NASA Goddard Thermal Technology Overview 2018
NASA Technical Reports Server (NTRS)
Butler, Dan; Swanson, Ted
2018-01-01
This presentation summarizes the current plans and efforts at NASA/Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently submitted NASA budget will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology Implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of thermal control coatings, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.
Technology Alignment and Portfolio Prioritization (TAPP)
NASA Technical Reports Server (NTRS)
Funaro, Gregory V.; Alexander, Reginald A.
2015-01-01
Technology Alignment and Portfolio Prioritization (TAPP) is a method being developed by the Advanced Concepts Office, at NASA Marshall Space Flight Center. The TAPP method expands on current technology assessment methods by incorporating the technological structure underlying technology development, e.g., organizational structures and resources, institutional policy and strategy, and the factors that motivate technological change. This paper discusses the methods ACO is currently developing to better perform technology assessments while taking into consideration Strategic Alignment, Technology Forecasting, and Long Term Planning.
The Current Status on the Overseas Development of Magnetic Suspension Railroads,
1986-02-04
country appears to make all possible efforts to gain new technologies. Technologies obtained during the development stages are being applied to other...lQ63-A - 224 & FOREIGN TECHNOLOGY DIVISION IV-. THE CURRENT STATUS ON THE OVERSEAS DEVELOPMENT OF MAGNETIC SUSPENSION RAILROADS by Yoshiyasu 1Kyani...86 MICOFIHE R:FTD-86-C-001454 IV. THE CURRENT STATUS ON THE OVERSEAS DEVELOPMENT OF MAGNETIC SUSPENSION RAILROADS By: Yoshiyasu Kyotani English pages
NASA Goddard Thermal Technology Overview 2017
NASA Technical Reports Server (NTRS)
Butler, Dan; Swanson, Ted
2017-01-01
This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently enacted FY 17 NASA budget, which includes a sizeable increase, will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology Implementation on current flight programs will be reviewed, and the recent push for CubeSat mission development will also be addressed. Many of these technologies also have broad applicability to DOD (Dept. of Defense), DOE (Dept. of the Environment), and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.
NASA Goddard Thermal Technology Overview 2016
NASA Technical Reports Server (NTRS)
Butler, Dan; Swanson, Ted
2016-01-01
This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently enacted FY 16 NASA budget, which includes a sizeable increase, will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.
Aquantis C-Plane Ocean Current Turbine Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Alex
The Aquantis 2.5 MW Ocean Current Generation Device technology developed by Dehlsen Associates, LLC (DA) is a derivation of wind power generating technology (a means of harnessing a slow moving fluid) adapted to the ocean environment. The Aquantis Project provides an opportunity for accelerated technological development and early commercialization, since it involves the joining of two mature disciplines: ocean engineering and wind turbine design. The Aquantis Current Plane (C-Plane) technology is an ocean current turbine designed to extract kinetic energy from a current flow. The technology is capable of achieving competitively priced, continuous, base-load, and reliable power generation from amore » source of renewable energy not before possible in this scale or form.« less
DOT National Transportation Integrated Search
2001-06-01
Some advanced air bag technologies are currently being installed in vehicles and others are still being developed. The principal advanced technology that is currently being installed in some vehicles is air bags that can inflate with lower or higher ...
NASA/Goddard Thermal Technology Overview 2014
NASA Technical Reports Server (NTRS)
Butler, Daniel; Swanson, Theodore D.
2014-01-01
This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the Technology Development Program at NASA. While funding for basic technology development is still scarce, significant efforts are being made in direct support of flight programs. New technology development continues to be driven by the needs of future missions, and applications of these technologies to current Goddard programs will be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program, the Small Business Innovative Research (SBIR) program, and the NASA Engineering and Safety Center (NESC), are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, development of high electrical conductivity coatings, and various other research activities. New Technology program underway at NASA, although funding is limited center dot NASA/GSFC's primary mission of science satellite development is healthy and vibrant, although new missions are scarce - now have people on overhead working new missions and proposals center dot Future mission applications promise to be thermally challenging center dot Direct technology funding is still very restricted - Projects are the best source for direct application of technology - SBIR thermal subtopic resurrected in FY 14 - Limited Technology development underway via IRAD, NESC, other sources - Administrator pushing to revive technology and educational programs at NASA - new HQ directorate established
Technology for small spacecraft
NASA Technical Reports Server (NTRS)
1994-01-01
This report gives the results of a study by the National Research Council's Panel on Small Spacecraft Technology that reviewed NASA's technology development program for small spacecraft and assessed technology within the U.S. government and industry that is applicable to small spacecraft. The panel found that there is a considerable body of advanced technology currently available for application by NASA and the small spacecraft industry that could provide substantial improvement in capability and cost over those technologies used for current NASA small spacecraft. These technologies are the result of developments by commercial companies, Department of Defense agencies, and to a lesser degree NASA. The panel also found that additional technologies are being developed by these same entities that could provide additional substantial improvement if development is successfully completed. Recommendations for future technology development efforts by NASA across a broad technological spectrum are made.
NASA Technical Reports Server (NTRS)
Bassler, Julie A.; Bodiford, Melanie P.; Fiske, Michael R.; Strong, Janet D.
2005-01-01
NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Engineers and Scientists at the Marshall Space Flight Center are evaluating current technologies for in situ exploration habitat and fabrication and repair applications. Several technologies to be addressed in this paper have technology readiness levels (TRLs) that are currently mature enough to pursue for exploration purposes. However, many technologies offer promising applications but these must be pulled along by the demands and applications of this great initiative. The In Situ Fabrication and Repair (ISFR) program will supply and push state of the art technologies for applications such as habitat structure development, in situ resource utilization for tool and part fabrication, and repair and replacement of common life support elements. This paper will look at the current and future habitat technology applications such as the implementation of in situ environmental elements such as caves, rilles and lavatubes, the development of lunar regolith concrete and structure design and development, thin film and inflatable technologies. We will address current rapid prototyping technologies, their ISFR applications and near term advancements. We will discuss the anticipated need to utilize in situ resources to produce replacement parts and fabricate repairs to vehicles, habitats, life support and quality of life elements. All ISFR technology developments will incorporate automated deployment and robotic construction and fabrication techniques. The current state of the art for these applications is fascinating, but the future is out of this world.
Aquantis Ocean Current Turbine Development Project Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Alex J.
2014-08-23
The Aquantis® Current Plane (“C-Plane”) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.
NASA Technical Reports Server (NTRS)
Flynn, Michael
2004-01-01
Design for microgravity has traditionally not been well integrated early on into the development of advanced life support (ALS) technologies. NASA currently has a many ALS technologies that are currently being developed to high technology readiness levels but have not been formally evaluated for microgravity compatibility. Two examples of such technologies are the Vapor Phase Catalytic Ammonia Removal Technology and the Direct Osmotic Concentration Technology. This presentation will cover the design of theses two systems and will identify potential microgravity issues.
Low-rank coal study: national needs for resource development. Volume 3. Technology evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-11-01
Technologies applicable to the development and use of low-rank coals are analyzed in order to identify specific needs for research, development, and demonstration (RD and D). Major sections of the report address the following technologies: extraction; transportation; preparation, handling and storage; conventional combustion and environmental control technology; gasification; liquefaction; and pyrolysis. Each of these sections contains an introduction and summary of the key issues with regard to subbituminous coal and lignite; description of all relevant technology, both existing and under development; a description of related environmental control technology; an evaluation of the effects of low-rank coal properties on the technology;more » and summaries of current commercial status of the technology and/or current RD and D projects relevant to low-rank coals.« less
Space Station Displays and Controls Technology Evolution
NASA Technical Reports Server (NTRS)
Blackburn, Greg C.
1990-01-01
Viewgraphs on space station displays and controls technology evolution are presented. Topics covered include: a historical perspective; major development objectives; current development activities; key technology areas; and technology evolution issues.
Onboard processor technology review
NASA Technical Reports Server (NTRS)
Benz, Harry F.
1990-01-01
The general need and requirements for the onboard embedded processors necessary to control and manipulate data in spacecraft systems are discussed. The current known requirements are reviewed from a user perspective, based on current practices in the spacecraft development process. The current capabilities of available processor technologies are then discussed, and these are projected to the generation of spacecraft computers currently under identified, funded development. An appraisal is provided for the current national developmental effort.
ERIC Educational Resources Information Center
Igami, Masatsura; Okazaki, Teruo
2007-01-01
This analysis aims at capturing current inventive activities in nanotechnologies based on the analysis of patent applications to the European Patent Office (EPO). Reported findings include: (1) Nanotechnology is a multifaceted technology, currently consisting of a set of technologies on the nanometre scale rather than a single technological field;…
Sensor Technology for Integrated Vehicle Health Management of Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Prosser, W. H.; Brown, T. L.; Woodard, S. E.; Fleming, G. A.; Cooper, E. G.
2002-01-01
NASA is focusing considerable efforts on technology development for Integrated Vehicle Health Management systems. The research in this area is targeted toward increasing aerospace vehicle safety and reliability, while reducing vehicle operating and maintenance costs. Onboard, real-time sensing technologies that can provide detailed information on structural integrity are central to such a health management system. This paper describes a number of sensor technologies currently under development for integrated vehicle health management. The capabilities, current limitations, and future research needs of these technologies are addressed.
X-43 Hypersonic Vehicle Technology Development
NASA Technical Reports Server (NTRS)
Voland, Randall T.; Huebner, Lawrence D.; McClinton, Charles R.
2005-01-01
NASA recently completed two major programs in Hypersonics: Hyper-X, with the record-breaking flights of the X-43A, and the Next Generation Launch Technology (NGLT) Program. The X-43A flights, the culmination of the Hyper-X Program, were the first-ever examples of a scramjet engine propelling a hypersonic vehicle and provided unique, convincing, detailed flight data required to validate the design tools needed for design and development of future operational hypersonic airbreathing vehicles. Concurrent with Hyper-X, NASA's NGLT Program focused on technologies needed for future revolutionary launch vehicles. The NGLT was "competed" by NASA in response to the President s redirection of the agency to space exploration, after making significant progress towards maturing technologies required to enable airbreathing hypersonic launch vehicles. NGLT quantified the benefits, identified technology needs, developed airframe and propulsion technology, chartered a broad University base, and developed detailed plans to mature and validate hypersonic airbreathing technology for space access. NASA is currently in the process of defining plans for a new Hypersonic Technology Program. Details of that plan are not currently available. This paper highlights results from the successful Mach 7 and 10 flights of the X-43A, and the current state of hypersonic technology.
Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems
NASA Technical Reports Server (NTRS)
Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John
2011-01-01
This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.
[Equipment and technology in robotics].
Murphy, Declan; Challacombe, Ben; Nedas, Tim; Elhage, Oussama; Althoefer, Kaspar; Seneviratne, Lakmal; Dasgupta, Prokar
2007-05-01
We review the evolution and current status of robotic equipment and technology in urology. We also describe future developments in the key areas of virtual reality simulation, mechatronics and nanorobotics. The history of robotic technology is reviewed and put into the context of current systems. Experts in the associated fields of nanorobotics, mechatronics and virtual reality simulation simulation review the important future developments in these areas.
NASA's Microgravity Technology Report, 1996: Summary of Activities
NASA Technical Reports Server (NTRS)
Kierk, Isabella
1996-01-01
This report covers technology development and technology transfer activities within the Microgravity Science Research Programs during FY 1996. It also describes the recent major tasks under the Advanced Technology Development (ATD) Program and identifies current technology requirements. This document is consistent with NASA,s Enteprise for the Human Exploration and development of Space (HEDS) Strategic Plan. This annual update reflects changes in the Microgravity Science Research Program's new technology activities and requirements. Appendix A. FY 1996 Advanced Technology Development. Program and Project Descriptions. Appendix B. Technology Development.
A study of mass data storage technology for rocket engine data
NASA Technical Reports Server (NTRS)
Ready, John F.; Benser, Earl T.; Fritz, Bernard S.; Nelson, Scott A.; Stauffer, Donald R.; Volna, William M.
1990-01-01
The results of a nine month study program on mass data storage technology for rocket engine (especially the Space Shuttle Main Engine) health monitoring and control are summarized. The program had the objective of recommending a candidate mass data storage technology development for rocket engine health monitoring and control and of formulating a project plan and specification for that technology development. The work was divided into three major technical tasks: (1) development of requirements; (2) survey of mass data storage technologies; and (3) definition of a project plan and specification for technology development. The first of these tasks reviewed current data storage technology and developed a prioritized set of requirements for the health monitoring and control applications. The second task included a survey of state-of-the-art and newly developing technologies and a matrix-based ranking of the technologies. It culminated in a recommendation of optical disk technology as the best candidate for technology development. The final task defined a proof-of-concept demonstration, including tasks required to develop, test, analyze, and demonstrate the technology advancement, plus an estimate of the level of effort required. The recommended demonstration emphasizes development of an optical disk system which incorporates an order-of-magnitude increase in writing speed above the current state of the art.
Issues that Drive Waste Management Technology Development for Space Missions
NASA Technical Reports Server (NTRS)
Fisher, John W.; Levri, Julie A.; Hogan, John A.; Wignarajah, Kanapathipillai
2005-01-01
Waste management technologies for space life support systems are currently at low development levels. Manual compaction of waste in plastic bags and overboard disposal to earth return vehicles are the primary current waste management methods. Particularly on future missions, continuance of current waste management methods would tend to expose the crew to waste hazards, forfeit recoverable resources such as water, consume valuable crew time, contaminate planetary surfaces, and risk return to Earth of extraterrestrial life. Improvement of waste management capabilities is needed for adequate management of wastes. Improvements include recovery of water and other resources, conversion of waste to states harmless to humans, long-term containment of wastes, and disposal of waste. Current NASA requirements documents on waste management are generally not highly detailed. More detailed requirements are needed to guide the development of waste management technologies that will adequately manage waste. In addition to satisfying requirements, waste management technologies must also recover resources. Recovery of resources such as water and habitat volume can reduce mission cost. This paper explores the drivers for waste management technology development including requirements and resource recovery.
High Energy Laser Joint Technology Office: a mission overview
NASA Astrophysics Data System (ADS)
Seeley, Don D.; Slater, John M.
2004-10-01
The High Energy Laser Joint Technology Office (HEL-JTO) was established in 2000 for the purpose of developing and executing a comprehensive investment strategy for HEL science and technology that would underpin weapons development. The JTO is currently sponsoring 80 programs across industry, academia, and government agencies with a budget of approximately $60 million. The competitively awarded programs are chosen to advance the current state of the art in HEL technology and fill technology gaps, thus providing a broad capability that can be harvested in acquisition programs by the military services.
ACOG Technology Assessment in Obstetrics and Gynecology No. 6: Robot-assisted surgery.
2009-11-01
The field of robotic surgery is developing rapidly, but experience with this technology is currently limited. In response to increasing interest in robotics technology, the Committee on Gynecologic Practice's Technology Assessment was developed to describe the robotic surgical system,potential advantages and disadvantages, gynecologic applications, and the current state of the evidence. Randomized trials comparing robot-assisted surgery with traditional laparoscopic, vaginal, or abdominal surgery are needed to evaluate long-term clinical outcomes and cost-effectiveness, as well as to identify the best applications of this technology.
NASA Technical Reports Server (NTRS)
Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.
1999-01-01
In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.
NASA Technical Reports Server (NTRS)
Rosmait, Russell L.
1996-01-01
The development of a new space transportation system in a climate of constant budget cuts and staff reductions can be and is a difficult task. It is no secret that NASA's current launching system consumes a very large portion of NASA funding and requires a large army of people to operate & maintain the system. The new Reusable Launch Vehicle (RLV) project and it's programs are faced with a monumental task of making the cost of access to space dramatically lower and more efficient than NASA's current system. With pressures from congressional budget cutters and also increased competition and loss of market share from international agencies RLV's first priority is to develop a 'low-cost, reliable transportation to earth orbit.' One of the RLV's major focus in achieving low-cost, reliable transportation to earth orbit is to rely on the maturing of advanced technologies. The technologies for the RLV are numerous and varied. Trying to assess their current status, within the RLV development program is paramount. There are several ways to assess these technologies. One way is through the use of Technology Readiness Levels (TRL's). This project focused on establishing current (summer 95) 'worst case' TRL's for six selected technologies that are under consideration for use within the RLV program. The six technologies evaluated were Concurrent Engineering, Embedded Sensor Technology, Rapid Prototyping, Friction Stir Welding, Thermal Spray Coatings, and VPPA Welding.
NASA Technical Reports Server (NTRS)
Bodiford, Melanie P.; Gilley, Scott D.; Howard, Richard W.; Kennedy, James P.; Ray, Julie A.
2005-01-01
NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Engineers and Scientists at the Marshall Space Flight Center (MSFC) are evaluating current technologies for in situ resource-based exploration fabrication and repair applications. Several technologies to be addressed in this paper have technology readiness levels (TRLs) that are currently mature enough to pursue for exploration purposes. However, many technologies offer promising applications but these must be pulled along by the demands and applications of this great initiative. The In Situ Fabrication and Repair (ISFR) Element will supply and push state of the art technologies for applications such as habitat structure development, in situ resource utilization for tool and part fabrication, and repair and replacement of common life support elements, as well as non-destructive evaluation. This paper will address current rapid prototyping technologies, their ISFR applications and near term advancements. We will discuss the anticipated need to utilize in situ resources to produce replacement parts and fabricate repairs to vehicles, habitats, life support and quality of life elements. Many ISFR technology developments will incorporate automated deployment and robotic construction and fabrication techniques. The current state of the art for these applications is fascinating, but the future is out of this world.
Advanced thermal control technology for commercial applications
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.
1991-01-01
A number of the technologies previously developed for the thermal control of spacecraft have found their way into commercial application. Specialized coatings and heat pipes are but two examples. The thermal control of current and future spacecraft is becoming increasingly more demanding, and a variety of new technologies are being developed to meet these needs. Closed two-phase loops are perceived to be the answer to many of the new requirements. All of these technologies are discussed, and their spacecraft and current terrestrial applications are summarized.
Norris, Edmund J; Coats, Joel R
2017-01-29
Every year, approximately 700,000 people die from complications associated with etiologic disease agents transmitted by mosquitoes. While insecticide-based vector control strategies are important for the management of mosquito-borne diseases, insecticide-resistance and other logistical hurdles may lower the efficacy of this approach, especially in developing countries. Repellent technologies represent another fundamental aspect of preventing mosquito-borne disease transmission. Among these technologies, spatial repellents are promising alternatives to the currently utilized contact repellents and may significantly aid in the prevention of mosquito-borne disease if properly incorporated into integrated pest management approaches. As their deployment would not rely on prohibitively expensive or impractical novel accessory technologies and resources, they have potential utility in developing countries where the burden of mosquito-borne disease is most prevalent. This review aims to describe the history of various repellent technologies, highlight the potential of repellent technologies in preventing the spread of mosquito-borne disease, and discuss currently known mechanisms that confer resistance to current contact and spatial repellents, which may lead to the failures of these repellents. In the subsequent section, current and future research projects aimed at exploring long-lasting non-pyrethroid spatial repellent molecules along with new paradigms and rationale for their development will be discussed.
Norris, Edmund J.; Coats, Joel R.
2017-01-01
Every year, approximately 700,000 people die from complications associated with etiologic disease agents transmitted by mosquitoes. While insecticide-based vector control strategies are important for the management of mosquito-borne diseases, insecticide-resistance and other logistical hurdles may lower the efficacy of this approach, especially in developing countries. Repellent technologies represent another fundamental aspect of preventing mosquito-borne disease transmission. Among these technologies, spatial repellents are promising alternatives to the currently utilized contact repellents and may significantly aid in the prevention of mosquito-borne disease if properly incorporated into integrated pest management approaches. As their deployment would not rely on prohibitively expensive or impractical novel accessory technologies and resources, they have potential utility in developing countries where the burden of mosquito-borne disease is most prevalent. This review aims to describe the history of various repellent technologies, highlight the potential of repellent technologies in preventing the spread of mosquito-borne disease, and discuss currently known mechanisms that confer resistance to current contact and spatial repellents, which may lead to the failures of these repellents. In the subsequent section, current and future research projects aimed at exploring long-lasting non-pyrethroid spatial repellent molecules along with new paradigms and rationale for their development will be discussed. PMID:28146066
NASA Technical Reports Server (NTRS)
Lange, R. H.; Sturgeon, R. F.; Adams, W. E.; Bradley, E. S.; Cahill, J. F.; Eudaily, R. R.; Hancock, J. P.; Moore, J. W.
1972-01-01
Investigations were conducted to evaluate the relative benefits attainable through the exploitation of advanced technologies and to identify future research and development efforts required to permit the application of selected technologies to transport aircraft entering commercial operation in 1985. Results show that technology advances, particularly in the areas of composite materials, supercritical aerodynamics, and active control systems, will permit the development of long-range, high-payload commercial transports operating at high-subsonic speeds with direct operating costs lower than those of current aircraft. These advanced transports also achieve lower noise levels and lower engine pollutant emissions than current transports. Research and development efforts, including analytical investigations, laboratory test programs, and flight test programs, are required in essentially all technology areas to achieve the potential technology benefits.
NASA Astrophysics Data System (ADS)
Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley
2015-09-01
The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman;
2015-01-01
The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.
Solar sail science mission applications and advancement
NASA Astrophysics Data System (ADS)
Macdonald, Malcolm; McInnes, Colin
2011-12-01
Solar sailing has long been envisaged as an enabling or disruptive technology. The promise of open-ended missions allows consideration of radically new trajectories and the delivery of spacecraft to previously unreachable or unsustainable observation outposts. A mission catalogue is presented of an extensive range of potential solar sail applications, allowing identification of the key features of missions which are enabled, or significantly enhance, through solar sail propulsion. Through these considerations a solar sail application-pull technology development roadmap is established, using each mission as a technology stepping-stone to the next. Having identified and developed a solar sail application-pull technology development roadmap, this is incorporated into a new vision for solar sailing. The development of new technologies, especially for space applications, is high-risk. The advancement difficulty of low technology readiness level research is typically underestimated due to a lack of recognition of the advancement degree of difficulty scale. Recognising the currently low technology readiness level of traditional solar sailing concepts, along with their high advancement degree of difficulty and a lack of near-term applications a new vision for solar sailing is presented which increases the technology readiness level and reduces the advancement degree of difficulty of solar sailing. Just as the basic principles of solar sailing are not new, they have also been long proven and utilised in spacecraft as a low-risk, high-return limited-capability propulsion system. It is therefore proposed that this significant heritage be used to enable rapid, near-term solar sail future advancement through coupling currently mature solar sail, and other, technologies with current solar sail technology developments. As such the near-term technology readiness level of traditional solar sailing is increased, while simultaneously reducing the advancement degree of difficulty along the solar sail application-pull technology development roadmap.
Extravehicular Activity Technology Development Status and Forecast
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Westheimer, David T.
2011-01-01
The goal of NASA s current EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be to reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA hardware life and limited availability of the Extravehicular Mobility Units (EMUs) will eventually become a critical issue. The current EMU has successfully served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability will be needed and the current architectures and technologies under development offer significant improvements over the current flight systems. In addition to ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an EVA capability for these types of missions enables in-space construction of complex vehicles or satellites, hands on exploration of new parts of our solar system, and engages the public through the inspiration of knowing that humans are exploring places that they have never been before. This paper offers insight into what is currently being developed and what the potential opportunities are in the forecast.
Technology-based suicide prevention: current applications and future directions.
Luxton, David D; June, Jennifer D; Kinn, Julie T
2011-01-01
This review reports on current and emerging technologies for suicide prevention. Technology-based programs discussed include interactive educational and social networking Web sites, e-mail outreach, and programs that use mobile devices and texting. We describe innovative applications such as virtual worlds, gaming, and text analysis that are currently being developed and applied to suicide prevention and outreach programs. We also discuss the benefits and limitations of technology-based applications and discuss future directions for their use.
Technological Literacy: A Multiliteracies Approach for Democracy
ERIC Educational Resources Information Center
Williams, P. John
2009-01-01
Throughout history various grand narratives have impacted on technology education. In the current post modern era of globalization, technology education continues to struggle for relevance and definition, and takes various forms in different countries, but none seem resoundingly successful. The current development of what some have termed a…
Review of spectral imaging technology in biomedical engineering: achievements and challenges.
Li, Qingli; He, Xiaofu; Wang, Yiting; Liu, Hongying; Xu, Dongrong; Guo, Fangmin
2013-10-01
Spectral imaging is a technology that integrates conventional imaging and spectroscopy to get both spatial and spectral information from an object. Although this technology was originally developed for remote sensing, it has been extended to the biomedical engineering field as a powerful analytical tool for biological and biomedical research. This review introduces the basics of spectral imaging, imaging methods, current equipment, and recent advances in biomedical applications. The performance and analytical capabilities of spectral imaging systems for biological and biomedical imaging are discussed. In particular, the current achievements and limitations of this technology in biomedical engineering are presented. The benefits and development trends of biomedical spectral imaging are highlighted to provide the reader with an insight into the current technological advances and its potential for biomedical research.
Project Icarus: Nuclear Fusion Propulsion Concept Comparison
NASA Astrophysics Data System (ADS)
Stanic, M.
Project Icarus will use nuclear fusion as the primary propulsion, since achieving breakeven is imminent within the next decade. Therefore, fusion technology provides confidence in further development and fairly high technological maturity by the time the Icarus mission would be plausible. Currently there are numerous (over 2 dozen) different fusion approaches that are simultaneously being developed around the World and it is difficult to predict which of the concepts is going to be the most successful one. This study tried to estimate current technological maturity and possible technological extrapolation of fusion approaches for which appropriate data could be found. Figures of merit that were assessed include: current technological state, mass and volume estimates, possible gain values, main advantages and disadvantages of the concept and an attempt to extrapolate current technological state for the next decade or two. Analysis suggests that Magnetic Confinement Fusion (MCF) concepts are not likely to deliver sufficient performance due to size, mass, gain and large technological barriers of the concept. However, ICF and PJMIF did show potential for delivering necessary performance, assuming appropriate techno- logical advances. This paper is a submission of the Project Icarus Study Group.
A Process for Technology Prioritization in a Competitive Environment
NASA Technical Reports Server (NTRS)
Stephens, Karen; Herman, Melody; Griffin, Brand
2006-01-01
This slide presentation reviews NASA's process for prioritizing technology requirements where there is a competitive environment. The In-Space Propulsion Technology (ISPT) project is used to exemplify the process. The ISPT project focuses on the mid level Technology Readiness Level (TRL) for development. These are TRL's 4 through 6, (i.e. Technology Development and Technology Demonstration. The objective of the planning activity is to identify the current most likely date each technology is needed and create ISPT technology development schedules based on these dates. There is a minimum of 4 years between flight and pacing mission. The ISPT Project needed to identify the "pacing mission" for each technology in order to provide funding for each area. Graphic representations show the development of the process. A matrix shows which missions are currently receiving pull from the both the Solar System Exploration and the Sun-Solar System Connection Roadmaps. The timeframes of the pacing missions technologies are shown for various types of propulsion. A pacing mission that was in the near future serves to increase the priority for funding. Adaptations were made when budget reductions precluded the total implementation of the plan.
Advanced adaptive optics technology development
NASA Astrophysics Data System (ADS)
Olivier, Scot S.
2002-02-01
The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.
NASA Technical Reports Server (NTRS)
Cockrell, Charles E., Jr.
2003-01-01
The Next Generation Launch Technology (NGLT) program, Vehicle Systems Research and Technology (VSR&T) project is pursuing technology advancements in aerothermodynamics, aeropropulsion and flight mechanics to enable development of future reusable launch vehicle (RLV) systems. The current design trade space includes rocket-propelled, hypersonic airbreathing and hybrid systems in two-stage and single-stage configurations. Aerothermodynamics technologies include experimental and computational databases to evaluate stage separation of two-stage vehicles as well as computational and trajectory simulation tools for this problem. Additionally, advancements in high-fidelity computational tools and measurement techniques are being pursued along with the study of flow physics phenomena, such as boundary-layer transition. Aero-propulsion technology development includes scramjet flowpath development and integration, with a current emphasis on hypervelocity (Mach 10 and above) operation, as well as the study of aero-propulsive interactions and the impact on overall vehicle performance. Flight mechanics technology development is focused on advanced guidance, navigation and control (GN&C) algorithms and adaptive flight control systems for both rocket-propelled and airbreathing vehicles.
ERIC Educational Resources Information Center
Okita, Sandra Y.; Jamalian, Azadeh
2011-01-01
Developing curriculum and instruction for mathematics education and designing technologically enhanced learning environments are often pursued separately, but may need to be addressed together to effectively link the strengths of technology to performance in mathematics and conceptual understanding. This paper addresses current challenges with…
NASA communications technology research and development
NASA Technical Reports Server (NTRS)
Durham, A. F.; Stankiewicz, N.
1979-01-01
The development of a 1978 NASA study to identify technology requirements is surveyed, and its principal conclusions, recommendations, and priorities are summarized. In addition, antenna, traveling wave tube, and solid state amplifier developments representing selected items from the current communications technology development programs at the NASA Lewis Research and Goddard Space Flight Centers are described.
Educational Videodisc in Canada. New Technologies in Canadian Education Series. Paper 13.
ERIC Educational Resources Information Center
Tobin, Judith
This paper describes the development and current state of videodisk technology in Canada. The first section focuses on the technology itself, i.e., the disks, disk players, and the possibilities they offer for interaction between learner and machine. The current costs of the technology and the probable effect of these costs on the market are also…
Advanced technologies for Mission Control Centers
NASA Technical Reports Server (NTRS)
Dalton, John T.; Hughes, Peter M.
1991-01-01
Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.
Memex Meets Madonna: Multimedia at the Intersection of Information and Entertainment.
ERIC Educational Resources Information Center
Kinney, Thomas
1992-01-01
Proposes a personal information management technology called Memex-TV that might develop from advances in entertainment technology. Topics addressed include capabilities of the new system, system design, the scenario for development of Memex-TV as an entertainment technology spin-off, current entertainment technology trends, a typical evening with…
Selected nursery projects at the Missoula Technology and Development Center
Brian Vachowski
2007-01-01
The USDA Forest Service Missoula Technology and Development Center (MTDC) offers technical expertise, technology transfer, and new equipment development to federal, state, and private forest nurseries. Current and recently completed projects at MTDC include a container block steam sterilizer, shielded herbicide sprayer, time-domain reflectometry (TDR) nursery soil...
Turnaround Operations Analysis for OTV. Volume 3: Technology Development Plan
NASA Technical Reports Server (NTRS)
1988-01-01
An integrated technology development plan for the technologies required to process both GBOTVs and SBOTVs are described. The plan includes definition of the tests and experiments to be accomplished on the ground, in a Space Shuttle Sortie Mission, on an Expendable Launch Vehicle, or at the Space Station as a Technology Development Mission (TDM). The plan reflects and accommodates current and projected research and technology programs where appropriate.
[Industry of traditional Chinese patent medicine science and technology development and review].
Lu, Jianwei; Wang, Fang; Yan, Dongmei; Luo, Yun; Yang, Ming
2012-01-01
"Fifteen" since, our country Chinese traditional medicine industry science and technology has made remarkable achievements. In this paper, the development of science and technology policy, Chinese medicine industry, platform construction and other aspects were analyzed, showing 10 years of Chinese traditional medicine industry development of science and technology innovation achievement and development, and on the current development of traditional Chinese medicine industry facing the main tasks and guarantee measures are analyzed.
Current technology in ion and electrothermal propulsion
NASA Technical Reports Server (NTRS)
Finke, R. C.; Murch, C. K.
1973-01-01
High performance propulsion devices, such as electrostatic ion engines and electrothermal thrusters, are achieving wide user acceptance. The current technology and projected development trends in the areas of ion and electrothermal propulsion systems and components are surveyed.
Gear Damage Detection Integrating Oil Debris and Vibration Measurement Technologies Developed
NASA Technical Reports Server (NTRS)
Gyekeyeski, Andrew L.; Sawicki, Jerzy T.
2001-01-01
The development of highly reliable health-monitoring systems is one technology area recommended for reducing the number of helicopter accidents. Helicopter transmission diagnostics are an important part of a helicopter health-monitoring system because helicopters depend on the power train for propulsion, lift, and flight maneuvering. One technique currently being tested for increasing the reliability and decreasing the false alarm rate of current transmission diagnostic tools is the replacement of simple single-sensor limits with multisensor systems integrating different measurement technologies.
Method for technology-delivered healthcare measures.
Kramer-Jackman, Kelli Lee; Popkess-Vawter, Sue
2011-12-01
Current healthcare literature lacks development and evaluation methods for research and practice measures administered by technology. Researchers with varying levels of informatics experience are developing technology-delivered measures because of the numerous advantages they offer. Hasty development of technology-delivered measures can present issues that negatively influence administration and psychometric properties. The Method for Technology-delivered Healthcare Measures is designed to systematically guide the development and evaluation of technology-delivered measures. The five-step Method for Technology-delivered Healthcare Measures includes establishment of content, e-Health literacy, technology delivery, expert usability, and participant usability. Background information and Method for Technology-delivered Healthcare Measures steps are detailed.
Technology gap assessment for a future large-aperture ultraviolet-optical-infrared space telescope
NASA Astrophysics Data System (ADS)
Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Crooke, Julie; Feinberg, Lee; Quijada, Manuel; Rauscher, Bernard J.; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl M.; Thronson, Harley
2016-10-01
The Advanced Technology Large Aperture Space Telescope (ATLAST) team identified five key technology areas to enable candidate architectures for a future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, "Enduring Quests, Daring Visions." The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technology areas are internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescope systems, detectors, and mirror coatings. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current technology readiness level (TRL), thus identifying the current technology gap. We also report on current, planned, or recommended efforts to develop each technology to TRL 5.
Power systems for future missions
NASA Technical Reports Server (NTRS)
Gill, S. P.; Frye, P. E.; Littman, Franklin D.; Meisl, C. J.
1994-01-01
A comprehensive scenario of future missions was developed and applicability of different power technologies to these missions was assessed. Detailed technology development roadmaps for selected power technologies were generated. A simple methodology to evaluate economic benefits of current and future power system technologies by comparing Life Cycle Costs of potential missions was developed. The methodology was demonstrated by comparing Life Cycle Costs for different implementation strategies of DIPS/CBC technology to a selected set of missions.
NASA's Microgravity Technology Report: Summary of Activities 1997
NASA Technical Reports Server (NTRS)
Woodard, Dan
1998-01-01
The purpose of the 1997 NASA Microgravity Technology Report is to update the Microgravity Research Program's technology development policy and to present and assess current technology related activities and requirements identified within its research and technology disciplines.
Brian Vachowski
2006-01-01
The USDA Forest Service Missoula Technology and Development Center (MTDC) offers technical expertise, technology transfer, and new equipment development to Federal, State, and private forest nurseries. Current and recently completed projects at MTDC include a nursery soil moisture meter, remote data collection systems, low cost weather stations, electronic soil...
Sensor Acquisition for Water Utilities: A Survey and Technology List
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alai, M; Glascoe, L; Love, A
2005-03-07
The early detection of the deliberate biological and chemical contamination of water distribution systems is a necessary capability for securing the nation's water supply. Current and emerging early-detection technology capabilities and shortcomings need to be identified and assessed to provide government agencies and water utilities with an improved methodology for assessing the value of installing these technologies. The Department of Homeland Security (DHS) has tasked a multi-laboratory team to evaluate current and future needs to protect the nation's water distribution infrastructure by supporting an objective evaluation of current and new technologies. The primary deliverables from this Operational Technology Demonstration (OTD)more » are the following: (1) establishment of an advisory board for review and approval of testing protocols, technology acquisition processes and recommendations for technology test and evaluation in laboratory and field settings; (2) development of a technology acquisition process; (3) creation of laboratory and field testing and evaluation capability; and (4) testing of candidate technologies for insertion into a water early warning system. The initial phase of this study involves the development of two separate but complementary strategies to be reviewed by the advisory board: (1) a technology acquisition strategy, and (2) a technology evaluation strategy. Lawrence Livermore National Laboratory and Sandia National Laboratories are tasked with the first strategy, while Los Alamos, Pacific Northwest, and Oak Ridge National Laboratories are tasked with the second strategy. The first goal of the acquisition strategy is the development of a technology survey process that includes a review of previous sensor surveys and current test programs and then the development of a method to solicit and select existing and emerging sensor technologies for evaluation and testing. In this paper we discuss a survey of previous efforts by governmental agencies and private companies with the aim of facilitating a water sensor technology acquisition procedure. We provide a survey of previous sensor studies with regard to the use of Early Warning Systems (EWS) including earlier surveys, testing programs, and response studies. In the project we extend this earlier work by developing a list of important sensor specifications that are then used to help assemble a sensor selection criteria. A list of sensor technologies with their specifications is appended to this document. This list will assist the second goal of the project which is a recommendation of candidate technologies for laboratory and field testing.« less
Network Centric Warfare, Command, and the Nature of War
2009-05-21
technologies. This future is a possibility arising from the current trend of developments in information and communication technologies. These...technologies are developing at such a rate that it is difficult for organizations to adapt quickly enough to exploit the advantages of emerging new...revolution. In fact, some contemporary military theorists argue that developments in information technologies are the catalyst for a new military
Current biodefense vaccine programs and challenges.
Wolfe, Daniel N; Florence, William; Bryant, Paula
2013-07-01
The Defense Threat Reduction Agency's Joint Science and Technology Office manages the Chemical and Biological Defense Program's Science and Technology portfolio. The Joint Science and Technology Office's mission is to invest in transformational ideas, innovative people and actionable technology development for Chemical and Biological Defense solutions, with the primary goal to deliver Science and Technology products and capabilities to the warfighter and civilian population that outpace the threat. This commentary focuses on one thrust area within this mission: the Vaccine program of the Joint Science and Technology Office's Translational Medical Division. Here, we will describe candidate vaccines currently in the S&T pipeline, enabling technologies that should facilitate advanced development of these candidates into FDA licensed vaccines, and how the ever-changing biological threat landscape impacts the future of biodefense vaccines.
Recent Advances in Biosensor Development for Foodborne Virus Detection
Neethirajan, Suresh; Ahmed, Syed Rahin; Chand, Rohit; Buozis, John; Nagy, Éva
2017-01-01
Outbreaks of foodborne diseases related to fresh produce have been increasing in North America and Europe. Viral foodborne pathogens are poorly understood, suffering from insufficient awareness and surveillance due to the limits on knowledge, availability, and costs of related technologies and devices. Current foodborne viruses are emphasized and newly emerging foodborne viruses are beginning to attract interest. To face current challenges regarding foodborne pathogens, a point-of-care (POC) concept has been introduced to food testing technology and device. POC device development involves technologies such as microfluidics, nanomaterials, biosensors and other advanced techniques. These advanced technologies, together with the challenges in developing foodborne virus detection assays and devices, are described and analysed in this critical review. Advanced technologies provide a path forward for foodborne virus detection, but more research and development will be needed to provide the level of manufacturing capacity required. PMID:29071193
Sensor Acquisition for Water Utilities: Survey, Down Selection Process, and Technology List
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alai, M; Glascoe, L; Love, A
2005-06-29
The early detection of the biological and chemical contamination of water distribution systems is a necessary capability for securing the nation's water supply. Current and emerging early-detection technology capabilities and shortcomings need to be identified and assessed to provide government agencies and water utilities with an improved methodology for assessing the value of installing these technologies. The Department of Homeland Security (DHS) has tasked a multi-laboratory team to evaluate current and future needs to protect the nation's water distribution infrastructure by supporting an objective evaluation of current and new technologies. The LLNL deliverable from this Operational Technology Demonstration (OTD) wasmore » to assist the development of a technology acquisition process for a water distribution early warning system. The technology survey includes a review of previous sensor surveys and current test programs and a compiled database of relevant technologies. In the survey paper we discuss previous efforts by governmental agencies, research organizations, and private companies. We provide a survey of previous sensor studies with regard to the use of Early Warning Systems (EWS) that includes earlier surveys, testing programs, and response studies. The list of sensor technologies was ultimately developed to assist in the recommendation of candidate technologies for laboratory and field testing. A set of recommendations for future sensor selection efforts has been appended to this document, as has a down selection example for a hypothetical water utility.« less
Characterization of Cold Sprayed CuCrAl Coated GRCop-84 Substrates for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Raj, S . V.; Barrett, C. A.; Lerch, B. A.; Karthikeyan, J.; Ghosn, L. J.; Haynes, J.
2005-01-01
An advanced Cu-8(at.%)Cr-4%Nb alloy developed at NASA's Glenn Research Center, and designated as GRCop-84, is currently being considered for use as combustor liners and nozzles in NASA's future generations of reusable launch vehicles (RLVs). Despite the fact that this alloy has superior mechanical and oxidation properties compared to many commercially available copper alloys, it is felt that its high temperature and environmental resistance capabilities can be further enhanced with the development and use of suitable coatings. Several coatings and processes are currently being evaluated for their suitability and future down selection. A newly developed CuCrAl has shown excellent oxidation resistance compared to current generation Cu-Cr coating alloys. Cold spray technology for depositing the CuCrAl coating on a GRCop-84 substrate is currently being developed under NASA's Next Generation Launch Technology (NGLT) Propulsion Research and Technology (PR&T) project. The microstructures, mechanical and thermophysical properties of overlay coated GRCop-84 substrates are discussed.
The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2014-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems Mission Analysis. ISPTs propulsion technologies include: 1) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; 2) a Hall-effect electric propulsion (HEP) system for sample return and low cost missions; 3) the Advanced Xenon Flow Control System (AXFS); ultra-lightweight propellant tank technologies (ULTT); and propulsion technologies for a Mars Ascent Vehicle (MAV). The AXFS and ULTT are two component technologies being developed with nearer-term flight infusion in mind, whereas NEXT and the HEP are being developed as EP systems. ISPTs entry vehicle technologies are: 1) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GNC) models of blunt-body rigid aeroshells; and aerothermal effect models; and 2) Multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions. The Systems Mission Analysis area is focused on developing tools and assessing the application of propulsion, entry vehicle, and spacecraft bus technologies to a wide variety of mission concepts. Several of the ISPT technologies are related to sample return missions and other spacecraft bus technology needs like: MAV propulsion, MMEEV, and electric propulsion. These technologies, as well as Aerocapture, are more vehicle and mission-focused, and present a different set of technology development challenges. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.
Propulsion Study for Small Transport Aircraft Technology (STAT)
NASA Technical Reports Server (NTRS)
Gill, J. C.; Earle, R. V.; Staton, D. V.; Stolp, P. C.; Huelster, D. S.; Zolezzi, B. A.
1980-01-01
Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988.
Single-cell sequencing technologies: current and future.
Liang, Jialong; Cai, Wanshi; Sun, Zhongsheng
2014-10-20
Intensively developed in the last few years, single-cell sequencing technologies now present numerous advantages over traditional sequencing methods for solving the problems of biological heterogeneity and low quantities of available biological materials. The application of single-cell sequencing technologies has profoundly changed our understanding of a series of biological phenomena, including gene transcription, embryo development, and carcinogenesis. However, before single-cell sequencing technologies can be used extensively, researchers face the serious challenge of overcoming inherent issues of high amplification bias, low accuracy and reproducibility. Here, we simply summarize the techniques used for single-cell isolation, and review the current technologies used in single-cell genomic, transcriptomic, and epigenomic sequencing. We discuss the merits, defects, and scope of application of single-cell sequencing technologies and then speculate on the direction of future developments. Copyright © 2014 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ray, Charles D.; Carrasquillo, Robyn L.; Minton-Summers, Silvia
1997-01-01
This paper provides a summary of current work accomplished under technical task agreement (TTA) by the Marshall Space Flight Center (MSFC) regarding the Environmental Control and Life Support System (ECLSS) as well as future planning activities in support of the International Space Station (ISS). Current activities include ECLSS computer model development, component design and development, subsystem integrated system testing, life testing, and government furnished equipment delivered to the ISS program. A long range plan for the MSFC ECLSS test facility is described whereby the current facility would be upgraded to support integrated station ECLSS operations. ECLSS technology development efforts proposed to be performed under the Advanced Engineering Technology Development (AETD) program are also discussed.
2016-01-01
development requires wind tunnels and ranges that do not currently exist. Furthermore, continued technology matura- tion is needed for thermal management...designed with conceptual design engine model (at existing technology level), or existing propul- sion system, or modified propulsion system (e.g...internal cameras reading gauges and dials and switch positions , directly tapping into current or future avion- ics service buses and integrating
The Potential of Directed Instruction to Teach Effectively Technology Usage
ERIC Educational Resources Information Center
Hosseini, Zahra
2016-01-01
Currently, teacher educational systems tend to develop their teachers' knowledge to effectively integrate technology in teaching. Consequently, numerous studies have attempted to describe strategies, models and approaches to develop teachers' knowledge for teaching with technology. However, most teachers are still following their traditional…
Soft-Fault Detection Technologies Developed for Electrical Power Systems
NASA Technical Reports Server (NTRS)
Button, Robert M.
2004-01-01
The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.
Design and development of the CubeSat Infrared Atmospheric Sounder (CIRAS)
NASA Astrophysics Data System (ADS)
Pagano, Thomas S.; Abesamis, Carlo; Andrade, Andres; Aumann, Hartmut; Gunapala, Sarath; Heneghan, Cate; Jarnot, Robert; Johnson, Dean; Lamborn, Andy; Maruyama, Yuki; Rafol, Sir; Raouf, Nasrat; Rider, David; Ting, Dave; Wilson, Dan; Yee, Karl; Cole, Jerold; Good, Bill; Kampe, Tom; Soto, Juancarlos; Adams, Arn; Buckley, Matt; Nicol, Fred; Vengel, Tony
2017-09-01
The CubeSat Infrared Atmospheric Sounder (CIRAS) is a NASA Earth Science Technology Office (ESTO) sponsored mission to demonstrate key technologies used in very high spectral resolution infrared remote sensing of Earth's atmosphere from space. CIRAS was awarded under the ESTO In-flight Validation of Earth Science Technologies (InVEST) program in 2015 and is currently under development at NASA JPL with key subsystems being developed by industry. CIRAS incorporates key new instrument technologies including a 2D array of High Operating Temperature Barrier Infrared Detector (HOT-BIRD) material, selected for its high uniformity, low cost, low noise and higher operating temperatures than traditional materials. The second key technology is an MWIR Grating Spectrometer (MGS) designed to provide imaging spectroscopy for atmospheric sounding in a CubeSat volume. The MGS is under development by Ball Aerospace with the grating and slit developed by JPL. The third key technology is a blackbody fabricated with JPL's black silicon to have very high emissivity in a flat plate construction. JPL will also develop the mechanical, electronic and thermal subsystems for CIRAS, while the spacecraft will be a 6U CubeSat developed by Blue Canyon Technologies. This paper provides an overview of the design and acquisition approach, and provides a status of the current development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei Qiao
2012-05-29
The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacitymore » factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a great potential to be adopted by the wind energy industry due to their almost no-cost, nonintrusive features. Although only validated for small direct-drive wind turbines without gearboxes, the proposed technologies are also applicable for CMFD of large-size wind turbines with and without gearboxes. However, additional investigations are recommended in order to apply the proposed technologies to those large-size wind turbines.« less
An On-Line Technology Information System (OTIS) for Advanced Life Support
NASA Technical Reports Server (NTRS)
Levri, Julie A.; Boulanger, Richard; Hoganm John A.; Rodriquez, Luis
2003-01-01
An On-line Technology Information System (OTIS) is currently being developed for the Advanced Life Support (ALS) Program. This paper describes the preliminary development of OTIS, which is a system designed to provide centralized collection and organization of technology information. The lack of thorough, reliable and easily understood technology information is a major obstacle in effective assessment of technology development progress, trade studies, metric calculations, and technology selection for integrated testing. OTIS will provide a formalized, well-organized protocol to communicate thorough, accurate, current and relevant technology information between the hands-on technology developer and the ALS Community. The need for this type of information transfer system within the Solid Waste Management (SWM) element was recently identified and addressed. A SWM Technology Information Form (TIF) was developed specifically for collecting detailed technology information in the area of SWM. In the TIF, information is requested from SWM technology developers, based upon the Technology Readiness Level (TRL). Basic information is requested for low-TRL technologies, and more detailed information is requested as the TRL of the technology increases. A comparable form is also being developed for the wastewater processing element. In the future, similar forms will also be developed for the ALS elements of air revitalization, food processing, biomass production and thermal control. These ALS element-specific forms will be implemented in OTIS via a web-accessible interface,with the data stored in an object-oriented relational database (created in MySQLTM) located on a secure server at NASA Ames Research Center. With OTIS, ALS element leads and managers will be able to carry out informed research and development investment, thereby promoting technology through the TRL scale. OTIS will also allow analysts to make accurate evaluations of technology options. Additionally, the range and specificity of information solicited will help educate technology developers of programmatic needs.
Status of Propulsion Technology Development Under the NASA In-space Propulsion Technology Program
NASA Technical Reports Server (NTRS)
Anderson, David; Kamhawi, Hani; Patterson, Mike; Dankanich, John; Pencil, Eric; Pinero, Luis
2014-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Hall-effect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The HEP system is composed of the High Voltage Hall Accelerator (HiVHAc) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HiVHAc are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs like: MAV propulsion and electric propulsion. And finally, one focus of the SystemsMission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.
Future Regulations – A Catalyst for Technology Development
Summary of current mobile source regulations and EPA mobile source regulatory authority with an emphasis on how EPA regulations are a driver for the development and introduction of automotive technology.
Artificial cognitive memory—changing from density driven to functionality driven
NASA Astrophysics Data System (ADS)
Shi, L. P.; Yi, K. J.; Ramanathan, K.; Zhao, R.; Ning, N.; Ding, D.; Chong, T. C.
2011-03-01
Increasing density based on bit size reduction is currently a main driving force for the development of data storage technologies. However, it is expected that all of the current available storage technologies might approach their physical limits in around 15 to 20 years due to miniaturization. To further advance the storage technologies, it is required to explore a new development trend that is different from density driven. One possible direction is to derive insights from biological counterparts. Unlike physical memories that have a single function of data storage, human memory is versatile. It contributes to functions of data storage, information processing, and most importantly, cognitive functions such as adaptation, learning, perception, knowledge generation, etc. In this paper, a brief review of current data storage technologies are presented, followed by discussions of future storage technology development trend. We expect that the driving force will evolve from density to functionality, and new memory modules associated with additional functions other than only data storage will appear. As an initial step toward building a future generation memory technology, we propose Artificial Cognitive Memory (ACM), a memory based intelligent system. We also present the characteristics of ACM, new technologies that can be used to develop ACM components such as bioinspired element cells (silicon, memristor, phase change, etc.), and possible methodologies to construct a biologically inspired hierarchical system.
Bob Simonson
2011-01-01
The USDA Forest Service Missoula Technology and Development Center (MTDC) offers technical expertise, technology transfer, and new equipment development to federal, state, and private forest nurseries. Current and recently completed projects at MTDC include a front and mid-mount tractor evaluation, ATV-pulled mechanical tree planter, greenhouse snow remover, freeze...
Critical soft landing technology issues for future US space missions
NASA Technical Reports Server (NTRS)
Macha, J. M.; Johnson, D. W.; Mcbride, D. D.
1992-01-01
A programmatic need for research and development to support parachute-based landing systems has not existed since the end of the Apollo missions in the mid-1970s. Now, a number of planned space programs require advanced landing capabilities for which the experience and technology base does not currently exist. New requirements for landing on land with controllable, gliding decelerators and for more effective impact attenuation devices justify a renewal of the landing technology development effort that existed during the Mercury, Gemini, and Apollo programs. A study was performed to evaluate the current and projected national capability in landing systems and to identify critical deficiencies in the technology base required to support the Assured Crew Return Vehicle and the Two-Way Manned Transportation System. A technology development program covering eight landing system performance issues is recommended.
The Status of Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultralightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These inspace propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
The status of spacecraft bus and platform technology development under the NASA ISPT program
NASA Astrophysics Data System (ADS)
Anderson, D. J.; Munk, M. M.; Pencil, E.; Dankanich, J.; Glaab, L.; Peterson, T.
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN& C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultra-lightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicabilit- to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John; Glaab, Louis J.
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) and 3) electric propulsion. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
NASA Astrophysics Data System (ADS)
Boulade, Olivier; Moreau, Vincent; Mulet, Patrick; Gravrand, Olivier; Cervera, Cyril; Zanatta, Jean-Paul; Castelein, Pierre; Guellec, Fabrice; Fièque, Bruno; Chorier, Philippe; Roumegoux, Julien
2016-07-01
CEA and SOFRADIR have been manufacturing and characterizing near infrared detectors in the frame of ESA's near infrared large format sensor array roadmap to develop a 2Kx2K large format low flux low noise device for space applications such as astrophysics. These detectors use HgCdTe as the absorbing material and p/n diode technology. The technological developments (photovoltaic technology, readout circuit, ...) are shared between CEA/LETI and SOFRADIR, both in Grenoble, while most of the performances are evaluated at CEA/IRFU in Saclay where a dedicated test facility has been developed, in particular to measure very low dark currents. The paper will present the current status of these developments at the end of ESA's NIRLFSA phase 2. The performances of the latest batch of devices meet or are very close to all the requirements (quantum efficiency, dark current, cross talk, readout noise, ...) even though a glow induced by the ROIC prevents the accurate measurement of the dark current. The current devices are fairly small, 640x512 15μm pixels, and the next phase of activity will target the development of a full size 2Kx2K detector. From the design and development, to the manufacturing and finally the testing, that type of detector requests a high level of mastering. An appropriate manufacturing and process chain compatible with such a size is needed at industrial level and results obtained with CEA technology coupled with Sofradir industrial experience and work on large dimension detector allow French actors to be confident to address this type of future missions.
Development and applications of 3-dimensional integration nanotechnologies.
Kim, Areum; Choi, Eunmi; Son, Hyungbin; Pyo, Sung Gyu
2014-02-01
Unlike conventional two-dimensional (2D) planar structures, signal or power is supplied through through-silicon via (TSV) in three-dimensional (3D) integration technology to replace wires for binding the chip/wafer. TSVs have becomes an essential technology, as they satisfy Moore's law. This 3D integration technology enables system and sensor functions at a nanoscale via the implementation of a highly integrated nano-semiconductor as well as the fabrication of a single chip with multiple functions. Thus, this technology is considered to be a new area of development for the systemization of the nano-bio area. In this review paper, the basic technology required for such 3D integration is described and methods to measure the bonding strength in order to measure the void occurring during bonding are introduced. Currently, CMOS image sensors and memory chips associated with nanotechnology are being realized on the basis of 3D integration technology. In this paper, we intend to describe the applications of high-performance nano-biosensor technology currently under development and the direction of development of a high performance lab-on-a-chip (LOC).
van Est, Rinie; Stemerding, Dirk
2013-01-01
The life sciences present a politically and ethically sensitive area of technology development. NBIC convergence-the convergence of nanotechnology, biotechnology, and information and cognitive technology-presents an increased interaction between the biological and physical sciences. As a result the bio-debate is no longer dominated by biotechnology, but driven by NBIC convergence. NBIC convergence enables two bioengineering megatrends: "biology becoming technology" and "technology becoming biology." The notion of living technologies captures the latter megatrend. Accordingly, living technology presents a politically and ethically sensitive area. This implies that governments sooner or later are faced with the challenge of both promoting and regulating the development of living technology. This article describes four current political models to deal with innovation promotion and risk regulation. Based on two specific developments in the field of living technologies-(psycho)physiological computing and synthetic biology-we reflect on appropriate governance strategies for living technologies. We conclude that recent pleas for anticipatory and deliberative governance tend to neglect the need for anticipatory regulation as a key factor in guiding the development of the life sciences from a societal perspective. In particular, when it is expected that a certain living technology will radically challenge current regulatory systems, one should opt for just such a more active biopolitical approach.
Space Mechanisms Technology Workshop Proceedings
NASA Technical Reports Server (NTRS)
Fusaro, Robert L. (Editor)
1999-01-01
Over the years, NASA has experienced a number of troublesome mechanism anomalies. Because of this, the NASA Office of Safety and Mission Assurance initiated a workshop to evaluate the current space mechanism state-of-the-art and to determine the obstacles that will have to be met in order to achieve NASA's future missions goals. Seventy experts in the field attended the workshop. The experts identified current and perceived future space mechanisms obstacles. For each obstacle, the participants identified technology deficiencies, the current state-of-the-art, and applicable NASA, DOD, and industry missions. In addition, the participants at the workshop looked at technology needs for current missions, technology needs for future missions, what new technology is needed to improve the reliability of mechanisms, what can be done to improve technology development and the dissemination of information, and what do we do next.
Development of a remote vital signs sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladd, M.D.; Pacheco, M.S.; Rivas, R.R.
1997-06-01
This paper describes the work at Sandia National Laboratories to develop sensors that remotely detect unique life-form characteristics, such as breathing patterns or heartbeat patterns. This paper will address the Technical Support Working Group`s (TSWG) objective: to develop a remote vital signs detector which can be used to assess someone`s malevolent intent. The basic concept of operations for the projects, system development issues, and the preliminary results for a radar device currently in-house and the implications for implementation are described. A survey that identified the in-house technology currently being evaluated is reviewed, as well as ideas for other potential technologiesmore » to explore. A radar unit for breathing and heartbeat detection is being tested, and the applicability of infrared technology is being explored. The desire for rapid prototyping is driving the need for off-the-shelf technology. As a conclusion, current status and future directions of the effort are reviewed.« less
Development of and Improved Magneto-Optic/Eddy-Current Imager
DOT National Transportation Integrated Search
1997-04-01
Magneto-optic/eddy-current imaging technology has been developed and approved for inspection of cracks in aging aircraft. This relatively new nondestructive test method gives the inspector the ability to quickly generate real-time eddy-current images...
Liu, Ya-Jun; Zhang, Jie; Cui, Gu-Zhen; Cui, Qiu
2015-06-01
Targetrons are mobile group II introns that can recognize their DNA target sites by base-pairing RNA-DNA interactions with the aid of site-specific binding reverse transcriptases. Targetron technology stands out from recently developed gene targeting methods because of the flexibility, feasibility, and efficiency, and is particularly suitable for the genetic engineering of difficult microorganisms, including cellulolytic bacteria that are considered promising candidates for biomass conversion via consolidated bioprocessing. Along with the development of the thermotargetron method for thermophiles, targetron technology becomes increasingly important for the metabolic engineering of industrial microorganisms aiming at biofuel/chemical production. To summarize the current progress of targetron technology and provide new insights on the use of the technology, this paper reviews the retrohoming mechanisms of both mesophilic and thermophilic targetron methods based on various group II introns, investigates the improvement of targetron tools for high target efficiency and specificity, and discusses the current applications in the metabolic engineering for bacterial producers. Although there are still intellectual property and technical restrictions in targetron applications, we propose that targetron technology will contribute to both biochemistry research and the metabolic engineering for industrial productions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
US computer research networks: Current and future
NASA Technical Reports Server (NTRS)
Kratochvil, D.; Sood, D.; Verostko, A.
1989-01-01
During the last decade, NASA LeRC's Communication Program has conducted a series of telecommunications forecasting studies to project trends and requirements and to identify critical telecommunications technologies that must be developed to meet future requirements. The Government Networks Division of Contel Federal Systems has assisted NASA in these studies, and the current study builds upon these earlier efforts. The current major thrust of the NASA Communications Program is aimed at developing the high risk, advanced, communications satellite and terminal technologies required to significantly increase the capacity of future communications systems. Also, major new technological, economic, and social-political events and trends are now shaping the communications industry of the future. Therefore, a re-examination of future telecommunications needs and requirements is necessary to enable NASA to make management decisions in its Communications Program and to ensure the proper technologies and systems are addressed. This study, through a series of Task Orders, is helping NASA define the likely communication service needs and requirements of the future and thereby ensuring that the most appropriate technology developments are pursued.
1983 LTA technology assessment
NASA Technical Reports Server (NTRS)
Ashford, R. L.; Browning, R. G. E.; Levitt, B. B.; Mayer, N. J.; Woodward, D. E.
1983-01-01
Several aspects of LTA (lighter-than-air) technology development are reviewed. Technological developments of classical airships through 1974 are examined. A brief historical and technological summary of five specialized LTA equipment concepts is presented: metal-clad airships, free balloons, semibuoyant vehicles, high-altitude platforms, and tethered aerostats. Current LTA technology developments are reviewed with particular emphasis on VTOL airships capable of heavy lift and on long endurance types for coastal maritime patrol. Finally, the future prospects of LTA system development are considered with attention given to manned conventional and hybrid vehicles, tethered vehicles, and RPVs.
NASA's Quiet Aircraft Technology Project
NASA Technical Reports Server (NTRS)
Whitfield, Charlotte E.
2004-01-01
NASA's Quiet Aircraft Technology Project is developing physics-based understanding, models and concepts to discover and realize technology that will, when implemented, achieve the goals of a reduction of one-half in perceived community noise (relative to 1997) by 2007 and a further one-half in the far term. Noise sources generated by both the engine and the airframe are considered, and the effects of engine/airframe integration are accounted for through the propulsion airframe aeroacoustics element. Assessments of the contribution of individual source noise reductions to the reduction in community noise are developed to guide the work and the development of new tools for evaluation of unconventional aircraft is underway. Life in the real world is taken into account with the development of more accurate airport noise models and flight guidance methodology, and in addition, technology is being developed that will further reduce interior noise at current weight levels or enable the use of lighter-weight structures at current noise levels.
Current impact of gene technology on healthcare. A map of economic assessments.
Rogowski, Wolf
2007-02-01
It has been claimed that gene technology will induce revolutionary changes in healthcare. This paper investigates how and to what extent these changes have been economically assessed. A generic framework was developed to distinguish between methodologically similar evaluations of healthcare technology. Methodological issues and the current state of economic evidence concerning human DNA technology were extracted from publications within these groups of evaluations. Economic evaluations of "healthcare consisting of gene technology" were identified primarily for in vitro diagnostics for hereditary disease and others for pharmacogenetics and molecular pathology. "Healthcare enabled by gene technology" is far more encompassing and includes, e.g., biotechnology drugs for which various health economic evaluations can be found. Yet here, the impact of gene technology intertwines with the impact of other technologies and is therefore hardly susceptible to evaluation. The fields of evaluation may be classified best according to the two dimensions "purpose" and "stage of development". Current evaluations cover screening, diagnostic and treatment technologies in investigational, new and established stages. Apart from prenatal screening, healthcare consisting of gene technology was cost saving only for genotype tests replacing continuous phenotype tests and for one pharmacogenetic test. Conclusive evidence of favourable cost-effectiveness ratios is available only for few conditions. Hypotheses about the impact of gene technology on healthcare must be explicit about the definition of "genetic" medicine. A general statement regarding healthcare enabled by gene technology is not possible. Based on current evidence, an era of healthcare consisting of gene technology built on widespread predictive testing is not desirable from a health economic viewpoint.
Zhao, Fei-Ya; Tao, Ai-En; Xia, Cong-Long
2018-01-01
Paris is a commonly used traditional Chinese medicine (TCM), and has antitumor, antibacterial, sedative, analgesic and hemostatic effects. It has been used as an ingredient of 81 Chinese patent medicines, with a wide application and large market demand. Based on the data retrieved from state Intellectual Property Office patent database, a comprehensive analysis was made on Paris patents, so as to explore the current features of Paris patents in the aspects of domestic patent output, development trend, technology field distribution, time dimension, technology growth rate and patent applicant, and reveal the development trend of China's Paris industry. In addition, based on the current Paris resource application and development, a sustainable, multi-channel and multi-level industrial development approach was built. According to the results, studies of Paris in China are at the rapid development period, with a good development trend. However, because wild Paris resources tend to be exhausted, the studies for artificial cultivation technology should be strengthened to promote the industrial development. Copyright© by the Chinese Pharmaceutical Association.
Energy Storage: Batteries and Fuel Cells for Exploration
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Miller, Thomas B.; Hoberecht, Mark A.; Baumann, Eric D.
2007-01-01
NASA's Vision for Exploration requires safe, human-rated, energy storage technologies with high energy density, high specific energy and the ability to perform in a variety of unique environments. The Exploration Technology Development Program is currently supporting the development of battery and fuel cell systems that address these critical technology areas. Specific technology efforts that advance these systems and optimize their operation in various space environments are addressed in this overview of the Energy Storage Technology Development Project. These technologies will support a new generation of more affordable, more reliable, and more effective space systems.
Exploring Preschool Teachers' Technological Pedagogical Content Knowledge of Educational Games
ERIC Educational Resources Information Center
Hsu, Chung-Yuan; Liang, Jyh-Chong; Chai, Ching-Sing; Tsai, Chin-Chung
2013-01-01
Current technological pedagogical content knowledge (TPACK) studies are inclined to treat technology in a general manner, an approach which may not be able to provide adequate guidelines to improve teacher preparation and professional development when teaching with games. This study developed two new questionnaires, namely the Technological…
Active nursery projects at the Missoula Technology and Development Center
Brian Vachowski
2005-01-01
The USDA Forest Service Missoula Technology and Development Center (MTDC) provides technical expertise, new equipment prototypes, and technology transfer services to Federal, State, and cooperator forest tree seedling nursery managers. Current projects at MTDC include a nursery soil moisture meter, remote data collection systems, low cost weather stations, soil...
NASA Technical Reports Server (NTRS)
Levri, Julie A.; Boulanger, Richard; Hogan, John A.; Rodriguez, Luis
2003-01-01
Contents include the following: What is OTIS? OTIS use. Proposed implementation method. Development history of the Solid Waste Management (SWM) Technology Information Form (TIF) and OTIS. Current development state of the SWM TIF and OTIS. Data collection approach. Information categories. Critiques/questions/feedback.
OAST system technology planning
NASA Technical Reports Server (NTRS)
Sadin, S. R.
1978-01-01
The NASA Office of Aeronautics and Space Technology developed a planning model for space technology consisting of a space systems technology model, technology forecasts and technology surveys. The technology model describes candidate space missions through the year 2000 and identifies their technology requirements. The technology surveys and technology forecasts provide, respectively, data on the current status and estimates of the projected status of relevant technologies. These tools are used to further the understanding of the activities and resources required to ensure the timely development of technological capabilities. Technology forecasting in the areas of information systems, spacecraft systems, transportation systems, and power systems are discussed.
The NASA Redox Storage System Development project, 1980
NASA Technical Reports Server (NTRS)
1982-01-01
The technical accomplishments pertaining to the development of Redox systems and related technology are outlined in terms of the task elements: prototype systems development, application analyses, and supporting technology. Prototype systems development provides for a major procurement to develop an industrial capability to take the current NASA Lewis technology and go on to the design, development, and commercialization of iron-chromium Redox storage systems. Application analyses provides for the definition of application concepts and technology requirements, specific definition studies, and the identification of market sectors and their penetration potential. Supporting technology includes both in house and contractual efforts that encompass implementation of technology improvements in membranes, electrodes, reactant processing, and system design. The status of all elements is discussed.
The NASA Redox Storage System Development project, 1980
NASA Astrophysics Data System (ADS)
1982-12-01
The technical accomplishments pertaining to the development of Redox systems and related technology are outlined in terms of the task elements: prototype systems development, application analyses, and supporting technology. Prototype systems development provides for a major procurement to develop an industrial capability to take the current NASA Lewis technology and go on to the design, development, and commercialization of iron-chromium Redox storage systems. Application analyses provides for the definition of application concepts and technology requirements, specific definition studies, and the identification of market sectors and their penetration potential. Supporting technology includes both in house and contractual efforts that encompass implementation of technology improvements in membranes, electrodes, reactant processing, and system design. The status of all elements is discussed.
Current and Developing Technologies for Monitoring Agents of Bioterrorism and Biowarfare
Lim, Daniel V.; Simpson, Joyce M.; Kearns, Elizabeth A.; Kramer, Marianne F.
2005-01-01
Recent events have made public health officials acutely aware of the importance of rapidly and accurately detecting acts of bioterrorism. Because bioterrorism is difficult to predict or prevent, reliable platforms to rapidly detect and identify biothreat agents are important to minimize the spread of these agents and to protect the public health. These platforms must not only be sensitive and specific, but must also be able to accurately detect a variety of pathogens, including modified or previously uncharacterized agents, directly from complex sample matrices. Various commercial tests utilizing biochemical, immunological, nucleic acid, and bioluminescence procedures are currently available to identify biological threat agents. Newer tests have also been developed to identify such agents using aptamers, biochips, evanescent wave biosensors, cantilevers, living cells, and other innovative technologies. This review describes these current and developing technologies and considers challenges to rapid, accurate detection of biothreat agents. Although there is no ideal platform, many of these technologies have proved invaluable for the detection and identification of biothreat agents. PMID:16223949
Historical aspects of technology assessment
NASA Technical Reports Server (NTRS)
Kranzberg, M.
1975-01-01
The historical developments which have brought about changes in the way technology is viewed are discussed. These include: (1) the broadening through the centuries of the social context for technological change and assessment; (2) the growing need since the Industrial Revolution for assessment; (3) the recent deepening awareness of the impacts of technology; (4) the development of social and communal responsibility for technology, and (5) the current growth in the assessment capability.
ERIC Educational Resources Information Center
Tangsri, Chatcai; Na-Takuatoong, Onjaree; Sophatsathit, Peraphon
2013-01-01
This article aims to show how the process of new service technology-based development improves the current study support service for visually impaired university students. Numerous studies have contributed to improving assisted aid technology such as screen readers, the development and the use of audiobooks, and technology that supports individual…
An Assessment of Integrated Flywheel System Technology
NASA Technical Reports Server (NTRS)
Keckler, C. R. (Editor); Bechtel, R. T. (Editor); Groom, N. J. (Editor)
1984-01-01
The current state of the technology in flywheel storage systems and ancillary components, the technology in light of future requirements, and technology development needs to rectify these shortfalls were identified. Technology efforts conducted in Europe and in the United States were reviewed. Results of developments in composite material rotors, magnetic suspension systems, motor/generators and electronics, and system dynamics and control were presented. The technology issues for the various disciplines and technology enhancement scenarios are discussed. A summary of the workshop, and conclusions and recommendations are presented.
ERIC Educational Resources Information Center
Grashel, Mark A.
2014-01-01
The purpose of this single case study was to examine a grant-funded program of professional development (PD) at a small rural high school in Ohio. Evidence has shown that the current model of technology professional development in-service sessions has had little impact on classroom technology integration. This PD program focused on 21st Century…
Legacy and Emergence of Spaceport Technology Development at the Kennedy Space Center
NASA Technical Reports Server (NTRS)
Starr, Stanley; Voska, Ned (Technical Monitor)
2003-01-01
Kennedy Space Center (KSC) has a long and successful legacy in the checkout and launch of missiles and space vehicles. These operations have become significantly more complex, and their evolution has driven the need for many technology developments. Unanticipated events have also underscored the need for a local, highly responsive technology development and testing capability. This evolution is briefly described, as well as the increasing level of technology capability at KSC. The importance of these technologies in achieving past national space goals suggests that the accomplishment of low-cost and reliable access to space will depend critically upon KSC's future success in developing spaceport technologies. This paper concludes with a description KSC's current organizational approach and major thrust areas in technology development. The first phase of our historical review focuses on the development and testing of field- deployable short- and intermediate-range ballistic missiles (1953 to 1958). These vehicles are later pressed into service as space launchers. The second phase involves the development of large space lift vehicles culminating in the Saturn V launches (1959 to 1975). The third phase addresses the development and operations of the partially reusable launch vehicle, Space Shuttle (1976 to 2000). In the current era, KSC is teaming with the U.S. Air Force (AF), industry, academia, and other partners to identify and develop Spaceport and Range Technologies necessary to achieve national space goals of lower-cost and higher-reliability space flight.
Demonstration of Innovative Water Rehabilitation Technology in Somerville, NJ
Renewal technologies currently being used for the repair, replacement and/or rehabilitation of deteriorating water distribution systems are generally effective, but there is still considerable room for improvement of existing technologies and for the development of new technologi...
NASA Astrophysics Data System (ADS)
Chou, Shuo-Ju
2011-12-01
In recent years the United States has shifted from a threat-based acquisition policy that developed systems for countering specific threats to a capabilities-based strategy that emphasizes the acquisition of systems that provide critical national defense capabilities. This shift in policy, in theory, allows for the creation of an "optimal force" that is robust against current and future threats regardless of the tactics and scenario involved. In broad terms, robustness can be defined as the insensitivity of an outcome to "noise" or non-controlled variables. Within this context, the outcome is the successful achievement of defense strategies and the noise variables are tactics and scenarios that will be associated with current and future enemies. Unfortunately, a lack of system capability, budget, and schedule robustness against technology performance and development uncertainties has led to major setbacks in recent acquisition programs. This lack of robustness stems from the fact that immature technologies have uncertainties in their expected performance, development cost, and schedule that cause to variations in system effectiveness and program development budget and schedule requirements. Unfortunately, the Technology Readiness Assessment process currently used by acquisition program managers and decision-makers to measure technology uncertainty during critical program decision junctions does not adequately capture the impact of technology performance and development uncertainty on program capability and development metrics. The Technology Readiness Level metric employed by the TRA to describe program technology elements uncertainties can only provide a qualitative and non-descript estimation of the technology uncertainties. In order to assess program robustness, specifically requirements robustness, against technology performance and development uncertainties, a new process is needed. This process should provide acquisition program managers and decision-makers with the ability to assess or measure the robustness of program requirements against such uncertainties. A literature review of techniques for forecasting technology performance and development uncertainties and subsequent impacts on capability, budget, and schedule requirements resulted in the conclusion that an analysis process that coupled a probabilistic analysis technique such as Monte Carlo Simulations with quantitative and parametric models of technology performance impact and technology development time and cost requirements would allow the probabilities of meeting specific constraints of these requirements to be established. These probabilities of requirements success metrics can then be used as a quantitative and probabilistic measure of program requirements robustness against technology uncertainties. Combined with a Multi-Objective Genetic Algorithm optimization process and computer-based Decision Support System, critical information regarding requirements robustness against technology uncertainties can be captured and quantified for acquisition decision-makers. This results in a more informed and justifiable selection of program technologies during initial program definition as well as formulation of program development and risk management strategies. To meet the stated research objective, the ENhanced TEchnology Robustness Prediction and RISk Evaluation (ENTERPRISE) methodology was formulated to provide a structured and transparent process for integrating these enabling techniques to provide a probabilistic and quantitative assessment of acquisition program requirements robustness against technology performance and development uncertainties. In order to demonstrate the capabilities of the ENTERPRISE method and test the research Hypotheses, an demonstration application of this method was performed on a notional program for acquiring the Carrier-based Suppression of Enemy Air Defenses (SEAD) using Unmanned Combat Aircraft Systems (UCAS) and their enabling technologies. The results of this implementation provided valuable insights regarding the benefits and inner workings of this methodology as well as its limitations that should be addressed in the future to narrow the gap between current state and the desired state.
Status of Propulsion Technology Development Under the NASA In-Space Propulsion Technology Program
NASA Technical Reports Server (NTRS)
Anderson, David; Kamhawi, Hani; Patterson, Mike; Pencil, Eric; Pinero, Luis; Falck, Robert; Dankanich, John
2014-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems/Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Halleffect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The NEXT Long Duration Test (LDT) recently exceeded 50,000 hours of operation and 900 kg throughput, corresponding to 34.8 MN-s of total impulse delivered. The HEP system is composed of the High Voltage Hall Accelerator (HIVHAC) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HIVHAC are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs: MAV propulsion and electric propulsion. And finally, one focus of the Systems/Mission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.
Current challenges in autonomous driving
NASA Astrophysics Data System (ADS)
Barabás, I.; Todoruţ, A.; Cordoş, N.; Molea, A.
2017-10-01
Nowadays the automotive industry makes a quantum shift to a future, where the driver will have smaller and smaller role in driving his or her vehicle ending up being totally excluded. In this paper, we have investigated the different levels of driving automatization, the prospective effects of these new technologies on the environment and traffic safety, the importance of regulations and their current state, the moral aspects of introducing these technologies and the possible scenarios of deploying the autonomous vehicles. We have found that the self-driving technologies are facing many challenges: a) They must make decisions faster in very diverse conditions which can include many moral dilemmas as well; b) They have an important potential in reducing the environmental pollution by optimizing their routes, driving styles by communicating with other vehicles, infrastructures and their environment; c) There is a considerable gap between the self-drive technology level and the current regulations; fortunately, this gap shows a continuously decreasing trend; d) In case of many types of imminent accidents management there are many concerns about the ability of making the right decision. Considering that this field has an extraordinary speed of development, our study is up to date at the submission deadline. Self-driving technologies become increasingly sophisticated and technically accessible, and in some cases, they can be deployed for commercial vehicles as well. According to the current stage of research and development, it is still unclear how the self-driving technologies will be able to handle extreme and unexpected events including their moral aspects. Since most of the traffic accidents are caused by human error or omission, it is expected that the emergence of the autonomous technologies will reduce these accidents in their number and gravity, but the very few currently available test results have not been able to scientifically underpin this issue yet. The increasing trend in automation of vehicles will radically change the composition of car industry players, as mechatronics will not only be a complementary part of the automobile industry but an indispensable part of it. There is a reasonable expectation that automated cars will perform the same or better in all respects than their conventional counterparts. However, it seems that the current regulations do not keep up with the development of technology and sometimes hinder the development and testing of autonomous technologies.
Natural language processing-based COTS software and related technologies survey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stickland, Michael G.; Conrad, Gregory N.; Eaton, Shelley M.
Natural language processing-based knowledge management software, traditionally developed for security organizations, is now becoming commercially available. An informal survey was conducted to discover and examine current NLP and related technologies and potential applications for information retrieval, information extraction, summarization, categorization, terminology management, link analysis, and visualization for possible implementation at Sandia National Laboratories. This report documents our current understanding of the technologies, lists software vendors and their products, and identifies potential applications of these technologies.
Conceptual design study: Forest Fire Advanced System Technology (FFAST)
NASA Technical Reports Server (NTRS)
Nichols, J. D.; Warren, J. R.
1986-01-01
An integrated forest fire detection and mapping system that will be based upon technology available in the 1990s was defined. Uncertainties in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include thermal infrared, linear array detectors, automatic georeferencing and signal processing, geosynchronous satellite communication links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. A preferred system configuration was defined that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.
WE-A-18C-01: Emerging and Innovative Ultrasound Technology in Diagnosis and Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emelianov, S; Oraevsky, A; Stafford, R
The application of new ultrasound-based technologies in medicine has expanded in recent years. One area of rapid growth has been the combination of ultrasound with other methods of image generation and imaging modalities to produce hybrid approaches for diagnostic imaging and noninvasive therapeutic intervention. The presentations associated with this session will provide an overview of two emerging technologies that are currently being developed and implemented to enhance ultrasound-related diagnostic imaging and therapy: the utilization of optically-induced ultrasound imaging (optoacoustic / photoacoustic imaging) and the use of magnetic resonance imaging to guide the use of high-intensity focused ultrasound for therapeutic applications.more » Learning Objectives: Develop a general understanding of the underlying technologies associated with optoacoustic / photoacoustic tomography and MRguided high-intensity focused ultrasound. Develop an understanding of the current methods of these new ultrasound-based technologies in preclinical research and clinical applications.« less
NASA Technical Reports Server (NTRS)
Hammond, Monica S.; Good, James E.; Gilley, Scott D.; Howard, Richard W.
2006-01-01
NASA's human exploration initiative poses great opportunity and risk for manned and robotic missions to the Moon, Mars, and beyond. Engineers and scientists at the Marshall Space Flight Center (MSFC) are developing technologies for in situ fabrication capabilities during lunar and Martian surface operations utilizing provisioned and locally refined materials. Current fabrication technologies must be advanced to support the special demands and applications of the space exploration initiative such as power, weight and volume constraints. In Situ Fabrication and Repair (ISFR) will advance state-of-the-art technologies in support of habitat structure development, tools, and mechanical part fabrication. The repair and replacement of space mission components, such as life support items or crew exercise equipment, fall within the ISFR scope. This paper will address current fabrication technologies relative to meeting ISFR targeted capabilities, near-term advancement goals, and systematic evaluation of various fabrication methods.
Organizational Development: Values, Process, and Technology.
ERIC Educational Resources Information Center
Margulies, Newton; Raia, Anthony P.
The current state-of-the-art of organizational development is the focus of this book. The five parts into which the book is divided are as follows: Part One--Introduction (Organizational Development in Perspective--the nature, values, process, and technology of organizational development); Part Two--The Components of Organizational Developments…
Mission Systems Open Architecture Science and Technology (MOAST) program
NASA Astrophysics Data System (ADS)
Littlejohn, Kenneth; Rajabian-Schwart, Vahid; Kovach, Nicholas; Satterthwaite, Charles P.
2017-04-01
The Mission Systems Open Architecture Science and Technology (MOAST) program is an AFRL effort that is developing and demonstrating Open System Architecture (OSA) component prototypes, along with methods and tools, to strategically evolve current OSA standards and technical approaches, promote affordable capability evolution, reduce integration risk, and address emerging challenges [1]. Within the context of open architectures, the program is conducting advanced research and concept development in the following areas: (1) Evolution of standards; (2) Cyber-Resiliency; (3) Emerging Concepts and Technologies; (4) Risk Reduction Studies and Experimentation; and (5) Advanced Technology Demonstrations. Current research includes the development of methods, tools, and techniques to characterize the performance of OMS data interconnection methods for representative mission system applications. Of particular interest are the OMS Critical Abstraction Layer (CAL), the Avionics Service Bus (ASB), and the Bulk Data Transfer interconnects, as well as to develop and demonstrate cybersecurity countermeasures techniques to detect and mitigate cyberattacks against open architecture based mission systems and ensure continued mission operations. Focus is on cybersecurity techniques that augment traditional cybersecurity controls and those currently defined within the Open Mission System and UCI standards. AFRL is also developing code generation tools and simulation tools to support evaluation and experimentation of OSA-compliant implementations.
Current Status and Tasks in Development of Cable Recycling Technology
NASA Astrophysics Data System (ADS)
Ezure, Takashi; Goto, Kazuhiko
This paper shows current status and tasks in development of cable recycling technology and it’s items to be solved. Electric cable recycle system has been activated especially for copper conductor recycle in Japan. Previously removed cable coverings materials were mainly land filled. But landfill capacity is decreased and limited in recent years, at the same time, recycle technology was highly developed. A cable recycle technology has 4 tasks. (1) Applying new high efficiency separation system instead of electrostatic and gravity methods to classify mixed various kind of plastics materials including recently developed ecological material (ex PE, PVC, Rubber), (2) Removing heavy metal, especially lead from PVC material, (3) Treatment of optical glass fiber core, which has possibility going to be harmful micro particles, and (4) Establishment of social recycle system for electric wire and cable. Taking action for these tasks shall be proceeded under environmentally sensitive technology together with local government, user, manufacturer, and waste-disposal company on cost performance basis.
Illustrating anticipatory life cycle assessment for emerging photovoltaic technologies.
Wender, Ben A; Foley, Rider W; Prado-Lopez, Valentina; Ravikumar, Dwarakanath; Eisenberg, Daniel A; Hottle, Troy A; Sadowski, Jathan; Flanagan, William P; Fisher, Angela; Laurin, Lise; Bates, Matthew E; Linkov, Igor; Seager, Thomas P; Fraser, Matthew P; Guston, David H
2014-09-16
Current research policy and strategy documents recommend applying life cycle assessment (LCA) early in research and development (R&D) to guide emerging technologies toward decreased environmental burden. However, existing LCA practices are ill-suited to support these recommendations. Barriers related to data availability, rapid technology change, and isolation of environmental from technical research inhibit application of LCA to developing technologies. Overcoming these challenges requires methodological advances that help identify environmental opportunities prior to large R&D investments. Such an anticipatory approach to LCA requires synthesis of social, environmental, and technical knowledge beyond the capabilities of current practices. This paper introduces a novel framework for anticipatory LCA that incorporates technology forecasting, risk research, social engagement, and comparative impact assessment, then applies this framework to photovoltaic (PV) technologies. These examples illustrate the potential for anticipatory LCA to prioritize research questions and help guide environmentally responsible innovation of emerging technologies.
Cryogenic Fluid Management Technology Development Roadmaps
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Johnson, W. L.
2017-01-01
Advancement in Cryogenic Fluid Management (CFM) Technologies is essential for achieving NASA's future long duration missions. Propulsion systems utilizing cryogens are necessary to achieve mission success. Current State Of the Art (SOA) CFM technologies enable cryogenic propellants to be stored for several hours. However, some envisioned mission architectures require cryogens to be stored for two years or longer. The fundamental roles of CFM technologies are long term storage of cryogens, propellant tank pressure control and propellant delivery. In the presence of heat, the cryogens will "boil-off" over time resulting in excessive pressure buildup, off-nominal propellant conditions, and propellant loss. To achieve long term storage and tank pressure control, the CFM elements will intercept and/or remove any heat from the propulsion system. All functions are required to perform both with and without the presence of a gravitational field. Which CFM technologies are required is a function of the cryogens used, mission architecture, vehicle design and propellant tank size. To enable NASA's crewed mission to the Martian surface, a total of seventeen CFM technologies have been identified to support an In-Space Stage and a Lander/Ascent Vehicle. Recognizing that FY2020 includes a Decision Point regarding the In-Space Stage Architecture, a set of CFM Technology Development Roadmaps have been created identifying the current Technology Readiness Level (TRL) of each element, current technology "gaps", and existing technology development efforts. The roadmaps include a methodical approach and schedule to achieve a flight demonstration in FY2023, hence maturing CFM technologies to TRL 7 for infusion into the In-Space Stage Preliminary Design.
Integrated Microbial Technology for Developing Countries: Springboard for Economic Progress.
ERIC Educational Resources Information Center
DaSilva, Edgar J.; And Others
1978-01-01
Discusses the current use of microbial technology in industrialized countries to develop substitute sources of fuel, food, and fertilizer and why it is important for developing countries to adopt the techniques described to gain economically. A list of references is also presented. (HM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginley, D. S.
2010-08-01
The purpose of this CRADA was to combine the strengths of NREL and Evergreen Solar in the area of ink jet printing to develop a new manufacturing technology necessary to produce Si solar cells based on ribbon technology comparable to or exceeding current technologies.
ERIC Educational Resources Information Center
McGarr, Oliver
2010-01-01
This paper explores the integration of Education for Sustainable Development (ESD) in technology education and the extent to which it is currently addressed in curriculum documents and state examinations in technology education at post-primary level in Ireland. This analysis is conducted amidst the backdrop of considerable change in technology…
A Theoretical Model of Children's Storytelling Using Physically-Oriented Technologies (SPOT)
ERIC Educational Resources Information Center
Guha, Mona Leigh; Druin, Allison; Montemayor, Jaime; Chipman, Gene; Farber, Allison
2007-01-01
This paper develops a model of children's storytelling using Physically-Oriented Technology (SPOT). The SPOT model draws upon literature regarding current physical storytelling technologies and was developed using a grounded theory approach to qualitative research. This empirical work focused on the experiences of 18 children, ages 5-6, who worked…
Technology status: Batteries and fuel cells
NASA Technical Reports Server (NTRS)
Fordyce, J. S.
1978-01-01
The current status of research and development programs on batteries and fuel cells and the technology goals being pursued are discussed. Emphasis is placed upon those technologies relevant to earth orbital electric energy storage applications.
Alternative oxidation technologies for organic mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borduin, L.C.; Fewell, T.
1998-07-01
The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site (SRS), and direct chemical oxidation at Lawrence Livermore National Laboratory (LLNL). All three technologies are at advanced stages of development ormore » are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory (LBNL), and steam reforming, a commercial process being supported by the Department of Energy (DOE). Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented.« less
Perspectives on energy storage wheels for space station application
NASA Technical Reports Server (NTRS)
Oglevie, R. E.
1984-01-01
Several of the issues of the workshop are addressed from the perspective of a potential Space Station developer and energy wheel user. Systems' considerations are emphasized rather than component technology. The potential of energy storage wheel (ESW) concept is discussed. The current status of the technology base is described. Justification for advanced technology development is also discussed. The study concludes that energy storage in wheels is an attractive concept for immediate technology development and future Space Station application.
Commercial space opportunities - Advanced concepts and technology overview
NASA Technical Reports Server (NTRS)
Reck, Gregory M.
1993-01-01
The paper discusses the status of current and future commercial space opportunities. The goal is to pioneer innovative, customer-focused space concepts and technologies, leveraged through industrial, academic, and government alliance, to ensure U.S. commercial competitiveness and preeminence in space. The strategy is to develop technologies which enable new products and processes, deploy existing technology into commercial and military products and processes, and integrate military and commercial research and production activities. Technology development areas include information infrastructure, electronics design and manufacture, health care technology, environment technology, and aeronautical technologies.
Technological advances in precision medicine and drug development.
Maggi, Elaine; Patterson, Nicole E; Montagna, Cristina
New technologies are rapidly becoming available to expand the arsenal of tools accessible for precision medicine and to support the development of new therapeutics. Advances in liquid biopsies, which analyze cells, DNA, RNA, proteins, or vesicles isolated from the blood, have gained particular interest for their uses in acquiring information reflecting the biology of tumors and metastatic tissues. Through advancements in DNA sequencing that have merged unprecedented accuracy with affordable cost, personalized treatments based on genetic variations are becoming a real possibility. Extraordinary progress has been achieved in the development of biological therapies aimed to even further advance personalized treatments. We provide a summary of current and future applications of blood based liquid biopsies and how new technologies are utilized for the development of biological therapeutic treatments. We discuss current and future sequencing methods with an emphasis on how technological advances will support the progress in the field of precision medicine.
NASA Astrophysics Data System (ADS)
Zhang, Xinyue; Zhang, Qisheng; Wang, Meng; Kong, Qiang; Zhang, Shengquan; He, Ruihao; Liu, Shenghui; Li, Shuhan; Yuan, Zhenzhong
2017-11-01
Due to the pressing demand for metallic ore exploration technology in China, several new technologies are being employed in the relevant exploration instruments. In addition to possessing the high resolution of the traditional transient electromagnetic method, high-efficiency measurements, and a short measurement time, the multichannel transient electromagnetic method (MTEM) technology can also sensitively determine the characteristics of a low-resistivity geologic body, without being affected by the terrain. Besides, the MTEM technology also solves the critical, existing interference problem in electrical exploration technology. This study develops a full-waveform voltage and current recording device for MTEM transmitters. After continuous acquisition and storage of the large, pseudo-random current signals emitted by the MTEM transmitter, these signals are then convoluted with the signals collected by the receiver to obtain the earth's impulse response. In this paper, the overall design of the full-waveform recording apparatus, including the hardware and upper-computer software designs, the software interface display, and the results of field test, is discussed in detail.
Coggan, J M; Crandall, L A
1995-01-01
The use of rural sites to train badly needed primary care providers requires access to sophisticated medical information not traditionally available outside of academic health centers. Medical reference librarians can play a key role in the development of primary care training sites in rural settings. Electronic information technologies, with proactive support from medical reference librarians, can provide current and detailed information without concern for distance from the health science center library. This paper discusses recent developments in technology, describes current challenges to the application of this technology in rural settings, and provides policy recommendations for medical reference librarians to enhance rural primary care training.
Technology for the Future: In-Space Technology Experiments Program, part 1
NASA Technical Reports Server (NTRS)
Breckenridge, Roger A. (Compiler); Clark, Lenwood G. (Compiler); Willshire, Kelli F. (Compiler); Beck, Sherwin M. (Compiler); Collier, Lisa D. (Compiler)
1991-01-01
The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiment Program (In-STEP) 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part one of two parts and is the executive summary and experiment description. The executive summary portion contains keynote addresses, strategic planning information, and the critical technology needs summaries for each theme. The experiment description portion contains brief overviews of the objectives, technology needs and backgrounds, descriptions, and development schedules for current industry, university, and NASA space flight technology experiments.
Technology and public policy: The process of technology assessment in the federal government
NASA Technical Reports Server (NTRS)
Coates, V. T.
1975-01-01
A study was conducted to provide a descriptive and analytical review of the concept of technology assessment and the current status of its applications in the work of the federal executive agencies. The origin of the term technology assessment was examined along with a brief history of its discussion and development since 1966 and some of the factors influencing that development.
Understanding Technology Literacy: A Framework for Evaluating Educational Technology Integration
ERIC Educational Resources Information Center
Davies, Randall S.
2011-01-01
Federal legislation in the United States currently mandates that technology be integrated into school curricula because of the popular belief that learning is enhanced through the use of technology. The challenge for educators is to understand how best to teach with technology while developing the technological expertise of their students. This…
Engineering the next generation of clinical deep brain stimulation technology.
McIntyre, Cameron C; Chaturvedi, Ashutosh; Shamir, Reuben R; Lempka, Scott F
2015-01-01
Deep brain stimulation (DBS) has evolved into a powerful clinical therapy for a range of neurological disorders, but even with impressive clinical growth, DBS technology has been relatively stagnant over its history. However, enhanced collaborations between neural engineers, neuroscientists, physicists, neurologists, and neurosurgeons are beginning to address some of the limitations of current DBS technology. These interactions have helped to develop novel ideas for the next generation of clinical DBS systems. This review attempts collate some of that progress with two goals in mind. First, provide a general description of current clinical DBS practices, geared toward educating biomedical engineers and computer scientists on a field that needs their expertise and attention. Second, describe some of the technological developments that are currently underway in surgical targeting, stimulation parameter selection, stimulation protocols, and stimulation hardware that are being directly evaluated for near term clinical application. Copyright © 2015 Elsevier Inc. All rights reserved.
Development Challenges of Game-Changing Entry System Technologies From Concept to Mission Infusion
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Beck, Robin; Ellerby, Donald; Feldman, Jay; Gage, Peter; Munk, Michelle; Wercinski, Paul
2016-01-01
NASA's Space Technology Mission Directorate (STMD) and the Game Changing Development Program (GCDP) were created to develop new technologies. This paper describes four entry system technologies that are funded by the GCDP and summarizes the lessons learned during the development. The investments are already beginning to show success, mission infusion pathways after five years of existence. It is hoped that our experience and observations, drawn from projects supported by the GCD program/STMD, Orion and SMD can help current and future technology development projects. Observations on fostering a culture of success and on constraints that limit greater success are also provided.
Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions
NASA Technical Reports Server (NTRS)
Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard
2012-01-01
NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.
Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Taylor, B. D.; Caffrey, J.; Hedayat, A.; Stephens, J.; Polsgrove, R.
2015-01-01
Cryogenic fluid management technology is critical to the success of future nuclear thermal propulsion powered vehicles and long duration missions. This paper discusses current capabilities in key technologies and their development path. The thermal environment, complicated from the radiation escaping a reactor of a nuclear thermal propulsion system, is examined and analysis presented. The technology development path required for maintaining cryogenic propellants in this environment is reviewed. This paper is intended to encourage and bring attention to the cryogenic fluid management technologies needed to enable nuclear thermal propulsion powered deep space missions.
EHV systems technology - A look at the principles and current status. [Electric and Hybrid Vehicle
NASA Technical Reports Server (NTRS)
Kurtz, D. W.; Levin, R. R.
1983-01-01
An examination of the basic principles and practices of systems engineering is undertaken in the context of their application to the component and subsystem technologies involved in electric and hybrid vehicle (EHV) development. The limitations of purely electric vehicles are contrasted with hybrid, heat engine-incorporating vehicle technology, which is inherently more versatile. A hybrid vehicle concept assessment methodology is presented which employs current technology and yet fully satisfies U.S. Department of Energy petroleum displacement goals.
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David
2016-01-01
The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.
Initial Technology Assessment for the Large UV-Optical-Infrared (LUVOIR) Mission Concept Study
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Feinberg, Lee D.; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David
2016-01-01
The NASA Astrophysics Divisions 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet-optical-infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for bio-signatures via direct-imaging and spectroscopic characterization of habitable exo-planets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV-Optical Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farooq, M.O.
1988-01-01
The failure of the standard Growth Approach to economic development to solve the problems of underdevelopment in LDCs has caused an alternative approach, Basic Needs Approach (BNA), to attain prominence in development thought. BNA emphasizes poverty-minimizing growth. Its strategy of direct attack on poverty has better potential for LDCs' development and fulfillment of their populations' basic needs than the trickle-down mechanism of the Growth Approach. BNA requires, among other things, (a) suitable rural financial markets (RFMs) as parts of the overall financial system, and (b) indigenous technological capabilities. The financial system, if it functions as a central element in anmore » institutionalized technology policy, can link technology-related institutions that generate, evaluate, and promote appropriate technologies (ATs) with RFMs that can support adoption and diffusion of ATs in the agro-rural sector. The above argument uses Bangladesh as a case for illustration. In the light of an institutional framework presented, examined, and extended in this dissertation, it is found that Bangladesh currently does not have an institutionalized technology policy. The current organizational framework and policies related to technological development are not conducive to BNA.« less
Progress of MCT Detector Technology at AIM Towards Smaller Pitch and Lower Dark Current
NASA Astrophysics Data System (ADS)
Eich, D.; Schirmacher, W.; Hanna, S.; Mahlein, K. M.; Fries, P.; Figgemeier, H.
2017-09-01
We present our latest results on cooled p-on- n planar mercury cadmium telluride (MCT) photodiode technology. Along with a reduction in dark current for raising the operating temperature ( T op), AIM INFRAROT-MODULE GmbH (AIM) has devoted its development efforts to shrinking the pixel size. Both are essential requirements to meet the market demands for reduced size, weight and power and high-operating temperature applications. Detectors based on the p-on- n technology developed at AIM now span the spectrum from the mid-wavelength infrared (MWIR) to the very long wavelength infrared (VLWIR) with cut-off wavelengths from 5 μm to about 13.5 μm at 80 K. The development of the p-on- n technology for VLWIR as well as for MWIR is mainly implemented in a planar photodetector design with a 20- μm pixel pitch. For the VLWIR, dark currents significantly reduced as compared to `Tennant's Rule 07' are demonstrated for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at a 20 K higher operating temperature than with previous AIM technology. For MWIR detectors with a 20- μm pitch, noise equivalent temperature differences of less than 30 mK are obtained up to 170 K. This technology has been transferred to our small pixel pitch high resolution (XGA) MWIR detector with 1024 × 768 pixels at a 10- μm pitch. Excellent performance at an operating temperature of 160 K is demonstrated.
Demonstration of an Innovative Large-Diameter Sewer Rehabilitation Technology in Houston, Texas
While sewer renewal technologies currently being used for the repair, replacement and/or rehabilitation of deteriorating wastewater collection systems are generally effective, there is still room for improvement of existing technologies and for the development of new technologies...
While sewer renewal technologies currently being used for the repair, replacement and/or rehabilitation of deteriorating wastewater collection systems are generally effective, there is still room for improvement of existing technologies and for the development of new technologies...
Extravehicular Activity (EVA) Technology Development Status and Forecast
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Westheimer, David T.
2010-01-01
Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an EVA capability for these types of missions enables in-space construction of complex vehicles or satellites, hands on exploration of new parts of our solar system, and engages the public through the inspiration of knowing that humans are exploring places that they have never been before. This paper offers insight into what is currently being developed and what the potential opportunities are in the forecast
Distance Education Programs in Social Work: Current and Emerging Trends
ERIC Educational Resources Information Center
Vernon, Robert; Vakalahi, Halaevalu; Pierce, Dean; Pittman-Munke, Peggy; Adkins, Lynn Frantz
2009-01-01
This article reports on current and emerging trends in the use of distance education technologies in social work education. Areas studied include the extent of distance education programs, curricular areas covered, technologies used, pedagogical approaches, intentions for degree-program development, sources of pressure to adopt distance education…
Electronic Current Awareness in the Corporate Environment.
ERIC Educational Resources Information Center
Sale, Elizabeth
Technological developments such as groupware and World Wide Web technology have opened up new opportunities for the delivery of information directly to the end-user's desktop. These advances have meant that suppliers are now producing a new breed of current awareness services (CAS), termed alerting services, which automatically filter newswires…
ERIC Educational Resources Information Center
Vrasidas, Charalambos, Ed.; Glass, Gene V., Ed.
This book describes the current state of developments in distance education and distributed learning. The volume brings together some of the leading contemporary contributors in the areas of educational technology and distance education. Topics covered include research and evaluation in distance education, online communities, faculty productivity,…
Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid
NASA Technical Reports Server (NTRS)
Armstrong, Michael J.; Blackwelder, Mark; Bollman, Andrew; Ross, Christine; Campbell, Angela; Jones, Catherine; Norman, Patrick
2015-01-01
The development of a wholly superconducting turboelectric distributed propulsion system presents unique opportunities for the aerospace industry. However, this transition from normally conducting systems to superconducting systems significantly increases the equipment complexity necessary to manage the electrical power systems. Due to the low technology readiness level (TRL) nature of all components and systems, current Turboelectric Distributed Propulsion (TeDP) technology developments are driven by an ambiguous set of system-level electrical integration standards for an airborne microgrid system (Figure 1). While multiple decades' worth of advancements are still required for concept realization, current system-level studies are necessary to focus the technology development, target specific technological shortcomings, and enable accurate prediction of concept feasibility and viability. An understanding of the performance sensitivity to operating voltages and an early definition of advantageous voltage regulation standards for unconventional airborne microgrids will allow for more accurate targeting of technology development. Propulsive power-rated microgrid systems necessitate the introduction of new aircraft distribution system voltage standards. All protection, distribution, control, power conversion, generation, and cryocooling equipment are affected by voltage regulation standards. Information on the desired operating voltage and voltage regulation is required to determine nominal and maximum currents for sizing distribution and fault isolation equipment, developing machine topologies and machine controls, and the physical attributes of all component shielding and insulation. Voltage impacts many components and system performance.
NASA's Current Directions in the CETDP Micro-Technology Thrust Area
NASA Technical Reports Server (NTRS)
Stocky, J.
2000-01-01
NASA's program in micro-technologies seeks to develop the advanced technologies needed to reduce the mass of Earth-orbiting and deep-space spacecraft by several orders of magnitude over the next decade.
An Australian Land Force for Conflict in a World Without Precedent (Future Warfare Concept Paper)
2009-01-01
Michael B. Ryan, Australian Army Thesis: The current pace of change in the global security environment and information technology demands that, like...information) Wave societies.6 The current pace of change in the global security environment and information technology demands that, like all...Blue, downloaded from www.defence.gov.au/navy; La Franchi , Peter, “High Level Interoperability: Future Development of t Peter, “Development Role
Leveling the Playing Field: China’s Development of Advanced Energy Weapons
2012-05-02
02-05-2012 2. REPORT TYPE Master of Military Studies Research Paper 3. DATES COVERED (From - To) September 2011 - April 2012 5a. CONTRACT NUMBER...weapons in a surprise attack scenario to counter superior U.S. capabilities and technology. This paper will update and review current and developing...utilizing these weapons in a surprise attack scenario to counter superior U.S. capabilities and technology. This paper will update and review current
EPA SUPPORT OF TECHNOLOGY DEVELOPMENT FOR REHABILITATION
Several EPA projects are currently underway to encourage technology development and dissemination in key aspects of the condition assessment and rehabilitation and replacement process for water and wastewater systems. The progress on one of these projects, Task Order 58 -- being ...
Automated ammunition logistics for the Crusader program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speaks, D.M.; Kring, C.T.; Lloyd, P.D.
1997-03-01
The US Army`s next generation artillery system is called the Crusader. A self-propelled howitzer and a resupply vehicle constitute the Crusader system, which will be designed for improved mobility, increased firepower, and greater survivability than current generation vehicles. The Army`s Project Manager, Crusader, gave Oak Ridge National Laboratory (ORNL) the task of developing and demonstrating a concept for the resupply vehicle. The resupply vehicle is intended to sustain the howitzer with ammunition and fuel and will significantly increase capabilities over those of current resupply vehicles. Ammunition is currently processed and transferred almost entirely by hand. ORNL identified and evaluated variousmore » concepts for automated upload, processing, storage, docking and delivery. Each of the critical technologies was then developed separately and demonstrated on discrete test platforms. An integrated technology demonstrator, incorporating each of the individual technology components to realistically simulate performance of the selected vehicle concept, was developed and successfully demonstrated for the Army.« less
Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John W.; Glaab, Louis J.; Peterson, Todd T.
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Back to the future: personal digital assistants in nursing education.
McLeod, Renee P; Mays, Mary Z
2008-12-01
This article provides an overview of the current state of the art for incorporating personal digital assistants (PDAs) into nursing education. The development of PDA technology and the lessons learned by educators integrating PDA technology into nursing curricula are described. The current cycle of PDA evolution is discussed and contrasted with a proposed model for maximizing the impact of PDAs on technological innovation in nursing education and practice.
Research and Technology: 2003 Annual Report of the John F Kennedy Space Center
NASA Technical Reports Server (NTRS)
2003-01-01
The John F. Kennedy Space Center (KSC) is America's Spaceport Technology Center. The KSC technology development program encompasses the efforts of the entire KSC team, consisting of Government and contractor personnel, working in partnership with academic institutions and commercial industry. KSC's assigned mission areas are space launch operations and spaceport and range technologies. KSC's technology development customers include current space transportation programs, future space transportation programs / initiatives, and enabling technical programs. The KSC Research and Technology 2003 Annual Report encompasses the efforts of contributors to the KSC advanced technology development program and KSC technology transfer activities. Dr. Dave Bartine, KSC Chief Technologist, (321) 867-7069, is responsible for publication of this report and should be contacted for any desired information regarding KSC's research and technology development activities.
Technology Plan for the Terrestrial Planet Finder Interferometer
NASA Technical Reports Server (NTRS)
Lawson, Peter R. (Editor); Dooley, Jennifer A. (Editor)
2005-01-01
The technology plan for the Terrestrial Planet Finder Interferometer (TPF-I) describes the breadth of technology development currently envisaged to enable TPF-I to search for habitable worlds around nearby stars. TPF-I is currently in Pre-Phase A (the Advanced Study Phase) of its development. For planning purposes, it is expected to enter into Phase A in 2010 and be launched sometime before 2020. TPF-I is being developed concurrently with the Terrestrial Planet Finder Coronagraph (TPF-C), whose launch is anticipated in 201 6. The missions are being designed with the capability to detect Earth-like planets should they exist in the habitable zones of Sun-like (F,G, and K) stars out to a distance of about 60 light-years. Each mission will have the starlight-suppression and spectroscopic capability to enable the characterization of extrasolar planetary atmospheres, identifying biomarkers and signs of life. TPF-C is designed as a visible-light coronagraph; TPF-I is designed as a mid-infrared formation-flying interferometer. The two missions, working together, promise to yield unambiguous detections and characterizations of Earth-like planets. The challenges of planet detections with mid-infrared formation-flying interferometry are described within this technology plan. The approach to developing the technology is described through roadmaps that lead from our current state of the art through the different phases of mission development to launch. Technology metrics and milestones are given to measure progress. The emphasis of the plan is development and acquisition of technology during pre-Phase A to establish feasibility of the mission to enter Phase A sometime around 2010. Plans beyond 2010 are outlined. The plan contains descriptions of the development of new component technology as well as testbeds that demonstrate the viability of new techniques and technology required for the mission. Starlight-suppression (nulling) and formation-flying technology are highlighted. Although the techniques are described herein, the descriptions are only at a high-level, and tutorial material is not included. The reader is expected to have some familiarity with the principles of long-baseline mid-infrared interferometry. Selected references to existing literature are given where relevant.
NASA Technical Reports Server (NTRS)
Sampson, Paul G.; Sny, Linda C.
1992-01-01
The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).
NASA Development of Aerocapture Technologies
NASA Technical Reports Server (NTRS)
James, Bonnie; Munk, Michelle; Moon, Steve
2003-01-01
Aeroassist technology development is a vital part of the NASA ln-Space Propulsion Program (ISP), which is managed by the NASA Headquarters Office of Space Science, and implemented by the Marshall Space Flight Center in Huntsville, Alabama. Aeroassist is the general term given to various techniques to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propulsive fuel. Within the ISP, the current aeroassist technology development focus is aerocapture. The objective of the ISP Aerocapture Technology Project (ATP) is to develop technologies that can enable and/or benefit NASA science missions by significantly reducing cost, mass, and/or travel times. To accomplish this objective, the ATP identifies and prioritizes the most promising technologies using systems analysis, technology advancement and peer review, coupled with NASA Headquarters Office of Space Science target requirements. Plans are focused on developing mid-Technology Readiness Level (TRL) technologies to TRL 6 (ready for technology demonstration in space).
NASA Development of Aerocapture Technologies
NASA Technical Reports Server (NTRS)
James, Bonnie; Munk, Michelle; Moon, Steve
2004-01-01
Aeroassist technology development is a vital part of the NASA In-Space Propulsion Program (ISP), which is managed by the NASA Headquarters Office of Space Science, and implemented by the Marshall Space Flight Center in Huntsville, Alabama. Aeroassist is the general term given to various techniques to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propulsive fuel. Within the ISP, the current aeroassist technology development focus is aerocapture. The objective of the ISP Aerocapture Technology Project (ATP) is to develop technologies that can enable and/or benefit NASA science missions by significantly reducing cost, mass, and/or travel times. To accomplish this objective, the ATP identifies and prioritizes the most promising technologies using systems analysis, technology advancement and peer review, coupled with NASA Headquarters Office of Space Science target requirements. Plans are focused on developing mid-Technology Readiness Level (TRL) technologies to TRL 6 (ready for technology demonstration in space).
Biorefineries for the production of top building block chemicals and their derivatives.
Choi, Sol; Song, Chan Woo; Shin, Jae Ho; Lee, Sang Yup
2015-03-01
Due to the growing concerns on the climate change and sustainability on petrochemical resources, DOE selected and announced the bio-based top 12 building blocks and discussed the needs for developing biorefinery technologies to replace the current petroleum based industry in 2004. Over the last 10 years after its announcement, many studies have been performed for the development of efficient technologies for the bio-based production of these chemicals and derivatives. Now, ten chemicals among these top 12 chemicals, excluding the l-aspartic acid and 3-hydroxybutyrolactone, have already been commercialized or are close to commercialization. In this paper, we review the current status of biorefinery development for the production of these platform chemicals and their derivatives. In addition, current technological advances on industrial strain development for the production of platform chemicals using micro-organisms will be covered in detail with case studies on succinic acid and 3-hydroxypropionic acid as examples. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
2006 Status of the Momentum eXchange Electrodynamic Re-Boost (MXER) Tether Development
NASA Technical Reports Server (NTRS)
Bonometti, Joseph A.; Sorensen, Kirk F.; Dankanich, John W.; Frame, Kyle L.
2006-01-01
The MXER Tether technology development is a high-payoff/high-risk investment area within the NASA In-Space Propulsion Technology (ISPT) Program. The ISPT program is managed by the NASA Headquarters Science Mission Directorate and implemented by the Marshall Space Flight Center in Huntsville, Alabama. The MXER concept was identified and competitively ranked within NASA's comprehensive Integrated In-Space Transportation Plan (IISTP); an agency-wide technology assessment activity. The objective of the MXER tether project within ISPT is to advance the technological maturation level for the MXER system, and its subsystems, as well as other space and terrestrial tether applications. Recent hardware efforts have focused on the manufacturability of space-survivable high-strength tether material and coatings, high-current electrodynamic tether, lightweight catch mechanism, high-accuracy propagator/predictor code, and efficient electron collection/current generation. Significant technical progress has been achieved with modest ISPT funding to the extent that MXER has evolved to a well-characterized system with greater capability as the design has been matured. Synergistic efforts in high-current electrodynamic tethers and efficient electron collection/current generation have been made possible through SBIR and STTR support. The entire development endeavor was orchestrated as a collaborative team effort across multiple individual contracts and has established a solid technology resource base, which permits a wide variety of future space cable/tether applications to be realized.
The NASA In-Space Propulsion Technology Project's Current Products and Future Directions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Dankanich, John; Munk, Michelle M.; Pencil, Eric; Liou, Larry
2010-01-01
Since its inception in 2001, the objective of the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling for future NASA flagship and sample return missions currently under consideration, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that recently completed, or will be completing within the next year, their technology development and are ready for infusion into missions. The paper also describes the ISPT project s future focus on propulsion for sample return missions. The ISPT technologies completing their development are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) aerocapture technologies which include thermal protection system (TPS) materials and structures, guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and atmospheric and aerothermal effect models. The future technology development areas for ISPT are: 1) Planetary Ascent Vehicles (PAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; 3) propulsion for Earth Return Vehicles (ERV) and transfer stages, and electric propulsion for sample return and low cost missions; 4) advanced propulsion technologies for sample return; and 5) Systems/Mission Analysis focused on sample return propulsion.
Enabling National Security Through Dual-Use Technology
2014-04-30
Aersopace, 2014) Human Universal Load Carrier (HULC) The Human Universal Load Carrier (HULC) is an exoskeleton developed by Lockheed Martin for dismounted...HULC (Army-Technology.com, 2014). HULC is an un-tethered, hydraulic-powered, anthropomorphic exoskeleton designed specifically to fit around the...currently designed for military use, exoskeleton technology development will eventually provide civilian capabilities by enhancing firefighting
ERIC Educational Resources Information Center
Gonzalez, Marggie Denise
2016-01-01
This multiple case study examines four groups of secondary mathematics teachers engaged in a Lesson Study approach to professional development where they planned and taught lessons that integrate technology. Informed by current literature, a framework was developed to focus on the dimensions of teacher's knowledge to teach mathematics with…
Sandia National Labs: Manufacturing Science and Technology
Additional Resources R&D Projects Current Partnerships Creating Partnerships Welcome to the Manufacturing Science and Technology home page Manufacturing Science and Technology Showcase The Manufacturing Science & Technology Center develops and applies advanced manufacturing processes for realization of
I feel disconnected: learning technologies in resident education.
Armstrong, April D; Jarvis-Selinger, Sandra
2013-01-01
With the rapid development of technology in medical education, orthopaedic educators are recognizing that the way residents learn and access information is profoundly changing. Residency programs are faced with the challenging problem that current educational methods are not designed to take full advantage of the information explosion and rapid technologic changes. This disconnection is often seen in the potentially separate approaches to education preferred by residents and orthopaedic educators. Becoming connected with residents requires understanding the possible learning technologies available and the learners' abilities, needs, and expectations. It is often assumed that approaches to strategic lifelong learning are developed by residents during their training; however, without the incorporation of technology into the learning environment, residents will not be taught the digital literacy and information management strategies that will be needed in the future. To improve learning, it is important to highlight and discuss current technologic trends in education, the possible technologic disconnection between educators and learners, the types of learning technologies available, and the potential opportunities for getting connected.
ERIC Educational Resources Information Center
Abou-Warda, Sherein Hamed
2016-01-01
Purpose: The overall objective of the current study is to explore how universities can better developing new educational services. The purpose of this paper is to develop framework for technology entrepreneurship education (TEPE) within universities. Design/Methodology/Approach: Qualitative and quantitative research approaches were employed. This…
Courseware Development for Semiconductor Technology and Its Application into Instruction
ERIC Educational Resources Information Center
Tsai, Shu-chiao
2009-01-01
This study reports on the development of ESP (English for specific purposes) courseware for semiconductor technology and its integration as a "silent partner" into instruction. This kind of team-teaching could help overcome current problems encountered in developing ESP in Taiwan. The content of the material under discussion includes…
Space Technology Mission Directorate: Game Changing Development
NASA Technical Reports Server (NTRS)
Gaddis, Stephen W.
2015-01-01
NASA and the aerospace community have deep roots in manufacturing technology and innovation. Through it's Game Changing Development Program and the Advanced Manufacturing Technology Project NASA develops and matures innovative, low-cost manufacturing processes and products. Launch vehicle propulsion systems are a particular area of interest since they typically comprise a large percentage of the total vehicle cost and development schedule. NASA is currently working to develop and utilize emerging technologies such as additive manufacturing (i.e. 3D printing) and computational materials and processing tools that could dramatically improve affordability, capability, and reduce schedule for rocket propulsion hardware.
NASA Technical Reports Server (NTRS)
Boudreaux, Mark; Montgomery, Edward; Cacas, Joseph
2008-01-01
The National Aeronautics and Space Administr ation at Marshall Space Flight Center and the National Space Science and Technology Center in Huntsville Alabama USA, are jointly developing a new class of science and technology mission small satellites. The Fast, Affordable, Science and Technology SATell ite (FASTSAT) was designed and developed using a new collaborative and best practices approach. The FASTSAT development, along with the new class of low cost vehicles currently being developed, would allow performance of 30 kg payload mass missions for a cost of less than 10 million US dollars.
Harper, Simon; Yesilada, Yeliz
2012-01-01
This is a technological review paper focussed on identifying both the research challenges and opportunities for further investigation arising from emerging technologies, and it does not aim to propose any recommendation or standard. It is focussed on blind and partially sighted World Wide Web (Web) users along with others who use assistive technologies. The Web is a fast moving interdisciplinary domain in which new technologies, techniques and research is in perpetual development. It is often difficult to maintain a holistic view of new developments within the multiple domains which together make up the Web. This suggests that knowledge of the current developments and predictions of future developments are additionally important for the accessibility community. Web accessibility has previously been characterised by the correction of our past mistakes to make the current Web fulfil the original vision of access for all. New technologies were not designed with accessibility in mind and technologies that could be useful for addressing accessibility issues were not identified or adopted by the accessibility community. We wish to enable the research community to undertake preventative measures and proactively address challenges, while recognising opportunities, before they become unpreventable or require retrospective technological enhancement. This article then reviews emerging trends within the Web and Web Accessibility domains.
Genetic tool development and systemic regulation in biosynthetic technology.
Dai, Zhongxue; Zhang, Shangjie; Yang, Qiao; Zhang, Wenming; Qian, Xiujuan; Dong, Weiliang; Jiang, Min; Xin, Fengxue
2018-01-01
With the increased development in research, innovation, and policy interest in recent years, biosynthetic technology has developed rapidly, which combines engineering, electronics, computer science, mathematics, and other disciplines based on classical genetic engineering and metabolic engineering. It gives a wider perspective and a deeper level to perceive the nature of life via cell mechanism, regulatory networks, or biological evolution. Currently, synthetic biology has made great breakthrough in energy, chemical industry, and medicine industries, particularly in the programmable genetic control at multiple levels of regulation to perform designed goals. In this review, the most advanced and comprehensive developments achieved in biosynthetic technology were represented, including genetic engineering as well as synthetic genomics. In addition, the superiority together with the limitations of the current genome-editing tools were summarized.
JPRS Report, Science & Technology, China: Energy
1989-06-26
certain areas such as modular HTGR technology. In nuclear power develop - ment we currently face both challenges and opportunities, both risks and...22161 JmC QUALITY EJSPSÜSED 3 Science & Technology China: Energy JPRS-CEN-89-006 CONTENTS 26 June 1989 NATIONAL DEVELOPMENTS No Easy Solution Seen...Be Developed [XINHUA, 16 May 89] 21 National Oil Firm Sets 5-Year Goals [CEI Database, 9 May 89] , 21 Zhongyuan Oil Field Is Among Fastest
Railroad Classification Yard Technology : A Survey and Assessment
DOT National Transportation Integrated Search
1977-01-01
This report documents a survey and assessment of the current state of the art in rail freight-car classification yard technology. The major objective was the identification of research and development necessary for technological improvements in railr...
Sucala, Madalina; Nilsen, Wendy; Muench, Frederick
2017-12-01
Collaborations between scientists, care providers, and technology industry professionals are becoming more relevant for developing, testing, and implementing behavioral health technologies. As the need for such partnerships increases, it is important to understand stakeholders' attitudes about their role in partnering for developing such technologies and how much do they expect technology to impact behavioral research and care. The aim of this study was to investigate how much technology disruption do stakeholders expect in healthcare, as well as their perceived contribution in partnering for developing behavioral health technologies. Stakeholders (N = 74) responded to an online convenience sampling survey. Over 89% of participants reported expecting that technology will bring at least a moderate amount of disruption in the current models of behavioral healthcare, with respondents with the most experience in digital health expecting the most disruption. As for their perception of each other's role in partnering for developing behavioral health technologies, one group's weakness was considered to be complemented by another group's strength. Academics were perceived as having more theoretical and research expertise but being less technology-savvy, while industry professionals were considered to excel at technological and marketing activities. Providers were considered to have the most clinical and real-world healthcare industry expertise. Our results indicate that technology is expected to disrupt current healthcare models, while also highlighting the need for collaboration, as no single group was considered to have sufficient expertise and resources to develop successful, effective behavioral health technologies on its own. These results may contribute to a better understanding of how technology disruption is affecting behavioral healthcare from the standpoint of its key players, which may lead to better collaborative models of research and care delivery.
NASA Thermal Control Technologies for Robotic Spacecraft
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.; Birur, Gajanana C.
2003-01-01
Technology development is inevitably a dynamic process in search of an elusive goal. It is never truly clear whether the need for a particular technology drives its development, or the existence of a new capability initiates new applications. Technology development for the thermal control of spacecraft presents an excellent example of this situation. Nevertheless, it is imperative to have a basic plan to help guide and focus such an effort. Although this plan will be a living document that changes with time to reflect technological developments, perceived needs, perceived opportunities, and the ever-changing funding environment, it is still a very useful tool. This presentation summarizes the current efforts at NASA/Goddard and NASA/JPL to develop new thermal control technology for future robotic NASA missions.
Developing Sustainable Life Support System Concepts
NASA Technical Reports Server (NTRS)
Thomas, Evan A.
2010-01-01
Sustainable spacecraft life support concepts may allow the development of more reliable technologies for long duration space missions. Currently, life support technologies at different levels of development are not well evaluated against each other, and evaluation methods do not account for long term reliability and sustainability of the hardware. This paper presents point-of-departure sustainability evaluation criteria for life support systems, that may allow more robust technology development, testing and comparison. An example sustainable water recovery system concept is presented.
New Electric Power Technologies: Problems and Prospects for the 1990s.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Office of Technology Assessment.
This report responds to a request from the House Committee on Science and Technology and its Subcommittee on Energy Development and Applications to analyze a range of new electric power generating, storage, and load management technologies. The Office of Technology Assessment (OTA) examined these technologies in terms of their current and expected…
Technology Supported Learning and Teaching: A Staff Perspective
ERIC Educational Resources Information Center
O'Donoghue, John, Ed.
2006-01-01
"Technology Supported Learning and Teaching: A Staff Perspective" presents accounts and case studies of first-hand experience in developing, implementing, or evaluating learning technologies. This book highlights the many areas in which practitioners are attempting to implement learning technologies and reflects themes of current topical interest.…
Information Technology: A Survey from the Perspective of Higher Education.
ERIC Educational Resources Information Center
Van Houweling, Douglas E.
1986-01-01
Survey of the history and current development of information technology covers hardware (economies of scale, communications technology, magnetic and optical forms of storage), and the evolution of systems software ("tool" software, applications software, and nonprocedural languages). The effect of new computer technologies on human…
Technology and Reform-Based Science Education
ERIC Educational Resources Information Center
Dani, Danielle E.; Koenig, Kathleen M.
2008-01-01
Current reforms in science education call for the integration of digital technologies into science teaching, advocating that students learn science content and processes through technology. In this article, we provide practical examples, situated within the literature, of how digital technologies can be used to support the development and…
The new technological solution for the JT-60SA quench protection circuits
NASA Astrophysics Data System (ADS)
Gaio, E.; Maistrello, A.; Novello, L.; Matsukawa, M.; Perna, M.; Ferro, A.; Yamauchi, K.; Piovan, R.
2018-07-01
An advanced technology has been developed and employed for the main circuit breakers (CB) of the quench protection circuits (QPC) of the superconducting coils of JT-60SA: it consists in a Hybrid mechanical-static CB (HCB) composed of a mechanical Bypass switch (BPS) for conducting the continuous current, in parallel to a static circuit breaker (SCB) based on integrated gate commutated thyristor (IGCT) for current interruption. It was the result of a R&D program carried out since 2006 to identify innovative solutions for the interruption of high dc current, able to improve the maintainability and availability of the CB. The HCB developed for the JT-60SA QPC is the first realization of a dc circuit breaker based on this design approach for interrupting current of some tens of kA with reapplied voltage of some kV. It also represents the first application of hybrid technology with IGCT for protection of superconducting magnets in fusion experiments. The paper aims at giving a comprehensive overview of the main R&D activities devoted to the development of this new technological approach; then, the key aspects of the design, manufacturing and testing of the QPCs for JT-60SA, successfully completed in Naka Site in summer 2015 are presented. Finally, the significance of this research is discussed and the possible future developments, in particular in view of DEMO fusion reactor, are outlined.
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology currently available. 459.12 Section 459.12 Protection of Environment ENVIRONMENTAL PROTECTION... effluent reduction attainable by the application of the best practicable control technology currently... it was able to collect, develop and solicit with respect to factors (such as age and size of plant...
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology currently available. 459.12 Section 459.12 Protection of Environment ENVIRONMENTAL PROTECTION... effluent reduction attainable by the application of the best practicable control technology currently... it was able to collect, develop and solicit with respect to factors (such as age and size of plant...
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology currently available (BPT). 423.12 Section 423.12 Protection of Environment ENVIRONMENTAL... by the application of the best practicable control technology currently available (BPT). (a) In... collect, develop and solicit with respect to factors (such as age and size of plant, utilization of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available. 459.12 Section 459.12 Protection of Environment ENVIRONMENTAL PROTECTION... attainable by the application of the best practicable control technology currently available. In establishing... collect, develop and solicit with respect to factors (such as age and size of plant, raw materials...
Code of Federal Regulations, 2011 CFR
2011-07-01
... technology currently available. 459.12 Section 459.12 Protection of Environment ENVIRONMENTAL PROTECTION... attainable by the application of the best practicable control technology currently available. In establishing... collect, develop and solicit with respect to factors (such as age and size of plant, raw materials...
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology currently available (BPT). 423.12 Section 423.12 Protection of Environment ENVIRONMENTAL... by the application of the best practicable control technology currently available (BPT). (a) In... collect, develop and solicit with respect to factors (such as age and size of plant, utilization of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology currently available (BPT). 423.12 Section 423.12 Protection of Environment ENVIRONMENTAL... by the application of the best practicable control technology currently available (BPT). (a) In... collect, develop and solicit with respect to factors (such as age and size of plant, utilization of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... technology currently available (BPT). 423.12 Section 423.12 Protection of Environment ENVIRONMENTAL... by the application of the best practicable control technology currently available (BPT). (a) In... collect, develop and solicit with respect to factors (such as age and size of plant, utilization of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology currently available. 459.12 Section 459.12 Protection of Environment ENVIRONMENTAL PROTECTION... effluent reduction attainable by the application of the best practicable control technology currently... it was able to collect, develop and solicit with respect to factors (such as age and size of plant...
Commentaries on Research in Instructional Media. An Examination of Conceptual Schemes.
ERIC Educational Resources Information Center
Salomon, Gavriel, Ed.; Snow, Richard E., Ed.
1970-01-01
Papers which explore the aspects of current work in instructional technology and promote research and development in the field are collected in this bulletin. An introductory paper provides some general perceptives on the current state of instructional technology in relation to the contemporary educational scene and the various problems and…
[Current applications of high-throughput DNA sequencing technology in antibody drug research].
Yu, Xin; Liu, Qi-Gang; Wang, Ming-Rong
2012-03-01
Since the publication of a high-throughput DNA sequencing technology based on PCR reaction was carried out in oil emulsions in 2005, high-throughput DNA sequencing platforms have been evolved to a robust technology in sequencing genomes and diverse DNA libraries. Antibody libraries with vast numbers of members currently serve as a foundation of discovering novel antibody drugs, and high-throughput DNA sequencing technology makes it possible to rapidly identify functional antibody variants with desired properties. Herein we present a review of current applications of high-throughput DNA sequencing technology in the analysis of antibody library diversity, sequencing of CDR3 regions, identification of potent antibodies based on sequence frequency, discovery of functional genes, and combination with various display technologies, so as to provide an alternative approach of discovery and development of antibody drugs.
In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development
NASA Technical Reports Server (NTRS)
Montgomery, Edward E., IV
2004-01-01
An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.
A Systematic Method of Integrating BIM and Sensor Technology for Sustainable Construction Design
NASA Astrophysics Data System (ADS)
Liu, Zhen; Deng, Zhiyu
2017-10-01
Building Information Modeling (BIM) has received lots of attention of construction field, and sensor technology was applied in construction data collection. This paper developed a method to integrate BIM and sensor technology for sustainable construction design. A brief literature review was conducted to clarify the current development of BIM and sensor technology; then a systematic method for integrating BIM and sensor technology to realize sustainable construction design was put forward; finally a brief discussion and conclusion was given.
Life Balancing -- A Better Way to Balance Large Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, R. Dyche; Zane, Regan; Plett, Gregory
2017-03-28
A new cell balancing technology was developed under a Department of Energy contract which merges the DC/DC converter function into cell balancing. Instead of conventional passive cell balancing technology which bypasses current through a resistor, or active cell balancing which moves current from one cell to another, with significant cost and additional inefficiencies, this concept takes variable amount of current from each cell or small group of cells and converts it to current for the low voltage system.
Low cost carbon fiber technology development for carbon fiber composite applications.
DOT National Transportation Integrated Search
2012-04-01
The objective of this project was to further develop low cost carbon fiber for a variety of potential applications. Manufacturing feasi-bility of low cost carbon fibers/composites has been demonstrated. A number of technologies that are currently usi...
NASA Technical Reports Server (NTRS)
Schmidt, Lorne R.; Francoeur, J.; Aguero, Alina; Wertheimer, Michael R.; Klemberg-Sapieha, J. E.; Martinu, L.; Blezius, J. W.; Oliver, M.; Singh, A.
1995-01-01
Three projects are currently underway for the development of new coatings for the protection of materials in the space environment. These coatings are based on vacuum deposition technologies. The projects will go as far as the proof-of-concept stage when the commercial potential for the technology will be demonstrated on pilot-scale fabrication facilities in 1996. These projects are part of a subprogram to develop supporting technologies for automation and robotics technologies being developed under the Canadian Space Agency's STEAR Program, part of the Canadian Space Station Program.
NASA Technical Reports Server (NTRS)
1985-01-01
Solar thermodynamics research and technology is reported. Comments on current program activity and future plans with regard to satisfying potential space station electric power generation requirements are provided. The proceedings contain a brief synopsis of the presentations to the panel, including panel comments, and a summary of the panel's observations. Selected presentation material is appended. Onboard maintainability and repair in space research and technology plan, solar thermodynamic research, program performance, onboard U.S. ground based mission control, and technology development rad maps from 10 C to the growth station are addressed.
Research on Technology Innovation Management in Big Data Environment
NASA Astrophysics Data System (ADS)
Ma, Yanhong
2018-02-01
With the continuous development and progress of the information age, the demand for information is getting larger. The processing and analysis of information data is also moving toward the direction of scale. The increasing number of information data makes people have higher demands on processing technology. The explosive growth of information data onto the current society have prompted the advent of the era of big data. At present, people have more value and significance in producing and processing various kinds of information and data in their lives. How to use big data technology to process and analyze information data quickly to improve the level of big data management is an important stage to promote the current development of information and data processing technology in our country. To some extent, innovative research on the management methods of information technology in the era of big data can enhance our overall strength and make China be an invincible position in the development of the big data era.
TurboBrayton Cryocooler: A Flight Worthy and Promising Future
NASA Technical Reports Server (NTRS)
Gibbon, Judith A.; Swift, Walt L.; Zagarola, Mark V.; DiPirro, Mike; Whitehouse, Paul
1999-01-01
A new development in cryocooler technology, a reverse TurboBrayton cycle cryocooler, developed by Creare, Inc. of Hanover, NH, has now been flight tested. This cooler provides high reliability and long life. With no linear moving components common in current flight cryocoolers, the TurboBrayton cooler requires no active control systems to provide a vibration-free signature. The cooler provides first stage cooling for advanced cryogenic systems and serves as a direct replacement for stored cryogen systems with a longer lifetime. Following a successful flight on STS-95, a TurboBrayton cryocooler will be flown on Hubble Space Telescope (HST) in 2000 to provide renewed refrigeration capability for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). The TurboBrayton cycle cooler is a promising technology already being considered for additional flight programs such as Next Generation Space Telescope (NGST) and Constellation X. These future missions require an advanced generation of the cooler that is currently under development to provide cooling at 10K and less. This paper presents an overview of the current generation cooler with recent flight test results and details the current plans and development progress on the next generation TurboBrayton technology for future missions.
NASA In-Space Propulsion Technologies and Their Infusion Potential
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil,Eric J.; Peterson, Todd; Vento, Daniel; Munk, Michelle M.; Glaab, Louis J.; Dankanich, John W.
2012-01-01
The In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (Electric and Chemical), Entry Vehicle Technologies (Aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in the near future will be Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future focuses for ISPT are sample return missions and other spacecraft bus technologies like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. While the Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Federal technology policy in transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carnes, K.H.
1995-12-31
This paper discusses federal energy and environmental policies and their impact on the U.S. economy. A brief history of the federal government`s role in developing scientific and technological infrastructure is given. Current trends in technology are summarized, with an emphasis on global aspects, and their impact on the economy is discussed. The need for a national technology policy, including continued research and development funding, is discussed and key elements of such a policy are outlined.
Mapping of Technological Opportunities-Labyrinth Seal Example
NASA Technical Reports Server (NTRS)
Clarke, Dana W., Sr.
2006-01-01
All technological systems evolve based on evolutionary sequences that have repeated throughout history and can be abstracted from the history of technology and patents. These evolutionary sequences represent objective patterns and provide considerable insights that can be used to proactively model future seal concepts. This presentation provides an overview of how to map seal technology into the future using a labyrinth seal example. The mapping process delivers functional descriptions of sequential changes in market/consumer demand, from today s current paradigm to the next major paradigm shift. The future paradigm is developed according to a simple formula: the future paradigm is free of all flaws associated with the current paradigm; it is as far into the future as we can see. Although revolutionary, the vision of the future paradigm is typically not immediately or completely realizable nor is it normally seen as practical. There are several reasons that prevent immediate and complete practical application, such as: 1) Some of the required technological or business resources and knowledge not being available; 2) Availability of other technological or business resources are limited; and/or 3) Some necessary knowledge has not been completely developed. These factors tend to drive the Total Cost of Ownership or Utilization out of an acceptable range and revealing the reasons for the high Total Cost of Ownership or Utilization which provides a clear understanding of research opportunities essential for future developments and defines the current limits of the immediately achievable improvements. The typical roots of high Total Cost of Ownership or Utilization lie in the limited availability or even the absence of essential resources and knowledge necessary for its realization. In order to overcome this obstacle, step-by-step modification of the current paradigm is pursued to evolve from the current situation toward the ideal future, i.e., evolution rather than revolution. A key point is that evolutionary stages are mapped to show step-by-step evolution from the current paradigm to the next major paradigm.
Membrane separation technology in the 1980s
NASA Technical Reports Server (NTRS)
Lonsdale, H. K.
1982-01-01
The current status of membrane technology is assessed and industrial processes in which membrane technology could effect energy savings or other advantages are identified. The extension of current trends is recommended; i.e., the development of ultrathin and highly permselective membranes, the use of specific carriers to enhance permselectivity and permit 'uphill' diffusion, and the improvement of separation efficiency. Membranes are predicted to be important in biotechnology and in the production of solar energy. Guidelines indicating where and how to look for opportunities where evolving membrane technology might fit are provided.
Exploration Life Support Technology Development for Lunar Missions
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey
2009-01-01
Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.
Vehicle concepts and technology requirements for buoyant heavy-lift systems
NASA Technical Reports Server (NTRS)
Ardema, M. D.
1981-01-01
Several buoyant-vehicle (airship) concepts proposed for short hauls of heavy payloads are described. Numerous studies identified operating cost and payload capacity advantages relative to existing or proposed heavy-lift helicopters for such vehicles. Applications involving payloads of from 15 tons up to 800 tons were identified. The buoyant quad-rotor concept is discussed in detail, including the history of its development, current estimates of performance and economics, currently perceived technology requirements, and recent research and technology development. It is concluded that the buoyant quad-rotor, and possibly other buoyant vehicle concepts, has the potential of satisfying the market for very heavy vertical lift but that additional research and technology development are necessary. Because of uncertainties in analytical prediction methods and small-scale experimental measurements, there is a strong need for large or full-scale experiments in ground test facilities and, ultimately, with a flight research vehicle.
Current Development in Treatment and Hydrogen Energy Conversion of Organic Solid Waste
NASA Astrophysics Data System (ADS)
Shin, Hang-Sik
2008-02-01
This manuscript summarized current developments on continuous hydrogen production technologies researched in Korea advanced institute of science and technology (KAIST). Long-term continuous pilot-scale operation of hydrogen producing processes fed with non-sterile food waste exhibited successful results. Experimental findings obtained by the optimization processes of growth environments for hydrogen producing bacteria, the development of high-rate hydrogen producing strategies, and the feasibility tests for real field application could contribute to the progress of fermentative hydrogen production technologies. Three major technologies such as controlling dilution rate depending on the progress of acidogenesis, maintaining solid retention time independently from hydraulic retention time, and decreasing hydrogen partial pressure by carbon dioxide sparging could enhance hydrogen production using anaerobic leaching beds reactors and anaerobic sequencing batch reactors. These findings could contribute to stable, reliable and effective performances of pilot-scale reactors treating organic wastes.
Sarkar, Sudipta; Greenleaf, John E; Gupta, Anirban; Uy, Davin; Sengupta, Arup K
2012-01-01
Millions of people around the world are currently living under the threat of developing serious health problems owing to ingestion of dangerous concentrations of arsenic through their drinking water. In many places, treatment of arsenic-contaminated water is an urgent necessity owing to a lack of safe alternative sources. Sustainable production of arsenic-safe water from an arsenic-contaminated raw water source is currently a challenge. Despite the successful development in the laboratory of technologies for arsenic remediation, few have been successful in the field. A sustainable arsenic-remediation technology should be robust, composed of local resources, and user-friendly as well as must attach special consideration to the social, economic, cultural, traditional, and environmental aspects of the target community. One such technology is in operation on the Indian subcontinent. Wide-scale replication of this technology with adequate improvisation can solve the arsenic crisis prevalent in the developing world.
Nakamura, Hideaki
2018-05-08
In Part I of the present review series, I presented the current state of the water environment by focusing on Japanese cases and discussed the need to further develop microbial biosensor technologies for the actual water environment. I comprehensively present trends after approximately 2010 in microbial biosensor development for the water environment. In the first section, after briefly summarizing historical studies, recent studies on microbial biosensor principles are introduced. In the second section, recent application studies for the water environment are also introduced. Finally, I conclude the present review series by describing the need to further develop microbial biosensor technologies. Graphical abstract Current water pollution indirectly occurs by anthropogenic eutrophication (Part I). Recent trends in microbial biosensor development for water environment are described in part II of the present review series.
NASA Technical Reports Server (NTRS)
Ellerby, D.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; Hamm, K.;
2016-01-01
This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.
Heatshield for Extreme Entry Environment Technology (HEEET) Development and Maturation Status
NASA Technical Reports Server (NTRS)
Ellerby, D.; Boghozian, T.; Driver, D.; Chavez-Garcia, J.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; Kazemba, C.; Kellermann, C.;
2018-01-01
This poster provides an overview of the requirements, design, development and testing of the 3D (Three Dimensional) Woven TPS (Thermal Protection System) being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a TPS capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.
NASA Technical Reports Server (NTRS)
Price, Kent M.; Holdridge, Mark; Odubiyi, Jide; Jaworski, Allan; Morgan, Herbert K.
1991-01-01
The results are summarized of an unattended network operations technology assessment study for the Space Exploration Initiative (SEI). The scope of the work included: (1) identified possible enhancements due to the proposed Mars communications network; (2) identified network operations on Mars; (3) performed a technology assessment of possible supporting technologies based on current and future approaches to network operations; and (4) developed a plan for the testing and development of these technologies. The most important results obtained are as follows: (1) addition of a third Mars Relay Satellite (MRS) and MRS cross link capabilities will enhance the network's fault tolerance capabilities through improved connectivity; (2) network functions can be divided into the six basic ISO network functional groups; (3) distributed artificial intelligence technologies will augment more traditional network management technologies to form the technological infrastructure of a virtually unattended network; and (4) a great effort is required to bring the current network technology levels for manned space communications up to the level needed for an automated fault tolerance Mars communications network.
A holistic framework to improve the uptake and impact of eHealth technologies.
van Gemert-Pijnen, Julia E W C; Nijland, Nicol; van Limburg, Maarten; Ossebaard, Hans C; Kelders, Saskia M; Eysenbach, Gunther; Seydel, Erwin R
2011-12-05
Many eHealth technologies are not successful in realizing sustainable innovations in health care practices. One of the reasons for this is that the current development of eHealth technology often disregards the interdependencies between technology, human characteristics, and the socioeconomic environment, resulting in technology that has a low impact in health care practices. To overcome the hurdles with eHealth design and implementation, a new, holistic approach to the development of eHealth technologies is needed, one that takes into account the complexity of health care and the rituals and habits of patients and other stakeholders. The aim of this viewpoint paper is to improve the uptake and impact of eHealth technologies by advocating a holistic approach toward their development and eventual integration in the health sector. To identify the potential and limitations of current eHealth frameworks (1999-2009), we carried out a literature search in the following electronic databases: PubMed, ScienceDirect, Web of Knowledge, PiCarta, and Google Scholar. Of the 60 papers that were identified, 44 were selected for full review. We excluded those papers that did not describe hands-on guidelines or quality criteria for the design, implementation, and evaluation of eHealth technologies (28 papers). From the results retrieved, we identified 16 eHealth frameworks that matched the inclusion criteria. The outcomes were used to posit strategies and principles for a holistic approach toward the development of eHealth technologies; these principles underpin our holistic eHealth framework. A total of 16 frameworks qualified for a final analysis, based on their theoretical backgrounds and visions on eHealth, and the strategies and conditions for the research and development of eHealth technologies. Despite their potential, the relationship between the visions on eHealth, proposed strategies, and research methods is obscure, perhaps due to a rather conceptual approach that focuses on the rationale behind the frameworks rather than on practical guidelines. In addition, the Web 2.0 technologies that call for a more stakeholder-driven approach are beyond the scope of current frameworks. To overcome these limitations, we composed a holistic framework based on a participatory development approach, persuasive design techniques, and business modeling. To demonstrate the impact of eHealth technologies more effectively, a fresh way of thinking is required about how technology can be used to innovate health care. It also requires new concepts and instruments to develop and implement technologies in practice. The proposed framework serves as an evidence-based roadmap.
A Holistic Framework to Improve the Uptake and Impact of eHealth Technologies
van Limburg, Maarten; Ossebaard, Hans C; Kelders, Saskia M; Eysenbach, Gunther; Seydel, Erwin R
2011-01-01
Background Many eHealth technologies are not successful in realizing sustainable innovations in health care practices. One of the reasons for this is that the current development of eHealth technology often disregards the interdependencies between technology, human characteristics, and the socioeconomic environment, resulting in technology that has a low impact in health care practices. To overcome the hurdles with eHealth design and implementation, a new, holistic approach to the development of eHealth technologies is needed, one that takes into account the complexity of health care and the rituals and habits of patients and other stakeholders. Objective The aim of this viewpoint paper is to improve the uptake and impact of eHealth technologies by advocating a holistic approach toward their development and eventual integration in the health sector. Methods To identify the potential and limitations of current eHealth frameworks (1999–2009), we carried out a literature search in the following electronic databases: PubMed, ScienceDirect, Web of Knowledge, PiCarta, and Google Scholar. Of the 60 papers that were identified, 44 were selected for full review. We excluded those papers that did not describe hands-on guidelines or quality criteria for the design, implementation, and evaluation of eHealth technologies (28 papers). From the results retrieved, we identified 16 eHealth frameworks that matched the inclusion criteria. The outcomes were used to posit strategies and principles for a holistic approach toward the development of eHealth technologies; these principles underpin our holistic eHealth framework. Results A total of 16 frameworks qualified for a final analysis, based on their theoretical backgrounds and visions on eHealth, and the strategies and conditions for the research and development of eHealth technologies. Despite their potential, the relationship between the visions on eHealth, proposed strategies, and research methods is obscure, perhaps due to a rather conceptual approach that focuses on the rationale behind the frameworks rather than on practical guidelines. In addition, the Web 2.0 technologies that call for a more stakeholder-driven approach are beyond the scope of current frameworks. To overcome these limitations, we composed a holistic framework based on a participatory development approach, persuasive design techniques, and business modeling. Conclusions To demonstrate the impact of eHealth technologies more effectively, a fresh way of thinking is required about how technology can be used to innovate health care. It also requires new concepts and instruments to develop and implement technologies in practice. The proposed framework serves as an evidence-based roadmap. PMID:22155738
Current perspectives in robotic assisted surgery.
Binet, Aurélien; Ballouhey, Quentin; Chaussy, Yann; de Lambert, Guénolée; Braïk, Karim; Villemagne, Thierry; Becmeur, François; Fourcade, Laurent; Lardy, Hubert
2018-02-23
From classical surgery to Robotic Assisted Surgery, there is a long way allowed by Minimal Invasive Surgery' improvements. The last three decades have witnessed a prodigious development of minimally invasive surgery (MIS) and especially in the field of laparoscopic pediatric surgery but there are several limitations in the use of conventional laparoscopic surgery and Robotic Assisted Surgery was developed to relieve these drawbacks. This new technology enables today the performance of a wide variety of procedures in children with a minimally invasive approach. As for all new technologies, an objective evaluation is essential with the need to respond to several questions: Is the technology feasible? Is the technology safe? Is the technology efficient? Does it bring about benefits compared with current technology? What are the procedures derived from most benefits of robotic assistance? How to assume the transition from open surgery to Minimal Invasive access for RAS? In the first part of this article, the authors give details about technical concerns and then describe the implementation process with its organization, pitfalls, successes, and issues from human resources and financial standpoints. The learning curve is then described and a special focus on small children weighing less than 15 Kg is developed. Finally, the concept of evaluation of this emerging technology is evocated and financial concerns are developed.
Current Abstracts Nuclear Reactors and Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bales, J.D.; Hicks, S.C.
1993-01-01
This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`smore » Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.« less
Further advances in autostereoscopic technology at Dimension Technologies Inc.
NASA Astrophysics Data System (ADS)
Eichenlaub, Jesse B.
1992-06-01
Dimension Technologies is currently one of three companies offering autostereoscopic displays for sale and one of several which are actively pursuing advances to the technology. We have devised a new autostereoscopic imaging technique which possesses several advantages over previously explored methods. We are currently manufacturing autostereoscopic displays based on this technology, as well as vigorously pursuing research and development toward more advanced displays. During the past year, DTI has made major strides in advancing its LCD based autostereoscopic display technology. DTI has developed a color product -- a stand alone 640 X 480 flat panel LCD based 3-D display capable of accepting input from IBM PC and Apple MAC computers or TV cameras, and capable of changing from 3-D mode to 2-D mode with the flip of a switch. DTI is working on development of a prototype second generation color product that will provide autostereoscopic 3-D while allowing each eye to see the full resolution of the liquid crystal display. And development is also underway on a proof-of-concept display which produces hologram-like look-around images visible from a wide viewing angle, again while allowing the observer to see the full resolution of the display from all locations. Development of a high resolution prototype display of this type has begun.
Sensor Systems for Space Life Sciences
NASA Technical Reports Server (NTRS)
Somps, Chris J.; Hines, John W.; Connolly, John P. (Technical Monitor)
1995-01-01
Sensors 2000! (S2K!) is a NASA Ames Research Center engineering initiative designed to provide biosensor and bio-instrumentation systems technology expertise to NASA's life sciences spaceflight programs. S2K! covers the full spectrum of sensor technology applications, ranging from spaceflight hardware design and fabrication to advanced technology development, transfer and commercialization. S2K! is currently developing sensor systems for space biomedical applications on BION (a Russian biosatellite focused on Rhesus Monkey physiology) and NEUROLAB (a Space Shuttle flight devoted to neuroscience). It's Advanced Technology Development-Biosensors (ATD-B) project focuses efforts in five principle areas: biotelemetry Systems, chemical and biological sensors, physiological sensors, advanced instrumentation architectures, and data and information management. Technologies already developed and tested included, application-specific sensors, preamplifier hybrids, modular programmable signal conditioners, power conditioning and distribution systems, and a fully implantable dual channel biotelemeter. Systems currently under development include a portable receiver system compatible with an off-the-shelf analog biotelemeter, a 4 channel digital biotelemetry system which monitors pH, a multichannel, g-processor based PCM biotelemetry system, and hand-held personal monitoring systems. S2K! technology easily lends itself to telescience and telemedicine applications as a front-end measurement and data acquisition device, suitable for obtaining and configuring physiological information, and processing that information under control from a remote location.
Quality control and in-service inspection technology for hybrid-composite girder bridges.
DOT National Transportation Integrated Search
2014-08-01
This report describes efforts to develop quality control tools and in-service inspection technologies for the fabrication and construction of Hybrid Composite Beams (HCBs). HCBs are a new bridge technology currently being evaluated by the Missouri De...
Technology evaluation of characterization of the air void system in concrete.
DOT National Transportation Integrated Search
2009-09-01
The objective of this project was to evaluate current technologies that have the capability of characterizing the air void system in concrete within the first several hours of placement. This objective was met by developing a comprehensive technology...
Technology evaluation on characterization of the air void system in concrete.
DOT National Transportation Integrated Search
2009-09-17
The objective of this project was to evaluate current technologies that have the capability of characterizing the air void system in concrete within the first several hours of placement. This objective was met by developing a comprehensive technology...
Technologies for Language Assessment.
ERIC Educational Resources Information Center
Burstein, Jill; And Others
1996-01-01
Reviews current and developing technology uses that are relevant to language assessment and discusses examples of recent linguistic applications from the laboratory at the Educational Testing Service. The processes of language test development are described and the functions they serve from the perspective of a large testing organization are…
Low cost carbon fiber technology development for carbon fiber composite applications : phase 1.
DOT National Transportation Integrated Search
2008-01-01
The main goals of this research program at UTSI were: 1) to produce low cost carbon fibers and 2) to develop specific carbonbased : material technologies to meet current and future high performance fiber-reinforced composite needs of FTA and other : ...
FY2012 Advanced Power Electronics and Electric Motors Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Susan A.
The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.
FY2010 Annual Progress Report for Advanced Power Electronics and Electric Motors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Susan A.
2011-01-01
The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.
Space-based solar power conversion and delivery systems study. Volume 5: Economic analysis
NASA Technical Reports Server (NTRS)
1977-01-01
Space-based solar power conversion and delivery systems are studied along with a variety of economic and programmatic issues relevant to their development and deployment. The costs, uncertainties and risks associated with the current photovoltaic Satellite Solar Power System (SSPS) configuration, and issues affecting the development of an economically viable SSPS development program are addressed. In particular, the desirability of low earth orbit (LEO) and geosynchronous (GEO) test satellites is examined and critical technology areas are identified. The development of SSPS unit production (nth item), and operation and maintenance cost models suitable for incorporation into a risk assessment (Monte Carlo) model (RAM) are reported. The RAM was then used to evaluate the current SSPS configuration expected costs and cost-risk associated with this configuration. By examining differential costs and cost-risk as a function of postulated technology developments, the critical technologies, that is, those which drive costs and/or cost-risk, are identified. It is shown that the key technology area deals with productivity in space, that is, the ability to fabricate and assemble large structures in space, not, as might be expected, with some hardware component technology.
Heart failure patients' perceptions and use of technology to manage disease symptoms.
Hall, Amanda K; Dodd, Virginia; Harris, Amy; McArthur, Kara; Dacso, Clifford; Colton, Lara M
2014-04-01
Technology use for symptom management is beneficial for both patients and physicians. Widespread acceptance of technology use in healthcare fuels continued development of technology with ever-increasing sophistication. Although acceptance of technology use in healthcare by medical professionals is evident, less is known about the perceptions, preferences, and use of technology by heart failure (HF) patients. This study explores patients' perceptions and current use of technology for managing HF symptoms (MHFS). A qualitative analysis of in-depth individual interviews using a constant comparative approach for emerging themes was conducted. Fifteen participants (mean age, 64.43 years) with HF were recruited from hospitals, cardiology clinics, and community groups. All study participants reported use of a home monitoring device, such as an ambulatory blood pressure device or bathroom scale. The majority of participants reported not accessing online resources for additional MHFS information. However, several participants stated their belief that technology would be useful for MHFS. Participants reported increased access to care, earlier indication of a worsening condition, increased knowledge, and greater convenience as potential benefits of technology use while managing HF symptoms. For most participants financial cost, access issues, satisfaction with current self-care routine, mistrust of technology, and reliance on routine management by their current healthcare provider precluded their use of technology for MHFS. Knowledge about HF patients' perceptions of technology use for self-care and better understanding of issues associated with technology access can aid in the development of effective health behavior interventions for individuals who are MHFS and may result in increased compliance, better outcomes, and lower healthcare costs.
Developing critical thinking, creativity and innovation skills of undergraduate students
NASA Astrophysics Data System (ADS)
Shoop, Barry L.
2014-07-01
A desirable goal of engineering education is to teach students how to be creative and innovative. However, the speed of technological innovation and the continual expansion of disciplinary knowledge leave little time in the curriculum for students to formally study innovation. At West Point we have developed a novel upper-division undergraduate course that develops the critical thinking, creativity and innovation of undergraduate science and engineering students. This course is structured as a deliberate interactive engagement between students and faculty that employs the Socratic method to develop an understanding of disruptive and innovative technologies and a historical context of how social, cultural, and religious factors impact the acceptance or rejection of technological innovation. The course begins by developing the background understanding of what disruptive technology is and a historical context about successes and failures of social, cultural, and religious acceptance of technological innovation. To develop this framework, students read The Innovator's Dilemma by Clayton M. Christensen, The Structure of Scientific Revolutions by Thomas S. Kuhn, The Discoverers by Daniel J. Boorstin, and The Two Cultures by C.P. Snow. For each class meeting, students survey current scientific and technical literature and come prepared to discuss current events related to technological innovation. Each student researches potential disruptive technologies and prepares a compelling argument of why the specific technologies are disruptive so they can defend their choice and rationale. During course meetings students discuss the readings and specific technologies found during their independent research. As part of this research, each student has the opportunity to interview forward thinking technology leaders in their respective fields of interest. In this paper we will describe the course and highlight the results from teaching this course over the past five years.
Leaders in Future and Current Technology Teaming Up to Improve Ethanol
and NREL expertise to: Develop improvements in process throughput and water management for dry mill , Complete an overall process engineering model of the dry mill technology that identifies new ways to and operation of "dry mill" plants that currently produce ethanol from corn starch. Dry
Rani, D Amutha; Boccaccini, A R; Deegan, D; Cheeseman, C R
2008-11-01
Current disposal options for APC residues in the UK and alternative treatment technologies developed world-wide have been reviewed. APC residues are currently landfilled in the UK where they undergo in situ solidification, although the future acceptability of this option is uncertain because the EU waste acceptance criteria (WAC) introduce strict limits on leaching that are difficult to achieve. Other APC residue treatment processes have been developed which are reported to reduce leaching to below relevant regulatory limits. The Ferrox process, the VKI process, the WES-PHix process, stabilisation/solidification using cementitious binders and a range of thermal treatment processes are reviewed. Thermal treatment technologies convert APC residues combined with other wastes into inert glass or glass-ceramics that encapsulate heavy metals. The waste management industry will inevitably use the cheapest available option for treating APC residues and strict interpretation and enforcement of waste legislation is required if new, potentially more sustainable technologies are to become commercially viable.
Overview of Advanced Turbine Systems Program
NASA Astrophysics Data System (ADS)
Webb, H. A.; Bajura, R. A.
The US Department of Energy initiated a program to develop advanced gas turbine systems to serve both central power and industrial power generation markets. The Advanced Turbine Systems (ATS) Program will lead to commercial offerings by the private sector by 2002. ATS will be developed to fire natural gas but will be adaptable to coal and biomass firing. The systems will be: highly efficient (15 percent improvement over today's best systems); environmentally superior (10 percent reduction in nitrogen oxides over today's best systems); and cost competitive (10 percent reduction in cost of electricity). The ATS Program has five elements. Innovative cycle development will lead to the demonstration of systems with advanced gas turbine cycles using current gas turbine technology. High temperature development will lead to the increased firing temperatures needed to achieve ATS Program efficiency goals. Ceramic component development/demonstration will expand the current DOE/CE program to demonstrate industrial-scale turbines with ceramic components. Technology base will support the overall program by conducting research and development (R&D) on generic technology issues. Coal application studies will adapt technology developed in the ATS program to coal-fired systems being developed in other DOE programs.
Benyakorn, Songpoom; Riley, Steven J; Calub, Catrina A; Schweitzer, Julie B
2016-09-01
Care (i.e., evaluation and intervention) delivered through technology is used in many areas of mental health services, including for persons with attention deficit hyperactivity disorder (ADHD). Technology can facilitate care for individuals with ADHD, their parents, and their care providers. The adoption of technological tools for ADHD care requires evidence-based studies to support the transition from development to integration into use in the home, school, or work for persons with the disorder. The initial phase, which is development of technological tools, has begun in earnest; however, the evidence base for many of these tools is lacking. In some instances, the uptake of a piece of technology into home use or clinical practice may be further along than the research to support its use. In this study, we review the current evidence regarding technology for ADHD and also propose a model to evaluate the support for other tools that have yet to be tested. We propose using the Research Domain Criteria as a framework for evaluating the tools' relationships to dimensions related to ADHD. This article concludes with recommendations for testing new tools that may have promise in improving the evaluation or treatment of persons with ADHD.
Survey of Enabling Technologies for CAPS
NASA Technical Reports Server (NTRS)
Antol, Jeffrey; Mazanek, Daniel D.; Koons, Robert H.
2005-01-01
The enabling technologies required for the development of a viable Comet/Asteroid Protection System (CAPS) can be divided into two principal areas: detection and deflection/orbit modification. With the proper funding levels, many of the technologies needed to support a CAPS architecture could be achievable within the next 15 to 20 years. In fact, many advanced detection technologies are currently in development for future in-space telescope systems such as the James Webb Space Telescope (JWST), formerly known as the Next Generation Space Telescope. It is anticipated that many of the JWST technologies would be available for application for CAPS detection concepts. Deflection/orbit modification technologies are also currently being studied as part of advanced power and propulsion research. However, many of these technologies, such as extremely high-output power systems, advanced propulsion, heat rejection, and directed energy systems, would likely be farther term in availability than many of the detection technologies. Discussed subsequently is a preliminary examination of the main technologies that have been identified as being essential to providing the element functionality defined during the CAPS conceptual study. The detailed requirements for many of the technology areas are still unknown, and many additional technologies will be identified as future in-depth studies are conducted in this area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spindler, Jeffrey; Kondakova, Marina; Boroson, Michael
2016-05-25
In this work we describe the technology developments behind our current and future generations of high brightness OLED lighting panels. We have developed white and amber OLEDs with excellent performance based on the stacking approach. Current products achieve 40-60 lm/W, while future developments focus on achieving 80 lm/W or higher.
Development of a Deterministic Ethernet Building blocks for Space Applications
NASA Astrophysics Data System (ADS)
Fidi, C.; Jakovljevic, Mirko
2015-09-01
The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The deterministic Ethernet technology TTEthernet [1] diploid on the NASA Orion spacecraft has demonstrated the use of the TTEthernet technology for a safety critical human space flight application during the Exploration Flight Test 1 (EFT-1). The TTEthernet technology used within the NASA Orion program has been matured for the use within this mission but did not lead to a broader use in space applications or an international space standard. Therefore TTTech has developed a new version which allows to scale the technology for different applications not only the high end missions allowing to decrease the size of the building blocks leading to a reduction of size weight and power enabling the use in smaller applications. TTTech is currently developing a full space products offering for its TTEthernet technology to allow the use in different space applications not restricted to launchers and human spaceflight. A broad space market assessment and the current ESA TRP7594 lead to the development of a space grade TTEthernet controller ASIC based on the ESA qualified Atmel AT1C8RHA95 process [2]. In this paper we will describe our current TTEthernet controller development towards a space qualified network component allowing future spacecrafts to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer.
Advanced Thermal Control Technologies for "CEV" (New Name: ORION)
NASA Technical Reports Server (NTRS)
Golliher, Eric; Westheimer, David; Ewert, Michael; Hasan, Mojib; Anderson, Molly; Tuan, George; Beach, Duane
2007-01-01
NASA is currently investigating several technology options for advanced human spaceflight. This presentation covers some recent developments that relate to NASA's Orion spacecraft and future Lunar missions.
Enhancing emergency care in low-income countries using mobile technology-based training tools
Edgcombe, Hilary; Paton, Chris; English, Mike
2016-01-01
In this paper, we discuss the role of mobile technology in developing training tools for health workers, with particular reference to low-income countries (LICs). The global and technological context is outlined, followed by a summary of approaches to using and evaluating mobile technology for learning in healthcare. Finally, recommendations are made for those developing and using such tools, based on current literature and the authors' involvement in the field. PMID:27658948
Research of an optimization design method of integral imaging three-dimensional display system
NASA Astrophysics Data System (ADS)
Gao, Hui; Yan, Zhiqiang; Wen, Jun; Jiang, Guanwu
2016-03-01
The information warfare needs a highly transparent environment of battlefield, it follows that true three-dimensional display technology has obvious advantages than traditional display technology in the current field of military science and technology. It also focuses on the research progress of lens array imaging technology and aims at what restrict the development of integral imaging, main including low spatial resolution, narrow depth range and small viewing angle. This paper summarizes the principle, characteristics and development history of the integral imaging. A variety of methods are compared and analyzed that how to improve the resolution, extend depth of field, increase scope and eliminate the artifact aiming at problems currently. And makes a discussion about the experimental results of the research, comparing the display performance of different methods.
Transportation technology program: Strategic plan
NASA Astrophysics Data System (ADS)
1991-09-01
The purpose of this report is to define the technology program required to meet the transportation technology needs for current and future civil space missions. It is a part of an integrated plan, prepared by NASA in part in response to the Augustine Committee recommendations, to describe and advocate expanded and more aggressive efforts in the development of advanced space technologies. This expanded program will provide a technology basis for future space missions to which the U.S. aspires, and will help to regain technology leadership for the U.S. on a broader front. The six aspects of this integrated program/plan deal with focused technologies to support space sciences, exploration, transportation, platforms, and operations as well as provide a Research and Technology Base Program. This volume describes the technologies needed to support transportation systems, e.g., technologies needed for upgrades to current transportation systems and to provide reliable and efficient transportation for future space missions. The Office of Aeronautics, Exploration, and Technology (OAET) solicited technology needs from the major agency technology users and the aerospace industry community and formed a transportation technology team (appendix A) to develop a technology program to respond to those needs related to transportation technologies. This report addresses the results of that team activity. It is a strategic plan intended for use as a planning document rather than as a project management tool. It is anticipated that this document will be primarily utilized by research & technology (R&T) management at the various NASA Centers as well as by officials at NASA Headquarters and by industry in planning their corporate Independent Research and Development (IR&D) investments.
Transportation technology program: Strategic plan
NASA Technical Reports Server (NTRS)
1991-01-01
The purpose of this report is to define the technology program required to meet the transportation technology needs for current and future civil space missions. It is a part of an integrated plan, prepared by NASA in part in response to the Augustine Committee recommendations, to describe and advocate expanded and more aggressive efforts in the development of advanced space technologies. This expanded program will provide a technology basis for future space missions to which the U.S. aspires, and will help to regain technology leadership for the U.S. on a broader front. The six aspects of this integrated program/plan deal with focused technologies to support space sciences, exploration, transportation, platforms, and operations as well as provide a Research and Technology Base Program. This volume describes the technologies needed to support transportation systems, e.g., technologies needed for upgrades to current transportation systems and to provide reliable and efficient transportation for future space missions. The Office of Aeronautics, Exploration, and Technology (OAET) solicited technology needs from the major agency technology users and the aerospace industry community and formed a transportation technology team (appendix A) to develop a technology program to respond to those needs related to transportation technologies. This report addresses the results of that team activity. It is a strategic plan intended for use as a planning document rather than as a project management tool. It is anticipated that this document will be primarily utilized by research & technology (R&T) management at the various NASA Centers as well as by officials at NASA Headquarters and by industry in planning their corporate Independent Research and Development (IR&D) investments.
General Mission Analysis Tool (GMAT)
NASA Technical Reports Server (NTRS)
Hughes, Steven P.
2007-01-01
The General Mission Analysis Tool (GMAT) is a space trajectory optimization and mission analysis system developed by NASA and private industry in the spirit of the NASA Mission. GMAT contains new technology and is a testbed for future technology development. The goal of the GMAT project is to develop new space trajectory optimization and mission design technology by working inclusively with ordinary people, universities, businesses, and other government organizations, and to share that technology in an open and unhindered way. GMAT is a free and open source software system licensed under the NASA Open Source Agreement: free for anyone to use in development of new mission concepts or to improve current missions, freely available in source code form for enhancement or further technology development.
A survey of current solid state star tracker technology
NASA Astrophysics Data System (ADS)
Armstrong, R. W.; Staley, D. A.
1985-12-01
This paper is a survey of the current state of the art in design of star trackers for spacecraft attitude determination systems. Specific areas discussed are sensor technology, including the current state-of-the-art solid state sensors and techniques of mounting and cooling the sensor, analog image preprocessing electronics performance, and digital processing hardware and software. Three examples of area array solid state star tracker development are presented - ASTROS, developed by the Jet Propulsion Laboratory, the Retroreflector Field Tracker (RFT) by Ball Aerospace, and TRW's MADAN. Finally, a discussion of solid state line arrays explores the possibilities for one-dimensional imagers which offer simplified scan control electronics.
Technology Enabled Learning. Symposium.
ERIC Educational Resources Information Center
2002
This document contains three papers on technology-enabled learning and human resource development. Among results found in "Current State of Technology-enabled Learning Programs in Select Federal Government Organizations: a Case Study of Ten Organizations" (Letitia A. Combs) are the following: the dominant delivery method is traditional…
Study on vessel sewage treatment technologies
NASA Astrophysics Data System (ADS)
Shen, Wei; Xing, Guojing
2017-10-01
In this paper, the author, on the basis of his experience in researches of past years, discusses the status quo and classifications of vessel sewage treatment technology, analyzes problems plaguing current vessel sewage treatment and describes the focuses of development of vessel sewage treatment technology.
Integrating Technology: Strategies.
ERIC Educational Resources Information Center
Kercher, Lydia
Developed by participants in an inservice workshop at the University of Wyoming, this manual lists 26 educational strategies that make use of current educational technologies, their corresponding skill development, and the content areas involved. For example, one strategy listed is to have students create their own letterhead to be used throughout…
NASA's In-Space Propulsion Technology Project's Products for Near-term Mission Applicability
NASA Astrophysics Data System (ADS)
Dankanich, John
2009-01-01
The In-Space Propulsion Technology (ISPT) project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. The primary investments and products currently available for technology infusion include NASA's Evolutionary Xenon Thruster (NEXT) and the Advanced Materials Bipropellant Rocket (AMBR) engine. These products will reach TRL 6 in 2008 and are available for the current and all future mission opportunities. Development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of electric propulsion, advanced chemical thrusters, and aerocapture are presented.
1972-12-01
and inte- grating increasing numbers of specialists. For example, Information technology Is a relatively new development which has led to the creation...changes occurring in technology that require new information to be disseminated to all the managers whose jobs will be affected by the new technology . It is...requires an analysis of current and future needs of the manager and his organization. Information about alternatives or their discovery requires that
General Mission Analysis Tool (GMAT): Mission, Vision, and Business Case
NASA Technical Reports Server (NTRS)
Hughes, Steven P.
2007-01-01
The Goal of the GMAT project is to develop new space trajectory optimization and mission design technology by working inclusively with ordinary people, universities businesses and other government organizations; and to share that technology in an open and unhindered way. GMAT's a free and open source software system; free for anyone to use in development of new mission concepts or to improve current missions, freely available in source code form for enhancement or future technology development.
Materials technology assessment for stirling engines
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.; Watson, G. K.; Johnston, J. R.; Croft, W. J.
1977-01-01
A materials technology assessment of high temperature components in the improved (metal) and advanced (ceramic) Stirling engines was undertaken to evaluate the current state-of-the-art of metals and ceramics, identify materials research and development required to support the development of automotive Stirling engines, and to recommend materials technology programs to assure material readiness concurrent with engine system development programs. The most critical component for each engine is identified and some of the material problem areas are discussed.
Innovations in the Use of Interactive Technology to Support Weight Management
Spruijt-Metz, D.; Wen, C.K.F.; O’Reilly, G.; Li, M.; Lee, S; Emken, B.A.; Mitra, U.; Annavaram, M.; Ragusa, G.; Narayanan, S.
2015-01-01
New and emerging mobile technologies are providing unprecedented possibilities for understanding and intervening on obesity-related behaviors in real time. However, the mobile health (mHealth) field has yet to catch up with the fast-paced development of technology. Current mHealth efforts in weight management still tend to focus mainly on short message systems (SMS) interventions, rather than taking advantage of real-time sensing to develop Just-In-Time, Adaptive Interventions (JITAIs). This paper will give an overview of the current technology landscape for sensing and intervening on three behaviors that are central to weight management; diet, physical activity, and sleep. Then five studies that really dig into the possibilities that these new technologies afford will be showcased. We conclude with a discussion of hurdles that mHealth obesity research has yet to overcome, and a future-facing discussion. PMID:26364308
NASA Technical Reports Server (NTRS)
Morgan, R. P.; Singh, J. P.; Rothenberg, D.; Robinson, B. E.
1975-01-01
The needs to be served, the subsectors in which the system might be used, the technology employed, and the prospects for future utilization of an educational telecommunications delivery system are described and analyzed. Educational subsectors are analyzed with emphasis on the current status and trends within each subsector. Issues which affect future development, and prospects for future use of media, technology, and large-scale electronic delivery within each subsector are included. Information on technology utilization is presented. Educational telecommunications services are identified and grouped into categories: public television and radio, instructional television, computer aided instruction, computer resource sharing, and information resource sharing. Technology based services, their current utilization, and factors which affect future development are stressed. The role of communications satellites in providing these services is discussed. Efforts to analyze and estimate future utilization of large-scale educational telecommunications are summarized. Factors which affect future utilization are identified. Conclusions are presented.
NASA Astrophysics Data System (ADS)
Legnani, Elena; Cavalieri, Sergio; Pinto, Roberto; Dotti, Stefano
In the current competitive environment, companies need to extensively exploit the use of advanced technologies in order to develop a sustainable advantage, enhance their operational efficiency and better serve customers. In this context, RFID technology has emerged as a valid support for the company progress and its value is becoming more and more apparent. In particular, the textile and clothing industry, characterised by short life-cycles , quick response production , fast distribution, erratic customer preferences and impulsive purchasing, is one of the sectors which can extensively benefit from the RFID technology. However, actual applications are still very limited, especially in the upstream side of the supply network. This chapter provides an insight into the main benefits and potentials of this technology and highlights the main issues which are currently inhibiting its large scale development in the textile and clothing industry. The experience of two industry-academia projects and the relative fallouts are reported.
Development of Thermal Protection Materials for Future Mars Entry, Descent and Landing Systems
NASA Technical Reports Server (NTRS)
Cassell, Alan M.; Beck, Robin A. S.; Arnold, James O.; Hwang, Helen; Wright, Michael J.; Szalai, Christine E.; Blosser, Max; Poteet, Carl C.
2010-01-01
Entry Systems will play a crucial role as NASA develops the technologies required for Human Mars Exploration. The Exploration Technology Development Program Office established the Entry, Descent and Landing (EDL) Technology Development Project to develop Thermal Protection System (TPS) materials for insertion into future Mars Entry Systems. An assessment of current entry system technologies identified significant opportunity to improve the current state of the art in thermal protection materials in order to enable landing of heavy mass (40 mT) payloads. To accomplish this goal, the EDL Project has outlined a framework to define, develop and model the thermal protection system material concepts required to allow for the human exploration of Mars via aerocapture followed by entry. Two primary classes of ablative materials are being developed: rigid and flexible. The rigid ablatives will be applied to the acreage of a 10x30 m rigid mid L/D Aeroshell to endure the dual pulse heating (peak approx.500 W/sq cm). Likewise, flexible ablative materials are being developed for 20-30 m diameter deployable aerodynamic decelerator entry systems that could endure dual pulse heating (peak aprrox.120 W/sq cm). A technology Roadmap is presented that will be used for facilitating the maturation of both the rigid and flexible ablative materials through application of decision metrics (requirements, key performance parameters, TRL definitions, and evaluation criteria) used to assess and advance the various candidate TPS material technologies.
Solid Earth science in the 1990s. Volume 3: Measurement techniques and technology
NASA Technical Reports Server (NTRS)
1991-01-01
Reports are contained from the NASA Workshop on Solid Earth Science in the 1990s. The techniques and technologies needed to address the program objectives are discussed. The Measurement Technique and Technology Panel identified (1) candidate measurement systems for each of the measurements required for the Solid Earth Science Program that would fall under the NASA purview; (2) the capabilities and limitations of each technique; and (3) the developments necessary for each technique to meet the science panel requirements. In nearly all cases, current technology or a development path with existing technology was identified as capable of meeting the requirements of the science panels. These technologies and development paths are discussed.
Technology and Learning: Changing Minds in a Changing World. Schooling and Technology, Volume 4.
ERIC Educational Resources Information Center
Willis, Bernice H.; And Others
This document, the publishers' fourth volume on schooling and technology, explores in detail the mismatch between the historically developed purposes, roles, and practices of the schools and the nature of the new technology. Specifically, it juxtaposes characteristics of today's children and the currently available educational technologies…
Shedding Light on Students' Technology Preferences: Implications for Academic Development
ERIC Educational Resources Information Center
Mirriahi, Negin; Alonzo, Dennis
2015-01-01
This study built on previous research in 2010 to determine changes to students' current use of and expectations for future integration of technologies in their learning experience. The findings reveal a continued trend of conservative technology use amongst students but with a growing demand for more integration of technologies for assessment and…
ERIC Educational Resources Information Center
Kafyulilo, Ayoub; Fisser, Petra; Pieters, Jules; Voogt, Joke
2015-01-01
Currently, teacher education colleges in Tanzania are being equipped with computers to prepare teachers who can integrate technology in teaching. Despite these efforts, teachers are not embracing the use of technology in their teaching. This study adopted Technological Pedagogical Content Knowledge (TPACK) as a framework for describing the…
Measuring the Influences That Affect Technological Literacy in Rhode Island High Schools
ERIC Educational Resources Information Center
Walach, Michael
2015-01-01
This study sampled the current state of technological literacy in Rhode Island high schools using a new instrument, the Technological Literacy Assessment, which was developed for this study. Gender inequalities in technological literacy were discovered, and possible causes and solutions are presented. This study suggests possible next steps for…
Advanced telemetry systems for payloads. Technology needs, objectives and issues
NASA Technical Reports Server (NTRS)
1990-01-01
The current trends in advanced payload telemetry are the new developments in advanced modulation/coding, the applications of intelligent techniques, data distribution processing, and advanced signal processing methodologies. Concerted efforts will be required to design ultra-reliable man-rated software to cope with these applications. The intelligence embedded and distributed throughout various segments of the telemetry system will need to be overridden by an operator in case of life-threatening situations, making it a real-time integration issue. Suitable MIL standards on physical interfaces and protocols will be adopted to suit the payload telemetry system. New technologies and techniques will be developed for fast retrieval of mass data. Currently, these technology issues are being addressed to provide more efficient, reliable, and reconfigurable systems. There is a need, however, to change the operation culture. The current role of NASA as a leader in developing all the new innovative hardware should be altered to save both time and money. We should use all the available hardware/software developed by the industry and use the existing standards rather than inventing our own.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emmanuel Ohene Opare, Jr.; Charles V. Park
The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is authored by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype fourth generation nuclear reactor to meet the needs of the 21st Century. A section in this document proposes that the NGNP will provide heat for process heat applications. As with all large projects developing and deploying new technologies, the NGNP is expected to meet high performance and availability targets relative to current state of the art systems and technology. One requirement for the NGNP is to provide heatmore » for the generation of hydrogen for large scale productions and this process heat application is required to be at least 90% or more available relative to other technologies currently on the market. To reach this goal, a RAM Roadmap was developed highlighting the actions to be taken to ensure that various milestones in system development and maturation concurrently meet required availability requirements. Integral to the RAM Roadmap was the use of a RAM analytical/simulation tool which was used to estimate the availability of the system when deployed based on current design configuration and the maturation level of the system.« less
NASA Astrophysics Data System (ADS)
Niwa, Yoshimitsu; Kaneko, Eiji
Vacuum circuit breakers (VCB) have been widely used for power distribution systems. Vacuum Interrupters, which are the current interruption unit, have been increased its interruption capability with the development of vacuum arc control technology by magnetic field. There are three major type electrodes: disk shaped electrodes, radial magnetic field electrodes, axial magnetic field (AMF) electrodes. In the disk shaped electrode, the vacuum arc between the electrodes is not controlled. In the AMF electrode, the vacuum arc is diffused and stabilized by an axial magnetic field, which is parallel to the arc current. In the last type of electrodes, the vacuum arc column is rotated by magnetic force generated by the current flowing in the electrodes. The interruption current and the voltage of one break VCB is increased to 100 kA, 144 kV respectively. This paper describes basic configurations and functions of VCB, vacuum arc control technology in vacuum interrupters, recent researches and applications of VCB.
Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission
NASA Technical Reports Server (NTRS)
Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.
2014-01-01
Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.
Proceedings of the vertical axis wind turbine (VAWT) design technology seminar for industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, S.F. Jr.
1980-08-01
The objective of the Vertical Axis Wind Turbine (VAWT) Program at Sandia National Laboratories is to develop technology that results in economical, industry-produced, and commercially marketable wind energy systems. The purpose of the VAWT Design Technology Seminar or Industry was to provide for the exchange of the current state-of-the-art and predictions for future VAWT technology. Emphasis was placed on technology transfer on Sandia's technical developments and on defining the available analytic and design tools. Separate abstracts are included for presented papers.
Practical cryptographic strategies in the post-quantum era
NASA Astrophysics Data System (ADS)
Kabanov, I. S.; Yunusov, R. R.; Kurochkin, Y. V.; Fedorov, A. K.
2018-02-01
Quantum key distribution technologies promise information-theoretic security and are currently being deployed in com-mercial applications. We review new frontiers in information security technologies in communications and distributed storage applications with the use of classical, quantum, hybrid classical-quantum, and post-quantum cryptography. We analyze the cur-rent state-of-the-art, critical characteristics, development trends, and limitations of these techniques for application in enterprise information protection systems. An approach concerning the selection of practical encryption technologies for enterprises with branched communication networks is discussed.
Non-Intrusive Load Monitoring Assessment: Literature Review and Laboratory Protocol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butner, R. Scott; Reid, Douglas J.; Hoffman, Michael G.
2013-07-01
To evaluate the accuracy of NILM technologies, a literature review was conducted to identify any test protocols or standardized testing approaches currently in use. The literature review indicated that no consistent conventions were currently in place for measuring the accuracy of these technologies. Consequently, PNNL developed a testing protocol and metrics to provide the basis for quantifying and analyzing the accuracy of commercially available NILM technologies. This report discusses the results of the literature review and the proposed test protocol and metrics in more detail.
Overview of Stirling Technology Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.
2016-01-01
Stirling Radioisotope Power Systems (RPSs) are under development to provide power on future space science missions where robotic spacecraft will orbit, fly by, land, or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. NASA Glenn Research Center's newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability and system fault tolerance, and developing alternative designs. The task objectives and status are summarized.
Overview of Stirling Technology Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.
2015-01-01
Stirling Radioisotope Power Systems (RPS) are under development to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. Glenn Research Center's (GRC's) newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability or system fault tolerance, and developing alternative designs. The task objectives and status are summarized.
Status and Mission Applicability of NASA's In-Space Propulsion Technology Project
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry
2009-01-01
The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; propulsion for Earth Return Vehicles (ERV), transfer stages to the destination, and Electric Propulsion for sample return and low cost missions; and Systems/Mission Analysis focused on sample return propulsion. The ISPT project is funded by NASA's Science Mission Directorate (SMD).
Midstream Modulation of Technology: Governance from Within
ERIC Educational Resources Information Center
Fisher, Erik; Mahajan, Roop L.; Mitcham, Carl
2006-01-01
Public "upstream engagement" and other approaches to the social control of technology are currently receiving international attention in policy discourses around emerging technologies such as nanotechnology. To the extent that such approaches hold implications for research and development (R&D) activities, the distinct participation of scientists…
ERIC Educational Resources Information Center
Malan, Pierre
This paper presents an overview of information technology development. The first section sets the scene, comparing the first WAN (Wide Area Network) and Intel processor to current technology. The birth of the microcomputer is described in the second section, including historical background on semiconductors, microprocessors, and the microcomputer.…
Implementing Computer Technologies: Teachers' Perceptions and Practices
ERIC Educational Resources Information Center
Wozney, Lori; Venkatesh, Vivek; Abrami, Philip
2006-01-01
This study investigates personal and setting characteristics, teacher attitudes, and current computer technology practices among 764 elementary and secondary teachers from both private and public school sectors in Quebec. Using expectancy-value theory, the Technology Implementation Questionnaire (TIQ) was developed; it consists of 33 belief items…
Applications in Educational Assessment: Future Technologies.
ERIC Educational Resources Information Center
Bank Street Coll. of Education, New York, NY. Center for Children and Technology.
The development of improved and alternative methods of educational assessment should take advantage of technologies that enable different aspects of learning, teaching, and student achievement to be part of an improved assessment system. The current understanding of knowledge assessment, new approaches to assessment, and technologies that may…
The Principal as Technology Leader.
ERIC Educational Resources Information Center
Creighton, Theodore
This book explores the complexities of change and implementation of technology in schools. It looks at current research while providing guidelines to development and planning, and includes sample technology plans. In addition, the book highlights instructional leadership and curriculum, the digital divide between needs and availability, needs…
Idaho National Laboratory LDRD Annual Report FY 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dena Tomchak
This report provides a glimpse into our diverse research and development portfolio, wwhich encompasses both advanced nuclear science and technology and underlying technologies. IN keeping with the mission, INL's LDRD program fosters technical capabilities necessary to support current and future DOE-Office of Nuclear Energy research and development needs.
Recommendations for Radiologic Technology Workforce Development.
ERIC Educational Resources Information Center
Collins, Dale E.
A literature review was conducted to establish criteria for the development and establishment of an associate degree program in radiologic technology in Alaska, where traditional education programs had been slow to respond to the current personnel shortage. The information was obtained from a variety of state, regional, and national organizations…
Microcomputers and Stimulus Control: From the Laboratory to the Classroom.
ERIC Educational Resources Information Center
LeBlanc, Judith M.; And Others
1985-01-01
The need for developing a technology of teaching that equals current sophistication of microcomputer technology is addressed. The importance of principles of learning and behavior analysis is emphasized. Potential roles of stimulus control and precise error analysis in educational program development and in prescription of specific learning…
Motivating Instructors through Innovative Technology and Pedagogy
ERIC Educational Resources Information Center
Weber, Nicole L.; Barth, Dylan J.
2016-01-01
Members of the UWM CETL online and blended faculty development team share innovative technological and pedagogical strategies that they currently utilize to motivate and assist instructors in developing courses for the online or blended environments, and they discuss the lessons learned from incorporating active learning, open content, bring your…
Advanced Electricity. Microprocessors and Robotics. Curriculum Development. Bulletin 1803.
ERIC Educational Resources Information Center
Southeastern Louisiana Univ., Hammond.
This model instructional unit was developed to aid industrial arts/technology education teachers in Louisiana to teach a course on microprocessors and robotics in grades 11 and 12. It provides guidance on model performance objectives, current technology content, sources, and supplemental materials. Following a course description, rationale, and…
PEM Electrolysis H2A Production Case Study Documentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Brian; Colella, Whitney; Moton, Jennie
2013-12-31
This report documents the development of four DOE Hydrogen Analysis (H2A) case studies for polymer electrolyte membrane (PEM) electrolysis. The four cases characterize PEM electrolyzer technology for two hydrogen production plant sizes (Forecourt and Central) and for two technology development time horizons (Current and Future).
New media technology (NT) interactive applications are currently being developed in house at ORD/NRMRL to enhance and improve communication of NRMRL's 1) research projects, 2) workshops/conferences and 3) specialized training. NT is an exciting mix of cutting-edge information tec...
NASA Technical Reports Server (NTRS)
Evans, D. L. (Editor); Apel, J.; Arvidson, R.; Bindschadler, R.; Carsey, F.; Dozier, J.; Jezek, K.; Kasischke, E.; Li, F.; Melack, J.
1995-01-01
This report provides a context in which questions put forth by NASA's Office of Mission to Planet Earth (OMPTE) regarding the next steps in spaceborne synthetic aperture radar (SAR) science and technology can be addressed. It summarizes the state-of-the-art in theory, experimental design, technology, data analysis, and utilization of SAR data for studies of the Earth, and describes potential new applications. The report is divided into five science chapters and a technology assessment. The chapters summarize the value of existing SAR data and currently planned SAR systems, and identify gaps in observational capabilities needing to be filled to address the scientific questions. Cases where SAR provides complementary data to other (non-SAR) measurement techniques are also described. The chapter on technology assessment outlines SAR technology development which is critical not only to NASA's providing societally relevant geophysical parameters but to maintaining competitiveness in SAR technology, and promoting economic development.
Barriers to Achieving Economies of Scale in Analysis of EHR Data. A Cautionary Tale.
Sendak, Mark P; Balu, Suresh; Schulman, Kevin A
2017-08-09
Signed in 2009, the Health Information Technology for Economic and Clinical Health Act infused $28 billion of federal funds to accelerate adoption of electronic health records (EHRs). Yet, EHRs have produced mixed results and have even raised concern that the current technology ecosystem stifles innovation. We describe the development process and report initial outcomes of a chronic kidney disease analytics application that identifies high-risk patients for nephrology referral. The cost to validate and integrate the analytics application into clinical workflow was $217,138. Despite the success of the program, redundant development and validation efforts will require $38.8 million to scale the application across all multihospital systems in the nation. We address the shortcomings of current technology investments and distill insights from the technology industry. To yield a return on technology investments, we propose policy changes that address the underlying issues now being imposed on the system by an ineffective technology business model.
An Approach to Establishing System Benefits for Technology in NASA's Hypersonics Investment Area
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Pannell, Bill; Cook, Stephen (Technical Monitor)
2001-01-01
NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current systems. The Advanced Space Transportation Program (ASTP) Office at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Hypersonics Investment Area, third generation technologies are being pursued. The Hypersonics Investment Area's primary objective is to mature vehicle technologies to enable substantial increases in the design and operating margins of third generation RLVs (current Space Shuttle is considered the first generation RLV) by incorporating advanced propulsion systems, materials, structures, thermal protection systems, power, and avionics technologies. The paper describes the system process, tools and concepts used to determine the technology benefits. Preliminary results will be presented along with the current technology investments that are being made by ASTP's Hypersonics Investment Area.
Configurable technology development for reusable control and monitor ground systems
NASA Technical Reports Server (NTRS)
Uhrlaub, David R.
1994-01-01
The control monitor unit (CMU) uses configurable software technology for real-time mission command and control, telemetry processing, simulation, data acquisition, data archiving, and ground operations automation. The base technology is currently planned for the following control and monitor systems: portable Space Station checkout systems; ecological life support systems; Space Station logistics carrier system; and the ground system of the Delta Clipper (SX-2) in the Single-Stage Rocket Technology program. The CMU makes extensive use of commercial technology to increase capability and reduce development and life-cycle costs. The concepts and technology are being developed by McDonnell Douglas Space and Defense Systems for the Real-Time Systems Laboratory at NASA's Kennedy Space Center under the Payload Ground Operations Contract. A second function of the Real-Time Systems Laboratory is development and utilization of advanced software development practices.
New Technological Platform for the National Nuclear Energy Strategy Development
NASA Astrophysics Data System (ADS)
Adamov, E. O.; Rachkov, V. I.
2017-12-01
The paper considers the need to update the development strategy of Russia's nuclear power industry and various approaches to the large-scale nuclear power development. Problems of making decisions on fast neutron reactors and closed nuclear fuel cycle (NFC) arrangement are discussed. The current state of the development of fast neutron reactors and closed NFC technologies in Russia is considered and major problems are highlighted.
Schedule Risks Due to Delays in Advanced Technology Development
NASA Technical Reports Server (NTRS)
Reeves, John D. Jr.; Kayat, Kamal A.; Lim, Evan
2008-01-01
This paper discusses a methodology and modeling capability that probabilistically evaluates the likelihood and impacts of delays in advanced technology development prior to the start of design, development, test, and evaluation (DDT&E) of complex space systems. The challenges of understanding and modeling advanced technology development considerations are first outlined, followed by a discussion of the problem in the context of lunar surface architecture analysis. The current and planned methodologies to address the problem are then presented along with sample analyses and results. The methodology discussed herein provides decision-makers a thorough understanding of the schedule impacts resulting from the inclusion of various enabling advanced technology assumptions within system design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2011-09-01
This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.
Developmental Challenges of SMES Technology for Applications
NASA Astrophysics Data System (ADS)
Rong, Charles C.; Barnes, Paul N.
2017-12-01
This paper reviews the current status of high temperature superconductor (HTS) based superconducting magnetic energy storage (SMES) technology as a developmental effort. Discussion centres on the major challenges in magnet optimization, loss reduction, cooling improvement, and new development of quench detection. The cryogenic operation for superconductivity in this technological application requires continued research and development, especially with a greater engineering effort that involves the end user. For the SMES-based technology to more fully mature, some suggestions are given for consideration and discussion.
Recent developments in stereoscopic and holographic 3D display technologies
NASA Astrophysics Data System (ADS)
Sarma, Kalluri
2014-06-01
Currently, there is increasing interest in the development of high performance 3D display technologies to support a variety of applications including medical imaging, scientific visualization, gaming, education, entertainment, air traffic control and remote operations in 3D environments. In this paper we will review the attributes of the various 3D display technologies including stereoscopic and holographic 3D, human factors issues of stereoscopic 3D, the challenges in realizing Holographic 3D displays and the recent progress in these technologies.
NASA aeronautics R&T - A resource for aircraft design
NASA Technical Reports Server (NTRS)
Olstad, W. B.
1981-01-01
This paper discusses the NASA aeronautics research and technology program from the viewpoint of the aircraft designer. The program spans the range from fundamental research to the joint validation with industry of technology for application into product development. Examples of recent developments in structures, materials, aerodynamics, controls, propulsion systems, and safety technology are presented as new additions to the designer's handbook. Finally, the major thrusts of NASA's current and planned programs which are keyed to revolutionary advances in materials science, electronics, and computer technology are addressed.
NASA Technical Reports Server (NTRS)
Cruit, Wendy; Schutzenhofer, Scott; Goldberg, Ben; Everhart, Kurt
1993-01-01
This project served to define an appropriate methodology for effective prioritization of technology efforts required to develop replacement technologies mandated by imposed and forecast legislation. The methodology used is a semiquantitative approach derived from quality function deployment techniques (QFD Matrix). This methodology aims to weight the full environmental, cost, safety, reliability, and programmatic implications of replacement technology development to allow appropriate identification of viable candidates and programmatic alternatives. The results will be implemented as a guideline for consideration for current NASA propulsion systems.
Emerging technologies for the changing global market
NASA Technical Reports Server (NTRS)
Cruit, Wendy; Schutzenhofer, Scott; Goldberg, Ben; Everhart, Kurt
1993-01-01
This project served to define an appropriate methodology for effective prioritization of technology efforts required to develop replacement technologies mandated by imposed and forecast legislation. The methodology used is a semi-quantative approach derived from quality function deployment techniques (QFD Matrix). This methodology aims to weight the full environmental, cost, safety, reliability, and programmatic implications of replacement technology development to allow appropriate identification of viable candidates and programmatic alternatives. The results will be implemented as a guideline for consideration for current NASA propulsion systems.
Concept of JINR Corporate Information System
NASA Astrophysics Data System (ADS)
Filozova, I. A.; Bashashin, M. V.; Korenkov, V. V.; Kuniaev, S. V.; Musulmanbekov, G.; Semenov, R. N.; Shestakova, G. V.; Strizh, T. A.; Ustenko, P. V.; Zaikina, T. N.
2016-09-01
The article presents the concept of JINR Corporate Information System (JINR CIS). Special attention is given to the information support of scientific researches - Current Research Information System as a part of the corporate information system. The objectives of such a system are focused on ensuring an effective implementation and research by using the modern information technology, computer technology and automation, creation, development and integration of digital resources on a common conceptual framework. The project assumes continuous system development, introduction the new information technologies to ensure the technological system relevance.
The NASA technology push towards future space mission systems
NASA Technical Reports Server (NTRS)
Sadin, Stanley R.; Povinelli, Frederick P.; Rosen, Robert
1988-01-01
As a result of the new Space Policy, the NASA technology program has been called upon to a provide a solid base of national capabilities and talent to serve NASA's civil space program, commercial, and other space sector interests. This paper describes the new technology program structure and its characteristics, traces its origin and evolution, and projects the likely near- and far-term strategic steps. It addresses the alternative 'push-pull' approaches to technology development, the readiness levels to which the technology needs to be developed for effective technology transfer, and the focused technology programs currently being implemented to satisfy the needs of future space systems.
NASA Technical Reports Server (NTRS)
Willis, Jerry W.
1993-01-01
For a number of years, the Software Technology Branch of the Information Systems Directorate has been involved in the application of cutting edge hardware and software technologies to instructional tasks related to NASA projects. The branch has developed intelligent computer aided training shells, instructional applications of virtual reality and multimedia, and computer-based instructional packages that use fuzzy logic for both instructional and diagnostic decision making. One outcome of the work on space-related technology-supported instruction has been the creation of a significant pool of human talent in the branch with current expertise on the cutting edges of instructional technologies. When the human talent is combined with advanced technologies for graphics, sound, video, CD-ROM, and high speed computing, the result is a powerful research and development group that both contributes to the applied foundations of instructional technology and creates effective instructional packages that take advantage of a range of advanced technologies. Several branch projects are currently underway that combine NASA-developed expertise to significant instructional problems in public education. The branch, for example, has developed intelligent computer aided software to help high school students learn physics and staff are currently working on a project to produce educational software for young children with language deficits. This report deals with another project, the adult literacy tutor. Unfortunately, while there are a number of computer-based instructional packages available for adult literacy instruction, most of them are based on the same instructional models that failed these students when they were in school. The teacher-centered, discrete skill and drill-oriented, instructional strategies, even when they are supported by color computer graphics and animation, that form the foundation for most of the computer-based literacy packages currently on the market may not be the most effective or most desirable way to use computer technology in literacy programs. This project is developing a series of instructional packages that are based on a different instructional model - authentic instruction. The instructional development model used to create these packages is also different. Instead of using the traditional five stage linear, sequential model based on behavioral learning theory, the project uses the recursive, reflective design and development model (R2D2) that is based on cognitive learning theory, particularly the social constructivism of Vygotsky, and an epistemology based on critical theory. Using alternative instructional and instructional development theories, the result of the summer faculty fellowship is LiteraCity, a multimedia adult literacy instructional package that is a simulation of finding and applying for a job. The program, which is about 120 megabytes, is distributed on CD-ROM.
Thermal Deformation and RF Performance Analyses for the SWOT Large Deployable Ka-Band Reflectarray
NASA Technical Reports Server (NTRS)
Fang, H.; Sunada, E.; Chaubell, J.; Esteban-Fernandez, D.; Thomson, M.; Nicaise, F.
2010-01-01
A large deployable antenna technology for the NASA Surface Water and Ocean Topography (SWOT) Mission is currently being developed by JPL in response to NRC Earth Science Tier 2 Decadal Survey recommendations. This technology is required to enable the SWOT mission due to the fact that no currently available antenna is capable of meeting SWOT's demanding Ka-Band remote sensing requirements. One of the key aspects of this antenna development is to minimize the effect of the on-orbit thermal distortion to the antenna RF performance. An analysis process which includes: 1) the on-orbit thermal analysis to obtain the temperature distribution; 2) structural deformation analysis to get the geometry of the antenna surface; and 3) the RF performance with the given deformed antenna surface has been developed to accommodate the development of this antenna technology. The detailed analysis process and some analysis results will be presented and discussed by this paper.
Subsurface Sample Acquisition and Transfer Systems (SSATS)
NASA Astrophysics Data System (ADS)
Rafeek, S.; Gorevan, S. P.; Kong, K. Y.
2001-01-01
In the exploration of planets and small bodies, scientists will need the services of a deep drilling and material handling system to not only obtain the samples necessary for analyses but also to precisely transfer and deposit those samples in in-situ instruments on board a landed craft or rover. The technology for such a deep sampling system as the SSATS is currently been developed by Honeybee Robotics through a PIDDP effort. The SSATS has its foundation in a one-meter prototype (SATM) drill that was developed under the New Millenium Program for ST4/Champollion. Additionally the SSATS includes relevant coring technology form a coring drill (Athena Mini-Corer) developed for the Mars Sample Return Mission. These highly developed technologies along with the current PIDDP effort, is combined to produce a sampling system that can acquire and transfer samples from various depths. Additional information is contained in the original extended abstract.
Heatshield for Extreme Entry Environment Technology (HEEET) for Missions to Saturn and Beyond
NASA Technical Reports Server (NTRS)
Ellerby, D.; Blosser, M.; Chinnapongse, R.; Fowler, M.; Gasch, M.; Hamm, K.; Kazemba, C.; Ma, J.; Milos, F.; Nishioka, O.;
2015-01-01
This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASAs Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.
NASA Technical Reports Server (NTRS)
Ellerby, D.; Beerman, A.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.;
2015-01-01
This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Venus or Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.
NASA Technical Reports Server (NTRS)
Ellerby, D.; Beerman, A.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzaes, G.;
2015-01-01
This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASAs Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Venus or Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.
NASA Astrophysics Data System (ADS)
Logsdon, James
2002-03-01
This presentation will provide a brief history of the development of MEMS products and technology, beginning with the manifold absolute pressure sensor in the late seventies through the current variety of Delphi Delco Electronics sensors available today. The technology development of micromachining from uncompensated P plus etch stops to deep reactive ion etching and the technology development of wafer level packaging from electrostatic bonding to glass frit sealing and silicon to silicon direct bonding will be reviewed.
The progress of sub-pixel imaging methods
NASA Astrophysics Data System (ADS)
Wang, Hu; Wen, Desheng
2014-02-01
This paper reviews the Sub-pixel imaging technology principles, characteristics, the current development status at home and abroad and the latest research developments. As Sub-pixel imaging technology has achieved the advantages of high resolution of optical remote sensor, flexible working ways and being miniaturized with no moving parts. The imaging system is suitable for the application of space remote sensor. Its application prospect is very extensive. It is quite possible to be the research development direction of future space optical remote sensing technology.
Review of the development of multi-terminal HVDC and DC power grid
NASA Astrophysics Data System (ADS)
Chen, Y. X.
2017-11-01
Traditional power equipment, power-grid structures, and operation technology are becoming increasingly powerless with the large-scale renewable energy access to the grid. Thus, we must adopt new technologies, new equipment, and new grid structure to satisfy future requirements in energy patterns. Accordingly, the multiterminal direct current (MTDC) transmission system is receiving increasing attention. This paper starts with a brief description of current developments in MTDC worldwide. The MTDC project, which has been placed into practical operation, is introduced by the Italian-Corsica-Sardinian three-terminal high-voltage DC (HVDC) project. We then describe the basic characteristics and regulations of multiterminal DC transmission. The current mainstream of several control methods are described. In the third chapter, the key to the development of MTDC system or hardware and software technology that restricts the development of multiterminal DC transmission is discussed. This chapter focuses on the comparison of double-ended HVDC and multiterminal HVDC in most aspects and subsequently elaborates the key and difficult point of MTDC development. Finally, this paper summarizes the prospect of a DC power grid. In a few decades, China can build a strong cross-strait AC-DC hybrid power grid.
Review of fluid and control technology of hydraulic wind turbines
NASA Astrophysics Data System (ADS)
Cai, Maolin; Wang, Yixuan; Jiao, Zongxia; Shi, Yan
2017-09-01
This study examines the development of the fluid and control technology of hydraulic wind turbines. The current state of hydraulic wind turbines as a new technology is described, and its basic fluid model and typical control method are expounded by comparing various study results. Finally, the advantages of hydraulic wind turbines are enumerated. Hydraulic wind turbines are expected to become the main development direction of wind turbines.
World Wind Tools Reveal Environmental Change
NASA Technical Reports Server (NTRS)
2012-01-01
Originally developed under NASA's Learning Technologies program as a tool to engage and inspire students, World Wind software was released under the NASA Open Source Agreement license. Honolulu, Hawaii based Intelesense Technologies is one of the companies currently making use of the technology for environmental, public health, and other monitoring applications for nonprofit organizations and Government agencies. The company saved about $1 million in development costs by using the NASA software.
Open Technology Approaches to Geospatial Interface Design
NASA Astrophysics Data System (ADS)
Crevensten, B.; Simmons, D.; Alaska Satellite Facility
2011-12-01
What problems do you not want your software developers to be solving? Choosing open technologies across the entire stack of software development-from low-level shared libraries to high-level user interaction implementations-is a way to help ensure that customized software yields innovative and valuable tools for Earth Scientists. This demonstration will review developments in web application technologies and the recurring patterns of interaction design regarding exploration and discovery of geospatial data through the Vertex: ASF's Dataportal interface, a project utilizing current open web application standards and technologies including HTML5, jQueryUI, Backbone.js and the Jasmine unit testing framework.
FY2011 Advanced Power Electronics and Electric Motors Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Susan A.
The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.
Renewable Energy Development in Hermosa Beach, California
NASA Astrophysics Data System (ADS)
Morris, K.
2016-12-01
The City of Hermosa Beach, California, with the support of the AGU's TEX program, is exploring the potential for renewable energy generation inside the City, as part of the implementation of the City's 2015 Municipal Carbon Neutral Plan. Task 1: Estimate the technical potential of existing and future technologies Given the City's characteristics, this task will identify feasible technologies: wind, solar, tidal/wave, wastewater biogas, landfill biogas, microscale anaerobic digestion (AD), and complementary energy storage. Some options may be open to the City acting alone, but others will require working with municipal partners and private entities that provide services to Hermosa Beach (e.g., wastewater treatment). Energy storage is a means to integrate intermittent renewable energy output. Task 2: Review transaction types and pathways In this task, feasible technologies will be further examined in terms of municipal ordinances and contractual paths: (a) power purchase agreements (PPAs) with developers, under which the City would purchase energy or storage services directly; (b) leases with developers, under which the City would rent sites (e.g., municipal rooftops) to developers; (c) ordinances related to permitting, under which the City would reduce regulatory barriers to entry for developers; (d) pilot projects, under which the City would engage with developers to test new technologies such as wind/wave/microscale AD (pursuant to PPAs and/or leases); and (e) existing projects, under which the City would work with current wastewater and landfill contractors to understand (i) current plans to develop renewable energy, and (ii) opportunities for the City to work with such contractors to promote renewable energy. Task 3: Estimate costs by technology Finally, the last task will gather existing information about the costs, both current and projected, of the feasible technologies, including (i) overnight construction cost (capital); (ii) integration costs (e.g., charges from Edison and energy storage); (iii) costs that may be avoided due to promotion of renewable energy; and (iv) comparisons of projected annual nominal costs (in $/MWh and net present values).
Vision 20/20: Single photon counting x-ray detectors in medical imaging
Taguchi, Katsuyuki; Iwanczyk, Jan S.
2013-01-01
Photon counting detectors (PCDs) with energy discrimination capabilities have been developed for medical x-ray computed tomography (CT) and x-ray (XR) imaging. Using detection mechanisms that are completely different from the current energy integrating detectors and measuring the material information of the object to be imaged, these PCDs have the potential not only to improve the current CT and XR images, such as dose reduction, but also to open revolutionary novel applications such as molecular CT and XR imaging. The performance of PCDs is not flawless, however, and it seems extremely challenging to develop PCDs with close to ideal characteristics. In this paper, the authors offer our vision for the future of PCD-CT and PCD-XR with the review of the current status and the prediction of (1) detector technologies, (2) imaging technologies, (3) system technologies, and (4) potential clinical benefits with PCDs. PMID:24089889
Sensor Technologies on Flexible Substrates
NASA Technical Reports Server (NTRS)
Koehne, Jessica
2016-01-01
NASA Ames has developed sensor technologies on flexible substrates integrated into textiles for personalized environment monitoring and human performance evaluation. Current technologies include chemical sensing for gas leak and event monitoring and biological sensors for human health and performance monitoring. Targeted integration include next generation EVA suits and flexible habitats.
Creating Standards-Based Technology Education Facilities
ERIC Educational Resources Information Center
Daugherty, Michael K.; Klenke, Andrew M.; Neden, Michael
2008-01-01
One of the most intimidating tasks faced by new or practicing technology education teachers is the challenge of creating new facilities or renovating current facilities for a new purpose. While the fourth program standard in "Advancing Excellence in Technological Literacy: Student Assessment, Professional Development, and Program Standards (AETL)"…
Advanced cogeneration research study: Executive summary
NASA Technical Reports Server (NTRS)
Bluhm, S. A.; Moore, N.; Rosenberg, L.; Slonski, M.
1983-01-01
This study provides a broad based overview of selected areas relevant to the development of a comprehensive Southern California Edison (SCE) advanced cogeneration project. The areas studied are: (1) Cogeneration potential in the SCE service territory; (2) Advanced cogeneration technologies; and (3) Existing cogeneration computer models. An estimated 3700 MW sub E could potentially be generated from existing industries in the Southern California Edison service territory using cogeneration technology. Of this total, current technology could provide 2600 MW sub E and advanced technology could provide 1100 MW sub E. The manufacturing sector (SIC Codes 20-39) was found to have the highest average potential for current cogeneration technology. The mining sector (SIC Codes 10-14) was found to have the highest potential for advanced technology.
Achmad, Arifudin; Taketomi-Takahashi, Ayako; Tsushima, Yoshito
2013-06-01
The potentials of bubble technology in ultrasound has been investigated thoroughly in the last decade. Japan has entered as one of the leaders in bubble technology in ultrasound since Sonazoid (Daiichi Sankyo & GE Healthcare) was marketed in 2007. The 85th Annual Scientific Meeting of The Japan Society of Ultrasonics in Medicine held in Tokyo from May 25 to 27, 2012 is where researchers and clinicians from all over Japan presented recent advances and new developments in ultrasound in both the medical and the engineering aspects of this science. Even though bubble technology was originally developed simply to improve the conventional ultrasound imaging, recent discoveries have opened up powerful emerging applications. Bubble technology is the particular topic to be reviewed in this report, including its mechanical advances for molecular imaging, drug/gene delivery device and sonoporation up to its current clinical application for liver cancers and other liver, gastrointestinal, kidney and breast diseases.
Research and development of biochip technologies in Taiwan
NASA Astrophysics Data System (ADS)
Ting, Solomon J.; Chiou, Arthur E. T.
2000-07-01
Recent advancements in several genome-sequencing projects have stimulated an enormous interest in microarray DNA chip technology, especially in the biomedical sciences and pharmaceutical industries. The DNA chips facilitated the miniaturization of conventional nucleic acid hybridizations, by either robotically spotting thousands of library cDNAs or in situ synthesis of high-density oligonucleotides onto solid supports. These innovations have found a wide range of applications in molecular biology, especially in studying gene expression and discovering new genes from the global view of genomic analysis. The research and development of this powerful tool has also received great attentions in Taiwan. In this paper, we report the current progresses of our DNA chip project, along with the current status of other biochip projects in Taiwan, such as protein chip, PCR chip, electrophoresis chip, olfactory chip, etc. The new development of biochip technologies integrates the biotechnology with the semiconductor processing, the micro- electro-mechanical, optoelectronic, and digital signal processing technologies. Most of these biochip technologies utilitze optical detection methods for data acquisition and analysis. The strengths and advantages of different approaches are compared and discussed in this report.
ERIC Educational Resources Information Center
Moore, Terah R.
2010-01-01
Schools, colleges, and departments of education across America currently are investigating how preservice teachers are being prepared to use technology in the classroom. Technologies available in education have evolved but technological literacy for teachers has not always kept pace. Research suggested the need for continued development and study…
Applying Digital Sensor Technology: A Problem-Solving Approach
ERIC Educational Resources Information Center
Seedhouse, Paul; Knight, Dawn
2016-01-01
There is currently an explosion in the number and range of new devices coming onto the technology market that use digital sensor technology to track aspects of human behaviour. In this article, we present and exemplify a three-stage model for the application of digital sensor technology in applied linguistics that we have developed, namely,…
Fuel conservative aircraft engine technology
NASA Technical Reports Server (NTRS)
Nored, D. L.
1978-01-01
Technology developments for more fuel-efficiency subsonic transport aircraft are reported. Three major propulsion projects were considered: (1) engine component improvement - directed at current engines; (2) energy efficient engine - directed at new turbofan engines; and (3) advanced turboprops - directed at technology for advanced turboprop-powered aircraft. Each project is reviewed and some of the technologies and recent accomplishments are described.
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.
2010-01-01
The National Aeronautics and Space Administration (NASA) is currently undergoing a substantial redirection. Notable among the changes occurring within NASA is the stated emphasis on technology development, integration, and demonstration. These new changes within the Agency should have a positive impact on the GN&C discipline given the potential for sizeable investments for technology development and in-space demonstrations of both Autonomous Rendezvous & Docking (AR&D) systems and Autonomous Precision Landing (APL) systems. In this paper the NASA Technical Fellow for Guidance, Navigation and Control (GN&C) provides a summary of the present technical challenges, critical needs, and future technological directions for NASA s GN&C engineering discipline. A brief overview of the changes occurring within NASA that are driving a renewed emphasis on technology development will be presented as background. The potential benefits of the planned GN&C technology developments will be highlighted. This paper will provide a GN&C State-of-the-Discipline assessment. The discipline s readiness to support the goals & objectives of each of the four NASA Mission Directorates is evaluated and the technical challenges and barriers currently faced by the discipline are summarized. This paper will also discuss the need for sustained investments to sufficiently mature the several classes of GN&C technologies required to implement NASA crewed exploration and robotic science missions.
Assessment of Peruvian biofuel resources and alternatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, J.P.; Smith, W.; Mariani, E.
1979-08-01
Comprehensive assessment of the biofuel potential of Peru is based on: determination of current biofuel utilization practices, evauation of Peruvian biomass productivity, identification of Peruvian agricultural and forestry resources, assessment of resource development and management concerns, identification of market considerations, description of biofuel technological options, and identification of regional biofuel technology applications. Discussion of current biofuel utilization centers on a qualitative description of the main conversion approaches currently being practiced in Peru. Biomass productivity evaluations consider the terrain and soil, and climatic conditions found in Peru. The potential energy from Peruvian agricultural and forestry resources is described quantitatively. Potental regionalmore » production of agricultural residues and forest resources that could supply energy are identified. Assessment of resource development and management concerns focuses on harvesting, reforestation, training, and environmental consequences of utilization of forest resources. Market factors assessed include: importation, internal market development, external market development, energy policy and pricing, and transportation. Nine biofuel technology options for Peru are identified: (1) small-to-medium-scale gasification, (2) a wood waste inventory, (3) stationary and mobile charcoal production systems, (4) wood distillation, (5) forest resource development and management, (6) electrical cogeneration, (7) anaerobic digestion technology, (8) development of ethanol production capabilities, and (9) agricultural strategies for fuel production. Applications of these biofuel options are identified for each of the three major regions - nine applications for the Costa Region, eight for the Sierra Region, and ten for the Selva Region.« less
Improving NASA's technology for space science
NASA Technical Reports Server (NTRS)
1993-01-01
The continued advance of the nation's space program is directly dependent upon the development and use of new technology. Technology is the foundation for every aspect of space missions and ground operations. The improvements in technology that will enable future advances are not only in device and system performance, but also in permitting missions to be carried out more rapidly and at lower cost. Although more can be done with current technology, NASA's recent call for new and innovative approaches should not be answered by employing only today's technologies; new technologies with revolutionary potential should be sought. The study reported here was performed to identify means to enhance the development of technologies for the space sciences and applications.
Analysis of Ideal Towers for Tall Wind Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, Katherine L; Damiani, Rick R; Roberts, Joseph O
Innovation in wind turbine tower design is of significant interest for future development of wind power plants. First, wind turbine towers account for a large portion of overall capital expenditures for wind power projects. Second, for low wind-resource regions of the world, the use of low-cost tall-tower technology has the potential to open new markets for development. This study investigates the relative potential of various tower configurations in terms of mass and cost. For different market applications and hub heights, idealized tall towers are designed and compared. The results show that innovation in wind turbine controls makes reaching higher hubmore » heights with current technology economically viable. At the same time, new technologies hold promise for reducing tower costs as these technologies mature and hub heights reach twice the current average.« less
Analysis of Ideal Towers for Tall Wind Applications: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, Katherine L; Damiani, Rick R; Roberts, Joseph O
Innovation in wind turbine tower design is of significant interest for future development of wind power plants. First, wind turbine towers account for a large portion of overall capital expenditures for wind power projects. Second, for low wind-resource regions of the world, the use of low-cost tall-tower technology has the potential to open new markets for development. This study investigates the relative potential of various tower configurations in terms of mass and cost. For different market applications and hub heights, idealized tall towers are designed and compared. The results show that innovation in wind turbine controls makes reaching higher hubmore » heights with current technology economically viable. At the same time, new technologies hold promise for reducing tower costs as these technologies mature and hub heights reach twice the current average.« less
ERIC Educational Resources Information Center
Tchangalova, Nedelina; Lam, Margaret N.
2013-01-01
This article reports and analyzes the survey results on the continuing education needs of librarians with current job responsibilities in the science, technology, and engineering subject fields. The intended purpose of the survey results is to assist conference coordinators in the development of a continuing education program at future Special…
Digital optical tape: Technology and standardization issues
NASA Technical Reports Server (NTRS)
Podio, Fernando L.
1996-01-01
During the coming years, digital data storage technologies will continue an aggressive growth to satisfy the user's need for higher storage capacities, higher data transfer rates and long-term archival media properties. Digital optical tape is a promising technology to satisfy these user's needs. As any emerging data storage technology, the industry faces many technological and standardization challenges. The technological challenges are great, but feasible to overcome. Although it is too early to consider formal industry standards, the optical tape industry has decided to work together by initiating prestandardization efforts that may lead in the future to formal voluntary industry standards. This paper will discuss current industry optical tape drive developments and the types of standards that will be required for the technology. The status of current industry prestandardization efforts will also be discussed.
Lunar Surface Systems Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Green, Jennifer L.; Chau, Savio N.; Curell, Philip C.; Dempsey, Cathy A.; Patterson, Linda P.; Robbins, William; Steele, Michael A.; DAnnunzio, Anthony;
2011-01-01
The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program.
Johnson Space Center Research and Technology Report
NASA Technical Reports Server (NTRS)
Pido, Kelle; Davis, Henry L. (Technical Monitor)
1999-01-01
As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA's development of human spacecraft, human support systems, and human spacecraft operations. To implement this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space--technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described.
Gene and Cell Doping: The New Frontier - Beyond Myth or Reality.
Neuberger, Elmo W I; Simon, Perikles
2017-01-01
The advent of gene transfer technologies in clinical studies aroused concerns that these technologies will be misused for performance-enhancing purposes in sports. However, during the last 2 decades, the field of gene therapy has taken a long and winding road with just a few gene therapeutic drugs demonstrating clinical benefits in humans. The current state of gene therapy is that viral vector-mediated gene transfer shows the now long-awaited initial success for safe, and in some cases efficient, gene transfer in clinical trials. Additionally, the use of small interfering RNA promises an efficient therapy through gene silencing, even though a number of safety concerns remain. More recently, the development of the molecular biological CRISPR/Cas9 system opened new possibilities for efficient and highly targeted genome editing. This chapter aims to define and consequently demystify the term "gene doping" and discuss the current reality concerning gene- and cell-based physical enhancement strategies. The technological progress in the field of gene therapy will be illustrated, and the recent clinical progress as well as technological difficulties will be highlighted. Comparing the attractiveness of these technologies with conventional doping practices reveals that current gene therapy technologies remain unattractive for doping purposes and unlikely to outperform conventional doping. However, future technological advances may raise the attractiveness of gene doping, thus making it easier to develop detection strategies. Currently available detection strategies are introduced in this chapter showing that many forms of genetic manipulation can already be detected in principle. © 2017 S. Karger AG, Basel.
Patterning roadmap: 2017 prospects
NASA Astrophysics Data System (ADS)
Neisser, Mark
2017-06-01
Road mapping of semiconductor chips has been underway for over 20 years, first with the International Technology Roadmap for Semiconductors (ITRS) roadmap and now with the International Roadmap for Devices and Systems (IRDS) roadmap. The original roadmap was mostly driven bottom up and was developed to ensure that the large numbers of semiconductor producers and suppliers had good information to base their research and development on. The current roadmap is generated more top-down, where the customers of semiconductor chips anticipate what will be needed in the future and the roadmap projects what will be needed to fulfill that demand. The More Moore section of the roadmap projects that advanced logic will drive higher-resolution patterning, rather than memory chips. Potential solutions for patterning future logic nodes can be derived as extensions of `next-generation' patterning technologies currently under development. Advanced patterning has made great progress, and two `next-generation' patterning technologies, EUV and nanoimprint lithography, have potential to be in production as early as 2018. The potential adoption of two different next-generation patterning technologies suggests that patterning technology is becoming more specialized. This is good for the industry in that it lowers overall costs, but may lead to slower progress in extending any one patterning technology in the future.
Current and future technology in radial and axial gas turbines
NASA Technical Reports Server (NTRS)
Rohlik, H. E.
1983-01-01
Design approaches and flow analysis techniques currently employed by aircraft engine manufacturers are assessed. Studies were performed to define the characteristics of aircraft and engines for civil missions of the 1990's and beyond. These studies, coupled with experience in recent years, identified the critical technologies needed to meet long range goals in fuel economy and other operating costs. Study results, recent and current research and development programs, and an estimate of future design and analytic capabilities are discussed.
NASA Technical Reports Server (NTRS)
Hayati, Samad A.
2002-01-01
Future Mars missions require new capabilities that currently are not available. The Mars Technology Program (MTP) is an integral part of the Mars Exploration Program (MEP). Its sole purpose is to assure that required technologies are developed in time to enable the baselined and future missions. The MTP is a NASA-wide technology development program managed by JPL. It is divided into a Focused Program and a Base Program. The Focused Program is tightly tied to the proposed Mars Program mission milestones. It involves time-critical deliverables that must be developed in time for infusion into the proposed Mars 2005, and, 2009 missions. In addition a technology demonstration mission by AFRL will test a LIDAR as part of a joint NASNAFRL experiment. This program bridges the gap between technology and projects by vertically integrating the technology work with pre-project development in a project-like environment with critical dates for technology infusion. A Base Technology Program attacks higher riskhigher payoff technologies not in the critical path of missions.
An update on the clinical use of drug-coated balloons in percutaneous coronary interventions.
Cheng, Yanping; Leon, Martin B; Granada, Juan F
2016-06-01
Drug-coated balloons (DCB) promise to deliver anti-proliferative drugs and prevent restenosis leaving nothing behind. Although, randomized clinical trials have demonstrated their efficacy for the treatment of in-stent restenosis, clinical evidence supporting their use in other coronary applications is still lacking. This review summarizes the development status of clinically available DCB technologies and provides an update on the current data for their coronary use. Current generation DCB prevent restenosis by delivering paclitaxel particles on the surface of the vessel wall. Although clinically available technologies share a common mechanism of action, important differences in pharmacokinetic behavior and safety profiles do exist. Future technological improvements include the development of coatings displaying: high transfer efficiency; low particle embolization potential; and alternative drug formulations. Optimized balloon-based delivery systems and drug encapsulation technologies also promise to improve the technical limitations of current generation DCB. Although proving clinical superiority against DES may prove to be difficult in mainstream applications (i.e., de novo), new generation DCB technologies have the potential to achieve a strong position in the interventional field in clinical settings in which the efficacy of DES use is not proven or justified (i.e., bifurcations).
NASA Astrophysics Data System (ADS)
Kilbourne, Caroline; Adams, J. S.; Bandler, S.; Chervenak, J.; Chiao, M.; Doriese, R.; Eckart, M.; Finkbeiner, F.; Fowler, J. W.; Hilton, G.; Irwin, K.; Kelley, R. L.; Moseley, S. J.; Porter, F. S.; Reintsema, C.; Sadleir, J.; Smith, S. J.; Swetz, D.; Ullom, J.
2014-01-01
NASA/GSFC and NIST-Boulder are collaborating on a program to advance superconducting transition-edge sensor (TES) microcalorimeter technology toward Technology Readiness Level (TRL) 6. The technology development for a TES imaging X-ray microcalorimeter spectrometer (TES microcalorimeter arrays and time-division multiplexed SQUID readout) is now at TRL 4, as evaluated by both NASA and the European Space Agency (ESA) during mission formulation for the International X-ray Observatory (IXO). We will present the status of the development program. The primary goal of the current project is to advance the core X-ray Microcalorimeter Spectrometer (XMS) detector-system technologies to a demonstration of TRL 5 in 2014. Additional objectives are to develop and demonstrate two important related technologies to at least TRL 4: position-sensitive TES devices and code-division multiplexing (CDM). These technologies have the potential to expand significantly the range of possible instrument optimizations; together they allow an expanded focal plane and higher per-pixel count rates without greatly increasing mission resources. The project also includes development of a design concept and critical technologies needed for the thermal, electrical, and mechanical integration of the detector and readout components into the focal-plane assembly. A verified design concept for the packaging of the focal-plane components will be needed for the detector system eventually to advance to TRL 6. Thus, the current project is a targeted development and demonstration program designed to make significant progress in advancing the XMS detector system toward TRL 6, establishing its readiness for a range of possible mission implementations.
Current Status and Recent Research Achievements in SiC/SiC Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katoh, Yutai; Snead, Lance L.; Henager, Charles H.
2014-12-01
The development and maturation of the silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen the evolution from fundamental development and understanding of the material system and its behavior in a hostile irradiation environment to the current effort which essentially is a broad-based program of technology, directed at moving this material class from a laboratory curiosity to an engineering material. This paper lays out the recent international scientific and technological achievements in the development of SiC/SiC composite material technologies for fusion application and will discuss future research directions. It also reviews the materials system inmore » the larger context of progress to maturity as an engineering material for both the larger nuclear community and for general engineering applications.« less
A study of pricing and trading model of Blockchain & Big data-based Energy-Internet electricity
NASA Astrophysics Data System (ADS)
Fan, Tao; He, Qingsu; Nie, Erbao; Chen, Shaozhen
2018-01-01
The development of Energy-Internet is currently suffering from a series of issues, such as the conflicts among high capital requirement, low-cost, high efficiency, the spreading gap between capital demand and supply, as well as the lagged trading & valuation mechanism, any of which would hinder Energy-Internet's evolution. However, with the development of Blockchain and big-data technology, it is possible to work out solutions for these issues. Based on current situation of Energy-Internet and its requirements for future progress, this paper demonstrates the validity of employing blockchain technology to solve the problems encountered by Energy-Internet during its development. It proposes applying the blockchain and big-data technologies to pricing and trading energy products through Energy-Internet and to accomplish cyber-based energy or power's transformation from physic products to financial assets.
Addressing "waste" in diagnostic imaging: some implications of comparative effectiveness research.
Elshaug, Adam G; Bessen, Taryn; Moss, John R; Hiller, Janet E
2010-08-01
Comparative effectiveness research is intended to provide evidence to improve patient outcomes through the use of the most appropriate health technology affordable. The authors present 5 case studies, focusing on the use of plain radiography in common clinical scenarios, to illustrate the considerable scope for comparative effectiveness research within medical imaging and the different levels of evidence currently in existence to guide the improved use of medical imaging. These are blunt ankle injury, breast cancer follow-up, low back pain, routine daily chest x-rays in intensive care, and screening for breast cancer. Although there are established models for evaluating new technologies, especially pharmaceuticals, against the most commonly used current technology, the evaluation of technologies in current clinical practice is in an early phase of development. Because evaluation resources are limited, one major challenge is developing ways to identify established technologies for evaluation to refine the indications for their use. A set of criteria with which to identify established technologies that may not be delivering value for money is described, and their use is illustrated in relation to the 5 case studies. These criteria could be incorporated into literature search strategies, stakeholder consultations, and utilization scanning. Once identified, these technologies should be formally evaluated for their performance in improving patient health without restricting the availability of other effective interventions. Copyright 2010 American College of Radiology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Overlin, Trudy K.; Marts, Donna J.
1995-05-01
The Idaho National Engineering Laboratory (INEL), in response to the National Institute of Justice, less-than-lethal (LTL) technologies program, has proposed to help police departments modify their training programs to meet the challenge of training officers to use new LTL technologies. Work performed by the INEL in the development of an air bag restraint for patrol vehicles and in a technologies assessment for vehicle interdiction technologies has given laboratory researchers a better understanding of the law enforcement environment and has enabled them to evaluate potential training aids to help police departments use new technolgies and teach their officers to most efficiently and effectively use them. With the developemnt of LTL technologies as options in law enforcement comes the need for departments to adapt their current departmental training and refresher training programs to incorporate alternative weapons. This adaptation may include modifying decision making and skills training to teach officers when and how to effectively use new technologies. By assessing current programs and reviewing the training programs of other succesful agencies, a department may be able to easily adapt their current program to meet the needs of training officers in the use of LTL technologies. As litigation drove the need to develop new alternative weapons for law enforcement, it will also shape the application of the technologies when used in the field. If used incorrectly they may be ineffective, dangerous to the user, or cause more physical damage than intended. Because technology is rapidly changing, law enforcement training must keep up with the changes and meet their needs.
Aircraft technology opportunities for the 21st Century
NASA Technical Reports Server (NTRS)
Albers, James A.; Zuk, John
1988-01-01
New aircraft technologies are presented that have the potential to expand the air transportation system and reduce congestion through new operating capabilities, and at the same time provide greater levels of safety and environmental compatibility. Both current and planned civil aeronautics technology at the NASA Ames, Lewis, and Langley Research Centers are addressed. The complete spectrum of current aircraft and new vehicle concepts is considered including rotorcraft (helicopters and tiltrotors), vertical and short takeoff and landing (V/STOL) and short takeoff and landing (STOL) aircraft, subsonic transports, high speed transports, and hypersonic/transatmospheric vehicles. New technologies for current aircraft will improve efficiency, affordability, safety, and environmental compatibility. Research and technology promises to enable development of new vehicles that will revolutionize or greatly change the transportation system. These vehicles will provide new capabilities which will lead to enormous market opportunities and economic growth, as well as improve the competitive position of the U.S. aerospace industry.
Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Wercinski, Paul F.; Beck, Robin A. S.; Hamm, Kenneth R.; Yount, Bryan C.; Makino, A.; Smith, B.; Gage, P.; Prabhu, D.
2012-01-01
The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term; (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term; and (3) Heavy mass and human missions to Mars in the long term.
Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; Wercinski, P.; Prabhu, D.
2012-01-01
The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (approximately 40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low-mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term and (3) Heavy mass and human missions to Mars in the long term.
Space Transportation Materials and Structures Technology Workshop. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Cazier, F. W., Jr. (Compiler); Gardner, J. E. (Compiler)
1992-01-01
The workshop was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems; Propulsion Systems; and Entry Systems. The goals accomplished were (1) to develop important strategic planning information necessary to transition materials and structures technologies from lab research programs into robust and affordable operational systems; (2) to provide a forum for the exchange of information and ideas between technology developers and users; and (3) to provide senior NASA management with a review of current space transportation programs, related subjects, and specific technology needs. The workshop thus provided a foundation on which a NASA and industry effort to address space transportation materials and structures technologies can grow.
Instructional Technology in Brazil: A Status Report
ERIC Educational Resources Information Center
Saettler, Paul
1973-01-01
A status report on the evolving conceptions of instructional technology and current applications in Brazil. A complementary purpose is to summarize those conditions which vitally influence the general characteristics of the Brazilian educational system and the nature of instructional technology in this major developing country of the world.…
Sticky IT Workers: Discovering Why Information Technology Professionals Retain Their Employers
ERIC Educational Resources Information Center
Lewis, Phillip Mike
2013-01-01
In the current business climate and social technologies expansion era, Information Technology (IT) workers are important organization contributors that connect organizations into today's data-driven, highly social, and always-on global economy. Thus, organizations need IT workers. Unfortunately, as a class, IT workers have developed a reputation…
Professional Education in Educational Media and Technology: A 75 Year Perspective.
ERIC Educational Resources Information Center
Ely, Donald P.
1997-01-01
Describes the evolution of educational technology curricula and examines its current status. Highlights include graduate curriculum development; the National Defense Education Act; competition between school librarians and media specialists; the inclusion of computer technology; and three case studies of academic programs at Indiana University,…
Interactive Videodisc Technology and Its Implications for Education.
ERIC Educational Resources Information Center
Gindele, John F.; Gindele, Joseph G.
Arguing that videodisc technology has major implications for the storage and retrieval of information and that it may meet learners' needs in ways never before possible, this paper highlights key points regarding the history and development of videodisc technology, explores its implications for education, and addresses current and future uses of…
ERIC Educational Resources Information Center
O'Reilly, Erin N.
2016-01-01
As access to information and communication technology grows, educators have increasing opportunities to experiment with and to adapt both hardware and software to their current practice. Technology's integration, however, can vary widely between teachers within the same program for numerous reasons. Understanding the challenges practitioners face…
Students' Attitudes toward Gene Technology: Deconstructing a Construct
ERIC Educational Resources Information Center
Gardner, Grant E.; Troelstrup, Angelique
2015-01-01
Emergent technologies are commonly characterized as involving cutting-edge developments while lacking wide-scale public implementation. Although currently prevalent in many applications, gene technology is often considered emergent in that the science changes so rapidly. Science educators at all levels of formal education are faced with a unique…
ERIC Educational Resources Information Center
Tokmak, Hatice Sancar; Yelken, Tugba Yanpar; Konokman, Gamze Yavuz
2013-01-01
The current study investigated perceived development of pre-service teachers in their Instructional Material Design (IMD) competencies through the course "Instructional Technology and Material Design," which is based on a technological, pedagogical, and content knowledge (TPACK) framework. A total of 22 Elementary Education pre-service…
ERIC Educational Resources Information Center
Jefferies, Pat; Carsten-Stahl, Bernd; McRobb, Steve
2007-01-01
The various political and technological drivers that are currently prevalent within many educational institutions increasingly encourage educationalists to experiment with tools that promote e-learning. Many then engage in this activity in the belief that this will help in the development of more autonomous, responsible learners. Strategies for…
We'll Take It from Here: Further Developments We'd Like To See in Virtual Reference Software.
ERIC Educational Resources Information Center
Coffman, Steven
2001-01-01
Discussion of virtual reference services focuses on software that is currently available and further developments that are needed. Topics include co-browsing and collaboration capabilities; communications technology, including chat technology and voice over Internet protocol (VoIP); networked reference services; and online reference collections…
Current Continuing Education Needs of Two-Year College Mathematics Faculty Must Be Met!
ERIC Educational Resources Information Center
Sharp, Karen Tabey
Arguing that rapid developments in technology and changing enrollment patterns make updating the skills of two-year college mathematics faculty an imperative, this paper discusses the ways in which the continuing education needs of faculty members can be met. First, technological developments, especially in the computer sciences, are reviewed, and…
Gender, Information Technology, and Developing Countries: An Analytic Study.
ERIC Educational Resources Information Center
Hafkin, Nancy; Taggart, Nancy
This report and executive summary examines the current situation of gender and information technology (IT) in developing nations. The first section describes women as users of IT, producers of IT, and IT decision makers. The second section notes obstacles to women's access (literacy and education, language, time, cost, geographic location, social…
Riley, Steven J.; Calub, Catrina A.; Schweitzer, Julie B.
2016-01-01
Abstract Introduction: Care (i.e., evaluation and intervention) delivered through technology is used in many areas of mental health services, including for persons with attention deficit hyperactivity disorder (ADHD). Technology can facilitate care for individuals with ADHD, their parents, and their care providers. The adoption of technological tools for ADHD care requires evidence-based studies to support the transition from development to integration into use in the home, school, or work for persons with the disorder. The initial phase, which is development of technological tools, has begun in earnest; however, the evidence base for many of these tools is lacking. In some instances, the uptake of a piece of technology into home use or clinical practice may be further along than the research to support its use. Methods: In this study, we review the current evidence regarding technology for ADHD and also propose a model to evaluate the support for other tools that have yet to be tested. Results: We propose using the Research Domain Criteria as a framework for evaluating the tools' relationships to dimensions related to ADHD. Conclusion: This article concludes with recommendations for testing new tools that may have promise in improving the evaluation or treatment of persons with ADHD. PMID:26985703
Status of NASA's Advanced Radioisotope Power Conversion Technology Research and Development
NASA Technical Reports Server (NTRS)
Wong, Wayne A.; Anderson, David J.; Tuttle, Karen L.; Tew, Roy C.
2006-01-01
NASA s Advanced Radioisotope Power Systems (RPS) development program is funding the advancement of next generation power conversion technologies that will enable future missions that have requirements that can not be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power Systems (RPS). Requirements of advanced radioisotope power systems include high efficiency and high specific power (watts/kilogram) in order to meet mission requirements with less radioisotope fuel and lower mass. Other Advanced RPS development goals include long-life, reliability, and scalability so that these systems can meet requirements for a variety of future space applications including continual operation surface missions, outer-planetary missions, and solar probe. This paper provides an update on the Radioisotope Power Conversion Technology Project which awarded ten Phase I contracts for research and development of a variety of power conversion technologies consisting of Brayton, Stirling, thermoelectrics, and thermophotovoltaics. Three of the contracts continue during the current Phase II in the areas of thermoelectric and Stirling power conversion. The accomplishments to date of the contractors, project plans, and status will be summarized.
NASA Astrophysics Data System (ADS)
Betancur, J. A.; Osorio-Gómez, Gilberto; Arnedo, Aida; Yarce Botero, Andrés.
2014-06-01
Nowadays, it is very important to explore the qualitative characteristics of autonomous mobility systems in automobiles, especially disruptive technology like Vehicle to Vehicle (V2V) and Infrastructure to Vehicle (I2V), in order to comprehend how the next generation of automobiles will be developed. In this sense, this research covers a general review about active safety in automobiles where V2V and I2V systems have been implemented; identifying the more realistic possibilities related to V2V and I2V technology and analyzing the current applications, some systems in development process and some future conceptual proposals. Mainly, it is notorious the potential development of mixing V2V and I2V systems pointing to increase the driver's attention; therefore, a configuration between these two technologies and some augmented reality system for automobiles (Head-Up Display and Head-Down Display) is proposed. There is a huge potential of implementation for this kind of configuration once the normative and the roadmap for its development can be widely established.
"First generation" automated DNA sequencing technology.
Slatko, Barton E; Kieleczawa, Jan; Ju, Jingyue; Gardner, Andrew F; Hendrickson, Cynthia L; Ausubel, Frederick M
2011-10-01
Beginning in the 1980s, automation of DNA sequencing has greatly increased throughput, reduced costs, and enabled large projects to be completed more easily. The development of automation technology paralleled the development of other aspects of DNA sequencing: better enzymes and chemistry, separation and imaging technology, sequencing protocols, robotics, and computational advancements (including base-calling algorithms with quality scores, database developments, and sequence analysis programs). Despite the emergence of high-throughput sequencing platforms, automated Sanger sequencing technology remains useful for many applications. This unit provides background and a description of the "First-Generation" automated DNA sequencing technology. It also includes protocols for using the current Applied Biosystems (ABI) automated DNA sequencing machines. © 2011 by John Wiley & Sons, Inc.
NASA Technical Reports Server (NTRS)
Mankins, John C.
2000-01-01
In FY 2001, NASA will undertake a new research and technology program supporting the goals of human exploration: the Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative (HTCI). The HTCI represents a new strategic approach to exploration technology, in which an emphasis will be placed on identifying and developing technologies for systems and infrastructures that may be common among exploration and commercial development of space objectives. A family of preliminary strategic research and technology (R&T) road maps have been formulated that address "technology for human exploration and development of space (THREADS). These road maps frame and bound the likely content of the HTCL Notional technology themes for the initiative include: (1) space resources development, (2) space utilities and power, (3) habitation and bioastronautics, (4) space assembly, inspection and maintenance, (5) exploration and expeditions, and (6) space transportation. This paper will summarize the results of the THREADS road mapping process and describe the current status and content of the HTCI within that framework. The paper will highlight the space resources development theme within the Initiative and will summarize plans for the coming year.
Extending Ion Engine Technology to NEXT and Beyond
NASA Technical Reports Server (NTRS)
Domonkos, Matthew T.; Patterson, Michael J.; Foster, John E.; Rawlin, Vince K.; Soulas, George C.; Sovey, James S.; Kovaleski, Scott D.; Roman, Robert F.; Williams, George J., Jr.; Lyons, Valerie J. (Technical Monitor)
2002-01-01
Extending ion engine technology beyond the current state-of-the art primary interplanetary electric propulsion system, the 2.3-kW NASA Solar Electric Propulsion Technology and Applications Readiness (NSTAR) system, will require thrusters with improved propellant throughput and total impulse capability. Many of the design choices that culminated in the NSTAR thrusters must be revisited, and their application to next generation ion engine technology must be evaluated. The concept of derating, which was successfully employed in NSTAR, has been applied to the 40 cm NASA Evolutionary Xenon Thruster (NEXT) currently under development at NASA Glenn Research Center (GRC). At 5-kW, NEXT operates with the same average beam current density as NSTAR, and at 10-kW, the peak beam current density is only ten percent greater than NSTAR. The result is that similar Ion optics technology is expected to yield comparable lifetime. Thick-accelerator- grid ion optics are also being tested to realize additional lifetime benefits. A 40-A discharge cathode is being developed for NEXT based on scaling the NSTAR design. Nevertheless, the experiences of the NSTAR ground tests and the thruster on the Deep Space One spacecraft indicate that the discharge cathode wear must be studied experimentally and theoretically to ensure that it meets the lifetime requirements. Although NEXT is in its infancy, investigations have already begun to examine possible modifications to engine design for even higher-power and higher-specific impulse engines. Ion optics using alternate materials such as titanium, graphite, or carbon-carbon composite are currently being investigated due to their low sputter yields at high voltage. To avoid the difficulties encountered using electrodes at high-currents, the use of a microwave-based ion thruster is under investigation for potential high-power ion thruster systems requiring long lifetimes. Additionally, alternative propellants are being considered for applications requiring high-specific impulse (>> 5000 s) and extremely long-life (>> 15,000 hr). Testing requirements make condensable propellants attractive for high-power engines. Although the NSTAR ion engine demonstrated the flight maturity of ion thruster technology, many challenges remain for the development of thrusters with improved propellant throughput and power handling capabilities.
Characterization and comparison of emissions from rudimentary waste disposal technologies
Results from 2011 simulation of burn pit emissions and air curtain incinerator emissions, recent developments in methods for open air sampling, comparison of waste energy technologies, current SERDP programs in this area.
Research and Development of Fully Automatic Alien Smoke Stack and Packaging System
NASA Astrophysics Data System (ADS)
Yang, Xudong; Ge, Qingkuan; Peng, Tao; Zuo, Ping; Dong, Weifu
2017-12-01
The problem of low efficiency of manual sorting packaging for the current tobacco distribution center, which developed a set of safe efficient and automatic type of alien smoke stack and packaging system. The functions of fully automatic alien smoke stack and packaging system adopt PLC control technology, servo control technology, robot technology, image recognition technology and human-computer interaction technology. The characteristics, principles, control process and key technology of the system are discussed in detail. Through the installation and commissioning fully automatic alien smoke stack and packaging system has a good performance and has completed the requirements for shaped cigarette.
Present situation and trend of precision guidance technology and its intelligence
NASA Astrophysics Data System (ADS)
Shang, Zhengguo; Liu, Tiandong
2017-11-01
This paper first introduces the basic concepts of precision guidance technology and artificial intelligence technology. Then gives a brief introduction of intelligent precision guidance technology, and with the help of development of intelligent weapon based on deep learning project in foreign: LRASM missile project, TRACE project, and BLADE project, this paper gives an overview of the current foreign precision guidance technology. Finally, the future development trend of intelligent precision guidance technology is summarized, mainly concentrated in the multi objectives, intelligent classification, weak target detection and recognition, intelligent between complex environment intelligent jamming and multi-source, multi missile cooperative fighting and other aspects.
The Implementation of Advanced Solar Array Technology in Future NASA Missions
NASA Technical Reports Server (NTRS)
Piszczor, Michael F.; Kerslake, Thomas W.; Hoffman, David J.; White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan
2003-01-01
Advanced solar array technology is expected to be critical in achieving the mission goals on many future NASA space flight programs. Current PV cell development programs offer significant potential and performance improvements. However, in order to achieve the performance improvements promised by these devices, new solar array structures must be designed and developed to accommodate these new PV cell technologies. This paper will address the use of advanced solar array technology in future NASA space missions and specifically look at how newer solar cell technologies impact solar array designs and overall power system performance.
Development of an automated ammunition processing system for battlefield use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speaks, D.M.; Chesser, J.B.; Lloyd, P.D.
1995-03-01
The Future Armored Resupply Vehicle (FARV) will be the companion ammunition resupply vehicle to the Advanced Field Artillery System (AFAS). These systems are currently being investigated by the US Army for future acquisition. The FARV will sustain the AFAS with ammunition and fuel and will significantly increase capabilities over current resupply vehicles. Currently ammunition is transferred to field artillery almost entirely by hand. The level of automation to be included into the FARV is still under consideration. At the request of the US Army`s Project Manager, AFAS/FARV, Oak Ridge National Laboratory (ORNL) identified and evaluated various concepts for the automatedmore » upload, processing, storage, and delivery equipment for the FARV. ORNL, working with the sponsor, established basic requirements and assumptions for concept development and the methodology for concept selection. A preliminary concept has been selected, and the associated critical technologies have been identified. ORNL has provided technology demonstrations of many of these critical technologies. A technology demonstrator which incorporates all individual components into a total process demonstration is planned for late FY 1995.« less
[Technological development: a weak link in vaccine innovation in Brazil].
Homma, Akira; Martins, Reinaldo M; Jessouroum, Ellen; Oliva, Otavio
2003-01-01
In very recent years, the federal government has launched important initiatives mean to strengthen science, technology, and innovation in Brazil and thus enhance the results of technological innovation in key areas of the country's economy. Yet these initiatives have not been enough to reduce Brazil's heavy dependence on goods and technology from more developed nations. The article describes the current state of vaccination, production, and technological development of vaccines both internationally and nationally. Some thoughts are also offered on the complexity of vaccine innovation and the various stages whose completion is essential to the whole process of technological development. An analysis is made of the parameters and factors involved in each stage; technical requirements for facilities and equipment; good manufacturing practice guidelines; organizational, infrastructural, and managerial needs; and the lengthy time periods adn high costs entailed in these activities.
Enabling technologies for transition to utilization of space-based resources and operations
NASA Technical Reports Server (NTRS)
Sadin, S. R.; Litty, J. D.
1985-01-01
This article explores a potential scenario for the further development of space infrastructure resources and operations management. It is a scenario that transitions from the current ground-based system to an architecture that is predominantly space-based by exploiting key mission systems in an operational support role. If this view is accurate, an examination of the range of potential infrastructure elements and how they might interact in a maximally productive space-based operations complex is needed, innovative technologies beyond the current Shuttle and Space Station legacy need to be identified, and research programs pursued. Development of technologies within the areas of telerobotics, machine autonomy, human autonomy, in-space manufacturing and construction, propulsion and energy is discussed.
Overview of MEMS/NEMS technology development for space applications at NASA/JPL
NASA Astrophysics Data System (ADS)
George, Thomas
2003-04-01
This paper highlights the current technology development activities of the MEMS Technology Group at JPL. A diverse range of MEMS/NEMS technologies are under development, that are primarily applicable to NASA"s needs in the area of robotic planetary exploration. MEMS/NEMS technologies have obvious advantages for space applications, since they offer the promise of highly capable devices with ultra low mass, size and power consumption. However, the key challenge appears to be in finding efficient means to transition these technologies into "customer" applications. A brief description of this problem is presented along with the Group"s innovative approach to rapidly advance the maturity of technologies via insertion into space missions. Also described are some of the major capabilities of the MEMS Technology Group. A few important examples from among the broad classes of technologies being developed are discussed, these include the "Spider Web Bolometer", High-Performance Miniature Gyroscopes, an Electron Luminescence X-ray Spectrometer, a MEMS-based "Knudsen" Thermal Transpiration pump, MEMS Inchworm Actuators, and Nanowire-based Biological/Chemical Sensors.
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Nichols, Kelvin F.; Witherspoon, Keith R.
2006-01-01
To date very little effort has been made to provide interoperability between various space agency projects. To effectively get to the Moon and beyond systems must interoperate. To provide interoperability, standardization and registries of various technologies will be required. These registries will be created as they relate to space flight. With the new NASA Moon/Mars initiative, a requirement to standardize and control the naming conventions of very disparate systems and technologies is emerging. The need to provide numbering to the many processes, schemas, vehicles, robots, space suits and technologies (e.g. versions), to name a few, in the highly complex Constellation initiative is imperative. The number of corporations, developer personnel, system interfaces, people interfaces will require standardization and registries on a scale not currently envisioned. It would only take one exception (stove piped system development) to weaken, if not, destroy interoperability. To start, a standardized registry process must be defined that allows many differing engineers, organizations and operators the ability to easily access disparate registry information across numerous technological and scientific disciplines. Once registries are standardized the need to provide registry support in terms of setup and operations, resolution of conflicts between registries and other issues will need to be addressed. Registries should not be confused with repositories. No end user data is "stored" in a registry nor is it a configuration control system. Once a registry standard is created and approved, the technologies that should be registered must be identified and prioritized. In this paper, we will identify and define a registry process that is compatible with the Constellation initiative and other non related space activities and organizations. We will then identify and define the various technologies that should use a registry to provide interoperability. The first set of technologies will be those that are currently in need of expansion namely the assignment of satellite designations and the process which controls assignments. Second, we will analyze the technologies currently standardized under the Consultative Committee for Space Data Systems (CCSDS) banner. Third, we will analyze the current CCSDS working group and Birds of a Feather (BoF) activities to ascertain registry requirements. Lastly, we will identify technologies that are either currently under the auspices of another standards body or technologies that are currently not standardized. For activities one through three, we will provide the analysis by either discipline or technology with rationale, identification and brief description of requirements and precedence. For activity four, we will provide a list of current standards bodies e.g. IETF and a list of potential candidates.
NASA Activities as they Relate to Microwave Technology for Aerospace Communications Systems
NASA Technical Reports Server (NTRS)
Miranda, Felix A.
2011-01-01
This presentation discusses current NASA activities and plans as they relate to microwave technology for aerospace communications. The presentations discusses some examples of the aforementioned technology within the context of the existing and future communications architectures and technology development roadmaps. Examples of the evolution of key technology from idea to deployment are provided as well as the challenges that lay ahead regarding advancing microwave technology to ensure that future NASA missions are not constrained by lack of communication or navigation capabilities. The presentation closes with some examples of emerging ongoing opportunities for establishing collaborative efforts between NASA, Industry, and Academia to encourage the development, demonstration and insertion of communications technology in pertinent aerospace systems.
Layered Metals Fabrication Technology Development for Support of Lunar Exploration at NASA/MSFC
NASA Technical Reports Server (NTRS)
Cooper, Kenneth G.; Good, James E.; Gilley, Scott D.
2007-01-01
NASA's human exploration initiative poses great opportunity and risk for missions to the Moon and beyond. In support of these missions, engineers and scientists at the Marshall Space Flight Center are developing technologies for ground-based and in-situ fabrication capabilities utilizing provisioned and locally-refined materials. Development efforts are pushing state-of-the art fabrication technologies to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, launch vehicle components and crew exercise equipment. This paper addresses current fabrication technologies relative to meeting targeted capabilities, near term advancement goals, and process certification of fabrication methods.
Technology Development for Cosmic Microwave Background Cosmology
NASA Astrophysics Data System (ADS)
Munson, Charles D.
The Cosmic Microwave Background (CMB) offers a unique window into the early universe by probing thermal radiation remaining from the big bang. Due to its low temperature and bright foregrounds, its thorough characterization requires technological advancement beyond the current state-of-the-art. In this thesis, I present the development and fabrication of novel metamaterial silicon optics to improve the sensitivity of current and future CMB telescopes. By machining subwavelength features into the silicon surfaces, traditional antireflection coatings can be replaced by all-silicon metamaterials that significantly reduce reflections over previous approaches. I discuss the design of these structured surfaces and the design and construction of a sophisticated fabrication facility necessary to implement this technology on large diameter (30+ cm) lenses for the Atacama Cosmology Telescope Polarization project (ACTPol). I then apply this metamaterial technology to the development of improved free-space filters for millimeter and sub-millimeter wavelength imaging (focusing specifically on blocking infrared radiation, necessary for current cryogenic detector systems). This produces a highly effective infrared-blocking filter, blocking over 99% of the incident power from a 300 K blackbody while maintaining transmission of better than 99% in a target CMB observing band (between 70 and 170 GHz). I conclude with a discussion of the development of a real-space simulation framework to assist in better understanding current CMB results and forecasting for future experiments. By taking a CMB realization and adding to it accurate real-space modeling of the Sunyaev-Zel'dovich effect and weak lensing distortions (introduced by galaxy clusters), a better understanding of the impacts of large scale structure on the CMB can be obtained.
Technology Development for Cosmic Microwave Background Cosmology
NASA Astrophysics Data System (ADS)
Munson, Charles D.
2017-05-01
The Cosmic Microwave Background (CMB) offers a unique window into the early universe by probing thermal radiation remaining from the big bang. Due to its low temperature and bright foregrounds, its thorough characterization requires technological advancement beyond the current state-of-the-art. In this thesis, I present the development and fabrication of novel metamaterial silicon optics to improve the sensitivity of current and future CMB telescopes. By machining subwavelength features into the silicon surfaces, traditional antireflection coatings can be replaced by all-silicon metamaterials that significantly reduce reflections over previous approaches. I discuss the design of these structured surfaces and the design and construction of a sophisticated fabrication facility necessary to implement this technology on large diameter (30+ cm) lenses for the Atacama Cosmology Telescope Polarization project (ACTPol). I then apply this metamaterial technology to the development of improved free-space filters for millimeter and sub-millimeter wavelength imaging (focusing specifically on blocking infrared radiation, necessary for current cryogenic detector systems). This produces a highly effective infrared-blocking filter, blocking over 99% of the incident power from a 300 K blackbody while maintaining transmission of better than 99% in a target CMB observing band (between 70 and 170 GHz). I conclude with a discussion of the development of a real-space simulation framework to assist in better understanding current CMB results and forecasting for future experiments. By taking a CMB realization and adding to it accurate real-space modeling of the Sunyaev-Zel'dovich effect and weak lensing distortions (introduced by galaxy clusters), a better understanding of the impacts of large scale structure on the CMB can be obtained.
Aeroassist Technology Planning for Exploration
NASA Technical Reports Server (NTRS)
Munk, Michelle M.; Powell, Richard W.
2000-01-01
Now that the International Space Station is undergoing assembly, NASA is strategizing about the next logical exploration strategy for robotic missions and the next destination for humans. NASA's current efforts are in developing technologies that will both aid the robotic exploration strategy and make human flight to other celestial bodies both safe and affordable. One of these enabling technologies for future robotic and human exploration missions is aeroassist. This paper will (1) define aeroassist, (2) explain the benefits and uses of aeroassist, and (3) describe a method, currently used by the NASA Aeroassist Working Group, by which widely geographically distributed teams can assemble, present, use, and archive technology information.
[Current advances and future prospects of genome editing technology in the field of biomedicine.
Sakuma, Tetsushi
Genome editing technology can alter the genomic sequence at will, contributing the creation of cellular and animal models of human diseases including hereditary disorders and cancers, and the generation of the mutation-corrected human induced pluripotent stem cells for ex vivo regenerative medicine. In addition, novel approaches such as drug development using genome-wide CRISPR screening and cancer suppression using epigenome editing technology, which can change the epigenetic modifications in a site-specific manner, have also been conducted. In this article, I summarize the current advances and future prospects of genome editing technology in the field of biomedicine.
NASA Astrophysics Data System (ADS)
Olmstead, Dean A.; Schertler, Ronald R.; Randall, Laura A.
1992-03-01
The Advanced Communications Technology Satellite (ACTS), now under development and scheduled for launch in early 1993, is the current focus of NASA's commercial communications satellite program. The full power of the key technologies on ACTS can only be realized if industry assumes an active role in the conduct of experiments and demonstrations. This paper discusses the current market-driven rationale behind the ACTS Experiments Program activities aimed at getting industry involved - a rationale that addresses industry concerns and responds to industry inputs.
ERIC Educational Resources Information Center
Khodabandelou, Rouholllah; That, Junny Ei Mon; Anne A/P S. Selvaraju, Melinda; Ken, Tan Yan; Kewen, Zhu; Yan, Zhang; Ning, Tan Yan
2016-01-01
The abundance of technology in recent years has contributed to development in the societies, industries, and education. It is proven from the current trend of technology such as the emergence and rise of smart phones, tablets, laptops and wireless internet connection that the present and future world will be heralded by technology. The integration…
ERIC Educational Resources Information Center
Fisher, Donna Marie
2013-01-01
Technology leadership by campus administrators is crucial for the effective integration of technology in the classroom; however, a comprehensive review of the existing research reveals a gap in this field. Scholarly research helps inform educational practice and contributes to the development of standards that ensure current and future school…
NASA Technical Reports Server (NTRS)
Haggerty, J. J.
1984-01-01
A pictorial resume that underlines the challenging nature of NASA programs and their extraordinary demands for technological input, is presented. Also, NASA's current mainline programs, which require development of new technology, are given. A representative sampling of spinoff products and processes resulting from technology utiliization, or secondary application, and the mechanisms NASA employs to stimulate technology utilization are provided. Contact sources for further information are presented.
NASA Astrophysics Data System (ADS)
Cook, Stephen; Hueter, Uwe
2003-08-01
NASA's Integrated Space Transportation Plan (ISTP) calls for investments in Space Shuttle safety upgrades, second generation Reusable Launch Vehicle (RLV) advanced development and third generation RLV and in-space research and technology. NASA's third generation launch systems are to be fully reusable and operation by 2025. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current systems. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.
Proceedings of a Conference on Telecommunication Technologies, Networkings and Libraries
NASA Astrophysics Data System (ADS)
Knight, N. K.
1981-12-01
Current and developing technologies for digital transmission of image data likely to have an impact on the operations of libraries and information centers or provide support for information networking are reviewed. Technologies reviewed include slow scan television, teleconferencing, and videodisc technology and standards development for computer network interconnection through hardware and software, particularly packet switched networks computer network protocols for library and information service applications, the structure of a national bibliographic telecommunications network; and the major policy issues involved in the regulation or deregulation of the common communications carriers industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thekdi, Arvind; Nimbalkar, Sachin U.
2015-01-01
The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.
International Conference on Advances in Radiation Oncology (ICARO): outcomes of an IAEA meeting.
Salminen, Eeva K; Kiel, Krystyna; Ibbott, Geoffrey S; Joiner, Michael C; Rosenblatt, Eduardo; Zubizarreta, Eduardo; Wondergem, Jan; Meghzifene, Ahmed
2011-02-04
The IAEA held the International Conference on Advances in Radiation Oncology (ICARO) in Vienna on 27-29 April 2009. The Conference dealt with the issues and requirements posed by the transition from conventional radiotherapy to advanced modern technologies, including staffing, training, treatment planning and delivery, quality assurance (QA) and the optimal use of available resources. The current role of advanced technologies (defined as 3-dimensional and/or image guided treatment with photons or particles) in current clinical practice and future scenarios were discussed.ICARO was organized by the IAEA at the request of the Member States and co-sponsored and supported by other international organizations to assess advances in technologies in radiation oncology in the face of economic challenges that most countries confront. Participants submitted research contributions, which were reviewed by a scientific committee and presented via 46 lectures and 103 posters. There were 327 participants from 70 Member States as well as participants from industry and government. The ICARO meeting provided an independent forum for the interaction of participants from developed and developing countries on current and developing issues related to radiation oncology.
Applying Formal Methods to NASA Projects: Transition from Research to Practice
NASA Technical Reports Server (NTRS)
Othon, Bill
2009-01-01
NASA project managers attempt to manage risk by relying on mature, well-understood process and technology when designing spacecraft. In the case of crewed systems, the margin for error is even tighter and leads to risk aversion. But as we look to future missions to the Moon and Mars, the complexity of the systems will increase as the spacecraft and crew work together with less reliance on Earth-based support. NASA will be forced to look for new ways to do business. Formal methods technologies can help NASA develop complex but cost effective spacecraft in many domains, including requirements and design, software development and inspection, and verification and validation of vehicle subsystems. To realize these gains, the technologies must be matured and field-tested so that they are proven when needed. During this discussion, current activities used to evaluate FM technologies for Orion spacecraft design will be reviewed. Also, suggestions will be made to demonstrate value to current designers, and mature the technology for eventual use in safety-critical NASA missions.
MEMS Deformable Mirror Technology Development for Space-Based Exoplanet Detection
NASA Astrophysics Data System (ADS)
Bierden, Paul; Cornelissen, S.; Ryan, P.
2014-01-01
In the search for earth-like extrasolar planets that has become an important objective for NASA, a critical technology development requirement is to advance deformable mirror (DM) technology. High-actuator-count DMs are critical components for nearly all proposed coronagraph instrument concepts. The science case for exoplanet imaging is strong, and rapid recent advances in test beds with DMs made using microelectromechanical system (MEMS) technology have motivated a number of compelling mission concepts that set technical specifications for their use as wavefront controllers. This research will advance the technology readiness of the MEMS DMs components that are currently at the forefront of the field, and the project will be led by the manufacturer of those components, Boston Micromachines Corporation (BMC). The project aims to demonstrate basic functionality and performance of this key component in critical test environments and in simulated operational environments, while establishing model-based predictions of its performance relative to launch and space environments. Presented will be the current status of the project with modeling and initial test results.
A Survey of Geosensor Networks: Advances in Dynamic Environmental Monitoring
Nittel, Silvia
2009-01-01
In the recent decade, several technology trends have influenced the field of geosciences in significant ways. The first trend is the more readily available technology of ubiquitous wireless communication networks and progress in the development of low-power, short-range radio-based communication networks, the miniaturization of computing and storage platforms as well as the development of novel microsensors and sensor materials. All three trends have changed the type of dynamic environmental phenomena that can be detected, monitored and reacted to. Another important aspect is the real-time data delivery of novel platforms today. In this paper, I will survey the field of geosensor networks, and mainly focus on the technology of small-scale geosensor networks, example applications and their feasibility and lessons learnt as well as the current research questions posed by using this technology today. Furthermore, my objective is to investigate how this technology can be embedded in the current landscape of intelligent sensor platforms in the geosciences and identify its place and purpose. PMID:22346721
Second program on energy research and technologies
NASA Technical Reports Server (NTRS)
1982-01-01
The second major energy research and development program is described. Renewable and nonrenewable energy resources are presented which include nuclear technology and future energy sources, like fusion. The current status and outlook for future progress are given.
REMOTE SENSING TECHNOLOGIES APPLICATIONS RESEARCH
Remote sensing technologies applications research supports the ORD Landscape Sciences Program (LSP) in two separate areas: operational remote sensing, and remote sensing research and development. Operational remote sensing is provided to the LSP through the use of current and t...
ERIC Educational Resources Information Center
Thomas, Lewis
1981-01-01
Presents a viewpoint concerning the impact of recent scientific advances on society. Discusses biological discoveries, space exploration, computer technology, development of new astronomical theories, the behavioral sciences, and basic research. Challenges to keeping science current with technological advancement are also discussed. (DS)
NASA Astrophysics Data System (ADS)
Zhang, Jing; Zhang, Jia; Du, Xiangyang; Kang, Hou; Qiao, Minjuan
2017-11-01
Due to the rapid development of human economy and society, the resulting ecological problems are becoming more and more prominent, and the dynamic monitoring of the various elements in the ecosystem has become the focus of the current research. For the complex structure and function of the ecological environment monitoring, advanced technical means should be adopted. With the development of spatial information technology, the ecological monitoring technology based on GIS and RS is becoming more and more perfect, and spatial analysis will play an important role in the field of environmental protection. Based on the GIS and RS technology, this paper analyzes the general centralized ecological monitoring model, and makes an objective analysis of the current ecological monitoring trend of China. These are important for the protection and management of ecological environment in China.
Operational efficiency subpanel advanced mission control
NASA Technical Reports Server (NTRS)
Friedland, Peter
1990-01-01
Herein, the term mission control will be taken quite broadly to include both ground and space based operations as well as the information infrastructure necessary to support such operations. Three major technology areas related to advanced mission control are examined: (1) Intelligent Assistance for Ground-Based Mission Controllers and Space-Based Crews; (2) Autonomous Onboard Monitoring, Control and Fault Detection Isolation and Reconfiguration; and (3) Dynamic Corporate Memory Acquired, Maintained, and Utilized During the Entire Vehicle Life Cycle. The current state of the art space operations are surveyed both within NASA and externally for each of the three technology areas and major objectives are discussed from a user point of view for technology development. Ongoing NASA and other governmental programs are described. An analysis of major research issues and current holes in the program are provided. Several recommendations are presented for enhancing the technology development and insertion process to create advanced mission control environments.
DNA vaccines in veterinary use
Redding, Laurel; Werner, David B
2015-01-01
DNA vaccines represent a new frontier in vaccine technology. One important application of this technology is in the veterinary arena. DNA vaccines have already gained a foothold in certain fields of veterinary medicine. However, several important questions must be addressed when developing DNA vaccines for animals, including whether or not the vaccine is efficacious and cost effective compared with currently available options. Another important question to consider is how to apply this developing technology in a wide range of different situations, from the domestic pet to individual fish in fisheries with several thousand animals, to wildlife programs for disease control. In some cases, DNA vaccines represent an interesting option for vaccination, while in others, currently available options are sufficient. This review will examine a number of diseases of veterinary importance and the progress being made in DNA vaccine technology relevant to these diseases, and we compare these with the conventional treatment options available. PMID:19722897
Space Transportation Propulsion Technology Symposium. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1991-01-01
The Space Transportation Propulsion Technology Symposium was held to provide a forum for communication within the propulsion within the propulsion technology developer and user communities. Emphasis was placed on propulsion requirements and initiatives to support current, next generation, and future space transportation systems, with the primary objectives of discerning whether proposed designs truly meet future transportation needs and identifying possible technology gaps, overlaps, and other programmatic deficiencies. Key space transportation propulsion issues were addressed through four panels with government, industry, and academia membership. The panels focused on systems engineering and integration; development, manufacturing and certification; operational efficiency; and program development and cultural issues.
A review of electrostatic monitoring technology: The state of the art and future research directions
NASA Astrophysics Data System (ADS)
Wen, Zhenhua; Hou, Junxing; Atkin, Jason
2017-10-01
Electrostatic monitoring technology is a useful tool for monitoring and detecting component faults and degradation, which is necessary for system health management. It encompasses three key research areas: sensor technology; signal detection, processing and feature extraction; and verification experimentation. It has received considerable recent attention for condition monitoring due to its ability to provide warning information and non-obstructive measurements on-line. A number of papers in recent years have covered specific aspects of the technology, including sensor design optimization, sensor characteristic analysis, signal de-noising and practical applications of the technology. This paper provides a review of the recent research and of the development of electrostatic monitoring technology, with a primary emphasis on its application for the aero-engine gas path. The paper also presents a summary of some of the current applications of electrostatic monitoring technology in other industries, before concluding with a brief discussion of the current research situation and possible future challenges and research gaps in this field. The aim of this paper is to promote further research into this promising technology by increasing awareness of both the potential benefits of the technology and the current research gaps.
Way Forward for High Performance Payload Processing Development
NASA Astrophysics Data System (ADS)
Notebaert, Olivier; Franklin, John; Lefftz, Vincent; Moreno, Jose; Patte, Mathieu; Syed, Mohsin; Wagner, Arnaud
2012-08-01
Payload processing is facing technological challenges due to the large increase of performance requirements of future scientific, observation and telecom missions as well as the future instruments technologies capturing much larger amount of data. For several years, with the perspective of higher performance together with the planned obsolescence of solutions covering the current needs, ESA and the European space industry has been developing several technology solutions. Silicon technologies, radiation mitigation techniques and innovative functional architectures are developed with the goal of designing future space qualified processing devices with a much higher level of performance than today. The fast growing commercial market application have developed very attractive technologies but which are not fully suitable with respect to their tolerance to space environment. Without the financial capacity to explore and develop all possible technology paths, a specific and global approach is required to cover the future mission needs and their necessary performance targets with effectiveness.The next sections describe main issues and priorities and provides further detailed relevant for this approach covering the high performance processing technology.
The integration of technology into the middle and high school science curriculum
NASA Astrophysics Data System (ADS)
Corbin, Jan Frederic
This study was to determine the level of technology implementation into the middle and high school science curriculum by beginning teachers. Research was conducted in two phases. The first phase was a survey that provided demographic data and determined the Level of Technology Implementation, Personal Computer Use, and Current Instructional Practice. Dr. Christopher Moersch developed the survey, Level of Technology Implementation (LoTi(c) ). The data provided insight into what technology teachers use, barriers associated with technology integration, teacher training and development, and technical support. Follow-up interviews were conducted to gather additional qualitative data and information. Analysis of the data found beginning teachers have not received enough technology training to integrate technology seamlessly into the science curriculum. Conclusions cite the need for more technology courses during preservice education, more time during the day for beginning teachers to learn to use the technology available at their schools, consolidation of inservice staff development offerings, and more technical support staff readily available. Recommendations were made to expand the study group to all science teachers, assess the technology capacity of all schools, and conduct needs assessment of inservice staff development.
The Energy Puzzle Between the United States and China
2013-03-01
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM...development, energy growth and developments in energy technology. It concludes with the best case scenario of the two countries building a trust that...development, energy growth and developments in energy technology. It concludes with the best case scenario of the two countries building a trust that will
MR-guided focused ultrasound surgery, present and future
Schlesinger, David; Benedict, Stanley; Diederich, Chris; Gedroyc, Wladyslaw; Klibanov, Alexander; Larner, James
2013-01-01
MR-guided focused ultrasound surgery (MRgFUS) is a quickly developing technology with potential applications across a spectrum of indications traditionally within the domain of radiation oncology. Especially for applications where focal treatment is the preferred technique (for example, radiosurgery), MRgFUS has the potential to be a disruptive technology that could shift traditional patterns of care. While currently cleared in the United States for the noninvasive treatment of uterine fibroids and bone metastases, a wide range of clinical trials are currently underway, and the number of publications describing advances in MRgFUS is increasing. However, for MRgFUS to make the transition from a research curiosity to a clinical standard of care, a variety of challenges, technical, financial, clinical, and practical, must be overcome. This installment of the Vision 20/20 series examines the current status of MRgFUS, focusing on the hurdles the technology faces before it can cross over from a research technique to a standard fixture in the clinic. It then reviews current and near-term technical developments which may overcome these hurdles and allow MRgFUS to break through into clinical practice. PMID:23927296
Physics of the Cosmos Program Annual Technology Report
NASA Technical Reports Server (NTRS)
Pham, Bruce Thai; Cardiff, Ann H.
2015-01-01
What's in this Report? What's New? This fifth Program Annual Technology Report (PATR) summarizes the Programs technology development activities for fiscal year (FY) 2015. The PATR serves four purposes.1. Summarize the technology gaps identified by the astrophysics community;2. Present the results of this years technology gap prioritization by the PCOS Technology Management Board (TMB);3. Report on newly funded PCOS Strategic Astrophysics Technology (SAT) projects; and4. Detail progress, current status, and activities planned for the coming year for all technologies supported by PCOS Supporting Research and Technology (SRT) funding in FY 2015. .
Biosensors for Sustainable Food Engineering: Challenges and Perspectives.
Neethirajan, Suresh; Ragavan, Vasanth; Weng, Xuan; Chand, Rohit
2018-03-12
Current food production faces tremendous challenges from growing human population, maintaining clean resources and food qualities, and protecting climate and environment. Food sustainability is mostly a cooperative effort resulting in technology development supported by both governments and enterprises. Multiple attempts have been promoted in tackling challenges and enhancing drivers in food production. Biosensors and biosensing technologies with their applications, are being widely applied to tackling top challenges in food production and its sustainability. Consequently, a growing demand in biosensing technologies exists in food sustainability. Microfluidics represents a technological system integrating multiple technologies. Nanomaterials, with its technology in biosensing, is thought to be the most promising tool in dealing with health, energy, and environmental issues closely related to world populations. The demand of point of care (POC) technologies in this area focus on rapid, simple, accurate, portable, and low-cost analytical instruments. This review provides current viewpoints from the literature on biosensing in food production, food processing, safety and security, food packaging and supply chain, food waste processing, food quality assurance, and food engineering. The current understanding of progress, solution, and future challenges, as well as the commercialization of biosensors are summarized.
Nuclear Reactors and Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cason, D.L.; Hicks, S.C.
1992-01-01
This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests inmore » NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.« less
Technology Transfer and the Civil Space Program. Volume 2: Workshop proceedings
NASA Technical Reports Server (NTRS)
1992-01-01
The objectives were to (1) provide a top-level review of the Integrated Technology Plan (ITP) and current civil space technology plans, including planning processes and technologies; (2) discuss and assess technology transfer (TT) experiences across a wide range of participants; (3) identify alternate categories/strategies for TT and define the objectives of transfer processes in each case; (4) identify the roles of various government 'stakeholders', aerospace industry, industries at large, and universities in civil space technology research, development, demonstration, and transfer; (5) identify potential barriers and/or opportunities to successful civil space TT; (6) identify specific needs for innovations in policy, programs, and/or procedures to facilitate TT; and (7) develop a plan of attack for the development of a workshop report. Papers from the workshop are presented.
Current Progress of Capacitive Deionization for Removal of Pollutant Ions
NASA Astrophysics Data System (ADS)
Gaikwad, Mahendra S.; Balomajumder, Chandrajit
2016-08-01
A mini review of a recently developing water purification technology capacitive deionization (CDI) applied for removal of pollutant ions is provided. The current progress of CDI for removal of different pollutant ions such as arsenic, fluoride, boron, phosphate, lithium, copper, cadmium, ferric, and nitrate ions is presented. This paper aims at motivating new research opportunities in capacitive deionization technology for removal of pollutant ions from polluted water.
[How to integrate humanization and technology in nursing training].
Meyer, Dagmar Estermann
2002-01-01
This paper discusses the current incorporation of the subject of humanization of care in the current context of Brazilian nursing. The relation between nursing and technology is approached, in this study, from a historical perspective. The study also develops the proposition of "human re-signification", having as reference the concept of Cyborg, considering the way this concept has been employed in the contemporary cultural and feminist theoretical framework.
Current Issues and Trends in Multidimensional Sensing Technologies for Digital Media
NASA Astrophysics Data System (ADS)
Nagata, Noriko; Ohki, Hidehiro; Kato, Kunihito; Koshimizu, Hiroyasu; Sagawa, Ryusuke; Fujiwara, Takayuki; Yamashita, Atsushi; Hashimoto, Manabu
Multidimensional sensing (MDS) technologies have numerous applications in the field of digital media, including the development of audio and visual equipment for human-computer interaction (HCI) and manufacture of data storage devices; furthermore, MDS finds applications in the fields of medicine and marketing, i.e., in e-marketing and the development of diagnosis equipment.
ERIC Educational Resources Information Center
Murdock, Alan K.
2017-01-01
Forsyth Technical Community College (FTCC) face a shortage of funding to meet the demands of students, faculty, staff and businesses. Through this practitioner research, the utilization of the college's current customer relationship management (CRM) database advanced. By leveraging technology, the researcher assisted the college in meeting the…
ERIC Educational Resources Information Center
Spiro, Louis M.; Campbell, Jill F.
The development and use of a campus-based computerized faculty staffing model is described. In addition to considering market demands for current and proposed programs, decisionmakers need to consider how program development, modification, and elimination affect the total college faculty resource base. The application of computer technology,…
Whole Earth Security: A Geopolitics of Peace. Worldwatch Paper 55.
ERIC Educational Resources Information Center
Deudney, Daniel
The current use and potential of technology for achieving security and peace are explored. Section 1 traces the use of technology for warfare through the mastery of ocean-going sailing, the maturation of the airplane, and the development of nuclear weapons. This section suggests that these developments have led to a loss rather than an increase in…
ERIC Educational Resources Information Center
Baran, Evrim
2016-01-01
Higher education environments need further evidence of the impact of faculty technology mentoring (FTM) models on graduate students to promote and sustain these programs as well as develop policies related to their support. To address this need, the current study investigated the impact of a university-wide FTM program on participating graduate…
Adapting the Media and Technology Usage and Attitudes Scale to Turkish
ERIC Educational Resources Information Center
Özgür, Hasan
2016-01-01
Due to the requirement of a current, valid, and reliable assessment instrument for determining usage frequencies of technology-based media and the attitudes towards these, this study intends to determine the validity and reliability of the Media and Technology Usage and Attitudes Scale, developed by researchers from California State University,…
Current and Emerging Post-Fukushima Technologies, and ...
Report Information on technologies reported by several Japanese government agencies such as the Japan Atomic Energy Agency (JAEA), the Japanese Ministry of the Environment (MOE) and the National Institute for Environmental Science (NIES), together with academic institutions and industry have been summarized and are compared to recently developed, deployed and available technologies in the United States.
Technology Use and Mathematics Teaching: Teacher Change as Discursive Identity Work
ERIC Educational Resources Information Center
Chronaki, Anna; Matos, Anastasios
2014-01-01
Teacher change towards developing competences for technology use in mathematics teaching has been the focus of current educational reforms worldwide. However, a considerable amount of research denotes the extent to which teachers resist a full integration of technology in mathematics classrooms. The present paper is based on an ethnographic study…
Music Teacher Perceptions of a Model of Technology Training and Support in Virginia
ERIC Educational Resources Information Center
Welch, Lee Arthur
2013-01-01
A plethora of technology resources currently exists for the music classroom of the twenty-first century, including digital audio and video, music software, electronic instruments, Web 2.0 tools and more. Research shows a strong need for professional development for teachers to properly implement and integrate instructional technology resources…
Technologies for Single-Cell Isolation
Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter
2015-01-01
The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field. PMID:26213926
Technologies for Single-Cell Isolation.
Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter
2015-07-24
The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.
Diseases and Molecular Diagnostics: A Step Closer to Precision Medicine.
Dwivedi, Shailendra; Purohit, Purvi; Misra, Radhieka; Pareek, Puneet; Goel, Apul; Khattri, Sanjay; Pant, Kamlesh Kumar; Misra, Sanjeev; Sharma, Praveen
2017-10-01
The current advent of molecular technologies together with a multidisciplinary interplay of several fields led to the development of genomics, which concentrates on the detection of pathogenic events at the genome level. The structural and functional genomics approaches have now pinpointed the technical challenge in the exploration of disease-related genes and the recognition of their structural alterations or elucidation of gene function. Various promising technologies and diagnostic applications of structural genomics are currently preparing a large database of disease-genes, genetic alterations etc., by mutation scanning and DNA chip technology. Further the functional genomics also exploring the expression genetics (hybridization-, PCR- and sequence-based technologies), two-hybrid technology, next generation sequencing with Bioinformatics and computational biology. Advances in microarray "chip" technology as microarrays have allowed the parallel analysis of gene expression patterns of thousands of genes simultaneously. Sequence information collected from the genomes of many individuals is leading to the rapid discovery of single nucleotide polymorphisms or SNPs. Further advances of genetic engineering have also revolutionized immunoassay biotechnology via engineering of antibody-encoding genes and the phage display technology. The Biotechnology plays an important role in the development of diagnostic assays in response to an outbreak or critical disease response need. However, there is also need to pinpoint various obstacles and issues related to the commercialization and widespread dispersal of genetic knowledge derived from the exploitation of the biotechnology industry and the development and marketing of diagnostic services. Implementation of genetic criteria for patient selection and individual assessment of the risks and benefits of treatment emerges as a major challenge to the pharmaceutical industry. Thus this field is revolutionizing current era and further it may open new vistas in the field of disease management.
CRISPR technologies for bacterial systems: Current achievements and future directions.
Choi, Kyeong Rok; Lee, Sang Yup
2016-11-15
Throughout the decades of its history, the advances in bacteria-based bio-industries have coincided with great leaps in strain engineering technologies. Recently unveiled clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) systems are now revolutionizing biotechnology as well as biology. Diverse technologies have been derived from CRISPR/Cas systems in bacteria, yet the applications unfortunately have not been actively employed in bacteria as extensively as in eukaryotic organisms. A recent trend of engineering less explored strains in industrial microbiology-metabolic engineering, synthetic biology, and other related disciplines-is demanding facile yet robust tools, and various CRISPR technologies have potential to cater to the demands. Here, we briefly review the science in CRISPR/Cas systems and the milestone inventions that enabled numerous CRISPR technologies. Next, we describe CRISPR/Cas-derived technologies for bacterial strain development, including genome editing and gene expression regulation applications. Then, other CRISPR technologies possessing great potential for industrial applications are described, including typing and tracking of bacterial strains, virome identification, vaccination of bacteria, and advanced antimicrobial approaches. For each application, we note our suggestions for additional improvements as well. In the same context, replication of CRISPR/Cas-based chromosome imaging technologies developed originally in eukaryotic systems is introduced with its potential impact on studying bacterial chromosomal dynamics. Also, the current patent status of CRISPR technologies is reviewed. Finally, we provide some insights to the future of CRISPR technologies for bacterial systems by proposing complementary techniques to be developed for the use of CRISPR technologies in even wider range of applications. Copyright © 2016. Published by Elsevier Inc.
Scientific investigations planned for the Lidar in-Space Technology Experiment (LITE)
NASA Technical Reports Server (NTRS)
Mccormick, M. P.; Winker, D. M.; Browell, E. V.; Coakley, J. A.; Gardner, C. S.; Hoff, R. M.; Kent, G. S.; Melfi, S. H.; Menzies, R. T.; Platt, C. M. R.
1993-01-01
The Lidar In-Space Technology Experiment (LITE) is being developed by NASA/Langley Research Center for a series of flights on the space shuttle beginning in 1994. Employing a three-wavelength Nd:YAG laser and a 1-m-diameter telescope, the system is a test-bed for the development of technology required for future operational spaceborne lidars. The system has been designed to observe clouds, tropospheric and stratospheric aerosols, characteristics of the planetary boundary layer, and stratospheric density and temperature perturbations with much greater resolution than is available from current orbiting sensors. In addition to providing unique datasets on these phenomena, the data obtained will be useful in improving retrieval algorithms currently in use. Observations of clouds and the planetary boundary layer will aid in the development of global climate model (GCM) parameterizations. This article briefly describes the LITE program and discusses the types of scientific investigations planned for the first flight.
Analysis to develop a program for energy-integrated farm systems
NASA Astrophysics Data System (ADS)
Eakin, D. E.; Clark, M. A.; Inaba, L. K.; Johnson, K. I.
1981-09-01
A program to use renewable energy resources and possibly develop decentralization of energy systems for agriculture is discussed. The program's objective is determined by: (1) an analysis of the technologies that could be utilized to transform renewable farm resources to energy by the year 2000, (2) the quantity of renewable farm resources that are available, and (3) current energy-use patterns. Individual research, development, and demonstration projects are fit into a national program of energy-integrated farm systems on the basis of market need, conversion potential, technological opportunities, and acceptability. Quantification of these factors for the purpose of establishing program guidelines is conducted using the following four precepts: (1) market need is identified by current use of energy for agricultural production; (2) conversion potential is determined by the availability of renewable resources; and (3) technological opportunities are determined by the state-of-the-art methods, techniques, and processes that can convert renewable resources into farm energy.
NASA Technical Reports Server (NTRS)
Lawing, P. L.
1985-01-01
A method of constructing airfoils by inscribing pressure channels on the face of opposing plates, bonding them together to form one plate with integral channels, and contour machining this plate to form an airfoil model is described. The research and development program to develop the bonding technology is described as well as the construction and testing of an airfoil model. Sample aerodynamic data sets are presented and discussed. Also, work currently under way to produce thin airfoils with camber is presented. Samples of the aft section of a 6 percent airfoil with complete pressure instrumentation including the trailing edge are pictured and described. This technique is particularly useful in fabricating models for transonic cryogenic testing, but it should find application in a wide ange of model construction projects, as well as the fabrication of fuel injectors, space hardware, and other applications requiring advanced bonding technology and intricate fluid passages.
Prototyping the HPDP Chip on STM 65 NM Process
NASA Astrophysics Data System (ADS)
Papadas, C.; Dramitinos, G.; Syed, M.; Helfers, T.; Dedes, G.; Schoellkopf, J.-P.; Dugoujon, L.
2011-08-01
Currently Astrium GmbH is involved in the of the High Performance Data Processor (HPDP) development programme for telecommunication applications under a DLR contract. The HPDP project targets the implementation of the commercially available reconfigurable array processor IP (XPP from the company PACT XPP Technologies) in a radiation hardened technology.In the current complementary development phase funded under the Greek Industry Incentive scheme, it is planned to prototype the HPDP chip in commercial STM 65 nm technology. In addition it is also planned to utilise the preliminary radiation hardened components of this library wherever possible.This abstract gives an overview of the HPDP chip architecture, the basic details of the STM 65 nm process and the design flow foreseen for the prototyping. The paper will discuss the development and integration issues involved in using the STM 65 nm process (also including the available preliminary radiation hardened components) for designs targeted to be used in space applications.
Advances in Degradable Embolic Microspheres: A State of the Art Review
Doucet, Jensen; Kiri, Lauren; O’Connell, Kathleen; Kehoe, Sharon; Lewandowski, Robert J.; Liu, David M.; Abraham, Robert J.; Boyd, Daniel
2018-01-01
Considerable efforts have been placed on the development of degradable microspheres for use in transarterial embolization indications. Using the guidance of the U.S. Food and Drug Administration (FDA) special controls document for the preclinical evaluation of vascular embolization devices, this review consolidates all relevant data pertaining to novel degradable microsphere technologies for bland embolization into a single reference. This review emphasizes intended use, chemical composition, degradative mechanisms, and pre-clinical safety, efficacy, and performance, while summarizing the key advantages and disadvantages for each degradable technology that is currently under development for transarterial embolization. This review is intended to provide an inclusive reference for clinicians that may facilitate an understanding of clinical and technical concepts related to this field of interventional radiology. For materials scientists, this review highlights innovative devices and current evaluation methodologies (i.e., preclinical models), and is designed to be instructive in the development of innovative/new technologies and evaluation methodologies. PMID:29373510
In-Space Propulsion Technology Products Ready for Infusion on NASA's Future Science Missions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michele M.
2012-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered. They have a broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine, providing higher performance for lower cost, was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models; and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, SMD Flagship, or technology demonstration missions.
In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.
2011-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions
Technical area status report for waste destruction and stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, J.D.; Harris, T.L.; DeWitt, L.M.
1993-08-01
The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs/activities throughout the DOE complex. In order to successfully achieve the goal of properly managing waste and the cleanup of the DOE sites, the EM was divided into five organizations: the Office of Planning and Resource Management (EM-10); the Office of Environmental Quality Assurance and Resource Management (EM-20); the Office of Waste Operations (EM-30); the Office of Environmental Restoration (EM-40); and the Office of Technology and Development (EM-50). The mission of the Office ofmore » Technology Development (OTD) is to develop treatment technologies for DOE`s operational and environmental restoration wastes where current treatment technologies are inadequate or not available. The Mixed Waste Integrated Program (MWIP) was created by OTD to assist in the development of treatment technologies for the DOE mixed low-level wastes (MLLW). The MWIP has established five Technical Support Groups (TSGs) whose purpose is to identify, evaluate, and develop treatment technologies within five general technical areas representing waste treatment functions from initial waste handling through generation of final waste forms. These TSGs are: (1) Front-End Waste Handling, (2) Physical/Chemical Treatment, (3) Waste Destruction and Stabilization, (4) Second-Stage Destruction and Offgas Treatment, and (5) Final Waste Forms. This report describes the functions of the Waste Destruction and Stabilization (WDS) group. Specifically, the following items are discussed: DOE waste stream identification; summary of previous efforts; summary of WDS treatment technologies; currently funded WDS activities; and recommendations for future activities.« less
Gupta, Rajesh; Patel, Rajan; Murty, Naganand; Panicker, Rahul; Chen, Jane
2015-02-01
Relative to drugs, diagnostics, and vaccines, efforts to develop other global health technologies, such as medical devices, are limited and often focus on the short-term goal of prototype development instead of the long-term goal of a sustainable business model. To develop a medical device to address neonatal hypothermia for use in resource-limited settings, we turned to principles of design theory: (1) define the problem with consideration of appropriate integration into relevant health policies, (2) identify the users of the technology and the scenarios in which the technology would be used, and (3) use a highly iterative product design and development process that incorporates the perspective of the user of the technology at the outset and addresses scalability. In contrast to our initial idea, to create a single device, the process guided us to create two separate devices, both strikingly different from current solutions. We offer insights from our initial experience that may be helpful to others engaging in global health technology development.
NASA Astrophysics Data System (ADS)
Shi, Wei; Hu, Xiaosong; Jin, Chao; Jiang, Jiuchun; Zhang, Yanru; Yip, Tony
2016-05-01
With the development and popularization of electric vehicles, it is urgent and necessary to develop effective management and diagnosis technology for battery systems. In this work, we design a parallel battery model, according to equivalent circuits of parallel voltage and branch current, to study effects of imbalanced currents on parallel large-format LiFePO4/graphite battery systems. Taking a 60 Ah LiFePO4/graphite battery system manufactured by ATL (Amperex Technology Limited, China) as an example, causes of imbalanced currents in the parallel connection are analyzed using our model, and the associated effect mechanisms on long-term stability of each single battery are examined. Theoretical and experimental results show that continuously increasing imbalanced currents during cycling are mainly responsible for the capacity fade of LiFePO4/graphite parallel batteries. It is thus a good way to avoid fast performance fade of parallel battery systems by suppressing variations of branch currents.
An update on X-ray reflection gratings developed for future missions
NASA Astrophysics Data System (ADS)
Miles, Drew
2018-01-01
X-ray reflection gratings are a key technology being studied for future X-ray spectroscopy missions, including the Lynx X-ray mission under consideration for the 2020 Decadal Survey. We present an update on the status of X-ray reflection gratings being developed at Penn State University, including current fabrication techniques and mass-replication processes and the latest diffraction efficiency results and resolving power measurements. Individual off-plane X-ray reflection gratings have exceeded the current Lynx requirements for both effective area and resolving power. Finally, we discuss internal projects that will advance the technology readiness level of these gratings.
Spacecraft-borne long life cryogenic refrigeration: Status and trends
NASA Technical Reports Server (NTRS)
Johnson, A. L.
1983-01-01
The status of cryogenic refrigerator development intended for, or possibly applicable to, long life spacecraft-borne application is reviewed. Based on these efforts, the general development trends are identified. Using currently projected technology needs, the various trends are compared and evaluated. The linear drive, non-contacting bearing Stirling cycle refrigerator concept appears to be the best current approach that will meet the technology projection requirements for spacecraft-borne cryogenic refrigerators. However, a multiply redundant set of lightweight, moderate life, moderate reliability Stirling cycle cryogenic refrigerators using high-speed linear drive and sliding contact bearings may possibly suffice.
Kumar, Atul; Samadder, S R
2017-11-01
Approximately one-fourth population across the world rely on traditional fuels (kerosene, natural gas, biomass residue, firewood, coal, animal dung, etc.) for domestic use despite significant socioeconomic and technological development. Fossil fuel reserves are being exploited at a very fast rate to meet the increasing energy demands, so there is a need to find alternative sources of energy before all the fossil fuel reserves are depleted. Waste to energy (WTE) can be considered as a potential alternative source of energy, which is economically viable and environmentally sustainable. The present study reviewed the current global scenario of WTE technological options (incineration, pyrolysis, gasification, anaerobic digestion, and landfilling with gas recovery) for effective energy recovery and the challenges faced by developed and developing countries. This review will provide a framework for evaluating WTE technological options based on case studies of developed and developing countries. Unsanitary landfilling is the most commonly practiced waste disposal option in the developing countries. However, developed countries have realised the potential of WTE technologies for effective municipal solid waste management (MSWM). This review will help the policy makers and the implementing authorities involved in MSWM to understand the current status, challenges and barriers for effective management of municipal solid waste. This review concluded WTE as a potential renewable source of energy, which will partly meet the energy demand and ensure effective MSWM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mixed Waste Focus Area alternative oxidation technologies development and demonstration program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borduin, L.C.; Fewell, T.; Gombert, D.
1998-07-01
The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. The impetus for this support derives from regulatory and political hurdles frequently encountered by traditional thermal techniques, primarily incinerators. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. Whether thermal or nonthermal, the processes have the potential advantages of relatively low-volume gaseous emissions, generation of few or no dioxin/furan compounds, and operation at low enough temperatures that metals (except mercury) and most radionuclides are not volatilized. Technology developmentmore » and demonstration are needed to confirm and realize the potential of AOTs and to compare them on an equal basis with their fully demonstrated thermal counterparts. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site, and direct chemical oxidation at Lawrence Livermore National Laboratory. All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory, and team reforming, a commercial process being supported by Department of Energy. Related technologies include two low-flow, secondary oxidation processes (Phoenix and Thermatrix units) that have been tested at MSE, Inc., in Butte, Montana. Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented.« less
Space Exploration Technologies Developed through Existing and New Research Partnerships Initiatives
NASA Technical Reports Server (NTRS)
Nall, Mark; Casas, Joseph
2004-01-01
The Space Partnership Development Program of NASA has been highly successful in leveraging commercial research investments to the strategic mission and applied research goals of the Agency through industry academic partnerships. This program is currently undergoing an outward-looking transformation towards Agency wide research and discovery goals that leverage partnership contributions to the strategic research needed to demonstrate enabling space exploration technologies encompassing both robotic spacecraft missions and human space flight. New Space Partnership Initiatives with incremental goals and milestones will allow a continuing series of accomplishments to be achieved throughout the duration of each initiative, permit the "lessons learned" and capabilities acquired from previous implementation steps to be incorporated into subsequent phases of the initiatives, and allow adjustments to be made to the implementation of the initiatives as new opportunities or challenges arise. An Agency technological risk reduction roadmap for any required technologies not currently available will identify the initiative focus areas for the development, demonstration and utilization of space resources supporting the production of power, air, and water, structures and shielding materials. This paper examines the successes to date, lessons learned, and programmatic outlook of enabling sustainable exploration and discovery through governmental, industrial, academic, and international partnerships. Previous government and industry technology development programs have demonstrated that a focused research program that appropriately shares the developmental risk can rapidly mature low Technology Readiness Level (TRL) technologies to the demonstration level. This cost effective and timely, reduced time to discovery, partnership approach to the development of needed technological capabilities addresses the dual use requirements by the investing partners. In addition, these partnerships help to ensure the attainment of complimenting human and robotic exploration goals for NASA while providing additional capabilities for sustainable scientific research benefiting life and security on Earth.
An Ethical Framework for Evaluating Experimental Technology.
van de Poel, Ibo
2016-06-01
How are we to appraise new technological developments that may bring revolutionary social changes? Currently this is often done by trying to predict or anticipate social consequences and to use these as a basis for moral and regulatory appraisal. Such an approach can, however, not deal with the uncertainties and unknowns that are inherent in social changes induced by technological development. An alternative approach is proposed that conceives of the introduction of new technologies into society as a social experiment. An ethical framework for the acceptability of such experiments is developed based on the bioethical principles for experiments with human subjects: non-maleficence, beneficence, respect for autonomy, and justice. This provides a handle for the moral and regulatory assessment of new technologies and their impact on society.
FY2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Susan A.
The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system tomore » improve fuel efficiency through research in more efficient TDSs.« less
In Situ Fabrication and Repair (ISFR) Technologies; New Challenges for Exploration
NASA Technical Reports Server (NTRS)
Bassler, Julie A.; Bodiford, Melanie P.; Hammond, Monica S.; King, Ron; Mclemore, Carole A.; Hall, Nancy R.; Fiske, Michael R.; Ray, Julie A.
2006-01-01
NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Engineers and Scientists at the Marshall Space Flight Center (MSFC) are continuing to evaluate current technologies for in situ resource-based exploration fabrication and repair applications. Several technologies to be addressed in this paper have technology readiness levels (TRLs) that are currently mature enough to pursue for exploration purposes. However, while many technologies offer promising applications, these technologies must be pulled along by the demands and applications of this great initiative. The In Situ Fabrication and Repair (ISFR) Element will supply and push state of the art technologies for applications such as habitat structure development, in situ resource utilization for tool and part fabrication, and repair and non-destructive evaluation W E ) of common life support elements. As an overview of the ISFR Element, this paper will address rapid prototyping technologies, their applications, challenges, and near term advancements. This paper will also discuss the anticipated need to utilize in situ resources to produce replacement parts and fabricate repairs to vehicles, habitats, life support and quality of life elements. Overcoming the challenges of ISFR development will provide the Exploration initiative with state of the art technologies that reduce risk, and enhance supportability.
Multi-Modal Traveler Information System - Alternative GCM Corridor Technologies and Strategies
DOT National Transportation Integrated Search
1997-10-24
The purpose of this working paper is to summarize current and evolving Intelligent Transportation System (ITS) technologies and strategies related to the design, development, and deployment of regional multi-modal traveler information systems. This r...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allderdice, A.; Rogers, J.H.
This guide provides readers with a broad understanding of the potential benefits that current renewable energy technologies can offer rural microenterprises. It also introduces the institutional approaches that have been developed to make RE technologies accessible to microentrepreneurs and the challenges that these entrepreneurs have encountered.
NASA Technical Reports Server (NTRS)
Griffin, Lisa W.; Huber, Frank W.
1992-01-01
The current status of the activities and future plans of the Turbine Technology Team of the Consortium for Computational Fluid Dynamics is reviewed. The activities of the Turbine Team focus on developing and enhancing codes and models, obtaining data for code validation and general understanding of flows through turbines, and developing and analyzing the aerodynamic designs of turbines suitable for use in the Space Transportation Main Engine fuel and oxidizer turbopumps. Future work will include the experimental evaluation of the oxidizer turbine configuration, the development, analysis, and experimental verification of concepts to control secondary and tip losses, and the aerodynamic design, analysis, and experimental evaluation of turbine volutes.
Automated inspection of turbine blades: Challenges and opportunities
NASA Technical Reports Server (NTRS)
Mehta, Manish; Marron, Joseph C.; Sampson, Robert E.; Peace, George M.
1994-01-01
Current inspection methods for complex shapes and contours exemplified by aircraft engine turbine blades are expensive, time-consuming and labor intensive. The logistics support of new manufacturing paradigms such as integrated product-process development (IPPD) for current and future engine technology development necessitates high speed, automated inspection of forged and cast jet engine blades, combined with a capability of retaining and retrieving metrology data for process improvements upstream (designer-level) and downstream (end-user facilities) at commercial and military installations. The paper presents the opportunities emerging from a feasibility study conducted using 3-D holographic laser radar in blade inspection. Requisite developments in computing technologies for systems integration of blade inspection in production are also discussed.
Center for Nanoscale Science and Technology
National Institute of Standards and Technology Data Gateway
NIST Center for Nanoscale Science and Technology (Program website, free access) Currently there is no database matching your keyword search, but the NIST Center for Nanoscale Science and Technology website may be of interest. The Center for Nanoscale Science and Technology enables science and industry by providing essential measurement methods, instrumentation, and standards to support all phases of nanotechnology development, from discovery to production.
DOE New Technology: Sharing New Frontiers, April 1, 1993--September 30, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamura, A.T.; Henline, D.M.
The purpose of DOE New Technology is to provide information on how to access specific technologies developed through research sponsored by DOE and performed by DOE laboratories or by DOE-contracted researchers. This document describes technologies identified as having potential for commercial applications in addition to a catalog of current patent applications and patents available for licensing from DOE and DOE contractors.
Data Management Working Group report
NASA Technical Reports Server (NTRS)
Filardo, Edward J.; Smith, David B.
1986-01-01
The current flight qualification program lags technology insertion by 6 to 10 years. The objective is to develop an integrated software engineering and development environment assisted by an expert system technology. An operating system needs to be developed which is portable to the on-board computers of the year 2000. The use of ADA verses a High-Order Language; fault tolerance; fiber optics networks; communication protocols; and security are also examined and outlined.
Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program
NASA Technical Reports Server (NTRS)
Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.
1998-01-01
The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.
A systematic collaborative process for assessing launch vehicle propulsion technologies
NASA Astrophysics Data System (ADS)
Odom, Pat R.
1999-01-01
A systematic, collaborative process for prioritizing candidate investments in space transportation systems technologies has been developed for the NASA Space Transportation Programs Office. The purpose of the process is to provide a repeatable and auditable basis for selecting technology investments to enable achievement of NASA's strategic space transportation objectives. The paper describes the current multilevel process and supporting software tool that has been developed. Technologies are prioritized across system applications to produce integrated portfolios for recommended funding. An example application of the process to the assessment of launch vehicle propulsion technologies is described and illustrated. The methodologies discussed in the paper are expected to help NASA and industry ensure maximum returns from technology investments under constrained budgets.
Space Station Workstation Technology Workshop Report
NASA Technical Reports Server (NTRS)
Moe, K. L.; Emerson, C. M.; Eike, D. R.; Malone, T. B.
1985-01-01
This report describes the results of a workshop conducted at Goddard Space Flight Center (GSFC) to identify current and anticipated trends in human-computer interface technology that may influence the design or operation of a space station workstation. The workshop was attended by approximately 40 persons from government and academia who were selected for their expertise in some aspect of human-machine interaction research. The focus of the workshop was a 1 1/2 brainstorming/forecasting session in which the attendees were assigned to interdisciplinary working groups and instructed to develop predictions for each of the following technology areas: (1) user interface, (2) resource management, (3) control language, (4) data base systems, (5) automatic software development, (6) communications, (7) training, and (8) simulation. This report is significant in that it provides a unique perspective on workstation design for the space station. This perspective, which is characterized by a major emphasis on user requirements, should be most valuable to Phase B contractors involved in design development of the space station workstation. One of the more compelling results of the workshop is the recognition that no major technological breakthroughs are required to implement the current workstation concept. What is required is the creative application of existing knowledge and technology.
Forest fire advanced system technology (FFAST) conceptual design study
NASA Technical Reports Server (NTRS)
Nichols, J. David; Warren, John R.
1987-01-01
The National Aeronautics and Space Administration's Jet Propulsion Laboratory (JPL) and the U.S. Department of Agriculture (USDA) Forest Service completed a conceptual design study that defined an integrated forest fire detection and mapping system that will be based upon technology available in the 1990s. Potential system configuration options in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include airborne mounted, thermal infrared (IR) linear array detectors, automatic onboard georeferencing and signal processing, geosynchronous satellite communications links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. The conceptual design study defined the preferred system configuration that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.
NASA's Advanced Radioisotope Power Conversion Technology Development Status
NASA Technical Reports Server (NTRS)
Anderson, David J.; Sankovic, John; Wilt, David; Abelson, Robert D.; Fleurial, Jean-Pierre
2007-01-01
NASA's Advanced Radioisotope Power Systems (ARPS) project is developing the next generation of radioisotope power conversion technologies that will enable future missions that have requirements that cannot be met by either photovoltaic systems or by current radioisotope power systems (RPSs). Requirements of advanced RPSs include high efficiency and high specific power (watts/kilogram) in order to meet future mission requirements with less radioisotope fuel and lower mass so that these systems can meet requirements for a variety of future space applications, including continual operation surface missions, outer-planetary missions, and solar probe. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. Advanced RPS development goals also include long-life, reliability, and scalability. This paper provides an update on the contractual efforts under the Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) for research and development of Stirling, thermoelectric, and thermophotovoltaic power conversion technologies. The paper summarizes the current RPCT NRA efforts with a brief description of the effort, a status and/or summary of the contractor's key accomplishments, a discussion of upcoming plans, and a discussion of relevant system-level benefits and implications. The paper also provides a general discussion of the benefits from the development of these advanced power conversion technologies and the eventual payoffs to future missions (discussing system benefits due to overall improvements in efficiency, specific power, etc.).
Wills, Peter R; Williams, David L F; Trussell, Denys; Mann, L R B
2013-01-01
The Aristotelian ideas of nature (physis) and technology (techné) are taken as a starting point for understanding what it would mean for technology to be truly living. Heidegger's critique of the conflation of scientific and technological thinking in the current era is accepted as demonstrating that humanity does not have a deep enough appreciation of the nature of life to harness its essence safely. Could the vision of harnessing life be realized, which we strongly doubt, living technology would give selected humans transforming powers that could be expected to exacerbate, rather than solve, current global problems. The source of human purposefulness, and hence of both technology and ethics, is identified in nature's emergent capability to instantiate informational representations in material forms. Ethics that are properly grounded in an appreciation of intrinsic value, especially that of life, demand that proposals to give humanity the capabilities of living technology address the social, political, economic, and environmental problems inherent in its development and potential deployment. Before any development is embarked on, steps must be taken to avoid living technology, whatever the term eventually designates, becoming available for destructive or antisocial purposes such as those that might devastate humanity or irrevocably damage the natural world.
ERIC Educational Resources Information Center
Zuhairi, Aminudin; Wahyono, Effendi; Suratinah, Sharon
2006-01-01
This article addresses the historical context, current development, and future challenges of distance education in Indonesia. Conditions related to the geography, demography, socio-economic and cultural situations, as well as the availability of technology have encouraged the use of distance education as a valid choice in providing access to…
All NbN tunnel junction fabrication
NASA Technical Reports Server (NTRS)
Leduc, H. G.; Khanna, S. K.; Stern, J. A.
1987-01-01
The development of SIS tunnel junctions based on NbN for mixer applications in the submillimeter range is reported. The unique technological challenges inherent in the development of all refractory-compound superconductor-based tunnel junctions are highlighted. Current deposition and fabrication techniques are discussed, and the current status of all-NbN tunnel junctions is reported.
Advanced Controller Developed for the Free-Piston Stirling Convertor
NASA Technical Reports Server (NTRS)
Gerber, Scott S.
2005-01-01
A free-piston Stirling power convertor is being considered as an advanced power-conversion technology for future NASA deep-space missions requiring long-life radioisotope power systems. The NASA Glenn Research Center has identified key areas where advanced technologies can enhance the capability of Stirling energy-conversion systems. One of these is power electronic controls. Current power-conversion technology for Glenn-tested Stirling systems consists of an engine-driven linear alternator generating an alternating-current voltage controlled by a tuning-capacitor-based alternating-current peak voltage load controller. The tuning capacitor keeps the internal alternator electromotive force (EMF) in phase with its respective current (i.e., passive power factor correction). The alternator EMF is related to the piston velocity, which must be kept in phase with the alternator current in order to achieve stable operation. This tuning capacitor, which adds volume and mass to the overall Stirling convertor, can be eliminated if the controller can actively drive the magnitude and phase of the alternator current.
A perspective on microarrays: current applications, pitfalls, and potential uses
Jaluria, Pratik; Konstantopoulos, Konstantinos; Betenbaugh, Michael; Shiloach, Joseph
2007-01-01
With advances in robotics, computational capabilities, and the fabrication of high quality glass slides coinciding with increased genomic information being available on public databases, microarray technology is increasingly being used in laboratories around the world. In fact, fields as varied as: toxicology, evolutionary biology, drug development and production, disease characterization, diagnostics development, cellular physiology and stress responses, and forensics have benefiting from its use. However, for many researchers not familiar with microarrays, current articles and reviews often address neither the fundamental principles behind the technology nor the proper designing of experiments. Although, microarray technology is relatively simple, conceptually, its practice does require careful planning and detailed understanding of the limitations inherently present. Without these considerations, it can be exceedingly difficult to ascertain valuable information from microarray data. Therefore, this text aims to outline key features in microarray technology, paying particular attention to current applications as outlined in recent publications, experimental design, statistical methods, and potential uses. Furthermore, this review is not meant to be comprehensive, but rather substantive; highlighting important concepts and detailing steps necessary to conduct and interpret microarray experiments. Collectively, the information included in this text will highlight the versatility of microarray technology and provide a glimpse of what the future may hold. PMID:17254338
Application of harmonic detection technology in methane telemetry
NASA Astrophysics Data System (ADS)
Huo, Yuehua; Fan, Weiqiang
2017-08-01
Methane telemetry plays a vital role in ensuring the safe production of coal mines and monitoring the leakage of natural gas pipelines. Harmonic detection is the key technology of methane telemetry accuracy and sensitivity, but the current telemetry distance is short, the relationship between different modulation parameters is complex, and the harmonic signal is affected by noise interference. These factors seriously affect the development of harmonic detection technology. In this paper, the principle of methane telemetry based on harmonic detection technology is introduced. The present situation and characteristics of harmonic detection technology are expounded. The problems existing in harmonic detection are analyzed. Finally, the future development trend is discussed.
NASA Technical Reports Server (NTRS)
1988-01-01
As the NASA Center responsible for assembly, checkout, servicing, launch, recovery and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing emphasis on its research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of our current mission, we are developing the technological tools needed to execute the Center's mission relative to future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation, and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1988 Annual Report.
Information Literacy Education on College of Technology at Kyushu Area
NASA Astrophysics Data System (ADS)
Kozono, Kazutake; Ikeda, Naomitsu; Irie, Hiroki; Fujimoto, Yoichi; Oshima, Shunsuke; Murayama, Koichi; Taguchi, Hirotsugu
Recently, the importance of an engineering education increases by the development of the information technology (IT) . Development of the information literacy education is important to deal with new IT in the education on college of technology. Our group investigated the current state of information literacy education on college of technology at Kyushu area and the secondary education. In addition, we investigated about the talent whom the industrial world requested. From these investigation results, this paper proposed cooperation with the elementary and secondary education, enhancement of intellectual property education, introduction of information ethics education, introduction of career education and enhancement of PBL to information literacy education on college of technology.
Bolometric detector systems for IR and mm-wave space astronomy
NASA Technical Reports Server (NTRS)
Church, S. E.; Lange, A. E.; Mauskopf, P. D.; Hristov, V.; Bock, J. J.; DelCastillo, H. M.; Beeman, J.; Ade, P. A. R.; Griffin, M. J.
1996-01-01
Recent developments in bolometric detector systems for millimeter and submillimeter wave space astronomy are described. Current technologies meet all the requirements for the high frequency instrument onboard the cosmic background radiation anisotropy satellite/satellite for the measurement of background anisotropies (COBRAS/SAMBA) platform. It is considered that the technologies that are currently being developed will significantly reduce the effective time constant and/or the cooling requirements of bolometric detectors. These technologies lend themselves to the fabrication of the large format arrays required for the Far Infrared and Submillimeter Space Telescope (FIRST). The scientific goals and detector requirements of the COBRAS/SAMBA platform that will use infrared bolometers are reviewed and the baseline detector system is described, including the feed optics, the infrared filters, the cold amplifiers and the warm readout electronics.
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Connolly, D. J.
1986-01-01
Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Nichols, Kelvin F.
2006-01-01
To date very little effort has been made to provide interoperability between various space agency projects. To effectively get to the Moon and beyond systems must interoperate. To provide interoperability, standardization and registries of various technologies will be required. These registries will be created as they relate to space flight. With the new NASA Moon/Mars initiative a requirement to standardize and control the naming conventions of very disparate systems and technologies are emerging. The need to provide numbering to the many processes, schemas, vehicles, robots, space suits and technologies (e.g. versions), to name a few, in the highly complex Constellation Initiative is imperative. The number of corporations, developer personnel, system interfaces, people interfaces will require standardization and registries on a scale not currently envisioned. It would only take one exception (stove piped system development) to weaken, if not, destroy interoperability. To start, a standardized registry process must be defined that allows many differing engineers, organizations and operators the ability to easily access disparate registry information across numerous technological and scientific disciplines. Once registries are standardized the need to provide registry support in terms of setup and operations, resolution of conflicts between registries and other issues will need to be addressed. Registries should not be confused with repositories. No end user data is "stored" in a registry nor is it a configuration control system. Once a registry standard is created and approved, the technologies that should be registered must be identified and prioritized. In this paper, we will identify and define a registry process that is compatible with the Constellation Initiative and other non related space activities and organizations. We will then identify and define the various technologies that should use a registry to provide interoperability. The first set of technologies will be those that are currently in need of expansion namely the assignment of satellite designations and the process which controls assignments. Second, we will analyze the technologies currently standardized under the Consultative Committee for Space Data Systems (CCSDS) banner. Third, we will analyze the current CCSDS working group and birds of a feather activities to ascertain registry requirements. Lastly, we will identify technologies that are either currently under the auspices of another
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, S.T.; Atwood, T.; Qiu Daxiong
1997-12-31
Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, andmore » the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.« less
NASA Technical Reports Server (NTRS)
McNeal, Curtis I., Jr.; Anderson, William
1999-01-01
NASA's current focus on technology roadmaps as a tool for guiding investment decisions leads naturally to a discussion of NASA's roadmap for peroxide propulsion system development. NASA's new Second Generation Space Transportation System roadmap calls for an integrated Reusable Upper-Stage (RUS) engine technology demonstration in the FY03/FY04 time period. Preceding this integrated demonstration are several years of component developments and subsystem technology demonstrations. NASA and the Air Force took the first steps at developing focused upper stage technologies with the initiation of the Upper Stage Flight Experiment with Orbital Sciences in December 1997. A review of this program's peroxide propulsion development is a useful first step in establishing the peroxide propulsion pathway that could lead to a RUS demonstration in 2004.
Fundamental Technology Development for Gas-Turbine Engine Health Management
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Simon, Donald L.; Hunter, Gary W.; Arnold, Steven M.; Reveley, Mary S.; Anderson, Lynn M.
2007-01-01
Integrated vehicle health management technologies promise to dramatically improve the safety of commercial aircraft by reducing system and component failures as causal and contributing factors in aircraft accidents. To realize this promise, fundamental technology development is needed to produce reliable health management components. These components include diagnostic and prognostic algorithms, physics-based and data-driven lifing and failure models, sensors, and a sensor infrastructure including wireless communications, power scavenging, and electronics. In addition, system assessment methods are needed to effectively prioritize development efforts. Development work is needed throughout the vehicle, but particular challenges are presented by the hot, rotating environment of the propulsion system. This presentation describes current work in the field of health management technologies for propulsion systems for commercial aviation.
NASA Technical Reports Server (NTRS)
Funaro, Gregory V.; Alexander, Reginald A.
2015-01-01
The Advanced Concepts Office (ACO) at NASA, Marshall Space Flight Center is expanding its current technology assessment methodologies. ACO is developing a framework called TAPP that uses a variety of methods, such as association mining and rule learning from data mining, structure development using a Technological Innovation System (TIS), and social network modeling to measure structural relationships. The role of ACO is to 1) produce a broad spectrum of ideas and alternatives for a variety of NASA's missions, 2) determine mission architecture feasibility and appropriateness to NASA's strategic plans, and 3) define a project in enough detail to establish an initial baseline capable of meeting mission objectives ACO's role supports the decision-making process associated with the maturation of concepts for traveling through, living in, and understanding space. ACO performs concept studies and technology assessments to determine the degree of alignment between mission objectives and new technologies. The first step in technology assessment is to identify the current technology maturity in terms of a technology readiness level (TRL). The second step is to determine the difficulty associated with advancing a technology from one state to the next state. NASA has used TRLs since 1970 and ACO formalized them in 1995. The DoD, ESA, Oil & Gas, and DoE have adopted TRLs as a means to assess technology maturity. However, "with the emergence of more complex systems and system of systems, it has been increasingly recognized that TRL assessments have limitations, especially when considering [the] integration of complex systems." When performing the second step in a technology assessment, NASA requires that an Advancement Degree of Difficulty (AD2) method be utilized. NASA has used and developed or used a variety of methods to perform this step: Expert Opinion or Delphi Approach, Value Engineering or Value Stream, Analytical Hierarchy Process (AHP), Technique for the Order of Prioritization by Similarity to Ideal Solution (TOPSIS), and other multi-criteria decision-making methods. These methods can be labor-intensive, often contain cognitive or parochial bias, and do not consider the competing prioritization between mission architectures. Strategic Decision-Making (SDM) processes cannot be properly understood unless the context of the technology is understood. This makes assessing technological change particularly challenging due to the relationships "between incumbent technology and the incumbent (innovation) system in relation to the emerging technology and the emerging innovation system." The central idea in technology dynamics is to consider all activities that contribute to the development, diffusion, and use of innovations as system functions. Bergek defines system functions within a TIS to address what is actually happening and has a direct influence on the ultimate performance of the system and technology development. ACO uses similar metrics and is expanding these metrics to account for the structure and context of the technology. At NASA technology and strategy is strongly interrelated. NASA's Strategic Space Technology Investment Plan (SSTIP) prioritizes those technologies essential to the pursuit of NASA's missions and national interests. The SSTIP is strongly coupled with NASA's Technology Roadmaps to provide investment guidance during the next four years, within a twenty-year horizon. This paper discusses the methods ACO is currently developing to better perform technology assessments while taking into consideration Strategic Alignment, Technology Forecasting, and Long Term Planning.
An Incubatable Direct Current Stimulation System for In Vitro Studies of Mammalian Cells
Panitch, Alyssa; Caplan, Michael; Sweeney, James D.
2012-01-01
Abstract The purpose of this study was to provide a simplified alternative technology and format for direct current stimulation of mammalian cells. An incubatable reusable stimulator was developed that effectively delivers a regulated current and does not require constant monitoring. PMID:23514694
NASA Technical Reports Server (NTRS)
Walsh, Sarah; Barta, Daniel; Stephan, Ryan; Gaddis, Stephen
2015-01-01
The overall objective is to develop advanced gloves for extra vehicular activity (EVA) for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. The glove prototypes that result from the successful completion of this technology development activity will be delivered to NASA's Human Exploration Operations Mission Directorate (HEOMD) and ultimately to be included in an integrated test with the next generation spacesuit currently under development.
NASA Technical Reports Server (NTRS)
Dudzinski, Leonard a.; Pencil, Eric J.; Dankanich, John W.
2007-01-01
The In-Space Propulsion Technology Project (ISPT) is currently NASA's sole investment in electric propulsion technologies. This project is managed at NASA Glenn Research Center (GRC) for the NASA Headquarters Science Mission Directorate (SMD). The objective of the electric propulsion project area is to develop near-term and midterm electric propulsion technologies to enhance or enable future NASA science missions while minimizing risk and cost to the end user. Systems analysis activities sponsored by ISPT seek to identify future mission applications in order to quantify mission requirements, as well as develop analytical capability in order to facilitate greater understanding and application of electric propulsion and other propulsion technologies in the ISPT portfolio. These analyses guide technology investments by informing decisions and defining metrics for technology development to meet identified mission requirements. This paper discusses the missions currently being studied for electric propulsion by the ISPT project, and presents the results of recent electric propulsion (EP) mission trades. Recent ISPT systems analysis activities include: an initiative to standardize life qualification methods for various electric propulsion systems in order to retire perceived risk to proposed EP missions; mission analysis to identify EP requirements from Discovery, New Frontiers, and Flagship classes of missions; and an evaluation of system requirements for radioisotope-powered electric propulsion. Progress and early results of these activities is discussed where available.
Sharing and re-use of phylogenetic trees (and associated data) to facilitate synthesis.
Stoltzfus, Arlin; O'Meara, Brian; Whitacre, Jamie; Mounce, Ross; Gillespie, Emily L; Kumar, Sudhir; Rosauer, Dan F; Vos, Rutger A
2012-10-22
Recently, various evolution-related journals adopted policies to encourage or require archiving of phylogenetic trees and associated data. Such attention to practices that promote sharing of data reflects rapidly improving information technology, and rapidly expanding potential to use this technology to aggregate and link data from previously published research. Nevertheless, little is known about current practices, or best practices, for publishing trees and associated data so as to promote re-use. Here we summarize results of an ongoing analysis of current practices for archiving phylogenetic trees and associated data, current practices of re-use, and current barriers to re-use. We find that the technical infrastructure is available to support rudimentary archiving, but the frequency of archiving is low. Currently, most phylogenetic knowledge is not easily re-used due to a lack of archiving, lack of awareness of best practices, and lack of community-wide standards for formatting data, naming entities, and annotating data. Most attempts at data re-use seem to end in disappointment. Nevertheless, we find many positive examples of data re-use, particularly those that involve customized species trees generated by grafting to, and pruning from, a much larger tree. The technologies and practices that facilitate data re-use can catalyze synthetic and integrative research. However, success will require engagement from various stakeholders including individual scientists who produce or consume shareable data, publishers, policy-makers, technology developers and resource-providers. The critical challenges for facilitating re-use of phylogenetic trees and associated data, we suggest, include: a broader commitment to public archiving; more extensive use of globally meaningful identifiers; development of user-friendly technology for annotating, submitting, searching, and retrieving data and their metadata; and development of a minimum reporting standard (MIAPA) indicating which kinds of data and metadata are most important for a re-useable phylogenetic record.
NASA Technical Reports Server (NTRS)
Cath, Tzahi Y.; Adams, Dean V.; Childress, Amy; Gormly, Sherwin; Flynn, Michael
2005-01-01
Direct osmotic concentration (DOC) has been identified as a high potential technology for recycling of wastewater to drinking water in advanced life support (ALS) systems. As a result the DOC process has been selected for a NASA Rapid Technology Development Team (RTDT) effort. The existing prototype system has been developed to a Technology Readiness Level (TRL) 3. The current project focuses on advancing the development of this technology from TRL 3 to TRL 6 (appropriate for human rated testing). A new prototype of a DOC system is been designed and fabricated that addresses the deficiencies encountered during the testing of the original system and allowing the new prototype to achieve TRL 6. Background information is provided about the technologies investigated and their capabilities, results from preliminary tests, and the milestones plan and activities for the RTDT program intended to develop a second generation prototype of the DOC system.
NASA Technical Reports Server (NTRS)
1976-01-01
A software analysis was performed of known STS sortie payload elements and their associated experiments. This provided basic data for STS payload software characteristics and sizes. A set of technology drivers was identified based on a survey of future technology needs and an assessment of current software technology. The results will be used to evolve a planned approach to software technology development. The purpose of this plan is to ensure that software technology is advanced at a pace and a depth sufficient to fulfill the identified future needs.
This Request for Information (RFI) is directed toward determining how best to accelerate research in disruptive proteomics technologies. The Disruptive Proteomics Technologies (DPT) Working Group of the NIH Common Fund wishes to identify gaps and opportunities in current technologies and methodologies related to proteome-wide measurements. For the purposes of this RFI, “disruptive” is defined as very rapid, very significant gains, similar to the "disruptive" technology development that occurred in DNA sequencing technology.
Present Development and Current Problems about Composite in Our Country
1989-12-20
factor of phase structure by SEM observation after hitting it by free vibrating torsion pendulum. The fourth paper is related to composite of Geopolymer ...TW FiLE CO0PY C o FTD-ID (RS) T-0639-89 CD 0 FOREIGN TECHNOLOGY DIVISION I PRESENT DEVELOPMENT AND CURRENT PROBLEMS ABOUT COMPOSITE IN OUR COUNTRY...T-0639-89 20 December 1989 MICROFICHE NR: FTD-90-C-000009 PRESENT DEVELOPMENT AND CURRENT PROBLEMS ABOUT COMPOSITE IN OUR COUNTRY By: Gu Zhenlong
Emerging and Disruptive Technologies.
Kricka, Larry J
2016-08-01
Several emerging or disruptive technologies can be identified that might, at some point in the future, displace established laboratory medicine technologies and practices. These include increased automation in the form of robots, 3-D printing, technology convergence (e.g., plug-in glucose meters for smart phones), new point-of-care technologies (e.g., contact lenses with sensors, digital and wireless enabled pregnancy tests) and testing locations (e.g., Retail Health Clinics, new at-home testing formats), new types of specimens (e.g., cell free DNA), big biology/data (e.g., million genome projects), and new regulations (e.g., for laboratory developed tests). In addition, there are many emerging technologies (e.g., planar arrays, mass spectrometry) that might find even broader application in the future and therefore also disrupt current practice. One interesting source of disruptive technology may prove to be the Qualcomm Tricorder XPrize, currently in its final stages.
Emerging and Disruptive Technologies
2016-01-01
Several emerging or disruptive technologies can be identified that might, at some point in the future, displace established laboratory medicine technologies and practices. These include increased automation in the form of robots, 3-D printing, technology convergence (e.g., plug-in glucose meters for smart phones), new point-of-care technologies (e.g., contact lenses with sensors, digital and wireless enabled pregnancy tests) and testing locations (e.g., Retail Health Clinics, new at-home testing formats), new types of specimens (e.g., cell free DNA), big biology/data (e.g., million genome projects), and new regulations (e.g., for laboratory developed tests). In addition, there are many emerging technologies (e.g., planar arrays, mass spectrometry) that might find even broader application in the future and therefore also disrupt current practice. One interesting source of disruptive technology may prove to be the Qualcomm Tricorder XPrize, currently in its final stages. PMID:27683538
Hydrogen storage and fuel cells
NASA Astrophysics Data System (ADS)
Liu, Di-Jia
2018-01-01
Global warming and future energy supply are two major challenges facing American public today. To overcome such challenges, it is imperative to maximize the existing fuel utilization with new conversion technologies while exploring alternative energy sources with minimal environmental impact. Hydrogen fuel cell represents a next-generation energy-efficient technology in transportation and stationary power productions. In this presentation, a brief overview of the current technology status of on-board hydrogen storage and polymer electrolyte membrane fuel cell in transportation will be provided. The directions of the future researches in these technological fields, including a recent "big idea" of "H2@Scale" currently developed at the U. S. Department of Energy, will also be discussed.
ISS ECLSS Technology Evolution for Exploration
NASA Technical Reports Server (NTRS)
Carrasquillo, Robyn
2005-01-01
The baseline environmental control and life support systems (ECLSS) currently deployed on the International Space Station (ISS) and the regenerative oxygen generation and water early 1990's. While they are generally meeting, or exceeding requirements for supporting the ISS crew, lessons learned from hardware development and on orbit experience, together with advances in technology state of the art, and th&e unique requirements for future manned exploration missions prompt consideration of the next steps to be taken to evolve these technologies to improve robustness and reliability, enhance performance, and reduce resource requirements such as power and logistics upmass This paper discusses the current state of ISS ECLSS technology and identifies possible areas for evolutionary enhancement or improvement.
Research in Hypersonic Airbreathing Propulsion at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Kumar, Ajay; Drummond, J. Philip; McClinton, Charles R.; Hunt, James L.
2001-01-01
The NASA Langley Research Center has been conducting research for over four decades to develop technology for an airbreathing-propelled vehicle. Several other organizations within the United States have also been involved in this endeavor. Even though significant progress has been made over this period, a hypersonic airbreathing vehicle has not yet been realized due to low technology maturity. One of the major reasons for the slow progress in technology development has been the low level and cyclic nature of funding. The paper provides a brief historical overview of research in hypersonic airbreathing technology and then discusses current efforts at NASA Langley to develop various analytical, computational, and experimental design tools and their application in the development of future hypersonic airbreathing vehicles. The main focus of this paper is on the hypersonic airbreathing propulsion technology.
Conceptual definition of a technology development mission for advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, R. P.
1986-01-01
An initial conceptual definition of a technology development mission for advanced solar dynamic power systems is provided, utilizing a space station to provide a dedicated test facility. The advanced power systems considered included Brayton, Stirling, and liquid metal Rankine systems operating in the temperature range of 1040 to 1400 K. The critical technologies for advanced systems were identified by reviewing the current state of the art of solar dynamic power systems. The experimental requirements were determined by planning a system test of a 20 kWe solar dynamic power system on the space station test facility. These requirements were documented via the Mission Requirements Working Group (MRWG) and Technology Development Advocacy Group (TDAG) forms. Various concepts or considerations of advanced concepts are discussed. A preliminary evolutionary plan for this technology development mission was prepared.
Space and Industrial Brine Drying Technologies
NASA Technical Reports Server (NTRS)
Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali
2014-01-01
This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.
Novel Wiring Technologies for Aerospace Applications
NASA Technical Reports Server (NTRS)
Gibson, Tracy L.; Parrish, Lewis M.
2014-01-01
Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.
The applicability of DOE solar cell and array technology to space power
NASA Technical Reports Server (NTRS)
Scott-Monck, J. A.; Stella, P. M.; Berman, P. A.
1980-01-01
An evaluation of the main terrestrial photovoltaic development projects was performed. Technologies that may have applicability to space power are identified. Where appropriate, recommendations are made for programs to capitalize on developed technology. It is concluded that while the funding expended by DOE is considerably greater than the space (NASA and DOD) budget for photovoltaics, the terrestrial goals and the means for satisfying them are sufficiently different from space needs that little direct benefit currently exists for space applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacombe, A.; Rouges, J.
1990-01-01
The current status of carbon-carbon and carbon-silicon carbide composites developed for aerospace applications is reviewed. In particular, attention is given to production facilities and technologies for the manufacture of C-C and C-SiC composites, mechanical and thermal characteristics of carbon-carbon and carbon-silicon carbide materials, applications to thermal structures and protection, and technologies developed to build large C-SiC thermostructural components within the Hermes program. 9 refs.
Performance evaluation of candidate space suit elements for the next generation orbital EMU
NASA Technical Reports Server (NTRS)
West, Philip R.; Trausch, Stephanie V.
1992-01-01
The AX-5 all metallic, multibearing technologies developed at the Ames Research Center and the Mk III fabric and metallic technologies developed at the Johnson Space Center were evaluated using the current Space Shuttle space suit technologies as a baseline. Manned evaluations were performed in the Weightless Environment Training Facility and KC-135 zero-gravity aircraft. Joint torque, range, cycle life, and environmental protection characteristics were analyzed during unmanned tests. Both numerical results and test subject comments on performance are presented.
SITE PROGRAM CURRENT AND FUTURE INNOVATIVE TECHNIQUES FOR GROUNDWATER TREATMENT
The U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD) conducts research related to the demonstration and evaluation of innovative cleanup technologies. One of the mechanisms for the evaluation of innovative field-scale technologies for hazardous ...
Highlights of the Transit Bus Technology Workshop - April 29-30, 1982
DOT National Transportation Integrated Search
1982-09-01
The Transit Bus Technology Workshop, held at the Transportation Systems Center on April 29-30, 1982, provided UMTA with current information on research, development, and technical assistance needed to improve the economy and performance of transit bu...
ERIC Educational Resources Information Center
Failla, Victor A.; Birk, Thomas A.
1999-01-01
Discusses the electrical power problems that can arise when schools try to integrate educational technology components into an existing facility, and how to plan the electrical power design to avoid power failures. Examines setting objectives, evaluating current electrical conditions, and developing the technology power design. (GR)
Case Studies on the Use of Technology in TPD (Teacher Professional Development)
ERIC Educational Resources Information Center
Gu, Limin; Jiao, Jianli; Wang, Xiaodong; Jia, Yimin; Qin, Dan; Lindberg, J. Ola
2012-01-01
In this paper, the progress of a three-year cooperative project investigating the current state of TPD (teacher professional development) in Sweden and China in the area of TPD and ICT (information and communication technologies) is summarized. A brief introduction to the field of TPD is given, and thereafter, ICT is related to what in the project…
Technology Needs for Teachers Web Development and Curriculum Adaptations
NASA Technical Reports Server (NTRS)
Carroll, Christy J.
1999-01-01
Computer-based mathematics and science curricula focusing on NASA inventions and technologies will enhance current teacher knowledge and skills. Materials and interactive software developed by educators will allow students to integrate their various courses, to work cooperatively, and to collaborate with both NASA scientists and students at other locations by using computer networks, email and the World Wide Web.
The Development of Fuel Cell Technology for NASA's Human Spaceflight Program
NASA Technical Reports Server (NTRS)
Scott, John H.
2007-01-01
My task this morning is to review the history and current direction of fuel cell technology development for NASA's human spaceflight program and to compare it to the directions being taken in that field for The Hydrogen Economy. The concept of "The Hydrogen Economy" involves many applications for fuel cells, but for today's discussion, I'll focus on automobiles.
Technology Needs to Support Future Mars Exploration
NASA Technical Reports Server (NTRS)
Nilsen, Erik N.; Baker, John; Lillard, Randolph P.
2013-01-01
The Mars Program Planning Group (MPPG) under the direction of Dr. Orlando Figueroa, was chartered to develop options for a program-level architecture for robotic exploration of Mars consistent with the objective to send humans to Mars in the 2030's. Scientific pathways were defined for future exploration, and multiple architectural options were developed that meet current science goals and support the future human exploration objectives. Integral to the process was the identification of critical technologies which enable the future scientific and human exploration goals. This paper describes the process for technology capabilities identification and examines the critical capability needs identified in the MPPG process. Several critical enabling technologies that have been identified to support the robotic exploration goals and with potential feedforward application to human exploration goals. Potential roadmaps for the development and validation of these technologies are discussed, including options for subscale technology demonstrations of future human exploration technologies on robotic missions.
NASA Technical Reports Server (NTRS)
1999-01-01
Amherst Systems manufactures foveal machine vision technology and systems commercially available to end-users and system integrators. This technology was initially developed under NASA contracts NAS9-19335 (Johnson Space Center) and NAS1-20841 (Langley Research Center). This technology is currently being delivered to university research facilities and military sites. More information may be found in www.amherst.com.
Evaluation of Hydrogel Technologies for the Decontamination ...
Report This current research effort was developed to evaluate intermediate level (between bench-scale and large-scale or wide-area implementation) decontamination procedures, materials, technologies, and techniques used to remove radioactive material from different surfaces. In the event of such an incident, application of this technology would primarily be intended for decontamination of high-value buildings, important infrastructure, and landmarks.
Flexible Learning in a Digital World: Experiences and Expectations. Open & Distance Learning Series.
ERIC Educational Resources Information Center
Collis, Betty; Moonen, Jef
This book provides a series of proven, practical guidelines for using technology in education, giving the reader an overview of how technological applications in education can be harnessed and developed. The book presents an integrated vision of how technology is related to learning-related change, and how current and emerging experiences can…
The Growth of m-Learning and the Growth of Mobile Computing: Parallel Developments
ERIC Educational Resources Information Center
Caudill, Jason G.
2007-01-01
m-Learning is made possible by the existence and application of mobile hardware and networking technology. By exploring the capabilities of these technologies, it is possible to construct a picture of how different components of m-Learning can be implemented. This paper will explore the major technologies currently in use: portable digital…
ERIC Educational Resources Information Center
Savinskaya, O. B.
2017-01-01
The article discusses the importance of introducing training programs for preschool children that allow them to master basic knowledge in science, technology, engineering, and mathematics (STEM subjects) as an academic basis for the technological transition that is currently taking place in the modern world. It is shown that when preschool…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-08
... innovation in the technology sector(s) that is the subject of your comment? What is the current phase of the...-02] Effectiveness of Federal Agency Participation in Standardization in Select Technology Sectors for... private sector, the Sub-Committee on Standards intends to develop information on how Federal agencies may...
How Technology Changes Demands for Human Skills. OECD Education Working Papers, No. 45
ERIC Educational Resources Information Center
Levy, Frank
2010-01-01
This paper places the competencies to be measured by the OECD's Programme for the International Assessment of Adult Competencies (PIAAC) in the context of the technological developments which are reshaping the nature of the workplace and work in the 21st century. The largest technological force currently shaping work is the computer. Computers are…
Aerospace technology as a source of new ideas.
NASA Technical Reports Server (NTRS)
Hamilton, J. T.
1972-01-01
It is shown that technological products and processes resulting from aeronautical and space research and development can be a significant source of new product or product improvement ideas. The problems associated with technology transfer are discussed. As an example, the commercialization of NASTRAN, NASA's structural analysis computer program, is discussed. Some other current application projects are also outlined.
Adaptable, Deployable Entry and Placement Technology (ADEPT) for Future Mars Missions
NASA Technical Reports Server (NTRS)
Wercinski, P.; Venkatapathy, E.; Gage, P.; Prabhu, D.; Smith, B.; Cassell, A.; Yount, B.; Allen, G.
2013-01-01
The concept of a mechanically deploy- able hypersonic decelerator, developed initially for high mass (40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets.
Design of a Parachute Canopy Instrumentation Platform
NASA Technical Reports Server (NTRS)
Alshahin, Wahab M.; Daum, Jared S.; Holley, James J.; Litteken, Douglas A.; Vandewalle, Michael T.
2015-01-01
This paper discusses the current technology available to design and develop a reliable and compact instrumentation platform for parachute system data collection and command actuation. Wireless communication with a parachute canopy will be an advancement to the state of the art of parachute design, development, and testing. Embedded instrumentation of the parachute canopy will provide reefing line tension, skirt position data, parachute health monitoring, and other telemetry, further validating computer models and giving engineering insight into parachute dynamics for both Earth and Mars entry that is currently unavailable. This will allow for more robust designs which are more optimally designed in terms of structural loading, less susceptible to adverse dynamics, and may eventually pave the way to currently unattainable advanced concepts of operations. The development of this technology has dual use potential for a variety of other applications including inflatable habitats, aerodynamic decelerators, heat shields, and other high stress environments.