the interface without water. A variation of 26% in the magnitude is observed depending on the water configuration at a concentration of 1.6 wt%. The methods and modifications to the method that are employed to obtain these values are expected to be applicable for other epoxy adhesives to determine the effects of moisture uptake on their work of adhesion.

  14. A laboratory investigation of mixing dynamics between biofuels and surface waters

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxiang; Cotel, Aline

    2017-11-01

    Recently, production and usage of ethanol-blend fuels or biofuels have increased dramatically along with increasing risk of spilling into surface waters. Lack of understanding of the environmental impacts and absence of standard clean-up procedures make it crucial to study the mixing behavior between biofuels and water. Biofuels are represented by a solution of ethanol and glycol. A Plexiglas tank in conjunction with a wave generator is used to simulate the mixing of surface waters and biofuels under different natural conditions. In our previous experiments, two distinct mixing regimes were observed. One regime was driven by turbulence and the other by interfacial instabilities. However, under more realistic situations, without wind driven waves, only the first mixing regime was found. After one minute of rapid turbulent mixing, biofuels and water were fully mixed and no interface was formed. During the mixing process, chemical reactions happened simultaneously and influenced mixing dynamics. Current experiments are investigating the effect of waves on the mixing dynamics. Support from NSF CBET 1335878.

  15. Increased salinization of fresh water in the Northeastern United States

    USGS Publications Warehouse

    Kaushal, S.S.; Groffman, P.M.; Likens, G.E.; Belt, K.T.; Stack, W.P.; Kelly, V.R.; Band, L.E.; Fisher, G.T.

    2005-01-01

    Chloride concentrations are increasing at a rate that threatens the availability of fresh water in the northeastern United States. Increases in roadways and deicer use are now salinizing fresh waters, degrading habitat for aquatic organisms, and impacting large supplies of drinking water for humans throughout the region. We observed chloride concentrations of up to 25% of the concentration of seawater in streams of Maryland, New York, and New Hampshire during winters, and chloride concentrations remaining up to 100 times greater than unimpacted forest streams during summers. Mean annual chloride concentration increased as a function of impervious surface and exceeded tolerance for freshwater life in suburban and urban watersheds. Our analysis shows that if salinity were to continue to increase at its present rate due to changes in impervious surface coverage and current management practices, many surface waters in the northeastern United States would not be potable for human consumption and would become toxic to freshwater life within the next century. ?? 2005 by The National Academy of Sciences of the USA.

  16. Universal emulsion stabilization from the arrested adsorption of rough particles at liquid-liquid interfaces

    PubMed Central

    Zanini, Michele; Marschelke, Claudia; Anachkov, Svetoslav E.; Marini, Emanuele; Synytska, Alla; Isa, Lucio

    2017-01-01

    Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil–water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers. PMID:28589932

  17. Universal emulsion stabilization from the arrested adsorption of rough particles at liquid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Zanini, Michele; Marschelke, Claudia; Anachkov, Svetoslav E.; Marini, Emanuele; Synytska, Alla; Isa, Lucio

    2017-06-01

    Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil-water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers.

  18. Modeling of surface roughness effects on glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Yamaguchi, Keiko; Berkowitz, Brian M.; Potapczuk, Mark

    1990-01-01

    A series of experimental investigations focused on studying the cause and effect of roughness on accreting glaze ice surfaces were conducted. Detailed microvideo observations were made of glaze ice accretions on 1 to 4 inch diameter cylinders in three icing wind tunnels (the Data Products of New England six inch test facility, the NASA Lewis Icing Research Tunnel, and the B. F. Goodrich Ice Protection Research Facility). Infrared thermal video recordings were made of accreting ice surfaces in the Goodrich facility. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film; a rough zone where surface tension effects caused coalescence of surface water into stationary beads; a horn zone where roughness elements grow into horn shapes; a runback zone where surface water ran back as rivulets; and a dry zone where rime feathers formed. The location of the transition from the smooth to the rough zone was found to migrate with time towards the stagnation point. The behavior of the transition appeared to be controlled by boundary layer transition and bead formation mechanisms at the interface between the smooth and rough zones. Regions of wet ice growth and enhanced heat transfer were clearly visible in the infrared video recordings of glaze ice surfaces. A simple multi-zone modification to the current glaze ice accretion model was proposed to include spatial variability in surface roughness.

  19. Volatility of Common Protective Oxides in High-Temperature Water Vapor: Current Understanding and Unanswered Questions

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.

    2004-01-01

    Many structural materials rely on the formation of chromia, silica or alumina as a protective layer when exposed in high temperature oxidizing environments. The presence of these oxide layers provides a protective diffusion barrier which slows down further oxidation. In atmospheres containing water vapor, however, reactions to form volatile hydroxide species occur which remove the surface oxide, thus, lowering the protective capability of the oxide scale. This paper summarizes the current understanding of volatility of chromia, silica and alumina in water vapor containing combustion environments. In addition unanswered questions in each system are discussed. Th current paper represents an update on the considerable information learned in the past five years for these systems.

  20. Characteristics of Chernobyl-derived radionuclides in particulate form in surface waters in the exclusion zone around the Chernobyl Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Matsunaga, Takeshi; Ueno, Takashi; Amano, Hikaru; Tkatchenko, Y.; Kovalyov, A.; Watanabe, Miki; Onuma, Yoshikazu

    1998-12-01

    The distribution of Chernobyl-derived radionuclides in river and lake water bodies at 6-40 km from the Chernobyl Nuclear Power Plant was studied. Current levels of radionuclides (Cesium-137, Strontium-90, Plutonium, Americium and Curium isotopes) in water bodies and their relation to the ground contamination are presented. The investigation of the radionuclide composition of aqueous and ground contamination revealed that radionuclides on suspended solids (particulate form) originate mainly from the erosion of the contaminated surface soil layer in the zone. Apparent distribution ratios between particulate and dissolved forms are compared to known distribution coefficients.

  1. Past, present, and future of water data delivery from the U.S. Geological Survey

    USGS Publications Warehouse

    Hirsch, Robert M.; Fisher, Gary T.

    2014-01-01

    We present an overview of national water databases managed by the U.S. Geological Survey, including surface-water, groundwater, water-quality, and water-use data. These are readily accessible to users through web interfaces and data services. Multiple perspectives of data are provided, including search and retrieval of real-time data and historical data, on-demand current conditions and alert services, data compilations, spatial representations, analytical products, and availability of data across multiple agencies.

  2. Aerodynamic Forces and Moments of a Seaplane on the Water

    NASA Technical Reports Server (NTRS)

    Kohler, M

    1933-01-01

    This report gives the results of wind-tunnel tests with a seaplane model as a contribution to the solution of the aerodynamic problems. In the tests it was assumed that the seaplane rested motionless on the water and was exposed, in various positions with respect to the supposedly flat surface of the water, to a uniform air current 0 to 360 degrees.

  3. Physical oceanographic investigation of Massachusetts and Cape Cod Bays

    USGS Publications Warehouse

    Geyer, W. Rockwell; Gardner, George B.; Brown, Wendell S.; Irish, James D.; Butman, Bradford; Loder, T.C.; Signell, Richard P.

    1992-01-01

    This physical oceanographic study of the Massachusetts Bays (fig. 1) was designed to provide for the first time a bay-wide description of the circulation and mixing processes on a seasonal basis. Most of the measurements were conducted between April 1990 and June 1991 and consisted of moored observations to study the current flow patterns (fig. 2), hydrographic surveys to document the changes in water properties (fig. 3), high-resolution surveys of velocity and water properties to provide information on the spatial variability of the flow, drifter deployments to measure the currents, and acquisition of satellite images to provide a bay-wide picture of the surface temperature and its spatial variability. A longterm objective of the Massachusetts Bays program is to develop an understanding of the transport of water, dissolved substances and particles throughout the bays. Because horizontal and vertical transport is important to biological, chemical, and geological processes in Massachusetts and Cape Cod Bays, this physical oceanographic study will have broad application and will improve the ability to manage and monitor the water and sediment quality of the Bays. Key results are:There is a marked seasonal variation in stratification in the bays, from well mixed conditions during the winter to strong stratification in the summertime. The stratification acts as a partial barrier to exchange between the surface waters and the deeper waters and causes the motion of the surface waters to be decoupled from the more sluggish flow of the deep waters. During much of the year, there is weak but persistent counterclockwise flow around the bays, made up of southwesterly flow past Cape Ann, southward flow along the western shore, and outflow north of Race Point. The data suggest that this residual flow pattern reverses in fall. Fluctuations caused by wind and density variations are typically larger than the long-term mean. With the exception of western Massachusetts Bay, flushing of the Bays is largely the result of the mean throughflow. Residence time estimates of the surface waters range from 20-45 days. The deeper water has a longer residence time, but its value is difficult to estimate. There is evidence that the deep waters in Stellwagen Basin are not renewed between the onset of stratification and the fall cooling period.Current measurements made near the new outfall site in western Massachusetts Bay suggest that water and material discharged there are not swept away in a consistent direction by a well-defined steady current but are mixed and transported by a variety of processes, including the action of tides, winds, and river inflow. One-day particle excursions are typically less than 10 km. The outfall is apparently located in a region to the west of the basin-wide residual flow pattern.Observations in western Massachusetts Bay, near the location of the future Boston sewage outfall, show that the surficial sediments are episodically resuspended from the seafloor during storms. The observations suggest onshore transport of suspended material during tranquil periods and episodic offshore and southerly alongshore transport of resuspended sediments during storms. The spatial complexity of the flow in the Massachusetts Bays is typical of nearshore areas that have irregular coastal shorelines and topography and currents that are forced locally by wind and river runoff as well as by the flow in adjacent regions. Numerical models are providing a mechanism to interpret the complex spatial flow patterns that cannot be completely resolved by field observations and to investigate key physical processes that control the physics of water and particle transport.

  4. PRETREATING THORIUM FOR ELECTROPLATING

    DOEpatents

    Beach, J.G.; Schaer, G.R.

    1959-07-28

    A method is presented for pretreating a thorium surface prior to electroplating the surface. The pretreatment steps of the invention comprise cleaning by vapor blasting the surface, anodically pickling in a 5 to 15% by volume aqueous hydrochloric acid bath with a current of 125 to 250 amp/sq ft for 3 to 5 min at room temperature, chemically pickling the surface in a 5 to 15% by volume of aqueous sulfuric acid for 3 to 5 min at room temperature, and rinsing the surface with water.

  5. Mars Simulant Development for In-Situ Resource Utilization (ISRU) Applications

    NASA Technical Reports Server (NTRS)

    Ming, Doug

    2016-01-01

    Current design reference missions for the Evolvable Mars Campaign (EMC) call for the use of in-situ resources to enable human missions to the surface of Mars. One potential resource is water extracted from the Martian regolith. Current Mars' soil analogs (JSC Mars-1) have 5-10 times more water than typical regolith on Mars. Therefore, there is a critical need to develop Mars simulants to be used in ISRU applications that mimic the chemical, mineralogical, and physical properties of the Martian regolith.

  6. Accurate determination of the charge transfer efficiency of photoanodes for solar water splitting.

    PubMed

    Klotz, Dino; Grave, Daniel A; Rothschild, Avner

    2017-08-09

    The oxygen evolution reaction (OER) at the surface of semiconductor photoanodes is critical for photoelectrochemical water splitting. This reaction involves photo-generated holes that oxidize water via charge transfer at the photoanode/electrolyte interface. However, a certain fraction of the holes that reach the surface recombine with electrons from the conduction band, giving rise to the surface recombination loss. The charge transfer efficiency, η t , defined as the ratio between the flux of holes that contribute to the water oxidation reaction and the total flux of holes that reach the surface, is an important parameter that helps to distinguish between bulk and surface recombination losses. However, accurate determination of η t by conventional voltammetry measurements is complicated because only the total current is measured and it is difficult to discern between different contributions to the current. Chopped light measurement (CLM) and hole scavenger measurement (HSM) techniques are widely employed to determine η t , but they often lead to errors resulting from instrumental as well as fundamental limitations. Intensity modulated photocurrent spectroscopy (IMPS) is better suited for accurate determination of η t because it provides direct information on both the total photocurrent and the surface recombination current. However, careful analysis of IMPS measurements at different light intensities is required to account for nonlinear effects. This work compares the η t values obtained by these methods using heteroepitaxial thin-film hematite photoanodes as a case study. We show that a wide spread of η t values is obtained by different analysis methods, and even within the same method different values may be obtained depending on instrumental and experimental conditions such as the light source and light intensity. Statistical analysis of the results obtained for our model hematite photoanode show good correlation between different methods for measurements carried out with the same light source, light intensity and potential. However, there is a considerable spread in the results obtained by different methods. For accurate determination of η t , we recommend IMPS measurements in operando with a bias light intensity such that the irradiance is as close as possible to the AM1.5 Global solar spectrum.

  7. Study of sea ice in the Sea of Okhotsk and its influence on the Oyashio current

    NASA Technical Reports Server (NTRS)

    Watanabe, K.; Kuroda, R.; Hata, K.; Akagawa, M. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Two photographic techniques were applied to Skylab S190A multispectral pictures for extracting oceanic patterns at the sea surface separately from cloud patterns. One is the image-masking technique and another a stereographic analysis. The extracted oceanic patterns were interpreted as areas where the amount, or the concentration of phytoplankton was high by utilizing surface data of water temperature, ocean current by GEK, and microplankton.

  8. Net sea-air CO2 fluxes and modelled pCO2 in the southwestern subtropical Atlantic continental shelf during spring 2010 and summer 2011

    NASA Astrophysics Data System (ADS)

    Ito, Rosane Gonçalves; Garcia, Carlos Alberto Eiras; Tavano, Virginia Maria

    2016-05-01

    Sea-air CO2 fluxes over continental shelves vary substantially in time on both seasonal and sub-seasonal scales, driven primarily by variations in surface pCO2 due to several oceanic mechanisms. Furthermore, coastal zones have not been appropriately considered in global estimates of sea-air CO2 fluxes, despite their importance to ecology and to productivity. In this work, we aimed to improve our understanding of the role played by shelf waters in controlling sea-air CO2 fluxes by investigating the southwestern Atlantic Ocean (21-35°S) region, where physical, chemical and biological measurements were made on board the Brazilian R. V. Cruzeiro do Sul during late spring 2010 and early summer 2011. Features such as discharge from the La Plata River, intrusions of tropical waters on the outer shelf due to meandering and flow instabilities of the Brazil Current, and coastal upwelling in the Santa Marta Grande Cape and São Tomé Cape were detected by both in situ measurements and ocean colour and thermal satellite imagery. Overall, shelf waters in the study area were a source of CO2 to the atmosphere, with an average of 1.2 mmol CO2 m-2 day-1 for the late spring and 11.2 mmol CO2 m-2 day-1 for the early summer cruises. The spatial variability in ocean pCO2 was associated with surface ocean properties (temperature, salinity and chlorophyll-a concentration) in both the slope and shelf waters. Empirical algorithms for predicting temperature-normalized surface ocean pCO2 as a function of surface ocean properties were shown to perform well in both shelf and slope waters, except (a) within cyclonic eddies produced by baroclinic instability of the Brazil Current as detected by satellite SST imagery and (b) in coastal upwelling regions. In these regions, surface ocean pCO2 values were higher as a result of upwelled CO2-enriched subsurface waters. Finally, a pCO2 algorithm based on both sea surface temperature and surface chlorophyll-a was developed that enabled the spatial variability of surface ocean pCO2 to be mapped from satellite data in the southern region.

  9. Seasonal variability of chlorophyll-a and oceanographic conditions in Sabah waters in relation to Asian monsoon--a remote sensing study.

    PubMed

    Abdul-Hadi, Alaa; Mansor, Shattri; Pradhan, Biswajeet; Tan, C K

    2013-05-01

    A study was conducted to investigate the influence of Asian monsoon on chlorophyll-a (Chl-a) content in Sabah waters and to identify the related oceanographic conditions that caused phytoplankton blooms at the eastern and western coasts of Sabah, Malaysia. A series of remote sensing measurements including surface Chl-a, sea surface temperature, sea surface height anomaly, wind speed, wind stress curl, and Ekman pumping were analyzed to study the oceanographic conditions that lead to large-scale nutrients enrichment in the surface layer. The results showed that the Chl-a content increased at the northwest coast from December to April due to strong northeasterly wind and coastal upwelling in Kota Kinabalu water. The southwest coast (Labuan water) maintained high concentrations throughout the year due to the effect of Padas River discharge during the rainy season and the changing direction of Baram River plume during the northeast monsoon (NEM). However, with the continuous supply of nutrients from the upwelling area, the high Chl-a batches were maintained at the offshore water off Labuan for a longer time during NEM. On the other side, the northeast coast illustrated a high Chl-a in Sandakan water during NEM, whereas the northern tip off Kudat did not show a pronounced change throughout the year. The southeast coast (Tawau water) was highly influenced by the direction of the surface water transport between the Sulu and Sulawesi Seas and the prevailing surface currents. The study demonstrates the presence of seasonal phytoplankton blooms in Sabah waters which will aid in forecasting the possible biological response and could further assist in marine resource managements.

  10. Coastal circulation and water-column properties in the War in the Pacific National Historical Park, Guam: measurements and modeling of waves, currents, temperature, salinity, and turbidity, April-August 2012

    USGS Publications Warehouse

    Storlazzi, Curt D.; Cheriton, Olivia M.; Lescinski, Jamie M.R.; Logan, Joshua B.

    2014-01-01

    The U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center (PCMSC) initiated an investigation in the National Park Service’s (NPS) War in the Pacific National Historical Park (WAPA) to provide baseline scientific information on coastal circulation and water-column properties along west-central Guam, focusing on WAPA’s Agat Unit, as it relates to the transport and settlement of coral larvae, fish, and other marine organisms. The oceanographic data and numerical circulation modeling results from this study demonstrate that circulation in Agat Bay was strongly driven by winds and waves at longer (>1 day) timescales and by the tides at shorter (<1 day) timescales; near-surface currents in deep water were primarily controlled by the winds, whereas currents on the shallow reef flats were dominated by wave-driven motions. Water-column properties exhibited strong seasonality coupled to the shift from the trade wind to the non-trade wind season. During the dry trade-wind season, waters were cooler and more saline. When the winds shifted to a more variable pattern, waters warmed and became less saline because of a combination of increased thermal insolation from lack of wind forcing and higher rainfall. Turbidity was relatively low in Agat Bay and was similar to levels measured elsewhere along west-central Guam. The numerical circulation modeling results provide insight into the potential paths of buoyant material released from a series of locations along west-central Guam under summer non-trade wind forcing conditions that characterize coral spawning events. This information may be useful in evaluating the potential zones of influence/impact resulting from transport by surface currents of material released from these select locations.

  11. Mid-Piacenzian Variability of Nordic Seas Surface Circulation Linked to Terrestrial Climatic Change in Norway

    NASA Astrophysics Data System (ADS)

    Panitz, Sina; De Schepper, Stijn; Salzmann, Ulrich; Bachem, Paul E.; Risebrobakken, Bjørg; Clotten, Caroline; Hocking, Emma P.

    2017-12-01

    During the mid-Piacenzian, Nordic Seas sea surface temperatures (SSTs) were higher than today. While SSTs provide crucial climatic information, on their own they do not allow a reconstruction of potential underlying changes in water masses and currents. A new dinoflagellate cyst record for Ocean Drilling Program (ODP) Site 642 is presented to evaluate changes in northward heat transport via the Norwegian Atlantic Current (NwAC) between 3.320 and 3.137 Ma. The record is compared with vegetation and SST reconstructions from Site 642 and SSTs from Iceland Sea ODP Site 907 to identify links between SSTs, ocean currents, and vegetation changes. The dinocyst record shows that strong Atlantic water influence via the NwAC corresponds to higher-than-present SSTs and cool temperate vegetation during Marine Isotope Stage (MIS) transition M2-M1 and KM5. Reduced Atlantic water inflow relative to the warm stages coincides with near-modern SSTs and boreal vegetation during MIS M2, KM6, and KM4-KM2. During most of the studied interval, a strong SST gradient between Sites 642 and 907 indicates the presence of a proto-Arctic Front (AF). An absent gradient during the first half of MIS KM6, due to reduced Atlantic water influence at Site 642 and warm, presumably Atlantic water reaching Site 907, is indicative of a weakened NwAC and East Greenland Current. We conclude that repeated changes in Atlantic water influence directly affect terrestrial climate and that an active NwAC is needed for an AF to develop. Obliquity forcing may have played a role, but the correlation is not consistent.

  12. Comparison of streamflow and water-quality data collection techniques for the Saginaw River, Michigan

    USGS Publications Warehouse

    Hoard, C.J.; Holtschlag, D.J.; Duris, J.W.; James, D.A.; Obenauer, D.J.

    2012-01-01

    In 2009, the Michigan Department of Environmental Quality and the U.S. Geological Survey developed a plan to compare the effect of various streamgaging and water-quality collection techniques on streamflow and stream water-quality data for the Saginaw River, Michigan. The Saginaw River is the primary contributor of surface runoff to Saginaw Bay, Lake Huron, draining approximately 70 percent of the Saginaw Bay watershed. The U.S. Environmental Protection Agency has listed the Saginaw Bay system as an "Area of Concern" due to many factors, including excessive sediment and nutrient concentrations in the water. Current efforts to estimate loading of sediment and nutrients to Saginaw Bay utilize water-quality samples collected using a surface-grab technique and flow data that are uncertain during specific conditions. Comparisons of current flow and water-quality sampling techniques to alternative techniques were assessed between April 2009 and September 2009 at two locations in the Saginaw River. Streamflow estimated using acoustic Doppler current profiling technology was compared to a traditional stage-discharge technique. Complex conditions resulting from the influence of Saginaw Bay on the Saginaw River were able to be captured using the acoustic technology, while the traditional stage-discharge technique failed to quantify these effects. Water-quality samples were collected at two locations and on eight different dates, utilizing both surface-grab and depth-integrating multiple-vertical techniques. Sixteen paired samples were collected and analyzed for suspended sediment, turbidity, total phosphorus, total nitrogen, orthophosphate, nitrite, nitrate, and ammonia. Results indicate that concentrations of constituents associated with suspended material, such as suspended sediment, turbidity, and total phosphorus, are underestimated when samples are collected using the surface-grab technique. The median magnitude of the relative percent difference in concentration based on sampling technique was 37 percent for suspended sediment, 26 percent for turbidity, and 9.7 percent for total phosphorus samples collected at both. Acoustic techniques were also used to assist in the determination of the effectiveness of using acoustic-backscatter information for estimating the suspended-sediment concentration of the river water. Backscatter data was collected by use of an acoustic Doppler current profiler, and a Van Dorn manual sampler was simultaneously used to collect discrete water samples at 10 depths (3.5, 7.5, 11, 14, 15.5, 17.5, 19.5, 20.5, 22, and 24.5 ft below the water surface) along two vertical profiles near the center of the Saginaw River near Bay City. The Van Dorn samples were analyzed for suspended-sediment concentrations, and these data were then used to develop a relationship between acoustic-backscatter data. Acoustic-backscatter data was strongly correlated to sediment concentrations and, by using a linear regression, was able to explain 89 percent of the variability. Although this regression technique showed promise for using acoustic backscatter to estimate suspended-sediment concentration, attempts to compare suspended-sediment concentrations to the acoustic signal-to-noise ratio estimates, recorded at the fixed acoustic streamflow-gaging station near Bay City (04157061), resulted in a poor correlation.

  13. Investigation of the environmental change pattern of Japan

    NASA Technical Reports Server (NTRS)

    Maruyasu, T. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery clearly identifies the relationships between the status of erosion, effluent patterns affected by the coastal current, and the cultural construction activities. Simple photographic techniques can be used for detecting water mass distribution separately from cloud cover and also noise caused by reflected sunlight from wave surfaces. Polluted water does not diffuse continuously into the oceanic water, but forms masses in the water in the Kuroshio area. The polluted or turbid water in the area just north of the Tomogashima Channel, the south outlet of the Osaka Bay, shows that the northward tidal current runs in a clockwise eddy at the tidal period when the imagery was taken. Such an eddy-like pattern of tidal current had never been revealed by conventional oceanographic data. A front between an oceanic water mass and a polluted water mass runs in a NW-SE direction in the central part of the Osaka Bay. The patterns of turbid water discharged from the Kii River and Yoshino River show a northward tidal current in the North Kii Straits. The pattern of lighter turbid or polluted water located in the northwest region of the North Kii straits suggests the existence of a clockwise eddy in the straits.

  14. Crew Exploration Vehicle Potable Water System Verification Description

    NASA Technical Reports Server (NTRS)

    Tuan, George; Peterson, Laurie J.; Vega, Leticia M.

    2010-01-01

    A stored water system on the crew exploration vehicle (CEV) will supply the crew with potable water for: drinking and food rehydration, hygiene, medical needs, sublimation, and various contingency situations. The current baseline biocide for the stored water system is ionic silver, similar in composition to the biocide used to maintain the quality of the water, transferred from the orbiter to the International Space Station, stored in contingency water containers. In the CEV water system, a depletion of the ionic silver biocide is expected due to ionic silver-plating onto the surfaces of materials within the CEV water system, thus negating its effectiveness as a biocide. Because this may be the first time NASA is considering a stored water system for long-term missions that do not maintain a residual biocide, a team of experts in materials compatibility, biofilms and point-of-use filters, surface treatment and coatings, and biocides has been created to pinpoint concerns and perform the testing that will help alleviate concerns related to the CEV water system.

  15. Anthropogenic iodine-129 in seawater along a transect from the Norwegian coastal current to the North Pole.

    PubMed

    Alfimov, V; Aldahan, A; Possnert, G; Winsor, P

    2004-12-01

    Variation in the concentrations of iodine-129 (129I, T1/2=15.7 Myr), a low-level radioactive component of nuclear fuel waste, is documented in surface waters and depth profiles collected during 2001 along a transect from the Norwegian Coastal Current to the North Pole. The surface waters near the Norwegian coast are found to have 20 times higher 129I concentration than the surface waters of the Arctic Ocean. The depth profiles of 129I taken in the Arctic Ocean reveal a sharp decline in the concentration to a depth of about 300-500 m followed by a weaker gradient extending down to the bottom. A twofold increase in the 129I concentration is observed in the upper 1000 m since 1996. Based on known estimates of marine transient time from the release sources (the nuclear reprocessing facilities at La Hague, France, and Sellafield, UK), a doubling in the 129I inventory of the top 1000 m of the Arctic Ocean is expected to occur between the years 2001 and 2006. As 129I of polar mixed layer and Atlantic layer of the Arctic Ocean is ventilated by the East Greenland Current into the Nordic Seas and North Atlantic Ocean, further dispersal and increase of the isotope concentration in these regions will be encountered in the near future.

  16. MODIS Global Sea Surface Temperature

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Every day the Moderate-resolution Imaging Spectroradiometer (MODIS) measures sea surface temperature over the entire globe with high accuracy. This false-color image shows a one-month composite for May 2001. Red and yellow indicates warmer temperatures, green is an intermediate value, while blues and then purples are progressively colder values. The new MODIS sea surface temperature product will be particularly useful in studies of temperature anomalies, such as El Nino, as well as research into how air-sea interactions drive changes in weather and climate patterns. In the high resolution image, notice the amazing detail in some of the regional current patterns. For instance, notice the cold water currents that move from Antarctica northward along South America's west coast. These cold, deep waters upwell along an equatorial swath around and to the west of the Galapagos Islands. Note the warm, wide currents of the Gulf Stream moving up the United States' east coast, carrying Caribbean warmth toward Newfoundland and across the Atlantic toward Western Europe. Note the warm tongue of water extending from Africa's east coast to well south of the Cape of Good Hope. MODIS was launched in December 1999 aboard NASA's Terra satellite. For more details on this and other MODIS data products, please see NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Ocean Group, NASA GSFC, and the University of Miami

  17. Screening and human health risk assessment of pharmaceuticals and their transformation products in Dutch surface waters and drinking water.

    PubMed

    de Jongh, Cindy M; Kooij, Pascal J F; de Voogt, Pim; ter Laak, Thomas L

    2012-06-15

    Numerous studies describe the presence of pharmaceuticals in the water cycle, while their transformation products are usually not included. In the current study 17 common pharmaceuticals and 9 transformation products were monitored in the Dutch waters, including surface waters, pre-treated surface waters, river bank filtrates, two groundwater samples affected by surface water and drinking waters. In these samples, 12 pharmaceuticals and 7 transformation products were present. Concentrations were generally highest in surface waters, intermediate in treated surface waters and river bank filtrates and lowest or not detected in produced drinking water. However, the concentrations of phenazone and its environmental transformation product AMPH were significantly higher in river bank filtrates, which is likely due to historical contamination. Fairly constant ratios were observed between concentrations of transformation products and parent pharmaceuticals. This might enable prediction of concentrations of transformation products from concentrations of parent pharmaceuticals. The toxicological relevance of the observed pharmaceuticals and transformation products was assessed by deriving (i) a substance specific provisional guideline value (pGLV) and (ii) a group pGLV for groups of related compounds were under the assumption of additivity of effects within each group. A substantial margin exists between the maximum summed concentrations of these compounds present in different water types and the derived (group) pGLVs. Based on the results of this limited screening campaign no adverse health effects of the studied compounds are expected in (sources of) drinking water in the Netherlands. The presence of transformation products with similar pharmacological activities and concentration levels as their parents illustrates the relevance of monitoring transformation products, and including these in risk assessment. More thorough monitoring yielding information on statistical uncertainty and variability in time and space, and research on possible synergistic effects of low concentration mixtures of compounds belonging to similar pharmacological classes require attention. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. On the nature of the Madagascar dipoles: An analysis from Argo profiling floats and altimetry measurements

    NASA Astrophysics Data System (ADS)

    Aguiar-González, Borja; Ponsoni, Leandro; Ridderinkhof, Herman; de Ruijter, Will P. M.; Maas, Leo R. M.

    2016-04-01

    The South East Madagascar Current (SEMC) flows poleward along the eastern coast of Madagascar as a western boundary current which further south provides some of the source waters of the Agulhas Current, either directly or in the form of eddies. We investigate the region of dipole formation south of Madagascar combining vertical T/S profiles from Argo floats, altimetry measurements and an existing eddy detection algorithm. Results from our analysis show that the dipole consists of an anticyclonic intrathermocline eddy (ITE) formed on its southern flank and a cyclonic ITE formed on its northern flank. Both lobes of the dipole exhibit similar T/S properties throughout the water column, although vertically shifted within the thermocline depending on its nature: upward in a cyclonic ITE and downward in an anticyclonic ITE. A subsurface salinity maximum of about 35.5 psu characterizes the upper layers with Subtropical Surface Water (STSW). At intermediate levels, a well defined path of South Indian Central Water (SICW) extends throughout the water column up to reach a minimum in salinity of 34.5 psu, corresponding to Antarctic Intermediate Water (AAIW). Below, at deep layers, the North Atlantic Deep Water (NADW) is found. The intrathermocline nature of the Madagascar dipoles has not been previously reported and represents an important feature to be considered when assessing the heat and salt fluxes driven by eddy movement and contributing to the Agulhas Current. Unlike surface eddies, intrathermocline eddies strongly influence the intermediate/deeper layers in the oceans and, hence, may have a larger contribution in the spreading rates and pathways of water masses. Because the intrathermocline nature of eddies is invisible to altimetry measurements, these results stress the importance of combining altimetry with historical records of Argo profiles which uncover eddy dynamics below the sea surface. Lastly, we further investigate from altimetry the area of dipole formation. The main axis of the SEMC appears flanked on its northern and southern borders by a semi-isolated semicircular region where kinetic energy of the mean flow is being transfered to the eddy kinetic energy field, in this case to the dipole formation, through barotropic instabilities without the need of an evident SEMC retroflection. In this regard, future work will be addressed to account for the mechanism by which Madagascar dipoles thus generated present an intrathermocline structure.

  19. Effect of land-applied biosolids on surface-water nutrient yields and groundwater quality in Orange County, North Carolina

    USGS Publications Warehouse

    Wagner, Chad R.; Fitzgerald, Sharon A.; McSwain, Kristen Bukowski; Harden, Stephen L.; Gurley, Laura N.; Rogers, Shane W.

    2015-01-01

    The data, analysis, and conclusions associated with this study can be used by regulatory agencies, resource managers, and wastewater-treatment operators to (1) better understand the quantity and characteristics of nutrients, bacteria, metals, and contaminants of emerging concern that are transported away from biosolids land-application fields to surface water and groundwater under current regulations for the purposes of establishing effective total maximum daily loads (TMDLs) and restoring impaired water resources, (2) assess how well existing regulations protect waters of the State and potentially recommend effective changes to regulations or land-application procedures, and (3) establish a framework for developing guidance on effective techniques for monitoring and regulatory enforcement of permitted biosolids land-application fields.

  20. Deconstructing the conveyor belt.

    PubMed

    Lozier, M Susan

    2010-06-18

    For the past several decades, oceanographers have embraced the dominant paradigm that the ocean's meridional overturning circulation operates like a conveyor belt, transporting cold waters equatorward at depth and warm waters poleward at the surface. Within this paradigm, the conveyor, driven by changes in deepwater production at high latitudes, moves deep waters and their attendant properties continuously along western boundary currents and returns surface waters unimpeded to deepwater formation sites. A number of studies conducted over the past few years have challenged this paradigm by revealing the vital role of the ocean's eddy and wind fields in establishing the structure and variability of the ocean's overturning. Here, we review those studies and discuss how they have collectively changed our view of the simple conveyor-belt model.

  1. Upper Illinois River basin

    USGS Publications Warehouse

    Friedel, Michael J.

    1998-01-01

    During the past 25 years, industry and government made large financial investments that resulted in better water quality across the Nation; however, many water-quality concerns remain. Following a 1986 pilot project, the U.S. Geological Survey began implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. This program differs from other national water-quality assessment studies in that the NAWQA integrates monitoring of surface- and ground-water quality with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers (water-bearing sediments and rocks), (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality.The Upper Illinois River Basin National Water- Quality Assessment (NAWQA) study will increase the scientific understanding of surface- and ground-water quality and the factors that affect water quality in the basin. The study also will provide information needed by water-resource managers to implement effective water-quality management actions and evaluate long-term changes in water quality.

  2. Spatial and Temporal Analysis of Sea Surface Salinity Using Satellite Imagery in Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Rajabi, S.; Hasanlou, M.; Safari, A. R.

    2017-09-01

    The recent development of satellite sea surface salinity (SSS) observations has enabled us to analyse SSS variations with high spatiotemporal resolution. In this regards, The Level3-version4 data observed by Aquarius are used to examine the variability of SSS in Gulf of Mexico for the 2012-2014 time periods. The highest SSS value occurred in April 2013 with the value of 36.72 psu while the lowest value (35.91 psu) was observed in July 2014. Based on the monthly distribution maps which will be demonstrated in the literature, it was observed that east part of the region has lower salinity values than the west part for all months mainly because of the currents which originate from low saline waters of the Caribbean Sea and furthermore the eastward currents like loop current. Also the minimum amounts of salinity occur in coastal waters where the river runoffs make fresh the high saline waters. Our next goal here is to study the patterns of sea surface temperature (SST), chlorophyll-a (CHLa) and fresh water flux (FWF) and examine the contributions of them to SSS variations. So by computing correlation coefficients, the values obtained for SST, FWF and CHLa are 0.7, 0.22 and 0.01 respectively which indicated high correlation of SST on SSS variations. Also by considering the spatial distribution based on the annual means, it found that there is a relationship between the SSS, SST, CHLa and the latitude in the study region which can be interpreted by developing a mathematical model.

  3. Mars surface based factory. Phase 2, task 1C: Computer control of a water treatment system to support a space colony on Mars

    NASA Technical Reports Server (NTRS)

    Fuller, John; Ali, Warsame; Willis, Danette

    1989-01-01

    In a continued effort to design a surface based factory on Mars for the production of oxygen and water, a preliminary study was made of the surface and atmospheric composition on Mars and determined the mass densities of the various gases in the Martian atmosphere. Based on the initial studies, oxygen and water were determined to be the two products that could be produced economically under the Martian conditions. Studies were also made on present production techniques to obtain water and oxygen. Analyses were made to evaluate the current methods of production that were adaptable to the Martian conditions. Even though the initial effort was the production of oxygen and water, it was found necessary to produce some diluted gases that can be mixed with the oxygen produced to constitute 'breathable' air. The conceptual design of a breathable air manufacturing system, a means of drilling for underground water, and storage of water for future use were completed. The design objective was the conceptual design of an integrated system for the supply of quality water for biological consumption, farming, residential and industrial use.

  4. Nickel-based anodic electrocatalysts for fuel cells and water splitting

    NASA Astrophysics Data System (ADS)

    Chen, Dayi

    Our world is facing an energy crisis, so people are trying to harvest and utilize energy more efficiently. One of the promising ways to harvest energy is via solar water splitting to convert solar energy to chemical energy stored in hydrogen. Another of the options to utilize energy more efficiently is to use fuel cells as power sources instead of combustion engines. Catalysts are needed to reduce the energy barriers of the reactions happening at the electrode surfaces of the water-splitting cells and fuel cells. Nickel-based catalysts happen to be important nonprecious electrocatalysts for both of the anodic reactions in alkaline media. In alcohol fuel cells, nickel-based catalysts catalyze alcohol oxidation. In water splitting cells, they catalyze water oxidation, i.e., oxygen evolution. The two reactions occur in a similar potential range when catalyzed by nickel-based catalysts. Higher output current density, lower oxidation potential, and complete substrate oxidation are preferred for the anode in the applications. In this dissertation, the catalytic properties of nickel-based electrocatalysts in alkaline medium for fuel oxidation and oxygen evolution are explored. By changing the nickel precursor solubility, nickel complex nanoparticles with tunable sizes on electrode surfaces were synthesized. Higher methanol oxidation current density is achieved with smaller nickel complex nanoparticles. DNA aggregates were used as a polymer scaffold to load nickel ion centers and thus can oxidize methanol completely at a potential about 0.1 V lower than simple nickel electrodes, and the methanol oxidation pathway is changed. Nickel-based catalysts also have electrocatalytic activity towards a wide range of substrates. Experiments show that methanol, ethanol, glycerol and glucose can be deeply oxidized and carbon-carbon bonds can be broken during the oxidation. However, when comparing methanol oxidation reaction to oxygen evolution reaction catalyzed by current nickel-based catalysts, methanol oxidation suffers from high overpotential and catalyst poisoning by high concentration of substrates, so current nickel-based catalysts are more suitable to be used as oxygen evolution catalysts. A photoanode design that applies nickel oxides to a semiconductor that is incorporated with surface-plasmonic metal electrodes to do solar water oxidation with visible light is proposed.

  5. Seaglider surveys at Ocean Station Papa: Circulation and water mass properties in a meander of the North Pacific Current

    NASA Astrophysics Data System (ADS)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2016-09-01

    A Seaglider autonomous underwater vehicle augmented the Ocean Station Papa (OSP; 50°N, 145°W) surface mooring, measuring spatial structure on scales relevant to the monthly evolution of the moored time series. During each of three missions from June 2008 to January 2010, a Seaglider made biweekly 50 km × 50 km surveys in a bowtie-shaped survey track. Horizontal temperature and salinity gradients measured by these surveys were an order of magnitude stronger than climatological values and sometimes of opposite sign. Geostrophically inferred circulation was corroborated by moored acoustic Doppler current profiler measurements and AVISO satellite altimetry estimates of surface currents, confirming that glider surveys accurately resolved monthly scale mesoscale spatial structure. In contrast to climatological North Pacific Current circulation, upper-ocean flow was modestly northward during the first half of the 18 month survey period, and weakly westward during its latter half, with Rossby number O>(0.01>). This change in circulation coincided with a shift from cool and fresh to warm, saline, oxygen-rich water in the upper-ocean halocline, and an increase in vertical fine structure there and in the lower pycnocline. The anomalous flow and abrupt water mass transition were due to the slow growth of an anticyclonic meander within the North Pacific Current with radius comparable to the scale of the survey pattern, originating to the southeast of OSP.

  6. Utiliizing Vegetative Buffer Strips to Remove Dissolved and Sediment-Bound Herbicides from Surface Water Runoff

    USDA-ARS?s Scientific Manuscript database

    Current federal and state soil and water conservation programs consist primarily of cost-sharing or compensating farmers for implementing a set of pre-defined best management practices which do not consider specific environmental outcomes or cost-effectiveness of the program at the farm or watershed...

  7. MONITORING FECAL INDICATOR BACTERIA WITH ALTERNATIVE REAL-TIME PCR INSTRUMENTS TO ASSESS HEALTH RISKS ASSOCIATED WITH RECREATIONAL WATER USE

    EPA Science Inventory

    U.S. EPA guidance on the safety of surface waters for recreational use is currently based on epidemiological studies conducted in the 1980?s that demonstrated a strong positive correlation between bathing-associated illness rates and concentrations of culturable fecal indicator b...

  8. COMPARISON OF REAL-TIME PCR FECAL BACTERIA MEASUREMENTS IN RECREATIONAL WATERS USING DIFFERENT INSTRUMENTS AND REAGENT SYSTEMS

    EPA Science Inventory

    U.S. EPA guidance on the safety of surface waters for recreational use is currently based on concentrations of culturable fecal indicator bacteria. Attention is now shifting to more rapid molecular monitoring methods. A multi-year epidemiological study is in progress to determine...

  9. Model Verification and Validation Using Graphical Information Systems Tools

    DTIC Science & Technology

    2013-07-31

    Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be...12 Geomorphic Measurements...to a model. Ocean flows, which are organized E-2 current systems, transport heat and salinity and cause water to pile up as a water surface

  10. Evaluation of fog and rain water collected at Delta Barrage, Egypt as a new resource for irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Salem, Talaat A.; Omar, Mohie El Din M.; El Gammal, H. A. A.

    2017-11-01

    Alternative clean water resources are needed in Egypt to face the current water shortage and water quality deterioration. Therefore, this research investigates the suitability of harvesting fog and rain water for irrigation using a pilot fog collector for water quantity, water quality, and economic aspects. A pilot fog collector was installed at one location at Delta Barrage, Egypt. Freeze liquid nitrogen was fixed at the back of the fiberglass sheet to increase the condensation rate. The experiment was conducted during the period from November 2015 to February 2016. In general, all physicochemical variables are observed with higher values in the majority of fog than rain water. The fog is assumed to contain higher concentrations of anthropogenic emissions. TDS in both waters collected are less than 700 mg/l at sodium content less than 60%, classifying these waters as good for various plants under most conditions. In addition, SAR calculated values are less than 3.0 in each of fog and rain water, which proves the water suitability for all irrigated agriculture. Al and Fe concentrations were found common in all samples with values less than the permissible limits of the guidelines. These metals originate from soil material, ash and metal surfaces. The sensitive heavy metals (Cd and Pb) were within the permissible limits of the guideline in fog water, indicating this water is suitable for irrigation. On the contrary, rain water that has heavy metals is not permitted in irrigation water as per the Egyptian law. As per WQI, the rain water is classified as good quality while fog is classified as medium quality. Regarding the water quantity, a significant increase in the harvested fog quantity was observed after cooling the collector surface with freeze liquid nitrogen. The current fog collector produced the lowest water quantity among different fog collectors worldwide. However, these comparative results confirmed that quantity is different from one location to another worldwide even in the same country. The cost of the unit water volume of harvested water by the current pilot collector is relatively low among different collectors worldwide. This study proves that fog harvesting in Egypt is feasible using the current pilot collector in terms of water quantity, water quality, and economy. But it recommends collection of fog at various locations and times, since both water quantity and water quality are variable in time and space. It is more or less viable solution to meet the shortage of water in Egypt.

  11. Nonlinear quasi-static analysis of ultra-deep-water top-tension riser

    NASA Astrophysics Data System (ADS)

    Gao, Guanghai; Qiu, Xingqi; Wang, Ke; Liu, Jianjun

    2017-09-01

    In order to analyse the ultra-deep-water top-tension riser deformation in drilling conditions, a nonlinear quasi-static analysis model and equation are established. The riser in this model is regarded as a simply supported beam located in the vertical plane and is subjected to non-uniform axial and lateral forces. The model and the equation are solved by the finite element method. The effects of riser outside diameter, top tension ratio, sea surface current velocity, drag force coefficient, floating system drift distance and water depth on the riser lateral displacement are discussed. Results show that the riser lateral displacement increase with the increase in the sea surface current velocity, drag force coefficient and water depth, whereas decrease with the increase in the riser outside diameter, top tension ratio. The top tension ratio has an important influence on the riser deformation and it should be set reasonably under different circumstances. The drift of the floating system has a complicated influence on the riser deformation and it should avoid a large drift distance in the proceedings of drilling and production.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Weiming; Tackett, Brian M.; Chen, Jingguang G.

    The formation of carbides can significantly modify the physical and chemical properties of the parent metals. In the current review, we summarize the general trends in the reactions of water and C1 molecules over transition metal carbide (TMC) and metal-modified TMC surfaces and thin films. Although the primary focus of the current review is on the theoretical and experimental studies of reactions of C1 molecules (CO, CO 2, CH 3OH, etc.), the reactions of water will also be reviewed because water plays an important role in many of the C1 transformation reactions. This review is organized by discussing separately thermalmore » reactions and electrochemical reactions, which provides insights into the application of TMCs in heterogeneous catalysis and electrocatalysis, respectively. In thermal reactions, we discuss the thermal decomposition of water and methanol, as well as the reactions of CO and CO 2 over TMC surfaces. In electrochemical reactions, we summarize recent studies in the hydrogen evolution reaction, electrooxidation of methanol and CO, and electroreduction of CO 2. Lastly, future research opportunities and challenges associated with using TMCs as catalysts and electrocatalysts are also discussed.« less

  13. Reduction of zinc emissions from buildings; the policy of Amsterdam.

    PubMed

    Gouman, E

    2004-01-01

    In Amsterdam zinc coming from the roofs and gutters of the buildings accounts for about 50% of the zinc emissions into the surface water (i.e. canals and rivers). This causes water and sediment pollution. Dumping strongly polluted sediment costs ten times more then dumping less polluted mud. Therefore the City of Amsterdam has developed a policy for reducing the zinc emissions from buildings based on the current environmental legislation and the current national targets for surface water quality. Zinc roofs on new and renovated buildings are not permitted. Run off water from zinc roofs of existing buildings is allowed to contain a maximum of 200 microg/l zinc. For the zinc gutters of houses, Amsterdam will promote measures to reduce zinc emissions. To investigate the feasibility of measures, research has been carried out on the zinc emissions of gutters and the effect of covering gutters with an impermeable foil. This research shows clearly that covering zinc gutters with EPDM foil reduces the zinc emissions by 90% from 8.5 to 0.88 gram per square metre per year including the atmospheric deposition.

  14. Surface Electrochemical Modification of a Nickel Substrate to Prepare a NiFe-based Electrode for Water Oxidation.

    PubMed

    Guo, Dingyi; Qi, Jing; Zhang, Wei; Cao, Rui

    2017-01-20

    The slow kinetics of water oxidation greatly jeopardizes the efficiency of water electrolysis for H 2 production. Developing highly active water oxidation electrodes with affordable fabrication costs is thus of great importance. Herein, a Ni II Fe III surface species on Ni metal substrate was generated by electrochemical modification of Ni in a ferrous solution by a fast, simple, and cost-effective procedure. In the prepared Ni II Fe III catalyst film, Fe III was incorporated uniformly through controlled oxidation of Fe II cations on the electrode surface. The catalytically active Ni II originated from the Ni foam substrate, which ensured the close contact between the catalyst and the support toward improved charge-transfer efficiency. The as-prepared electrode exhibited high activity and long-term stability for electrocatalytic water oxidation. The overpotentials required to reach water oxidation current densities of 50, 100, and 500 mA cm -2 are 276, 290, and 329 mV, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Active and Passive Remote Sensing Data Time Series for Flood Detection and Surface Water Mapping

    NASA Astrophysics Data System (ADS)

    Bioresita, Filsa; Puissant, Anne; Stumpf, André; Malet, Jean-Philippe

    2017-04-01

    As a consequence of environmental changes surface waters are undergoing changes in time and space. A better knowledge of the spatial and temporal distribution of surface waters resources becomes essential to support sustainable policies and development activities. Especially because surface waters, are not only a vital sweet water resource, but can also pose hazards to human settlements and infrastructures through flooding. Floods are a highly frequent disaster in the world and can caused huge material losses. Detecting and mapping their spatial distribution is fundamental to ascertain damages and for relief efforts. Spaceborne Synthetic Aperture Radar (SAR) is an effective way to monitor surface waters bodies over large areas since it provides excellent temporal coverage and, all-weather day-and-night imaging capabilities. However, emergent vegetation, trees, wind or flow turbulence can increase radar back-scatter returns and pose problems for the delineation of inundated areas. In such areas, passive remote sensing data can be used to identify vegetated areas and support the interpretation of SAR data. The availability of new Earth Observation products, for example Sentinel-1 (active) and Sentinel-2 (passive) imageries, with both high spatial and temporal resolution, have the potential to facilitate flood detection and monitoring of surface waters changes which are very dynamic in space and time. In this context, the research consists of two parts. In the first part, the objective is to propose generic and reproducible methodologies for the analysis of Sentinel-1 time series data for floods detection and surface waters mapping. The processing chain comprises a series of pre-processing steps and the statistical modeling of the pixel value distribution to produce probabilistic maps for the presence of surface waters. Images pre-processing for all Sentinel-1 images comprise the reduction SAR effect like orbit errors, speckle noise, and geometric effects. A modified Split Based Approach (MSBA) is used in order to focus on surface water areas automatically and facilitate the estimation of class models for water and non-water areas. A Finite Mixture Model is employed as the underlying statistical model to produce probabilistic maps. Subsequently, bilateral filtering is applied to take into account spatial neighborhood relationships in the generation of final map. The elimination of shadows effect is performed in a post-processing step. The processing chain is tested on three case studies. The first case is a flood event in central Ireland, the second case is located in Yorkshire county / Great Britain, and the third test case covers a recent flood event in northern Italy. The tests showed that the modified SBA step and the Finite Mixture Models can be applied for the automatic surface water detection in a variety of test cases. An evaluation again Copernicus products derived from very-high resolution imagery was performed, and showed a high overall accuracy and F-measure of the obtained maps. This evaluation also showed that the use of probability maps and bilateral filtering improved the accuracy of classification results significantly. Based on this quantitative evaluation, it is concluded that the processing chain can be applied for flood mapping from Sentinel-1 data. To estimate robust statistical distributions the method requires sufficient surface waters areas in the observed zone and sufficient contrast between surface waters and other land use classes. Ongoing research addresses the fusion of Sentinel-1 and passive remote sensing data (e.g. Sentinel-2) in order to reduce the current shortcomings in the developed processing chain. In this work, fusion is performed at the feature level to better account for the difference image properties of SAR and optical sensors. Further, the processing chain is currently being optimized in terms of calculation time for a further integration as a flood mapping service on the A2S (Alsace Aval Sentinel) high-performance computing infrastructure of University of Strasbourg.

  16. Estimated use of water in the United States in 1995

    USGS Publications Warehouse

    Solley, Wayne B.; Pierce, Robert R.; Perlman, Howard A.

    1998-01-01

    The purpose of this report is to present consistent and current water-use estimates by state and water-resources region for the United States, Puerto Rico, the U.S. Virgin Islands, and the District of Columbia. Estimates of water withdrawn from surface- and ground-water sources, estimates of consumptive use, and estimates of instream use and wastewater releases during 1995 are presented in this report. This report discusses eight categories of offstream water use--public supply, domestic, commercial, irrigation, livestock, industrial, mining, and thermoelectric power--and one category of instream use: hydroelectric power.

  17. Bioinspired Multifunctional Superhydrophobic Surfaces with Carbon-Nanotube-Based Conducting Pastes by Facile and Scalable Printing.

    PubMed

    Han, Joong Tark; Kim, Byung Kuk; Woo, Jong Seok; Jang, Jeong In; Cho, Joon Young; Jeong, Hee Jin; Jeong, Seung Yol; Seo, Seon Hee; Lee, Geon-Woong

    2017-03-01

    Directly printed superhydrophobic surfaces containing conducting nanomaterials can be used for a wide range of applications in terms of nonwetting, anisotropic wetting, and electrical conductivity. Here, we demonstrated that direct-printable and flexible superhydrophobic surfaces were fabricated on flexible substrates via with an ultrafacile and scalable screen printing with carbon nanotube (CNT)-based conducting pastes. A polydimethylsiloxane (PDMS)-polyethylene glycol (PEG) copolymer was used as an additive for conducting pastes to realize the printability of the conducting paste as well as the hydrophobicity of the printed surface. The screen-printed conducting surfaces showed a high water contact angle (WCA) (>150°) and low contact angle hysteresis (WCA < 5°) at 25 wt % PDMS-PEG copolymer in the paste, and they have an electrical conductivity of over 1000 S m -1 . Patterned superhydrophobic surfaces also showed sticky superhydrophobic characteristics and were used to transport water droplets. Moreover, fabricated films on metal meshes were used for an oil/water separation filter, and liquid evaporation behavior was investigated on the superhydrophobic and conductive thin-film heaters by applying direct current voltage to the film.

  18. Multidrug-Resistant and Extended Spectrum Beta-Lactamase-Producing Escherichia coli in Dutch Surface Water and Wastewater

    PubMed Central

    Blaak, Hetty; Lynch, Gretta; Italiaander, Ronald; Hamidjaja, Raditijo A.; Schets, Franciska M.; de Roda Husman, Ana Maria

    2015-01-01

    Objective The goal of the current study was to gain insight into the prevalence and concentrations of antimicrobial resistant (AMR) Escherichia coli in Dutch surface water, and to explore the role of wastewater as AMR contamination source. Methods The prevalence of AMR E. coli was determined in 113 surface water samples obtained from 30 different water bodies, and in 33 wastewater samples obtained at five health care institutions (HCIs), seven municipal wastewater treatment plants (mWWTPs), and an airport WWTP. Overall, 846 surface water and 313 wastewater E. coli isolates were analysed with respect to susceptibility to eight antimicrobials (representing seven different classes): ampicillin, cefotaxime, tetracycline, ciprofloxacin, streptomycin, sulfamethoxazole, trimethoprim, and chloramphenicol. Results Among surface water isolates, 26% were resistant to at least one class of antimicrobials, and 11% were multidrug-resistant (MDR). In wastewater, the proportions of AMR/MDR E. coli were 76%/62% at HCIs, 69%/19% at the airport WWTP, and 37%/27% and 31%/20% in mWWTP influents and effluents, respectively. Median concentrations of MDR E. coli were 2.2×102, 4.0×104, 1.8×107, and 4.1×107 cfu/l in surface water, WWTP effluents, WWTP influents and HCI wastewater, respectively. The different resistance types occurred with similar frequencies among E. coli from surface water and E. coli from municipal wastewater. By contrast, among E. coli from HCI wastewater, resistance to cefotaxime and resistance to ciprofloxacin were significantly overrepresented compared to E. coli from municipal wastewater and surface water. Most cefotaxime-resistant E. coliisolates produced ESBL. In two of the mWWTP, ESBL-producing variants were detected that were identical with respect to phylogenetic group, sequence type, AMR-profile, and ESBL-genotype to variants from HCI wastewater discharged onto the same sewer and sampled on the same day (A1/ST23/CTX-M-1, B23/ST131/CTX-M-15, D2/ST405/CTX-M-15). Conclusion In conclusion, our data show that MDR E. coli are omnipresent in Dutch surface water, and indicate that municipal wastewater significantly contributes to this occurrence. PMID:26030904

  19. The impact of changing climate on surface and ground water quality in southeast of Ireland

    NASA Astrophysics Data System (ADS)

    Tribak, Kamal

    2015-04-01

    In the current changing climate globally, Ireland have been experiencing a yearly recurrent extreme heavy rainfall events in the last decade, with damaging visible effects socially, economically and on the environment. Ireland intensive agriculture production is a major treat to the aquatic environment, Nitrogen and phosphorus losses to the water courses are major causes to eutrophication. The European Water Frame Directive (WFD 2000/60/EC) and Nitrates Directive (91/676/EEC) sets a number of measures to better protect and improve water status. Five years of high temporal resolution river water quality data measurement from two contrasting catchment in the southeast of Ireland were correlated with rain fall and nutrients losses to the ground and surface water, additional to the integrated Southeast River District Basin ground and surface water quality to establish spatiotemporal connection to the agriculture activities, the first well-drained soil catchment had high coefficient correlation with rain fall with higher losses to groundwater, on the other hand higher nutrients losses to surface water were higher with less influence from groundwater recharge of N and P transfer, the poorly clay base soil contributed to higher increased losses to surface water during excessive rain fall. Agriculture activities, hydrology, geology and human interaction can interact according to their site specific setting and the effects will fluctuate dependent on the conditions influencing the impact on water quality, there is a requirement to better distinguish those effects together and identify areas and land uses control and nutrients management to improve the water quality, stakeholders co-operation along with effective polices, long term monitoring, nutrients pathways management and better understanding of the environmental factors interaction on national, regional and catchment scale to enable planning policies and enforcement measures to be more focused on areas of high risk than others.

  20. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    NASA Astrophysics Data System (ADS)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2017-08-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  1. Controlling Ionic Transport for Device Design in Synthetic Nanopores

    NASA Astrophysics Data System (ADS)

    Kalman, Eric Boyd

    Polymer nanopores present a number of behaviors not seen in microscale systems, such as ion current rectification, ionic selectivity, size exclusion and potential dependent ion concentrations in and near the pore. The existence of these effects stems from the small size of nanopores with respect to the characteristic length scales of surface interactions at the interface between the nanopore surface and the solution within it. The large surface-to-volume ratio due to the nanoscale geometry of a nanopore, as well as similarity in scale between geometry and interaction demands the solution interact with the nanopore walls. As surfaces in solution almost always carry residual charge, these surface forces are primarily the electrostatic interactions between the charge groups on the pore surface and the ions in solution. These interactions may be used by the experimentalist to control ionic transport through synthetic nanopores, and use them as a template for the construction of devices. In this research, we present our work on creating a number of ionic analogs to seminal electronic devices, specifically diodes, and transistors, by controlling ionic transport through the electrostatic interactions between a single synthetic nanopore and ions. Control is achieved by "doping" the effective charge carrier concentration in specific regions of the nanopore through manipulation of the pore's surface charge. This manipulation occurs through two mechanisms: chemical modification of the surface charge and electrostatic manipulation of the local internal nanopore potential using a gate electrode. Additionally, the innate selectivity of the charged nanopores walls allows for the separation of charges in solution. This well-known effect, which spawns measureable quantities, the streaming potential and current, has been used to create nanoscale water desalination membranes. We attempt to create a device using membranes with large nanopore densities for the desalination of water which should theoretically outperform currently available devices, as through our previous work we have developed techniques allowing for transport manipulation not current accessible in traditional membrane motifs.

  2. Tidal and residual currents measured by an acoustic doppler current profiler at the west end of Carquinez Strait, San Francisco Bay, California, March to November 1988

    USGS Publications Warehouse

    Burau, J.R.; Simpson, M.R.; Cheng, R.T.

    1993-01-01

    Water-velocity profiles were collected at the west end of Carquinez Strait, San Francisco Bay, California, from March to November 1988, using an acoustic Doppler current profiler (ADCP). These data are a series of 10-minute-averaged water velocities collected at 1-meter vertical intervals (bins) in the 16.8-meter water column, beginning 2.1 meters above the estuary bed. To examine the vertical structure of the horizontal water velocities, the data are separated into individual time-series by bin and then used for time-series plots, harmonic analysis, and for input to digital filters. Three-dimensional graphic renditions of the filtered data are also used in the analysis. Harmonic analysis of the time-series data from each bin indicates that the dominant (12.42 hour or M2) partial tidal currents reverse direction near the bottom, on average, 20 minutes sooner than M2 partial tidal currents near the surface. Residual (nontidal) currents derived from the filtered data indicate that currents near the bottom are pre- dominantly up-estuary during the neap tides and down-estuary during the more energetic spring tides.

  3. Theoretical monochromatic-wave-induced currents in intermediate water with viscosity and nonzero mass transport

    NASA Technical Reports Server (NTRS)

    Talay, T. A.

    1975-01-01

    Wave-induced mass-transport current theories with both zero and nonzero net mass (or volume) transport of the water column are reviewed. A relationship based on the Longuet-Higgens theory is derived for wave-induced, nonzero mass-transport currents in intermediate water depths for a viscous fluid. The relationship is in a form useful for experimental applications; therefore, some design criteria for experimental wave-tank tests are also presented. Sample parametric cases for typical wave-tank conditions and a typical ocean swell were assessed by using the relation in conjunction with an equation developed by Unluata and Mei for the maximum wave-induced volume transport. Calculations indicate that substantial changes in the wave-induced mass-transport current profiles may exist dependent upon the assumed net volume transport. A maximum volume transport, corresponding to an infinite channel or idealized ocean condition, produces the largest wave-induced mass-transport currents. These calculations suggest that wave-induced mass-transport currents may have considerable effects on pollution and suspended-sediments transport as well as buoy drift, the surface and midlayer water-column currents caused by waves increasing with increasing net volume transports. Some of these effects are discussed.

  4. Hydrographic changes in the subpolar North Atlantic at the MCA to LIA transition

    NASA Astrophysics Data System (ADS)

    Divine, Dmitry; Miettinen, Arto; Husum, Katrine; Koc, Nalan

    2016-04-01

    A network of four marine sediment cores from the northern North Atlantic is used to study hydrographic changes in surface water masses during the last 2000 years with a special focus on the Medieval Climate Anomaly (MCA) to the Little Ice Age (LIA) transition. Three of the cores are recovered from the sites located on main pathways of warm Atlantic water to the Arctic: M95-2011 (Vøring plateau, Norwegian Sea), Rapid-21 COM and LO-14 (Reykjanes Ridge, south of Iceland). The fourth core MD99-2322 is from the SE Greenland shelf (Denmark Strait), and it is influenced by the cold water outflow from the Arctic. The cores were analyzed continuously for planktonic diatoms with a high decadal to subdecadal temporal resolution. Past changes in the spatial distribution of surface water masses have been studied identifying factors, or typical species compositions, in downcore diatom assemblages. To derive the factors a Q-mode factor analysis has been applied to the extended modern calibration data set of 184 surface sediment samples from the North Atlantic, the Labrador Sea, the Nordic Seas, and Baffin Bay. SSTs have also been reconstructed using transfer functions. Variations of the reconstructed SSTs and loadings of major contributing factors reveal a complex regional pattern of changes in the structure of circulation during the MCA/LIA transition (1200-1400 AD). In the Norwegian Sea, the factors associated with assemblages typical for warmer and saline North Atlantic waters are partly displaced by colder and fresher water dwelling diatoms suggesting an eastward migration of mixed Arctic/Atlantic water masses into the Norwegian Sea. The two cores south of Iceland show a westward propagation of a warm water pulse as evidenced by the dominance of assemblages, which today are typical for the waters ca 5° further south than the current study sites. At the SE Greenland shelf an abrupt shift (ca. 50 years) in factors associated with different sea ice zone dwelling diatoms signifies an intensified inflow of the cold and saline mixed water masses advected from the area north of Iceland and/or partly formed by the Irminger current. Such regional patterns of hydrographic changes agree well with a hypothesis of a persistent shift in the vigor of the two main branches of the North Atlantic Drift (NAD) during the onset of LIA, namely strengthening of the Irminger current and a parallel weakening of the Norwegian Atlantic current. Modeling studies also corroborate this hypothesis demonstrating the possibility of such shift triggered by persistent negative volcanic/solar forcing during the studied period.

  5. Validating a topographically driven model of peatland water table: Implications for understanding land cover controls on water table.

    NASA Astrophysics Data System (ADS)

    Evans, Martin; Allott, Tim; Worrall, Fred; Rowson, James; Maskill, Rachael

    2014-05-01

    Water table is arguably the dominant control on biogeochemical cycling in peatland systems. Local water tables are controlled by peat surface water balance and lateral transfer of water driven by slope can be a significant component of this balance. In particular, blanket peatlands typically have relatively high surface slope compared to other peatland types so that there is the potential for water table to be significantly contolled by topographic context. UK blanket peatlands are also significantly eroded so that there is the potential for additional topographic drainage of the peatland surface. This paper presents a topographically driven model of blanket peat water table. An initial model presented in Allott et al. (2009) has been refined and tested against further water table data collected across the Bleaklow and Kinderscout plateaux of the English Peak District. The water table model quantifies the impact of peat erosion on water table throughout this dramatically dissected landscape demonstrating that almost 50% of the landscape has suffered significant water table drawdown. The model calibrates the impact of slope and degree of dissection on local water tables but does not incorporate any effects of surface cover on water table conditions. Consequently significant outliers in the test data are potentially indicative of important impacts of surface cover on water table conditions. In the test data presented here sites associated with regular moorland burning are significant outliers. The data currently available do not allow us to draw conclusions around the impact of land cover but they indicate an important potential application of the validated model in controlling for topographic position in further testing of the impact of land cover on peatland water tables. Allott, T.E.H. & Evans, M.G., Lindsay, J.B., Agnew, C.T., Freer, J.E., Jones, A. & Parnell, M. Water tables in Peak District blanket peatlands. Moors for the Future Report No. 17. Moors for the Future Partnership, Edale, 47pp.

  6. Gravity Scaling of a Power Reactor Water Shield

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.; Pearson, J. Boise

    2008-01-01

    Water based reactor shielding is being considered as an affordable option for use on initial lunar surface power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxiliary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2007). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa(sup n). These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined.

  7. The effects of surface tension on flooding in counter-current two-phase flow in an inclined tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deendarlianto; Forschungszentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden; Ousaka, Akiharu

    2010-10-15

    The purpose of the present study is to investigate the effects of surface tension on flooding phenomena in counter-current two-phase flow in an inclined tube. Previous studies by other researchers have shown that surface tension has a stabilizing effect on the falling liquid film under certain conditions and a destabilizing or unclear trend under other conditions. Experimental results are reported herein for air-water systems in which a surfactant has been added to vary the liquid surface tension without altering other liquid properties. The flooding section is a tube of 16 mm in inner diameter and 1.1 m length, inclined atmore » 30-60 from horizontal. The flooding mechanisms were observed by using two high-speed video cameras and by measuring the time variation of liquid hold-up along the test tube. The results show that effects of surface tension are significant. The gas velocity needed to induce flooding is lower for a lower surface tension. There was no upward motion of the air-water interfacial waves upon flooding occurrence, even for lower a surface tension. Observations on the liquid film behavior after flooding occurred suggest that the entrainment of liquid droplets plays an important role in the upward transport of liquid. Finally, an empirical correlation for flooding velocities is proposed that includes functional dependencies on surface tension and tube inclination. (author)« less

  8. DIN retention-transport through four hydrologically connected zones in a headwater catchment of the Upper Mississippi River

    USGS Publications Warehouse

    Triska, F.J.; Duff, J.H.; Sheibley, R.W.; Jackman, A.P.; Avanzino, R.J.

    2007-01-01

    Dissolved inorganic nitrogen (DIN) retention-transport through a headwater catchment was synthesized from studies encompassing four distinct hydrologic zones of the Shingobee River Headwaters near the origin of the Mississippi River. The hydrologic zones included: (1) hillslope ground water (ridge to bankside riparian); (2) alluvial riparian ground water; (3) ground water discharged through subchannel sediments (hyporheic zone); and (4) channel surface water. During subsurface hillslope transport through Zone 1, DIN, primarily nitrate, decreased from ???3 mg-N/l to <0.1 mg-N/l. Ambient seasonal nitrate:chloride ratios in hillslope flow paths indicated both dilution and biotic processing caused nitrate loss. Biologically available organic carbon controlled biotic nitrate retention during hillslope transport. In the alluvial riparian zone (Zone 2) biologically available organic carbon controlled nitrate depletion although processing of both ambient and amended nitrate was faster during the summer than winter. In the hyporheic zone (Zone 3) and stream surface water (Zone 4) DIN retention was primarily controlled by temperature. Perfusion core studies using hyporheic sediment indicated sufficient organic carbon in bed sediments to retain ground water DIN via coupled nitrification-denitrification. Numerical simulations of seasonal hyporheic sediment nitrification-denitrification rates from perfusion cores adequately predicted surface water ammonium but not nitrate when compared to 5 years of monthly field data (1989-93). Mass balance studies in stream surface water indicated proportionally higher summer than winter N retention. Watershed DIN retention was effective during summer under the current land use of intermittently grazed pasture. However, more intensive land use such as row crop agriculture would decrease nitrate retention efficiency and increase loads to surface water. Understanding DIN retention capacity throughout the system, including special channel features such as sloughs, wetlands and floodplains that provide surface water-ground water connectivity, will be required to develop effective nitrate management strategies. ?? 2007 American Water Resources Association.

  9. Possible near-IR channels for remote sensing precipitable water vapor from geostationary satellite platforms

    NASA Technical Reports Server (NTRS)

    Gao, B.-C.; Goetz, A. F. H.; Westwater, Ed R.; Conel, J. E.; Green, R. O.

    1993-01-01

    Remote sensing of troposheric water vapor profiles from current geostationary weather satellites is made using a few broadband infrared (IR) channels in the 6-13 micron region. Uncertainties greater than 20% exist in derived water vapor values just above the surface from the IR emission measurements. In this paper, we propose three near-IR channels, one within the 0.94-micron water vapor band absorption region, and the other two in nearby atmospheric windows, for remote sensing of precipitable water vapor over land areas, excluding lakes and rivers, during daytime from future geostationary satellite platforms. The physical principles are as follows. The reflectance of most surface targets varies approximately linearly with wavelength near 1 micron. The solar radiation on the sun-surface-sensor ray path is attenuated by atmospheric water vapor. The ratio of the radiance from the absorption channel with the radiances from the two window channels removes the surface reflectance effects and yields approximately the mean atmospheric water vapor transmittance of the absorption channel. The integrated water vapor amount from ground to space can be obtained with a precision of better than 5% from the mean transmittance. Because surface reflectances vary slowly with time, temporal variation of precipitable water vapor can be determined reliably. High spatial resolution, precipitable water vapor images are derived from spectral data collected by the Airborne Visable-Infrared Imaging Spectrometer, which measures solar radiation reflected by the surface in the 0.4-2.5 micron region in 10-nm channels and has a ground instantaneous field of view of 20 m from its platform on an ER-2 aircraft at 20 km. The proposed near-IR reflectance technique would complement the IR emission techniques for remote sensing of water vapor profiles from geostationary satellite platforms, especially in the boundary layer where most of the water vapor is located.

  10. Water velocity and the nature of critical flow in large rapids on the Colorado River, Utah

    USGS Publications Warehouse

    Magirl, Christopher S.; Gartner, Jeffrey W.; Smart, Graeme M.; Webb, Robert H.

    2009-01-01

    Rapids are an integral part of bedrock‐controlled rivers, influencing aquatic ecology, geomorphology, and recreational value. Flow measurements in rapids and high‐gradient rivers are uncommon because of technical difficulties associated with positioning and operating sufficiently robust instruments. In the current study, detailed velocity, water surface, and bathymetric data were collected within rapids on the Colorado River in eastern Utah. With the water surface survey, it was found that shoreline‐based water surface surveys may misrepresent the water surface slope along the centerline of a rapid. Flow velocities were measured with an ADCP and an electronic pitot‐static tube. Integrating multiple measurements, the ADCP returned velocity data from the entire water column, even in sections of high water velocity. The maximum mean velocity measured with the ADCP was 3.7 m/s. The pitot‐static tube, while capable of only point measurements, quantified velocity 0.39 m below the surface. The maximum mean velocity measured with the pitot tube was 5.2 m/s, with instantaneous velocities up to 6.5 m/s. Analysis of the data showed that flow was subcritical throughout all measured rapids with a maximum measured Froude number of 0.7 in the largest measured rapids. Froude numbers were highest at the entrance of a given rapid, then decreased below the first breaking waves. In the absence of detailed bathymetric and velocity data, the Froude number in the fastest‐flowing section of a rapid was estimated from near‐surface velocity and depth soundings alone.

  11. Evaluation of water resources in part of central Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, B.; Duffin, G.; Flores, R.

    1990-01-01

    Water resources in the Brazos, Red, Colorado, and Trinity River basins, in central Texas, were evaluated. In 1985 there was a little less than 81,000 acre-ft of groundwater pumped from all aquifers in the study area, with a little less than 77,000 acre-ft of groundwater pumped from the Trinity Group aquifer. Irrigation accounted for about 56% of all groundwater pumped. A serious problem associated with the development of groundwater from the Trinity Group aquifer is the decline of artesian pressure in areas of large groundwater withdrawals. Degradation of groundwater within the Antlers and Travis Peak Formations from oil-field brines andmore » organic material are problems in several counties. The deterioration of water qualify for the City of Blum has occurred over a 26-year period and is associated with water level declines in the Hensell Member of the Travis Peak Formation. The Woodbine Group yields good quality water at or near the outcrop; however, the residual sodium carbonate and percent sodium limits its use for irrigation, while high iron and fluoride content restricts its use for public supply. Existing surface reservoirs in the study area alone can supply 296,400 acre-ft of water under 2010 conditions. Nearly all of this water is either currently owned or under contract to supply current and future needs. An additional 176,000 acre-ft of surface water could become available with the development of the proposed Lake Bosque and Paluxy Reservoir projects and with reallocation of storage in existing Lakes Waco and Whitney. The amount of groundwater currently pumped exceeds the estimated annual effective recharge to the Trinity Group aquifer; the groundwater supply for the area will continue to be drawn from storage within the aquifer. 84 refs., 21 figs., 3 tabs.« less

  12. Anthropogenic organochlorine compounds as potential tracers for regional water masses: A case study of estuarine plume, coastal eddy, wind-driven upwelling and long-range warm current.

    PubMed

    Ya, Miaolei; Wu, Yuling; Li, Yongyu; Wang, Xinhong

    2017-03-01

    Water masses are the crucial factor driving the terrigenous anthropogenic organochlorine compounds (OCs) migration from the coast to open sea. Therefore, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were investigated in the Northern South China Sea (NSCS), where different types of water masses are generated by the East Asian summer monsoon: Pearl River estuary plume (PREP), Guangdong offshore eddy (GDEC), South China Sea warm current (SCSWC) and wind-driven upwelling current (WDUC). No discrepant distributions of OC concentrations were found in these water masses (p > 0.05). However, compositions and diagnostic ratios of HCHs, DDTs, trans- or cis-chlordane and PCBs could reflect the discrepancies in the input, transport and transformation of OCs caused by the hydrological characteristics of water masses, therefore, this allowing them to serve as potential tracers of regional water masses. In detail, α/γ-HCH and β-HCH percentages could indicate the weathered residue in the GDEC, long-range transport in the SCSWC, rapid photodegradation in the surface WDUC and biodegradation in the deep WDUC, respectively. The predominance of o, p'-DDT and p, p'-DDT could indicate fresh input in the PREP, GDEC and WDUC. DDT/DDTs of ratios <0.5 also reflected long-range transport in the SCSWC. Different DDD/DDE ratios indicated different oxygen environments of microbial degradation in the surface and deep water of the WDUC. Trans/cis-chlordane ratios could indicate the selective degradation of trans-chlordane in different water masses. Finally, a higher proportion of penta-PCB could reflect the strong paint additive sources carried by river erosion in the PREP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Designing Energy-Efficient Heat Exchangers--- Creating Micro-Channels on the Aluminum Fin Surface

    NASA Astrophysics Data System (ADS)

    Ying, Jia; Sommers, Andrew; Eid, Khalid

    2010-03-01

    In this research, a method for patterning micro-channels on aluminum surfaces is described for the purpose of exploiting those features to affect the surface wettability. Minimizing water retention on aluminum is important in the design of energy-efficient heat exchangers because water retention can deteriorate the performance of such devices. It increases the air-side pressure drop and can decrease the sensible heat transfer coefficient thereby increasing energy consumption and contributing to higher pollution levels in the environment. Photolithography is used to create the micro-scale channels and a hydrophobic polymer is used to reduce the surface energy of the aluminum plates. Droplets are both injected on the surface using a micro-syringe and condensed on the surface using an environmentally-controlled chamber. A ram'e-hart goniometer is used to determine the advancing and receding contact angles of water droplets on these modified surfaces, and a tilt-table assembly is used to measure the critical inclination angle for sliding. Our results show that droplets placed on these patterned surfaces not only have significantly lower critical inclination angles for sliding but are easier to remove from the surface at low air flow rates. Efforts to model the onset of droplet movement on these surfaces using a simple force balance relationship are currently underway.

  14. Intra-annual variability of the radiocarbon content of corals from the Galapagos Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T.A.; Farwell, G.W.; Schmidt, F.H.

    1993-01-01

    The authors report AMS [sup 14]C measurements on sub annual samples of coral from the Galapagos Islands that span the period, 1970-1973. Both the major 1972 El Nino/Southern Oscillation event and intra-annual changes in regional upwelling of [sup 14]C-depleted waters associated with alternation of surface-ocean current patterns are evident in the record. These data show that the corals preserve a detailed record of past intra-annual variations of the [sup 14]C content of surface ocean water.

  15. Short term forecasting for HFSWR sea surface current mapping using artificial neural network

    NASA Astrophysics Data System (ADS)

    Lai, J. W.; Lu, Y. C.; Hsieh, C. M.; Liau, J. M.; Yang, W. C.

    2016-02-01

    Taiwan Ocean Research Institute (TORI) established the Taiwan Ocean Radar Observing System (TOROS) based on the CODAR high frequency surface wave radar (HFSWR). The TOROS is the first network having complete, contiguous HFSWR coverage of nation's coastline in the world. This network consisting of 17 SeaSonde radars offers coverage across approximately 190,000 square kilometers an area, over five times the size of Taiwan's entire land mass. In the southernmost and narrowest part of Taiwan, two 13 MHz and one 24 MHz radars were established along the NanWan Bay since June, 2014. NanWan Bay, the southern tip of Taiwan, is a southward semi-enclosed basin bounded by two capes and is open to the Luzon Strait. The distance between the two caps is around 12 km, and the distance from the northernmost point of the bay to the caps are 5 and 11 km, respectively. Strong tidal currents dominate the ocean circulation in the NanWan Bay and induce obvious upwelling of cold water that intrudes on to the shallow regions of NanWan Bay around spring tides. From late fall to early spring, the seaward wind dominated by the northeast monsoon often destratifies the water column and decreases the sea surface temperature inside the Bay (Lee et al, 1997). Furthermore, the Nanwan Bay is famous with well-developed fringing reefs distributed along the shoreline. In this area, 230 species of scleractinian corals, nine species of non-scleractinian reef-building corals, and 40 species of alcyonacean corals have been recorded (Dai, 1991). NanWan, in the shape of a beautiful arch, attracts large crowds of people to take all kinds of beach or water activities every summer. In order to improve the applicability of HFSWR ocean surface current data on search and rescue issue and evaluation of coral spawn dispersal, a short term forecasting model using artificial neural network (ANN) was developed in this study. That ocean surface current vectors obtained from tidal theory are added as inputs in artificial neural network model is found to improve prediction ability for current vectors. The optimum structure of the present ANN model for each ocean current grid is set up from examining the learning rate, moment factor, input parameters, numbers of hidden layer, learning times and input length. Results show that the ANN model have better accuracy of short-term forecasting.

  16. Water resources of Iberia Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2017-02-24

    IntroductionInformation concerning the availability, use, and quality of water in Iberia Parish, Louisiana, is critical for proper water-resource management. This fact sheet summarizes the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish for water managers, parish residents, and others to assist in stewardship of this vital resource. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System are the primary sources of the information presented here.In 2010, about 31.24 million gallons per day (Mgal/d) of water were withdrawn in Iberia Parish, Louisiana, including about 23.13 Mgal/d from groundwater sources and 8.11 Mgal/d from surface-water sources. Withdrawals for public supply and industrial use each accounted for about 32 percent of the total water withdrawn. Other water-use categories included rural domestic, livestock, rice irrigation, general irrigation, and aquaculture. Water-use data collected at 5-year intervals from 1960 to 2010 indicated that water withdrawals in Iberia Parish peaked at about 58.57 Mgal/d in 1975.

  17. Potentiometric Surface, Carbonate-Rock Province, Southern Nevada and Southeastern California, 1998-2000

    DTIC Science & Technology

    2001-01-01

    cooperation with the Nevada Division of Water Resources. The water-level contours displayed are similar to and modeled after work by Winograd and Thordarson ...ing degrees (Winograd and Thordarson , 1975, p. 19). Although many hydrogeologic properties (including transmissivity, storativity, hydraulic... Thordarson , 1975; Waddell and others, 1984; Thomas and others, 1986, 1996; Laczniak and others, 1996), and are sup- ported only by current water-level

  18. Comparison of solid-phase and pore-water approaches for assessing the quality of marine and estuarine sediments

    USGS Publications Warehouse

    Carr, Robert Scott; Chapman, Duane C.

    1992-01-01

    As part of our continuing evaluation of the pore-water approach for assessing sediment quality, we made a series of side-by-side comparisons between the standard 10-day amphipod whole sediment test with the corophiid Grandidierella japonica and a suite of tests using pore water extracted from the same sediments. the pore-water tests evaluated were the sea urchin (Arbacia punctulata) sperm cell test and morphological development assay, the life-cycle test with the polychaete Dinophilus gyrociliatus, and acute exposures of red drum (Sciaenops ocellatus) embryo-larval stages. Sediment and surface microlayer samples were collected from contaminated sites. Whole-sediment, pore-water, and surface microlayer toxicity tests were performed. Pore-water toxicity tests were considerably more sensitive than the whole-sediment amphipod test, which is currently the most sensitive toxicity test now recommended for determining the acceptability of dredged material for open ocean disposal.

  19. Overpumping leads to California groundwater arsenic threat.

    PubMed

    Smith, Ryan; Knight, Rosemary; Fendorf, Scott

    2018-06-05

    Water resources are being challenged to meet domestic, agricultural, and industrial needs. To complement finite surface water supplies that are being stressed by changes in precipitation and increased demand, groundwater is increasingly being used. Sustaining groundwater use requires considering both water quantity and quality. A unique challenge for groundwater use, as compared with surface water, is the presence of naturally occurring contaminants within aquifer sediments, which can enter the water supply. Here we find that recent groundwater pumping, observed through land subsidence, results in an increase in aquifer arsenic concentrations in the San Joaquin Valley of California. By comparison, historic groundwater pumping shows no link to current groundwater arsenic concentrations. Our results support the premise that arsenic can reside within pore water of clay strata within aquifers and is released due to overpumping. We provide a quantitative model for using subsidence as an indicator of arsenic concentrations correlated with groundwater pumping.

  20. Improved measurements of mean sea surface velocity in the Nordic Seas from synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Wergeland Hansen, Morten; Johnsen, Harald; Engen, Geir; Øie Nilsen, Jan Even

    2017-04-01

    The warm and saline surface Atlantic Water (AW) flowing into the Nordic Seas across the Greenland-Scotland ridge transports heat into the Arctic, maintaining the ice-free oceans and regulating sea-ice extent. The AW influences the region's relatively mild climate and is the northern branch of the global thermohaline overturning circulation. Heat loss in the Norwegian Sea is key for both heat transport and deep water formation. In general, the ocean currents in the Nordic Seas and the North Atlantic Ocean is a complex system of topographically steered barotropic and baroclinic currents of which the wind stress and its variability is a driver of major importance. The synthetic aperture radar (SAR) Doppler centroid shift has been demonstrated to contain geophysical information about sea surface wind, waves and current at an accuracy of 5 Hz and pixel spacing of 3.5 - 9 × 8 km2. This corresponds to a horizontal surface velocity of about 20 cm/s at 35° incidence angle. The ESA Prodex ISAR project aims to implement new and improved SAR Doppler shift processing routines to enable reprocessing of the wide swath acquisitions available from the Envisat ASAR archive (2002-2012) at higher resolution and better accuracy than previously obtained, allowing combined use with Sentinel-1 and Radarsat-2 retrievals to build timeseries of the sea surface velocity in the Nordic Seas. Estimation of the geophysical Doppler shift from new SAR Doppler centroid shift retrievals will be demonstrated, addressing key issues relating to geometric (satellite orbit and attitude) and electronic (antenna mis-pointing) contributions and corrections. Geophysical Doppler shift retrievals from one month of data in January 2010 and the inverted surface velocity in the Nordic Seas are then addressed and compared to other direct and indirect estimates of the upper ocean current, in particular those obtained in the ESA GlobCurrent project.

  1. An Improved Algorithm for Retrieving Surface Downwelling Longwave Radiation from Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Yaping; Kratz, David P.; Wilber, Anne C.; Gupta, Shashi K.; Cess, Robert D.

    2007-01-01

    Zhou and Cess [2001] developed an algorithm for retrieving surface downwelling longwave radiation (SDLW) based upon detailed studies using radiative transfer model calculations and surface radiometric measurements. Their algorithm linked clear sky SDLW with surface upwelling longwave flux and column precipitable water vapor. For cloudy sky cases, they used cloud liquid water path as an additional parameter to account for the effects of clouds. Despite the simplicity of their algorithm, it performed very well for most geographical regions except for those regions where the atmospheric conditions near the surface tend to be extremely cold and dry. Systematic errors were also found for scenes that were covered with ice clouds. An improved version of the algorithm prevents the large errors in the SDLW at low water vapor amounts by taking into account that under such conditions the SDLW and water vapor amount are nearly linear in their relationship. The new algorithm also utilizes cloud fraction and cloud liquid and ice water paths available from the Cloud and the Earth's Radiant Energy System (CERES) single scanner footprint (SSF) product to separately compute the clear and cloudy portions of the fluxes. The new algorithm has been validated against surface measurements at 29 stations around the globe for Terra and Aqua satellites. The results show significant improvement over the original version. The revised Zhou-Cess algorithm is also slightly better or comparable to more sophisticated algorithms currently implemented in the CERES processing and will be incorporated as one of the CERES empirical surface radiation algorithms.

  2. Using surface displacement derived from GRACE to constrain the water loading signal in cGPS measurements in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Jose, L.; Bennett, R. A.; Harig, C.

    2017-12-01

    Currently, cGPS data is well suited to track vertical changes in the Earth's surface. However, there are annual, semi-annual, and interannual signals within cGPS time series that are not well constrained. We hypothesize that these signals are primarily due to water loading. If this is the case, the conventional method of modeling cGPS data as an annual or semiannual sinusoid falls short, as such models cannot accurately capture all variations in surface displacement, especially those due to extreme hydrologic events. We believe that we can better correct the cGPS time series with another method we are developing wherein we use a time series of surface displacement derived from the GRACE geopotential field instead of a sinusoidal model to correct the data. Currently, our analysis is constrained to the Amazon Basin, where the signal due to water loading is large enough to appear in both the GRACE and cGPS measurements. The vertical signal from cGPS stations across the Amazon Basin show an apparent spatial correlation, which further supports our idea that these signals are due to a regional water loading signal. In our preliminary research, we used tsview for Matlab to find that the WRMS of the corrected cGPS time series can be reduced as much as 30% from the model corrected data to the GRACE corrected data. The Amazon, like many places around the world, has experienced extreme drought, in 2005, 2010, and recently in 2015. In addition to making the cGPS vertical signal more robust, the method we are developing has the potential to help us understand the effects of these weather events and track trends in water loading.

  3. The Martian paleoclimate and enhanced atmospheric carbon dioxide

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Owen, T.; Ramanathan, V.

    1980-01-01

    Current evidence indicates that the Martian surface is abundant with water presently in the form of ice, while the atmosphere was at one time more massive with a past surface pressure of as much as 1 atm of CO2. In an attempt to understand the Martian paleoclimate, a past CO2-H2O greenhouse was modeled and global temperatures which are consistent with an earlier presence of liquid surface water are found in agreement with the extensive evidence for past fluvial erosion. An important aspect of the CO2-H2O greenhouse model is the detailed inclusion of CO2 hot bands. For a surface pressure of 1 atm of CO2, the present greenhouse model predicts a global mean surface temperature of 294 K, but if the hot bands are excluded, a surface temperature of only 250 K is achieved.

  4. Geological evidence for solid-state convection in Europa's ice shell.

    PubMed

    Pappalardo, R T; Head, J W; Greeley, R; Sullivan, R J; Pilcher, C; Schubert, G; Moore, W B; Carr, M H; Moore, J M; Belton, M J; Goldsby, D L

    1998-01-22

    The ice-rich surface of the jovian satellite Europa is sparsely cratered, suggesting that this moon might be geologically active today. Moreover, models of the satellite's interior indicate that tidal interactions with Jupiter might produce enough heat to maintain a subsurface liquid water layer. But the mechanisms of interior heat loss and resurfacing are currently unclear, as is the question of whether Europa has (or had at one time) a liquid water ocean. Here we report on the morphology and geological interpretation of distinct surface features-pits, domes and spots-discovered in high-resolution images of Europa obtained by the Galileo spacecraft. The features are interpreted as the surface manifestation of diapirs, relatively warm localized ice masses that have risen buoyantly through the subsurface. We find that the formation of the features can be explained by thermally induced solid-state convection within an ice shell, possibly overlying a liquid water layer. Our results are consistent with the possibility that Europa has a liquid water ocean beneath a surface layer of ice, but further tests and observations are needed to demonstrate this conclusively.

  5. Geological evidence for solid-state convection in Europa's ice shell

    USGS Publications Warehouse

    Pappalardo, R.T.; Head, J.W.; Greeley, R.; Sullivan, R.J.; Pilcher, C.; Schubert, G.; Moore, W.B.; Carr, M.H.; Moore, Johnnie N.; Belton, M.J.S.; Goldsby, D.L.

    1998-01-01

    The ice-rich surface of the jovian satellite Europa is sparsely cratered, suggesting that this moon might be geologically active today. Moreover, models of the satellite's interior indicate that tidal interactions with Jupiter might produce enough heat to maintain a subsurface liquid water layer. But the mechanisms of interior heat loss and resurfacing are currently unclear, as is the question of whether Europa has (or had at one time) a liquid water ocean. Here we report on the morphology and geological interpretation of distinct surface features-pits, domes and spots-discovered in high-resolution images of Europa obtained by the Galileo spacecraft. The features are interpreted as the surface manifestation of diapirs, relatively warm localized ice masses that have risen buoyantly through the subsurface. We find that the formation of the features can be explained by thermally induced solid-state convection within an ice shell, possibly overlying a liquid water layer. Our results are consistent with the possibility that Europa has a liquid water ocean beneath a surface layer of ice, but further tests and observations are needed to demonstrate this conclusively.

  6. Characteristics of inertial currents observed in offshore wave records

    NASA Astrophysics Data System (ADS)

    Gemmrich, J.; Garrett, C.

    2012-04-01

    It is well known that ambient currents can change the amplitude, direction and frequency of ocean surface waves. Regions with persistent strong currents, such as the Agulhas current off the east coast of South Africa, are known as areas of extreme waves, and wave height modulations of up to 50% observed in the shallow North Sea have been linked to tidal currents. In the open ocean, inertial currents, while intermittent, are typically the most energetic currents with speeds up to 0.5 m/s, and can interact with the surface wave field to create wave modulation, though this has not previously been reported. We use long records of significant wave heights from buoy observations in the northeast Pacific and show evidence of significant modulation at frequencies that are slightly higher than the local inertial frequency. Quite apart from the relevance to surface waves, this result can provide a consistent and independent measurement, over a wide range of latitudes, of the frequency blue-shift, the strength and intermittency of ocean surface inertial currents. Near-inertial waves constitute the most energetic portion of the internal wave band and play a significant role in deep ocean mixing. So far, observational data on near-surface inertial currents has tended to come from short records that do not permit the reliable determination of the frequency blue-shift, though this is an important factor affecting the energy flux from the surface into deeper waters. Long records from routine wave height observations are widely available and could help to shed new light globally on the blue-shift and on the characteristics of inertial currents.

  7. Growth of methanogens on a Mars soil simulant.

    PubMed

    Kral, Timothy A; Bekkum, Curtis R; McKay, Christopher P

    2004-12-01

    Currently, the surface of Mars is probably too cold, too dry, and too oxidizing for life, as we know it, to exist. But the subsurface is another matter. Life forms that might exist below the surface could not obtain their energy from photosynthesis, but rather they would have to utilize chemical energy. Methanogens are one type of microorganism that might be able to survive below the surface of Mars. A potential habitat for existence of methanogens on Mars might be a geothermal source of hydrogen, possibly due to volcanic or hydrothermal activity, or the reaction of basalt and anaerobic water, carbon dioxide, which is abundant in the martian atmosphere, and of course, subsurface liquid water. We report here that certain methanogens can grow on a Mars soil simulant when supplied with carbon dioxide, molecular hydrogen, and varying amounts of water.

  8. Irrigated acreage and other land uses on the Snake River Plain, Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, Gerald F.; Goodell, S.A.

    1986-01-01

    Prompted by the need for a current, accurate, and repeatable delineation of irrigated acreage on the Snake River Plain, the U.S. Geological Survey entered into a cooperative agreement with the Idaho Department of Water Resources Image Analysis Facility and the U.S. Bureau of Reclamation to delineate 1980 land use form Landsat data. Irrigated acreage data were needed as input to groundwater flow models developed by the U.S. Geological Survey in a study of the regional aquifer system underlying the Snake River Plain. Single-date digital multispectral scanner data analyzed to delineate land-use classes. Source of irrigation water (surface water, ground water, and combined) was determined from county maps of 1975 water-related land use, data from previous investigations, and field checking. Surface-water diversions for irrigation on the Snake River Plain began in the 1840's. With the stimulus of Federal aid authorized by the Desert Land Act, Carey Act, and Reclamation Act, irrigated area increased rapidly in the early 1900's. By 1929, 2.2 million acres were irrigated. Ground water became and important source of irrigation water after World War II. In 1980, about 3.1 million acres of the Snake River Plain were irrigate: 2.0 million acres with surface water, 1.0 million with ground water, and 0.1 million with combined surface and ground water. About 5.2 million acres (half of the plain) are undeveloped rangeland, 1.0 million acres (one-tenth) are classified as barren. The remaining land is a mixture of dryland agriculture, water bodies, wetland, forests, and urban areas.

  9. Mars Science with Small Aircraft

    NASA Technical Reports Server (NTRS)

    Calvin, W. M.; Miralles, C.; Clark, B. C.; Wilson, G. R.

    2000-01-01

    The Mars program has articulated a strategy to answer the question "Could Life have arisen on Mars?" by pursuing an in depth understanding of the location, persistence and expression of water in the surface and sub-surface environments. In addition to the need to understand the role of water in climate and climate history, detailed understanding of the surface and interior of the planet is required as well. Return of samples from the Martian surface is expected to provide key answers and site selection to maximize the science gleaned from samples becomes critical. Current and past orbital platforms have revealed a surface and planetary history of surprising complexity. While these remote views significantly advance our understanding of the planet it is clear that detailed regional surveys can both answer specific open questions as well as provide initial reconnaissance for subsequent landed operations.

  10. Gas-solid carbonation as a possible source of carbonates in cold planetary environments

    NASA Astrophysics Data System (ADS)

    Garenne, A.; Montes-Hernandez, G.; Beck, P.; Schmitt, B.; Brissaud, O.; Pommerol, A.

    2013-02-01

    Carbonates are abundant sedimentary minerals at the surface and sub-surface of the Earth and they have been proposed as tracers of liquid water in extraterrestrial environments. Their formation mechanism is since generally associated with aqueous alteration processes. Recently, carbonate minerals have been discovered on Mars' surface by different orbitals or rover missions. In particular, the phoenix mission has measured from 1% to 5% of calcium carbonate (calcite type) within the soil (Smith et al., 2009). These occurrences have been reported in area where the relative humidity is significantly high (Boynton et al., 2009). The small concentration of carbonates suggests an alternative process on mineral grain surfaces (as suggested by Shaheen et al., 2010) than carbonation in aqueous conditions. Such an observation could rather point toward a possible formation mechanism by dust-gas reaction under current Martian conditions. To understand the mechanism of carbonate formation under conditions relevant to current Martian atmosphere and surface, we designed an experimental setup consisting of an infrared microscope coupled to a cryogenic reaction cell (IR-CryoCell setup). Three different mineral precursors of carbonates (Ca and Mg hydroxides, and a hydrated Ca silicate formed from Ca2SiO4), low temperature (from -10 to +30 °C), and reduced CO2 pressure (from 100 to 2000 mbar) were utilized to investigate the mechanism of gas-solid carbonation at mineral surfaces. These mineral materials are crucial precursors to form Ca and Mg carbonates in humid environments (0%

  11. Near-field Oblique Remote Sensing of Stream Water-surface Elevation, Slope, and Surface Velocity

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Kinzel, P. J.; Nelson, J. M.; McDonald, R.; Wright, S. A.

    2014-12-01

    A major challenge for estimating discharges during flood events or in steep channels is the difficulty and hazard inherent in obtaining in-stream measurements. One possible solution is to use near-field remote sensing to obtain simultaneous water-surface elevations, slope, and surface velocities. In this test case, we utilized Terrestrial Laser Scanning (TLS) to remotely measure water-surface elevations and slope in combination with surface velocities estimated from particle image velocimetry (PIV) obtained by video-camera and/or infrared camera. We tested this method at several sites in New Mexico and Colorado using independent validation data consisting of in-channel measurements from survey-grade GPS and Acoustic Doppler Current Profiler (ADCP) instruments. Preliminary results indicate that for relatively turbid or steep streams, TLS collects tens of thousands of water-surface elevations and slopes in minutes, much faster than conventional means and at relatively high precision, at least as good as continuous survey-grade GPS measurements. Estimated surface velocities from this technique are within 15% of measured velocity magnitudes and within 10 degrees from the measured velocity direction (using extrapolation from the shallowest bin of the ADCP measurements). Accurately aligning the PIV results into Cartesian coordinates appears to be one of the main sources of error, primarily due to the sensitivity at these shallow oblique look angles and the low numbers of stationary objects for rectification. Combining remotely-sensed water-surface elevations, slope, and surface velocities produces simultaneous velocity measurements from a large number of locations in the channel and is more spatially extensive than traditional velocity measurements. These factors make this technique useful for improving estimates of flow measurements during flood flows and in steep channels while also decreasing the difficulty and hazard associated with making measurements in these conditions.

  12. The water masses and volumetry of the southern Agulhas Current region

    NASA Astrophysics Data System (ADS)

    Valentine, H. R.; Lutjeharms, J. R. E.; Brundrit, G. B.

    1993-06-01

    It has been suggested that the southern termination of the Agulhas Current plays a crucial role in the global circulation of thermocline water and thus in global climate. Due to a lack of modern hydrographic observations in this region, no detailed description of water masses or a fine-scale volumetric census for this geographic area had been carried out. Such an analysis of a collection of recent high-quality hydrographic measurements shows that the warm, saline, surface water of Agulhas Current origin contributes very little to the overall volume of the upper 1500 m of the water column in the area. Occasional equatorward leakages from south of the Subtropical Convergence are represented by a range of low-salinity outliers, but they represent <1% of the total volume. The distribution of water volume in temperature/salinity space for the Agulhas Retroflection is less diverse that that of the world ocean as a whole, 25% of the total volume of the region being contained in only 21 fine-scale temperature/salinity classes. North Atlantic Deep Water is the dominant water mass, accounting for 40% of the total volume. Deep Water in general accounts for 60% of the total volume.

  13. Fabrication of durable copper plating superhydrophobic surface with improved corrosion resistance and oil-water separation properties

    NASA Astrophysics Data System (ADS)

    Zhao, Yichao; Xiao, Xinyan; Ye, Zhihao; Ji, Qiang; Xie, Wei

    2018-02-01

    A mechanical durable superhydrophobic copper-plated stainless steel mesh was successfully fabricated by an electrodeposition process and 1-octadecanethiol modification. The as-prepared superhydrophobic mesh displays water contact angle of 153° and shows excellent anti-corrosion and water-oil separation properties in the condition of 0.1 A/cm2 current density for 35 s. In comparison with bare stainless steel mesh, the corrosion current of the as-prepared superhydrophobic mesh is close to 1/6 of the former. Meanwhile, the as-prepared superhydrophobic mesh could continuously separate oil from oil-water mixtures. The separation efficiency of continuous separation is as high as 96% and shows less than 1% decrease after ten cycles.

  14. Effect of various electrokinetic treatment regimes on solids surface properties and thermal behavior of oil sediments.

    PubMed

    Kariminezhad, Esmaeel; Elektorowicz, Maria

    2018-04-10

    The electrokinetic process has shown its ability to separate the different material phases. However, not much is known about the effect of the electric fields on the surface properties of solids in the oil sediments and their behavior under different electrical regimes. In this study, the effect of four different types of electrical current on the surface properties of oil sediments was investigated, namely constant direct current (CDC), pulsed direct current (PDC), incremental direct current (IDC) and decremental direct current (DDC). X-ray photoelectron spectroscopy (XPS) analyses showed a decrease in the concentration of carbon from 99% in centrifuged samples to 63% on the surface of the solids in the PDC-treated oil sediment. Wettability alteration and contact angle studies showed an enhance in hydrophilicity of the solids following electrokinetic treatment. A significant change in carbon and oxygen-containing functionalities at the surface solids of the DDC-treated sediment was also observed. Thermogravimetric analyses (TGA) confirmed the ability of electrokinetic treatment in separating the phases by shifting the thermogram profiles towards lower temperatures. The findings showed that the electrokinetic process exerts its effect by altering the surface properties of the sediment solids and destabilizing water-in-oil emulsions to facilitate phase separation of this complex waste. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Water resources of Tangipahoa Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2016-07-25

    Information concerning the availability, use, and quality of water in Tangipahoa Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  16. Water resources of St. Helena Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2016-07-27

    Information concerning the availability, use, and quality of water in St. Helena Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  17. Water resources of Livingston Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2016-07-27

    Information concerning the availability, use, and quality of water in Livingston Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  18. Water resources of East Feliciana Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2017-01-12

    Information concerning the availability, use, and quality of water in East Feliciana Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information is presented on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  19. Water resources of Orleans Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.; Lovelace, John K.

    2014-01-01

    Information concerning the availability, use, and quality of water in Orleans Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  20. Water resources of Caldwell Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.

    2014-01-01

    Information concerning the availability, use, and quality of water in Caldwell Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  1. Water resources of St. James Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2015-01-01

    Information concerning the availability, use, and quality of water in St. James Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  2. Water resources of Vermilion Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.

    2014-01-01

    Information concerning the availability, use, and quality of water in Vermilion Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  3. Water resources of St. Mary Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.; Lovelace, John K.

    2014-01-01

    Information concerning the availability, use, and quality of water in St. Mary Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for management of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  4. Water resources of De Soto Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.

    2014-01-01

    Information concerning the availability, use, and quality of water in De Soto Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata. usgs.gov/nwis) are the primary sources of the information presented here.

  5. Water resources of Jefferson Davis Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2014-01-01

    Information concerning the availability, use, and quality of water in Jefferson Davis Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  6. Water resources of St. Charles Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2015-01-01

    Information concerning the availability, use, and quality of water in St. Charles Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  7. Water resources of Terrebonne Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; Lovelace, John K.; White, Vincent E.

    2014-01-01

    Information concerning the availability, use, and quality of water in Terrebonne Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends,and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System http://waterdata.usgs.gov/nwis are the primary sources of the information presented here.

  8. Water resources of Acadia Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Larry B.; White, Vincent E.

    2014-01-01

    Information concerning the availability, use, and quality of water in Acadia Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  9. Water resources of La Salle Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2015-01-01

    Information concerning the availability, use, and quality of water in La Salle Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  10. Water resources of Sabine Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.; Lovelace, John K.

    2014-01-01

    Information concerning the availability, use, and quality of water in Sabine Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s (USGS) National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  11. Water resources of West Feliciana Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; Lovelace, John K.; Tomaszewski, Dan J.; Griffith, Jason M.

    2014-01-01

    Information concerning the availability, use, and quality of water in West Feliciana Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is discussed. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  12. Emerging organic contaminants in surface water and groundwater: a first overview of the situation in Italy.

    PubMed

    Meffe, Raffaella; de Bustamante, Irene

    2014-05-15

    This paper provides the first review of the occurrence of 161 emerging organic compounds (EOCs) in Italian surface water and groundwater. The reported EOCs belong to the groups of industrials, pharmaceuticals, estrogens and illicit drugs. Occurrence of 137 pesticides was also reported. The reviewed research works have been published between 1997 and 2013. The majority of the studies have been carried out in Northern Italy (n. 30) and to a lower extent in Central Italy (n. 13). Only a limited number of research studies report EOC concentrations in water resources of Southern Italy. The EOCs that have been more frequently studied are in the following descending order, pesticides (16), pharmaceuticals (15), industrials (13), estrogens (7) and illicit drugs (2). Research activities investigating the EOC occurrence in surface water are more numerous than those in groundwater. This is consistent with the higher complexity involved in groundwater sampling and EOC detection. Among the reported EOCs, industrials and pesticides are those occurring in both surface water and groundwater with the highest concentrations (up to 15 × 10(6) and 4.78 × 0(5)ng L(-1), respectively). Concentrations of pharmaceuticals in surface water reach a maximum of 3.59 × 10(3)ng L(-1), whereas only the antimicrobial agent josamycin has been encountered in groundwater with a concentration higher than 100 ng L(-1). Both estrogens and illicit drugs appeared in surface water with concentrations lower than 50 ng L(-1). Groundwater concentrations for estrogens were measured to be below the detection limits, whereas illicit drugs have so far not been studied in groundwater. The present review reveals the serious contamination status of Italian surface water and groundwater especially by pesticides, industrials and to a lower extent by pharmaceuticals and the necessity to foster the research on EOC occurrence in Italian water resources, in particular in Southern Italy where a limited number of investigations currently exist. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Water resources of Concordia Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.

    2017-02-24

    IntroductionInformation concerning the availability, use, and quality of water in Concordia Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System are the primary sources of the information presented here.In 2010, over 50 million gallons per day (Mgal/d) of water were withdrawn in Concordia Parish, including about 28.7 Mgal/d from groundwater sources and 22.3 Mgal/d from surface-water sources. Withdrawals for agricultural use, composed of livestock, rice irrigation, general irrigation, and aquaculture accounted for about 77 percent (39.2 Mgal/d) of the total water withdrawn. Other categories of use included public supply, power generation, and rural domestic. Water-use data collected at 5-year intervals from 1960 to 2010 indicated that water withdrawals peaked in 2010.

  14. Observational Constraints on the Water Vapor Feedback Using GPS Radio Occultations

    NASA Astrophysics Data System (ADS)

    Vergados, P.; Mannucci, A. J.; Ao, C. O.; Fetzer, E. J.

    2016-12-01

    The air refractive index at L-band frequencies depends on the air's density and water vapor content. Exploiting these relationships, we derive a theoretical model to infer the specific humidity response to surface temperature variations, dq/dTs, given knowledge of how the air refractive index and temperature vary with surface temperature. We validate this model using 1.2-1.6 GHz Global Positioning System Radio Occultation (GPS RO) observations from 2007 to 2010 at 250 hPa, where the water vapor feedback on surface warming is strongest. Current research indicates that GPS RO data sets can capture the amount of water vapor in very dry and very moist air more efficiently than other observing platforms, possibly suggesting larger water vapor feedback than previously known. Inter-comparing the dq/dTs among different data sets will provide us with additional constraints on the water vapor feedback. The dq/dTs estimation from GPS RO observations shows excellent agreement with previously published results and the responses estimated using Atmospheric Infrared Sounder (AIRS) and NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) data sets. In particular, the GPS RO-derived dq/dTs is larger by 6% than that estimated using the AIRS data set. This agrees with past evidence that AIRS may be dry-biased in the upper troposphere. Compared to the MERRA estimations, the GPS RO-derived dq/dTs is 10% smaller, also agreeing with previous results that show that MERRA may have a wet bias in the upper troposphere. Because of their high sensitivity to fractional changes in water vapor, and their inherent long-term accuracy, current and future GPS RO observations show great promise in monitoring climate feedbacks and their trends.

  15. Innovative High-Accuracy Lidar Bathymetric Technique for the Frequent Measurement of River Systems

    NASA Astrophysics Data System (ADS)

    Gisler, A.; Crowley, G.; Thayer, J. P.; Thompson, G. S.; Barton-Grimley, R. A.

    2015-12-01

    Lidar (light detection and ranging) provides absolute depth and topographic mapping capability compared to other remote sensing methods, which is useful for mapping rapidly changing environments such as riverine systems. Effectiveness of current lidar bathymetric systems is limited by the difficulty in unambiguously identifying backscattered lidar signals from the water surface versus the bottom, limiting their depth resolution to 0.3-0.5 m. Additionally these are large, bulky systems that are constrained to expensive aircraft-mounted platforms and use waveform-processing techniques requiring substantial computation time. These restrictions are prohibitive for many potential users. A novel lidar device has been developed that allows for non-contact measurements of water depth down to 1 cm with an accuracy and precision of < 1 cm by exploiting the polarization properties of the light-surface interaction. This system can transition seamlessly from ranging over land to shallow to deep water allowing for shoreline charting, measuring water volume, mapping bottom topology, and identifying submerged objects. The scalability of the technique opens up the ability for handheld or UAS-mounted lidar bathymetric systems, which provides for potential applications currently unavailable to the community. The high laser pulse repetition rate allows for very fine horizontal resolution while the photon-counting technique permits real-time depth measurement and object detection. The enhanced measurement capability, portability, scalability, and relatively low-cost creates the opportunity to perform frequent high-accuracy monitoring and measuring of aquatic environments which is crucial for understanding how rivers evolve over many timescales. Results from recent campaigns measuring water depth in flowing creeks and murky ponds will be presented which demonstrate that the method is not limited by rough water surfaces and can map underwater topology through moderately turbid water.

  16. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    NASA Astrophysics Data System (ADS)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or calculated deliveries. IWFM utilizes a very straight-forward input file structure, allowing rapid development of complex simulations. A key feature of IWFM is a new algorithm for computation of groundwater flow across element faces. Enhancements to version 3.0 include automatic time-tracking of input and output data sets, linkage with the HEC-DSS database, and dynamic crop allocation using logit functions. Utilities linking IWFM to the PEST automated calibration suite are also available. All source code, executables and documentation are available for download from the DWR web site. IWFM is currently being used to develop hydrologic simulations of California's Central Valley (C2VSIM); the west side of California's San Joaquin Valley (WESTSIM); Butte County, CA; Solano County, CA; Merced County, CA; and the Oregon side of the Walla Walla River Basin.

  17. Analysis the temporal and spatial impact of water harvesting on Aforestation processes, at the Northen Negev region, Israel

    NASA Astrophysics Data System (ADS)

    Argaman, E.; Egozi, R.; Goldshlager, N.

    2012-04-01

    Water availability in arid regions is a major limiting factor, which affect plant development. Therefore, knowledge about preliminary and ongoing spatial & temporal conditions (e.g. land surface properties, hydrological regime and vegetation dynamics) can improve greatly afforestation practice. The Ambassadors forest is one of the Jewish National Fund (JNF) new afforestation projects (initiated on 2005), which rely on water harvesting irrigation systems, located at the northern Negev region, Israel. Temporal and spatial processes are studied utilizing ground, air-borne and space-borne techniques for assessment of surface processes, that take place due to significant land-use change. Since 2005 the area shows significant variation of surface energy balance components which impact the spatial and temporal forest generation. Both human and climate affect these parameters, hence their influence is essential for future study of the region. Parameters of surface Albedo & Temperature and Vegetation dynamics are gathered by space-borne sensors (e.g. MODIS, Landsat & ALI) and verified at field scale in conjunction with ground-truth measurements of climate and soil properties. In addition, the project study various scenarios that might result from diverse climate trajectories that impact soil formation factors and therefore forest development. Preliminary results show that surface physical & ecoligical properties had changed significantly since the aforestation project began, comparing previous years. Sharp increase of surface albedo detected since 2005 that raised from 0.25 to 0.32, while vegetation density, estimated from NDVI, had dropped from annaul average of 0.21 down to 0.13 during 10-year time period. These changes are related to human interferance. The current paper presents the first phase of the long-term study of the Remote Sensing analysis and the current surface monitoring phase.

  18. Water Resources Data, New Jersey, Water Year 2005Volume 3 - Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Heckathorn, Heather A.; Lewis, Jason M.; Gray, Bonnie J.; Feinson, Lawrence S.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2005 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 118 continuing-record surface-water stations, 30 ground-water sites, records of daily statistics of temperature and other physical measurements from 9 continuous-recording stations, and 5 special studies that included 89 stream, 11 lake, and 29 ground-water sites. Locations of water-quality stations are shown in figures 23-25. Locations of special-study sites are shown in figures 41-46. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  19. High Frequency Radar Observations of Tidal Current Variability in the Lower Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Updyke, T. G.; Dusek, G.; Atkinson, L. P.

    2016-02-01

    Analysis of eight years of high frequency radar surface current observations in the lower Chesapeake Bay is presented with a focus on the variability of the tidal component of the surface circulation which accounts for a majority of the variance of the surface flow (typically 70-80% for the middle of the radar footprint). Variations in amplitude and phase of the major tidal constituents are examined in the context of water level, wind and river discharge data. Comparisons are made with harmonic analysis results from long-term records of current data measured by three current profilers operated by NOAA as part of the Chesapeake Bay Physical Oceanographic Real-Time System (PORTS). Preliminary results indicate that there is significant spatial variability in the M2 amplitude over the HF radar grid as well as temporal variability when harmonic analysis is performed using bi-monthly time segments over the course of the record.

  20. Earth observations taken during STS-83 mission

    NASA Image and Video Library

    2016-08-12

    STS083-747-026 (4-8 April 1997) --- Aswan Dam and Lake Nasser along the Nile River, Egypt. The Aswan Dam controls the flow of the Nile River forming Lake Nasser. Lake Nasser is reaching relatively high water levels due to the plentiful rains since December 1996 in Kenya, near the headwaters of the Nile river. The light colored areas in the Lake are where the sun is reflecting off the surface of the water. These areas are fairly calm and not disturbed by wind gusts enabling the sunglint to show water current patterns on the surface. The Aswan runway is seen as a dark set of lines west of the Aswan Dam.

  1. Combined Effect of Reduced Band Number and Increased Bandwidth on Shallow Water Remote Sensing: The Case of WorldView 2

    DTIC Science & Technology

    2013-05-01

    shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...functions ( BRDF ) were compared with measurements made just beneath the water’s surface. In Case I water, the set of simulations that varied the particle...scattering phase function depending on chlorophyll concentration agreed more closely with the data than other models . In Case II water, however, the

  2. Accurate Modelling of Surface Currents and Internal Tides in a Semi-enclosed Coastal Sea

    NASA Astrophysics Data System (ADS)

    Allen, S. E.; Soontiens, N. K.; Dunn, M. B. H.; Liu, J.; Olson, E.; Halverson, M. J.; Pawlowicz, R.

    2016-02-01

    The Strait of Georgia is a deep (400 m), strongly stratified, semi-enclosed coastal sea on the west coast of North America. We have configured a baroclinic model of the Strait of Georgia and surrounding coastal waters using the NEMO ocean community model. We run daily nowcasts and forecasts and publish our sea-surface results (including storm surge warnings) to the web (salishsea.eos.ubc.ca/storm-surge). Tides in the Strait of Georgia are mixed and large. The baroclinic model and previous barotropic models accurately represent tidal sea-level variations and depth mean currents. The baroclinic model reproduces accurately the diurnal but not the semi-diurnal baroclinic tidal currents. In the Southern Strait of Georgia, strong internal tidal currents at the semi-diurnal frequency are observed. Strong semi-diurnal tides are also produced in the model, but are almost 180 degrees out of phase with the observations. In the model, in the surface, the barotropic and baroclinic tides reinforce, whereas the observations show that at the surface the baroclinic tides oppose the barotropic. As such the surface currents are very poorly modelled. Here we will present evidence of the internal tidal field from observations. We will discuss the generation regions of the tides, the necessary modifications to the model required to correct the phase, the resulting baroclinic tides and the improvements in the surface currents.

  3. Diviner lunar radiometer observations of cold traps in the moon's south polar region

    USGS Publications Warehouse

    Paige, D.A.; Siegler, M.A.; Zhang, J.A.; Hayne, P.O.; Foote, E.J.; Bennett, K.A.; Vasavada, A.R.; Greenhagen, B.T.; Schofield, J.T.; McCleese, D.J.; Foote, M.C.; DeJong, E.; Bills, B.G.; Hartford, W.; Murray, B.C.; Allen, C.C.; Snook, K.; Soderblom, L.A.; Calcutt, S.; Taylor, F.W.; Bowles, N.E.; Bandfield, J.L.; Elphic, R.; Ghent, R.; Glotch, T.D.; Wyatt, M.B.; Lucey, P.G.

    2010-01-01

    Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies.

  4. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting.

    PubMed

    Varadhan, Purushothaman; Fu, Hui-Chun; Priante, Davide; Retamal, Jose Ramon Duran; Zhao, Chao; Ebaid, Mohamed; Ng, Tien Khee; Ajia, Idirs; Mitra, Somak; Roqan, Iman S; Ooi, Boon S; He, Jr-Hau

    2017-03-08

    Hydrogen production via photoelectrochemical water-splitting is a key source of clean and sustainable energy. The use of one-dimensional nanostructures as photoelectrodes is desirable for photoelectrochemical water-splitting applications due to the ultralarge surface areas, lateral carrier extraction schemes, and superior light-harvesting capabilities. However, the unavoidable surface states of nanostructured materials create additional charge carrier trapping centers and energy barriers at the semiconductor-electrolyte interface, which severely reduce the solar-to-hydrogen conversion efficiency. In this work, we address the issue of surface states in GaN nanowire photoelectrodes by employing a simple and low-cost surface treatment method, which utilizes an organic thiol compound (i.e., 1,2-ethanedithiol). The surface-treated photocathode showed an enhanced photocurrent density of -31 mA/cm 2 at -0.2 V versus RHE with an incident photon-to-current conversion efficiency of 18.3%, whereas untreated nanowires yielded only 8.1% efficiency. Furthermore, the surface passivation provides enhanced photoelectrochemical stability as surface-treated nanowires retained ∼80% of their initial photocurrent value and produced 8000 μmol of gas molecules over 55 h at acidic conditions (pH ∼ 0), whereas the untreated nanowires demonstrated only <4 h of photoelectrochemical stability. These findings shed new light on the importance of surface passivation of nanostructured photoelectrodes for photoelectrochemical applications.

  5. The SeaFlux Turbulent Flux Dataset Version 1.0 Documentation

    NASA Technical Reports Server (NTRS)

    Clayson, Carol Anne; Roberts, J. Brent; Bogdanoff, Alec S.

    2012-01-01

    Under the auspices of the World Climate Research Programme (WCRP) Global Energy and Water cycle EXperiment (GEWEX) Data and Assessment Panel (GDAP), the SeaFlux Project was created to investigate producing a high-resolution satellite-based dataset of surface turbulent fluxes over the global oceans. The most current release of the SeaFlux product is Version 1.0; this represents the initial release of turbulent surface heat fluxes, associated near-surface variables including a diurnally varying sea surface temperature.

  6. Visible and Thermal Imaging of Sea Ice and Open Water from Coast Guard Arctic Domain Awareness Flights

    DTIC Science & Technology

    2014-09-30

    dropsondes, micro- aircraft), cloud top/base heights Arctic Ocean Surface Temperature project Steele Buoy drops for SLP , SST, SSS, & surface velocity...Colón & Vancas (NIC) Drop buoys for SLP , temperature and surface velocity Waves & Fetch in the MIZ Thompson SWIFTS buoys measuring wave energy...Expendable CTD, AXCP= Air Expendable Current Profiler, SLP = Sea Level atmospheric Pressure, SST= Seas Surface Temperature, A/C= aircraft, FSD= Floe Size Distribution, SIC=Sea Ice Concentration

  7. Passive water flows driven across the isolated rabbit ileum by osmotic, hydrostatic and electrical gradients.

    PubMed Central

    Naftalin, R J; Tripathi, S

    1985-01-01

    Water flows generated by osmotic and hydrostatic pressure and electrical currents were measured in sheets of isolated rabbit ileum at 20 degrees C. Flows across the mucosal and serosal surfaces were monitored continuously by simultaneous measurement of tissue volume change (with an optical lever) and net water flows across one surface of the tissue (with a capacitance transducer). Osmotic gradients were imposed across the mucosal and serosal surfaces of the tissue separately, using probe molecules of various sizes from ethanediol (68 Da) to dextrans (161 000 Da). Flows across each surface were elicited with very short delay. The magnitudes of the flows were proportional to the osmotic gradient and related to the size of the probe molecule. Osmotic flow across the mucosal surface was associated with streaming potentials which were due to electro-osmotic water flow. The mucosal surface is a heteroporous barrier with narrow (0.7 nm radius, Lp (hydraulic conductivity) = (7.6 +/- 1.6) X 10(-9) cm s-1 cmH2O-1) cation-selective channels in parallel with wide neutral pores (ca. 6.5 nm radius, Lp = (2.3 +/- 0.2) X 10(-7) cm s-1 cmH2O-1) which admit large pressure-driven backflows from the submucosa to the lumen. There is additional evidence for a further set of narrow electroneutral pores less than 0.4 nm radius with Lp less than 7 X 10(-9) cm s-1 cmH2O-1. The serosal surface has neutral pores of uniform radius (ca. 6.5 nm), Lp = (7.6 +/- 1.6) X 10(-8) cm s-1 cmH2O-1. Hypertonic serosal solutions (100 mM-sucrose) cause osmotic transfer of fluid from isotonic mucosal solutions into the submucosa, expand it, and elevate the tissue pressure to 19.6 +/- 3.2 cmH2O (n = 4). Conversely, hypertonic mucosal solutions (100 mM-sucrose) draw fluid out of the submucosa in the presence of isotonic serosal solutions, collapse the submucosa, and lower the tissue pressure to -87.7 +/- 4.6 cmH2O (n = 5). Water flows coupled to cation movement could be generated across the mucosal surface in both directions by brief direct current pulses. The short latency of onset and cessation of flow (less than 2 s), absence of polarization potentials, and high electro-osmotic coefficients (range 50-520 mol water F-1), together with the presence of streaming potentials during osmotically generated water flows indicate electro-osmotic water flow through hydrated channels in the tight junctions and/or lateral intercellular spaces.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3989717

  8. Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation

    PubMed Central

    Brown, Philip S.; Bhushan, Bharat

    2015-01-01

    Superoleophobic surfaces are of interest for anti-fouling, self-cleaning, anti-smudge, low-drag, anti-fog, and oil-water separation applications. Current bioinspired surfaces are of limited use due to a lack of mechanical durability. A so-called layer-by-layer approach, involving charged species with electrostatic interactions between layers, can provide the flexibility needed to improve adhesion to the substrate while providing a low surface tension coating at the air interface. In this work, a polyelectrolyte binder, SiO2 nanoparticles, and a fluorosurfactant are spray deposited separately to create a durable, superoleophobic coating. Polydiallyldimethylammonium chloride (PDDA) polyelectrolyte was complexed with a fluorosurfactant layer (FL), which provides oil repellency while being hydrophilic. This oleophobic/superhydrophilic behavior was enhanced through the use of roughening with SiO2 particles resulting in a superoleophobic coating with hexadecane contact angles exceeding 155° and tilt angles of less than 4°. The coating is also superhydrophilic, which is desirable for oil-water separation applications. The durability of these coatings was examined through the use of micro- and macrowear experiments. These coatings currently display characteristics of transparency. Fabrication of these coatings via the layer-by-layer technique results in superoleophobic surfaces displaying improved durability compared to existing work where either the durability or the oil-repellency is compromised. PMID:25731716

  9. Density currents in the Chicago River: Characterization, effects on water quality, and potential sources

    USGS Publications Warehouse

    Jackson, P. Ryan; Garcia, Carlos M.; Oberg, Kevin A.; Johnson, Kevin K.; Garcia, Marcelo H.

    2008-01-01

    Bidirectional flows in a river system can occur under stratified flow conditions and in addition to creating significant errors in discharge estimates, the upstream propagating currents are capable of transporting contaminants and affecting water quality. Detailed field observations of bidirectional flows were made in the Chicago River in Chicago, Illinois in the winter of 2005-06. Using multiple acoustic Doppler current profilers simultaneously with a water-quality profiler, the formation of upstream propagating density currents within the Chicago River both as an underflow and an overflow was observed on three occasions. Density differences driving the flow primarily arise from salinity differences between intersecting branches of the Chicago River, whereas water temperature is secondary in the creation of these currents. Deicing salts appear to be the primary source of salinity in the North Branch of the Chicago River, entering the waterway through direct runoff and effluent from a wastewater-treatment plant in a large metropolitan area primarily served by combined sewers. Water-quality assessments of the Chicago River may underestimate (or overestimate) the impairment of the river because standard water-quality monitoring practices do not account for density-driven underflows (or overflows). Chloride concentrations near the riverbed can significantly exceed concentrations at the river surface during underflows indicating that full-depth parameter profiles are necessary for accurate water-quality assessments in urban environments where application of deicing salt is common.

  10. Observations of inner shelf cross-shore surface material transport adjacent to a coastal inlet in the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Roth, Mathias K.; MacMahan, Jamie; Reniers, Ad; Özgökmen, Tamay M.; Woodall, Kate; Haus, Brian

    2017-04-01

    Motivated by the Deepwater Horizon oil spill, the Surfzone and Coastal Oil Pathways Experiment obtained Acoustic Doppler Current Profiler (ADCP) Eulerian and GPS-drifter based Lagrangian "surface" (<1 m) flow observations in the northern Gulf of Mexico to describe the influence of small-scale river plumes on surface material transport pathways in the nearshore. Lagrangian paths are qualitatively similar to surface pathlines derived from non-traditional, near-surface ADCP velocities, but both differ significantly from depth-averaged subsurface pathlines. Near-surface currents are linearly correlated with wind velocities (r =0.76 in the alongshore and r =0.85 in the cross-shore) at the 95% confidence level, and are 4-7 times larger than theoretical estimates of wind and wave-driven surface flow in an un-stratified water column. Differences in near-surface flow are attributed to the presence of a buoyant river plume forced by winds from passing extratropical storms. Plume boundary fronts induce a horizontal velocity gradient where drifters deployed outside of the plume in oceanic water routinely converge, slow, and are re-directed. When the plume flows west parallel to the beach, the seaward plume boundary front acts as a coastal barrier that prevents 100% of oceanic drifters from beaching within 27 km of the inlet. As a result, small-scale, wind-driven river plumes in the northern Gulf of Mexico act as coastal barriers that prevent offshore surface pollution from washing ashore west of river inlets.

  11. Global separation of plant transpiration from groundwater and streamflow

    Treesearch

    Jaivime Evaristo; Scott Jasechko; Jeffrey J. McDonnell

    2015-01-01

    Current land surface models assume that groundwater, streamflow and plant transpiration are all sourced and mediated by the same well mixed water reservoir—the soil. However, recent work in Oregon and Mexico has shown evidence of ecohydrological separation, whereby different subsurface compartmentalized pools of water supply either plant transpiration fluxes or the...

  12. An airborne laser fluorosensor for the detection of oil on water

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Hickman, G. D.

    1973-01-01

    The successful operation of an airborne laser fluorosensor system is reported that makes it possible to detect and map surface oil, either of natural-seepage or spill origin, on large bodies of water. Preliminary results indicate that the sensitivity of the instrument exceeds that of conventional passive remote sensors currently available for oil spill detection.

  13. Author Correction: North Atlantic variability and its links to European climate over the last 3000 years.

    PubMed

    Moffa-Sánchez, Paola; Hall, Ian R

    2018-02-15

    In the original version of this Article, the third sentence of the first paragraph of the "Changes in the input of polar waters into the Labrador Sea" section of the Results originally incorrectly read 'During the spring-summer months, after the winter convection has ceased in the Labrador Sea, its northwest boundary currents (the EGC and IC) support restratification of the surface ocean through lateral transport.' The correct version states 'northeast' instead of 'northwest'. The fifth sentence of the second paragraph of the same section originally incorrectly read "In contrast, in the western section of the Nordic Seas, under the presence of warm Atlantic waters of the Norwegian Current, Nps was found to calcify deeper in the water column (100-200 m), whereas in the east under the influence of the EGC polar waters it calcified closer to the surface at a similar depth as Tq 23 ." The correct version states 'eastern' instead of 'western' and 'west' instead of 'east'.The seventh sentence of the same paragraph originally incorrectly read "Small/large differences in Δδ 18 O Nps-Tq indicating increased/decreased presence of warm and salty Atlantic IC waters vs. polar EGC waters in the upper water column, respectively." The correct version starts 'Large/small' rather than 'Small/large'.These errors have been corrected in both the PDF and HTML versions of the Article.

  14. Coupling the NASA-CASA ecosystem model with a hydrologic routing algorithm for improved water management in Yosemite National Park

    NASA Astrophysics Data System (ADS)

    Teaby, A.; Johnson, E. R.; Griffin, M.; Carrillo, C.; Kannan, T.; Shupe, J. W.; Schmidt, C.

    2013-12-01

    Historic trends reveal extreme precipitation variability within the Yosemite National Park (YNP) geographic region. While California obtains greater than half of its annual water supply from the Sierra Nevada, snowpack, precipitation, and runoff can fluctuate between less than 50% and greater than 200% of climatological averages. Advances in hydrological modeling are crucial to improving water-use efficiency at the local, state, and national levels. The NASA Carnegie Ames Stanford Approach (CASA) is a global simulation model that combines multi-year satellite, climate, and other land surface databases to estimate biosphere-atmosphere exchange of energy, water, and trace gases from plants and soils. By coupling CASA with a Hydrological Routing Algorithm known as HYDRA, it is possible to calculate current water availability and observe hydrological trends within YNP. Satellite-derived inputs such as surface evapotranspiration, temperature, precipitation, land cover, and elevation were included to create a valuable decision support tool for YNP's water resource managers. These results will be of enhanced importance given current efforts to restore 81 miles of the Merced River within the park's boundary. Validations of model results were conducted using in situ stream gage measurements. The model accurately simulated observed streamflow values, achieving a relatively strong Nash-Sutcliffe model efficiency coefficient. This geospatial assessment provides a standardized method which may be repeated in both national and international water-stressed regions.

  15. Detection and variability of the Congo River plume from satellite derived sea surface temperature, salinity, ocean colour and sea level

    NASA Astrophysics Data System (ADS)

    Hopkins, Jo; Lucas, Marc; Dufau, Claire; Sutton, Marion; Lauret, Olivier

    2013-04-01

    The Congo River in Africa has the world's second highest annual mean daily freshwater discharge and is the second largest exporter of terrestrial organic carbon into the oceans. It annually discharges an average of 1,250 × 109 m3 of freshwater into the southeast Atlantic producing a vast fresh water plume, whose signature can be traced hundreds of kilometres from the river mouth. Large river plumes such as this play important roles in the ocean carbon cycle, often functioning as carbon sinks. An understanding of their extent and seasonality is therefore essential if they are to be realistically accounted for in global assessments of the carbon cycle. Despite its size, the variability and dynamics of the Congo plume are minimally documented. In this paper we analyse satellite derived sea surface temperature, salinity, ocean colour and sea level anomaly to describe and quantify the extent, strength and variability of the far-field plume and to explain its behaviour in relation to winds, ocean currents and fresh water discharge. Empirical Orthogonal Function analysis reveals strong seasonal and coastal upwelling signals, potential bimodal seasonality of the Angola Current and responses to fresh water discharge peaks in all data sets. The strongest plume-like signatures however were found in the salinity and ocean colour where the dominant sources of variability come from the Congo River itself, rather than from the wider atmosphere and ocean. These two data sets are then analysed using a statistically based water mass detection technique to isolate the behaviour of the plume. The Congo's close proximity to the equator means that the influence of the earth's rotation on the fresh water inflow is relatively small and the plume tends not to form a distinct coastal current. Instead, its behaviour is determined by wind and surface circulation patterns. The main axis of the plume between November and February, following peak river discharge, is oriented northwest, driven by the wind and Ekman surface currents and possibly a northern branch of the Benguela Coastal Current. From February through to May the main axis swings towards the southwest, extending 750 km from the mouth, coinciding with a westerly shift in the wind direction and an increase in its speed. From June through to August, when discharge is at a minimum and the plumes salinity is highest, the main axis of the plume extends up to 850 km westward, but retreats to 440 km throughout the autumn. Following the end of the coastal upwelling period and an increase in river discharge the plumes salinity starts to rise again and the equatorward fresh water tongue re-establishes itself.

  16. Observational Evidence of Changes in Water Vapor, Clouds, and Radiation at the ARM SGP Site

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Xi, Baike; Minnus, Patrick

    2006-01-01

    Characterizing water vapor and cloud effects on the surface radiation budget is critical for understanding the current climate because water vapor is the most important greenhouse gas in the atmosphere and clouds are one of the largest sources of uncertainty in predicting potential future climate change. Several studies have shown that insolation over land declined until 1990 then increased until the present. Using 8 years of surface data, we observed the increasing trend of insolation from 1997 to 2000, but detected a significant decrease from 2001 to 2004. The variation of cloud fraction mirrors that of insolation with an overall increase of 1 percent per year. Under clear-sky conditions, water vapor changes have a greater impact on longwave flux than on insolation.

  17. A Numerical Study of Currents, Water Surface Elevations, and Energy Dissipation in Chandeleur-Breton Sound, Louisiana.

    DTIC Science & Technology

    1978-02-01

    Numerical methods in the form of a digital computer model were used to simulate and study the tide- and wind-induced circulation in Chandeleur -Breton...entrances through the Chandeleur Island chain, where speed reaches 50-60 cm/sec for short periods. Surface elevations were found to have an average tide range

  18. Changes in the lower boundary condition of water fluxes in the NOAH land surface scheme

    NASA Astrophysics Data System (ADS)

    Lohmann, D.; Peters-Lidard, C. D.

    2002-05-01

    One problem with current land surface schemes (LSS) used in weather prediction and climate models is their inabilty to reproduce streamflow in large river basins. This can be attributed to the weak representation of their upper (infiltration) and lower (baseflow) boundary conditions in their water balance / transport equations. Operational (traditional) hydrological models, which operate on the same spatial scale as a LSS, on the other hand, are able to reproduce streamflow time series. Their infiltration and baseflow equations are often empirically based and therefore have been neglected by the LSS community. It must be argued that we need to include a better representation of long time scales (as represented by groundwater and baseflow) into the current LSS to make valuable predictions of streamflow and water resources. This talk concentrates on the lower boundary condition of water fluxes within LSS. It reviews briefly previous attempts to incorporate groundwater and more realistic lower boundary conditions into LSS and summarizes the effect on the runoff (baseflow) production time scales as compared to currently used lower boundary conditions in LSS. The NOAH - LSM in the LDAS and DMIP setting is used to introduce a simplified groundwater model, based on the linearized Boussinesq equation, and the TOPMODEL. The NOAH - LSM will be coupled to a linear routing model to investigate the effects of the new lower boundary condition on the water balance (in particular, streamflow) in small to medium sized catchments in the LDAS / DMIP domain.

  19. Comparative study on the processing of armour steels with various unconventional technologies

    NASA Astrophysics Data System (ADS)

    Herghelegiu, E.; Schnakovszky, C.; Radu, M. C.; Tampu, N. C.; Zichil, V.

    2017-08-01

    The aim of the current paper is to analyse the suitability of three unconventional technologies - abrasive water jet (AWJ), plasma and laser - to process armour steels. In view of this, two materials (Ramor 400 and Ramor 550) were selected to carry out the experimental tests and the quality of cuts was quantified by considering the following characteristics: width of the processed surface at the jet inlet (Li), width of the processed surface at the jet outlet (Lo), inclination angle (a), deviation from perpendicularity (u), surface roughness (Ra) and surface hardness. It was fond that in terms of cut quality and environmental impact, the best results are offered by abrasive water jet technology. However, it has the lowest productivity comparing to the other two technologies.

  20. Estimation of water surface elevations for the Everglades, Florida

    USGS Publications Warehouse

    Palaseanu, Monica; Pearlstine, Leonard

    2008-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level monitoring gages and modeling methods that provides scientists and managers with current (2000–present) online water surface and water depth information for the freshwater domain of the Greater Everglades. This integrated system presents data on a 400-m square grid to assist in (1) large-scale field operations; (2) integration of hydrologic and ecologic responses; (3) supporting biological and ecological assessment of the implementation of the Comprehensive Everglades Restoration Plan (CERP); and (4) assessing trophic-level responses to hydrodynamic changes in the Everglades.This paper investigates the radial basis function multiquadric method of interpolation to obtain a continuous freshwater surface across the entire Everglades using radio-transmitted data from a network of water-level gages managed by the US Geological Survey (USGS), the South Florida Water Management District (SFWMD), and the Everglades National Park (ENP). Since the hydrological connection is interrupted by canals and levees across the study area, boundary conditions were simulated by linearly interpolating along those features and integrating the results together with the data from marsh stations to obtain a continuous water surface through multiquadric interpolation. The absolute cross-validation errors greater than 5 cm correlate well with the local outliers and the minimum distance between the closest stations within 2000-m radius, but seem to be independent of vegetation or season.

  1. Experimental evidence for modifying the current physical model for ice accretion on aircraft surfaces

    NASA Technical Reports Server (NTRS)

    Olsen, W.; Walker, E.

    1986-01-01

    Closeup movies, still photographs, and other experimental data suggest that the current physical model for ice accretion needs significant modification. At aircraft airspeeds there was no flow of liquid over the surface of the ice after a short initial flow, even at barely subfreezing temperatures. Instead, there were very large stationary drops on the ice surface that lose water from their bottoms by freezing and replenish their liquid by catching the microscopic cloud droplets. This observation disagrees with the existing physical model, which assumes there is a thin liquid film continuously flowing over the ice surface. With no such flow, the freezing-fraction concept of the model fails when a mass balance is performed on the surface water. Rime ice does, as the model predicts, form when the air temperature is low enough to cause the cloud droplets to freeze almost immediately on impact. However, the characteristic shapes of horn-glaze ice or rime ice are primarily caused by the ice shape affecting the airflow locally and consequently the droplet catch and the resulting ice shape. Ice roughness greatly increases the heat transfer coefficient, stops the movement of drops along the surface, and may also affect the airflow initially and thereby the droplet catch. At high subreezing temperatures the initial flow and shedding of surface drops have a large effect on the ice shape. At the incipient freezing limit, no ice forms.

  2. Surface currents in the Canary Basin from drifter observations

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Paduan, Jeffrey D.; Niiler, Pearn P.

    2000-09-01

    Satellite-tracked drifting buoys, deployed in the Canary Basin as part of the Subduction Experiment between July 1991 and October 1993 and the French Semaphore Experiment during October 1993, were used to obtain a description of surface currents and temperature in the Canary Basin. The study focuses on surface water convergence, eddy energy production, and heat transport. The Azores Current associated with the subtropical convergence zone is clearly visible at 34°N, and bifurcates around 22°W, with the major branch of the current circling the Madeira plateau and joining the Canary Current along the continental slope. Eddy kinetic energy maxima are found along the Azores Current. The mean current revealed a region of maximum convergence north of the Azores Current around longitude 29°W occurring with a negative heating anomaly and positive work done by the Reynolds stress. The southward meridional temperature fluxes in the Ekman layer (0-50 m) between 37°W and the African and European coast are estimated between -0.076±0.022×l015 W, produced by mean southward volume transport in our study area. The residual between local surface heat fluxes and horizontal convergence of heat implies a vertical heat convergence process associated with mesoscale temperature and flow fields.

  3. Aquarium Culture of Freshwater Invertebrates.

    ERIC Educational Resources Information Center

    Wood, Timothy S.

    1996-01-01

    Describes two methods for rearing small aquatic invertebrates using submerged surfaces in an unfiltered current of water where fish are present. Presents suggestions on how to use the invertebrate communities in the classroom. (JRH)

  4. Surface Treatment And Protection Method For Cadium Zinc Telluride Crystals

    DOEpatents

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2006-02-21

    A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH4F and 10 w/o H2O2 in water.

  5. Alien liquid detector and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, B.M.

    An alien liquid detector employs a monitoring element and an energizing circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. For this purpose an electronic circit controls a flow of heating current to the monitoring element. The presence of an alien liquid is detected by sensing a predetermined change in heating current flow to the monitoring element, e.g., to distinguish between water and oil. In preferred embodiments the monitoring element is a thermistor whose resistance is compared with a reference resistance and heating current through the thermistor is controlled in accordance with the difference. In onemore » embodiment a bridge circuit senses the resistance difference; the difference may be sensed by an operational amplifier arrangement. Features of the invention include positioning the monitoring element at the surface of water, slightly immersed, so that the power required to maintain the thermistor temperature substantially above ambient temperature serves to detect presence of oil pollution at the surface.« less

  6. Natural radionuclides tracing in marine surface waters along the northern coast of Oman Sea by combining the radioactivity analysis, oceanic currents and the SWAN model results.

    PubMed

    Zare, Mohammad Reza; Mostajaboddavati, Mojtaba; Kamali, Mahdi; Tari, Marziyeh; Mosayebi, Sanaz; Mortazavi, Mohammad Seddigh

    2015-03-15

    This study aims to establish a managed sampling plan for rapid estimate of natural radio-nuclides diffusion in the northern coast of the Oman Sea. First, the natural radioactivity analysis in 36 high volume surface water samples was carried out using a portable high-resolution gamma-ray spectrometry. Second, the oceanic currents in the northern coast were investigated. Then, the third generation spectral SWAN model was utilized to simulate wave parameters. Direction of natural radioactivity propagation was coupled with the preferable wave vectors and oceanic currents direction that face to any marine pollution, these last two factors will contribute to increase or decrease of pollution in each grid. The results were indicated that the natural radioactivity concentration between the grids 8600 and 8604 is gathered in the grid 8600 and between the grids 8605 and 8608 is propagated toward middle part of Oman Sea. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Storing and sharing water in sand rivers: a water balance modelling approach

    NASA Astrophysics Data System (ADS)

    Love, D.; van der Zaag, P.; Uhlenbrook, S.

    2009-04-01

    Sand rivers and sand dams offer an alternative to conventional surface water reservoirs for storage. The alluvial aquifers that make up the beds of sand rivers can store water with minimal evaporation (extinction depth is 0.9 m) and natural filtration. The alluvial aquifers of the Mzingwane Catchment are the most extensive of any tributaries in the Limpopo Basin. The lower Mzingwane aquifer, which is currently underutilised, is recharged by managed releases from Zhovhe Dam (capacity 133 Mm3). The volume of water released annually is only twice the size of evaporation losses from the dam; the latter representing nearly one third of the dam's storage capacity. The Lower Mzingwane valley currently support commercial agro-businesses (1,750 ha irrigation) and four smallholder irrigation schemes (400 ha with provision for a further 1,200 ha). In order to support planning for optimising water use and storage over evaporation and to provide for more equitable water allocation, the spreadsheet-based balance model WAFLEX was used. It is a simple and userfriendly model, ideal for use by institutions such as the water management authorities in Zimbabwe which are challenged by capacity shortfalls and inadequate data. In this study, WAFLEX, which is normally used for accounting the surface water balance, is adapted to incorporate alluvial aquifers into the water balance, including recharge, baseflow and groundwater flows. Results of the WAFLEX modelling suggest that there is surplus water in the lower Mzingwane system, and thus there should not be any water conflicts. Through more frequent timing of releases from the dam and maintaining the alluvial aquifers permanently saturated, less evaporation losses will occur in the system and the water resources can be better shared to provide more irrigation water for smallholder farmers in the highly resource-poor communal lands along the river. Sand dams are needed to augment the aquifer storage system and improve access to water. An alternative to the current scenario was modelled in WAFLEX: making fuller use of the alluvial aquifers upstream and downstream of Zhovhe Dam. These alluvial aquifers have an estimated average water storage capacity of 0.37 Mm3 km

  8. Distribution and Habitat Associations of Billfish and Swordfish Larvae across Mesoscale Features in the Gulf of Mexico

    PubMed Central

    Rooker, Jay R.; Simms, Jeff R.; Wells, R. J. David; Holt, Scott A.; Holt, G. Joan; Graves, John E.; Furey, Nathan B.

    2012-01-01

    Ichthyoplankton surveys were conducted in surface waters of the northern Gulf of Mexico (NGoM) over a three-year period (2006–2008) to determine the relative value of this region as early life habitat of sailfish (Istiophorus platypterus), blue marlin (Makaira nigricans), white marlin (Kajikia albida), and swordfish (Xiphias gladius). Sailfish were the dominant billfish collected in summer surveys, and larvae were present at 37.5% of the stations sampled. Blue marlin and white marlin larvae were present at 25.0% and 4.6% of the stations sampled, respectively, while swordfish occurred at 17.2% of the stations. Areas of peak production were detected and maximum density estimates for sailfish (22.09 larvae 1000 m−2) were significantly higher than the three other species: blue marlin (9.62 larvae 1000 m−2), white marlin (5.44 larvae 1000 m−2), and swordfish (4.67 larvae 1000 m−2). The distribution and abundance of billfish and swordfish larvae varied spatially and temporally, and several environmental variables (sea surface temperature, salinity, sea surface height, distance to the Loop Current, current velocity, water depth, and Sargassum biomass) were deemed to be influential variables in generalized additive models (GAMs). Mesoscale features in the NGoM affected the distribution and abundance of billfish and swordfish larvae, with densities typically higher in frontal zones or areas proximal to the Loop Current. Habitat suitability of all four species was strongly linked to physicochemical attributes of the water masses they inhabited, and observed abundance was higher in slope waters with lower sea surface temperature and higher salinity. Our results highlight the value of the NGoM as early life habitat of billfishes and swordfish, and represent valuable baseline data for evaluating anthropogenic effects (i.e., Deepwater Horizon oil spill) on the Atlantic billfish and swordfish populations. PMID:22509277

  9. Distribution and habitat associations of billfish and swordfish larvae across mesoscale features in the Gulf of Mexico.

    PubMed

    Rooker, Jay R; Simms, Jeff R; Wells, R J David; Holt, Scott A; Holt, G Joan; Graves, John E; Furey, Nathan B

    2012-01-01

    Ichthyoplankton surveys were conducted in surface waters of the northern Gulf of Mexico (NGoM) over a three-year period (2006-2008) to determine the relative value of this region as early life habitat of sailfish (Istiophorus platypterus), blue marlin (Makaira nigricans), white marlin (Kajikia albida), and swordfish (Xiphias gladius). Sailfish were the dominant billfish collected in summer surveys, and larvae were present at 37.5% of the stations sampled. Blue marlin and white marlin larvae were present at 25.0% and 4.6% of the stations sampled, respectively, while swordfish occurred at 17.2% of the stations. Areas of peak production were detected and maximum density estimates for sailfish (22.09 larvae 1000 m(-2)) were significantly higher than the three other species: blue marlin (9.62 larvae 1000 m(-2)), white marlin (5.44 larvae 1000 m(-2)), and swordfish (4.67 larvae 1000 m(-2)). The distribution and abundance of billfish and swordfish larvae varied spatially and temporally, and several environmental variables (sea surface temperature, salinity, sea surface height, distance to the Loop Current, current velocity, water depth, and Sargassum biomass) were deemed to be influential variables in generalized additive models (GAMs). Mesoscale features in the NGoM affected the distribution and abundance of billfish and swordfish larvae, with densities typically higher in frontal zones or areas proximal to the Loop Current. Habitat suitability of all four species was strongly linked to physicochemical attributes of the water masses they inhabited, and observed abundance was higher in slope waters with lower sea surface temperature and higher salinity. Our results highlight the value of the NGoM as early life habitat of billfishes and swordfish, and represent valuable baseline data for evaluating anthropogenic effects (i.e., Deepwater Horizon oil spill) on the Atlantic billfish and swordfish populations.

  10. Analysis of Orientation-dependence of Martian Gullies

    NASA Technical Reports Server (NTRS)

    Mohan, S.; Bridges, N. T.

    2004-01-01

    The recent discovery of small Martian gullies has stimulated debate about the role that water plays on the Martian surface under current or recent conditions. Of critical importance in evaluating various gully hypotheses is reliable morphometric and orientation data. The former centers on such questions as whether the water (or another fluid) emanated from a surface or sub-surface source and the duration of flow. The latter ties into whether solar insolation has an important effect on formation of the initial water source and subsequent mobilization. Initial studies of gullies indicated a poleward orientation dependence, an observation which has recently been challenged. Herein we investigate the orientation of Martian gullies and the dependence of various parameters on the orientation. Whereas previous studies have been global or through most of the southern hemisphere, we focus on several specific regions. This approach offers some advantages in that regional variations are factored out, such that of lithology, ground water table depth (if any), surface thermal properties, and other parameters are more or less the same in a given region. Differences in gully attributes as a function of orientation within a region can more easily be attributable to solar insolation effects than is the case for global statistics. We use the orientation to constrain several classes of gully formation hypotheses. 1) A favored orientation toward the pole across all regions could indicate a process dominated by melting of cold trapped ice, snow, or condensed volatiles from incident sunlight during summer under current conditions. 2) Variations among all regions would be more consistent with mechanisms less strongly tied to current solar insolation, such as geothermal heating of ice. 3) Favored orientations within specific regions, but differing among regions, could indicate a preference for poleward ices and melting, with orientation being a function of age and dependent on variations in obliquity and precision. We find that the gullies fall into either categories 2 or 3, but not 1, indicating the recent melting of cold trapped condensates is unlikely the sole formation mechanism.

  11. The Challenges of Developing a Framework for Global Water Cycle Monitoring and Prediction (Alfred Wegener Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Wood, Eric F.

    2014-05-01

    The Global Earth Observation System of Systems (GEOSS) Water Strategy ("From Observations to Decisions") recognizes that "water is essential for ensuring food and energy security, for facilitating poverty reduction and health security, and for the maintenance of ecosystems and biodiversity", and that water cycle data and observations are critical for improved water management and water security - especially in less developed regions. The GEOSS Water Strategy has articulated a number of goals for improved water management, including flood and drought preparedness, that include: (i) facilitating the use of Earth Observations for water cycle observations; (ii) facilitating the acquisition, processing, and distribution of data products needed for effective management; (iii) providing expertise, information systems, and datasets to the global, regional, and national water communities. There are several challenges that must be met to advance our capability to provide near real-time water cycle monitoring, early warning of hydrological hazards (floods and droughts) and risk assessment under climate change, regionally and globally. Current approaches to monitoring and predicting hydrological hazards are limited in many parts of the world, and especially in developing countries where national capacity is limited and monitoring networks are inadequate. This presentation describes the developments at Princeton University towards a seamless monitoring and prediction framework at all time scales that allows for consistent assessment of water variability from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental, global water cycle monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict current hydrological conditions, flood potential and the state of drought. Seasonal climate model forecasts are downscaled and bias-corrected to drive the land surface model to provide hydrological forecasts and drought products out 6-9 months. The system relies on historic reconstructions of water variability over the 20th century, which forms the background climatology to which current conditions can be assessed. Future changes in water availability and drought risk are quantified based on bias-corrected and downscaled climate model projections that are used to drive the land surface models. For regions with lack of on-the-ground data we are field-testing low-cost environmental sensors and along with new satellite products for terrestrial hydrology and vegetation, integrating these into the system for improved monitoring and prediction. At every step there are scientific challenges whose solutions are only partially being solved. In addition there are challenges in delivering such systems as "climate services", especially to societies with low technical capacity such as rural agriculturalists in sub-Saharan Africa, but whose needs for such information are great. We provide an overview of the system and some examples of real-world applications to flood and drought events, with a focus on Africa.

  12. Eocene cooling linked to early flow across the Tasmanian Gateway.

    PubMed

    Bijl, Peter K; Bendle, James A P; Bohaty, Steven M; Pross, Jörg; Schouten, Stefan; Tauxe, Lisa; Stickley, Catherine E; McKay, Robert M; Röhl, Ursula; Olney, Matthew; Sluijs, Appy; Escutia, Carlota; Brinkhuis, Henk

    2013-06-11

    The warmest global temperatures of the past 85 million years occurred during a prolonged greenhouse episode known as the Early Eocene Climatic Optimum (52-50 Ma). The Early Eocene Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica from 34 Ma onward. Whereas early studies attributed the Eocene transition from greenhouse to icehouse climates to the tectonic opening of Southern Ocean gateways, more recent investigations invoked a dominant role of declining atmospheric greenhouse gas concentrations (e.g., CO2). However, the scarcity of field data has prevented empirical evaluation of these hypotheses. We present marine microfossil and organic geochemical records spanning the early-to-middle Eocene transition from the Wilkes Land Margin, East Antarctica. Dinoflagellate biogeography and sea surface temperature paleothermometry reveal that the earliest throughflow of a westbound Antarctic Counter Current began ~49-50 Ma through a southern opening of the Tasmanian Gateway. This early opening occurs in conjunction with the simultaneous onset of regional surface water and continental cooling (2-4 °C), evidenced by biomarker- and pollen-based paleothermometry. We interpret that the westbound flowing current flow across the Tasmanian Gateway resulted in cooling of Antarctic surface waters and coasts, which was conveyed to global intermediate waters through invigorated deep convection in southern high latitudes. Although atmospheric CO2 forcing alone would provide a more uniform middle Eocene cooling, the opening of the Tasmanian Gateway better explains Southern Ocean surface water and global deep ocean cooling in the apparent absence of (sub-) equatorial cooling.

  13. Eocene cooling linked to early flow across the Tasmanian Gateway

    PubMed Central

    Bijl, Peter K.; Bendle, James A. P.; Bohaty, Steven M.; Pross, Jörg; Schouten, Stefan; Tauxe, Lisa; Stickley, Catherine E.; McKay, Robert M.; Röhl, Ursula; Olney, Matthew; Sluijs, Appy; Escutia, Carlota; Brinkhuis, Henk; Klaus, Adam; Fehr, Annick; Williams, Trevor; Carr, Stephanie A.; Dunbar, Robert B.; Gonzàlez, Jhon J.; Hayden, Travis G.; Iwai, Masao; Jimenez-Espejo, Francisco J.; Katsuki, Kota; Kong, Gee Soo; Nakai, Mutsumi; Passchier, Sandra; Pekar, Stephen F.; Riesselman, Christina; Sakai, Toyosaburo; Shrivastava, Prakash K.; Sugisaki, Saiko; Tuo, Shouting; van de Flierdt, Tina; Welsh, Kevin; Yamane, Masako

    2013-01-01

    The warmest global temperatures of the past 85 million years occurred during a prolonged greenhouse episode known as the Early Eocene Climatic Optimum (52–50 Ma). The Early Eocene Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica from 34 Ma onward. Whereas early studies attributed the Eocene transition from greenhouse to icehouse climates to the tectonic opening of Southern Ocean gateways, more recent investigations invoked a dominant role of declining atmospheric greenhouse gas concentrations (e.g., CO2). However, the scarcity of field data has prevented empirical evaluation of these hypotheses. We present marine microfossil and organic geochemical records spanning the early-to-middle Eocene transition from the Wilkes Land Margin, East Antarctica. Dinoflagellate biogeography and sea surface temperature paleothermometry reveal that the earliest throughflow of a westbound Antarctic Counter Current began ∼49–50 Ma through a southern opening of the Tasmanian Gateway. This early opening occurs in conjunction with the simultaneous onset of regional surface water and continental cooling (2–4 °C), evidenced by biomarker- and pollen-based paleothermometry. We interpret that the westbound flowing current flow across the Tasmanian Gateway resulted in cooling of Antarctic surface waters and coasts, which was conveyed to global intermediate waters through invigorated deep convection in southern high latitudes. Although atmospheric CO2 forcing alone would provide a more uniform middle Eocene cooling, the opening of the Tasmanian Gateway better explains Southern Ocean surface water and global deep ocean cooling in the apparent absence of (sub-) equatorial cooling. PMID:23720311

  14. Using GPS radio occultations to infer the water vapor feedback

    NASA Astrophysics Data System (ADS)

    Vergados, Panagiotis; Mannucci, Anthony J.; Ao, Chi O.; Fetzer, Eric J.

    2016-11-01

    The air refractive index at L-band frequencies depends on the air's water vapor content and density. Exploiting this relationship, we derive for the first time a theoretical model to infer the specific humidity response to surface temperature variations, dq/dTs, given knowledge of how the air refractive index and temperature vary with surface temperature. We validate this model by using 1.2-1.6 GHz Global Positioning System Radio Occultation (GPS RO) observations from 2007 to 2010 at 250 hPa, where the water vapor feedback on surface warming is strongest. The dq/dTs estimation from GPS RO observations shows excellent agreement with previously published results and the responses estimated by using the Atmospheric Infrared Sounder and the NASA's Modern-Era Retrospective Analysis for Research and Applications data sets. Because of their high sensitivity to fractional changes in water vapor, current and future GPS RO observations show great promise in monitoring climate feedback and their trends.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartoshesky, J.; Price, R.; DeMuro, J.

    In recent years acid deposition has become a serious concern internationally. Scientific literature has documented the acidification of numerous lakes and streams in North America and Scandinavia resulting in the depletion or total loss of fisheries and other aquatic biota. Liming represents the only common corrective practice aimed specifically at remediating an affected acid receptor. This report reviews a range of liming technologies and liming materials, as well as the effect of surface-water liming on water quality and aquatic biota. As background to the liming discussion, the hydrologic cycle and the factors that make surface waters sensitive to acid depositionmore » are also discussed. Finally, a brief review of some of the liming projects that have been conducted, or are currently in operation is presented, giving special emphasis to mitigation efforts in Maryland. Liming has been effectively used to counteract surface-water acidification in parts of Scandinavia, Canada, and the U.S. To date, liming has generally been shown to improve physical and chemical conditions and enhance the biological recovery of aquatic ecosystems affected by acidification.« less

  16. A science plan for a comprehensive assessment of water supply in the region underlain by fractured rock in Maryland

    USGS Publications Warehouse

    Fleming, Brandon J.; Hammond, Patrick A.; Stranko, Scott A.; Duigon, Mark T.; Kasraei, Saeid

    2012-01-01

    The fractured rock region of Maryland, which includes land areas north and west of the Interstate 95 corridor, is the source of water supply for approximately 4.4 million Marylanders, or approximately 76 percent of the State's population. Whereas hundreds of thousands of residents rely on wells (both domestic and community), millions rely on surface-water sources. In this region, land use, geology, topography, water withdrawals, impoundments, and other factors affect water-flow characteristics. The unconfined groundwater systems are closely interconnected with rivers and streams, and are affected by seasonal and climatic variations. During droughts, groundwater levels drop, thereby decreasing well yields, and in some cases, wells have gone dry. Low ground-water levels contribute to reduced streamflows, which in turn, can lead to reduced habitat for aquatic life. Increased demand, over-allocation, population growth, and climate change can affect the future sustainability of water supplies in the region of Maryland underlain by fractured rock. In response to recommendations of the 2008 Advisory Committee on the Management and Protection of the State's Water Resources report, the Maryland Department of the Environment's Water Supply Program, the Maryland Geological Survey, the Maryland Department of Natural Resources, Monitoring and Non-Tidal Assessment (MANTA) Division, and the U.S. Geological Survey have developed a science plan for a comprehensive assessment that will provide new scientific information, new data analysis, and new tools for the State to better manage water resources in the fractured rock region of Maryland. The science plan lays out five goals for the comprehensive assessment: (1) develop tools for the improved management and investigation of groundwater and surface-water resources; (2) characterize factors affecting reliable yields of individual groundwater and surface-water supplies; (3) investigate impacts on nearby water withdrawal users caused by groundwater and surface-water withdrawals; (4) assess the role of streamflow and water withdrawals on the ecological integrity of streams; and (5) improve understanding of the distribution of water-quality conditions in fractured rock aquifers. To accomplish these goals, accurate data collection, review, and analysis are needed, including the study of "Research Watersheds" that can provide detailed information about the potential effects that climate change and water withdrawals may have on groundwater, streamflow, and aquatic life. The assessment planning started in 2009 and is being conducted with close interagency coordination. A Fractured Rock Aquifer Information System is currently (2012) undergoing initial development. Other major tasks that will be performed include the development of work plans for each science goal, the estimation of daily streamflow at ungaged streams, and the design and implementation of Research Watersheds. Finally, scenarios will be modeled to evaluate current water allocation permitting methodologies, investigate effects on nearby water withdrawal users caused by groundwater and surface-water withdrawals, and assess the potential impacts of climate change on water resources. Desktop and Web-based tools will be developed in order to meet the diverse research needs of the assessment. These tools, including the Fractured Rock Aquifer Information System will be continuously improved during the assessment to store relevant groundwater and surface-water data in spatially referenced databases, estimate streamflows, locate higher-yielding wells, estimate the impacts of withdrawals on nearby users, and assess the cumulative impacts of withdrawals on the aquatic resource. Tools will be developed to serve the needs of many audiences, including water resource managers, water suppliers, planners, policymakers, and other scientific investigators.

  17. Surface water classification and monitoring using polarimetric synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Irwin, Katherine Elizabeth

    Surface water classification using synthetic aperture radar (SAR) is an established practice for monitoring flood hazards due to the high temporal and spatial resolution it provides. Surface water change is a dynamic process that varies both spatially and temporally, and can occur on various scales resulting in significant impacts on affected areas. Small-scale flooding hazards, caused by beaver dam failure, is an example of surface water change, which can impact nearby infrastructure and ecosystems. Assessing these hazards is essential to transportation and infrastructure maintenance. With current satellite missions operating in multiple polarizations, spatio-temporal resolutions, and frequencies, a comprehensive comparison between SAR products for surface water monitoring is necessary. In this thesis, surface water extent models derived from high resolution single-polarization TerraSAR-X (TSX) data, medium resolution dual-polarization TSX data and low resolution quad-polarization RADARSAT-2 (RS-2) data are compared. There exists a compromise between acquiring SAR data with a high resolution or high information content. Multi-polarization data provides additional phase and intensity information, which makes it possible to better classify areas of flooded vegetation and wetlands. These locations are often where fluctuations in surface water occur and are essential for understanding dynamic underlying processes. However, often multi-polarized data is acquired at a low resolution, which cannot image these zones effectively. High spatial resolution, single-polarization TSX data provides the best model of open water. However, these single-polarization observations have limited information content and are affected by shadow and layover errors. This often hinders the classification of other land cover types. The dual-polarization TSX data allows for the classification of flooded vegetation, but classification is less accurate compared to the quad-polarization RS-2 data. The RS-2 data allows for the discrimination of open water, marshes/fields and forested areas. However, the RS-2 data is less applicable to small scale surface water monitoring (e.g. beaver dam failure), due to its low spatial resolution. By understanding the strengths and weaknesses of available SAR technology, an appropriate product can be chosen for a specific target application involving surface water change. This research benefits the eventual development of a space-based monitoring strategy over longer periods.

  18. 20 Years of Air-Water Gas Exchange Observations for Pesticides in the Western Arctic Ocean.

    PubMed

    Jantunen, Liisa M; Wong, Fiona; Gawor, Anya; Kylin, Henrik; Helm, Paul A; Stern, Gary A; Strachan, William M J; Burniston, Deborah A; Bidleman, Terry F

    2015-12-01

    The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and air-water exchange of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both air and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in air. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in air. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and air, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in air and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water-air fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR < 1.0) for ΣCHBs. Net deposition was shown for ENDO-I on all expeditions, while the net exchange direction of other CUPs varied. Understanding the processes and current state of air-surface exchange helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals.

  19. Cherenkov water detector NEVOD

    NASA Astrophysics Data System (ADS)

    Petrukhin, A. A.

    2015-05-01

    A unique multipurpose Cherenkov water detector, the NEVOD facility, uses quasispherical measuring modules to explore all the basic components of cosmic rays on Earth's surface, including neutrinos. Currently, the experimental complex includes the Cherenkov water detector, a calibration telescope system, and a coordinate detector. This paper traces the basic development stages of NEVOD, examines research directions, presents the results obtained, including the search for the solution to the 'muon puzzle', and discusses possible future development prospects.

  20. The freshwater transport and dynamics of the western Maine coastal current

    USGS Publications Warehouse

    Geyer, W.R.; Signell, R.P.; Fong, D.A.; Wang, Jingyuan; Anderson, D.M.; Keafer, B.A.

    2004-01-01

    Observations in the Gulf of Maine, USA, were used to characterize the freshwater transport, temporal variability and dynamics of the western Maine coastal current. These observations included moored measurements, multiple hydrographic surveys, and drifter releases during April–July of 1993 and 1994. There is a strong seasonal signal in salinity and along-shore velocity of the coastal current, caused by the freshwater inputs of the rivers entering the western Gulf. Surface salinity within the coastal current during the spring freshet is typically 2 psu below ambient, and along-shore currents in the surface layer are directed southwestward at speeds of 0.10–0.20 m s−1, occasionally reaching 0.50 m s−1. The plume thickness is typically 10–20 m in water depths of 50–100 m, thus it is well isolated from the bottom over most of its areal extent. The along-coast freshwater transport within the plume varies considerably due to variations in wind stress, but on time scales of weeks to months it follows the variations of riverine input, with a time lag consistent with the advective velocity. Less than half of the transport of the coastal current is explained by the baroclinic gradient; the barotropic forcing associated with the larger-scale dynamics of the Gulf of Maine accounts for about 60% of the transport. The volume of freshwater transport in the coastal current exceeds the local riverine input of fresh water by 30%, suggesting a significant contribution of freshwater transport from the St. John River, 500 km northeastward. The measurements within the western Maine coastal current, however, indicate a significant decrease in the baroclinic transport of fresh water along the coast, with an e-folding scale of approximately 200 km.

  1. Formation of Martian Gullies by the Action of Liquid Water Flowing Under Current Martian Environmental Conditions

    NASA Technical Reports Server (NTRS)

    Heldmann, J. L.; Toon, O. B.; Pollard, W. H.; Mellon, M. T.; Pitlick, J.; McKay, C. P.; Andersen, D. T.

    2005-01-01

    Images from the Mars Orbiter Camera (MOC) on the Mars Global Surveyor (MGS) spacecraft show geologically young small-scale features resembling terrestrial water-carved gullies. An improved understanding of these features has the potential to reveal important information about the hydrological system on Mars, which is of general interest to the planetary science community as well as the field of astrobiology and the search for life on Mars. The young geologic age of these gullies is often thought to be a paradox because liquid water is unstable at the Martian surface. Current temperatures and pressures are generally below the triple point of water (273 K, 6.1 mbar) so that liquid water will spontaneously boil and/or freeze. We therefore examine the flow of water on Mars to determine what conditions are consistent with the observed features of the gullies.

  2. Mapping water availability, projected use and cost in the western United States

    NASA Astrophysics Data System (ADS)

    Tidwell, Vincent C.; Moreland, Barbara D.; Zemlick, Katie M.; Roberts, Barry L.; Passell, Howard D.; Jensen, Daniel; Forsgren, Christopher; Sehlke, Gerald; Cook, Margaret A.; King, Carey W.; Larsen, Sara

    2014-05-01

    New demands for water can be satisfied through a variety of source options. In some basins surface and/or groundwater may be available through permitting with the state water management agency (termed unappropriated water), alternatively water might be purchased and transferred out of its current use to another (termed appropriated water), or non-traditional water sources can be captured and treated (e.g., wastewater). The relative availability and cost of each source are key factors in the development decision. Unfortunately, these measures are location dependent with no consistent or comparable set of data available for evaluating competing water sources. With the help of western water managers, water availability was mapped for over 1200 watersheds throughout the western US. Five water sources were individually examined, including unappropriated surface water, unappropriated groundwater, appropriated water, municipal wastewater and brackish groundwater. Also mapped was projected change in consumptive water use from 2010 to 2030. Associated costs to acquire, convey and treat the water, as necessary, for each of the five sources were estimated. These metrics were developed to support regional water planning and policy analysis with initial application to electric transmission planning in the western US.

  3. Surface manifestations of internal waves investigated by a subsurface buoyant jet: 3. Surface manifestations of internal waves

    NASA Astrophysics Data System (ADS)

    Bondur, V. G.; Grebenyuk, Yu. V.; Ezhova, E. V.; Kazakov, V. I.; Sergeev, D. A.; Soustova, I. A.; Troitskaya, Yu. I.

    2010-08-01

    In a large test reservoir at the Institute of Applied Physics, Russian Academy of Sciences, a series of experiments were performed to investigate the surface manifestations of internal waves radiated by a subsurface buoyant jet. The field of currents on the water surface of the reservoir was studied through the distribution of temperature with shallow thermocline. Using Particle Tracking Velocimetry (PTV), the velocity field of surface currents was measured. A theoretical model was developed to calculate the rates of disturbances on the surface. A comparison with experimental data indicated that the calculated data of the surface rate value are overestimated. This discrepancy was explained by the presence of a film of surface-active substances (SASs) with experimentally obtained parameters. Using scale modeling coefficients, we estimated the parameters of internal waves radiated by the subsurface wastewater system and the values of their surface manifestations in field conditions. We estimated the hydrodynamic contrasts in the field of surface waves, which can be caused by these inhomogeneous currents on the surface. For a wind velocity of 5 m/s, the magnitude of the contrast in the field of short waves can reach up to 10-25%, which is detected with confidence by remote-sensing methods.

  4. Monitoring Ecological Impacts of Environmental Surface ...

    EPA Pesticide Factsheets

    Optimized cell-based metabolomics has been used to study the impacts of contaminants in surface waters on human and fish metabolomes. This method has proven to be resource- and time-effective, as well as sustainable for long term and large scale studies. In the current study, cell-based metabolomics is used to investigate the impacts of contaminants in surface waters on biological pathways in human and ecologically relevant cell lines. Water samples were collected from stream sites nationwide, where significant impacts have been estimated from the most potentially contaminated sources (i.e. waste water treatment plants, concentrated animal feeding operations, mining operations, and plant-based agricultural operations that use intensive chemical applications). Zebrafish liver cells (ZFL) were used to study exposure impacts on in vitro metabolomes. In addition, a small number of water samples were studied using two human cell lines (liver cells, HepG2 and brain cells, LN229). The cellular metabolites were profiled by nuclear magnetic resonance (NMR) spectroscopy and gas chromatography mass spectrometry (GC-MS). Detailed methods and results will be reported. Presented at SETAC North America 37th Annual Meeting

  5. Water Surface Currents, Short Gravity-Capillary Waves and Radar Backscatter

    NASA Technical Reports Server (NTRS)

    Atakturk, Serhad S.; Katsaros, Kristina B.

    1993-01-01

    Despite their importance for air-sea interaction and microwave remote sensing of the ocean surface, intrinsic properties of short gravity-capillary waves are not well established. This is largely due to water surface currents and their effects on the direct measurements of wave parameters conducted at a fixed point. Frequencies of small scale waves propagating on a surface which itself is in motion, are subject to Doppler shifts. Hence, the high frequency tail of the wave spectra obtained from such temporal observations is smeared. Conversion of this smeared measured-frequency spectra to intrinsic-frequency (or wavenumber) spectra requires corrections for the Doppler shifts. Such attempts in the past have not been very successful in particular when field data were used. This becomes evident if the amplitude modulation of short waves by underlying long waves is considered. Microwave radar studies show that the amplitude of a short wave component attains its maximum value near the crests and its minimum in the troughs of the long waves. Doppler-shifted wave data yield similar results but much larger in modulation magnitude, as expected. In general, Doppler shift corrections reduce the modulation magnitude. Overcorrection may result in a negligible modulation or even in a strong modulation with the maximum amplitude in the wave troughs. The latter situation is clearly contradictory to our visual observations as well as the radar results and imply that the advection by currents is overestimated. In this study, a differential-advection approach is used in which small scale waves are advected by the currents evaluated not at the free surface, but at a depth proportional to their wavelengths. Applicability of this approach is verified by the excellent agreement in phase and magnitude of short-wave modulation between results based on radar and on wave-gauge measurements conducted on a lake.

  6. Water-use information for California

    USGS Publications Warehouse

    Templin, W.E.

    1986-01-01

    This pamphlet reports on the availability of water use information to and for the state of California, through the development of the State Water-Use Data System (SWUDS). SWUDS is currently organized into 12 water use categories: Agricultural non-irrigation; Commercial; Domestic; Industrial; Irrigation; Mining; Power generation--fossil fuel, geothermal, hydroelectric , nuclear; Sewage treatment; and Water supply. The information needs of this system include type of water use (by category); name of water user; location of water use (latitude/longitude, county, and hydrologic unit--drainage basin); sources of water supply and return (fresh, saline, or reclaimed surface or groundwater); volume of water withdrawn, delivered, consumed, released, and returned; and period of water use (month, year). (Lantz-PTT)

  7. Global ocean monitoring for the World Climate Research Programme.

    PubMed

    Revelle, R; Bretherton, F

    1986-07-01

    Oceanic research and modelling for the World Climate Research Program will utilize several recently-developed instruments and measuring techniques as well as well-tested, long-used instruments. Ocean-scanning satellites will map the component of the ocean-surface topography related to ocean currents and mesoscale eddies and to fluctuating water volumes caused by ocean warming and cooling. Other satellite instruments will measure the direction and magnitude of wind stress on the sea surface, surface water temperatures, the distribution of chlorophyll and other photosynthetic pigments, the characteristics of internal waves, and possible precipitation over the ocean. Networks of acoustic transponders will obtain a three-dimensional picture of the distribution of temperature from the surface down to mid-depth and of long-term changes in temperature at depth. Ocean research vessels will determine the distribution and fate of geochemical tracers and will also make high-precision, deep hydrographic casts. Ships of opportunity, using expendable instruments, will measure temperature, salinity and currents in the upper water layers. Drifting and anchored buoys will also measure these properties as well as those of the air above the sea surface. Tide gauges installed on islands and exposed coastal locations will measure variations in monthly and shorter-period mean sea level. These tide gauges will provide 'ground truth' for the satellite maps of sea-surface topography, and will also determine variations in ocean currents and temperature.All these instruments will be used in several major programs, the most ambitious of which is the World Ocean Circulation Experiment (WOCE) designed to obtain global measurements of major currents throughout the world ocean, greater understanding of the transformation of water masses, and the role of advective, convective, and turbulent processes in exchange of properties between surface and deep-ocean layers.A five- to ten-year experiment-"Tropical Oceans and Global Atmosphere (TOGA)"-will be undertaken to sudy the sequence of events of air-sea interactions in the tropical oceans and their impact on climatic variations on land-for example, variations in the strength and location of the Indian Ocean monsoon, droughts in low latitudes, and climatic fluctuations in temperate latitudes.Experimental and continuing time series will be taken at fixed locations to obtain a better picture of the magnitude and causes of ocean climate variability. National and multinational systematic repeated measurements along selected ocean transects or in specific ocean areas will be taken to determine oceanic variability and teleconnections between oceanic and atmospheric processes. Examples are the long Japanese section along the meridian of 137° E and the 'Sections' program of the USSR and several other countries in Energy-Active zones.The results from this wide range of observations and experiments will be used to guide and define mathematical models of the ocean circulation and its interactions with the atmosphere.It can be shown that biogeochemical processes in the ocean play an important role in determining the carbon dioxide content of the atmosphere and thus in causing long-term climatic changes. Variations in the biological productivity of sub-surface waters cause variations in the effectveness of the biological pump which carries organic carbon down into deeper waters where it is oxidized. Studies of ice cores from 20 000 to 30 000 yr before the present indicate that atmospheric carbon dioxide varied by a factor of 2 within times of the order of 100 yr, and these variations were accompanied by large excursions in atmospheric temperature. Thus, ocean climatic monitoring must take into account measurements of both biological and physical variations in the ocean.

  8. Global 30m 2000-2014 Surface Water Dynamics Map Derived from All Landsat 5, 7, and 8

    NASA Astrophysics Data System (ADS)

    Hudson, A.; Hansen, M.

    2015-12-01

    Water is critical for human life, agriculture, and ecosystems. A better understanding of where it is and how it is changing will enable better management of this valuable resource and guide protection of sensitive ecological areas. Global water maps have typically been representations of surface water at one given time. However, there is both seasonal and interannual variability: rivers meander, lakes disappear, floods arise. To address this ephemeral nature of water, in this study University of Maryland has developed a method that analyzes every Landsat 5, 7, and 8 scene from 1999-2015 to produce global seasonal maps (Winter, Spring, Summer, Fall) of surface water dynamics from 2000-2014. Each Landsat scene is automatically classified into land, water, cloud, haze, shadow, and snow via a decision tree algorithm. The land and water observations are aggregated per pixel into percent occurrence of water in a 3 year moving window for each meteorological season. These annual water percentages form a curve for each season that is discretized into a continuous 3 band RGB map. Frequency of water observation and type of surface water change (loss, gain, peak, or dip) is clearly seen through brightness and hue respectively. Additional data layers include: the year the change began, peak year, minimum year, and the year the change process ended. Currently these maps have been created for 18 1°x1° test tiles scattered around the world, and a portion of the September-November map over Bangladesh is shown below. The entire Landsat archive from 1999-2015 will be processed through a partnership with Google Earth Engine to complete the global product in the coming months. In areas where there is sufficient satellite data density (e.g. the United States), this project could be expanded to 1984-2015. This study provides both scientific researchers and the public an understandable, temporally rich, and globally consistent map showing surface water changes over time.

  9. Green Infrastructure, Groundwater and the Sustainable City

    NASA Astrophysics Data System (ADS)

    Band, L. E.

    2014-12-01

    The management of water is among the most important attributes of urbanization. Provision of sufficient quantities and quality of freshwater, treatment and disposal of wastewater and flood protection are critical for urban sustainability. Over the last century, two major shifts in water management paradigms have occurred, the first to improve public health with the provision of infrastructure for centralized sanitary effluent collection and treatment, and the rapid drainage and routing of stormwater. A current shift in paradigm is now occurring in response to the unintended consequences of sanitary and stormwater management, which have degraded downstream water bodies and shifted flood hazard downstream. Current infrastructure is being designed and implemented to retain, rather than rapidly drain, stormwater, with a focus on infiltration based methods. In urban areas, this amounts to a shift in hydrologic behavior to depression focused recharge. While stormwater is defined as surface flow resulting from developed areas, an integrated hydrologic systems approach to urban water management requires treatment of the full critical zone. In urban areas this extends from the top of the vegetation and building canopy, to a subsurface depth including natural soils, fill, saprolite and bedrock. In addition to matric and network flow in fracture systems, an urban "karst" includes multiple generations of current and past infrastructure, which has developed extensive subsurface pipe networks for supply and drainage, enhancing surface/groundwater flows and exchange. In this presentation, Band will discuss the need to focus on the urban critical zone, and the development and adaptation of new modeling and analytical approaches to understand and plan green infrastructure based on surface/groundwater/ecosystem interactions, and implications for the restoration and new design of cities.

  10. Bathymetric surveys of Morse and Geist Reservoirs in central Indiana made with acoustic Doppler current profiler and global positioning system technology, 1996

    USGS Publications Warehouse

    Wilson, J.T.; Morlock, S.E.; Baker, N.T.

    1997-01-01

    Acoustic Doppler current profiler, global positioning system, and geographic information system technology were used to map the bathymetry of Morse and Geist Reservoirs, two artificial lakes used for public water supply in central Indiana. The project was a pilot study to evaluate the use of the technologies for bathymetric surveys. Bathymetric surveys were last conducted in 1978 on Morse Reservoir and in 1980 on Geist Reservoir; those surveys were done with conventional methods using networks of fathometer transects. The 1996 bathymetric surveys produced updated estimates of reservoir volumes that will serve as base-line data for future estimates of storage capacity and sedimentation rates.An acoustic Doppler current profiler and global positioning system receiver were used to collect water-depth and position data from April 1996 through October 1996. All water-depth and position data were imported to a geographic information system to create a data base. The geographic information system then was used to generate water-depth contour maps and to compute the volumes for each reservoir.The computed volume of Morse Reservoir was 22,820 acre-feet (7.44 billion gallons), with a surface area of 1,484 acres. The computed volume of Geist Reservoir was 19,280 acre-feet (6.29 billion gallons), with a surface area of 1,848 acres. The computed 1996 reservoir volumes are less than the design volumes and indicate that sedimentation has occurred in both reservoirs. Cross sections were constructed from the computer-generated surfaces for 1996 and compared to the fathometer profiles from the 1978 and 1980 surveys; analysis of these cross sections also indicates that some sedimentation has occurred in both reservoirs.The acoustic Doppler current profiler, global positioning system, and geographic information system technologies described in this report produced bathymetric maps and volume estimates more efficiently and with comparable or greater resolution than conventional bathymetry methods.

  11. pCO2 Observations from a Vertical Profiler on the upper continental slope off Vancouver Island: Physical controls on biogeochemical processes.

    NASA Astrophysics Data System (ADS)

    Mihaly, S. F.

    2016-02-01

    We analyse two six month sets of data collected from a vertical profiler on Ocean Networks Canada's NEPTUNE observatory over the summer and early fall of 2012 and 2014. The profiler is in 400 m of water on the upper slope of the continental shelf. The site is away from direct influence of canyons, but is in a region of strong internal tide generation. Both seasonally varying semidiurnal internal tidal currents and diurnal shelf waves are observed. The near surface mean flow is weak and seasonally alternates between the California and Alaskan Currents. Mid-depth waters are influenced by the poleward flowing Californian undercurrent and the deep waters by seasonally varying wind-driven Ekman transport. The profiling package consists of a CTD, an oxygen optode, a pCO2 sensor, Chlorophyll fluorometer/turbidity, CDOM and is co-located with an upward-looking bottom-mounted 75kHz ADCP that measures currents to 30 m below sea surface. With these first deep-sea profiled time series measurements of pCO2, we endeavor to model how the local physical dynamics exert control over the variability of water properties over the slope and shelf and what the variability of the non-conservative tracers of pCO2 and O2 can tell us about the biogeochemistry of the region.

  12. A numerical modeling study of the East Australian Current encircling and overwashing a warm-core eddy

    NASA Astrophysics Data System (ADS)

    MacDonald, H. S.; Roughan, M.; Baird, M. E.; Wilkin, J.

    2013-01-01

    AbstractWarm-core eddies (WCEs) often form in the meanders of Western Boundary Currents (WBCs). WCEs are frequently overwashed with less dense waters sourced from the WBC. We use the Regional Ocean Modelling System to investigate the ocean state during the overwashing of one such WCE in October 2008 in the East Australian Current (EAC). Comparisons of model outputs with satellite sea surface temperature and vertical profiles show that the model provides a realistic simulation of the eddy during the period when the EAC encircled and then overwashed the eddy. During the encircling stage, an eddy with closed circulation persisted at depth. In the surface EAC water entered from the north, encircled the eddy and exited to the east. The overwashing stage was initiated by the expulsion of cyclonic vorticity. For the following 8 days after the expulsion, waters from the EAC washed over the top of the eddy, transferring heat and anticyclonic vorticity radially-inward. After approximately one rotation period of overwashing, the eddy separated. The overwashing creates a two-layer system that forms a subsurface maximum velocity at the interface of the two layers. Analysis of water mass properties, Eulerian tracer dynamics, and Lagrangian particle tracks show that the original eddy sinks 10-50 m during the overwashing period. Overwashing has been observed in many WBCs and occurs in most WCEs in the western Tasman Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OSJ....53....1C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OSJ....53....1C"><span>Interannual Variation of Surface Circulation in the Japan/East Sea due to External Forcings and Intrinsic Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choi, Byoung-Ju; Cho, Seong Hun; Jung, Hee Seok; Lee, Sang-Ho; Byun, Do-Seong; Kwon, Kyungman</p> <p>2018-03-01</p> <p>The interannual variation of surface ocean currents can be as large as seasonal variation in the Japan/East Sea (JES). To identify the major factors that cause such interannual variability of surface ocean circulation in the JES, surface circulation was simulated from 1998 to 2009 using a three-dimensional model. Contributions of atmospheric forcing (ATM), open boundary data (OBC), and intrinsic variability (ITV) of the surface flow in the JES on the interannual variability of surface ocean circulation were separately examined using numerical simulations. Variability in surface circulation was quantified in terms of variance in sea surface height, 100-m depth water temperature, and surface currents. ITV was found to be the dominant factor that induced interannual variabilities of surface circulation, the main path of the East Korea Warm Current (EKWC), and surface kinetic energy on a time scale of 2-4 years. OBC and ATM were secondary factors contributing to the interannual variation of surface circulation. Interannual variation of ATM changed the separation latitude of EKWC and increased the variability of surface circulation in the Ulleung Basin. Interannual variation of OBC enhanced low-frequency changes in surface circulation and eddies in the Yamato Basin. It also modulated basin-wide uniform oscillations of sea level. This study suggests that precise estimation of initial conditions using data assimilation is essential for long-term prediction of surface circulation in the JES.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25801650','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25801650"><span>Effect of top soil wettability on water evaporation and plant growth.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gupta, Bharat; Shah, D O; Mishra, Brijesh; Joshi, P A; Gandhi, Vimal G; Fougat, R S</p> <p>2015-07-01</p> <p>In general, agricultural soil surfaces being hydrophilic in nature get easily wetted by water. The water beneath the soil moves through capillary effect and comes to the surface of the soil and thereafter evaporates into the surrounding air due to atmospheric conditions such as sunlight, wind current, temperature and relative humidity. To lower the water loss from soil, an experiment was designed in which a layer of hydrophobic soil was laid on the surface of ordinary hydrophilic soil. This technique strikingly decreased loss of water from the soil. The results indicated that the evaporation rate significantly decreased and 90% of water was retained in the soil in 83 h by the hydrophobic layer of 2 cm thickness. A theoretical calculation based on diffusion of water vapour (gas phase) through hydrophobic capillaries provide a meaningful explanation of experimental results. A greater retention of water in the soil by this approach can promote the growth of plants, which was confirmed by growing chick pea (Cicer arietinum) plants and it was found that the length of roots, height of shoot, number of branches, number of leaves, number of secondary roots, biomass etc. were significantly increased upon covering the surface with hydrophobic soil in comparison to uncovered ordinary hydrophilic soil of identical depth. Such approach can also decrease the water consumption by the plants particularly grown indoors in residential premises, green houses and poly-houses etc. and also can be very useful to prevent water loss and enhance growth of vegetation in semi-arid regions. Copyright © 2015 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ECSS..206...76S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ECSS..206...76S"><span>Great differences in the critical erosion threshold between surface and subsurface sediments: A field investigation of an intertidal mudflat, Jiangsu, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, Benwei; Wang, Ya Ping; Wang, Li Hua; Li, Peng; Gao, Jianhua; Xing, Fei; Chen, Jing Dong</p> <p>2018-06-01</p> <p>Understanding of bottom sediment erodibility is necessary for the sustainable management and protection of coastlines, and is of great importance for numerical models of sediment dynamics and transport. To investigate the dependence of sediment erodibility on degree of consolidation, we measured turbidity, waves, tidal currents, intratidal bed-level changes, and sediment properties on an exposed macrotidal mudflat during a series of tidal cycles. We estimated the water content of surface sediments (in the uppermost 2 cm of sediment) and sub-surface sediments (at 2 cm below the sediment surface). Bed shear stress values due to currents (τc), waves (τw), and combined current-wave action (τcw) were calculated using a hydrodynamic model. In this study, we estimate the critical shear stress for erosion using two approaches and both of them give similar results. We found that the critical shear stress for erosion (τce) was 0.17-0.18 N/m2 in the uppermost 0-2 cm of sediment and 0.29 N/m2 in sub-surface sediment layers (depth, 2 cm), as determined by time series of τcw values and intratidal bed-level changes, and values of τce, obtained using the water content of bottom sediments, were 0.16 N/m2 in the uppermost 2 cm and 0.28 N/m2 in the sub-surface (depth, 2 cm) sediment. These results indicate that the value of τce for sub-surface sediments (depth, 2 cm) is much greater than that for the uppermost sediments (depth, 0-2 cm), and that the τce value is mainly related to the water content, which is determined by the extent of consolidation. Our results have implications for improving the predictive accuracy of models of sediment transport and morphological evolution, by introducing variable τce values for corresponding sediment layers, and can also provide a mechanistic understanding of bottom sediment erodibility at different sediment depths on intertidal mudflats, as related to differences in the consolidation time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9112L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9112L"><span>A Improved and Highly Effective Seabed Surface Sand Sampling Device</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Ying</p> <p>2017-04-01</p> <p>In marine geology research, it is necessary to obtain a sufficient quantity of seabed surface samples, while also ensuring that the samples are in their original state. Currently, there are a number of seabed surface sampling devices available, but it is very difficult to obtain sand samples using ordinary seabed surface sampling devices, whereas machine-controlled seabed surface sampling devices are unable to dive into deeper regions of water. To obtain larger quantities of samples in their original states, many researchers have tried to improve seabed surface sampling devices, but these efforts have generally produced ambiguous results. To resolve the aforementioned issue, we have designed an improved and highly effective seabed surface sand sampling device, which incorporates the strengths of a variety of sampling devices; it is capable of diving into deeper water regions to obtain sand samples, and is also suited for use in streams, rivers, lakes and seas with varying levels of flow velocities and depth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26695122','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26695122"><span>Recent Advances in TiO2 -Based Nanostructured Surfaces with Controllable Wettability and Adhesion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lai, Yuekun; Huang, Jianying; Cui, Zequn; Ge, Mingzheng; Zhang, Ke-Qin; Chen, Zhong; Chi, Lifeng</p> <p>2016-04-27</p> <p>Bioinspired surfaces with special wettability and adhesion have attracted great interest in both fundamental research and industry applications. Various kinds of special wetting surfaces have been constructed by adjusting the topographical structure and chemical composition. Here, recent progress of the artificial superhydrophobic surfaces with high contrast in solid/liquid adhesion has been reviewed, with a focus on the bioinspired construction and applications of one-dimensional (1D) TiO2-based surfaces. In addition, the significant applications related to artificial super-wetting/antiwetting TiO2-based structure surfaces with controllable adhesion are summarized, e.g., self-cleaning, friction reduction, anti-fogging/icing, microfluidic manipulation, fog/water collection, oil/water separation, anti-bioadhesion, and micro-templates for patterning. Finally, the current challenges and future prospects of this renascent and rapidly developing field, especially with regard to 1D TiO2-based surfaces with special wettability and adhesion, are proposed and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H44H..01P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H44H..01P"><span>AirSWOT Measurements of Water Surface Elevations and Hydraulic Gradients over the Yukon Flats, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pitcher, L. H.; Pavelsky, T.; Smith, L. C.; Moller, D.; Altenau, E. H.; Lion, C.; Bertram, M.; Cooley, S. W.</p> <p>2017-12-01</p> <p>AirSWOT is an airborne, Ka-band synthetic aperture radar interferometer (InSAR) intended to quantify surface water fluxes by mapping water surface elevations (WSE). AirSWOT will also serve as a calibration/validation tool for the Surface Water and Ocean Topography (SWOT) satellite mission (scheduled for launch in 2021). The hydrology objectives for AirSWOT and SWOT are to measure WSE with accuracies sufficient to estimate hydrologic fluxes in lakes, wetlands and rivers. However, current understanding of the performance of these related though not identical instruments when applied to complex river-lake-wetland fluvial environments remains predominantly theoretical. We present AirSWOT data acquired 15-June-2015 over the Yukon Flats, Alaska, USA, together with in situ field surveys, to assess the accuracy of AirSWOT WSE measurements in lakes and rivers. We use these data to demonstrate that AirSWOT can be used to estimate large-scale hydraulic gradients across wetland complexes. Finally, we present key lessons learned from this AirSWOT analysis for consideration in future campaigns, including: maximizing swath overlap for spatial averaging to minimize uncertainty as well as orienting flight paths parallel to river flow directions to reduce along track aircraft drift for neighboring flight paths. We conclude that spatially dense AirSWOT measurements of river and lake WSEs can improve geospatial understanding of surface water hydrology and fluvial processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1994/0482/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1994/0482/report.pdf"><span>Overview of environmental and hydrogeologic conditions at Dillingham, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Palcsak, Betty B.; Dorava, Joseph M.</p> <p>1994-01-01</p> <p>The remote city of Dillingham is at the northern end of Bristol Bay in southwestern Alaska. The hydrology of the area is strongly affected by the mild maritime climate and local geologic conditions. Dillingham residents obtain drinking water from both deep and shallow aquifers composed of gravels and sands and separated by layers of clay underlying the community. Alternative sources of drinking water are limited to the development of new wells because surface-water sources are of inadequate quantity or quality or are located at too great a distance from the population. The Federal Aviation Administration owns or operates airway support facilities in Dillingham and wishes to consider the severity of contamination and the current environmental setting when they evaluate options for compliance with environmental regulations at their facilities. This report describes the climate. vegetation, geology, soils, ground-water and surface-water hydrology, and flood potential of the areas surrounding the Federal Aviation Administration facilities near Dillingham.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012pbdm.book...31M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012pbdm.book...31M"><span>Bio-Decontamination of Water and Surfaces by DC Discharges in Atmospheric Air</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Machala, Zdenko; Tarabová, Barbora; Pelach, Michal; Šipoldová, Zuzana; Hensel, Karol; Janda, Mário; Šikurová, Libuša</p> <p></p> <p>Two types of DC-driven atmospheric air discharges, including a streamer corona and a transient spark with short high current pulses of limited energy, were employed for bio-decontamination of water and various surfaces (agar plates, plastic foils, human teeth) contaminated by bacteria or spores (Salmonella typhimurium, Bacillus cereus). Both discharges generate cold non-equilibrium plasma. The discharges combined with the electro-spraying of the treated water through the needle electrode lead to fast and efficient bio-decontamination. Experiments comparing direct and indirect plasma effects, oxidation stress measurements in the cell membranes, and chemical changes induced in the treated water enable assessment of the plasma agents being responsible for microbial inactivation. Radicals and reactive oxygen species seem to be dominant biocidal agents, although deeper understanding of the plasma-induced water chemistry and of the temporal evolution of the bio-inactivation processes is needed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>