Future Orbital Power Systems Technology Requirements
NASA Technical Reports Server (NTRS)
1978-01-01
NASA is actively involved in program planning for missions requiring several orders of magnitude, more energy than in the past. Therefore, a two-day symposium was held to review the technology requirements for future orbital power systems. The purpose of the meeting was to give leaders from government and industry a broad view of current government supported technology efforts and future program plans in space power. It provided a forum for discussion, through workshops, to comment on current and planned programs and to identify opportunities for technology investment. Several papers are presented to review the technology status and the planned programs.
Onboard processor technology review
NASA Technical Reports Server (NTRS)
Benz, Harry F.
1990-01-01
The general need and requirements for the onboard embedded processors necessary to control and manipulate data in spacecraft systems are discussed. The current known requirements are reviewed from a user perspective, based on current practices in the spacecraft development process. The current capabilities of available processor technologies are then discussed, and these are projected to the generation of spacecraft computers currently under identified, funded development. An appraisal is provided for the current national developmental effort.
Defining technology dependence in children and adolescents.
Spratling, Regena
2015-05-01
The purpose of this review was to identify current terms and definitions used to identify and describe children and adolescents who require technology. A total of 400 articles published from January 2000 through May 2012 were reviewed; 26 articles met the inclusion criteria. The review included only primary research studies that focused on a child and adolescent sample (birth to 18 years old) who required technology. Current terms and definitions used to describe children and adolescents who require technology include technology and complex care. Technology is a constant in both terminology and definitions, and it differentiates this population from the general population of children with chronic illness and special health care needs. This review highlights the need for better, more detailed descriptions of the population of children and adolescents who require technology in their daily lives. © The Author(s) 2014.
Issues that Drive Waste Management Technology Development for Space Missions
NASA Technical Reports Server (NTRS)
Fisher, John W.; Levri, Julie A.; Hogan, John A.; Wignarajah, Kanapathipillai
2005-01-01
Waste management technologies for space life support systems are currently at low development levels. Manual compaction of waste in plastic bags and overboard disposal to earth return vehicles are the primary current waste management methods. Particularly on future missions, continuance of current waste management methods would tend to expose the crew to waste hazards, forfeit recoverable resources such as water, consume valuable crew time, contaminate planetary surfaces, and risk return to Earth of extraterrestrial life. Improvement of waste management capabilities is needed for adequate management of wastes. Improvements include recovery of water and other resources, conversion of waste to states harmless to humans, long-term containment of wastes, and disposal of waste. Current NASA requirements documents on waste management are generally not highly detailed. More detailed requirements are needed to guide the development of waste management technologies that will adequately manage waste. In addition to satisfying requirements, waste management technologies must also recover resources. Recovery of resources such as water and habitat volume can reduce mission cost. This paper explores the drivers for waste management technology development including requirements and resource recovery.
US computer research networks: Current and future
NASA Technical Reports Server (NTRS)
Kratochvil, D.; Sood, D.; Verostko, A.
1989-01-01
During the last decade, NASA LeRC's Communication Program has conducted a series of telecommunications forecasting studies to project trends and requirements and to identify critical telecommunications technologies that must be developed to meet future requirements. The Government Networks Division of Contel Federal Systems has assisted NASA in these studies, and the current study builds upon these earlier efforts. The current major thrust of the NASA Communications Program is aimed at developing the high risk, advanced, communications satellite and terminal technologies required to significantly increase the capacity of future communications systems. Also, major new technological, economic, and social-political events and trends are now shaping the communications industry of the future. Therefore, a re-examination of future telecommunications needs and requirements is necessary to enable NASA to make management decisions in its Communications Program and to ensure the proper technologies and systems are addressed. This study, through a series of Task Orders, is helping NASA define the likely communication service needs and requirements of the future and thereby ensuring that the most appropriate technology developments are pursued.
ISS ECLSS Technology Evolution for Exploration
NASA Technical Reports Server (NTRS)
Carrasquillo, Robyn
2005-01-01
The baseline environmental control and life support systems (ECLSS) currently deployed on the International Space Station (ISS) and the regenerative oxygen generation and water early 1990's. While they are generally meeting, or exceeding requirements for supporting the ISS crew, lessons learned from hardware development and on orbit experience, together with advances in technology state of the art, and th&e unique requirements for future manned exploration missions prompt consideration of the next steps to be taken to evolve these technologies to improve robustness and reliability, enhance performance, and reduce resource requirements such as power and logistics upmass This paper discusses the current state of ISS ECLSS technology and identifies possible areas for evolutionary enhancement or improvement.
NASA Technical Reports Server (NTRS)
Lange, R. H.; Sturgeon, R. F.; Adams, W. E.; Bradley, E. S.; Cahill, J. F.; Eudaily, R. R.; Hancock, J. P.; Moore, J. W.
1972-01-01
Investigations were conducted to evaluate the relative benefits attainable through the exploitation of advanced technologies and to identify future research and development efforts required to permit the application of selected technologies to transport aircraft entering commercial operation in 1985. Results show that technology advances, particularly in the areas of composite materials, supercritical aerodynamics, and active control systems, will permit the development of long-range, high-payload commercial transports operating at high-subsonic speeds with direct operating costs lower than those of current aircraft. These advanced transports also achieve lower noise levels and lower engine pollutant emissions than current transports. Research and development efforts, including analytical investigations, laboratory test programs, and flight test programs, are required in essentially all technology areas to achieve the potential technology benefits.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-12
... report entitled, ``Communications Requirements of Smart Grid Technologies.'' In this report, DOE sets... DOE in understanding current and future communications needs of the Smart Grid and how they may be met... technologies required to realize the many potential benefits of the Smart Grid, as well as the types of...
ISS ECLSS Technology Evolution for Exploration
NASA Technical Reports Server (NTRS)
Carrasquillo, Robyn L.
2005-01-01
The baseline environmental control and life support systems (ECLSS) currently deployed on the International Space Station (ISS) and the regenerative oxygen generation and water reclamation systems to be added in 2008 are based on technologies selected during the early 1990's. While they are generally meeting, or exceeding requirements for supporting the ISS crew, lessons learned from hardware development and on orbit experience, together with advances in technology state of the art, and the unique requirements for future manned exploration missions prompt consideration of the next steps to be taken to evolve these technologies to improve robustness and reliability, enhance performance, and reduce resource requirements such as power and logistics upmass. This paper discusses the current state of ISS ECLSS technology and identifies possible areas for evolutionary enhancement or improvement.
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Nichols, Kelvin F.; Witherspoon, Keith R.
2006-01-01
To date very little effort has been made to provide interoperability between various space agency projects. To effectively get to the Moon and beyond systems must interoperate. To provide interoperability, standardization and registries of various technologies will be required. These registries will be created as they relate to space flight. With the new NASA Moon/Mars initiative, a requirement to standardize and control the naming conventions of very disparate systems and technologies is emerging. The need to provide numbering to the many processes, schemas, vehicles, robots, space suits and technologies (e.g. versions), to name a few, in the highly complex Constellation initiative is imperative. The number of corporations, developer personnel, system interfaces, people interfaces will require standardization and registries on a scale not currently envisioned. It would only take one exception (stove piped system development) to weaken, if not, destroy interoperability. To start, a standardized registry process must be defined that allows many differing engineers, organizations and operators the ability to easily access disparate registry information across numerous technological and scientific disciplines. Once registries are standardized the need to provide registry support in terms of setup and operations, resolution of conflicts between registries and other issues will need to be addressed. Registries should not be confused with repositories. No end user data is "stored" in a registry nor is it a configuration control system. Once a registry standard is created and approved, the technologies that should be registered must be identified and prioritized. In this paper, we will identify and define a registry process that is compatible with the Constellation initiative and other non related space activities and organizations. We will then identify and define the various technologies that should use a registry to provide interoperability. The first set of technologies will be those that are currently in need of expansion namely the assignment of satellite designations and the process which controls assignments. Second, we will analyze the technologies currently standardized under the Consultative Committee for Space Data Systems (CCSDS) banner. Third, we will analyze the current CCSDS working group and Birds of a Feather (BoF) activities to ascertain registry requirements. Lastly, we will identify technologies that are either currently under the auspices of another standards body or technologies that are currently not standardized. For activities one through three, we will provide the analysis by either discipline or technology with rationale, identification and brief description of requirements and precedence. For activity four, we will provide a list of current standards bodies e.g. IETF and a list of potential candidates.
Technological Proficiency as a Key to Job Security. Trends and Issues Alert No. 6.
ERIC Educational Resources Information Center
Imel, Susan
Although not all current jobs require basic computer skills, technological advances in society have created new jobs and changed the ways many existing jobs are performed. Clearly, workers who are proficient in technology have a greater advantage in the current workplace and the need for technologically proficient workers will only continue to…
NASA Technical Reports Server (NTRS)
1982-01-01
The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability; (2) angle of attack limiting; (3) lateral/directional augmented stability; (4) gust load alleviation; (5) maneuver load control; and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.
Current state of OLED technology relative to military avionics requirements
NASA Astrophysics Data System (ADS)
Tchon, Joseph L.; Barnidge, Tracy J.; Hufnagel, Bruce D.; Bahadur, Birendra
2014-06-01
The paper will review optical and environmental performance thresholds required for OLED technology to be used on various military platforms. Life study results will be summarized to highlight trends while identifying remaining performance gaps to make this technology viable for future military avionics platforms.
A study of mass data storage technology for rocket engine data
NASA Technical Reports Server (NTRS)
Ready, John F.; Benser, Earl T.; Fritz, Bernard S.; Nelson, Scott A.; Stauffer, Donald R.; Volna, William M.
1990-01-01
The results of a nine month study program on mass data storage technology for rocket engine (especially the Space Shuttle Main Engine) health monitoring and control are summarized. The program had the objective of recommending a candidate mass data storage technology development for rocket engine health monitoring and control and of formulating a project plan and specification for that technology development. The work was divided into three major technical tasks: (1) development of requirements; (2) survey of mass data storage technologies; and (3) definition of a project plan and specification for technology development. The first of these tasks reviewed current data storage technology and developed a prioritized set of requirements for the health monitoring and control applications. The second task included a survey of state-of-the-art and newly developing technologies and a matrix-based ranking of the technologies. It culminated in a recommendation of optical disk technology as the best candidate for technology development. The final task defined a proof-of-concept demonstration, including tasks required to develop, test, analyze, and demonstrate the technology advancement, plus an estimate of the level of effort required. The recommended demonstration emphasizes development of an optical disk system which incorporates an order-of-magnitude increase in writing speed above the current state of the art.
Critical soft landing technology issues for future US space missions
NASA Technical Reports Server (NTRS)
Macha, J. M.; Johnson, D. W.; Mcbride, D. D.
1992-01-01
A programmatic need for research and development to support parachute-based landing systems has not existed since the end of the Apollo missions in the mid-1970s. Now, a number of planned space programs require advanced landing capabilities for which the experience and technology base does not currently exist. New requirements for landing on land with controllable, gliding decelerators and for more effective impact attenuation devices justify a renewal of the landing technology development effort that existed during the Mercury, Gemini, and Apollo programs. A study was performed to evaluate the current and projected national capability in landing systems and to identify critical deficiencies in the technology base required to support the Assured Crew Return Vehicle and the Two-Way Manned Transportation System. A technology development program covering eight landing system performance issues is recommended.
Evolution of the Baseline ISS ECLSS Technologies: The Next Logical Steps
NASA Technical Reports Server (NTRS)
Carrasquillo, Robyn L.; Bagdigian, Bob; Perry, Jay; Lewis, John; Williams, Dave
2004-01-01
The baseline Environmental Control and Life Support Systems which are currently deployed on the International Space Station or planned to be launched in Node 3 are based on technologies selected in the early 1990's. While they are generally meeting or exceeding requirements for supporting the ISS crew, lessons learned from years of on orbit and ground testing, new advances in technology state of the art, and requirements for future manned missions prompt consideration of the next logical step to enhance these systems to increase performance, robustness, reliability, and reduce on-orbit and logistical resource requirements. This paper discusses the current state of the art in ISS ECLSS technologies, and possible areas for enhancement/improvement. Potential utilization of the ISS as a testbed for on-orbit checkout of selected technology improvements is also addressed.
NASA Astrophysics Data System (ADS)
Chou, Shuo-Ju
2011-12-01
In recent years the United States has shifted from a threat-based acquisition policy that developed systems for countering specific threats to a capabilities-based strategy that emphasizes the acquisition of systems that provide critical national defense capabilities. This shift in policy, in theory, allows for the creation of an "optimal force" that is robust against current and future threats regardless of the tactics and scenario involved. In broad terms, robustness can be defined as the insensitivity of an outcome to "noise" or non-controlled variables. Within this context, the outcome is the successful achievement of defense strategies and the noise variables are tactics and scenarios that will be associated with current and future enemies. Unfortunately, a lack of system capability, budget, and schedule robustness against technology performance and development uncertainties has led to major setbacks in recent acquisition programs. This lack of robustness stems from the fact that immature technologies have uncertainties in their expected performance, development cost, and schedule that cause to variations in system effectiveness and program development budget and schedule requirements. Unfortunately, the Technology Readiness Assessment process currently used by acquisition program managers and decision-makers to measure technology uncertainty during critical program decision junctions does not adequately capture the impact of technology performance and development uncertainty on program capability and development metrics. The Technology Readiness Level metric employed by the TRA to describe program technology elements uncertainties can only provide a qualitative and non-descript estimation of the technology uncertainties. In order to assess program robustness, specifically requirements robustness, against technology performance and development uncertainties, a new process is needed. This process should provide acquisition program managers and decision-makers with the ability to assess or measure the robustness of program requirements against such uncertainties. A literature review of techniques for forecasting technology performance and development uncertainties and subsequent impacts on capability, budget, and schedule requirements resulted in the conclusion that an analysis process that coupled a probabilistic analysis technique such as Monte Carlo Simulations with quantitative and parametric models of technology performance impact and technology development time and cost requirements would allow the probabilities of meeting specific constraints of these requirements to be established. These probabilities of requirements success metrics can then be used as a quantitative and probabilistic measure of program requirements robustness against technology uncertainties. Combined with a Multi-Objective Genetic Algorithm optimization process and computer-based Decision Support System, critical information regarding requirements robustness against technology uncertainties can be captured and quantified for acquisition decision-makers. This results in a more informed and justifiable selection of program technologies during initial program definition as well as formulation of program development and risk management strategies. To meet the stated research objective, the ENhanced TEchnology Robustness Prediction and RISk Evaluation (ENTERPRISE) methodology was formulated to provide a structured and transparent process for integrating these enabling techniques to provide a probabilistic and quantitative assessment of acquisition program requirements robustness against technology performance and development uncertainties. In order to demonstrate the capabilities of the ENTERPRISE method and test the research Hypotheses, an demonstration application of this method was performed on a notional program for acquiring the Carrier-based Suppression of Enemy Air Defenses (SEAD) using Unmanned Combat Aircraft Systems (UCAS) and their enabling technologies. The results of this implementation provided valuable insights regarding the benefits and inner workings of this methodology as well as its limitations that should be addressed in the future to narrow the gap between current state and the desired state.
NASA's Microgravity Technology Report, 1996: Summary of Activities
NASA Technical Reports Server (NTRS)
Kierk, Isabella
1996-01-01
This report covers technology development and technology transfer activities within the Microgravity Science Research Programs during FY 1996. It also describes the recent major tasks under the Advanced Technology Development (ATD) Program and identifies current technology requirements. This document is consistent with NASA,s Enteprise for the Human Exploration and development of Space (HEDS) Strategic Plan. This annual update reflects changes in the Microgravity Science Research Program's new technology activities and requirements. Appendix A. FY 1996 Advanced Technology Development. Program and Project Descriptions. Appendix B. Technology Development.
NASA's Microgravity Technology Report: Summary of Activities 1997
NASA Technical Reports Server (NTRS)
Woodard, Dan
1998-01-01
The purpose of the 1997 NASA Microgravity Technology Report is to update the Microgravity Research Program's technology development policy and to present and assess current technology related activities and requirements identified within its research and technology disciplines.
1972-12-01
and inte- grating increasing numbers of specialists. For example, Information technology Is a relatively new development which has led to the creation...changes occurring in technology that require new information to be disseminated to all the managers whose jobs will be affected by the new technology . It is...requires an analysis of current and future needs of the manager and his organization. Information about alternatives or their discovery requires that
OAST system technology planning
NASA Technical Reports Server (NTRS)
Sadin, S. R.
1978-01-01
The NASA Office of Aeronautics and Space Technology developed a planning model for space technology consisting of a space systems technology model, technology forecasts and technology surveys. The technology model describes candidate space missions through the year 2000 and identifies their technology requirements. The technology surveys and technology forecasts provide, respectively, data on the current status and estimates of the projected status of relevant technologies. These tools are used to further the understanding of the activities and resources required to ensure the timely development of technological capabilities. Technology forecasting in the areas of information systems, spacecraft systems, transportation systems, and power systems are discussed.
Man-machine interface requirements - advanced technology
NASA Technical Reports Server (NTRS)
Remington, R. W.; Wiener, E. L.
1984-01-01
Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.
Bolometric detector systems for IR and mm-wave space astronomy
NASA Technical Reports Server (NTRS)
Church, S. E.; Lange, A. E.; Mauskopf, P. D.; Hristov, V.; Bock, J. J.; DelCastillo, H. M.; Beeman, J.; Ade, P. A. R.; Griffin, M. J.
1996-01-01
Recent developments in bolometric detector systems for millimeter and submillimeter wave space astronomy are described. Current technologies meet all the requirements for the high frequency instrument onboard the cosmic background radiation anisotropy satellite/satellite for the measurement of background anisotropies (COBRAS/SAMBA) platform. It is considered that the technologies that are currently being developed will significantly reduce the effective time constant and/or the cooling requirements of bolometric detectors. These technologies lend themselves to the fabrication of the large format arrays required for the Far Infrared and Submillimeter Space Telescope (FIRST). The scientific goals and detector requirements of the COBRAS/SAMBA platform that will use infrared bolometers are reviewed and the baseline detector system is described, including the feed optics, the infrared filters, the cold amplifiers and the warm readout electronics.
2016-01-01
development requires wind tunnels and ranges that do not currently exist. Furthermore, continued technology matura- tion is needed for thermal management...designed with conceptual design engine model (at existing technology level), or existing propul- sion system, or modified propulsion system (e.g...internal cameras reading gauges and dials and switch positions , directly tapping into current or future avion- ics service buses and integrating
Teipel, Stefan; König, Alexandra; Hoey, Jesse; Kaye, Jeff; Krüger, Frank; Robillard, Julie M; Kirste, Thomas; Babiloni, Claudio
2018-06-21
Cognitive function is an important end point of treatments in dementia clinical trials. Measuring cognitive function by standardized tests, however, is biased toward highly constrained environments (such as hospitals) in selected samples. Patient-powered real-world evidence using information and communication technology devices, including environmental and wearable sensors, may help to overcome these limitations. This position paper describes current and novel information and communication technology devices and algorithms to monitor behavior and function in people with prodromal and manifest stages of dementia continuously, and discusses clinical, technological, ethical, regulatory, and user-centered requirements for collecting real-world evidence in future randomized controlled trials. Challenges of data safety, quality, and privacy and regulatory requirements need to be addressed by future smart sensor technologies. When these requirements are satisfied, these technologies will provide access to truly user relevant outcomes and broader cohorts of participants than currently sampled in clinical trials. Copyright © 2018. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Moallem, Mahnaz
A study was conducted to analyze current job announcements in the field of instructional design and technology and to produce descriptive information that portrays the required skills and areas of knowledge for instructional technology graduates. Content analysis, in its general terms, was used as the research method for this study. One hundred…
Extending Ion Engine Technology to NEXT and Beyond
NASA Technical Reports Server (NTRS)
Domonkos, Matthew T.; Patterson, Michael J.; Foster, John E.; Rawlin, Vince K.; Soulas, George C.; Sovey, James S.; Kovaleski, Scott D.; Roman, Robert F.; Williams, George J., Jr.; Lyons, Valerie J. (Technical Monitor)
2002-01-01
Extending ion engine technology beyond the current state-of-the art primary interplanetary electric propulsion system, the 2.3-kW NASA Solar Electric Propulsion Technology and Applications Readiness (NSTAR) system, will require thrusters with improved propellant throughput and total impulse capability. Many of the design choices that culminated in the NSTAR thrusters must be revisited, and their application to next generation ion engine technology must be evaluated. The concept of derating, which was successfully employed in NSTAR, has been applied to the 40 cm NASA Evolutionary Xenon Thruster (NEXT) currently under development at NASA Glenn Research Center (GRC). At 5-kW, NEXT operates with the same average beam current density as NSTAR, and at 10-kW, the peak beam current density is only ten percent greater than NSTAR. The result is that similar Ion optics technology is expected to yield comparable lifetime. Thick-accelerator- grid ion optics are also being tested to realize additional lifetime benefits. A 40-A discharge cathode is being developed for NEXT based on scaling the NSTAR design. Nevertheless, the experiences of the NSTAR ground tests and the thruster on the Deep Space One spacecraft indicate that the discharge cathode wear must be studied experimentally and theoretically to ensure that it meets the lifetime requirements. Although NEXT is in its infancy, investigations have already begun to examine possible modifications to engine design for even higher-power and higher-specific impulse engines. Ion optics using alternate materials such as titanium, graphite, or carbon-carbon composite are currently being investigated due to their low sputter yields at high voltage. To avoid the difficulties encountered using electrodes at high-currents, the use of a microwave-based ion thruster is under investigation for potential high-power ion thruster systems requiring long lifetimes. Additionally, alternative propellants are being considered for applications requiring high-specific impulse (>> 5000 s) and extremely long-life (>> 15,000 hr). Testing requirements make condensable propellants attractive for high-power engines. Although the NSTAR ion engine demonstrated the flight maturity of ion thruster technology, many challenges remain for the development of thrusters with improved propellant throughput and power handling capabilities.
NASA Astrophysics Data System (ADS)
Murphy, K. L.; Rygalov, V. Ye.; Johnson, S. B.
2009-04-01
All artificial systems and components in space degrade at higher rates than on Earth, depending in part on environmental conditions, design approach, assembly technologies, and the materials used. This degradation involves not only the hardware and software systems but the humans that interact with those systems. All technological functions and systems can be expressed through functional dependence: [Function]˜[ERU]∗[RUIS]∗[ISR]/[DR];where [ERU]efficiency (rate) of environmental resource utilization[RUIS]resource utilization infrastructure[ISR]in situ resources[DR]degradation rateThe limited resources of spaceflight and open space for autonomous missions require a high reliability (maximum possible, approaching 100%) for system functioning and operation, and must minimize the rate of any system degradation. To date, only a continuous human presence with a system in the spaceflight environment can absolutely mitigate those degradations. This mitigation is based on environmental amelioration for both the technology systems, as repair of data and spare parts, and the humans, as exercise and psychological support. Such maintenance now requires huge infrastructures, including research and development complexes and management agencies, which currently cannot move beyond the Earth. When considering what is required to move manned spaceflight from near Earth stations to remote locations such as Mars, what are the minimal technologies and infrastructures necessary for autonomous restoration of a degrading system in space? In all of the known system factors of a mission to Mars that reduce the mass load, increase the reliability, and reduce the mission’s overall risk, the current common denominator is the use of undeveloped or untested technologies. None of the technologies required to significantly reduce the risk for critical systems are currently available at acceptable readiness levels. Long term interplanetary missions require that space programs produce a craft with all systems integrated so that they are of the highest reliability. Right now, with current technologies, we cannot guarantee this reliability for a crew of six for 1000 days to Mars and back. Investigation of the technologies to answer this need and a focus of resources and research on their advancement would significantly improve chances for a safe and successful mission.
X-43 Hypersonic Vehicle Technology Development
NASA Technical Reports Server (NTRS)
Voland, Randall T.; Huebner, Lawrence D.; McClinton, Charles R.
2005-01-01
NASA recently completed two major programs in Hypersonics: Hyper-X, with the record-breaking flights of the X-43A, and the Next Generation Launch Technology (NGLT) Program. The X-43A flights, the culmination of the Hyper-X Program, were the first-ever examples of a scramjet engine propelling a hypersonic vehicle and provided unique, convincing, detailed flight data required to validate the design tools needed for design and development of future operational hypersonic airbreathing vehicles. Concurrent with Hyper-X, NASA's NGLT Program focused on technologies needed for future revolutionary launch vehicles. The NGLT was "competed" by NASA in response to the President s redirection of the agency to space exploration, after making significant progress towards maturing technologies required to enable airbreathing hypersonic launch vehicles. NGLT quantified the benefits, identified technology needs, developed airframe and propulsion technology, chartered a broad University base, and developed detailed plans to mature and validate hypersonic airbreathing technology for space access. NASA is currently in the process of defining plans for a new Hypersonic Technology Program. Details of that plan are not currently available. This paper highlights results from the successful Mach 7 and 10 flights of the X-43A, and the current state of hypersonic technology.
From Research to Flight: Surviving the TRL Valley of Death for Robotic and Human Space Exploration
NASA Technical Reports Server (NTRS)
Johnson, Les
2009-01-01
There must be a plan or opportunities for flight validation: a) To reduce the bottleneck of new technologies at the TRL Valley of Death; b) To allow frequent infusion of new technologies into flight missions. Risk must be tolerated for new technology flight experiments. Risk must also be accepted on early-adopting missions to enable new capabilities. Fundamental research is critical to taking the next giant leap in the scientific exploration of space. Technology push is often required to meet current mission requirements. Technology management requires more than issuing NRAs and overseeing contracts.
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Nichols, Kelvin F.
2006-01-01
To date very little effort has been made to provide interoperability between various space agency projects. To effectively get to the Moon and beyond systems must interoperate. To provide interoperability, standardization and registries of various technologies will be required. These registries will be created as they relate to space flight. With the new NASA Moon/Mars initiative a requirement to standardize and control the naming conventions of very disparate systems and technologies are emerging. The need to provide numbering to the many processes, schemas, vehicles, robots, space suits and technologies (e.g. versions), to name a few, in the highly complex Constellation Initiative is imperative. The number of corporations, developer personnel, system interfaces, people interfaces will require standardization and registries on a scale not currently envisioned. It would only take one exception (stove piped system development) to weaken, if not, destroy interoperability. To start, a standardized registry process must be defined that allows many differing engineers, organizations and operators the ability to easily access disparate registry information across numerous technological and scientific disciplines. Once registries are standardized the need to provide registry support in terms of setup and operations, resolution of conflicts between registries and other issues will need to be addressed. Registries should not be confused with repositories. No end user data is "stored" in a registry nor is it a configuration control system. Once a registry standard is created and approved, the technologies that should be registered must be identified and prioritized. In this paper, we will identify and define a registry process that is compatible with the Constellation Initiative and other non related space activities and organizations. We will then identify and define the various technologies that should use a registry to provide interoperability. The first set of technologies will be those that are currently in need of expansion namely the assignment of satellite designations and the process which controls assignments. Second, we will analyze the technologies currently standardized under the Consultative Committee for Space Data Systems (CCSDS) banner. Third, we will analyze the current CCSDS working group and birds of a feather activities to ascertain registry requirements. Lastly, we will identify technologies that are either currently under the auspices of another
New Directions in Space Operations Services in Support of Interplanetary Exploration
NASA Technical Reports Server (NTRS)
Bradford, Robert N.
2005-01-01
To gain access to the necessary operational processes and data in support of NASA's Lunar/Mars Exploration Initiative, new services, adequate levels of computing cycles and access to myriad forms of data must be provided to onboard spacecraft and ground based personnel/systems (earth, lunar and Martian) to enable interplanetary exploration by humans. These systems, cycles and access to vast amounts of development, test and operational data will be required to provide a new level of services not currently available to existing spacecraft, on board crews and other operational personnel. Although current voice, video and data systems in support of current space based operations has been adequate, new highly reliable and autonomous processes and services will be necessary for future space exploration activities. These services will range from the more mundane voice in LEO to voice in interplanetary travel which because of the high latencies will require new voice processes and standards. New services, like component failure predictions based on data mining of significant quantities of data, located at disparate locations, will be required. 3D or holographic representation of onboard components, systems or family members will greatly improve maintenance, operations and service restoration not to mention crew morale. Current operational systems and standards, like the Internet Protocol, will not able to provide the level of service required end to end from an end point on the Martian surface like a scientific instrument to a researcher at a university. Ground operations whether earth, lunar or Martian and in flight operations to the moon and especially to Mars will require significant autonomy that will require access to highly reliable processing capabilities, data storage based on network storage technologies. Significant processing cycles will be needed onboard but could be borrowed from other locations either ground based or onboard other spacecraft. Reliability will be a key factor with onboard and distributed backup processing an absolutely necessary requirement. Current cluster processing/Grid technologies may provide the basis for providing these services. An overview of existing services, future services that will be required and the technologies and standards required to be developed will be presented. The purpose of this paper will be to initiate a technological roadmap, albeit at a high level, of current voice, video, data and network technologies and standards (which show promise for adaptation or evolution) to what technologies and standards need to be redefined, adjusted or areas where new ones require development. The roadmap should begin the differentiation between non manned and manned processes/services where applicable. The paper will be based in part on the activities of the CCSDS Monitor and Control working group which is beginning the process of standardization of the these processes. Another element of the paper will be based on an analysis of current technologies supporting space flight processes and services at JSC, MSFC, GSFC and to a lesser extent at KSC. Work being accomplished in areas such as Grid computing, data mining and network storage at ARC, IBM and the University of Alabama at Huntsville will be researched and analyzed.
Illustrating anticipatory life cycle assessment for emerging photovoltaic technologies.
Wender, Ben A; Foley, Rider W; Prado-Lopez, Valentina; Ravikumar, Dwarakanath; Eisenberg, Daniel A; Hottle, Troy A; Sadowski, Jathan; Flanagan, William P; Fisher, Angela; Laurin, Lise; Bates, Matthew E; Linkov, Igor; Seager, Thomas P; Fraser, Matthew P; Guston, David H
2014-09-16
Current research policy and strategy documents recommend applying life cycle assessment (LCA) early in research and development (R&D) to guide emerging technologies toward decreased environmental burden. However, existing LCA practices are ill-suited to support these recommendations. Barriers related to data availability, rapid technology change, and isolation of environmental from technical research inhibit application of LCA to developing technologies. Overcoming these challenges requires methodological advances that help identify environmental opportunities prior to large R&D investments. Such an anticipatory approach to LCA requires synthesis of social, environmental, and technical knowledge beyond the capabilities of current practices. This paper introduces a novel framework for anticipatory LCA that incorporates technology forecasting, risk research, social engagement, and comparative impact assessment, then applies this framework to photovoltaic (PV) technologies. These examples illustrate the potential for anticipatory LCA to prioritize research questions and help guide environmentally responsible innovation of emerging technologies.
Cryogenic Fluid Management Technology Development Roadmaps
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Johnson, W. L.
2017-01-01
Advancement in Cryogenic Fluid Management (CFM) Technologies is essential for achieving NASA's future long duration missions. Propulsion systems utilizing cryogens are necessary to achieve mission success. Current State Of the Art (SOA) CFM technologies enable cryogenic propellants to be stored for several hours. However, some envisioned mission architectures require cryogens to be stored for two years or longer. The fundamental roles of CFM technologies are long term storage of cryogens, propellant tank pressure control and propellant delivery. In the presence of heat, the cryogens will "boil-off" over time resulting in excessive pressure buildup, off-nominal propellant conditions, and propellant loss. To achieve long term storage and tank pressure control, the CFM elements will intercept and/or remove any heat from the propulsion system. All functions are required to perform both with and without the presence of a gravitational field. Which CFM technologies are required is a function of the cryogens used, mission architecture, vehicle design and propellant tank size. To enable NASA's crewed mission to the Martian surface, a total of seventeen CFM technologies have been identified to support an In-Space Stage and a Lander/Ascent Vehicle. Recognizing that FY2020 includes a Decision Point regarding the In-Space Stage Architecture, a set of CFM Technology Development Roadmaps have been created identifying the current Technology Readiness Level (TRL) of each element, current technology "gaps", and existing technology development efforts. The roadmaps include a methodical approach and schedule to achieve a flight demonstration in FY2023, hence maturing CFM technologies to TRL 7 for infusion into the In-Space Stage Preliminary Design.
NASA Technical Reports Server (NTRS)
Dudzinski, Leonard a.; Pencil, Eric J.; Dankanich, John W.
2007-01-01
The In-Space Propulsion Technology Project (ISPT) is currently NASA's sole investment in electric propulsion technologies. This project is managed at NASA Glenn Research Center (GRC) for the NASA Headquarters Science Mission Directorate (SMD). The objective of the electric propulsion project area is to develop near-term and midterm electric propulsion technologies to enhance or enable future NASA science missions while minimizing risk and cost to the end user. Systems analysis activities sponsored by ISPT seek to identify future mission applications in order to quantify mission requirements, as well as develop analytical capability in order to facilitate greater understanding and application of electric propulsion and other propulsion technologies in the ISPT portfolio. These analyses guide technology investments by informing decisions and defining metrics for technology development to meet identified mission requirements. This paper discusses the missions currently being studied for electric propulsion by the ISPT project, and presents the results of recent electric propulsion (EP) mission trades. Recent ISPT systems analysis activities include: an initiative to standardize life qualification methods for various electric propulsion systems in order to retire perceived risk to proposed EP missions; mission analysis to identify EP requirements from Discovery, New Frontiers, and Flagship classes of missions; and an evaluation of system requirements for radioisotope-powered electric propulsion. Progress and early results of these activities is discussed where available.
Technology gap assessment for a future large-aperture ultraviolet-optical-infrared space telescope
NASA Astrophysics Data System (ADS)
Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Crooke, Julie; Feinberg, Lee; Quijada, Manuel; Rauscher, Bernard J.; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl M.; Thronson, Harley
2016-10-01
The Advanced Technology Large Aperture Space Telescope (ATLAST) team identified five key technology areas to enable candidate architectures for a future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, "Enduring Quests, Daring Visions." The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technology areas are internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescope systems, detectors, and mirror coatings. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current technology readiness level (TRL), thus identifying the current technology gap. We also report on current, planned, or recommended efforts to develop each technology to TRL 5.
Review and status of liquid-cooling technology for gas turbines
NASA Technical Reports Server (NTRS)
Vanfossen, G. J., Jr.; Stepka, F. S.
1979-01-01
A review was conducted of liquid-cooled turbine technology. Selected liquid-cooled systems and methods are presented along with an assessment of the current technology status and requirements. A comprehensive bibliography is presented.
Preservice Technology Integration Course Revision: A Conceptual Guide
ERIC Educational Resources Information Center
Ottenbreit-Leftwich, Anne; Glazewski, Krista; Newby, Timothy
2010-01-01
With technology rapidly changing, preservice teacher technology skills improving, and highly qualified teacher licensure requirements, more teacher education programs may need to reevaluate how they are currently teaching technology. Although no empirical evidence recognizes the most effective experience, previous studies have indicated the…
NASA Astrophysics Data System (ADS)
Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley
2015-09-01
The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman;
2015-01-01
The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-11
... information about electricity infrastructure's current and projected communications requirements, as well as...'s electricity infrastructure need to employ adequate communications technologies that serve their... Smart Grid and the other technologies that will evolve and change how electricity is produced, consumed...
This report reviews current national data for small drinking water treatment systems, regulations pertaining to small systems, current treatment technologies, disposal of wastes, source water protection, security, and monitoring. The document serves as a roadmap for future small...
Solid Earth science in the 1990s. Volume 3: Measurement techniques and technology
NASA Technical Reports Server (NTRS)
1991-01-01
Reports are contained from the NASA Workshop on Solid Earth Science in the 1990s. The techniques and technologies needed to address the program objectives are discussed. The Measurement Technique and Technology Panel identified (1) candidate measurement systems for each of the measurements required for the Solid Earth Science Program that would fall under the NASA purview; (2) the capabilities and limitations of each technique; and (3) the developments necessary for each technique to meet the science panel requirements. In nearly all cases, current technology or a development path with existing technology was identified as capable of meeting the requirements of the science panels. These technologies and development paths are discussed.
ERIC Educational Resources Information Center
Pododimenko, Inna
2014-01-01
The problem of professional training of skilled human personnel in the industry of information communication technology, the urgency of which is recognized at the state level of Ukraine and the world, has been considered. It has been traced that constantly growing requirements of the labour market, swift scientific progress require the use of…
Usage of information safety requirements in improving tube bending process
NASA Astrophysics Data System (ADS)
Livshitz, I. I.; Kunakov, E.; Lontsikh, P. A.
2018-05-01
This article is devoted to an improvement of the technological process's analysis with the information security requirements implementation. The aim of this research is the competition increase analysis in aircraft industry enterprises due to the information technology implementation by the example of the tube bending technological process. The article analyzes tube bending kinds and current technique. In addition, a potential risks analysis in a tube bending technological process is carried out in terms of information security.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emmanuel Ohene Opare, Jr.; Charles V. Park
The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is authored by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype fourth generation nuclear reactor to meet the needs of the 21st Century. A section in this document proposes that the NGNP will provide heat for process heat applications. As with all large projects developing and deploying new technologies, the NGNP is expected to meet high performance and availability targets relative to current state of the art systems and technology. One requirement for the NGNP is to provide heatmore » for the generation of hydrogen for large scale productions and this process heat application is required to be at least 90% or more available relative to other technologies currently on the market. To reach this goal, a RAM Roadmap was developed highlighting the actions to be taken to ensure that various milestones in system development and maturation concurrently meet required availability requirements. Integral to the RAM Roadmap was the use of a RAM analytical/simulation tool which was used to estimate the availability of the system when deployed based on current design configuration and the maturation level of the system.« less
Space Station Freedom resource allocation accommodation of technology payload requirements
NASA Technical Reports Server (NTRS)
Avery, Don E.; Collier, Lisa D.; Gartrell, Charles F.
1990-01-01
An overview of the Office of Aeronautics, Exploration, and Technology (OAET) Space Station Freedom Technology Payload Development Program is provided, and the OAET Station resource requirements are reviewed. The requirements are contrasted with current proposed resource allocations. A discussion of the issues and conclusions are provided. It is concluded that an overall 20 percent resource allocation is appropriate to support OAET's technology development program, that some resources are inadequate even at the 20 percent level, and that bartering resources among U.S. users and international partners and increasing the level of automation may be viable solutions to the resource constraint problem.
From Research to Flight: Surviving the TRL Valley of Death for Robotic and Human Exploration
NASA Technical Reports Server (NTRS)
Johnson, Les
2009-01-01
Fundamental research is critical to taking the next giant leap in the scientific exploration of space. NASA should be pushing the envelope and asking "what if?" .. Technology push enables new capabilities. When NASA began, everything was enabling. .. Technology pull is often required to meet current mission requirements. Technology management requires more than issuing NRAs and overseeing contracts. Continuous assessment, peer review, and system systems studies are vital to credible TRL advancement. A strategy for taking technology R&D to new heights will lead to discoveries at far-reaching destinations..
Structures and Materials Technologies for Extreme Environments Applied to Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.; Clay, Christopher; Rezin, Marc
2003-01-01
This paper provides an overview of the evolution of structures and materials technology approaches to survive the challenging extreme environments encountered by earth-to-orbit space transportation systems, with emphasis on more recent developments in the USA. The evolution of technology requirements and experience in the various approaches to meeting these requirements has significantly influenced the technology approaches. While previous goals were primarily performance driven, more recently dramatic improvements in costs/operations and in safety have been paramount goals. Technologies that focus on the cost/operations and safety goals in the area of hot structures and thermal protection systems for reusable launch vehicles are presented. Assessments of the potential ability of the various technologies to satisfy the technology requirements, and their current technology readiness status are also presented.
NASA Astrophysics Data System (ADS)
Hussain, Azham; Mkpojiogu, Emmanuel O. C.; Abdullah, Inam
2016-08-01
Requirements Engineering (RE) is a systemic and integrated process of eliciting, elaborating, negotiating, validating and managing of the requirements of a system in a software development project. UUM has been supported by various systems developed and maintained by the UUM Information Technology (UUMIT) Centre. The aim of this study was to assess the current requirements engineering practices at UUMIT. The main problem that prompted this research is the lack of studies that support software development activities at the UUMIT. The study is geared at helping UUMIT produce quality but time and cost saving software products by implementing cutting edge and state of the art requirements engineering practices. Also, the study contributes to UUM by identifying the activities needed for software development so that the management will be able to allocate budget to provide adequate and precise training for the software developers. Three variables were investigated: Requirement Description, Requirements Development (comprising: Requirements Elicitation, Requirements Analysis and Negotiation, Requirements Validation), and Requirement Management. The results from the study showed that the current practice of requirement engineering in UUMIT is encouraging, but still need further development and improvement because a few RE practices were seldom practiced.
Advanced thermal control technology for commercial applications
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.
1991-01-01
A number of the technologies previously developed for the thermal control of spacecraft have found their way into commercial application. Specialized coatings and heat pipes are but two examples. The thermal control of current and future spacecraft is becoming increasingly more demanding, and a variety of new technologies are being developed to meet these needs. Closed two-phase loops are perceived to be the answer to many of the new requirements. All of these technologies are discussed, and their spacecraft and current terrestrial applications are summarized.
Using Scientific Detective Videos to Support the Design of Technology Learning Activities
ERIC Educational Resources Information Center
Yu, Kuang-Chao; Fan, Szu-Chun; Tsai, Fu-Hsing; Chu, Yih-hsien
2013-01-01
This article examines the effect of scientific detective video as a vehicle to support the design of technology activities by technology teachers. Ten graduate students, including current and future technology teachers, participated in a required technology graduate course that used scientific detective videos as a pedagogical tool to motivate…
Cargo launch vehicles to low earth orbit
NASA Technical Reports Server (NTRS)
Austin, Robert E.
1990-01-01
There are two primary space transportation capabilities required to support both base programs and expanded mission requirements: earth-to-orbit (ETO) transportation systems and space transfer vehicle systems. Existing and new ETO vehicles required to support mission requirements, and planned robotic missions, along with currently planned ETO vehicles are provided. Lunar outposts, Mars' outposts, base and expanded model, ETO vehicles, advanced avionics technologies, expert systems, network architecture and operations systems, and technology transfer are discussed.
Forensic Information Warfare Requirement Study
2002-06-01
technologies that are taking place now and in the near future that will adversely impact the current technologies and require additional sophistication...WetStone Technologies, Inc. moderated a panel at the Economic Crime Investigation Institute’s Ninth Annual Conference (Fraud Management in the Twenty-First...second, to ascertain the legal impact of these tools. Their report was delivered to AFRL and provides an in-depth look into these areas. 8 Computer
A review of security of electronic health records.
Win, Khin Than
The objective of this study is to answer the research question, "Are current information security technologies adequate for electronic health records (EHRs)?" In order to achieve this, the following matters have been addressed in this article: (i) What is information security in the context of EHRs? (ii) Why is information security important for EHRs? and (iii) What are the current technologies for information security available to EHRs? It is concluded that current EHR security technologies are inadequate and urgently require improvement. Further study regarding information security of EHRs is indicated.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-16
... PRA Officer, Office of Information Technology (OIT), TSA-11, Transportation Security Administration... technological collection techniques or other forms of information technology. Information Collection Requirement... Paperwork Reduction Act Officer, Office of Information Technology. [FR Doc. 2013-19973 Filed 8-15-13; 8:45...
Textile Technologies and Tissue Engineering: A Path Towards Organ Weaving
Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein
2016-01-01
Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, pore size and mechanical properties of the fabrics play important role in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. PMID:26924450
Status of NASA's Advanced Radioisotope Power Conversion Technology Research and Development
NASA Technical Reports Server (NTRS)
Wong, Wayne A.; Anderson, David J.; Tuttle, Karen L.; Tew, Roy C.
2006-01-01
NASA s Advanced Radioisotope Power Systems (RPS) development program is funding the advancement of next generation power conversion technologies that will enable future missions that have requirements that can not be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power Systems (RPS). Requirements of advanced radioisotope power systems include high efficiency and high specific power (watts/kilogram) in order to meet mission requirements with less radioisotope fuel and lower mass. Other Advanced RPS development goals include long-life, reliability, and scalability so that these systems can meet requirements for a variety of future space applications including continual operation surface missions, outer-planetary missions, and solar probe. This paper provides an update on the Radioisotope Power Conversion Technology Project which awarded ten Phase I contracts for research and development of a variety of power conversion technologies consisting of Brayton, Stirling, thermoelectrics, and thermophotovoltaics. Three of the contracts continue during the current Phase II in the areas of thermoelectric and Stirling power conversion. The accomplishments to date of the contractors, project plans, and status will be summarized.
Tribology needs for future space and aeronautical systems
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
1991-01-01
Future aeronautical and space missions will push tribology technology beyond its current capability. The objective is to discuss the current state of the art of tribology as it is applied to advanced aircraft and spacecraft. Areas of discussion include materials lubrication mechanisms, factors affecting lubrication, current and future tribological problem areas, potential new lubrication techniques, and perceived technology requirements that need to be met in order to solve these tribology problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, B.C.; Harman, G.; Pitsenbarger, J.
1996-02-01
Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.
An Assessment of Aerocapture and Applications to Future Missions to Uranus and Neptune
NASA Astrophysics Data System (ADS)
Beauchamp, P. M.; Spilker, T. R.
2017-12-01
Our investigation examined the current state of readiness of aerocapture at several destinations of interest, including Uranus and Neptune, to identify what technologies are needed, and to determine if a technology demonstration mission is required, prior to the first use of aerocapture for a science mission. The study team concluded that the current state of readiness is destination dependent, with aerocaptured missions feasible at Venus, Mars, and Titan with current technologies. The use of aerocapture for orbit insertion at the ice giant planets Uranus and Neptune requires at least additional study to assess the expected performance of new guidance, navigation, and control algorithms, and possible development of new hardware, such as a mid-L/D entry vehicle shape or new thermal protection system materials. A variety of near-term activities could contribute to risk reduction for missions proposing use of aerocapture, but a system-level technology demonstration mission is not deemed necessary before the use of aerocapture for a NASA science mission.
Emerging technologies in healthcare: navigating risks, evaluating rewards.
McGrady, Elizabeth; Conger, Sue; Blanke, Sandra; Landry, Brett J L
2010-01-01
The purpose of this prescriptive research is to help decision makers become better informed about three technologies emerging in the healthcare arena by providing a basic description of the technology and describing their current applications, future healthcare deployment, potential risks, and related managerial issues. Two of the technologies, radio frequency identification (RFID) and global positioning systems (GPS), are currently available to healthcare organizations and appear capable of decreasing cost but may require significant initial investment and have disruptive potential. The third technology, nanotechnology, has limited current use but may revolutionize both the delivery of medicine and hospital infrastructure management. With cautious attention to managerial issues and meticulous attention to implementation details, healthcare organizations that can successfully navigate the coming technologically driven paradigm shifts will emerge more resilient organizations.
Summary of the NASA Science Instrument, Observatory and Sensor System (SIOSS) Technology Assessment
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Barney, Rich; Bauman, Jill; Feinberg, Lee; McCleese, Dan; Singh, Upendra
2011-01-01
Technology advancement is required to enable NASA's high priority missions of the future. To prepare for those missions requires a roadmap of how to get from the current state of the art to where technology needs to be in 5, 10, 15 and 20 years. SIOSS identifies where substantial enhancements in mission capabilities are needed and provides strategic guidance for the agency's budget formulation and prioritization process.
Solar Sail Propulsion: Enabling New Capabilities for Heliophysics
NASA Technical Reports Server (NTRS)
Johnson, L.; Young, R.; Alhorn, D.; Heaton, A.; Vansant, T.; Campbell, B.; Pappa, R.; Keats, W.; Liewer, P. C.; Alexander, D.;
2010-01-01
Solar sails can play a critical role in enabling solar and heliophysics missions. Solar sail technology within NASA is currently at 80% of TRL-6, suitable for an in-flight technology demonstration. It is conceivable that an initial demonstration could carry scientific payloads that, depending on the type of mission, are commensurate with the goals of the three study panels of the 2010 Heliophysics Survey. Follow-on solar sail missions, leveraging advances in solar sail technology to support Heliophysics Survey goals, would then be feasible. This white paper reports on a sampling of missions enabled by solar sails, the current state of the technology, and what funding is required to advance the current state of technology such that solar sails can enable these missions
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David
2016-01-01
The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.
Initial Technology Assessment for the Large UV-Optical-Infrared (LUVOIR) Mission Concept Study
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Feinberg, Lee D.; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David
2016-01-01
The NASA Astrophysics Divisions 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet-optical-infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for bio-signatures via direct-imaging and spectroscopic characterization of habitable exo-planets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV-Optical Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.
Survey of Enabling Technologies for CAPS
NASA Technical Reports Server (NTRS)
Antol, Jeffrey; Mazanek, Daniel D.; Koons, Robert H.
2005-01-01
The enabling technologies required for the development of a viable Comet/Asteroid Protection System (CAPS) can be divided into two principal areas: detection and deflection/orbit modification. With the proper funding levels, many of the technologies needed to support a CAPS architecture could be achievable within the next 15 to 20 years. In fact, many advanced detection technologies are currently in development for future in-space telescope systems such as the James Webb Space Telescope (JWST), formerly known as the Next Generation Space Telescope. It is anticipated that many of the JWST technologies would be available for application for CAPS detection concepts. Deflection/orbit modification technologies are also currently being studied as part of advanced power and propulsion research. However, many of these technologies, such as extremely high-output power systems, advanced propulsion, heat rejection, and directed energy systems, would likely be farther term in availability than many of the detection technologies. Discussed subsequently is a preliminary examination of the main technologies that have been identified as being essential to providing the element functionality defined during the CAPS conceptual study. The detailed requirements for many of the technology areas are still unknown, and many additional technologies will be identified as future in-depth studies are conducted in this area.
Extended mission life support systems
NASA Technical Reports Server (NTRS)
Quattrone, P. D.
1985-01-01
Extended manned space missions which include interplanetary missions require regenerative life support systems. Manned mission life support considerations are placed in perspective and previous manned space life support system technology, activities and accomplishments in current supporting research and technology (SR&T) programs are reviewed. The life support subsystem/system technologies required for an enhanced duration orbiter (EDO) and a space operations center (SOC), regenerative life support functions and technology required for manned interplanetary flight vehicles, and future development requirements are outlined. The Space Shuttle Orbiters (space transportation system) is space cabin atmosphere is maintained at Earth ambient pressure of 14.7 psia (20% O2 and 80% N2). The early Shuttle flights will be seven-day flights, and the life support system flight hardware will still utilize expendables.
The goals of this workshop were to: (1) increase the cluster leaders’ level of knowledge regarding past and current water technology testing programs, facilities and requirements; (2) learn from the experiences of technology vendors in getting innovative, commercial-ready product...
Giang, Amanda; Stokes, Leah C; Streets, David G; Corbitt, Elizabeth S; Selin, Noelle E
2015-05-05
We explore implications of the United Nations Minamata Convention on Mercury for emissions from Asian coal-fired power generation, and resulting changes to deposition worldwide by 2050. We use engineering analysis, document analysis, and interviews to construct plausible technology scenarios consistent with the Convention. We translate these scenarios into emissions projections for 2050, and use the GEOS-Chem model to calculate global mercury deposition. Where technology requirements in the Convention are flexibly defined, under a global energy and development scenario that relies heavily on coal, we project ∼90 and 150 Mg·y(-1) of avoided power sector emissions for China and India, respectively, in 2050, compared to a scenario in which only current technologies are used. Benefits of this avoided emissions growth are primarily captured regionally, with projected changes in annual average gross deposition over China and India ∼2 and 13 μg·m(-2) lower, respectively, than the current technology case. Stricter, but technologically feasible, mercury control requirements in both countries could lead to a combined additional 170 Mg·y(-1) avoided emissions. Assuming only current technologies but a global transition away from coal avoids 6% and 36% more emissions than this strict technology scenario under heavy coal use for China and India, respectively.
Initiating the 2002 Mars Science Laboratory (MSL) Technology Program
NASA Technical Reports Server (NTRS)
Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.; Henderson, Rebecca
2004-01-01
The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to investigate the Martian environment and requires new capabilities that are currently are not available. The MSL Technology Program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by JPL and is divided into a Focused Program and a Base Program. The MSL Technology Program is under the focused program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology's requirements and the development process are tightly coordinated with the Project. The MSL Technology Program combines the proven management techniques of flight projects with the commercial technology management strategies of industry and academia, to create a technology management program that meets the short-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas discussed in this paper include technology definition, task selection, technology management, and technology assessment. This paper also provides an update of the 2003 MSL technology program and examines some of the drivers that changed the program from its initiation.
Forty and 80 GHz technology assessment and forecast including executive summary
NASA Technical Reports Server (NTRS)
Mazur, D. G.; Mackey, R. J., Jr.; Tanner, S. G.; Altman, F. J.; Nicholas, J. J., Jr.; Duchaine, K. A.
1976-01-01
The results of a survey to determine current demand and to forecast growth in demand for use of the 40 and 80 GHz bands during the 1980-2000 time period are given. The current state-of-the-art is presented, as well as the technology requirements of current and projected services. Potential developments were identified, and a forecast is made. The impacts of atmospheric attenuation in the 40 and 80 GHz bands were estimated for both with and without diversity. Three services for the 1980-2000 time period -- interactive television, high quality three stereo pair audio, and 30 MB data -- are given with system requirements and up and down-link calculations.
Prospects for Geostationary Doppler Weather Radar
NASA Technical Reports Server (NTRS)
Tanelli, Simone; Fang, Houfei; Durden, Stephen L.; Im, Eastwood; Rhamat-Samii, Yahya
2009-01-01
A novel mission concept, namely NEXRAD in Space (NIS), was developed for detailed monitoring of hurricanes, cyclones, and severe storms from a geostationary orbit. This mission concept requires a space deployable 35-m diameter reflector that operates at 35-GHz with a surface figure accuracy requirement of 0.21 mm RMS. This reflector is well beyond the current state-of-the-art. To implement this mission concept, several potential technologies associated with large, lightweight, spaceborne reflectors have been investigated by this study. These spaceborne reflector technologies include mesh reflector technology, inflatable membrane reflector technology and Shape Memory Polymer reflector technology.
Satellite applications to electric-utility communications needs. [land mobile satellite service
NASA Technical Reports Server (NTRS)
Horstein, M.; Barnett, R.
1981-01-01
Significant changes in the Nation's electric power systems are expected to result from the integration of new technology, possible during the next decade. Digital communications for monitor and control, exclusive of protective relaying, are expected to double or triple current traffic. A nationwide estimate of 13 Mb/s traffic is projected. Of this total, 8 Mb/s is attributed to the bulk-power system as it is now being operated (4 Mb/s). This traffic could be accommodated by current communications satellites using 3- to 4.5-m-diameter ground terminals costing $35,000 to $70,000 each. The remaining 5-Mb/s traffic is attributed to new technology concepts integrated into the distribution system. Such traffic is not compatible with current satellite technology because it requires small, low-cost ground terminals. Therefore, a high effective isotropic radiated power satellite, such as the one being planned by NASA for the Land Mobile Satellite Service, is required.
Advanced Technologies to Improve Closure of Life Support Systems
NASA Technical Reports Server (NTRS)
Barta, Daniel J.
2016-01-01
As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Candidate technologies will potentially improve the recovery of oxygen from about 50% (for the CRA) to as much as 100% for technologies who's end product is solid carbon. Improving the efficiency of water recycling and recovery can be achieved by the addition of advanced technologies to recover water from brines and solid wastes. Bioregenerative technologies may be utilized for water reclaimation and also for the production of food. Use of higher plants will simultaneously benefit atmosphere revitalization and water recovery through photosynthesis and transpiration. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.
Toward an electrical power utility for space exploration
NASA Technical Reports Server (NTRS)
Bercaw, Robert W.
1989-01-01
Plans for space exploration depend on today's technology programs addressing the novel requirements of space-based enterprise. The requirements for electrical power will be formidable: megawatts in magnitude, reliability for multi-year missions and the flexibility to adapt to needs unanticipated at design time. The reasons for considering the power management and distribution in the various systems from a total mission perspective, rather than simply extrapolating current spacecraft design practice, are discussed. A utility approach to electric power being developed at the Lewis Research Center is described. It integrates requirements from a broad selection of current development programs with studies in which both space and terrestrial technologies are conceptually applied to exploration mission scenarios.
Solar Sail Models and Test Measurements Correspondence for Validation Requirements Definition
NASA Technical Reports Server (NTRS)
Ewing, Anthony; Adams, Charles
2004-01-01
Solar sails are being developed as a mission-enabling technology in support of future NASA science missions. Current efforts have advanced solar sail technology sufficient to justify a flight validation program. A primary objective of this activity is to test and validate solar sail models that are currently under development so that they may be used with confidence in future science mission development (e.g., scalable to larger sails). Both system and model validation requirements must be defined early in the program to guide design cycles and to ensure that relevant and sufficient test data will be obtained to conduct model validation to the level required. A process of model identification, model input/output documentation, model sensitivity analyses, and test measurement correspondence is required so that decisions can be made to satisfy validation requirements within program constraints.
Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving.
Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein; Khademhosseini, Ali
2016-04-06
Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, microarchitecture, and mechanical properties of the fabrics play important roles in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA's Advanced Radioisotope Power Conversion Technology Development Status
NASA Technical Reports Server (NTRS)
Anderson, David J.; Sankovic, John; Wilt, David; Abelson, Robert D.; Fleurial, Jean-Pierre
2007-01-01
NASA's Advanced Radioisotope Power Systems (ARPS) project is developing the next generation of radioisotope power conversion technologies that will enable future missions that have requirements that cannot be met by either photovoltaic systems or by current radioisotope power systems (RPSs). Requirements of advanced RPSs include high efficiency and high specific power (watts/kilogram) in order to meet future mission requirements with less radioisotope fuel and lower mass so that these systems can meet requirements for a variety of future space applications, including continual operation surface missions, outer-planetary missions, and solar probe. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. Advanced RPS development goals also include long-life, reliability, and scalability. This paper provides an update on the contractual efforts under the Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) for research and development of Stirling, thermoelectric, and thermophotovoltaic power conversion technologies. The paper summarizes the current RPCT NRA efforts with a brief description of the effort, a status and/or summary of the contractor's key accomplishments, a discussion of upcoming plans, and a discussion of relevant system-level benefits and implications. The paper also provides a general discussion of the benefits from the development of these advanced power conversion technologies and the eventual payoffs to future missions (discussing system benefits due to overall improvements in efficiency, specific power, etc.).
Transforming Nursing Education With Apple Technology.
Clark, Angela; Glazer, Greer; Edwards, Christopher; Pryse, Yvette
The widespread adoption of technology has the potential to redefine nursing education. Currently, there is limited knowledge of how to implement technological advancements in nursing curricula. This article describes 1 college's journey to transform nursing education through leadership, professional development, and innovative learning and teaching. The iPad opens the classroom experience to resources and learning opportunities for students. Facilitating the culture change required to adopt the iPad as a teaching and learning tool required a supportive vision, strong leadership, commitment to provide adequate technological support, early adopters, and planning.
Staying connected: online education engagement and retention using educational technology tools.
Salazar, Jose
2010-01-01
The objective of this article is to inform educators about the use of currently available educational technology tools to promote student retention, engagement and interaction in online courses. Educational technology tools include content management systems, podcasts, video lecture capture technology and electronic discussion boards. Successful use of educational technology tools requires planning, organization and use of effective learning strategies.
Precise time technology for selected Air Force systems: Present status and future requirements
NASA Technical Reports Server (NTRS)
Yannoni, N. F.
1981-01-01
Precise time and time interval (PTTI) technology is becoming increasingly significant to Air Force operations as digital techniques find expanded utility in military missions. Timing has a key role in the function as well as in navigation. A survey of the PTTI needs of several Air Force systems is presented. Current technology supporting these needs was reviewed and new requirements are emphasized for systems as they transfer from initial development to final operational deployment.
Terrestrial Planet Finder Coronagraph and Enabling Technologies
NASA Technical Reports Server (NTRS)
Ford, Virginia G.
2005-01-01
Starlight suppression research is Stowed in Delta IV-H advancing rapidly to approach the required contrast ratio. The current analysis of the TPF Coronagraph system indicates that it is feasible to achieve the stability required by using developing technologies: a) Wave Front Sensing and Control (DMs, control algorithms, and sensing); b) Laser metrology. Yet needed: a) Property data measured with great precision in the required environments; b) Modeling tools that are verified with testbeds.
78 FR 32417 - Intent To Request Renewal From OMB of One Current Public Collection of Information...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-30
... Officer, Office of Information Technology (OIT), TSA-11, Transportation Security Administration, 601 South... technological collection techniques or other forms of information technology. Information Collection Requirement... provide fingerprints and undergo a criminal history records check. The program implements authorities set...
Giant step for communication satellite technology
NASA Technical Reports Server (NTRS)
Lovell, R. R.
1984-01-01
NASA's communications program, which is concerned with advanced communications technology, reflects the need for operational communications satellite capacity beyond the capabilities of current technology and the unwillingness of private industry in the U.S. to undertake making the required long-range, high-risk technology advances. It is pointed out that current satellites will not satisfy the forecasted demand for additional capacity in the 1990s and beyond. Current technology exists primarily up to 18 GHz. Designing a communications satellite at each of the three major uplink/downlink frequency bands (C, Ku, and Ka, 6/4 GHz, 14/11 GHz, and 30/20 GHz, respectively) presents different program management and technical problems. Increasing frequency or power can be done only by intensive sustained research. This is the rationale for NASA to pursue the Advanced Communications Technology Satellite (ACTS) program.
Giant step for communication satellite technology
NASA Astrophysics Data System (ADS)
Lovell, R. R.
1984-03-01
NASA's communications program, which is concerned with advanced communications technology, reflects the need for operational communications satellite capacity beyond the capabilities of current technology and the unwillingness of private industry in the U.S. to undertake making the required long-range, high-risk technology advances. It is pointed out that current satellites will not satisfy the forecasted demand for additional capacity in the 1990s and beyond. Current technology exists primarily up to 18 GHz. Designing a communications satellite at each of the three major uplink/downlink frequency bands (C, Ku, and Ka, 6/4 GHz, 14/11 GHz, and 30/20 GHz, respectively) presents different program management and technical problems. Increasing frequency or power can be done only by intensive sustained research. This is the rationale for NASA to pursue the Advanced Communications Technology Satellite (ACTS) program.
Computational needs survey of NASA automation and robotics missions. Volume 1: Survey and results
NASA Technical Reports Server (NTRS)
Davis, Gloria J.
1991-01-01
NASA's operational use of advanced processor technology in space systems lags behind its commercial development by more than eight years. One of the factors contributing to this is that mission computing requirements are frequently unknown, unstated, misrepresented, or simply not available in a timely manner. NASA must provide clear common requirements to make better use of available technology, to cut development lead time on deployable architectures, and to increase the utilization of new technology. A preliminary set of advanced mission computational processing requirements of automation and robotics (A&R) systems are provided for use by NASA, industry, and academic communities. These results were obtained in an assessment of the computational needs of current projects throughout NASA. The high percent of responses indicated a general need for enhanced computational capabilities beyond the currently available 80386 and 68020 processor technology. Because of the need for faster processors and more memory, 90 percent of the polled automation projects have reduced or will reduce the scope of their implementation capabilities. The requirements are presented with respect to their targeted environment, identifying the applications required, system performance levels necessary to support them, and the degree to which they are met with typical programmatic constraints. Volume one includes the survey and results. Volume two contains the appendixes.
Computational needs survey of NASA automation and robotics missions. Volume 2: Appendixes
NASA Technical Reports Server (NTRS)
Davis, Gloria J.
1991-01-01
NASA's operational use of advanced processor technology in space systems lags behind its commercial development by more than eight years. One of the factors contributing to this is the fact that mission computing requirements are frequency unknown, unstated, misrepresented, or simply not available in a timely manner. NASA must provide clear common requirements to make better use of available technology, to cut development lead time on deployable architectures, and to increase the utilization of new technology. Here, NASA, industry and academic communities are provided with a preliminary set of advanced mission computational processing requirements of automation and robotics (A and R) systems. The results were obtained in an assessment of the computational needs of current projects throughout NASA. The high percent of responses indicated a general need for enhanced computational capabilities beyond the currently available 80386 and 68020 processor technology. Because of the need for faster processors and more memory, 90 percent of the polled automation projects have reduced or will reduce the scope of their implemented capabilities. The requirements are presented with respect to their targeted environment, identifying the applications required, system performance levels necessary to support them, and the degree to which they are met with typical programmatic constraints. Here, appendixes are provided.
Digital control of highly augmented combat rotorcraft
NASA Technical Reports Server (NTRS)
Tischler, Mark B.
1987-01-01
Proposed concepts for the next generation of combat helicopters are to be embodied in a complex, highly maneuverable, multiroled vehicle with avionics systems. Single pilot and nap-of-the-Earth operations require handling qualities which minimize the involvement of the pilot in basic stabilization tasks. To meet these requirements will demand a full authority, high-gain, multimode, multiply-redundant, digital flight-control system. The gap between these requirements and current low-authority, low-bandwidth operational rotorcraft flight-control technology is considerable. This research aims at smoothing the transition between current technology and advanced concept requirements. The state of the art of high-bandwidth digital flight-control systems are reviewed; areas of specific concern for flight-control systems of modern combat are exposed; and the important concepts are illustrated in design and analysis of high-gain, digital systems with a detailed case study involving a current rotorcraft system. Approximate and exact methods are explained and illustrated for treating the important concerns which are unique to digital systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-08
... and with current Federal NSR regulations. These definitions include clean coal technology, electric... restrictions on increment consumption, add innovative control technology as an alternative to BACT requirements... initials RACT mean or refer to Reasonably Available Control Technology, and the initials NAAQS mean or...
Information Technology Training within Traineeships: Options for TAFE-Based Courses.
ERIC Educational Resources Information Center
Hall, W.; And Others
A study explored ways in which traineeship courses could be designed to include training in information technology. The skills and performance standards required of information technology training in the printing, tourism, banking, construction, and computer industries were identified. Next, the current provision of such training in Australia and…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-30
... TSA PRA Officer, Office of Information Technology (OIT), TSA-11, Transportation Security... technological collection techniques or other forms of information technology. Information Collection Requirement... history records check (CHRC), (2) a name-based check to determine whether the individual poses or is...
Review of the Semiconductor Industry and Technology Roadmap.
ERIC Educational Resources Information Center
Kumar, Sameer; Krenner, Nicole
2002-01-01
Points out that the semiconductor industry is extremely competitive and requires ongoing technological advances to improve performance while reducing costs to remain competitive and how essential it is to gain an understanding of important facets of the industry. Provides an overview of the initial and current semiconductor technology roadmap that…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-03
... delivered to the TSA PRA Officer, Office of Information Technology (OIT), TSA-11, Transportation Security... technological collection techniques or other forms of information technology. Information Collection Requirement... Protection, U.S. Citizenship and Immigration Services, Office of Biometric Information Management, Office of...
Vacuum Technology Considerations For Mass Metrology
Abbott, Patrick J.; Jabour, Zeina J.
2011-01-01
Vacuum weighing of mass artifacts eliminates the necessity of air buoyancy correction and its contribution to the measurement uncertainty. Vacuum weighing is also an important process in the experiments currently underway for the redefinition of the SI mass unit, the kilogram. Creating the optimum vacuum environment for mass metrology requires careful design and selection of construction materials, plumbing components, pumping, and pressure gauging technologies. We review the vacuum technology1 required for mass metrology and suggest procedures and hardware for successful and reproducible operation. PMID:26989593
2012-11-02
Scanning Technology (3D LST) and Collaborative Product Lifecycle Management (CPLM) are two technologies that are currently being leveraged by international ... international ship construction organizations to achieve significant cost savings. 3D LST dramatically reduces the time required to scan ship surfaces as...technology does not meet the accuracy requirements, 0.030” accuracy minimum , for naval shipbuilding. The report delivered to the CSNT shows that if the
Solar applications analysis for energy storage
NASA Technical Reports Server (NTRS)
Blanchard, T.
1980-01-01
The role of energy storage as it relates to solar energy systems is considered. Storage technologies to support solar energy applications, the status of storage technologies, requirements and specifications for storage technologies, and the adequacy of the current storage research and development program to meet these requirements are among the factors discussed. Emphasis is placed on identification of where the greatest potential exists for energy storage in support of those solar energy systems which could have a significant impact on the U.S. energy mix.
Vehicle concepts and technology requirements for buoyant heavy-lift systems
NASA Technical Reports Server (NTRS)
Ardema, M. D.
1981-01-01
Several buoyant-vehicle (airship) concepts proposed for short hauls of heavy payloads are described. Numerous studies identified operating cost and payload capacity advantages relative to existing or proposed heavy-lift helicopters for such vehicles. Applications involving payloads of from 15 tons up to 800 tons were identified. The buoyant quad-rotor concept is discussed in detail, including the history of its development, current estimates of performance and economics, currently perceived technology requirements, and recent research and technology development. It is concluded that the buoyant quad-rotor, and possibly other buoyant vehicle concepts, has the potential of satisfying the market for very heavy vertical lift but that additional research and technology development are necessary. Because of uncertainties in analytical prediction methods and small-scale experimental measurements, there is a strong need for large or full-scale experiments in ground test facilities and, ultimately, with a flight research vehicle.
Space Station Workstation Technology Workshop Report
NASA Technical Reports Server (NTRS)
Moe, K. L.; Emerson, C. M.; Eike, D. R.; Malone, T. B.
1985-01-01
This report describes the results of a workshop conducted at Goddard Space Flight Center (GSFC) to identify current and anticipated trends in human-computer interface technology that may influence the design or operation of a space station workstation. The workshop was attended by approximately 40 persons from government and academia who were selected for their expertise in some aspect of human-machine interaction research. The focus of the workshop was a 1 1/2 brainstorming/forecasting session in which the attendees were assigned to interdisciplinary working groups and instructed to develop predictions for each of the following technology areas: (1) user interface, (2) resource management, (3) control language, (4) data base systems, (5) automatic software development, (6) communications, (7) training, and (8) simulation. This report is significant in that it provides a unique perspective on workstation design for the space station. This perspective, which is characterized by a major emphasis on user requirements, should be most valuable to Phase B contractors involved in design development of the space station workstation. One of the more compelling results of the workshop is the recognition that no major technological breakthroughs are required to implement the current workstation concept. What is required is the creative application of existing knowledge and technology.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.
1991-01-01
The development of new space communications technologies by NASA has included both commercial applications and space science requirements. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. Described here are the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.
NASA Astrophysics Data System (ADS)
Malloy, Matt; Thiel, Brad; Bunday, Benjamin D.; Wurm, Stefan; Jindal, Vibhu; Mukhtar, Maseeh; Quoi, Kathy; Kemen, Thomas; Zeidler, Dirk; Eberle, Anna Lena; Garbowski, Tomasz; Dellemann, Gregor; Peters, Jan Hendrik
2015-09-01
The new device architectures and materials being introduced for sub-10nm manufacturing, combined with the complexity of multiple patterning and the need for improved hotspot detection strategies, have pushed current wafer inspection technologies to their limits. In parallel, gaps in mask inspection capability are growing as new generations of mask technologies are developed to support these sub-10nm wafer manufacturing requirements. In particular, the challenges associated with nanoimprint and extreme ultraviolet (EUV) mask inspection require new strategies that enable fast inspection at high sensitivity. The tradeoffs between sensitivity and throughput for optical and e-beam inspection are well understood. Optical inspection offers the highest throughput and is the current workhorse of the industry for both wafer and mask inspection. E-beam inspection offers the highest sensitivity but has historically lacked the throughput required for widespread adoption in the manufacturing environment. It is unlikely that continued incremental improvements to either technology will meet tomorrow's requirements, and therefore a new inspection technology approach is required; one that combines the high-throughput performance of optical with the high-sensitivity capabilities of e-beam inspection. To support the industry in meeting these challenges SUNY Poly SEMATECH has evaluated disruptive technologies that can meet the requirements for high volume manufacturing (HVM), for both the wafer fab [1] and the mask shop. Highspeed massively parallel e-beam defect inspection has been identified as the leading candidate for addressing the key gaps limiting today's patterned defect inspection techniques. As of late 2014 SUNY Poly SEMATECH completed a review, system analysis, and proof of concept evaluation of multiple e-beam technologies for defect inspection. A champion approach has been identified based on a multibeam technology from Carl Zeiss. This paper includes a discussion on the need for high-speed e-beam inspection and then provides initial imaging results from EUV masks and wafers from 61 and 91 beam demonstration systems. Progress towards high resolution and consistent intentional defect arrays (IDA) is also shown.
SCOS 2: ESA's new generation of mission control system
NASA Technical Reports Server (NTRS)
Jones, M.; Head, N. C.; Keyte, K.; Howard, P.; Lynenskjold, S.
1994-01-01
New mission-control infrastructure is currently being developed by ESOC, which will constitute the second generation of the Spacecraft Control Operations system (SCOS 2). The financial, functional and strategic requirements lying behind the new development are explained. The SCOS 2 approach is described. The technological implications of these approaches is described: in particular it is explained how this leads to the use of object oriented techniques to provide the required 'building block' approach. The paper summarizes the way in which the financial, functional and strategic requirements have been met through this combination of solutions. Finally, the paper outlines the development process to date, noting how risk reduction was achieved in the approach to new technologies and summarizes the current status future plans.
Space shuttle hypergolic bipropellant RCS engine design study, Bell model 8701
NASA Technical Reports Server (NTRS)
1974-01-01
A research program was conducted to define the level of the current technology base for reaction control system rocket engines suitable for space shuttle applications. The project consisted of engine analyses, design, fabrication, and tests. The specific objectives are: (1) extrapolating current engine design experience to design of an RCS engine with required safety, reliability, performance, and operational capability, (2) demonstration of multiple reuse capability, and (3) identification of current design and technology deficiencies and critical areas for future effort.
Trusted Computing Technologies, Intel Trusted Execution Technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guise, Max Joseph; Wendt, Jeremy Daniel
2011-01-01
We describe the current state-of-the-art in Trusted Computing Technologies - focusing mainly on Intel's Trusted Execution Technology (TXT). This document is based on existing documentation and tests of two existing TXT-based systems: Intel's Trusted Boot and Invisible Things Lab's Qubes OS. We describe what features are lacking in current implementations, describe what a mature system could provide, and present a list of developments to watch. Critical systems perform operation-critical computations on high importance data. In such systems, the inputs, computation steps, and outputs may be highly sensitive. Sensitive components must be protected from both unauthorized release, and unauthorized alteration: Unauthorizedmore » users should not access the sensitive input and sensitive output data, nor be able to alter them; the computation contains intermediate data with the same requirements, and executes algorithms that the unauthorized should not be able to know or alter. Due to various system requirements, such critical systems are frequently built from commercial hardware, employ commercial software, and require network access. These hardware, software, and network system components increase the risk that sensitive input data, computation, and output data may be compromised.« less
Current Research Activities in Drive System Technology in Support of the NASA Rotorcraft Program
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Zakrajsek, James J.
2006-01-01
Drive system technology is a key area for improving rotorcraft performance, noise/vibration reduction, and reducing operational and manufacturing costs. An overview of current research areas that support the NASA Rotorcraft Program will be provided. Work in drive system technology is mainly focused within three research areas: advanced components, thermal behavior/emergency lubrication system operation, and diagnostics/prognostics (also known as Health and Usage Monitoring Systems (HUMS)). Current research activities in each of these activities will be presented. Also, an overview of the conceptual drive system requirements and possible arrangements for the Heavy Lift Rotorcraft program will be reviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giang, Amanda; Stokes, Leah C.; Streets, David G.
We explore implications of the United Nations Minamata Convention on Mercury for emissions from Asian coal-fired power generation, and resulting changes to deposition worldwide by 2050. We use engineering analysis, document analysis, and interviews to construct plausible technology scenarios consistent with the Convention. We translate these scenarios into emissions projections for 2050, and use the GEOS-Chem model to calculate global mercury deposition. Where technology requirements in the Convention are flexibly defined, under a global energy and development scenario that relies heavily on coal, we project similar to 90 and 150 Mg.y(-1) of avoided power sector emissions for China and India,more » respectively, in 2050, compared to a scenario in which only current technologies are used. Benefits of this avoided emissions growth are primarily captured regionally, with projected changes in annual average gross deposition over China and India similar to 2 and 13 mu g.m(-2) lower, respectively, than the current technology case. Stricter, but technologically feasible, mercury control requirements in both countries could lead to a combined additional 170 Mg.y(-1) avoided emissions. Assuming only current technologies but a global transition away from coal avoids 6% and 36% more emissions than this strict technology scenario under heavy coal use for China and India, respectively.« less
NASA Technical Reports Server (NTRS)
Haggerty, J. J.
1984-01-01
A pictorial resume that underlines the challenging nature of NASA programs and their extraordinary demands for technological input, is presented. Also, NASA's current mainline programs, which require development of new technology, are given. A representative sampling of spinoff products and processes resulting from technology utiliization, or secondary application, and the mechanisms NASA employs to stimulate technology utilization are provided. Contact sources for further information are presented.
NASA Technical Reports Server (NTRS)
Siegert, C. E.; Gourash, F.; Vasicek, R. W.
1977-01-01
The electrical and environmental requirements for a power processor system (PPS) designed to supply the appropriate voltages and currents to a 200-watt traveling wave tube (TWT) for a communication technology satellite is described. A block diagram of the PPS, the interface requirements between the PPS and spacecraft, the interface requirements between the PPS and 200-watt TWT, and the environmental requirements of the PPS are presented. Also included are discussions of protection circuits, interlocking sequences, and transient requirements. Predictions of the flight performance, based on ground test data, are provided.
Development of Supersonic Retro-Propulsion for Future Mars Entry, Descent, and Landing Systems
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Dyakonov, Artem A.; Shidner, Jeremy D.; Studak, Joseph W.; Tiggers, Michael A.; Kipp, Devin M.; Prakash, Ravi; Trumble, Kerry A.; Dupzyk, Ian C.; Korzun, Ashley M.
2010-01-01
Recent studies have concluded that Viking-era entry system technologies are reaching their practical limits and must be succeeded by new methods capable of delivering large payloads (greater than 10 metric tons) required for human exploration of Mars. One such technology, termed Supersonic Retro-Propulsion, has been proposed as an enabling deceleration technique. However, in order to be considered for future NASA flight projects, this technology will require significant maturation beyond its current state. This paper proposes a roadmap for advancing the component technologies to a point where Supersonic Retro-Propulsion can be reliably used on future Mars missions to land much larger payloads than are currently possible using Viking-based systems. The development roadmap includes technology gates that are achieved through testing and/or analysis, culminating with subscale flight tests in Earth atmosphere that demonstrate stable and controlled flight. The component technologies requiring advancement include large engines capable of throttling, computational models for entry vehicle aerodynamic/propulsive force and moment interactions, aerothermodynamic environments modeling, entry vehicle stability and control methods, integrated systems engineering and analyses, and high-fidelity six degree-of-freedom trajectory simulations. Quantifiable metrics are also proposed as a means to gage the technical progress of Supersonic Retro-Propulsion. Finally, an aggressive schedule is proposed for advancing the technology through sub-scale flight tests at Earth by 2016.
Adapting the Media and Technology Usage and Attitudes Scale to Turkish
ERIC Educational Resources Information Center
Özgür, Hasan
2016-01-01
Due to the requirement of a current, valid, and reliable assessment instrument for determining usage frequencies of technology-based media and the attitudes towards these, this study intends to determine the validity and reliability of the Media and Technology Usage and Attitudes Scale, developed by researchers from California State University,…
Preparing for High Technology: Strategies for Change.
ERIC Educational Resources Information Center
Faddis, Constance; And Others
In order to help postsecondary technical colleges to keep abreast of changing technology, a study was conducted (1) to investigate the current and future status of three high technology areas in terms of their impacts on occupations, labor demand, and training requirements; and (2) to provide guidelines to help colleges change their programs to…
Parental Perceptions and Recommendations of Computing Majors: A Technology Acceptance Model Approach
ERIC Educational Resources Information Center
Powell, Loreen; Wimmer, Hayden
2017-01-01
Currently, there are more technology related jobs then there are graduates in supply. The need to understand user acceptance of computing degrees is the first step in increasing enrollment in computing fields. Additionally, valid measurement scales for predicting user acceptance of Information Technology degree programs are required. The majority…
NASA communications technology research and development
NASA Technical Reports Server (NTRS)
Durham, A. F.; Stankiewicz, N.
1979-01-01
The development of a 1978 NASA study to identify technology requirements is surveyed, and its principal conclusions, recommendations, and priorities are summarized. In addition, antenna, traveling wave tube, and solid state amplifier developments representing selected items from the current communications technology development programs at the NASA Lewis Research and Goddard Space Flight Centers are described.
Examining the Shaping of Teachers' Pedagogical Orientation for the Use of Technology
ERIC Educational Resources Information Center
Prestridge, Sarah
2017-01-01
Teachers' current uses of technologies still tend to replicate traditional and/ or administrative practices, with research indicating that the pedagogies required for the effective integration of educational technologies are not yet in evidence amongst the majority of teachers. In order to conceptualise what could be considered effective…
Safety and fitness electronic records system (SAFER) : user and system requirements document
DOT National Transportation Integrated Search
1996-10-28
The Federal Highway Administration (FHWA) is currently testing and evaluating Intelligent : Transportation Systems (ITS) technologies to enhance the safety and efficiency of interstate and : intrastate commercial vehicle operations. The current focus...
Turnaround Operations Analysis for OTV. Volume 3: Technology Development Plan
NASA Technical Reports Server (NTRS)
1988-01-01
An integrated technology development plan for the technologies required to process both GBOTVs and SBOTVs are described. The plan includes definition of the tests and experiments to be accomplished on the ground, in a Space Shuttle Sortie Mission, on an Expendable Launch Vehicle, or at the Space Station as a Technology Development Mission (TDM). The plan reflects and accommodates current and projected research and technology programs where appropriate.
NASA Technical Reports Server (NTRS)
Shidner, Jeremy D.; Davis, Jody L.; Cianciolo, Alicia D.; Samareh, Jamshid A.; Powell, RIchard W.
2010-01-01
Landing on Mars has been a challenging task. Past NASA missions have shown resilience to increases in spacecraft mass by scaling back requirements such as landing site altitude, landing site location and arrival time. Knowledge of the partials relating requirements to mass is critical for mission designers to understand so that the project can retain margin throughout the process. Looking forward to new missions that will land 1.5 metric tons or greater, the current level of technology is insufficient, and new technologies will need to be developed. Understanding the sensitivity of these new technologies to requirements is the purpose of this paper.
Critical Review of NOAA's Observation Requirements Process
NASA Astrophysics Data System (ADS)
LaJoie, M.; Yapur, M.; Vo, T.; Templeton, A.; Bludis, D.
2017-12-01
NOAA's Observing Systems Council (NOSC) maintains a comprehensive database of user observation requirements. The requirements collection process engages NOAA subject matter experts to document and effectively communicate the specific environmental observation measurements (parameters and attributes) needed to produce operational products and pursue research objectives. User observation requirements documented using a structured and standardized manner and framework enables NOAA to assess its needs across organizational lines in an impartial, objective, and transparent manner. This structure provides the foundation for: selecting, designing, developing, acquiring observing technologies, systems and architectures; budget and contract formulation and decision-making; and assessing in a repeatable fashion the productivity, efficiency and optimization of NOAA's observing system enterprise. User observation requirements are captured independently from observing technologies. Therefore, they can be addressed by a variety of current or expected observing capabilities and allow flexibility to be remapped to new and evolving technologies. NOAA's current inventory of user observation requirements were collected over a ten-year period, and there have been many changes in policies, mission priorities, and funding levels during this time. In light of these changes, the NOSC initiated a critical, in-depth review to examine all aspects of user observation requirements and associated processes during 2017. This presentation provides background on the NOAA requirements process, major milestones and outcomes of the critical review, and plans for evolving and connecting observing requirements processes in the next year.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.
1991-01-01
The development of new space communications technologies by NASA has included both commercial applications and space science requirements. At NASA's Lewis Research Center, methods and facilities have been developed for evaluating these new technologies in the laboratory. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware-based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. This paper describes the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present, and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.
Space station thermal control surfaces. Volume 1: Interim report
NASA Technical Reports Server (NTRS)
Maag, C. R.; Millard, J. M.
1978-01-01
The U.S. space program goals for long-duration manned missions place particular demands on thermal-control systems. The objective of this program is to develop plans which are based on the present thermal-control technology, and which will keep pace with the other space program elements. The program tasks are as follows: (1) requirements analysis, with the objectives to define the thermal-control-surface requirements for both space station and 25 kW power module, to analyze the missions, and to determine the thermal-control-surface technology needed to satisfy both sets of requirements; (2) technology assessment, with the objectives to perform a literature/industry survey on thermal-control surfaces, to compare current technology with the requirements developed in the first task, and to determine what technology advancements are required for both the space station and the 25 kW power module; and (3) program planning that defines new initiative and/or program augmentation for development and testing areas required to provide the proper environment control for the space station and the 25 kW power module.
Perspective on the National Aero-Space Plane Program instrumentation development
NASA Technical Reports Server (NTRS)
Bogue, Rodney K.; Erbland, Peter
1993-01-01
A review of the requirement for, and development of, advanced measurement technology for the National Aerospace Plane program is presented. The objective is to discuss the technical need and the program commitment required to ensure that adequate and timely measurement capabilities are provided for ground and flight testing in the NASP program. The scope of the measurement problem is presented, the measurement process is described, how instrumentation technology development has been affected by NASP program evolution is examined, the national effort to define measurement requirements and assess the adequacy of current technology to support the NASP program is discussed, and the measurement requirements are summarized. The unique features of the NASP program that complicate the understanding of requirements and the development of viable solutions are illustrated.
Current status of stereoscopic 3D LCD TV technologies
NASA Astrophysics Data System (ADS)
Choi, Hee-Jin
2011-06-01
The year 2010 may be recorded as a first year of successful commercial 3D products. Among them, the 3D LCD TVs are expected to be the major one regarding the sales volume. In this paper, the principle of current stereoscopic 3D LCD TV techniques and the required flat panel display (FPD) technologies for the realization of them are reviewed. [Figure not available: see fulltext.
NWR (National Weather Service) voice synthesis project, phase 1
NASA Astrophysics Data System (ADS)
Sampson, G. W.
1986-01-01
The purpose of the NOAA Weather Radio (NWR) Voice Synthesis Project is to provide a demonstration of the current voice synthesis technology. Phase 1 of this project is presented, providing a complete automation of an hourly surface aviation observation for broadcast over NWR. In examining the products currently available on the market, the decision was made that synthetic voice technology does not have the high quality speech required for broadcast over the NWR. Therefore the system presented uses the phrase concatenation type of technology for a very high quality, versatile, voice synthesis system.
Cryogenic gear technology for an orbital transfer vehicle engine and tester design
NASA Technical Reports Server (NTRS)
Calandra, M.; Duncan, G.
1986-01-01
Technology available for gears used in advanced Orbital Transfer Vehicle rocket engines and the design of a cryogenic adapted tester used for evaluating advanced gears are presented. The only high-speed, unlubricated gears currently in cryogenic service are used in the RL10 rocket engine turbomachinery. Advanced rocket engine gear systems experience operational load conditions and rotational speed that are beyond current experience levels. The work under this task consisted of a technology assessment and requirements definition followed by design of a self-contained portable cryogenic adapted gear test rig system.
An Incubatable Direct Current Stimulation System for In Vitro Studies of Mammalian Cells
Panitch, Alyssa; Caplan, Michael; Sweeney, James D.
2012-01-01
Abstract The purpose of this study was to provide a simplified alternative technology and format for direct current stimulation of mammalian cells. An incubatable reusable stimulator was developed that effectively delivers a regulated current and does not require constant monitoring. PMID:23514694
Digital optical tape: Technology and standardization issues
NASA Technical Reports Server (NTRS)
Podio, Fernando L.
1996-01-01
During the coming years, digital data storage technologies will continue an aggressive growth to satisfy the user's need for higher storage capacities, higher data transfer rates and long-term archival media properties. Digital optical tape is a promising technology to satisfy these user's needs. As any emerging data storage technology, the industry faces many technological and standardization challenges. The technological challenges are great, but feasible to overcome. Although it is too early to consider formal industry standards, the optical tape industry has decided to work together by initiating prestandardization efforts that may lead in the future to formal voluntary industry standards. This paper will discuss current industry optical tape drive developments and the types of standards that will be required for the technology. The status of current industry prestandardization efforts will also be discussed.
An Assessment of Integrated Flywheel System Technology
NASA Technical Reports Server (NTRS)
Keckler, C. R. (Editor); Bechtel, R. T. (Editor); Groom, N. J. (Editor)
1984-01-01
The current state of the technology in flywheel storage systems and ancillary components, the technology in light of future requirements, and technology development needs to rectify these shortfalls were identified. Technology efforts conducted in Europe and in the United States were reviewed. Results of developments in composite material rotors, magnetic suspension systems, motor/generators and electronics, and system dynamics and control were presented. The technology issues for the various disciplines and technology enhancement scenarios are discussed. A summary of the workshop, and conclusions and recommendations are presented.
Conceptual definition of a technology development mission for advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, R. P.
1986-01-01
An initial conceptual definition of a technology development mission for advanced solar dynamic power systems is provided, utilizing a space station to provide a dedicated test facility. The advanced power systems considered included Brayton, Stirling, and liquid metal Rankine systems operating in the temperature range of 1040 to 1400 K. The critical technologies for advanced systems were identified by reviewing the current state of the art of solar dynamic power systems. The experimental requirements were determined by planning a system test of a 20 kWe solar dynamic power system on the space station test facility. These requirements were documented via the Mission Requirements Working Group (MRWG) and Technology Development Advocacy Group (TDAG) forms. Various concepts or considerations of advanced concepts are discussed. A preliminary evolutionary plan for this technology development mission was prepared.
Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions
NASA Technical Reports Server (NTRS)
Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard
2012-01-01
NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.
Project plan hydrogen energy systems technology. Phase 1: Hydrogen energy systems technology study
NASA Technical Reports Server (NTRS)
1974-01-01
An overview of the potential need for hydrogen as a source of energy in the future was presented in order to identify and define the technology requirements for the most promising approaches to meet that need. The following study objectives were discussed: (1) determination of the future demand for hydrogen, based on current trends and anticipated new uses, (2) identification of the critical research and technology advances required to meet this need considering, to the extent possible, raw material limitations, economics, and environmental effects, and (3) definition and recommendation of the scope and space of a National Hydrogen Energy Systems Technology Program and outline of a Program Development Plan.
Comparison of Traditional and Innovative Techniques to Solve Technical Challenges
NASA Technical Reports Server (NTRS)
Perchonok, Michele
2011-01-01
This slide presentation reviews the use of traditional and innovative techniques to solve technical challenges in food storage technology. The planning for a mission to Mars is underway, and the food storage technology improvements requires that improvements be made. This new technology is required, because current food storage technology is inadequate,refrigerators or freezers are not available for food preservation, and that a shelf life of 5 years is expected. A 10 year effort to improve food packaging technology has not enhanced significantly food packaging capabilities. Two innovation techniques were attempted InnoCentive and Yet2.com and have provided good results, and are still under due diligence for solver verification.
2008-06-13
technology developments. 2. This new-issue SMC standard comprises the text of The Aerospace Corporation report number TOR-2005( 8583 )-1. 3...issues of the documents are the current versions. 1. Aerospace Report No. TOR-2005( 8583 )-2, Electrical Power Systems, Direct Current, Space Vehicle...Design Requirements, The Aerospace Corp., 13 January 2005. 2. Aerospace Report No. TR-2004( 8583 )-1 (proposed MIL-STD-1540E), Test Requirements for
Diesel Fuel from Used Frying Oil
Buczek, Bronislaw
2014-01-01
New conversion technologies of used edible oils and waste animal fats into a biofuel appropriate for use in standard diesel engines have been developed, taking into consideration environmental requirements and improvement in the economics of current trans-esterification technologies. The variation in the properties of substrates made from used rape oil after treatment with mixed adsorbents (active carbon, magnesium silicate) was studied in this work. The obtained results are compared with the quality requirements for the substrates used in Vogel & Noot GmbH technology for transesterification of oils and fats. PMID:24574908
NASA-KSC/Florida Dual Use Technology Partnership
NASA Technical Reports Server (NTRS)
Kershaw, David
2001-01-01
This document constitutes the Technological Research and Development Authority's (TRDA) Final Reports for the NASA-KSC/Florida Dual Use Technology Partnership grant covering the period December 1, 1999 through November 30, 2000. The NASA Grant and Cooperative Agreement Handbook requires the TRDA to provide NASA with a final report on Subject Inventions, Federal Cash Transactions, Summary Research, and Federally-Owned Property. This report contains those requirements as well as a description of the TRDA's grant performance related to activities undertaken, difficulties incurred, remedial actions, and the current financial status of the contract.
A Study on the Impact of Teacher Attitude/Efficacy on the Use of Classroom Technology
ERIC Educational Resources Information Center
Ott, Jeran Louis
2017-01-01
Increased access to technology has changed the current educational landscape and, will dramatically affect the future of education. These shifts are redefining the roles of educators and require that teachers have the attributes necessary to legitimately incorporate technology into the classroom. The purpose of this study is to examine existing…
Curriculum Stasis: The Disconnect between Music and Technology in the Australian Curriculum
ERIC Educational Resources Information Center
Crawford, Renée; Southcott, Jane
2017-01-01
Technology is a dominant mediating factor impacting on current human behaviour and social change, which both acts on and is acted upon by other phenomena. This changing social landscape, along with new expectations and requirements, drives our educational priorities and curriculum agenda. There is no denying the prevalence of technology found in…
This document describes a promising technology — autothermal thermophilic aerobic digestion — for meeting the current and proposed U.S. federal requirements for pathogen controJ and land application of municipal wastewater sludge. Autothermal thermophilic aerobic digestion, or AT...
77 FR 71089 - Pilot Loading of Aeronautical Database Updates
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-29
... the use of newer systems and data-transfer mechanisms such as those employing wireless technology. In... which enables wireless updating of systems and databases. The current regulation does not accommodate... maintenance); Recordkeeping requirements; Training for pilots; Technological advancements in data-transfer...
NASA Technical Reports Server (NTRS)
Hebert, Phillip W., Sr.
2008-01-01
May 2007, NASA's Constellation Program selected John C Stennis Space Center (SSC) near Waveland Mississippi as the site to construct an altitude test facility for the developmental and qualification testing of the Ares1 upper stage (US) engine. Test requirements born out of the Ares1 US propulsion system design necessitate exceptional Data Acquisition System (DAS) design solutions that support facility and propellant systems conditioning, test operations control and test data analysis. This paper reviews the new A3 Altitude Test Facility's DAS design requirements for real-time deterministic digital data, DAS technology enhancements, system trades, technology validation activities, and the current status of this system's new architecture. Also to be discussed will be current network technologies to improve data transfer.
A study of pricing and trading model of Blockchain & Big data-based Energy-Internet electricity
NASA Astrophysics Data System (ADS)
Fan, Tao; He, Qingsu; Nie, Erbao; Chen, Shaozhen
2018-01-01
The development of Energy-Internet is currently suffering from a series of issues, such as the conflicts among high capital requirement, low-cost, high efficiency, the spreading gap between capital demand and supply, as well as the lagged trading & valuation mechanism, any of which would hinder Energy-Internet's evolution. However, with the development of Blockchain and big-data technology, it is possible to work out solutions for these issues. Based on current situation of Energy-Internet and its requirements for future progress, this paper demonstrates the validity of employing blockchain technology to solve the problems encountered by Energy-Internet during its development. It proposes applying the blockchain and big-data technologies to pricing and trading energy products through Energy-Internet and to accomplish cyber-based energy or power's transformation from physic products to financial assets.
Impact of end effector technology on telemanipulation performance
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Szakaly, Z.; Ohm, T.
1990-01-01
Generic requirements for end effector design are briefly summarized as derived from generic functional and operational requirements. Included is a brief summary of terms and definitions related to end effector technology. The second part contains a brief overview of end effector technology work as JPL during the past ten years, with emphasis on the evolution of new mechanical, sensing and control capabilities of end effectors. The third and major part is devoted to the description of current end effector technology. The ongoing work addresses mechanical, sensing and control details with emphasis on mechanical ruggedness, increased resolution in sensing, and close electronic and control integration with overall telemanipulator control system.
Technology Requirements and Selection for Securely Partitioning OBSW
NASA Astrophysics Data System (ADS)
Mendham, Peter; Windsor, James; Eckstein, Knut
2010-08-01
The Securely Partitioning Spacecraft Computing Resources project is a current ESA TRP activity investigating the application of secure time and space partitioning (TSP) technologies to enable multi-use missions from a single platform. Secure TSP technologies are used in a number of application areas outside the space domain and an opportunity exists to 'spin-in' a suitable solution. The selection of a technology for use within space the European space industry relies on an understanding of the requirements for the application of secure TSP, of which this paper presents a summary. Further, the paper outlines the selection process taken by the project and highlights promising solutions for use today.
Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3
NASA Technical Reports Server (NTRS)
Martinez, A.; Erickson, C.; Hines, B.
1986-01-01
Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.
Energy-water nexus for mass cultivation of algae.
Murphy, Cynthia Folsom; Allen, David T
2011-07-01
Microalgae are currently considered a potential feedstock for the production of biofuels. This work addresses the energy needed to manage the water used in the mass cultivation of saline, eukaryotic algae grown in open pond systems. Estimates of both direct and upstream energy requirements for obtaining, containing, and circulating water within algae cultivation systems are developed. Potential productivities are calculated for each of the 48 states within the continental U.S. based on theoretical photosynthetic efficiencies, growing season, and total available land area. Energy output in the form of algal biodiesel and the total energy content of algal biomass are compared to energy inputs required for water management. The analysis indicates that, for current technologies, energy required for water management alone is approximately seven times greater than energy output in the form of biodiesel and more than double that contained within the entire algal biomass. While this analysis addresses only currently identified species grown in an open-pond system, the water management requirements of any algae system will be substantial; therefore, it is critical that an energy assessment of water management requirements be performed for any cultivation technology and algal type in order to fully understand the energy balance of algae-derived biofuels.
Moving toward energy security and sustainability in 2050 by reconfiguring biofuel production
USDA-ARS?s Scientific Manuscript database
To achieve energy security and sustainability by 2050 requires reconfiguring biofuel production both by building on current infrastructure and existing technology and also by making substantial improvements and changes in the feedstocks used, the process technologies applied, and the fuels produced....
Row-crop planter requirements to support variable-rate seeding of maize
USDA-ARS?s Scientific Manuscript database
Current planting technology possesses the ability to increase crop productivity and improve field efficiency by precisely metering and placing crop seeds. Planter performance depends on using the correct planter and technology setup which consists of determining optimal settings for different planti...
Microgravity Fluid Management Symposium
NASA Technical Reports Server (NTRS)
1987-01-01
The NASA Microgravity Fluid Management Symposium, held at the NASA Lewis Research Center, September 9 to 10, 1986, focused on future research in the microgravity fluid management field. The symposium allowed researchers and managers to review space applications that require fluid management technology, to present the current status of technology development, and to identify the technology developments required for future missions. The 19 papers covered three major categories: (1) fluid storage, acquisition, and transfer; (2) fluid management applications, i.e., space power and thermal management systems, and environmental control and life support systems; (3) project activities and insights including two descriptions of previous flight experiments and a summary of typical activities required during development of a shuttle flight experiment.
NASA Technical Reports Server (NTRS)
Reynolds, Thomas L.; Bailey, Delbert B.; Lewinski, Daniel F.; Roseburg, Conrad M.; Palaszewski, Bryan (Technical Monitor)
2001-01-01
The purpose of this technology assessment is to define a multiphase research study program investigating Onboard Inert Gas Generation Systems (OBIGGS) and Onboard Oxygen Generation Systems (OBOGS) that would identify current airplane systems design and certification requirements (Subtask 1); explore state-of-the-art technology (Subtask 2); develop systems specifications (Subtask 3); and develop an initial system design (Subtask 4). If feasible, consideration may be given to the development of a prototype laboratory test system that could potentially be used in commercial transport aircraft (Subtask 5). These systems should be capable of providing inert nitrogen gas for improved fire cargo compartment fire suppression and fuel tank inerting and emergency oxygen for crew and passenger use. Subtask I of this research study, presented herein, defines current production aircraft certification requirements and design objectives necessary to meet mandatory FAA certification requirements and Boeing design and performance specifications. These requirements will be utilized for baseline comparisons for subsequent OBIGGS/OBOGS application evaluations and assessments.
Technologies Required to Image Earth 2.0 with a Space Coronagraph
NASA Astrophysics Data System (ADS)
Siegler, Nicholas
2017-01-01
NASA's Exoplanet Exploration Program (ExEP) guides the development of technology that enables the direct imaging and characterization of exo-Earths in the habitable zone of their stars for future space observatories. Here we present the coronagraph portion of the 2017 ExEP Technology Gap List, an annual update to ExEP's list of of technologies, to be advanced in the next 1-5 years. A coronagraph is an internal occulter that allows a space telescope to achieve exo-Earth imaging contrast requirements (more than 10 billion) by blocking on-axis starlight while allowing the reflected light of off-axis exoplanets be detected. Building and operating a space coronagraph capable of imaging an exo-Earth will require new technologies beyond those of WFIRST, the first high-contrast conronagraph in space. We review the current state-of-the-art performance of space coronagraphs and the performance level that must be achieved for a coronagraph..
Monitoring and control technologies for bioregenerative life support systems/CELSS
NASA Technical Reports Server (NTRS)
Knott, William M.; Sager, John C.
1991-01-01
The development of a controlled Ecological Life Support System (CELSS) will require NASA to develop innovative monitoring and control technologies to operate the different components of the system. Primary effort over the past three to four years has been directed toward the development of technologies to operate a biomass production module. Computer hardware and software required to operate, collect, and summarize environmental data for a large plant growth chamber facility were developed and refined. Sensors and controls required to collect information on such physical parameters as relative humidity, temperature, irradiance, pressure, and gases in the atmosphere; and PH, dissolved oxygen, fluid flow rates, and electrical conductivity in the nutrient solutions are being developed and tested. Technologies required to produce high artificial irradiance for plant growth and those required to collect and transport natural light into a plant growth chamber are also being evaluated. Significant effort was directed towards the development and testing of a membrane nutrient delivery system required to manipulate, seed, and harvest crops, and to determine plant health prior to stress impacting plant productivity are also being researched. Tissue culture technologies are being developed for use in management and propagation of crop plants. Though previous efforts have focussed on development of technologies required to operate a biomass production module for a CELSS, current efforts are expanding to include technologies required to operate modules such as food preparation, biomass processing, and resource (waste) recovery which are integral parts of the CELSS.
Sentinel 2 MMFU: The first European Mass Memory System Based on NAND-Flash Storage Technology
NASA Astrophysics Data System (ADS)
Staehle, M.; Cassel, M.; Lonsdorfer, U.; Gliem, F.; Walter, D.; Fichna, T.
2011-08-01
Sentinel-2 is the multispectral optical mission of the EU-ESA GMES (Global Monitoring for Environment and Security) program, currently under development by Astrium-GmbH in Friedrichshafen (Germany) for a launch in 2013. The mission features a 490 Mbit/s optical sensor operating at high duty cycles, requiring in turn a large 2.4 Tbit on-board storage capacity.The required storage capacity motivated the selection of the NAND-Flash technology which was already secured by a lengthy period (2004-2009) of detailed testing, analysis and qualification by Astrium GmbH, IDA and ESTEC. The mass memory system is currently being realized by Astrium GmbH.
TurboBrayton Cryocooler: A Flight Worthy and Promising Future
NASA Technical Reports Server (NTRS)
Gibbon, Judith A.; Swift, Walt L.; Zagarola, Mark V.; DiPirro, Mike; Whitehouse, Paul
1999-01-01
A new development in cryocooler technology, a reverse TurboBrayton cycle cryocooler, developed by Creare, Inc. of Hanover, NH, has now been flight tested. This cooler provides high reliability and long life. With no linear moving components common in current flight cryocoolers, the TurboBrayton cooler requires no active control systems to provide a vibration-free signature. The cooler provides first stage cooling for advanced cryogenic systems and serves as a direct replacement for stored cryogen systems with a longer lifetime. Following a successful flight on STS-95, a TurboBrayton cryocooler will be flown on Hubble Space Telescope (HST) in 2000 to provide renewed refrigeration capability for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). The TurboBrayton cycle cooler is a promising technology already being considered for additional flight programs such as Next Generation Space Telescope (NGST) and Constellation X. These future missions require an advanced generation of the cooler that is currently under development to provide cooling at 10K and less. This paper presents an overview of the current generation cooler with recent flight test results and details the current plans and development progress on the next generation TurboBrayton technology for future missions.
Advanced General Aviation Turbine Engine (GATE) study
NASA Technical Reports Server (NTRS)
Smith, R.; Benstein, E. H.
1979-01-01
The small engine technology requirements suitable for general aviation service in the 1987 to 1988 time frame were defined. The market analysis showed potential United States engines sales of 31,500 per year providing that the turbine engine sales price approaches current reciprocating engine prices. An optimum engine design was prepared for four categories of fixed wing aircraft and for rotary wing applications. A common core approach was derived from the optimum engines that maximizes engine commonality over the power spectrum with a projected price competitive with reciprocating piston engines. The advanced technology features reduced engine cost, approximately 50 percent compared with current technology.
Health information technology: a few years of magical thinking?
Diamond, Carol C; Shirky, Clay
2008-01-01
One of the biggest obstacles to expanding the use of information technology (IT) in health care may be the current narrow focus on how to stimulate its adoption. The challenge of thinking of IT as a tool to improve quality requires serious attention to transforming the U.S. health care system as a whole, rather than simply computerizing the current setup. Proponents of health IT must resist "magical thinking," such as the notion that technology will transform our broken system, absent integrated work on policy or incentives. The alternative route to transforming the system sets all of its sights on the destination.
ERIC Educational Resources Information Center
Weidert, John William
2012-01-01
Rapid advancements in technology and the proliferation of mobile communication devices available in the marketplace require that community college administrators and teachers better understand levels of digital communication technology adoption and how adult learners currently use them. Such an understanding is necessary to developing the…
Preparing for Human Exploration
NASA Technical Reports Server (NTRS)
Drake, Bret G.; Joosten, B. Kent
1998-01-01
NASA's Human Exploration and Development of Space (HEDS) Enterprise is defining architectures and requirements for human exploration that radically reduce the costs of such missions through the use of advanced technologies, commercial partnerships and innovative systems strategies. In addition, the HEDS Enterprise is collaborating with the Space Science Enterprise to acquire needed early knowledge about Mars and to demonstrate critical technologies via robotic missions. This paper provides an overview of the technological challenges facing NASA as it prepares for human exploration. Emphasis is placed on identifying the key technologies including those which will provide the most return in terms of reducing total mission cost and/or reducing potential risk to the mission crew. Top-level requirements are provided for those critical enabling technology options currently under consideration.
NASA Technical Reports Server (NTRS)
Rowell, Lawrence F.; Swissler, Thomas J.
1991-01-01
The focus of the NASA program in remote sensing is primarily the Earth system science and the monitoring of the Earth global changes. One of NASA's roles is the identification and development of advanced sensing techniques, operational spacecraft, and the many supporting technologies necessary to meet the stringent science requirements. Langley Research Center has identified the elements of its current and proposed advanced technology development program that are relevant to global change science according to three categories: sensors, spacecraft, and information system technologies. These technology proposals are presented as one-page synopses covering scope, objective, approach, readiness timeline, deliverables, and estimated funding. In addition, the global change science requirements and their measurement histories are briefly discussed.
Coggan, J M; Crandall, L A
1995-01-01
The use of rural sites to train badly needed primary care providers requires access to sophisticated medical information not traditionally available outside of academic health centers. Medical reference librarians can play a key role in the development of primary care training sites in rural settings. Electronic information technologies, with proactive support from medical reference librarians, can provide current and detailed information without concern for distance from the health science center library. This paper discusses recent developments in technology, describes current challenges to the application of this technology in rural settings, and provides policy recommendations for medical reference librarians to enhance rural primary care training.
Advisory Committee Evaluation of Vocational Education Programs.
ERIC Educational Resources Information Center
Orr, William T., Jr.
1985-01-01
Program advisory committees in vocational education have traditionally been charged with the responsibility of evaluating programs for the purpose of keeping them up to date with business and industry practices and current technology. Rapid technological development and accountability requirements have led to state mandates that the advisory…
Defense AT and L Magazine. Vol. 46, no. 3, May-June 2017
2017-05-01
rated lithium - ion rechargeable batteries , providing 150 Watt hours for up to 36 hours at a weight of 1.18 kilograms (2.6 pounds), are built in a...and post- lithium batteries , might meet or exceed the current government requirement. There are obvi- ous technical performance objectives in this...rechargeable batteries to power the technology that dismounted troops carry into battle. A quick summary of the current, proven technology is that ballistic
NASA Technical Reports Server (NTRS)
Rosmait, Russell L.
1996-01-01
The development of a new space transportation system in a climate of constant budget cuts and staff reductions can be and is a difficult task. It is no secret that NASA's current launching system consumes a very large portion of NASA funding and requires a large army of people to operate & maintain the system. The new Reusable Launch Vehicle (RLV) project and it's programs are faced with a monumental task of making the cost of access to space dramatically lower and more efficient than NASA's current system. With pressures from congressional budget cutters and also increased competition and loss of market share from international agencies RLV's first priority is to develop a 'low-cost, reliable transportation to earth orbit.' One of the RLV's major focus in achieving low-cost, reliable transportation to earth orbit is to rely on the maturing of advanced technologies. The technologies for the RLV are numerous and varied. Trying to assess their current status, within the RLV development program is paramount. There are several ways to assess these technologies. One way is through the use of Technology Readiness Levels (TRL's). This project focused on establishing current (summer 95) 'worst case' TRL's for six selected technologies that are under consideration for use within the RLV program. The six technologies evaluated were Concurrent Engineering, Embedded Sensor Technology, Rapid Prototyping, Friction Stir Welding, Thermal Spray Coatings, and VPPA Welding.
The transition to digital media in biocommunications.
Lynch, P J
1996-01-01
As digital audiovisual media become dominant in biomedical communications, the skills of human interface design and the technology of client-server multimedia data networks will underlie and influence virtually every aspect of biocommunications professional practice. The transition to digital communications media will require financial, organizational, and professional changes in current biomedical communications departments, and will require a multi-disciplinary approach that will blur the boundaries of the current biocommunications professions.
NASA Astrophysics Data System (ADS)
Ginzburg, D.; Knafo, Y.; Manor, A.; Seif, R.; Ghelman, M.; Ellenbogen, M.; Pushkarsky, V.; Ifergan, Y.; Semyonov, N.; Wengrowicz, U.; Mazor, T.; Kadmon, Y.; Cohen, Y.; Osovizky, A.
2015-06-01
There is a need to develop new personal radiation detector (PRD) technologies that can be mass produced. On August 2013, DARPA released a request for information (RFI) seeking innovative radiation detection technologies. In addition, on December 2013, a Broad Agency Announcement (BAA) for the SIGMA program was released. The RFI requirements focused on a sensor that should possess three main properties: low cost, high compactness and radioisotope identification capabilities. The identification performances should facilitate the detection of a hidden threat, ranging from special nuclear materials (SNM) to commonly used radiological sources. Subsequently, the BAA presented the specific requirements at an instrument level and provided a comparison between the current market status (state-of-the-art) and the SIGMA program objectives. This work presents an optional alternative for both the detection technology (sensor with communication output and without user interface) for DARPA's initial RFI and for the PRD required by the SIGMA program. A broad discussion is dedicated to the method proposed to fulfill the program objectives and to the selected alternative that is based on the PDS-GO design and technology. The PDS-GO is the first commercially available PRD that is based on a scintillation crystal optically coupled with a silicon photomultiplier (SiPM), a solid-state light sensor. This work presents the current performance of the instrument and possible future upgrades based on recent technological improvements in the SiPM design. The approach of utilizing the SiPM with a commonly available CsI(Tl) crystal is the key for achieving the program objectives. This approach provides the appropriate performance, low cost, mass production and small dimensions; however, it requires a creative approach to overcome the obstacles of the solid-state detector dark current (noise) and gain stabilization over a wide temperature range. Based on the presented results, we presume that the proposed approach of SiPM, with pixel size of 35 μm, coupled to a scintillation material (for gamma and neutron detection) ensures the availability and low cost of the key components. Furthermore, automated manufacturing process enables mass production, thereby fulfilling the SIGMA program requirements, both as a sensor (assimilated with mobile device) and as a full detection device.
Thermal Deformation and RF Performance Analyses for the SWOT Large Deployable Ka-Band Reflectarray
NASA Technical Reports Server (NTRS)
Fang, H.; Sunada, E.; Chaubell, J.; Esteban-Fernandez, D.; Thomson, M.; Nicaise, F.
2010-01-01
A large deployable antenna technology for the NASA Surface Water and Ocean Topography (SWOT) Mission is currently being developed by JPL in response to NRC Earth Science Tier 2 Decadal Survey recommendations. This technology is required to enable the SWOT mission due to the fact that no currently available antenna is capable of meeting SWOT's demanding Ka-Band remote sensing requirements. One of the key aspects of this antenna development is to minimize the effect of the on-orbit thermal distortion to the antenna RF performance. An analysis process which includes: 1) the on-orbit thermal analysis to obtain the temperature distribution; 2) structural deformation analysis to get the geometry of the antenna surface; and 3) the RF performance with the given deformed antenna surface has been developed to accommodate the development of this antenna technology. The detailed analysis process and some analysis results will be presented and discussed by this paper.
Space Tracking and Surveillance System (STSS) Cryogenic Technology Efforts and Needs
NASA Astrophysics Data System (ADS)
Kolb, I. L.; Curran, D. G. T.; Lee, C. S.
2004-06-01
The Missile Defense Agency's (MDA) STSS program, the former Space Based Infrared Systems (SBIRS) Low, has been actively supporting and working to advance space-borne cryocooler technology through efforts with the Air Force Research Lab (AFRL) and Small Business Innovation Research (SBIR) program. The envisioned infrared satellite system requires high efficiency, low power, and low weight cooling in a range of temperature and cooling loads below 120K for reliable 10-year operation to meet mission needs. This paper describes cryocooler efforts previously and currently supported by STSS and the possible future cryogenic requirements for later technology insertion.
2015-09-01
requiring only a few hours of running time. In the 10–100 W+ power range, battery technology is the best solution currently available, but higher...energy dense technologies are needed to augment batteries and extend the available energy density well beyond state of the art battery technology. One way...provide comparable energy density to battery technology with the added advantage of instant recharge. One technology being pursued by the US Army
NASA Technical Reports Server (NTRS)
Logan, Cory; Maida, James; Goldsby, Michael; Clark, Jim; Wu, Liew; Prenger, Henk
1993-01-01
The Space Station Freedom (SSF) Data Management System (DMS) consists of distributed hardware and software which monitor and control the many onboard systems. Virtual environment and off-the-shelf computer technologies can be used at critical points in project development to aid in objectives and requirements development. Geometric models (images) coupled with off-the-shelf hardware and software technologies were used in The Space Station Mockup and Trainer Facility (SSMTF) Crew Operational Assessment Project. Rapid prototyping is shown to be a valuable tool for operational procedure and system hardware and software requirements development. The project objectives, hardware and software technologies used, data gained, current activities, future development and training objectives shall be discussed. The importance of defining prototyping objectives and staying focused while maintaining schedules are discussed along with project pitfalls.
System simulation of direct-current speed regulation based on Simulink
NASA Astrophysics Data System (ADS)
Yang, Meiying
2018-06-01
Many production machines require the smooth adjustment of speed in a certain range In the process of modern industrial production, and require good steady-state and dynamic performance. Direct-current speed regulation system with wide speed regulation range, small relative speed variation, good stability, large overload capacity, can bear the frequent impact load, can realize stepless rapid starting-braking and inversion of frequency and other good dynamic performances, can meet the different kinds of special operation requirements in production process of automation system. The direct-current power drive system is almost always used in the field of drive technology of high performance for a long time.
Micro-optics technology and sensor systems applications
NASA Technical Reports Server (NTRS)
Gal, George; Herman, B.; Anderson, W.; Whitney, R.; Morrow, H.
1993-01-01
The current generation of electro-optical sensors utilizing refractive and reflective optical elements require sophisticated, complex, and expensive designs. Advanced-technology-based electro-optical sensors of minimum size and weight require miniaturization of optical, electrical, and mechanical devices with an increasing trend toward integration of various components. Micro-optics technology has the potential in a number of areas to simplify optical design with improved performance. This includes internally cooled apertures, hybrid optical design, microlenses, dispersive multicolor microlenses, active dither, electronically controlled optical beam steer, and microscopic integration of micro-optics, detectors, and signal processing layers. This paper describes our approach to the development of micro-optics technology with our main emphasis for sensors applications.
NASA Astrophysics Data System (ADS)
Heilmann, Ralf K.; Bruccoleri, Alexander R.; Song, Jungki; Kolodziejczak, Jeffery; Gaskin, Jessica A.; O'Dell, Stephen L.; Cheimetz, Peter; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; La Caria, Marlis-Madeleine; Schattenburg, Mark L.
2017-08-01
Soft x-ray spectroscopy with high resolving power (R = λ/Δλ) and large effective area (A) addresses numerous unanswered science questions about the physical laws that lead to the structure of our universe. In the soft x-ray band R > 1000 can currently only be achieved with diffraction grating-based spectroscopy. Criticalangle transmission (CAT) gratings combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (relaxed alignment tolerances and temperature requirements, transparent at higher energies, low mass), resulting in minimal mission resource requirements, while greatly improving figures of merit. Diffraction efficiency > 33% and R > 10, 000 have been demonstrated for CAT gratings. Last year the technology has been certified at Technology Readiness Level 4 based on a probe class mission concept. The Explorer-scale (A > 450 cm2 , R > 2500) grating spectroscopy Arcus mission can be built with today's CAT grating technology and has been selected in the current Explorer round for a Phase A concept study. Its figure of merit for the detection of weak absorption lines will be an order of magnitude larger than current instruments on Chandra and XMM-Newton. Further CAT grating technology development and improvements in the angular resolution of x-ray optics can provide another order of magnitude improvement in performance, as is envisioned for the X-ray Surveyor/Lynx mission concept currently under development for input into the 2020 Decadal Survey. For Arcus we have tested CAT gratings in a spectrometer setup in combination with silicon pore optics (SPO) and obtained resolving power results that exceed Arcus requirements before and after environmental testing of the gratings. We have recently fabricated the largest (32 mm x 32 mm) CAT gratings to date, and plan to increase grating size further. We mounted two of these large gratings to frames and aligned them in the roll direction using a laser-based technique. Simultaneous x-ray illumination of both gratings with an SPO module demonstrated that we can exceed Arcus grating-to-grating alignment requirements without x rays.
A Method for Selection of Appropriate Assistive Technology for Computer Access
ERIC Educational Resources Information Center
Jenko, Mojca
2010-01-01
Assistive technologies (ATs) for computer access enable people with disabilities to be included in the information society. Current methods for assessment and selection of the most appropriate AT for each individual are nonstandardized, lengthy, subjective, and require substantial clinical experience of a multidisciplinary team. This manuscript…
NASA Technical Reports Server (NTRS)
1984-01-01
The Large Deployable Reflector (LDR), a proposed 20 m diameter telescope designed for infrared and submillimeter astronomical measurements from space, is discussed in terms of scientific purposes, capabilities, current status, and history of development. The LDR systems goals and functional/telescope requirements are enumerated.
ERIC Educational Resources Information Center
Pierce, Robyn; Stacey, Kaye; Wander, Roger; Ball, Lynda
2011-01-01
Current technologies incorporating sophisticated mathematical analysis software (calculation, graphing, dynamic geometry, tables, and more) provide easy access to multiple representations of mathematical problems. Realising the affordances of such technology for students' learning requires carefully designed lessons. This paper reports on design…
Recent trends in current and evolving environmental regulatory strategies dictate that EPA will have to rely more heavily on predictive modeling technologies in carrying out the increasingly complex array of exposure and risk assessments necessary in developing scientifically def...
NASA Technical Reports Server (NTRS)
Schwartz, Daniel A.; Allured, Ryan; Bookbinder, Jay; Cotroneo, Vincenzo; Forman, William; Freeman, Mark; McMuldroch, Stuart; Reid, Paul; Tananbaum, Harvey; Vikhlinin, Alexey;
2014-01-01
Addressing the astrophysical problems of the 2020's requires sub-arcsecond x-ray imaging with square meter effective area. Such requirements can be derived, for example, by considering deep x-ray surveys to find the young black holes in the early universe (large redshifts) which will grow into the first supermassive black holes. We have envisioned a mission based on adjustable x-ray optics technology, in order to achieve the required reduction of mass to collecting area for the mirrors. We are pursuing technology which effects this adjustment via thin film piezoelectric "cells" deposited directly on the non-reflecting sides of thin, slumped glass. While SMARTX will also incorporate state-of-the-art x-ray cameras, the remaining spacecraft systems have no more stringent requirements than those which are well understood and proven on the current Chandra X-ray Observatory.
NASA Astrophysics Data System (ADS)
Evans, J. D.; Hao, W.; Chettri, S. R.
2014-12-01
Disaster risk management has grown to rely on earth observations, multi-source data analysis, numerical modeling, and interagency information sharing. The practice and outcomes of disaster risk management will likely undergo further change as several emerging earth science technologies come of age: mobile devices; location-based services; ubiquitous sensors; drones; small satellites; satellite direct readout; Big Data analytics; cloud computing; Web services for predictive modeling, semantic reconciliation, and collaboration; and many others. Integrating these new technologies well requires developing and adapting them to meet current needs; but also rethinking current practice to draw on new capabilities to reach additional objectives. This requires a holistic view of the disaster risk management enterprise and of the analytical or operational capabilities afforded by these technologies. One helpful tool for this assessment, the GEOSS Architecture for the Use of Remote Sensing Products in Disaster Management and Risk Assessment (Evans & Moe, 2013), considers all phases of the disaster risk management lifecycle for a comprehensive set of natural hazard types, and outlines common clusters of activities and their use of information and computation resources. We are using these architectural views, together with insights from current practice, to highlight effective, interrelated roles for emerging earth science technologies in disaster risk management. These roles may be helpful in creating roadmaps for research and development investment at national and international levels.
Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid
NASA Technical Reports Server (NTRS)
Armstrong, Michael J.; Blackwelder, Mark; Bollman, Andrew; Ross, Christine; Campbell, Angela; Jones, Catherine; Norman, Patrick
2015-01-01
The development of a wholly superconducting turboelectric distributed propulsion system presents unique opportunities for the aerospace industry. However, this transition from normally conducting systems to superconducting systems significantly increases the equipment complexity necessary to manage the electrical power systems. Due to the low technology readiness level (TRL) nature of all components and systems, current Turboelectric Distributed Propulsion (TeDP) technology developments are driven by an ambiguous set of system-level electrical integration standards for an airborne microgrid system (Figure 1). While multiple decades' worth of advancements are still required for concept realization, current system-level studies are necessary to focus the technology development, target specific technological shortcomings, and enable accurate prediction of concept feasibility and viability. An understanding of the performance sensitivity to operating voltages and an early definition of advantageous voltage regulation standards for unconventional airborne microgrids will allow for more accurate targeting of technology development. Propulsive power-rated microgrid systems necessitate the introduction of new aircraft distribution system voltage standards. All protection, distribution, control, power conversion, generation, and cryocooling equipment are affected by voltage regulation standards. Information on the desired operating voltage and voltage regulation is required to determine nominal and maximum currents for sizing distribution and fault isolation equipment, developing machine topologies and machine controls, and the physical attributes of all component shielding and insulation. Voltage impacts many components and system performance.
Advanced Controller Developed for the Free-Piston Stirling Convertor
NASA Technical Reports Server (NTRS)
Gerber, Scott S.
2005-01-01
A free-piston Stirling power convertor is being considered as an advanced power-conversion technology for future NASA deep-space missions requiring long-life radioisotope power systems. The NASA Glenn Research Center has identified key areas where advanced technologies can enhance the capability of Stirling energy-conversion systems. One of these is power electronic controls. Current power-conversion technology for Glenn-tested Stirling systems consists of an engine-driven linear alternator generating an alternating-current voltage controlled by a tuning-capacitor-based alternating-current peak voltage load controller. The tuning capacitor keeps the internal alternator electromotive force (EMF) in phase with its respective current (i.e., passive power factor correction). The alternator EMF is related to the piston velocity, which must be kept in phase with the alternator current in order to achieve stable operation. This tuning capacitor, which adds volume and mass to the overall Stirling convertor, can be eliminated if the controller can actively drive the magnitude and phase of the alternator current.
Conceptual Design of a Supersonic Business Jet Propulsion System
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.
2002-01-01
NASA's Ultra-Efficient Engine Technology Program (UEETP) is developing a suite of technology to enhance the performance of future aircraft propulsion systems. Areas of focus for this suite of technology include: Highly Loaded Turbomachinery, Emissions Reduction, Materials and Structures, Controls, and Propulsion-Airframe Integration. The two major goals of the UEETP are emissions reduction of both landing and take-off nitrogen oxides (LTO-NO(x)) and mission carbon dioxide (CO2) through fuel burn reductions. The specific goals include a 70 percent reduction in the current LTO-NO(x) rule and an 8 percent reduction in mission CO2 emissions. In order to gain insight into the potential applications and benefits of these technologies on future aircraft, a set of representative flight vehicles was selected for systems level conceptual studies. The Supersonic Business Jet (SBJ) is one of these vehicles. The particular SBJ considered in this study has a capacity of 6 passengers, cruise Mach Number of 2.0, and a range of 4,000 nautical miles. Without the current existence of an SBJ the study of this vehicle requires a two-phased approach. Initially, a hypothetical baseline SBJ is designed which utilizes only current state of the art technology. Finally, an advanced SBJ propulsion system is designed and optimized which incorporates the advanced technologies under development within the UEETP. System benefits are then evaluated and compared to the program and design requirements. Although the program goals are only concerned with LTO-NO(x) and CO2 emissions, it is acknowledged that additional concerns for an SBJ include take-off noise, overland supersonic flight, and cruise NO(x) emissions at high altitudes. Propulsion system trade-offs in the conceptual design phase acknowledge these issues as well as the program goals. With the inclusion of UEETP technologies a propulsion system is designed which performs at 81% below the LTO-NO(x) rule, and reduces fuel burn by 23 percent compared to the current technology.
Defining Support Requirements During Conceptual Design of Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Morris, W. D.; White, N. H.; Davis, W. T.; Ebeling, C. E.
1995-01-01
Current methods for defining the operational support requirements of new systems are data intensive and require significant design information. Methods are being developed to aid in the analysis process of defining support requirements for new launch vehicles during their conceptual design phase that work with the level of information available during this phase. These methods will provide support assessments based on the vehicle design and the operating scenarios. The results can be used both to define expected support requirements for new launch vehicle designs and to help evaluate the benefits of using new technologies. This paper describes the models, their current status, and provides examples of their use.
Development of Thermal Protection Materials for Future Mars Entry, Descent and Landing Systems
NASA Technical Reports Server (NTRS)
Cassell, Alan M.; Beck, Robin A. S.; Arnold, James O.; Hwang, Helen; Wright, Michael J.; Szalai, Christine E.; Blosser, Max; Poteet, Carl C.
2010-01-01
Entry Systems will play a crucial role as NASA develops the technologies required for Human Mars Exploration. The Exploration Technology Development Program Office established the Entry, Descent and Landing (EDL) Technology Development Project to develop Thermal Protection System (TPS) materials for insertion into future Mars Entry Systems. An assessment of current entry system technologies identified significant opportunity to improve the current state of the art in thermal protection materials in order to enable landing of heavy mass (40 mT) payloads. To accomplish this goal, the EDL Project has outlined a framework to define, develop and model the thermal protection system material concepts required to allow for the human exploration of Mars via aerocapture followed by entry. Two primary classes of ablative materials are being developed: rigid and flexible. The rigid ablatives will be applied to the acreage of a 10x30 m rigid mid L/D Aeroshell to endure the dual pulse heating (peak approx.500 W/sq cm). Likewise, flexible ablative materials are being developed for 20-30 m diameter deployable aerodynamic decelerator entry systems that could endure dual pulse heating (peak aprrox.120 W/sq cm). A technology Roadmap is presented that will be used for facilitating the maturation of both the rigid and flexible ablative materials through application of decision metrics (requirements, key performance parameters, TRL definitions, and evaluation criteria) used to assess and advance the various candidate TPS material technologies.
Energy Storage: Batteries and Fuel Cells for Exploration
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Miller, Thomas B.; Hoberecht, Mark A.; Baumann, Eric D.
2007-01-01
NASA's Vision for Exploration requires safe, human-rated, energy storage technologies with high energy density, high specific energy and the ability to perform in a variety of unique environments. The Exploration Technology Development Program is currently supporting the development of battery and fuel cell systems that address these critical technology areas. Specific technology efforts that advance these systems and optimize their operation in various space environments are addressed in this overview of the Energy Storage Technology Development Project. These technologies will support a new generation of more affordable, more reliable, and more effective space systems.
Aerospace Applications of Microprocessors
NASA Technical Reports Server (NTRS)
1980-01-01
An assessment of the state of microprocessor applications is presented. Current and future requirements and associated technological advances which allow effective exploitation in aerospace applications are discussed.
36 CFR Appendix A to Part 1234 - Minimum Security Standards for Level III Federal Facilities
Code of Federal Regulations, 2013 CFR
2013-07-01
... construction projects should be reviewed if possible, to incorporate current technology and blast standards... critical systems (alarm systems, radio communications, computer facilities, etc.) Required. Occupant... all exterior windows (shatter protection) Recommended. Review current projects for blast standards...
NASA Technical Reports Server (NTRS)
Hayati, Samad A.
2002-01-01
Future Mars missions require new capabilities that currently are not available. The Mars Technology Program (MTP) is an integral part of the Mars Exploration Program (MEP). Its sole purpose is to assure that required technologies are developed in time to enable the baselined and future missions. The MTP is a NASA-wide technology development program managed by JPL. It is divided into a Focused Program and a Base Program. The Focused Program is tightly tied to the proposed Mars Program mission milestones. It involves time-critical deliverables that must be developed in time for infusion into the proposed Mars 2005, and, 2009 missions. In addition a technology demonstration mission by AFRL will test a LIDAR as part of a joint NASNAFRL experiment. This program bridges the gap between technology and projects by vertically integrating the technology work with pre-project development in a project-like environment with critical dates for technology infusion. A Base Technology Program attacks higher riskhigher payoff technologies not in the critical path of missions.
Ashley, K; Wilson, S; Young, J R; Chan, H P; Vitou, S; Suon, S; Windsor, P A; Bush, R D
2018-01-01
Forage technology has been successfully introduced into smallholder cattle systems in Cambodia as an alternative feed source to the traditional rice straw and native pastures, improving animal nutrition and reducing labour requirements of feeding cattle. Previous research has highlighted the positive impacts of forage technology including improved growth rates of cattle and household time savings. However, further research is required to understand the drivers, challenges and opportunities of forage technology for smallholder cattle households in Cambodia to facilitate widespread adoption and identify areas for further improvement. A survey of forage-growing households (n = 40) in July-September 2016 examined forage technology adoption experiences, including reasons for forage establishment, use of inputs and labour requirements of forage plot maintenance and use of forages (feeding, fattening, sale of grass or seedlings and silage). Time savings was reported as the main driver of forage adoption with household members spending approximately 1 h per day maintaining forages and feeding it to cattle. Water availability was reported as the main challenge to this activity. A small number of households also reported lack of labour, lack of fencing, competition from natural grasses, cost of irrigation and lack of experience as challenges to forage growing. Cattle fattening and sale of cut forage grass and seedlings was not found to be a widespread activity by interviewed households, with 25 and 10% of households reporting use of forages for these activities, respectively. Currently, opportunities exist for these households to better utilise forages through expansion of forage plots and cattle activities, although assistance is required to support these households in addressing current constraints, particularly availability of water, if the sustainability of this feed technology for smallholder cattle household is to be established in Cambodia.
Technology Required to Image and Characterize an exo-Earth from Space
NASA Astrophysics Data System (ADS)
Crill, Brendan
2018-01-01
NASA's Exoplanet Exploration Program (ExEP) guides the development of technology that enables the direct imaging and characterization of exo-Earths in the habitable zone of Sun-like stars with future space observatories. Here we present the 2018 ExEP Technology Gap List, an annual update to ExEP's list of technologies, to be advanced in the next 1-5 years. Key technology gaps are starlight suppression with a coronagraph (internal occulters) or a starshade (external occulters), enabling imaging at extreme contrast (more than 10 billion) by blocking on-axis starlight, while allowing the reflected light of off-axis exoplanets be detected. Building and operating a space coronagraph capable of imaging an exo-Earth will require new technologies beyond those of WFIRST, the first high-contrast coronagraph in space. A starshade has never been used in a space mission and requires new capabilities in precision deployment of large structures, starlight suppression, and in formation sensing and control. We review the current state-of-the-art in coronagraph and starshade technology and the performance level that must be achieved to discover and characterize Earth analogs.
Asphalt recycling technology: Literature review and research plan
NASA Astrophysics Data System (ADS)
Newcomb, D. E.; Epps, J. A.
1981-06-01
A review of current technology for the rehabilitation and maintenance of pavement surfaces by recycling was conducted. While the primary concern was asphalt concrete recycling, a brief review of portland cement concrete recycling is included. Reports of cases involving recycling technology and lessons learned are reviewed. Recommendations are presented outlining research required to advance the state-of-the-art in a manner that will permit the U.S. Air Force to fully attain the benefits of recycling technology.
Cost modeling to justify technology acquisitions.
Vanden Brink, J; Gray, S
1997-06-01
In an era of diminishing resources, healthcare providers must justify new technology acquisitions. Cost modeling is one method of evaluating the financial impact a technology acquisition will have on a healthcare facility or integrated delivery system. This methodology requires careful data collection and a thorough analysis of both current costs and future cost savings resulting from the new technology. By using a cost modeling methodology, providers will be able to achieve competitive and economic advantages by analyzing both cost and value.
High bandwidth electro-optic technology for intersatellite optical communications
NASA Technical Reports Server (NTRS)
Krainak, Michael A.
1992-01-01
The research and development of electronic and electro-optic components for geosynchronous and low earth orbiting satellite optical high bandwidth communications at the NASA-Goddard Space Flight Center is reviewed. Intersatellite optical communications retains a strong reliance on microwave circuit technology in several areas - the microwave to optical interface, the laser transmitter modulation driver and the optical receiver. A microwave to optical interface is described requiring high bandwidth electronic downconverters and demodulators. Electrical bandwidth and current drive requirements for the laser modulation driver for three laser alternatives are discussed. Bandwidth and noise requirements are presented for optical receiver architectures.
Technology for the Future: In-Space Technology Experiments Program, part 1
NASA Technical Reports Server (NTRS)
Breckenridge, Roger A. (Compiler); Clark, Lenwood G. (Compiler); Willshire, Kelli F. (Compiler); Beck, Sherwin M. (Compiler); Collier, Lisa D. (Compiler)
1991-01-01
The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiment Program (In-STEP) 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part one of two parts and is the executive summary and experiment description. The executive summary portion contains keynote addresses, strategic planning information, and the critical technology needs summaries for each theme. The experiment description portion contains brief overviews of the objectives, technology needs and backgrounds, descriptions, and development schedules for current industry, university, and NASA space flight technology experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markel, T.; Meintz, A.; Hardy, K.
2015-05-28
The report begins with a discussion of the current state of the energy and transportation systems, followed by a summary of some VGI scenarios and opportunities. The current efforts to create foundational interface standards are detailed, and the requirements for enabling PEVs as a grid resource are presented. Existing technology demonstrations that include vehicle to grid functions are summarized. The report also includes a data-based discussion on the magnitude and variability of PEVs as a grid resource, followed by an overview of existing simulation tools that vi This report is available at no cost from the National Renewable Energy Laboratorymore » (NREL) at www.nrel.gov/publications. can be used to explore the expansion of VGI to larger grid functions that might offer system and customer value. The document concludes with a summary of the requirements and potential action items that would support greater adoption of VGI.« less
State of the NASA Aeropropulsion Discipline Input from the Glenn Research Center
NASA Technical Reports Server (NTRS)
Reddy, D. R.; Schmidt, George
2017-01-01
PROBLEM: Current power turbines are designed for single operating speed, and performance degrades rapidly as power turbine speed decreases. OBJECTIVES: Demonstrate 50 improvement in efficient operational capability using a Variable Speed Power Turbine concept. (Refer to figure lower left, where the goal is to raise efficiency from the current technology line to the green line which represents the AVSPOT VSPT goal.APPROACH: Conduct RD required to advance the technology readiness level of VSPT technology to TRL 4Partner with DoD and leverage DOD AVSPOT contract to share government cost (5050) of contracted efforts to GE and PW for VSPT TRL 45 demonstration.
Propulsion Technology Needs for Exploration
NASA Technical Reports Server (NTRS)
Brown, Thomas
2007-01-01
The objectives of currently planned exploration efforts, as well as those further in the future, require significant advancements in propulsion technologies. The current Lunar exploration architecture has set goals and mission objectives that necessitate the use of new systems and the extension of existing technologies beyond present applications. In the near term, the majority of these technologies are the result of a need to apply high performing cryogenic propulsion systems to long duration in-space applications. Advancement of cryogenic propulsion to these applications is crucial to provide higher performing propulsion systems that reduce the vehicle masses; enhance the safety of vehicle systems and ground operations; and provide a path for In-situ Resource Utilization (ISRU).Use of a LOX/LH2 main propulsion system for Lunar Lander Descent is a top priority because more conventional storable propellants are far from meeting the performance needs of the current architecture. While LOX/LH2 pump feed engines have been used in flight applications for many years, these engines have limited throttle capabilities. Engines that are capable of much greater throttling while still meeting high performance goals are a necessity to achieving exploration goals. Applications of LOX/CH4 propulsion to Lander ascent propulsion systems and reaction control systems are also if interest because of desirable performance and operations improvements over conventional storable systems while being more suitable for use of in-situ produced propellants. Within the current lunar architecture, use of cryogenic propulsion for the Earth Departure Stage and Lunar Lander elements also necessitate the need for advanced Cryogenic Fluid Management technologies. These technologies include long duration propellant storage/distribution, low-gravity propellant management, cryogenic couplings and disconnects, light weight composite tanks and support structure, and subsystem integration. In addition to the propulsive and fluid management system technologies described, many component level technologies are also required to enable to the success if the integrated systems. The components include, but are not limited to, variable/throttling valves, variable position actuators, leak detectors, light weight cryogenic fluid pumps, sensor technology and others. NASA, partnering with the Aerospace Industry must endeavor to develop these, and other promising propulsion technologies, to enable the implements of the country's goals in exploration of the Moon, Mars and beyond.
Space Solar Power Concepts: Demonstrations to Pilot Plants
NASA Technical Reports Server (NTRS)
Carrington, Connie K.; Feingold, Harvey; Howell, Joe T. (Technical Monitor)
2002-01-01
The availability of abundant, affordable power where needed is a key to the future exploration and development of space as well as future sources of clean terrestrial power. One innovative approach to providing such power is the use of wireless power transmission (WPT). There are at least two possible WPT methods that appear feasible; microwave and laser. Microwave concepts have been generated, analyzed and demonstrated. Technologies required to provide an end-to-end system have been identified and roadmaps generated to guide technology development requirements. Recently, laser W T approaches have gained an increased interest. These approaches appear to be very promising and will possibly solve some of the major challenges that exist with the microwave option. Therefore, emphasis is currently being placed on the laser WPT activity. This paper will discuss the technology requirements, technology roadmaps and technology flight experiments demonstrations required to lead toward a pilot plant demonstration. Concepts will be discussed along with the modeling techniques that are used in developing them. Feasibility will be addressed along with the technology needs, issues and capabilities for particular concepts. Flight experiments and demonstrations will be identified that will pave the road from demonstrations to pilot plants and beyond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig N. Eatough
In order to produce steel (a necessary commodity in developed nations) using conventional technologies, you must have metallurgical coke. Current coke-making technology pyrolyzes high-quality coking coals in a slot oven, but prime coking coals are becoming more expensive and slot ovens are being shut-down because of age and environmental problems. The United States typically imports about 4 million tons of coke per year, but because of a world-wide coke scarcity, metallurgical coke costs have risen from about $77 per tonne to more than $225. This coke shortage is a long-term challenge driving up the price of steel and is forcingmore » steel makers to search for alternatives. Combustion Resources (CR) has developed a technology to produce metallurgical coke from alternative feedstocks in an environmentally clean manner. The purpose of the current project was to refine material and process requirements in order to achieve improved economic benefits and to expand upon prior work on the proposed technology through successful prototype testing of coke products. The ultimate objective of this project is commercialization of the proposed technology. During this project period, CR developed coke from over thirty different formulations that meet the strength and reactivity requirements for use as metallurgical coke. The technology has been termed CR Clean Coke because it utilizes waste materials as feedstocks and is produced in a continuous process where pollutant emissions can be significantly reduced compared to current practice. The proposed feed material and operating costs for a CR Clean Coke plant are significantly less than conventional coke plants. Even the capital costs for the proposed coke plant are about half that of current plants. The remaining barrier for CR Clean Coke to overcome prior to commercialization is full-scale testing in a blast furnace. These tests will require a significant quantity of product (tens of thousands of tons) necessitating the construction of a demonstration facility. Talks are currently underway with potential partners and investors to build a demonstration facility that will generate enough coke for meaningful blast furnace evaluation tests. If the testing is successful, CR Clean Coke could potentially eliminate the need for the United States to import any coke, effectively decreasing US Steel industry dependence on foreign nations and reducing the price of domestic steel.« less
From Piloting e-Submission to Electronic Management of Assessment (EMA): Mapping Grading Journeys
ERIC Educational Resources Information Center
Vergés Bausili, Anna
2018-01-01
The increasing interest in electronic management of assessment is a sign of a gradual institutionalisation of e-submission and e-marking technologies in UK Higher Education. The effective adoption of these technologies requires a managed approach, especially a detailed understanding of current assessment practices within the institution and the…
Special Education Teachers' Views on Using Technology in Teaching Mathematics
ERIC Educational Resources Information Center
Baglama, Basak; Yikmis, Ahmet; Demirok, Mukaddes Sakalli
2017-01-01
Individuals with special needs require support in acquiring various academic and social skills and mathematical skills are one of the most important skills in which individuals with special needs need to acquire in order to maintain their daily lives. Current approaches in education emphasize the importance of integrating technology into special…
ERIC Educational Resources Information Center
Fechter, Alan
Obstacles to producing forecasts of the impact of technological change and skill utilization are briefly discussed, and existing models for forecasting manpower requirements are described and analyzed. A survey of current literature reveals a concentration of models for producing long-range national forecasts, but few models for generating…
Emotional Intelligence: A Key to Improving Federal Chief Information Officer Management
ERIC Educational Resources Information Center
Borkowski, Tammy M.
2012-01-01
The United States Government relies on information technology to provide services to its citizens, spending more than $600 billion on its products and services in the last decade. Given the current fiscal climate, the Executive Branch of the United States Government has a renewed focus on information technology (IT) innovation, requiring federal…
Twenty-First Century Literacy: A Matter of Scale from Micro to Mega
ERIC Educational Resources Information Center
Brown, Abbie; Slagter van Tryon, Patricia J.
2010-01-01
Twenty-first century technologies require educators to look for new ways to teach literacy skills. Current communication methods are combinations of traditional and newer, network-driven forms. This article describes the changes twenty-first century technologies cause in the perception of time, size, distance, audience, and available data, and…
Propulsion Study for Small Transport Aircraft Technology (STAT)
NASA Technical Reports Server (NTRS)
Gill, J. C.; Earle, R. V.; Staton, D. V.; Stolp, P. C.; Huelster, D. S.; Zolezzi, B. A.
1980-01-01
Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988.
Bamsey, Matthew; Graham, Thomas; Thompson, Cody; Berinstain, Alain; Scott, Alan; Dixon, Michael
2012-01-01
The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry's demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided. PMID:23201999
Bamsey, Matthew; Graham, Thomas; Thompson, Cody; Berinstain, Alain; Scott, Alan; Dixon, Michael
2012-10-01
The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry's demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided.
NASA Technical Reports Server (NTRS)
Howlett, R. A.
1975-01-01
A continuation of the NASA/P and WA study to evaluate various types of propulsion systems for advanced commercial supersonic transports has resulted in the identification of two very promising engine concepts. They are the Variable Stream Control Engine which provides independent temperature and velocity control for two coannular exhaust streams, and a derivative of this engine, a Variable Cycle Engine that employs a rear flow-inverter valve to vary the bypass ratio of the cycle. Both concepts are based on advanced engine technology and have the potential for significant improvements in jet noise, exhaust emissions and economic characteristics relative to current technology supersonic engines. Extensive research and technology programs are required in several critical areas that are unique to these supersonic Variable Cycle Engines to realize these potential improvements. Parametric cycle and integration studies of conventional and Variable Cycle Engines are reviewed, features of the two most promising engine concepts are described, and critical technology requirements and required programs are summarized.
NASA Technical Reports Server (NTRS)
Williams, G. M.; Fraser, J. C.
1991-01-01
The objective was to examine state-of-the-art optical sensing and processing technology applied to control the motion of flexible spacecraft. Proposed large flexible space systems, such an optical telescopes and antennas, will require control over vast surfaces. Most likely distributed control will be necessary involving many sensors to accurately measure the surface. A similarly large number of actuators must act upon the system. The used technical approach included reviewing proposed NASA missions to assess system needs and requirements. A candidate mission was chosen as a baseline study spacecraft for comparison of conventional and optical control components. Control system requirements of the baseline system were used for designing both a control system containing current off-the-shelf components and a system utilizing electro-optical devices for sensing and processing. State-of-the-art surveys of conventional sensor, actuator, and processor technologies were performed. A technology development plan is presented that presents a logical, effective way to develop and integrate advancing technologies.
Digital imaging technology assessment: Digital document storage project
NASA Technical Reports Server (NTRS)
1989-01-01
An ongoing technical assessment and requirements definition project is examining the potential role of digital imaging technology at NASA's STI facility. The focus is on the basic components of imaging technology in today's marketplace as well as the components anticipated in the near future. Presented is a requirement specification for a prototype project, an initial examination of current image processing at the STI facility, and an initial summary of image processing projects at other sites. Operational imaging systems incorporate scanners, optical storage, high resolution monitors, processing nodes, magnetic storage, jukeboxes, specialized boards, optical character recognition gear, pixel addressable printers, communications, and complex software processes.
Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Alff, W. H.
1980-01-01
The feasibility and costs were determined for a 1 m to 30 m diameter ambient temperature, infrared to submillimeter orbiting astronomical telescope which is to be shuttle-deployed, free-flying, and have a 10 year orbital life. Baseline concepts, constraints on delivery and deployment, and the sunshield required are examined. Reflector concepts, the optical configuration, alignment and pointing, and materials are also discussed. Technology studies show that a 10 m to 30 m diameter system which is background and diffraction limited at 30 micron m is feasible within the stated time frame. A 10 m system is feasible with current mirror technology, while a 30 m system requires technology still in development.
Energy requirement for the production of silicon solar arrays
NASA Technical Reports Server (NTRS)
Lindmayer, J.; Wihl, M.; Scheinine, A.; Rosenfield, T.; Wrigley, C. Y.; Morrison, A.; Anderson, J.; Clifford, A.; Lafky, W.
1977-01-01
The results of a study to investigate the feasibility of manufacturing photovoltaic solar array modules by the use of energy obtained from similar or identical photovoltaic sources are presented. The primary objective of this investigation was the characterization of the energy requirements of current and developing technologies which comprise the photovoltaic field. For cross-checking the energies of prevailing technologies data were also used and the wide-range assessment of alternative technologies included different refinement methods, various ways of producing light sheets, semicrystalline cells, etc. Energy data are utilized to model the behavior of a future solar breeder plant under various operational conditions.
Measurement technology of RF interference current in high current system
NASA Astrophysics Data System (ADS)
Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei
2018-06-01
Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.
I feel disconnected: learning technologies in resident education.
Armstrong, April D; Jarvis-Selinger, Sandra
2013-01-01
With the rapid development of technology in medical education, orthopaedic educators are recognizing that the way residents learn and access information is profoundly changing. Residency programs are faced with the challenging problem that current educational methods are not designed to take full advantage of the information explosion and rapid technologic changes. This disconnection is often seen in the potentially separate approaches to education preferred by residents and orthopaedic educators. Becoming connected with residents requires understanding the possible learning technologies available and the learners' abilities, needs, and expectations. It is often assumed that approaches to strategic lifelong learning are developed by residents during their training; however, without the incorporation of technology into the learning environment, residents will not be taught the digital literacy and information management strategies that will be needed in the future. To improve learning, it is important to highlight and discuss current technologic trends in education, the possible technologic disconnection between educators and learners, the types of learning technologies available, and the potential opportunities for getting connected.
On-Orbit Compressor Technology Program
NASA Technical Reports Server (NTRS)
Deffenbaugh, Danny M.; Svedeman, Steven J.; Schroeder, Edgar C.; Gerlach, C. Richard
1990-01-01
A synopsis of the On-Orbit Compressor Technology Program is presented. The objective is the exploration of compressor technology applicable for use by the Space Station Fluid Management System, Space Station Propulsion System, and related on-orbit fluid transfer systems. The approach is to extend the current state-of-the-art in natural gas compressor technology to the unique requirements of high-pressure, low-flow, small, light, and low-power devices for on-orbit applications. This technology is adapted to seven on-orbit conceptual designs and one prototype is developed and tested.
Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Taylor, B. D.; Caffrey, J.; Hedayat, A.; Stephens, J.; Polsgrove, R.
2015-01-01
Cryogenic fluid management technology is critical to the success of future nuclear thermal propulsion powered vehicles and long duration missions. This paper discusses current capabilities in key technologies and their development path. The thermal environment, complicated from the radiation escaping a reactor of a nuclear thermal propulsion system, is examined and analysis presented. The technology development path required for maintaining cryogenic propellants in this environment is reviewed. This paper is intended to encourage and bring attention to the cryogenic fluid management technologies needed to enable nuclear thermal propulsion powered deep space missions.
Data in the Digital Age: Charting the Way for Multimedia Learning
ERIC Educational Resources Information Center
Maretich, Kaylene
2017-01-01
Information and communication technology (ICT) is an integral aspect of the current Australian Curriculum: Mathematics. The language, strategies and resources required in mathematics education today can be very different to the mathematics lessons experienced by current teachers when they themselves were at school (Sousa, 2015). Learning…
Developmental Challenges of SMES Technology for Applications
NASA Astrophysics Data System (ADS)
Rong, Charles C.; Barnes, Paul N.
2017-12-01
This paper reviews the current status of high temperature superconductor (HTS) based superconducting magnetic energy storage (SMES) technology as a developmental effort. Discussion centres on the major challenges in magnet optimization, loss reduction, cooling improvement, and new development of quench detection. The cryogenic operation for superconductivity in this technological application requires continued research and development, especially with a greater engineering effort that involves the end user. For the SMES-based technology to more fully mature, some suggestions are given for consideration and discussion.
NASA Technical Reports Server (NTRS)
Cruit, Wendy; Schutzenhofer, Scott; Goldberg, Ben; Everhart, Kurt
1993-01-01
This project served to define an appropriate methodology for effective prioritization of technology efforts required to develop replacement technologies mandated by imposed and forecast legislation. The methodology used is a semiquantitative approach derived from quality function deployment techniques (QFD Matrix). This methodology aims to weight the full environmental, cost, safety, reliability, and programmatic implications of replacement technology development to allow appropriate identification of viable candidates and programmatic alternatives. The results will be implemented as a guideline for consideration for current NASA propulsion systems.
Emerging technologies for the changing global market
NASA Technical Reports Server (NTRS)
Cruit, Wendy; Schutzenhofer, Scott; Goldberg, Ben; Everhart, Kurt
1993-01-01
This project served to define an appropriate methodology for effective prioritization of technology efforts required to develop replacement technologies mandated by imposed and forecast legislation. The methodology used is a semi-quantative approach derived from quality function deployment techniques (QFD Matrix). This methodology aims to weight the full environmental, cost, safety, reliability, and programmatic implications of replacement technology development to allow appropriate identification of viable candidates and programmatic alternatives. The results will be implemented as a guideline for consideration for current NASA propulsion systems.
Application of advanced technologies to derivatives of current small transport aircraft
NASA Technical Reports Server (NTRS)
Renze, P. P.; Terry, J. E.
1981-01-01
Mission requirements of the derivative design were the same as the baseline to readily identify the advanced technology benefits achieved. Advanced technologies investigated were in the areas of propulsion, structures and aerodynamics and a direct operating cost benefit analysis conducted to identify the most promising. Engine improvements appear most promising and combined with propeller, airfoil, surface coating and composite advanced technologies give a 21-25 percent DOC savings. A 17 percent higher acquisition cost is offset by a 34 percent savings in fuel used.
Privacy and data security in E-health: requirements from the user's perspective.
Wilkowska, Wiktoria; Ziefle, Martina
2012-09-01
In this study two currently relevant aspects of using medical assistive technologies were addressed-security and privacy. In a two-step empirical approach that used focus groups (n = 19) and a survey (n = 104), users' requirements for the use of medical technologies were collected and evaluated. Specifically, we focused on the perceived importance of data security and privacy issues. Outcomes showed that both security and privacy aspects play an important role in the successful adoption of medical assistive technologies in the home environment. In particular, analysis of data with respect to gender, health-status and age (young, middle-aged and old users) revealed that females and healthy adults require, and insist on, the highest security and privacy standards compared with males and the ailing elderly.
Advanced Life Support Technologies and Scenarios
NASA Technical Reports Server (NTRS)
Barta, Daniel J.
2011-01-01
As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Improving the efficiency of the recovery of water from spacecraft solid and liquid wastes is possible through use of emerging technologies such as the heat melt compactor and brine dewatering systems. Another significant consumable is that of food. Food production systems based on higher plants may not only contribute significantly to the diet, but also contribute to atmosphere revitalization, water purification and waste utilization. Bioreactors may be potentially utilized for wastewater and solid waste management. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.
Mobil lube dewaxing technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, C.L.; McGuiness, M.P.
1995-09-01
Currently, the lube refining industry is in a period of transition, with both hydroprocessing and catalytic dewaxing gathering momentum as replacements for solvent extraction and solvent dewaxing. In addition, lube product quality requirements have been increasing, both in the US and abroad. Mobil has developed a broad array of dewaxing catalytic technologies which can serve refiners throughout the stages of this transition. In the future, lube feedstocks which vary in source and wax content will become increasingly important, requiring an optimized system for highest performance. The Mobil Lube Dewaxing (MLDW) process is the work-horse of the catalytic dewaxing technologies, beingmore » a robust, low cost technology suitable for both solvent extracted and hydrocracked feeds. The Mobil Selective Dewaxing (MSDW) process has been recently introduced in response to the growth of hydroprocessing. MSDW requires either severely hydrotreated or hydrocracked feeds and provides improved lube yields and VI. For refiners with hydrocrackers and solvent dewaxing units, Mobil Wax Isomerization (MWI) technology can make higher VI base stocks to meet the growing demand for very high quality lube products. A review of these three technologies is presented in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, P.; Putkovich, R.P.
1981-07-01
A study was conducted of the requirements for and technologies applicable to power conditioning equipment in residential solar photovoltaic systems. A survey of companies known or thought to manufacture power conditioning equipment was conducted to asses the technology. Technical issues regarding ac and dc interface requirements were studied. A baseline design was selected to be a good example of existing technology which would not need significant development effort for its implementation. Alternative technologies are evaluated to determine which meet the baseline specification, and their costs and losses are evaluated. Areas in which cost improvements can be obtained are studied, andmore » the three best candidate technologies--the current-sourced converter, the HF front end converter, and the programmed wave converter--are compared. It is concluded that the designs investigated will meet, or with slight improvement could meet, short term efficiency goals. Long term efficiency goals could be met if an isolation transformer were not required in the power conditioning equipment. None of the technologies studied can meet cost goals unless further improvements are possible. (LEW)« less
NASA Technical Reports Server (NTRS)
Bingham, Gail; Bates, Scott; Bugbee, Bruce; Garland, Jay; Podolski, Igor; Levinskikh, Rita; Sychev, Vladimir; Gushin, Vadim
2009-01-01
Validating Vegetable Production Unit (VPU) Plants, Protocols, Procedures and Requirements (P3R) Using Currently Existing Flight Resources (Lada-VPU-P3R) is a study to advance the technology required for plant growth in microgravity and to research related food safety issues. Lada-VPU-P3R also investigates the non-nutritional value to the flight crew of developing plants on-orbit. The Lada-VPU-P3R uses the Lada hardware on the ISS and falls under a cooperative agreement between National Aeronautics and Space Administration (NASA) and the Russian Federal Space Association (FSA). Research Summary: Validating Vegetable Production Unit (VPU) Plants, Protocols, Procedures and Requirements (P3R) Using Currently Existing Flight Resources (Lada-VPU-P3R) will optimize hardware and
NASA/DOD Control/Structures Interaction Technology, 1986
NASA Technical Reports Server (NTRS)
Wright, Robert L. (Compiler)
1987-01-01
Papers presented at the CSI Technology Conference are given. The conference was jointly sponsored by the NASA Office of Aeronautics and Space Technology and the Department of Defense. The conference is the beginning of a series of annual conferences whose purpose is to report to industry, academia, and government agencies the current status of Control/Structures Interaction technology. The conference program was divided into five sessions: (1) Future spacecraft requirements; Technology issues and impact; (2) DOD special topics; (3) Large space systems technology; (4) Control of flexible structures, and (5) Selected NASA research in control structures interaction.
The Roles of Technology in Primary HIV Prevention for Men Who Have Sex with Men.
Sullivan, Patrick S; Jones, Jeb; Kishore, Nishant; Stephenson, Rob
2015-12-01
Men who have sex with men (MSM) are at disproportionate risk for HIV infection globally. The past 5 years have seen considerable advances in biomedical interventions to reduce the risk of HIV infection. To be impactful in reducing HIV incidence requires the rapid and expansive scale-up of prevention. One mechanism for achieving this is technology-based tools to improve knowledge, acceptability, and coverage of interventions and services. This review provides a summary of the current gap in coverage of primary prevention services, how technology-based interventions and services can address gaps in coverage, and the current trends in the development and availability of technology-based primary prevention tools for use by MSM. Results from agent-based models of HIV epidemics of MSM suggest that 40-50 % coverage of multiple primary HIV prevention interventions and services, including biomedical interventions like preexposure prophylaxis, will be needed to reduce HIV incidence among MSM. In the USA, current levels of coverage for all interventions, except HIV testing and condom distribution, fall well short of this target. Recent findings illustrate how technology-based HIV prevention tools can be used to provide certain kinds of services at much larger scale, with marginal incremental costs. A review of mobile apps for primary HIV prevention revealed that most are designed by nonacademic, nonpublic health developers, and only a small proportion of available mobile apps specifically address MSM populations. We are unlikely to reach the required scale of HIV prevention intervention coverage for MSM unless we can leverage technologies to bring key services to broad coverage for MSM. Despite an exciting pipeline of technology-based prevention tools, there are broader challenges with funding structures and sustainability that need to be addressed to realize the full potential of this emerging public health field.
Environmental challenges of the chlor-alkali production: Seeking answers from a life cycle approach.
Garcia-Herrero, Isabel; Margallo, María; Onandía, Raquel; Aldaco, Rubén; Irabien, Angel
2017-02-15
Life Cycle Assessment (LCA) has been used to assess the environmental sustainability of the chlor-alkali production in Europe. The three current technologies applied nowadays are mercury, diaphragm, and membrane cell technology. Despite, having achieved higher energy efficiencies since the introduction of membrane technology, energy consumption is still one of the most important issues in this sector. An emerging technology namely oxygen-depolarised cathodes (ODC) is suggested as a promising approach for reducing the electrolysis energy demand. However, its requirement of pure oxygen and the lack of production of hydrogen, which could otherwise be valorised, are controversial features for greener chlorine production. The aim of this work is to evaluate and compare the environmental profiles of the current and emerging technologies for chlorine production and to identify the main hot spots of the process. Salt mining, brine preparation, electrolysis technology and products treatment are included inside the system boundaries. Twelve environmental impact categories grouped into natural resources usage and environmental burdens are assessed from cradle to gate and further normalised and weighted. Furthermore, hydrogen valorisation, current density and allocation procedure are subjected to sensitivity analysis. Results show that the electrolysis stage is the main contributor to the environmental impacts due to energy consumption, causing 99.5-72% of these impacts. Mercury is the less environmentally sustainable technology, closely followed by diaphragm. This difference becomes bigger after normalisation, owing to hazardous waste generated by mercury technique. Conversely, best results are obtained for ODC instead of membrane scenario, although the reduction in energy requirements is lesser than expected (7%). Copyright © 2016 Elsevier B.V. All rights reserved.
Technical College Graduate Perceptions of College and Career Readiness
ERIC Educational Resources Information Center
Hanson, Dale M.
2013-01-01
The United States workplace requires increased levels of postsecondary education to support workforce development for an economy driven by technology, automation and global competition. By 2018, 63 % of new jobs created will require postsecondary education (Carnevale, Smith, & Strohl, 2010). Currently, one in four graduates earns a bachelor's…
Student Record Automating Using Desktop Computer Technologies.
ERIC Educational Resources Information Center
Almerico, Gina M.; Baker, Russell K.; Matassini, Norma
Teacher education programs nationwide are required by state and federal governments to maintain comprehensive student records of all current and graduated students in their programs. A private, mid-sized university established a faculty team to analyze record-keeping procedures to comply with these government requirements. The team's mandate was…
HYDRAULIC FRACTURING TO IMPROVE NUTRIENT AND OXYGEN DELIVERY FOR IN SITU BIORECLAMATION
The in situ delivery of nutrients and oxygen in soil is a serious problem in implementing in situ biodegradation. Current technology requires ideal site conditions to provide the remediating organisms with the nutrients and oxygen required for their metabolism, but...
Changing the Landscape of Civil Aviation
NASA Technical Reports Server (NTRS)
Russo, Carol J.
1997-01-01
NASA is undertaking several bold new initiatives to develop revolutionary technologies for civil aviation. These technologies span the civil aviation fleet from general aviation to large subsonic and supersonic aircraft and promise to bring a new era of new aircraft, lower operation costs, faster more direct flight capabilities, more environmentally friendly aircraft, and safer airline operations. These initiatives have specific quantified goals that require technologies well beyond those currently being developed creating a bold new vision for aeronautics. Revolutionary propulsion systems are enabling for these advancements. This paper gives an overview of the new national aeronautics goals and explores for a selected subset of goals some of the revolutionary technologies will be required to meet some of these goals. The focus of the paper is on the pivotal role propulsion and icing technologies will play in changing the landscape of civil aviation.
Hydrogen energy systems technology study
NASA Technical Reports Server (NTRS)
Kelley, J. H.
1975-01-01
The paper discusses the objectives of a hydrogen energy systems technology study directed toward determining future demand for hydrogen based on current trends and anticipated new uses and identifying the critical research and technology advancements required to meet this need with allowance for raw material limitations, economics, and environmental effects. Attention is focused on historic production and use of hydrogen, scenarios used as a basis for projections, projections of energy sources and uses, supply options, and technology requirements and needs. The study found more than a billion dollar annual usage of hydrogen, dominated by chemical-industry needs, supplied mostly from natural gas and petroleum feedstocks. Evaluation of the progress in developing nuclear fusion and solar energy sources relative to hydrogen production will be necessary to direct the pace and character of research and technology work in the advanced water-splitting areas.
NASA Astrophysics Data System (ADS)
Hitzman, M.
2012-12-01
Economic geology is a highly interdisciplinary field utilizing a diverse set of petrologic, geochemical, geophysical, and tectonic data for improved scientific understanding of element migration and concentration in the crust (ore formation). A number of elements that were once laboratory curiosities now figure prominently in new energy technologies (e.g. wind turbines, solar energy collectors). If widely deployed, such technologies have the capacity to transform the way we produce, transmit, store, and conserve energy. To meet domestic and worldwide renewable energy needs these systems must be scaled from laboratory, to demonstration, to widespread deployment. Such technologies are materials intensive. If widely deployed, the elements required by these technologies will be needed in significant quantities and shortage of these "energy critical elements" could significantly inhibit the adoption of otherwise game changing energy technologies. It is imperative to better understand the geology, metallurgy, and mining engineering of critical mineral deposits if we are to sustainably develop these new technologies. There is currently no consensus among federal and state agencies, the national and international mining industry, the public, and the U.S. academic community regarding the importance of economic geology to secure sufficient energy critical elements to undertake large-scale renewable energy development. Available federal funding for critical elements focuses on downstream areas such as metallurgy, substitutions, and recycling rather than primary deposits. Undertaking the required research to discover and mine critical element deposits in an environmentally friendly manner will require significant partnering with industry due to the current lack of federal research support.
A Process for Technology Prioritization in a Competitive Environment
NASA Technical Reports Server (NTRS)
Stephens, Karen; Herman, Melody; Griffin, Brand
2006-01-01
This slide presentation reviews NASA's process for prioritizing technology requirements where there is a competitive environment. The In-Space Propulsion Technology (ISPT) project is used to exemplify the process. The ISPT project focuses on the mid level Technology Readiness Level (TRL) for development. These are TRL's 4 through 6, (i.e. Technology Development and Technology Demonstration. The objective of the planning activity is to identify the current most likely date each technology is needed and create ISPT technology development schedules based on these dates. There is a minimum of 4 years between flight and pacing mission. The ISPT Project needed to identify the "pacing mission" for each technology in order to provide funding for each area. Graphic representations show the development of the process. A matrix shows which missions are currently receiving pull from the both the Solar System Exploration and the Sun-Solar System Connection Roadmaps. The timeframes of the pacing missions technologies are shown for various types of propulsion. A pacing mission that was in the near future serves to increase the priority for funding. Adaptations were made when budget reductions precluded the total implementation of the plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frenkel, G.; Paterson, T.S.; Smith, M.E.
The Institute for Defense Analyses (IDA) has collected and analyzed information on battle management algorithm technology that is relevant to Battle Management/Command, Control and Communications (BM/C3). This Memorandum Report represents a program plan that will provide the BM/C3 Directorate of the Strategic Defense Initiative Organization (SDIO) with administrative and technical insight into algorithm technology. This program plan focuses on current activity in algorithm development and provides information and analysis to the SDIO to be used in formulating budget requirements for FY 1988 and beyond. Based upon analysis of algorithm requirements and ongoing programs, recommendations have been made for research areasmore » that should be pursued, including both the continuation of current work and the initiation of new tasks. This final report includes all relevant material from interim reports as well as new results.« less
Gradient and shim technologies for ultra high field MRI
Winkler, Simone A.; Schmitt, Franz; Landes, Hermann; DeBever, Josh; Wade, Trevor; Alejski, Andrew
2017-01-01
Ultra High Field (UHF) MRI requires improved gradient and shim performance to fully realize the promised gains (SNR as well as spatial, spectral, diffusion resolution) that higher main magnetic fields offer. Both the more challenging UHF environment by itself, as well as the higher currents used in high performance coils, require a deeper understanding combined with sophisticated engineering modeling and construction, to optimize gradient and shim hardware for safe operation and for highest image quality. This review summarizes the basics of gradient and shim technologies, and outlines a number of UHF-related challenges and solutions. In particular, Lorentz forces, vibroacoustics, eddy currents, and peripheral nerve stimulation are discussed. Several promising UHF-relevant gradient concepts are described, including insertable gradient coils aimed at higher performance neuroimaging. PMID:27915120
New technologies for HWIL testing of WFOV, large-format FPA sensor systems
NASA Astrophysics Data System (ADS)
Fink, Christopher
2016-05-01
Advancements in FPA density and associated wide-field-of-view infrared sensors (>=4000x4000 detectors) have outpaced the current-art HWIL technology. Whether testing in optical projection or digital signal injection modes, current-art technologies for infrared scene projection, digital injection interfaces, and scene generation systems simply lack the required resolution and bandwidth. For example, the L3 Cincinnati Electronics ultra-high resolution MWIR Camera deployed in some UAV reconnaissance systems features 16MP resolution at 60Hz, while the current upper limit of IR emitter arrays is ~1MP, and single-channel dual-link DVI throughput of COTs graphics cards is limited to 2560x1580 pixels at 60Hz. Moreover, there are significant challenges in real-time, closed-loop, physics-based IR scene generation for large format FPAs, including the size and spatial detail required for very large area terrains, and multi - channel low-latency synchronization to achieve the required bandwidth. In this paper, the author's team presents some of their ongoing research and technical approaches toward HWIL testing of large-format FPAs with wide-FOV optics. One approach presented is a hybrid projection/injection design, where digital signal injection is used to augment the resolution of current-art IRSPs, utilizing a multi-channel, high-fidelity physics-based IR scene simulator in conjunction with a novel image composition hardware unit, to allow projection in the foveal region of the sensor, while non-foveal regions of the sensor array are simultaneously stimulated via direct injection into the post-detector electronics.
Novel Hybrid Ablative/Ceramic Heatshield for Earth Atmospheric Re-Entry
NASA Astrophysics Data System (ADS)
Barcena, J.; Florez, S.; Perez, B.; Pinaud, G.; Bouilly, J.-M.; Fischer, W. P. P.; de Montburn, A.; Descomps, M.; Zuber, C.; Rotaermel, W.; Hald, H.; Pereira, C.; Mergia, K.; Triantou, K.; Marinou, A.; Vekinis, G.; Ionescu, G.; Ban, C.; Stefan, A.; Leroy, V.; Bernard, D.; Massuti, B.; Herdrich, G.
2014-06-01
Original approaches based on ablative materials and novel TPS solutions are required for space applications, where resistance to extreme oxidative environments and high temperatures are required. For future space exploration the demands for the thermal shield go beyond the current state-of-the-art. Therefore, the development of new thermal protection materials and systems at a reasonable mass budget is absolutely essential to ensure European non-dependence on corresponding restricted technologies. The three year long FP7 project HYDRA aims at the development of a novel thermal protection system through the integration of a low density ablative outer-shield on top of an advanced thermo-structural ceramic composite layer and will provide an innovative technology solution consistent with the capabilities of European technologies and material providers. This paper summarizes the current status of the scientific activities carried out after two years of progress in terms of design, integration and verification of a robust and lightweight thermal shield solution for atmospheric earth re-entry.
Sensor technology workshop: Structure and goals
NASA Technical Reports Server (NTRS)
Wilson, Barbara A.
1991-01-01
The Astrotech 21 charter for the second of three workshops is described. The purpose was to identify technology needs in the areas of electromagnetic radiation sensors, and to recommend a plan to develop the required capabilities that are not currently available. The panels chosen for this workshop focused specifically on those technologies needed for the Astrotech 21 Program including: gamma ray and x ray sensors, ultraviolet and visible sensors, direct infrared sensors, and heterodyne submillimeter wave sensors.
Current status and future directions for in situ transmission electron microscopy
Taheri, Mitra L.; Stach, Eric A.; Arslan, Ilke; Crozier, P.A.; Kabius, Bernd C.; LaGrange, Thomas; Minor, Andrew M.; Takeda, Seiji; Tanase, Mihaela; Wagner, Jakob B.; Sharma, Renu
2016-01-01
This review article discusses the current and future possibilities for the application of in situ transmission electron microscopy to reveal synthesis pathways and functional mechanisms in complex and nanoscale materials. The findings of a group of scientists, representing academia, government labs and private sector entities (predominantly commercial vendors) during a workshop, held at the Center for Nanoscale Science and Technology- National Institute of Science and Technology (CNST-NIST), are discussed. We provide a comprehensive review of the scientific needs and future instrument and technique developments required to meet them. PMID:27566048
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-19
... subsistence uses (where relevant), and if the permissible methods of taking and requirements pertaining to the... application of that technology. CSDS-5 currently moors and operates a research barge at the Service Pier on NBKB and plans to install mooring for a new larger research barge equipped with upgraded technology...
NASA-OAST program in photovoltaic energy conversion
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Flood, D. J.
1982-01-01
The NASA program in photovoltaic energy conversion includes research and technology development efforts on solar cells, blankets, and arrays. The overall objectives are to increase conversion efficiency, reduce mass, reduce cost, and increase operating life. The potential growth of space power requirements in the future presents a major challenge to the current state of technology in space photovoltaic systems.
Chemical warfare agent detection: a review of current trends and future perspective.
Pacsial-Ong, Eden Joy; Aguilar, Zoraida P
2013-01-01
The World Health Organization recommends countries to create a public health system that can respond to the deliberate release of chemical warfare agents (CWAs). Procedures for preparedness, response, decontamination protocols and medical countermeasures against CWA attacks are described. Known CWAs, including their properties and pharmacological consequences upon exposure, are tabulated and discussed. Requirements imposed on detection systems by various applications and environmental needs are presented in order to assess the devices for detection and identification of specific CWAs. The review surveys current and near-term detection technologies and equipments, as well as devices that are currently available to the military and civilian first responders. Brief technical discussions of several detection technologies are presented, with emphasis placed in the principles of detection. Finally, enabling technologies that form the basis for advanced sensing systems and devices are described.
NASA Astrophysics Data System (ADS)
Hashimoto, Manabu; Fujino, Yozo
Image sensing technologies are expected as useful and effective way to suppress damages by criminals and disasters in highly safe and relieved society. In this paper, we describe current important subjects, required functions, technical trends, and a couple of real examples of developed system. As for the video surveillance, recognition of human trajectory and human behavior using image processing techniques are introduced with real examples about the violence detection for elevators. In the field of facility monitoring technologies as civil engineering, useful machine vision applications such as automatic detection of concrete cracks on walls of a building or recognition of crowded people on bridge for effective guidance in emergency are shown.
The Second Joint NASA/FAA/DOD Conference on Aging Aircraft. Pt. 1
NASA Technical Reports Server (NTRS)
Harris, Charles E. (Editor)
1999-01-01
The purpose of the Conference was to bring together world leaders in aviation safety research, aircraft design and manufacturing, fleet operation and aviation maintenance to disseminate information on current practices and advanced technologies that will assure the continued airworthiness of the aging aircraft in the military and commercial fleets. The Conference included reviews of current industry practices, assessments of future technology requirements, and status of aviation safety research. The Conference provided an opportunity for interactions among the key personnel in the research and technology development community, the original equipment manufacturers, commercial airline operators, military fleet operators, aviation maintenance, and aircraft certification and regulatory authorities. Conference participation was unrestricted and open to the international aviation community.
NASA Technical Reports Server (NTRS)
Schwartz, Daniel A.; Allured, Ryan; Bookbinder, Jay A.; Cotroneo, Vincenzo; Forman, William R.; Freeman, Mark D.; McMuldroch, Stuart; Reid, Paul B.; Tananbaum, Harvey; Vikhlinin, Alexey A.;
2014-01-01
Addressing the astrophysical problems of the 2020's requires sub-arcsecond x-ray imaging with square meter effective area. Such requirements can be derived, for example, by considering deep x-ray surveys to find the young black holes in the early universe (large redshifts) which will grow into the first super-massive black holes. We have envisioned a mission, the Square Meter Arcsecond Resolution Telescope for X-rays (SMART-X), based on adjustable x-ray optics technology, incorporating mirrors with the required small ratio of mass to collecting area. We are pursuing technology which achieves sub-arcsecond resolution by on-orbit adjustment via thin film piezoelectric "cells" deposited directly on the non-reflecting sides of thin, slumped glass. While SMART-X will also incorporate state-of-the-art x-ray cameras, the remaining spacecraft systems have no requirements more stringent than those which are well understood and proven on the current Chandra X-ray Observatory.
Emerging Point-of-Care Technologies for Sickle Cell Disease Screening and Monitoring
Alapan, Yunus; Fraiwan, Arwa; Kucukal, Erdem; Hasan, M. Noman; Ung, Ryan; Kim, Myeongseop; Odame, Isaac; Little, Jane A.; Gurkan, Umut A.
2016-01-01
Introduction Sickle Cell Disease (SCD) affects 100,000 Americans and more than 14 million people globally, mostly in economically disadvantaged populations, requires early diagnosis after birth and constant monitoring throughout the life-span of the patient. Areas Covered Early diagnosis of SCD still remains a challenge in preventing childhood mortality in the developing world due to requirements of skilled personnel and high-cost of currently available modalities. On the other hand, SCD monitoring presents insurmountable challenges due to heterogeneities among patient populations, as well as in the same individual longitudinally. Here, we describe emerging point-of-care micro/nano platform technologies for SCD screening and monitoring, and critically discuss current state-of-the-art, potential challenges associated with these technologies, and future directions. Expert Commentary Recently developed microtechnologies offer simple, rapid, and affordable screening of SCD and have the potential to facilitate universal screening in resource-limited settings and developing countries. On the other hand, monitoring of SCD is more complicated compared to diagnosis and requires comprehensive validation of efficacy. Early use of novel microdevices for patient monitoring might come in especially handy in new clinical trial designs of emerging therapies. PMID:27785945
Rotorcraft aviation icing research requirements: Research review and recommendations
NASA Technical Reports Server (NTRS)
Peterson, A. A.; Dadone, L.; Bevan, A.
1981-01-01
The status of rotorcraft icing evaluation techniques and ice protection technology was assessed. Recommendations are made for near and long term icing programs that describe the needs of industry. These recommended programs are based on a consensus of the major U.S. helicopter companies. Specific activities currently planned or underway by NASA, FAA and DOD are reviewed to determine relevance to the overall research requirements. New programs, taking advantage of current activities, are recommended to meet the long term needs for rotorcraft icing certification.
Energy harvesting concepts for small electric unmanned systems
NASA Astrophysics Data System (ADS)
Qidwai, Muhammad A.; Thomas, James P.; Kellogg, James C.; Baucom, Jared N.
2004-07-01
In this study, we identify and survey energy harvesting technologies for small electrically powered unmanned systems designed for long-term (>1 day) time-on-station missions. An environmental energy harvesting scheme will provide long-term, energy additions to the on-board energy source. We have identified four technologies that cover a broad array of available energy sources: solar, kinetic (wind) flow, autophagous structure-power (both combustible and metal air-battery systems) and electromagnetic (EM) energy scavenging. We present existing conceptual designs, critical system components, performance, constraints and state-of-readiness for each technology. We have concluded that the solar and autophagous technologies are relatively matured for small-scale applications and are capable of moderate power output levels (>1 W). We have identified key components and possible multifunctionalities in each technology. The kinetic flow and EM energy scavenging technologies will require more in-depth study before they can be considered for implementation. We have also realized that all of the harvesting systems require design and integration of various electrical, mechanical and chemical components, which will require modeling and optimization using hybrid mechatronics-circuit simulation tools. This study provides a starting point for detailed investigation into the proposed technologies for unmanned system applications under current development.
Oxygen Sensing for Industrial Safety — Evolution and New Approaches
Willett, Martin
2014-01-01
The requirement for the detection of oxygen in industrial safety applications has historically been met by electrochemical technologies based on the consumption of metal anodes. Products using this approach have been technically and commercially successful for more than three decades. However, a combination of new requirements is driving the development of alternative approaches offering fresh opportunities and challenges. This paper reviews some key aspects in the evolution of consumable anode products and highlights recent developments in alternative technologies aimed at meeting current and anticipated future needs in this important application. PMID:24681673
Oxygen sensing for industrial safety - evolution and new approaches.
Willett, Martin
2014-03-27
The requirement for the detection of oxygen in industrial safety applications has historically been met by electrochemical technologies based on the consumption of metal anodes. Products using this approach have been technically and commercially successful for more than three decades. However, a combination of new requirements is driving the development of alternative approaches offering fresh opportunities and challenges. This paper reviews some key aspects in the evolution of consumable anode products and highlights recent developments in alternative technologies aimed at meeting current and anticipated future needs in this important application.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
...-000 and AD10-13-000] Third-Party Provision of Ancillary Services; Accounting and Financial Reporting... current accounting and reporting requirements as applied to electric storage. As such, the Commission... the technologies used for such provision; and the adequacy of current accounting and reporting...
A forecast of space technology, 1980 - 2000
NASA Technical Reports Server (NTRS)
1976-01-01
The future of space technology in the United States during the period 1980-2000 was presented, in relation to its overall role within the space program. Conclusions were drawn and certain critical areas were identified. Three different methods to support this work were discussed: (1) by industry, largely without NASA or other government support, (2) partially by industry, but requiring a fraction of NASA or similar government support, (3) currently unique to space requirements and therefore relying almost totally on NASA support. The proposed work was divided into the following areas: (1) management of information (acquisition, transfer, processing, storing) (2) management of energy (earth-to-orbit operations, space power and propulsion), (3) management of matter (animate, inanimate, transfer, storage), (4) basic scientific resources for technological advancement (cryogenics, superconductivity, microstructures, coherent radiation and integrated optics technology).
Extreme ultraviolet resist materials for sub-7 nm patterning.
Li, Li; Liu, Xuan; Pal, Shyam; Wang, Shulan; Ober, Christopher K; Giannelis, Emmanuel P
2017-08-14
Continuous ongoing development of dense integrated circuits requires significant advancements in nanoscale patterning technology. As a key process in semiconductor high volume manufacturing (HVM), high resolution lithography is crucial in keeping with Moore's law. Currently, lithography technology for the sub-7 nm node and beyond has been actively investigated approaching atomic level patterning. EUV technology is now considered to be a potential alternative to HVM for replacing in some cases ArF immersion technology combined with multi-patterning. Development of innovative resist materials will be required to improve advanced fabrication strategies. In this article, advancements in novel resist materials are reviewed to identify design criteria for establishment of a next generation resist platform. Development strategies and the challenges in next generation resist materials are summarized and discussed.
Ham, Anthony S; Buckheit, Robert W
2015-02-01
Current and emerging formulation strategies for skin permeation are poised to open the transdermal drug delivery to a broader range of small molecule compounds that do not fit the traditional requirements for successful transdermal drug delivery, allowing the development of new patch technologies to deliver antiretroviral drugs that were previously incapable of being delivered through transdermal means. Transdermal drug delivery offers several distinct advantages over traditional dosage forms. Current antiretroviral drugs used for the treatment of HIV infection include a variety of highly active small molecule compounds with significantly limited skin permeability, and thus new and novel means of enhancing transport through the skin are needed. Current and emerging formulation strategies are poised to open the transdermal drug delivery to a broader range of compounds that do not fit the traditional requirements for successful transdermal drug delivery, allowing the development of new patch technologies to deliver antiretroviral drugs that were previously incapable of being delivered through transdermal means. Thus, with continuing research into skin permeability and patch formulation strategies, there is a large potential for antiretroviral transdermal drug delivery.
Current and emerging formulation strategies for the effective transdermal delivery of HIV inhibitors
Ham, Anthony S; Buckheit, Robert W
2015-01-01
Current and emerging formulation strategies for skin permeation are poised to open the transdermal drug delivery to a broader range of small molecule compounds that do not fit the traditional requirements for successful transdermal drug delivery, allowing the development of new patch technologies to deliver antiretroviral drugs that were previously incapable of being delivered through transdermal means. Transdermal drug delivery offers several distinct advantages over traditional dosage forms. Current antiretroviral drugs used for the treatment of HIV infection include a variety of highly active small molecule compounds with significantly limited skin permeability, and thus new and novel means of enhancing transport through the skin are needed. Current and emerging formulation strategies are poised to open the transdermal drug delivery to a broader range of compounds that do not fit the traditional requirements for successful transdermal drug delivery, allowing the development of new patch technologies to deliver antiretroviral drugs that were previously incapable of being delivered through transdermal means. Thus, with continuing research into skin permeability and patch formulation strategies, there is a large potential for antiretroviral transdermal drug delivery. PMID:25690088
How might renewable energy technologies fit in the food-water-energy nexus?
NASA Astrophysics Data System (ADS)
Newmark, R. L.; Macknick, J.; Heath, G.; Ong, S.; Denholm, P.; Margolis, R.; Roberts, B.
2011-12-01
Feeding the growing population in the U.S. will require additional land for crop and livestock production. Similarly, a growing population will require additional sources of energy. Renewable energy is likely to play an increased role in meeting the new demands of electricity consumers. Renewable energy technologies can differ from conventional technologies in their operation and their siting locations. Many renewable energy technologies have a lower energy density than conventional technologies and can also have large land use requirements. Much of the prime area suitable for renewable energy development in the U.S. has historically been used for agricultural production, and there is some concern that renewable energy installations could displace land currently producing food crops. In addition to requiring vast expanses of land, both agriculture and renewable energy can require water. The agriculture and energy sectors are responsible for the majority of water withdrawals in the U.S. Increases in both agricultural and energy demand can lead to increases in water demands, depending on crop management and energy technologies employed. Water is utilized in the energy industry primarily for power plant cooling, but it is also required for steam cycle processes and cleaning. Recent characterizations of water use by different energy and cooling system technologies demonstrate the choice of fuel and cooling system technologies can greatly impact the withdrawals and the consumptive use of water in the energy industry. While some renewable and conventional technology configurations can utilize more water per unit of land than irrigation-grown crops, other renewable technology configurations utilize no water during operations and could lead to reduced stress on water resources. Additionally, co-locating agriculture and renewable energy production is also possible with many renewable technologies, avoiding many concerns about reductions in domestic food production. Various metrics exist for defining land use impacts of energy technologies, with little consensus on how much total land is impacted or is necessary. Here we characterize the land use requirements of energy technologies by comparing various metrics from different studies, providing ranges of the potential land impact from alternative energy scenarios. Land use requirements for energy needs under these scenarios are compared with projected land use requirements for agriculture to support a growing population. The water implications of various energy and food scenarios are analyzed to provide insights into potential regional impacts or conflicts between sectors.
NASA Technical Reports Server (NTRS)
Price, Kent M.; Holdridge, Mark; Odubiyi, Jide; Jaworski, Allan; Morgan, Herbert K.
1991-01-01
The results are summarized of an unattended network operations technology assessment study for the Space Exploration Initiative (SEI). The scope of the work included: (1) identified possible enhancements due to the proposed Mars communications network; (2) identified network operations on Mars; (3) performed a technology assessment of possible supporting technologies based on current and future approaches to network operations; and (4) developed a plan for the testing and development of these technologies. The most important results obtained are as follows: (1) addition of a third Mars Relay Satellite (MRS) and MRS cross link capabilities will enhance the network's fault tolerance capabilities through improved connectivity; (2) network functions can be divided into the six basic ISO network functional groups; (3) distributed artificial intelligence technologies will augment more traditional network management technologies to form the technological infrastructure of a virtually unattended network; and (4) a great effort is required to bring the current network technology levels for manned space communications up to the level needed for an automated fault tolerance Mars communications network.
Recent Advances in Biosensor Development for Foodborne Virus Detection
Neethirajan, Suresh; Ahmed, Syed Rahin; Chand, Rohit; Buozis, John; Nagy, Éva
2017-01-01
Outbreaks of foodborne diseases related to fresh produce have been increasing in North America and Europe. Viral foodborne pathogens are poorly understood, suffering from insufficient awareness and surveillance due to the limits on knowledge, availability, and costs of related technologies and devices. Current foodborne viruses are emphasized and newly emerging foodborne viruses are beginning to attract interest. To face current challenges regarding foodborne pathogens, a point-of-care (POC) concept has been introduced to food testing technology and device. POC device development involves technologies such as microfluidics, nanomaterials, biosensors and other advanced techniques. These advanced technologies, together with the challenges in developing foodborne virus detection assays and devices, are described and analysed in this critical review. Advanced technologies provide a path forward for foodborne virus detection, but more research and development will be needed to provide the level of manufacturing capacity required. PMID:29071193
Conceptual design study: Forest Fire Advanced System Technology (FFAST)
NASA Technical Reports Server (NTRS)
Nichols, J. D.; Warren, J. R.
1986-01-01
An integrated forest fire detection and mapping system that will be based upon technology available in the 1990s was defined. Uncertainties in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include thermal infrared, linear array detectors, automatic georeferencing and signal processing, geosynchronous satellite communication links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. A preferred system configuration was defined that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.
NASA Astrophysics Data System (ADS)
Legnani, Elena; Cavalieri, Sergio; Pinto, Roberto; Dotti, Stefano
In the current competitive environment, companies need to extensively exploit the use of advanced technologies in order to develop a sustainable advantage, enhance their operational efficiency and better serve customers. In this context, RFID technology has emerged as a valid support for the company progress and its value is becoming more and more apparent. In particular, the textile and clothing industry, characterised by short life-cycles , quick response production , fast distribution, erratic customer preferences and impulsive purchasing, is one of the sectors which can extensively benefit from the RFID technology. However, actual applications are still very limited, especially in the upstream side of the supply network. This chapter provides an insight into the main benefits and potentials of this technology and highlights the main issues which are currently inhibiting its large scale development in the textile and clothing industry. The experience of two industry-academia projects and the relative fallouts are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoiber, Marcus H.; Brown, James B.
This software implements the first base caller for nanopore data that calls bases directly from raw data. The basecRAWller algorithm has two major advantages over current nanopore base calling software: (1) streaming base calling and (2) base calling from information rich raw signal. The ability to perform truly streaming base calling as signal is received from the sequencer can be very powerful as this is one of the major advantages of this technology as compared to other sequencing technologies. As such enabling as much streaming potential as possible will be incredibly important as this technology continues to become more widelymore » applied in biosciences. All other base callers currently employ the Viterbi algorithm which requires the whole sequence to employ the complete base calling procedure and thus precludes a natural streaming base calling procedure. The other major advantage of the basecRAWller algorithm is the prediction of bases from raw signal which contains much richer information than the segmented chunks that current algorithms employ. This leads to the potential for much more accurate base calls which would make this technology much more valuable to all of the growing user base for this technology.« less
Way Forward for High Performance Payload Processing Development
NASA Astrophysics Data System (ADS)
Notebaert, Olivier; Franklin, John; Lefftz, Vincent; Moreno, Jose; Patte, Mathieu; Syed, Mohsin; Wagner, Arnaud
2012-08-01
Payload processing is facing technological challenges due to the large increase of performance requirements of future scientific, observation and telecom missions as well as the future instruments technologies capturing much larger amount of data. For several years, with the perspective of higher performance together with the planned obsolescence of solutions covering the current needs, ESA and the European space industry has been developing several technology solutions. Silicon technologies, radiation mitigation techniques and innovative functional architectures are developed with the goal of designing future space qualified processing devices with a much higher level of performance than today. The fast growing commercial market application have developed very attractive technologies but which are not fully suitable with respect to their tolerance to space environment. Without the financial capacity to explore and develop all possible technology paths, a specific and global approach is required to cover the future mission needs and their necessary performance targets with effectiveness.The next sections describe main issues and priorities and provides further detailed relevant for this approach covering the high performance processing technology.
The NASA Hydrogen Energy Systems Technology study - A summary
NASA Technical Reports Server (NTRS)
Laumann, E. A.
1976-01-01
This study is concerned with: hydrogen use, alternatives and comparisons, hydrogen production, factors affecting application, and technology requirements. Two scenarios for future use are explained. One is called the reference hydrogen use scenario and assumes continued historic uses of hydrogen along with additional use for coal gasification and liquefaction, consistent with the Ford technical fix baseline (1974) projection. The expanded scenario relies on the nuclear electric economy (1973) energy projection and assumes the addition of limited new uses such as experimental hydrogen-fueled aircraft, some mixing with natural gas, and energy storage by utilities. Current uses and supply of hydrogen are described, and the technological requirements for developing new methods of hydrogen production are discussed.
Space Technology 5 (ST-5) Observations of the Imbalance of Region 1 and 2 Field-Aligned Currents
NASA Technical Reports Server (NTRS)
Le, Guan
2010-01-01
Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this study, we use the in-situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of Region 1 (R1) and Region 2 (R2) currents. During the three-month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total RI currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar wind-magnetosphere interaction in the same way as the field-aligned currents themselves are. Since the net currents due to the imbalance of the R1 and R2 currents require that their closure currents flow across the polar cap from dawn to dusk as Pedersen currents, our results indicate that the total amount of the cross-polar cap Pedersen currents is in the order of approx. 0.1 MA. This study, although with a very limited dataset, is one of the first attempts to quantify the cross-polar cap Pedersen currents. Given the importance of the Joule heating due to Pedersen currents to the high-latitude ionospheric electrodynamics, quantifying the cross-polar cap Pedersen currents and associated Joule heating is needed for developing models of the magnetosphere-ionosphere coupling.
NASA Technical Reports Server (NTRS)
Knip, G.; Plencner, R. M.; Eisenberg, J. D.
1980-01-01
The effects of engine configuration, advanced component technology, compressor pressure ratio and turbine rotor-inlet temperature on such figures of merit as vehicle gross weight, mission fuel, aircraft acquisition cost, operating, cost and life cycle cost are determined for three fixed- and two rotary-wing aircraft. Compared with a current production turboprop, an advanced technology (1988) engine results in a 23 percent decrease in specific fuel consumption. Depending on the figure of merit and the mission, turbine engine cost reductions required to achieve aircraft cost parity with a current spark ignition reciprocating (SIR) engine vary from 0 to 60 percent and from 6 to 74 percent with a hypothetical advanced SIR engine. Compared with a hypothetical turboshaft using currently available technology (1978), an advanced technology (1988) engine installed in a light twin-engine helicopter results in a 16 percent reduction in mission fuel and about 11 percent in most of the other figures of merit.
Rani, D Amutha; Boccaccini, A R; Deegan, D; Cheeseman, C R
2008-11-01
Current disposal options for APC residues in the UK and alternative treatment technologies developed world-wide have been reviewed. APC residues are currently landfilled in the UK where they undergo in situ solidification, although the future acceptability of this option is uncertain because the EU waste acceptance criteria (WAC) introduce strict limits on leaching that are difficult to achieve. Other APC residue treatment processes have been developed which are reported to reduce leaching to below relevant regulatory limits. The Ferrox process, the VKI process, the WES-PHix process, stabilisation/solidification using cementitious binders and a range of thermal treatment processes are reviewed. Thermal treatment technologies convert APC residues combined with other wastes into inert glass or glass-ceramics that encapsulate heavy metals. The waste management industry will inevitably use the cheapest available option for treating APC residues and strict interpretation and enforcement of waste legislation is required if new, potentially more sustainable technologies are to become commercially viable.
Planetary quarantine: Space research and technology
NASA Technical Reports Server (NTRS)
1974-01-01
The impact of satisfying satellite quarantine constraints on current outer planet mission and spacecraft designs is considered. Tools required to perform trajectory and navigation analyses for determining satellite impact probabilities are developed.
Sharing and re-use of phylogenetic trees (and associated data) to facilitate synthesis.
Stoltzfus, Arlin; O'Meara, Brian; Whitacre, Jamie; Mounce, Ross; Gillespie, Emily L; Kumar, Sudhir; Rosauer, Dan F; Vos, Rutger A
2012-10-22
Recently, various evolution-related journals adopted policies to encourage or require archiving of phylogenetic trees and associated data. Such attention to practices that promote sharing of data reflects rapidly improving information technology, and rapidly expanding potential to use this technology to aggregate and link data from previously published research. Nevertheless, little is known about current practices, or best practices, for publishing trees and associated data so as to promote re-use. Here we summarize results of an ongoing analysis of current practices for archiving phylogenetic trees and associated data, current practices of re-use, and current barriers to re-use. We find that the technical infrastructure is available to support rudimentary archiving, but the frequency of archiving is low. Currently, most phylogenetic knowledge is not easily re-used due to a lack of archiving, lack of awareness of best practices, and lack of community-wide standards for formatting data, naming entities, and annotating data. Most attempts at data re-use seem to end in disappointment. Nevertheless, we find many positive examples of data re-use, particularly those that involve customized species trees generated by grafting to, and pruning from, a much larger tree. The technologies and practices that facilitate data re-use can catalyze synthetic and integrative research. However, success will require engagement from various stakeholders including individual scientists who produce or consume shareable data, publishers, policy-makers, technology developers and resource-providers. The critical challenges for facilitating re-use of phylogenetic trees and associated data, we suggest, include: a broader commitment to public archiving; more extensive use of globally meaningful identifiers; development of user-friendly technology for annotating, submitting, searching, and retrieving data and their metadata; and development of a minimum reporting standard (MIAPA) indicating which kinds of data and metadata are most important for a re-useable phylogenetic record.
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.; Amzajerdian, Farzin; Singh, Upendra N.; Emmitt, G. David
2007-01-01
Early concepts to globally measure vertical profiles of vector horizontal wind from space planned on an orbit height of 525 km, a single pulsed coherent Doppler lidar system to cover the full troposphere, and a continuously rotating telescope/scanner that mandated a vertical line of sight wind profile from each laser shot. Under these conditions system studies found that laser pulse energies of approximately 20 J at 10 Hz pulse repetition rate with a rotating telescope diameter of approximately 1.5 m was required. Further requirements to use solid state laser technology and an eyesafe wavelength led to the relatively new 2-micron solid state laser. With demonstrated pulse energies near 20 mJ at 5 Hz, and no demonstration of a rotating telescope maintaining diffraction limited performance in space, the technology gap between requirements and demonstration was formidable. Fortunately the involved scientists and engineers set out to reduce the gap, and through a combination of clever ideas and technology advances over the last 15 years, they have succeeded. This paper will detail the gap reducing factors and will present the current status.
U. S. drinking-water regulations: Treatment technologies and cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lykins, B.W. Jr.; Clark, R.M.
The Safe Drinking Water Act and its Amendments have imposed a large number of new regulations on the US drinking-water industry. A major set of regulations currently under consideration will control disinfectants and disinfection by-products. Included in the development of these regulations is an Information Collection Rule and an Enhanced Surface Water Treatment Rule. These rules will require monitoring for microorganisms such as Giardia, Cryptosporidium, and viruses. Certain surface-water systems may be required to remove microbiological contaminants above levels currently required by the Surface Water Treatment Rule. Also included in these rules will be monitoring requirements for disinfection by-products andmore » evaluation of precursor removal technologies. As various regulations are promulgated, regulators and those associated with the drinking-water industry need to be cognizant of the potential impact of treatment to control one contaminant or group of contaminants on control of other contaminants. Compliance with drinking-water regulations mandated under the Safe Drinking Water Act and its amendments has been estimated to cost about $1.6 billion.« less
NASA Technical Reports Server (NTRS)
1985-01-01
Solar thermodynamics research and technology is reported. Comments on current program activity and future plans with regard to satisfying potential space station electric power generation requirements are provided. The proceedings contain a brief synopsis of the presentations to the panel, including panel comments, and a summary of the panel's observations. Selected presentation material is appended. Onboard maintainability and repair in space research and technology plan, solar thermodynamic research, program performance, onboard U.S. ground based mission control, and technology development rad maps from 10 C to the growth station are addressed.
Database security and encryption technology research and application
NASA Astrophysics Data System (ADS)
Zhu, Li-juan
2013-03-01
The main purpose of this paper is to discuss the current database information leakage problem, and discuss the important role played by the message encryption techniques in database security, As well as MD5 encryption technology principle and the use in the field of website or application. This article is divided into introduction, the overview of the MD5 encryption technology, the use of MD5 encryption technology and the final summary. In the field of requirements and application, this paper makes readers more detailed and clearly understood the principle, the importance in database security, and the use of MD5 encryption technology.
Technology Area Roadmap for In-Space Propulsion Technologies
NASA Technical Reports Server (NTRS)
Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold
2012-01-01
The exponential increase of launch system size.and cost.with delta-V makes missions that require large total impulse cost prohibitive. Led by NASA fs Marshall Space Flight Center, a team from government, industry, and academia has developed a flight demonstration mission concept of an integrated electrodynamic (ED) tethered satellite system called PROPEL: \\Propulsion using Electrodynamics.. The PROPEL Mission is focused on demonstrating a versatile configuration of an ED tether to overcome the limitations of the rocket equation, enable new classes of missions currently unaffordable or infeasible, and significantly advance the Technology Readiness Level (TRL) to an operational level. We are also focused on establishing a far deeper understanding of critical processes and technologies to be able to scale and improve tether systems in the future. Here, we provide an overview of the proposed PROPEL mission. One of the critical processes for efficient ED tether operation is the ability to inject current to and collect current from the ionosphere. Because the PROPEL mission is planned to have both boost and deboost capability using a single tether, the tether current must be capable of flowing in both directions and at levels well over 1 A. Given the greater mobility of electrons over that of ions, this generally requires that both ends of the ED tether system can both collect and emit electrons. For example, hollow cathode plasma contactors (HCPCs) generally are viewed as state-of-the-art and high TRL devices; however, for ED tether applications important questions remain of how efficiently they can operate as both electron collectors and emitters. Other technologies will be highlighted that are being investigated as possible alternatives to the HCPC such as Solex that generates a plasma cloud from a solid material (Teflon) and electron emission (only) technologies such as cold-cathode electron field emission or photo-electron beam generation (PEBG) techniques
Restricted access processor - An application of computer security technology
NASA Technical Reports Server (NTRS)
Mcmahon, E. M.
1985-01-01
This paper describes a security guard device that is currently being developed by Computer Sciences Corporation (CSC). The methods used to provide assurance that the system meets its security requirements include the system architecture, a system security evaluation, and the application of formal and informal verification techniques. The combination of state-of-the-art technology and the incorporation of new verification procedures results in a demonstration of the feasibility of computer security technology for operational applications.
A review of multifunctional structure technology for aerospace applications
NASA Astrophysics Data System (ADS)
Sairajan, K. K.; Aglietti, G. S.; Mani, K. M.
2016-03-01
The emerging field of multifunctional structure (MFS) technologies enables the design of systems with reduced mass and volume, thereby improving their overall efficiency. It requires developments in different engineering disciplines and their integration into a single system without degrading their individual performances. MFS is particularly suitable for aerospace applications where mass and volume are critical to the cost of the mission. This article reviews the current state of the art of multifunctional structure technologies relevant to aerospace applications.
Materials technology assessment for stirling engines
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.; Watson, G. K.; Johnston, J. R.; Croft, W. J.
1977-01-01
A materials technology assessment of high temperature components in the improved (metal) and advanced (ceramic) Stirling engines was undertaken to evaluate the current state-of-the-art of metals and ceramics, identify materials research and development required to support the development of automotive Stirling engines, and to recommend materials technology programs to assure material readiness concurrent with engine system development programs. The most critical component for each engine is identified and some of the material problem areas are discussed.
ESA Technologies for Space Debris Remediation
NASA Astrophysics Data System (ADS)
Wormnes, K.; Le Letty, R.; Summerer, L.; Schonenborg, R.; Dubois-Matra, O.; Luraschi, E.; Cropp, A.; Krag, H.; Delaval, J.
2013-08-01
Space debris is an existing and growing problem for space operations. Studies show that for a continued use of LEO, 5 - 10 large and strategically chosen debris need to be removed every year. The European Space Agency (ESA) is actively pursuing technologies and systems for space debris removal under its Clean Space initiative. This overview paper describes the activities that are currently ongoing at ESA and that have already been completed. Additionally it outlines the plan for the near future. The technologies under study fall in two main categories corresponding to whether a pushing or a pulling manoeuvre is required for the de-orbitation. ESA is studying the option of using a tethered capture system for controlled de-orbitation through pulling where the capture is performed using throw-nets or alternatively a harpoon. The Agency is also studying rigid capture systems with a particular emphasis on tentacles (potentially combined with a robotic arm). Here the de-orbitation is achieved through a push-manoeuvre. Additionally, a number of activities will be discussed that are ongoing to develop supporting technologies for these scenarios, or to develop systems for de-orbiting debris that can be allowed to re-enter in an uncontrolled manner. The short term goal and main driver for the current technology developments is to achieve sufficient TRL on required technologies to support a potential de-orbitation mission to remove a large and strategically chosen piece of debris.
Waste Processing Research and Technology Development at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Fisher, John; Kliss, Mark
2004-01-01
The current "store and return" approach for handling waste products generated during low Earth orbit missions will not meet the requirements for future human missions identified in NASA s new Exploration vision. The objective is to develop appropriate reliable waste management systems that minimize maintenance and crew time, while maintaining crew health and safety, as well as providing protection of planetary surfaces. Solid waste management requirements for these missions include waste volume reduction, stabilization and storage, water recovery, and ultimately recovery of carbon dioxide, nutrients and other resources from a fully regenerative food production life support system. This paper identifies the key drivers for waste management technology development within NASA, and provides a roadmap for the developmental sequence and progression of technologies. Recent results of research and technology development activities at NASA Ames Research Center on candidate waste management technologies with emphasis on compaction, lyophilization, and incineration are discussed.
Updated Starshade Technology Gap List
NASA Astrophysics Data System (ADS)
Crill, Brendan P.; Siegler, Nicholas
2017-01-01
NASA's Exoplanet Exploration Program (ExEP) guides the development of technology that enables the direct imaging and characterization of exo-Earths in the habitable zone of their stars, for future space observatories. Here we present the Starshade portion of the 2017 ExEP Enabling Technology Gap List, an annual update to ExEP's list of of technology to be advanced in the next 1-5 years. A Starshade is an external occulter on an independent spacecraft, allowing a space telescope to achieve exo-Earth imaging contrast requirements by blocking starlight before it enters the telescope. Building and operating a Starshade requires new technology: the occulter is a structure tens of meters in diameter that must be positioned precisely at a distance of tens of thousands of kilometers from the telescope. We review the current state-of-the-art performance and the performance level that must be achieved for a Starshade.
SMD Technology Development Story for NASA Annual Technology report
NASA Technical Reports Server (NTRS)
Seablom, Michael S.
2017-01-01
The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community-including the recommendations set forth in the National Research Council (NRC) decadal surveys-and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions-Heliophysics, Earth Science, Planetary Science, and Astrophysics-develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation-e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.
Planetary quarantine, supporting research and technology
NASA Technical Reports Server (NTRS)
1975-01-01
The impact of satisfying satellite quarantine on current outer planet mission and spacecraft designs was determined and the tools required to perform trajectory and navigation analyses for determining satellite impact probabilities were developed.
2016-09-01
battery technology (140 W·h/kg for rechargeable lithium - ion technology).1 One way to achieve higher energy density is to take advantage of the large...missions without resupply to unmanned air vehicles requiring only a few hours of running time. In the 10–100 W+ power range, battery technology is the...best solution currently available, but higher-energy dense technologies are needed to augment batteries and extend the available energy density well
Research and Development of Fully Automatic Alien Smoke Stack and Packaging System
NASA Astrophysics Data System (ADS)
Yang, Xudong; Ge, Qingkuan; Peng, Tao; Zuo, Ping; Dong, Weifu
2017-12-01
The problem of low efficiency of manual sorting packaging for the current tobacco distribution center, which developed a set of safe efficient and automatic type of alien smoke stack and packaging system. The functions of fully automatic alien smoke stack and packaging system adopt PLC control technology, servo control technology, robot technology, image recognition technology and human-computer interaction technology. The characteristics, principles, control process and key technology of the system are discussed in detail. Through the installation and commissioning fully automatic alien smoke stack and packaging system has a good performance and has completed the requirements for shaped cigarette.
Guide for developing an information technology investment road map for population health management.
Hunt, Jacquelyn S; Gibson, Richard F; Whittington, John; Powell, Kitty; Wozney, Brad; Knudson, Susan
2015-06-01
Many health systems recovering from a massive investment in electronic health records are now faced with the prospect of maturing into accountable care organizations. This maturation includes the need to cooperate with new partners, involve substantially new data sources, require investment in additional information technology (IT) solutions, and become proficient in managing care from a new perspective. Adding to the confusion, there are hundreds of population health management (PHM) vendors with overlapping product functions. This article proposes an organized approach to investing in PHM IT. The steps include assessing the organization's business and clinical goals, establishing governance, agreeing on business requirements, evaluating the ability of current IT systems to meet those requirements, setting time lines and budgets, rationalizing current and future needs and capabilities, and installing the new systems in the context of a continuously learning organization. This article will help organizations chart their position on the population health readiness spectrum and enhance their chances for a successful transition from volume-based to value-based care.
NASA Technical Reports Server (NTRS)
Van Dresar, N. T.
1992-01-01
A review of technology, history, and current status for pressurized expulsion of cryogenic tankage is presented. Use of tank pressurization to expel cryogenic fluid will continue to be studied for future spacecraft applications over a range of operating conditions in the low-gravity environment. The review examines experimental test results and analytical model development for quiescent and agitated conditions in normal-gravity followed by a discussion of pressurization and expulsion in low-gravity. Validated, 1-D, finite difference codes exist for the prediction of pressurant mass requirements within the range of quiescent normal-gravity test data. To date, the effects of liquid sloshing have been characterized by tests in normal-gravity, but analytical models capable of predicting pressurant gas requirements remain unavailable. Efforts to develop multidimensional modeling capabilities in both normal and low-gravity have recently occurred. Low-gravity cryogenic fluid transfer experiments are needed to obtain low-gravity pressurized expulsion data. This data is required to guide analytical model development and to verify code performance.
NASA Technical Reports Server (NTRS)
Vandresar, N. T.
1992-01-01
A review of technology, history, and current status for pressurized expulsion of cryogenic tankage is presented. Use of tank pressurization to expel cryogenic fluids will continue to be studied for future spacecraft applications over a range of operating conditions in the low-gravity environment. The review examines experimental test results and analytical model development for quiescent and agitated conditions in normal-gravity, followed by a discussion of pressurization and expulsion in low-gravity. Validated, 1-D, finite difference codes exist for the prediction of pressurant mass requirements within the range of quiescent normal-gravity test data. To date, the effects of liquid sloshing have been characterized by tests in normal-gravity, but analytical models capable of predicting pressurant gas requirements remain unavailable. Efforts to develop multidimensional modeling capabilities in both normal and low-gravity have recently occurred. Low-gravity cryogenic fluid transfer experiments are needed to obtain low-gravity pressurized expulsion data. This data is required to guide analytical model development and to verify code performance.
Conference on Charge-Coupled Device Technology and Applications
NASA Technical Reports Server (NTRS)
1976-01-01
Papers were presented from the conference on charge coupled device technology and applications. The following topics were investigated: data processing; infrared; devices and testing; electron-in, x-ray, radiation; and applications. The emphasis was on the advances of mutual relevance and potential significance both to industry and NASA's current and future requirements in all fields of imaging, signal processing and memory.
Investment, regulation, and uncertainty: managing new plant breeding techniques.
Smyth, Stuart J; McDonald, Jillian; Falck-Zepeda, Jose
2014-01-01
As with any technological innovation, time refines the technology, improving upon the original version of the innovative product. The initial GM crops had single traits for either herbicide tolerance or insect resistance. Current varieties have both of these traits stacked together and in many cases other abiotic and biotic traits have also been stacked. This innovation requires investment. While this is relatively straight forward, certain conditions need to exist such that investments can be facilitated. The principle requirement for investment is that regulatory frameworks render consistent and timely decisions. If the certainty of regulatory outcomes weakens, the potential for changes in investment patterns increases. This article provides a summary background to the leading plant breeding technologies that are either currently being used to develop new crop varieties or are in the pipeline to be applied to plant breeding within the next few years. Challenges for existing regulatory systems are highlighted. Utilizing an option value approach from investment literature, an assessment of uncertainty regarding the regulatory approval for these varying techniques is undertaken. This research highlights which technology development options have the greatest degree of uncertainty and hence, which ones might be expected to see an investment decline.
Investment, regulation, and uncertainty
Smyth, Stuart J; McDonald, Jillian; Falck-Zepeda, Jose
2014-01-01
As with any technological innovation, time refines the technology, improving upon the original version of the innovative product. The initial GM crops had single traits for either herbicide tolerance or insect resistance. Current varieties have both of these traits stacked together and in many cases other abiotic and biotic traits have also been stacked. This innovation requires investment. While this is relatively straight forward, certain conditions need to exist such that investments can be facilitated. The principle requirement for investment is that regulatory frameworks render consistent and timely decisions. If the certainty of regulatory outcomes weakens, the potential for changes in investment patterns increases. This article provides a summary background to the leading plant breeding technologies that are either currently being used to develop new crop varieties or are in the pipeline to be applied to plant breeding within the next few years. Challenges for existing regulatory systems are highlighted. Utilizing an option value approach from investment literature, an assessment of uncertainty regarding the regulatory approval for these varying techniques is undertaken. This research highlights which technology development options have the greatest degree of uncertainty and hence, which ones might be expected to see an investment decline. PMID:24499745
Artificial intelligence and its impact on combat aircraft
NASA Technical Reports Server (NTRS)
Ott, Lawrence M.; Abbot, Kathy; Kleider, Alfred; Moon, D.; Retelle, John
1987-01-01
As the threat becomes more sophisticated and weapon systems more complex to meet the threat, the need for machines to assist the pilot in the assessment of information becomes paramount. This is particularly true in real-time, high stress situations. The advent of artificial intelligence (AI) technology offers the opportunity to make quantum advances in the application of machine technology. However, if AI systems are to find their way into combat aircraft, they must meet certain criteria. The systems must be responsive, reliable, easy to use, flexible, and understandable. These criteria are compared with the current status used in a combat airborne application. Current AI systems deal with nonreal time applications and require significant user interaction. On the other hand, aircraft applications require real time, minimum human interaction systems. In order to fill the gap between where technology is now and where it must be for aircraft applications, considerable government research is ongoing in NASA, DARPA, and three services. The ongoing research is briefly summarized. Finally, recognizing that AI technology is in its embryonic stage, and the aircraft needs are very demanding, a number of issues arise. These issues are delineated and findings are provided where appropriate.
NASA Technical Reports Server (NTRS)
Parmar, Devendra S.; Shams, Qamar A.
2002-01-01
The strategy of NASA to explore space objects in the vicinity of Earth and other planets of the solar system includes robotic and human missions. This strategy requires a road map for technology development that will support the robotic exploration and provide safety for the humans traveling to other celestial bodies. Aeroassist is one of the key elements of technology planning for the success of future robot and human exploration missions to other celestial bodies. Measurement of aerothermodynamic parameters such as temperature, pressure, and acceleration is of prime importance for aeroassist technology implementation and for the safety and affordability of the mission. Instrumentation and methods to measure such parameters have been reviewed in this report in view of past practices, current commercial availability of instrumentation technology, and the prospects of improvement and upgrade according to the requirements. Analysis of the usability of each identified instruments in terms of cost for efficient weight-volume ratio, power requirement, accuracy, sample rates, and other appropriate metrics such as harsh environment survivability has been reported.
Electron trapping data storage system and applications
NASA Technical Reports Server (NTRS)
Brower, Daniel; Earman, Allen; Chaffin, M. H.
1993-01-01
The advent of digital information storage and retrieval has led to explosive growth in data transmission techniques, data compression alternatives, and the need for high capacity random access data storage. Advances in data storage technologies are limiting the utilization of digitally based systems. New storage technologies will be required which can provide higher data capacities and faster transfer rates in a more compact format. Magnetic disk/tape and current optical data storage technologies do not provide these higher performance requirements for all digital data applications. A new technology developed at the Optex Corporation out-performs all other existing data storage technologies. The Electron Trapping Optical Memory (ETOM) media is capable of storing as much as 14 gigabytes of uncompressed data on a single, double-sided 54 inch disk with a data transfer rate of up to 12 megabits per second. The disk is removable, compact, lightweight, environmentally stable, and robust. Since the Write/Read/Erase (W/R/E) processes are carried out 100 percent photonically, no heating of the recording media is required. Therefore, the storage media suffers no deleterious effects from repeated Write/Read/Erase cycling.
Technology Assessment Requirements for Programs and Projects
NASA Technical Reports Server (NTRS)
Bilbro, James W.
2006-01-01
Program/project uncertainty can most simply be defined as the unpredictability of its outcome. As might be expected, the degree of uncertainty depends substantially on program/project type. For hi-tech programs/projects, uncertainty all too frequently translates into schedule slips, cost overruns and occasionally even to cancellations or failures - consummations root cause of such events is often attributed to inadequate definition of requirements. If such were indeed the root cause, then correcting the situation would simply be a matter of requiring better requirements definition, but since history seems frequently to repeat itself, this must not be the case - at least not in total. There are in fact many contributors to schedule slips, cost overruns, project cancellations and failures, among them lack of adequate requirements definition. The case can be made, however, that many of these contributors are related to the degree of uncertainty at the outset of the project. And further, that a dominant factor in the degree of uncertainty is the maturity of the technology required to bring the project to fruition. This presentation discusses the concept of relating degrees of uncertainty to Technology Readiness Levels (TRL) and their associated Advancement Degree of Difficulty (AD2) levels. It also briefly describes a quantifiable process to establish the appropriate TRL for a given technology and quantifies through the AD2 what is required to move it from its current TRL to the desired TRL in order to reduce risk and maximize likelihood of successfully infusing the technology.
NASA Technical Reports Server (NTRS)
Bladwin, Richard S.
2009-01-01
As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.
Genome assembly from synthetic long read clouds
Kuleshov, Volodymyr; Snyder, Michael P.; Batzoglou, Serafim
2016-01-01
Motivation: Despite rapid progress in sequencing technology, assembling de novo the genomes of new species as well as reconstructing complex metagenomes remains major technological challenges. New synthetic long read (SLR) technologies promise significant advances towards these goals; however, their applicability is limited by high sequencing requirements and the inability of current assembly paradigms to cope with combinations of short and long reads. Results: Here, we introduce Architect, a new de novo scaffolder aimed at SLR technologies. Unlike previous assembly strategies, Architect does not require a costly subassembly step; instead it assembles genomes directly from the SLR’s underlying short reads, which we refer to as read clouds. This enables a 4- to 20-fold reduction in sequencing requirements and a 5-fold increase in assembly contiguity on both genomic and metagenomic datasets relative to state-of-the-art assembly strategies aimed directly at fully subassembled long reads. Availability and Implementation: Our source code is freely available at https://github.com/kuleshov/architect. Contact: kuleshov@stanford.edu PMID:27307620
Fixed Wing Project: Technologies for Advanced Air Transports
NASA Technical Reports Server (NTRS)
Del Rosario, Ruben; Koudelka, John M.; Wahls, Richard A.; Madavan, Nateri
2014-01-01
The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The presentation will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.
Barriers to Achieving Economies of Scale in Analysis of EHR Data. A Cautionary Tale.
Sendak, Mark P; Balu, Suresh; Schulman, Kevin A
2017-08-09
Signed in 2009, the Health Information Technology for Economic and Clinical Health Act infused $28 billion of federal funds to accelerate adoption of electronic health records (EHRs). Yet, EHRs have produced mixed results and have even raised concern that the current technology ecosystem stifles innovation. We describe the development process and report initial outcomes of a chronic kidney disease analytics application that identifies high-risk patients for nephrology referral. The cost to validate and integrate the analytics application into clinical workflow was $217,138. Despite the success of the program, redundant development and validation efforts will require $38.8 million to scale the application across all multihospital systems in the nation. We address the shortcomings of current technology investments and distill insights from the technology industry. To yield a return on technology investments, we propose policy changes that address the underlying issues now being imposed on the system by an ineffective technology business model.
NASA Technical Reports Server (NTRS)
Sampson, Paul G.; Sny, Linda C.
1992-01-01
The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).
NASA Technical Reports Server (NTRS)
Guynn, Mark D.; Freh, Joshua E.; Olson, Erik D.
2004-01-01
This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A blended-wing-body configuration with advanced technology hydrogen fuel cell electric propulsion is considered. Predicted noise and emission characteristics are compared to a current technology conventional configuration designed for the same mission. The significant technology issues which have to be addressed to make this concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program was initiated to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify advanced technology requirements for the concepts.
Advances in poultry litter disposal technology--a review.
Kelleher, B P; Leahy, J J; Henihan, A M; O'Dwyer, T F; Sutton, D; Leahy, M J
2002-05-01
The land disposal of waste from the poultry industry and subsequent environmental implications has stimulated interest into cleaner and more useful disposal options. The review presented here details advances in the three main alternative disposal routes for poultry litter, specifically in the last decade. Results of experimental investigations into the optimisation of composting, anaerobic digestion and direct combustion are summarised. These technologies open up increased opportunities to market the energy and nutrients in poultry litter to agricultural and non-agricultural uses. Common problems experienced by the current technologies are the existence and fate of nitrogen as ammonia, pH and temperature levels, moisture content and the economics of alternative disposal methods. Further advancement of these technologies is currently receiving increased interest, both academically and commercially. However, significant financial incentives are required to attract the agricultural industry.
Perspective on the span-distributed-load concept for application to large cargo aircraft design
NASA Technical Reports Server (NTRS)
Whitehead, A. H., Jr.
1975-01-01
Results of a simplified analysis of the span-distributed-load concept (in which payload is placed within the wing structure) are presented. It is shown that a design based on these principles has a high potential for application to future large air cargo transport. Significant improvements are foreseen in increased payload fraction and productivity and in reduced fuel consumption and operating costs. A review of the efforts in the 1940's to develop all-wing aircraft shows the potential of transferring those early technological developments to current design of distributed-load aircraft. Current market analyses are projected to 1990 to show the future commercial demand for large capacity freighters. Several configuration designs which would serve different market requirements for these large freighters are discussed as are some of the pacing-technology requirements.
Cost/benefit trade-offs for reducing the energy consumption of commercial air transportation (RECAT)
NASA Technical Reports Server (NTRS)
Gobetz, F. W.; Leshane, A. A.
1976-01-01
The RECAT study evaluated the opportunities for reducing the energy requirements of the U.S. domestic air passenger transport system through improved operational techniques, modified in-service aircraft, derivatives of current production models, or new aircraft using either current or advanced technology. Each of these fuel-conserving alternatives was investigated individually to test its potential for fuel conservation relative to a hypothetical baseline case in which current, in-production aircraft types are assumed to operate, without modification and with current operational techniques, into the future out to the year 2000. Consequently, while the RECAT results lend insight into the directions in which technology can best be pursued for improved air transport fuel economy, no single option studied in the RECAT program is indicative of a realistic future scenario.
NASA Astrophysics Data System (ADS)
Martin, Gene; Criscione, Joseph C.; Cauffman, Sandra A.; Davis, Martin A.
2004-11-01
The Hyperspectral Environmental Suite (HES) instrument is currently under development by the NASA GOES-R Project team within the framework of the GOES Program to fulfill the future needs and requirements of the National Environmental Satellite, Data, and Information Service (NESDIS) Office. As part of the GOES-R instrument complement, HES will provide measurements of the traditional temperature and water vapor vertical profiles with higher accuracy and vertical resolution than obtained through current sounder technologies. HES will provide measurements of the properties of the shelf and coastal waters and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). The HES team is forging the future of remote environmental monitoring with the development of an operational instrument with high temporal, spatial and spectral-resolution and broad hemispheric coverage. The HES development vision includes threshold and goal requirements that encompass potential system solutions. The HES team has defined tasks for the instrument(s) that include a threshold functional complement of Disk Sounding (DS), Severe Weather/Mesoscale Sounding (SW/M), and Shelf and Coastal Waters imaging (CW) and a goal functional complement of Open Ocean (OO) imaging, and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). To achieve the best-value procurement, the GOES-R Project has base-lined a two-phase procurement approach to the HES design and development; a Formulation/study phase and an instrument Implementation phase. During Formulation, currently slated for the FY04-05 timeframe, the developing team(s) will perform Systems Requirements Analysis and evaluation, System Trade and Requirements Baseline Studies, Risk Assessment and Mitigation Strategy and complete a Preliminary Conceptual Design of the HES instrument. The results of the formulation phase will be leveraged to achieve an effective and efficient system solution during the Implementation Phase scheduled to begin FY05 for a resultant FY12 launch. The magnitude of complexity of the HES development requires an appreciation of the technologies required to achieve the functional objectives. To this end, the GOES-R project team is making available all NASA developed technologies to potential HES vendors, including, the NASA New Millennium Program"s (NMP) Earth Observing-3, Geostationary Imaging Fourier Transform Spectrometer (GIFTS) instrument developed technologies, as applicable. It is anticipated that the instrument(s) meeting the HES requirements will be either a dispersive spectrometer or an interferometric spectrometer or perhaps a combination. No instrument configuration is preferred or favored by the Government. This paper outlines the HES development plan; including an overview of current requirements, existing partnerships and the GOES-R project methodologies to achieve the advanced functional objectives of the GOES Program partnership.
Johnston, Maximilian J; King, Dominic; Arora, Sonal; Cooper, Kerri; Panda, Neha Aparajita; Gosling, Rebecca; Singh, Kaushiki; Sanders, Bradley; Cox, Benita; Darzi, Ara
2014-08-01
In order to enable safe and efficient information transfer between health care professionals during clinical handover and escalation of care, existing communication technologies must be updated. This study aimed to provide a user-informed guide for the development of an application-based communication system (ABCS), tailored for use in patient handover and escalation of care. Current methods of inter-professional communication in health care along with information system needs for communication technology were identified through literature review. A focus group study was then conducted according to a topic guide developed by health innovation and safety researchers. Fifteen doctors and 11 nurses from three London hospitals participated in a mixture of homogeneous and heterogeneous sessions. The sessions were recorded and transcribed verbatim before being subjected to thematic analysis. Seventeen information system needs were identified from the literature review. Participants identified six themes detailing user perceptions of current communication technology, attitudes to smartphone technology and anticipated requirements of an application produced for handover and escalation of care. Participants were in favour of an ABCS over current methods and expressed enthusiasm for a system with integrated patient information and group-messaging functions. Despite concerns regarding confidentiality and information governance a robust guide for development and implementation of an ABCS was produced, taking input from multiple stakeholders into account. Handover and escalation of care are vital processes for patient safety and communication within these must be optimized. An ABCS for health care professionals would be a welcome innovation and may lead to improvements in patient safety. © 2014 John Wiley & Sons, Ltd.
A review of nondestructive examination technology for polyethylene pipe in nuclear power plant
NASA Astrophysics Data System (ADS)
Zheng, Jinyang; Zhang, Yue; Hou, Dongsheng; Qin, Yinkang; Guo, Weican; Zhang, Chuck; Shi, Jianfeng
2018-05-01
Polyethylene (PE) pipe, particularly high-density polyethylene (HDPE) pipe, has been successfully utilized to transport cooling water for both non-safety- and safety-related applications in nuclear power plant (NPP). Though ASME Code Case N755, which is the first code case related to NPP HDPE pipe, requires a thorough nondestructive examination (NDE) of HDPE joints. However, no executable regulations presently exist because of the lack of a feasible NDE technique for HDPE pipe in NPP. This work presents a review of current developments in NDE technology for both HDPE pipe in NPP with a diameter of less than 400 mm and that of a larger size. For the former category, phased array ultrasonic technique is proven effective for inspecting typical defects in HDPE pipe, and is thus used in Chinese national standards GB/T 29460 and GB/T 29461. A defect-recognition technique is developed based on pattern recognition, and a safety assessment principle is summarized from the database of destructive testing. On the other hand, recent research and practical studies reveal that in current ultrasonic-inspection technology, the absence of effective ultrasonic inspection for large size was lack of consideration of the viscoelasticity effect of PE on acoustic wave propagation in current ultrasonic inspection technology. Furthermore, main technical problems were analyzed in the paper to achieve an effective ultrasonic test method in accordance to the safety and efficiency requirements of related regulations and standards. Finally, the development trend and challenges of NDE test technology for HDPE in NPP are discussed.
NASA Technical Reports Server (NTRS)
Bradford, Robert N.
2002-01-01
Currently, and in the past, dedicated communication circuits and "network services" with very stringent performance requirements are being used to support manned and unmanned mission critical ground operations at GSFC, JSC, MSFC, KSC and other NASA facilities. Because of the evolution of network technology, it is time to investigate using other approaches to providing mission services for space ground operations. The current NASA approach is not in keeping with the evolution of network technologies. In the past decade various research and education networks dedicated to scientific and educational endeavors have emerged, as well as commercial networking providers, that employ advanced networking technologies. These technologies have significantly changed networking in recent years. Significant advances in network routing techniques, various topologies and equipment have made commercial networks very stable and virtually error free. Advances in Dense Wave Division Multiplexing will provide tremendous amounts of bandwidth for the future. The question is: Do these networks, which are controlled and managed centrally, provide a level of service that equals the stringent NASA performance requirements. If they do, what are the implication(s) of using them for critical space based ground operations as they are, without adding high cost contractual performance requirements? A second question is the feasibility of applying the emerging grid technology in space operations. Is it feasible to develop a Space Operations Grid and/or a Space Science Grid? Since these network's connectivity is substantial, both nationally and internationally, development of these sorts of grids may be feasible. The concept of research and education networks has evolved to the international community as well. Currently there are international RENs connecting the US in Chicago to and from Europe, South America, Asia and the Pacific rim, Russia and Canada. And most countries in these areas have their own research and education network as do many states in the USA.
High-resolution wavefront control of high-power laser systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brase, J; Brown, C; Carrano, C
1999-07-08
Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformablemore » glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more than two orders of magnitude greater than the best Deformable Mirrors currently made. Even with the increased spatial resolution, the cost of these devices is nearly two orders of magnitude less than the cost of the largest deformable mirror.« less
Big Data: An Opportunity for Collaboration with Computer Scientists on Data-Driven Science
NASA Astrophysics Data System (ADS)
Baru, C.
2014-12-01
Big data technologies are evolving rapidly, driven by the need to manage ever increasing amounts of historical data; process relentless streams of human and machine-generated data; and integrate data of heterogeneous structure from extremely heterogeneous sources of information. Big data is inherently an application-driven problem. Developing the right technologies requires an understanding of the applications domain. Though, an intriguing aspect of this phenomenon is that the availability of the data itself enables new applications not previously conceived of! In this talk, we will discuss how the big data phenomenon creates an imperative for collaboration among domain scientists (in this case, geoscientists) and computer scientists. Domain scientists provide the application requirements as well as insights about the data involved, while computer scientists help assess whether problems can be solved with currently available technologies or require adaptaion of existing technologies and/or development of new technologies. The synergy can create vibrant collaborations potentially leading to new science insights as well as development of new data technologies and systems. The area of interface between geosciences and computer science, also referred to as geoinformatics is, we believe, a fertile area for interdisciplinary research.
Eggbeer, Dominic; Bibb, Richard; Evans, Peter
2006-01-01
This paper is the first in a series that aims to identify the specification requirements for advanced digital technologies that may be used to design and fabricate complex, soft tissue facial prostheses. Following a review of previously reported techniques, appropriate and currently available technologies were selected and applied in a pilot study. This study uses a range of optical surface scanning, computerized tomography, computer-aided design, and rapid prototyping technologies to capture, design, and fabricate a bone-anchored auricular prosthesis, including the retentive components. The techniques are assessed in terms of their effectiveness, and the results are used to identify future research and specification requirements to direct developments. The case study identifies that while digital technologies may be used to design implant-retained facial prostheses, many limitations need to be addressed to make the techniques clinically viable. It also identifies the need to develop a more robust specification that covers areas such as resolution, accuracy, materials, and design, against which potential technologies may be assessed. There is a need to develop a specification against which potential technologies may be assessed for their suitability in soft tissue facial prosthetics. The specification will be developed using further experimental research studies.
Vaccine adjuvant technology: from mechanistic concepts to practical applications.
Degen, Winfried G J; Jansen, Theo; Schijns, Virgil E J C
2003-04-01
Distinct types of immune responses are required for efficient elimination of different pathogens. Programming of the desired type of immune response by safe nonreplicating vaccines requires suitable vaccine adjuvants. Adjuvants largely determine the magnitude and quality of immune responses specific for the coadministered antigen. Unfortunately, rational vaccine design requiring a rational choice of vaccine adjuvant, is hampered by a lack of knowledge about the mechanism(s) of vaccine adjuvant activity. The current review addresses different critical immunological processes possibly explaining adjuvant functions. In addition, we discuss traditional vaccine adjuvant formulations and their possible mode of action. Finally, we reflect on the latest technologies for the identification of novel adjuvants using molecular analysis of immune activation and functional genomics.
Technologies for Outer Planet Missions: A companion to the OPAG Exploration Strategy
NASA Astrophysics Data System (ADS)
Beauchamp, Patricia; McKinnon, William
The Outer Planets Assessment Group (OPAG) advocates the need for a focused technology program for the next Outer Planet Flagship Mission after the Europa Jupiter System Mission (EJSM) in order to be ready for a launch in the mid-2020s. Current planning assumes that a mission to Titan and Enceladus will be the highest priority. The challenges common to all Outer Planetary (OP) missions—large distances, long ight times, and stringent limitations on mass, power, and data rate—mean that all missions can signicantly benet from technical advances in a number of broad areas. Since technology development timescales are long, it is most productive to base technology requirements on the expected general characteristics of future missions. While the strategic Flagship mission concepts are better understood, an estimate of the needs for the competed small class (Discovery) and medium class (New Frontiers) missions can be included in constructing an effective technology investment plan. Technology investment priorities are guided by the requirements established in mission and system studies that are focused on the highest priority science objectives. The next OP mission (after EJSM) may involve orbiting one or both of the saturnian satellites Titan and Enceladus. Other potential OP missions include atmospheric probes of the giant planets, in situ exploration at Titan, flybys or orbiters to the ice giants Neptune and Uranus, and ultimately, landing on Europa or Enceladus. The breadth of technology needed for OP exploration clearly calls for an aggressive and focused technology development strategy that aligns with the Decadal Survey recommended mission profile, and includes technologies developed by NASA, as well as acquisition of applicable technologies from other government and commercial sectors. This presentation shows how the technologies discussed in the white paper derive from the Outer Planet science goals, with particular attention to those required by a mission to Titan and Enceladus -active solar system satellites. We explain why they are significant relative to current solar system goals/priorities and outline how they should influence the next generation of solar system exploration missions. Government sponsorship acknowledged
Technologies for Outer Planet Missions: A Companion to the OPAG Exploration Strategy
NASA Astrophysics Data System (ADS)
Beauchamp, P. M.; McKinnon, W. B.
2009-12-01
The Outer Planets Assessment Group (OPAG) advocates the need for a focused technology program for the next Outer Planet Flagship Mission after the Europa Jupiter System Mission (EJSM) in order to be ready for a launch in the mid-2020s. Current planning assumes that a mission to Titan and Enceladus will be the highest priority. The challenges common to all Outer Planetary (OP) missions — large distances, long flight times, and stringent limitations on mass, power, and data rate — mean that all missions can significantly benefit from technical advances in a number of broad areas. Since technology development timescales are long, it is most productive to base technology requirements on the expected general characteristics of future missions. While the strategic Flagship mission concepts are better understood, an estimate of the needs for the competed small class (Discovery) and medium class (New Frontiers) missions can be included in constructing an effective technology investment plan. Technology investment priorities are guided by the requirements established in mission and system studies that are focused on the highest priority science objectives. The next OP mission (after EJSM) may involve orbiting one or both of the saturnian satellites Titan and Enceladus. Other potential OP missions include atmospheric probes of the giant planets, in situ exploration at Titan, flybys or orbiters to the ice giants Neptune and Uranus, and ultimately, landing on Europa or Enceladus. The breadth of technology needed for OP exploration clearly calls for an aggressive and focused technology development strategy that aligns with the Decadal Survey recommended mission profile, and includes technologies developed by NASA, as well as acquisition of applicable technologies from other government and commercial sectors. This presentation shows how the technologies discussed in the white paper derive from the Outer Planet science goals, with particular attention to those required by a mission to Titan and Enceladus. We explain why they are significant relative to current solar system goals/priorities and outline how they should influence the next generation of solar system exploration missions.
Technologies for Outer Planet Missions: A companion to the OPAG Exploration Strategy
NASA Astrophysics Data System (ADS)
Beauchamp, Patricia; McKinnon, William
2010-05-01
The Outer Planets Assessment Group (OPAG) advocates the need for a focused technology program for the next Outer Planet Flagship Mission after the Europa Jupiter System Mission (EJSM) in order to be ready for a launch in the mid-2020s. Current planning assumes that a mission to Titan and Enceladus will be the highest priority. The challenges common to all Outer Planetary (OP) missions—large distances, long flight times, and stringent limitations on mass, power, and data rate—mean that all missions can significantly benefit from technical advances in a number of broad areas. Since technology development timescales are long, it is most productive to base technology requirements on the expected general characteristics of future missions. While the strate¬gic Flagship mission concepts are better understood, an estimate of the needs for the competed small class (Discovery) and medium class (New Frontiers) missions can be included in constructing an effective technology investment plan. Technology investment priorities are guided by the requirements established in mission and system studies that are focused on the highest priority science objectives. The next OP mission (after EJSM) may involve orbiting one or both of the saturnian satellites Titan and Enceladus. Other potential OP missions include atmospheric probes of the giant planets, in situ exploration at Titan, flybys or orbiters to the ice giants Neptune and Uranus, and ultimately, landing on Europa or Enceladus. The breadth of technology needed for OP exploration clearly calls for an aggressive and focused technology development strategy that aligns with the Decadal Survey recommended mission profile, and includes technologies developed by NASA, as well as acquisition of applicable technologies from other government and commercial sectors. This presentation shows how the technologies discussed in the white paper derive from the Outer Planet science goals, with particular attention to those required by a mission to Titan and Enceladus. We explain why they are significant relative to current solar system goals/priorities and outline how they should influence the next generation of solar system exploration missions. Government sponsorship acknowledged
Application and Removal of Strippable Coatings via Remote Platform - 13133
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoffner, P.; Lagos, L.; Maggio, S.
2013-07-01
Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and technology demonstrations of selected technologies and working with technology vendors to optimize the design of their current technologies to accomplish dangerous and demanding tasks during D and D operations.more » To meet one identified technology gap challenge for a technology to remotely apply strippable coatings, fixatives and decontamination gels, FIU identified and performed an initial demonstration of an innovative remote fixative sprayer platform from International Climbing Machines (ICM). The selected technology was demonstrated spraying fixative products at the hot cell mockup facility at the Applied Research Center at FIU in November 2008 under cold (non-radioactive) conditions. The remotely controlled platform was remotely operated and entered the facility and sprayed a fixative onto horizontal and vertical surfaces. Based on the initial FIU demonstration and the specific technical requirements identified at the DOE facilities, a follow-up demonstration was expanded to include strippable coatings and a decontamination gel, which was demonstrated in June 2010 at the ICM facility in Ithaca, NY. This second technology evaluation documented the ability of the remote system to spray the selected products on vertical stainless steel and concrete surfaces to a height of 3 meters (10 feet) and to achieve sufficient coverage and product thickness to promote the ability to peel/remove the strippable coatings and decontamination gel. The next challenge was to determine if a remote platform could be used to remove the strippable coatings and decontamination gels. In 2012, FIU worked with the technology provider, ICM, to conduct feasibility and trade studies to identify the requirements for the remote removal of strippable coatings or decontamination gels using the existing remote controlled platform. (authors)« less
Advanced 3-V semiconductor technology assessment
NASA Technical Reports Server (NTRS)
Nowogrodzki, M.
1983-01-01
Components required for extensions of currently planned space communications systems are discussed for large antennas, crosslink systems, single sideband systems, Aerostat systems, and digital signal processing. Systems using advanced modulation concepts and new concepts in communications satellites are included. The current status and trends in materials technology are examined with emphasis on bulk growth of semi-insulating GaAs and InP, epitaxial growth, and ion implantation. Microwave solid state discrete active devices, multigigabit rate GaAs digital integrated circuits, microwave integrated circuits, and the exploratory development of GaInAs devices, heterojunction devices, and quasi-ballistic devices is considered. Competing technologies such as RF power generation, filter structures, and microwave circuit fabrication are discussed. The fundamental limits of semiconductor devices and problems in implementation are explored.
An update on X-ray reflection gratings developed for future missions
NASA Astrophysics Data System (ADS)
Miles, Drew
2018-01-01
X-ray reflection gratings are a key technology being studied for future X-ray spectroscopy missions, including the Lynx X-ray mission under consideration for the 2020 Decadal Survey. We present an update on the status of X-ray reflection gratings being developed at Penn State University, including current fabrication techniques and mass-replication processes and the latest diffraction efficiency results and resolving power measurements. Individual off-plane X-ray reflection gratings have exceeded the current Lynx requirements for both effective area and resolving power. Finally, we discuss internal projects that will advance the technology readiness level of these gratings.
Current progress in patient-specific modeling
2010-01-01
We present a survey of recent advancements in the emerging field of patient-specific modeling (PSM). Researchers in this field are currently simulating a wide variety of tissue and organ dynamics to address challenges in various clinical domains. The majority of this research employs three-dimensional, image-based modeling techniques. Recent PSM publications mostly represent feasibility or preliminary validation studies on modeling technologies, and these systems will require further clinical validation and usability testing before they can become a standard of care. We anticipate that with further testing and research, PSM-derived technologies will eventually become valuable, versatile clinical tools. PMID:19955236
Spacecraft-borne long life cryogenic refrigeration: Status and trends
NASA Technical Reports Server (NTRS)
Johnson, A. L.
1983-01-01
The status of cryogenic refrigerator development intended for, or possibly applicable to, long life spacecraft-borne application is reviewed. Based on these efforts, the general development trends are identified. Using currently projected technology needs, the various trends are compared and evaluated. The linear drive, non-contacting bearing Stirling cycle refrigerator concept appears to be the best current approach that will meet the technology projection requirements for spacecraft-borne cryogenic refrigerators. However, a multiply redundant set of lightweight, moderate life, moderate reliability Stirling cycle cryogenic refrigerators using high-speed linear drive and sliding contact bearings may possibly suffice.
Manual and automation testing and verification of TEQ [ECI PROPIRETRY
NASA Astrophysics Data System (ADS)
Abhichandra, Ravi; Jasmine Pemeena Priyadarsini, M.
2017-11-01
The telecommunication industry has progressed from 1G to 4G and now 5G is gaining prominence. Given the pace of this abrupt transformation, technological obsolescence is becoming a serious issue to deal with. Adding to this fact is that the execution of each technology requires ample investment into network, infrastructure, development etc. As a result, the industry is becoming more dynamic and strategy oriented. It requires professionals who not only can understand technology but also can evaluate the same from a business perspective. The “Information Revolution” and the dramatic advances in telecommunications technology, which has made this possible, currently drive the global economy in large part. As wireless networks become more advanced and far-reaching, we are redefining the notion of connectivity and the possibilities of communications technology. In this paper I test and verify the optical cards and automate this test procedure by using a new in-house technology “TEQ” developed by ECI TELECOM which uses one the optical cards itself to pump traffic of 100gbps.
Wireless body sensor networks for health-monitoring applications.
Hao, Yang; Foster, Robert
2008-11-01
Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system.
Effective methodology to derive strategic decisions from ESA exploration technology roadmaps
NASA Astrophysics Data System (ADS)
Cresto Aleina, Sara; Viola, Nicole; Fusaro, Roberta; Saccoccia, Giorgio
2016-09-01
Top priorities in future international space exploration missions regard the achievement of the necessary maturation of enabling technologies, thereby allowing Europe to play a role commensurate with its industrial, operational and scientific capabilities. As part of the actions derived from this commitment, ESA Technology Roadmaps for Exploration represent a powerful tool to prioritise R&D activities in technologies for space exploration and support the preparation of a consistent procurement plan for space exploration technologies in Europe. The roadmaps illustrate not only the technology procurement (to TRL-8) paths for specific missions envisaged in the present timeframe, but also the achievement for Europe of technological milestones enabling operational capabilities and building blocks, essential for current and future Exploration missions. Coordination of requirements and funding sources among all European stakeholders (ESA, EU, National, and Industry) is one of the objectives of these roadmaps, that show also possible application of the technologies beyond space exploration, both at ESA and outside. The present paper describes the activity that supports the work on-going at ESA on the elaboration and update of these roadmaps and related tools, in order to criticise the followed approach and to suggest methodologies of assessment of the Roadmaps, and to derive strategic decision for the advancement of Space Exploration in Europe. After a review of Technology Areas, Missions/Programmes and related building blocks (architectures) and operational capabilities, technology applicability analyses are presented. The aim is to identify if a specific technology is required, applicable or potentially a demonstrator in the building blocks of the proposed mission concepts. In this way, for each technology it is possible to outline one or more specific plans to increase TRL up to the required level. In practice, this translates into two possible solutions: on the one hand, approved mission concepts will be complemented with the required technologies if the latter can be considered as applicable or demo; on the other, if they are neither applicable nor demo, new missions, i.e. technology demonstrators based on multidisciplinary grouping of key technologies, shall be evaluated, so as to proceed through incremental steps. Finally, techniques to determine priorities in technology procurement are identified, and methodologies to rank the required technologies are proposed. In addition, a tool that estimates the percentage of technologies required for the final destination that are implementable in each intermediate destination of the incremental approach is presented.
NASA Astrophysics Data System (ADS)
Gorille, I.
1980-11-01
The application of MOS switching circuits of high complexity in essential automobile systems, such as ignition and injection, was investigated. A bipolar circuit technology, current hogging logic (CHL), was compared to MOS technologies for its competitiveness. The functional requirements of digital automotive systems can only be met by technologies allowing large packing densities and medium speeds. The properties of n-MOS and CMOS are promising whereas the electrical power needed by p-MOS circuits is in general prohibitively large.
Heatshield for Extreme Entry Environment Technology (HEEET) for Missions to Saturn and Beyond
NASA Technical Reports Server (NTRS)
Ellerby, D.; Blosser, M.; Chinnapongse, R.; Fowler, M.; Gasch, M.; Hamm, K.; Kazemba, C.; Ma, J.; Milos, F.; Nishioka, O.;
2015-01-01
This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASAs Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.
NASA Technical Reports Server (NTRS)
Ellerby, D.; Beerman, A.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.;
2015-01-01
This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Venus or Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.
NASA Technical Reports Server (NTRS)
Ellerby, D.; Beerman, A.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzaes, G.;
2015-01-01
This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASAs Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Venus or Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.
NASA Technical Reports Server (NTRS)
Ellerby, D.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; Hamm, K.;
2016-01-01
This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.
Cheng, Yi-Yu; Qu, Hai-Bin; Zhang, Bo-Li
2013-01-01
This paper briefly analyzes the bottlenecks and major technical requirements for pharmaceutical industry of Chinese medicine, providing current status of pharmaceutical engineering of Chinese medicine. The innovation directions and strategies of the pharmaceutical engineering for manufacturing Chinese medicine are proposed along with the framework of their core technology. As a consequence, the development of the third-generation pharmaceutical technology for Chinese medicine, featured as "precision, digital and intelligent", is recommended. The prospects of the pharmaceutical technology are also forecasted.
Cooperative Conflict Avoidance Sensor Trade Study Report, Version 2
NASA Technical Reports Server (NTRS)
2004-01-01
This study develops evaluation criteria for systems and technologies against the Cooperative Conflict Avoidance (CCA) requirements for unmanned flight at and above FL430 as part of Step 1 of the Access-5 program. These evaluation criteria are then applied to both current and future technologies to identify those which might be used to provide an Equivalent Level of Safety (ELOS) for CCA. This document provides the results of this analysis of various systems and technologies intended for evaluation as part of the CCA work package.
Heatshield for Extreme Entry Environment Technology (HEEET) Development and Maturation Status
NASA Technical Reports Server (NTRS)
Ellerby, D.; Boghozian, T.; Driver, D.; Chavez-Garcia, J.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; Kazemba, C.; Kellermann, C.;
2018-01-01
This poster provides an overview of the requirements, design, development and testing of the 3D (Three Dimensional) Woven TPS (Thermal Protection System) being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a TPS capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.
NASA Stennis Space Center Test Technology Branch Activities
NASA Technical Reports Server (NTRS)
Solano, Wanda M.
2000-01-01
This paper provides a short history of NASA Stennis Space Center's Test Technology Laboratory and briefly describes the variety of engine test technology activities and developmental project initiatives. Theoretical rocket exhaust plume modeling, acoustic monitoring and analysis, hand held fire imaging, heat flux radiometry, thermal imaging and exhaust plume spectroscopy are all examples of current and past test activities that are briefly described. In addition, recent efforts and visions focused on accomodating second, third, and fourth generation flight vehicle engine test requirements are discussed.
Information Science Panel joint meeting with Imaging Science Panel
NASA Technical Reports Server (NTRS)
1982-01-01
Specific activity in information extraction science (taken to include data handling) is needed to: help identify the bounds of practical missions; identify potential data handling and analysis scenarios; identify the required enabling technology; and identify the requirements for a design data base to be used by the disciplines in determining potential parameters for future missions. It was defined that specific analysis topics were a function of the discipline involved, and therefore no attempt was made to define any specific analysis developments required. Rather, it was recognized that a number of generic data handling requirements exist whose solutions cannot be typically supported by the disciplines. The areas of concern were therefore defined as: data handling aspects of system design considerations; enabling technology for data handling, with specific attention to rectification and registration; and enabling technology for analysis. Within each of these areas, the following topics were addressed: state of the art (current status and contributing factors); critical issues; and recommendations for research and/or development.
Evolution of the Ultrasonic Inspection Requirements of Heavy Rotor Forgings Over the Past Decades
NASA Astrophysics Data System (ADS)
Vrana, J.; Zimmer, A.; Bailey, K.; Angal, R.; Zombo, P.; Büchner, U.; Buschmann, A.; Shannon, R. E.; Lohmann, H.-P.; Heinrich, W.
2010-02-01
Heavy rotor forgings for land-based power generation turbines and generators are inspected ultrasonically. Several decades ago the first inspections were conducted using manual, straight beam, contact transducers with simple, non-descript reporting requirements. The development of ultrasonic inspection capabilities, the change in design engineer requirements, improvements of fracture mechanics calculations, experience with turbine operation, experience with the inspection technology, and probability of detection drove the changes that have resulted in the current day inspection requirements: sizing technologies were implemented, detection limits were lowered, angle and pitch/catch (dual crystal) scans were introduced, and most recently automated equipment for the inspection was required. Due to all these changes, model based sizing techniques, like DGS, and modern ultrasonic techniques, like phased array, are being introduced globally. This paper describes the evolution of the ultrasonic inspection requirements over the last decades and presents an outlook for tomorrow.
A thermal shield concept for the Solar Probe mission
NASA Technical Reports Server (NTRS)
Miyake, Robert N.; Millard, Jerry M.; Randolph, James E.
1991-01-01
The Solar Probe spacecraft will travel to within 4 solar radii of the sun's center while performing a variety of fundamental experiments in space physics. Exposure to 2900 earth suns (400 W/sq cm) at perihelion imposes severe thermal and material demands on a solar shield system designed to protect the payload that will reside within the shield's shadow envelope or umbra. The design of the shield subsystem is a thermal/materials challenge requiring new technology development. While currently in the preproject study phase, anticipating a 1995 project start, shield preliminary design efforts are currently underway. This paper documents the current status of the mission concept, the materials issues, the configuration concept for the shield subsystem, the current configuration studies performed to date, and the required material testing to provide a database to support a design effort required to develop the shield subsystem.
Automated pavement analysis in Missouri using ground penetrating radar
DOT National Transportation Integrated Search
2003-02-01
Current geotechnical procedures for monitoring the condition of roadways are time consuming and can be disruptive to traffic, often requiring extensive invasive procedures (e.g., coring). Ground penetrating radar (GPR) technology offers a methodology...
Technology Challenges and Opportunities for Very Large In-Space Structural Systems
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.
2009-01-01
Space solar power satellites and other large space systems will require creative and innovative concepts in order to achieve economically viable designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment/construction will be enabling design attributes. While current space systems allocate nearly 20 percent of the mass to the primary structure, the very large space systems of the future must overcome subsystem mass allocations by achieving a level of functional integration not yet realized. A proposed building block approach with two phases is presented to achieve near-term solar power satellite risk reduction with accompanying long-term technology advances. This paper reviews the current challenges of launching and building very large space systems from a structures and materials perspective utilizing recent experience. Promising technology advances anticipated in the coming decades in modularity, material systems, structural concepts, and in-space operations are presented. It is shown that, together, the current challenges and future advances in very large in-space structural systems may provide the technology pull/push necessary to make solar power satellite systems more technically and economically feasible.
Solar hot water systems application to the solar building test facility and the Tech House
NASA Technical Reports Server (NTRS)
Goble, R. L.; Jensen, R. N.; Basford, R. C.
1976-01-01
Projects which relate to the current national thrust toward demonstrating applied solar energy are discussed. The first project has as its primary objective the application of a system comprised of a flat plate collector field, an absorption air conditioning system, and a hot water heating system to satisfy most of the annual cooling and heating requirements of a large commercial office building. The other project addresses the application of solar collector technology to the heating and hot water requirements of a domestic residence. In this case, however, the solar system represents only one of several important technology items, the primary objective for the project being the application of space technology to the American home.
Lunar base mission technology issues and orbital demonstration requirements on space station
NASA Technical Reports Server (NTRS)
Llewellyn, Charles P.; Weidman, Deene J.
1992-01-01
The International Space Station has been the object of considerable design, redesign, and alteration since it was originally proposed in early 1984. In the intervening years the station has slowly evolved to a specific design that was thoroughly reviewed by a large agency-wide Critical Evaluation Task Force (CETF). As space station designs continue to evolve, studies must be conducted to determine the suitability of the current design for some of the primary purposes for which the station will be used. This paper concentrates on the technology requirements and issues, the on-orbit demonstration and verification program, and the space station focused support required prior to the establishment of a permanently manned lunar base as identified in the National Commission on Space report. Technology issues associated with the on-orbit assembly and processing of the lunar vehicle flight elements are also discussed.
Universal Design and the Smart Home.
Pennick, Tim; Hessey, Sue; Craigie, Roland
2016-01-01
The related concepts of Universal Design, Inclusive Design, and Design For All, all recognise that no one solution will fit the requirements of every possible user. This paper considers the extent to which current developments in smart home technology can help to reduce the numbers of users for whom mainstream technology is not sufficiently inclusive, proposing a flexible approach to user interface (UI) implementation focussed on the capabilities of the user. This implies development of the concepts underlying Universal Design to include the development of a flexible inclusive support infrastructure, servicing the requirements of individual users and their personalised user interface devices.
Propulsion Options for Primary Thrust and Attitude Control of Microspacecraft
NASA Technical Reports Server (NTRS)
deGroot, W. A.
1998-01-01
Order of magnitude decreases in the size of scientific satellites and spacecraft could provide concurrent decreases in mission costs because of lower launch and fabrication costs. Although many subsystems are amenable to dramatic size reductions, miniaturization of the propulsion subsystems is not straightforward. There are a range of requirements for both primary and attitude control propulsion, dictated by mission requirements, satellite size, and power restrictions. Many of the established propulsion technologies can not currently be applied to microspacecraft. Because of this, micro-electromechanical systems (MEMS) fabrication technology is being explored as a path for miniaturization.
NASA Technical Reports Server (NTRS)
Oren, J. A.
1981-01-01
Candidate techniques for thermal management of unmanned modules docked to a large 250 kW platform were evaluated. Both automatically deployed and space constructed radiator systems were studied to identify characteristics and potential problems. Radiator coating requirements and current state-of-the-art were identified. An assessment of the technology needs was made and advancements were recommended.
ERIC Educational Resources Information Center
Hallaq, Thomas G.
2013-01-01
While new technology continues to develop and become increasingly affordable, and students have increased access to electronic media, one might wonder if requiring such technology in the classroom is akin to throwing the car keys to a teen-ager who has not completed a driver's education course. Currently, no validated survey has been created…
ERIC Educational Resources Information Center
Department of Justice, Washington, DC. Civil Rights Div.
This report responds to requirements of Section 508 of the Rehabilitation Act, as amended in 1998, concerning the accessibility of federal electronic and information technology to individuals with disabilities. It contains the results of the first executive branch-wide Section 508 evaluation and recommends specific inexpensive, cost-effective, and…
NASA Astrophysics Data System (ADS)
Smith, C. L.; Rumsey, M. S.; Manick, K.; Gill, S.-J.; Mavris, C.; Schroeven-Deceuninck, H.; Duvet, L.
2017-09-01
The ESA2C will support current and future technology development activities that are required for human and robotic exploration of Mars, Phobos, Deimos, C-Type Asteroids and the Moon.The long-term goal of this work is to produce a useful, useable and sustainable resource for engineers and scientists developing technologies for ESA space exploration missions.
User evaluation of ride technology research
NASA Technical Reports Server (NTRS)
Mckenzie, J. R.; Brumaghim, S. H.
1976-01-01
The 23 organizations queried represent government, carrier, and manufacturing interests in air, marine, rail, and surface transportation systems. Results indicate a strong need for common terminology and data analysis/reporting techniques. The various types of ride criteria currently in use are discussed, particularly in terms of their respective data base requirements. A plan of action is proposed for fulfilling the ride technology needs identified by this study.
Development and applications of 3-dimensional integration nanotechnologies.
Kim, Areum; Choi, Eunmi; Son, Hyungbin; Pyo, Sung Gyu
2014-02-01
Unlike conventional two-dimensional (2D) planar structures, signal or power is supplied through through-silicon via (TSV) in three-dimensional (3D) integration technology to replace wires for binding the chip/wafer. TSVs have becomes an essential technology, as they satisfy Moore's law. This 3D integration technology enables system and sensor functions at a nanoscale via the implementation of a highly integrated nano-semiconductor as well as the fabrication of a single chip with multiple functions. Thus, this technology is considered to be a new area of development for the systemization of the nano-bio area. In this review paper, the basic technology required for such 3D integration is described and methods to measure the bonding strength in order to measure the void occurring during bonding are introduced. Currently, CMOS image sensors and memory chips associated with nanotechnology are being realized on the basis of 3D integration technology. In this paper, we intend to describe the applications of high-performance nano-biosensor technology currently under development and the direction of development of a high performance lab-on-a-chip (LOC).
Multifocal planes head-mounted displays.
Rolland, J P; Krueger, M W; Goon, A
2000-07-01
Stereoscopic head-mounted displays (HMD's) provide an effective capability to create dynamic virtual environments. For a user of such environments, virtual objects would be displayed ideally at the appropriate distances, and natural concordant accommodation and convergence would be provided. Under such image display conditions, the user perceives these objects as if they were objects in a real environment. Current HMD technology requires convergent eye movements. However, it is currently limited by fixed visual accommodation, which is inconsistent with real-world vision. A prototype multiplanar volumetric projection display based on a stack of laminated planes was built for medical visualization as discussed in a paper presented at a 1999 Advanced Research Projects Agency workshop (Sullivan, Advanced Research Projects Agency, Arlington, Va., 1999). We show how such technology can be engineered to create a set of virtual planes appropriately configured in visual space to suppress conflicts of convergence and accommodation in HMD's. Although some scanning mechanism could be employed to create a set of desirable planes from a two-dimensional conventional display, multiplanar technology accomplishes such function with no moving parts. Based on optical principles and human vision, we present a comprehensive investigation of the engineering specification of multiplanar technology for integration in HMD's. Using selected human visual acuity and stereoacuity criteria, we show that the display requires at most 27 equally spaced planes, which is within the capability of current research and development display devices, located within a maximal 26-mm-wide stack. We further show that the necessary in-plane resolution is of the order of 5 microm.
NASA Technical Reports Server (NTRS)
Drews, Michael E.; Covington, Al (Technical Monitor)
1994-01-01
The Life Support Flight Program is evaluating regenerative technologies, including those that utilize higher plants, as a means to reduce resupply over long duration space missions. Constructed to assist in the evaluation process is the CELSS Test Facility Engineering Development Unit (CTF-EDU) an environmentally closed (less than 1% mass and thermal leakage) technology test bed. This ground based fully functional prototype is currently configured to support crop growth, utilizing the power, volume and mass resources allocated for two space station racks. Sub-system technologies were selected considering their impact on available resources, their ability to minimize integration issues, and their degree of modularity. Gas specific mass handling is a key sub-system technology for both biological and physical/chemical life support technologies. The CTF-EDU requires such a system to accommodate non-linear oxygen production from crops, by enabling the control system to change and sustain partial pressure set points in the growth volume. Electrochemical cells are one of the technologies that were examined for oxygen handling in the CTF-EDU. They have been additionally considered to meet other regenerative life support functions, such as oxygen generation, the production of potable water from composite waste streams, and for having the potential to integrate life support functions with those of propulsion and energy storage. An oxygen removal system based on an electrochemical cell was chosen for the EDU due to it's low power, volume and mass requirements (10W, 0.000027 cu m, 4.5 kg) and because of the minimal number of integration considerations. Unlike it's competitors, the system doesn't require post treatments of its byproducts, or heat and power intensive regenerations, that also mandate system redundancy or cycling. The EDUs oxygen removal system only requires two resources, which are already essential to controlled plant growth: electricity and water. Additionally, the amount of oxygen that is removed from the EDU is directly proportional to the cell input current via Faraday's constant, potentially allowing for a mol/electron measurement of photosynthetic rate. The currently operative oxygen removal system has maintained reduced oxygen set points within the EDU, and preparation is underway to verify of the accuracy of electrochemical measurement of oxygen production and hence, photosynthesis. This paper examines the working principles of the electrochemical cell, outlines the overall design of the oxygen removal system and its integration with other EDU subsystems, and summarizes test results obtained over crop growth cycles in the CTF-EDU.
NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 4: Power technology panel
NASA Technical Reports Server (NTRS)
1975-01-01
Technology requirements in the areas of energy sources and conversion, power processing, distribution, conversion, and transmission, and energy storage are identified for space shuttle payloads. It is concluded that the power system technology currently available is adequate to accomplish all missions in the 1973 Mission Model, but that further development is needed to support space opportunities of the future as identified by users. Space experiments are proposed in the following areas: power generation in space, advanced photovoltaic energy converters, solar and nuclear thermoelectric technology, nickel-cadmium batteries, flywheels (mechanical storage), satellite-to-ground transmission and reconversion systems, and regenerative fuel cells.
Future Automotive Aftertreatment Solutions: The 150°C Challenge Workshop Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zammit, Michael; DiMaggio, Craig L.; Kim, Chang H.
2013-10-15
With future fuel economy standards enacted, the U.S. automotive manufacturers (OEMs) are committed to pursuing a variety of high risk/highly efficient stoichiometric and lean combustion strategies to achieve superior performance. In recognition of this need, the U.S. Department of Energy (DOE) has partnered with domestic automotive manufacturers through U.S. DRIVE to develop these advanced technologies. However, before these advancements can be introduced into the U.S. market, they must also be able to meet increasingly stringent emissions requirements. A significant roadblock to this implementation is the inability of current catalyst and aftertreatment technologies to provide the required activity at the muchmore » lower exhaust temperatures that will accompany highly efficient combustion processes and powertrain strategies. Therefore, the goal of this workshop and report is to create a U.S. DRIVE emission control roadmap that will identify new materials and aftertreatment approaches that offer the potential for 90% conversion of emissions at low temperature (150°C) and are consistent with highly efficient combustion technologies currently under investigation within U.S. DRIVE Advanced Combustion and Emission Control (ACEC) programs.« less
Sensor Needs for Control and Health Management of Intelligent Aircraft Engines
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Gang, Sanjay; Hunter, Gary W.; Guo, Ten-Huei; Semega, Kenneth J.
2004-01-01
NASA and the U.S. Department of Defense are conducting programs which support the future vision of "intelligent" aircraft engines for enhancing the affordability, performance, operability, safety, and reliability of aircraft propulsion systems. Intelligent engines will have advanced control and health management capabilities enabling these engines to be self-diagnostic, self-prognostic, and adaptive to optimize performance based upon the current condition of the engine or the current mission of the vehicle. Sensors are a critical technology necessary to enable the intelligent engine vision as they are relied upon to accurately collect the data required for engine control and health management. This paper reviews the anticipated sensor requirements to support the future vision of intelligent engines from a control and health management perspective. Propulsion control and health management technologies are discussed in the broad areas of active component controls, propulsion health management and distributed controls. In each of these three areas individual technologies will be described, input parameters necessary for control feedback or health management will be discussed, and sensor performance specifications for measuring these parameters will be summarized.
Application of dexterous space robotics technology to myoelectric prostheses
NASA Astrophysics Data System (ADS)
Hess, Clifford; Li, Larry C. H.; Farry, Kristin A.; Walker, Ian D.
1994-02-01
Future space missions will require robots equipped with highly dexterous robotic hands to perform a variety of tasks. A major technical challenge in making this possible is an improvement in the way these dexterous robotic hands are remotely controlled or teleoperated. NASA is currently investigating the feasibility of using myoelectric signals to teleoperate a dexterous robotic hand. In theory, myoelectric control of robotic hands will require little or no mechanical parts and will greatly reduce the bulk and weight usually found in dexterous robotic hand control devices. An improvement in myoelectric control of multifinger hands will also benefit prosthetics users. Therefore, as an effort to transfer dexterous space robotics technology to prosthetics applications and to benefit from existing myoelectric technology, NASA is collaborating with the Limbs of Love Foundation, the Institute for Rehabilitation and Research, and Rice University in developing improved myoelectric control multifinger hands and prostheses. In this paper, we will address the objectives and approaches of this collaborative effort and discuss the technical issues associated with myoelectric control of multifinger hands. We will also report our current progress and discuss plans for future work.
Application of dexterous space robotics technology to myoelectric prostheses
NASA Technical Reports Server (NTRS)
Hess, Clifford; Li, Larry C. H.; Farry, Kristin A.; Walker, Ian D.
1994-01-01
Future space missions will require robots equipped with highly dexterous robotic hands to perform a variety of tasks. A major technical challenge in making this possible is an improvement in the way these dexterous robotic hands are remotely controlled or teleoperated. NASA is currently investigating the feasibility of using myoelectric signals to teleoperate a dexterous robotic hand. In theory, myoelectric control of robotic hands will require little or no mechanical parts and will greatly reduce the bulk and weight usually found in dexterous robotic hand control devices. An improvement in myoelectric control of multifinger hands will also benefit prosthetics users. Therefore, as an effort to transfer dexterous space robotics technology to prosthetics applications and to benefit from existing myoelectric technology, NASA is collaborating with the Limbs of Love Foundation, the Institute for Rehabilitation and Research, and Rice University in developing improved myoelectric control multifinger hands and prostheses. In this paper, we will address the objectives and approaches of this collaborative effort and discuss the technical issues associated with myoelectric control of multifinger hands. We will also report our current progress and discuss plans for future work.
Dahmash, Eman Z; Mohammed, Afzal R
2015-01-01
Production of functionalised particles using dry powder coating is a one-step, environmentally friendly process that paves the way for the development of particles with targeted properties and diverse functionalities. Applying the first principles in physical science for powders, fine guest particles can be homogeneously dispersed over the surface of larger host particles to develop functionalised particles. Multiple functionalities can be modified including: flowability, dispersibility, fluidisation, homogeneity, content uniformity and dissolution profile. The current publication seeks to understand the fundamental underpinning principles and science governing dry coating process, evaluate key technologies developed to produce functionalised particles along with outlining their advantages, limitations and applications and discusses in detail the resultant functionalities and their applications. Dry particle coating is a promising solvent-free manufacturing technology to produce particles with targeted functionalities. Progress within this area requires the development of continuous processing devices that can overcome challenges encountered with current technologies such as heat generation and particle attrition. Growth within this field requires extensive research to further understand the impact of process design and material properties on resultant functionalities.
Solomon, Howard M; Makris, Susan L; Alsaid, Hasan; Bermudez, Oscar; Beyer, Bruce K; Chen, Antong; Chen, Connie L; Chen, Zhou; Chmielewski, Gary; DeLise, Anthony M; de Schaepdrijver, Luc; Dogdas, Belma; French, Julian; Harrouk, Wafa; Helfgott, Jonathan; Henkelman, R Mark; Hesterman, Jacob; Hew, Kok-Wah; Hoberman, Alan; Lo, Cecilia W; McDougal, Andrew; Minck, Daniel R; Scott, Lelia; Stewart, Jane; Sutherland, Vicki; Tatiparthi, Arun K; Winkelmann, Christopher T; Wise, L David; Wood, Sandra L; Ying, Xiaoyou
2016-06-01
During the past two decades the use and refinements of imaging modalities have markedly increased making it possible to image embryos and fetuses used in pivotal nonclinical studies submitted to regulatory agencies. Implementing these technologies into the Good Laboratory Practice environment requires rigorous testing, validation, and documentation to ensure the reproducibility of data. A workshop on current practices and regulatory requirements was held with the goal of defining minimal criteria for the proper implementation of these technologies and subsequent submission to regulatory agencies. Micro-computed tomography (micro-CT) is especially well suited for high-throughput evaluations, and is gaining popularity to evaluate fetal skeletons to assess the potential developmental toxicity of test agents. This workshop was convened to help scientists in the developmental toxicology field understand and apply micro-CT technology to nonclinical toxicology studies and facilitate the regulatory acceptance of imaging data. Presentations and workshop discussions covered: (1) principles of micro-CT fetal imaging; (2) concordance of findings with conventional skeletal evaluations; and (3) regulatory requirements for validating the system. Establishing these requirements for micro-CT examination can provide a path forward for laboratories considering implementing this technology and provide regulatory agencies with a basis to consider the acceptability of data generated via this technology. Published by Elsevier Inc.
Internet MEMS design tools based on component technology
NASA Astrophysics Data System (ADS)
Brueck, Rainer; Schumer, Christian
1999-03-01
The micro electromechanical systems (MEMS) industry in Europe is characterized by small and medium sized enterprises specialized on products to solve problems in specific domains like medicine, automotive sensor technology, etc. In this field of business the technology driven design approach known from micro electronics is not appropriate. Instead each design problem aims at its own, specific technology to be used for the solution. The variety of technologies at hand, like Si-surface, Si-bulk, LIGA, laser, precision engineering requires a huge set of different design tools to be available. No single SME can afford to hold licenses for all these tools. This calls for a new and flexible way of designing, implementing and distributing design software. The Internet provides a flexible manner of offering software access along with methodologies of flexible licensing e.g. on a pay-per-use basis. New communication technologies like ADSL, TV cable of satellites as carriers promise to offer a bandwidth sufficient even for interactive tools with graphical interfaces in the near future. INTERLIDO is an experimental tool suite for process specification and layout verification for lithography based MEMS technologies to be accessed via the Internet. The first version provides a Java implementation even including a graphical editor for process specification. Currently, a new version is brought into operation that is based on JavaBeans component technology. JavaBeans offers the possibility to realize independent interactive design assistants, like a design rule checking assistants, a process consistency checking assistants, a technology definition assistants, a graphical editor assistants, etc. that may reside distributed over the Internet, communicating via Internet protocols. Each potential user thus is able to configure his own dedicated version of a design tool set dedicated to the requirements of the current problem to be solved.
The NASA Redox Storage System Development project, 1980
NASA Technical Reports Server (NTRS)
1982-01-01
The technical accomplishments pertaining to the development of Redox systems and related technology are outlined in terms of the task elements: prototype systems development, application analyses, and supporting technology. Prototype systems development provides for a major procurement to develop an industrial capability to take the current NASA Lewis technology and go on to the design, development, and commercialization of iron-chromium Redox storage systems. Application analyses provides for the definition of application concepts and technology requirements, specific definition studies, and the identification of market sectors and their penetration potential. Supporting technology includes both in house and contractual efforts that encompass implementation of technology improvements in membranes, electrodes, reactant processing, and system design. The status of all elements is discussed.
The NASA Redox Storage System Development project, 1980
NASA Astrophysics Data System (ADS)
1982-12-01
The technical accomplishments pertaining to the development of Redox systems and related technology are outlined in terms of the task elements: prototype systems development, application analyses, and supporting technology. Prototype systems development provides for a major procurement to develop an industrial capability to take the current NASA Lewis technology and go on to the design, development, and commercialization of iron-chromium Redox storage systems. Application analyses provides for the definition of application concepts and technology requirements, specific definition studies, and the identification of market sectors and their penetration potential. Supporting technology includes both in house and contractual efforts that encompass implementation of technology improvements in membranes, electrodes, reactant processing, and system design. The status of all elements is discussed.
Using IoT Device Technology in Spacecraft Checkout Systems
NASA Astrophysics Data System (ADS)
Plummer, Chris
2015-09-01
The Internet of Things (IoT) has become a common theme in both the technical and popular press in recent years because many of the enabling technologies that are required to make IoT a reality have now matured. Those technologies are revolutionising the way industrial systems and products are developed because they offer significant advantages over older technologies. This paper looks at how IoT device technology can be used in spacecraft checkout systems to achieve smaller, more capable, and more scalable solutions than are currently available. It covers the use of IoT device technology for classical spacecraft test systems as well as for hardware-in-the-loop simulation systems used to support spacecraft checkout.
Application of high speed machining technology in aviation
NASA Astrophysics Data System (ADS)
Bałon, Paweł; Szostak, Janusz; Kiełbasa, Bartłomiej; Rejman, Edward; Smusz, Robert
2018-05-01
Aircraft structures are exposed to many loads during their working lifespan. Every particular action made during a flight is composed of a series of air movements which generate various aircraft loads. The most rigorous requirement which modern aircraft structures must fulfill is to maintain their high durability and reliability. This requirement involves taking many restrictions into account during the aircraft design process. The most important factor is the structure's overall mass, which has a crucial impact on both utility properties and cost-effectiveness. This makes aircraft one of the most complex results of modern technology. Additionally, there is currently an increasing utilization of high strength aluminum alloys, which requires the implementation of new manufacturing processes. High Speed Machining technology (HSM) is currently one of the most important machining technologies used in the aviation industry, especially in the machining of aluminium alloys. The primary difference between HSM and other milling techniques is the ability to select cutting parameters - depth of the cut layer, feed rate, and cutting speed in order to simultaneously ensure high quality, precision of the machined surface, and high machining efficiency, all of which shorten the manufacturing process of the integral components. In this paper, the authors explain the implementation of the HSM method in integral aircraft constructions. It presents the method of the airframe manufacturing method, and the final results. The HSM method is compared to the previous method where all subcomponents were manufactured by bending and forming processes, and then, they were joined by riveting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, E.C.; Killough, S.M.; Rowe, J.C.
The purpose of the Smart Crane Ammunition Transfer System (SCATS) project is to demonstrate robotic/telerobotic controls technology for a mobile articulated crane for missile/ munitions handling, delivery, and reload. Missile resupply and reload have been manually intensive operations up to this time. Currently, reload missiles are delivered by truck to the site of the launcher. A crew of four to five personnel reloads the missiles from the truck to the launcher using a hydraulic-powered crane. The missiles are handled carefully for the safety of the missiles and personnel. Numerous steps are required in the reload process and the entire reloadmore » operation can take over 1 h for some missile systems. Recent U.S. Army directives require the entire operation to be accomplished in a fraction of that time. Current requirements for the development of SCATS are being based primarily on reloading Patriot missiles. The planned development approach will integrate robotic control and sensor technology with a commercially available hydraulic articulated crane. SCATS is being developed with commercially available hardware as much as possible. Development plans include adding a 3-D.F. end effector with a grapple to the articulating crane; closed-loop position control for the crane and end effector; digital microprocessor control of crane functions; simplified operator interface; and operating modes which include rectilinear movement, obstacle avoidance, and partial automated operation. The planned development will include progressive technology demonstrations. Ultimate plans are for this technology to be transferred and utilized in the military fielding process.« less
Government/industry response to questionnaire on space mechanisms/tribology technology needs
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
1991-01-01
President Bush has proposed that the U.S. undertake an ambitious mission of manned and robotic exploration of the solar system. This mission will require advanced mechanical moving components, such as bearings, gears, seals, lubricants, etc. There has been concern in the NASA community that the current technology level in these mechanical component/tribology areas may not be adequate to meet the goals of such a mission. To attempt to answer this, NASA-Lewis has sent out a questionnaire to government and industry workers (who have been involved in space mechanism research, design, and implementation) to ask their opinion if the current space mechanisms technology (mechanical components/tribology) is adequate to meet future NASA Missions needs and goals. If they deemed that the technology base inadequate, they were asked to specify the areas of greatest need. The unedited remarks of those who responded to the survey are presented.
Binary optics: Trends and limitations
NASA Technical Reports Server (NTRS)
Farn, Michael W.; Veldkamp, Wilfrid B.
1993-01-01
We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.
Sonochemical approaches to enhanced oil recovery.
Abramov, Vladimir O; Abramova, Anna V; Bayazitov, Vadim M; Altunina, Lyubov K; Gerasin, Artyom S; Pashin, Dmitriy M; Mason, Timothy J
2015-07-01
Oil production from wells reduces with time and the well becomes uneconomic unless enhanced oil recovery (EOR) methods are applied. There are a number of methods currently available and each has specific advantages and disadvantages depending on conditions. Currently there is a big demand for new or improved technologies in this field, the hope is that these might also be applicable to wells which have already been the subject of EOR. The sonochemical method of EOR is one of the most promising methods and is important in that it can also be applied for the treatment of horizontal wells. The present article reports the theoretical background of the developed sonochemical technology for EOR in horizontal wells; describes the requirements to the equipment needed to embody the technology. The results of the first field tests of the technology are reported. Copyright © 2014 Elsevier B.V. All rights reserved.
Technology Overview and Assessment for Small-Scale EDL Systems
NASA Technical Reports Server (NTRS)
Heidrich, Casey R.; Smith, Brandon P.; Braun, Robert D.
2016-01-01
Motivated by missions to land large rovers and humans at Mars and other bodies, high-mass EDL technologies are a prevalent trend in the research community. In contrast, EDL systems for low-mass payloads have attracted less attention. Significant potential in science and discovery exists in small-scale EDL systems. Payloads acting secondary to a flagship mission are a currently under-utilzed resource. Before taking advantage of these opportunities, further developed of scaled EDL technologies is required. The key limitations identified in this study are compact decelerators and deformable impact systems. Current technologies may enable rough landing of small payloads, with moderate restrictions in packaging volume. Utilization of passive descent and landing stages will greatly increase the applicability of small systems, allowing for vehicles robust to entry environment uncertainties. These architectures will provide an efficient means of achieving science and support objectives while reducing cost and risk margins of a parent mission.
NASA Technical Reports Server (NTRS)
Rasky, Daniel J.
2004-01-01
The need for robust and reliable access from space is clearly demonstrated by the recent loss of the Space Shuttle Columbia; as well as the NASA s goals to get the Shuttle re-flying and extend its life, build new vehicles for space access, produce successful robotic landers and s a q k retrr? llisrions, and maximize the science content of ambitious outer planets missions that contain nuclear reactors which must be safe for re-entry after possible launch aborts. The technology lynch pin of access from space is hypersonic entry systems such the thermal protection system, along with navigation, guidance and control (NG&C). But it also extends to descent and landing systems such as parachutes, airbags and their control systems. Current space access technology maturation programs such as NASA s Next Generation Launch Technology (NGLT) program or the In-Space Propulsion (ISP) program focus on maturing laboratory demonstrated technologies for potential adoption by specific mission applications. A key requirement for these programs success is a suitable queue of innovative technologies and advanced concepts to mature, including mission concepts enabled by innovative, cross cutting technology advancements. When considering space access, propulsion often dominates the capability requirements, as well as the attention and resources. From the perspective of access from space some new cross cutting technology drivers come into view, along with some new capability opportunities. These include new miniature vehicles (micro, nano, and picosats), advanced automated systems (providing autonomous on-orbit inspection or landing site selection), and transformable aeroshells (to maximize capabilities and minimize weight). This paper provides an assessment of the technology drivers needed to meet future access from space mission requirements, along with the mission capabilities that can be envisioned from innovative, cross cutting access from space technology developments.
NASA Technical Reports Server (NTRS)
1974-01-01
The impact of satisfying satellite quarantine constraints on current outer planet mission and spacecraft designs is considered. Tools required to perform trajectory and navigation analyses for determining satellite impact probabilities are developed.
78 FR 66076 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-04
... Dose History.'' 2. Current OMB approval number: 3150-0005. 3. How often the collection is required: On... or other forms of information technology? The public may examine and have copied for fee publicly...
Applying next-generation DNA sequencing technology to aquatic bioassessment
The growing challenges for environmental monitoring and assessment have pushed standard techniques to the limits of their application. Current biological monitoring programs often require considerable time and workload to provide environmental condition assessments. New molecular...
Potential civil mission applications for space nuclear power systems
NASA Technical Reports Server (NTRS)
Ambrus, J. H.; Beatty, R. G. G.
1985-01-01
It is pointed out that the energy needs of spacecraft over the last 25 years have been met by photovoltaic arrays with batteries, primary fuel cells, and radioisotope thermoelectric generators (RTG). However, it might be difficult to satisfy energy requirements for the next generation of space missions with the currently used energy sources. Applications studies have emphasized the need for a lighter, cheaper, and more compact high-energy source than the scaling up of current technologies would permit. These requirements could be satisfied by a nuclear reactor power system. The joint NASA/DOD/DOE SP-100 program is to explore and evaluate this option. Critical elements of the technology are also to be developed, taking into account space reactor systems of the 100 kW class. The present paper is concerned with some of the civil mission categories and concepts which are enabled or significantly enhanced by the performance characteristics of a nuclear reactor energy system.
Advanced Q-switched DPSS lasers for ID-card marking
NASA Astrophysics Data System (ADS)
Hertwig, Michael; Paster, Martin; Terbrueggen, Ralf
2008-02-01
Increased homeland security concerns across the world have generated a strong demand for forgery-proof ID documents. Manufacturers currently employ a variety of high technology techniques to produce documents that are difficult to copy. However, production costs and lead times are still a concern when considering any possible manufacturing technology. Laser marking has already emerged as an important tool in the manufacturer's arsenal, and is currently being utilized to produce a variety of documents, such as plastic ID cards, drivers' licenses, health insurance cards and passports. The marks utilized can range from simple barcodes and text to high resolution, true grayscale images. The technical challenges posed by these marking tasks include delivering adequate mark legibility, minimizing substrate burning or charring, accurately reproducing grayscale data, and supporting the required process throughput. This article covers the advantages and basic requirements on laser marking of cards and reviews how laser output parameters affect marking quality, speed and overall process economics.
Basic principles of coaxial launch technology
NASA Technical Reports Server (NTRS)
Kolm, H.; Mongeau, P.
1984-01-01
Already in the 1930s, a discrete-coil mechanically synchronized launcher was built. At the present time, research is almost entirely directed towards railguns. However, although coaxial accelerators are more complex than railguns, they have certain unique advantages. Some of these advantages are related to the absence of physical contact requirements with the projectile, the possibility of a scale-up to very large projectile size, and the availability of up to 100 times more thrust for a given current. The price of the advantages is the need for a drive current in the form of pulses synchronized precisely with transit of each projectile coil through each drive coil. At high velocities, high voltages are required, and high voltage switching represents the technology limit on launch velocity. Attention is given to inductance gradients, the double hump, methods of excitation, methods of synchronization, projectile configuration, energy supply, fundamental limits, trends, and research needs.
High Misalignment Carbon Seals for the Fan Drive Gear System Technologies
NASA Technical Reports Server (NTRS)
Shaughnessy, Dennis; Dobek, Lou
2006-01-01
Aircraft engines of the future will require capability bearing compartment seals than found in current engines. Geared systems driving the fan will be subjected to inertia and gyroscopic forces resulting in extremely high angular and radial misalignments. Because of the high misalignment levels, compartment seals capable of accommodating angularities and eccentricities are required. Pratt & Whitney and Stein Seal Company selected the segmented circumferential carbon seal as the best candidate to operate at highly misaligned conditions. Initial seal tests established the misalignment limits of the current technology circumferential seal. From these results a more compliant seal configuration was conceived, designed, fabricated, and tested. Further improvements to the design are underway and plans are to conduct a durability test of the next phase configuration. A technical approach is presented, including design modification to a "baseline"seal, carbon grade selection, test rig configuration, test plan and results of analysis of seal testing.
Recent flight-test results of optical airdata techniques
NASA Technical Reports Server (NTRS)
Bogue, Rodney K.
1993-01-01
Optical techniques for measuring airdata parameters were demonstrated with promising results on high performance fighter aircraft. These systems can measure the airspeed vector, and some are not as dependent on special in-flight calibration processes as current systems. Optical concepts for measuring freestream static temperature and density are feasible for in-flight applications. The best feature of these concepts is that the air data measurements are obtained nonintrusively, and for the most part well into the freestream region of the flow field about the aircraft. Current requirements for measuring air data at high angle of attack, and future need to measure the same information at hypersonic flight conditions place strains on existing techniques. Optical technology advances show outstanding potential for application in future programs and promise to make common use of optical concepts a reality. Results from several flight-test programs are summarized, and the technology advances required to make optical airdata techniques practical are identified.
Solving bezel reliability and CRT obsolescence
NASA Astrophysics Data System (ADS)
Schwartz, Richard J.; Bowen, Arlen R.; Knowles, Terry
2003-09-01
Scientific Research Corporation designed a Smart Multi-Function Color Display with Positive Pilot Feedback under the funding of an U. S. Navy Small Business Innovative Research program. The Smart Multi-Function Color Display can replace the obsolete monochrome Cathode Ray Tube display currently on the T-45C aircraft built by Boeing. The design utilizes a flat panel color Active Matrix Liquid Crystal Display and TexZec's patented Touch Thru Metal bezel technology providing both visual and biomechanical feedback to the pilot in a form, fit, and function replacement to the current T-45C display. Use of an existing color AMLCD, requires the least adaptation to fill the requirements of this application, thereby minimizing risk associated with developing a new display technology and maximizing the investment in improved user interface technology. The improved user interface uses TexZec's Touch Thru Metal technology to eliminate all of the moving parts that traditionally have limited Mean-Time-Between-Failure. The touch detection circuit consists of Commercial-Off-The-Shelf components, creating touch detection circuitry, which is simple and durable. This technology provides robust switch activation and a high level of environmental immunity, both mechanical and electrical. Replacement of all the T-45C multi-function displays with this design will improve the Mean-Time-Between-Failure and drastically reduce display life cycle costs. The design methodology described in this paper can be adapted to any new or replacement display.
Development of an automated ammunition processing system for battlefield use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speaks, D.M.; Chesser, J.B.; Lloyd, P.D.
1995-03-01
The Future Armored Resupply Vehicle (FARV) will be the companion ammunition resupply vehicle to the Advanced Field Artillery System (AFAS). These systems are currently being investigated by the US Army for future acquisition. The FARV will sustain the AFAS with ammunition and fuel and will significantly increase capabilities over current resupply vehicles. Currently ammunition is transferred to field artillery almost entirely by hand. The level of automation to be included into the FARV is still under consideration. At the request of the US Army`s Project Manager, AFAS/FARV, Oak Ridge National Laboratory (ORNL) identified and evaluated various concepts for the automatedmore » upload, processing, storage, and delivery equipment for the FARV. ORNL, working with the sponsor, established basic requirements and assumptions for concept development and the methodology for concept selection. A preliminary concept has been selected, and the associated critical technologies have been identified. ORNL has provided technology demonstrations of many of these critical technologies. A technology demonstrator which incorporates all individual components into a total process demonstration is planned for late FY 1995.« less
NASA Technical Reports Server (NTRS)
Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.
1981-01-01
An active controls technology (ACT) system architecture was selected based on current technology system elements and optimal control theory was evaluated for use in analyzing and synthesizing ACT multiple control laws. The system selected employs three redundant computers to implement all of the ACT functions, four redundant smaller computers to implement the crucial pitch-augmented stability function, and a separate maintenance and display computer. The reliability objective of probability of crucial function failure of less than 1 x 10 to the -9th power per flight of 1 hr can be met with current technology system components, if the software is assumed fault free and coverage approaching 1.0 can be provided. The optimal control theory approach to ACT control law synthesis yielded comparable control law performance much more systematically and directly than the classical s-domain approach. The ACT control law performance, although somewhat degraded by the inclusion of representative nonlinearities, remained quite effective. Certain high-frequency gust-load alleviation functions may require increased surface rate capability.
1992-02-01
purchased from: National Tecnical Information Service 5285 Port Royal Road Springfield VA 22161 Federal Governmet agencies and their contractors registered...Engineering Incpora:ted (IME) to organize and executi a tecnical approach to the QP= 14. SUIUECT TERMS Mission Area Requiremts, REST Escape SystM IS...the aerodynamic stabilization subsystems to become effective (drogue parachutes, or fins for the S4S), and the time required for the recovery parachute
Study of auxiliary propulsion requirements for large space systems, volume 2
NASA Technical Reports Server (NTRS)
Smith, W. W.; Machles, G. W.
1983-01-01
A range of single shuttle launched large space systems were identified and characterized including a NASTRAN and loading dynamics analysis. The disturbance environment, characterization of thrust level and APS mass requirements, and a study of APS/LSS interactions were analyzed. State-of-the-art capabilities for chemical and ion propulsion were compared with the generated propulsion requirements to assess the state-of-the-art limitations and benefits of enhancing current technology.
NASA Technical Reports Server (NTRS)
Kearney, Lara
2004-01-01
In January 2004, the President announced a new Vision for Space Exploration. NASA's Office of Exploration Systems has identified Extravehicular Activity (EVA) as a critical capability for supporting the Vision for Space Exploration. EVA is required for all phases of the Vision, both in-space and planetary. Supporting the human outside the protective environment of the vehicle or habitat and allow ing him/her to perform efficient and effective work requires an integrated EVA "System of systems." The EVA System includes EVA suits, airlocks, tools and mobility aids, and human rovers. At the core of the EVA System is the highly technical EVA suit, which is comprised mainly of a life support system and a pressure/environmental protection garment. The EVA suit, in essence, is a miniature spacecraft, which combines together many different sub-systems such as life support, power, communications, avionics, robotics, pressure systems and thermal systems, into a single autonomous unit. Development of a new EVA suit requires technology advancements similar to those required in the development of a new space vehicle. A majority of the technologies necessary to develop advanced EVA systems are currently at a low Technology Readiness Level of 1-3. This is particularly true for the long-pole technologies of the life support system.
Advanced Environmental Monitoring and Control Program: Technology Development Requirements
NASA Technical Reports Server (NTRS)
Jan, Darrell (Editor); Seshan, Panchalam (Editor); Ganapathi, Gani (Editor); Schmidt, Gregory (Editor); Doarn, Charles (Editor)
1996-01-01
Human missions in space, from the International Space Station on towards potential human exploration of the moon, Mars and beyond into the solar system, will require advanced systems to maintain an environment that supports human life. These systems will have to recycle air and water for many months or years at a time, and avoid harmful chemical or microbial contamination. NASA's Advanced Environmental Monitoring and Control program has the mission of providing future spacecraft with advanced, integrated networks of microminiaturized sensors to accurately determine and control the physical, chemical and biological environment of the crew living areas. This document sets out the current state of knowledge for requirements for monitoring the crew environment, based on (1) crew health, and (2) life support monitoring systems. Both areas are updated continuously through research and space mission experience. The technologies developed must meet the needs of future life support systems and of crew health monitoring. These technologies must be inexpensive and lightweight, and use few resources. Using these requirements to continue to push the state of the art in miniaturized sensor and control systems will produce revolutionary technologies to enable detailed knowledge of the crew environment.
Applying Formal Methods to NASA Projects: Transition from Research to Practice
NASA Technical Reports Server (NTRS)
Othon, Bill
2009-01-01
NASA project managers attempt to manage risk by relying on mature, well-understood process and technology when designing spacecraft. In the case of crewed systems, the margin for error is even tighter and leads to risk aversion. But as we look to future missions to the Moon and Mars, the complexity of the systems will increase as the spacecraft and crew work together with less reliance on Earth-based support. NASA will be forced to look for new ways to do business. Formal methods technologies can help NASA develop complex but cost effective spacecraft in many domains, including requirements and design, software development and inspection, and verification and validation of vehicle subsystems. To realize these gains, the technologies must be matured and field-tested so that they are proven when needed. During this discussion, current activities used to evaluate FM technologies for Orion spacecraft design will be reviewed. Also, suggestions will be made to demonstrate value to current designers, and mature the technology for eventual use in safety-critical NASA missions.
MEMS Deformable Mirror Technology Development for Space-Based Exoplanet Detection
NASA Astrophysics Data System (ADS)
Bierden, Paul; Cornelissen, S.; Ryan, P.
2014-01-01
In the search for earth-like extrasolar planets that has become an important objective for NASA, a critical technology development requirement is to advance deformable mirror (DM) technology. High-actuator-count DMs are critical components for nearly all proposed coronagraph instrument concepts. The science case for exoplanet imaging is strong, and rapid recent advances in test beds with DMs made using microelectromechanical system (MEMS) technology have motivated a number of compelling mission concepts that set technical specifications for their use as wavefront controllers. This research will advance the technology readiness of the MEMS DMs components that are currently at the forefront of the field, and the project will be led by the manufacturer of those components, Boston Micromachines Corporation (BMC). The project aims to demonstrate basic functionality and performance of this key component in critical test environments and in simulated operational environments, while establishing model-based predictions of its performance relative to launch and space environments. Presented will be the current status of the project with modeling and initial test results.
Cognitive fiber Bragg grating sensors system based on fiber Fabry-Perot tunable filter technology
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wang, Pengfei; Zou, Jilin; Xie, Jing; Cui, Hong-Liang
2011-05-01
The wavelength demodulation based on a Fiber Fabry-Pérot Tunable Filter (FFP-TF) is a common method for multiplexing Fiber Bragg Grating (FBG) sensors. But this method cannot be used to detect high frequency signals due to the limitation by the highest scanning rate that the FFP-TF can achieve. To overcome this disadvantage, in this paper we present a scheme of cognitive sensors network based on FFP-TF technology. By perceiving the sensing environment, system can automatically switch into monitoring signals in two modes to obtain better measurement results: multi measurement points, low frequency (<1 KHz) signal, and few measurement points but high frequency (~50 KHz) signals. This cognitive sensors network can be realized in current technology and satisfy current most industrial requirements.
The Second Joint NASA/FAA/DoD Conference on Aging Aircraft. Part 2
NASA Technical Reports Server (NTRS)
Harris, Charles E. (Editor)
1999-01-01
The purpose of the Conference was to bring together world leaders in aviation safety research, aircraft design and manufacturing, fleet operation and aviation maintenance to disseminate information on current practices and advanced technologies that will assure the continued airworthiness of the aging aircraft in the military and commercial fleets. The Conference included reviews of current industry practices, assessments of future technology requirements, and status of aviation safety research. The Conference provided an opportunity for interactions among the key personnel in the research and technology development community, the original equipment manufacturers, commercial airline operators, military fleet operators, aviation maintenance, and aircraft certification and regulatory authorities. Conference participation was unrestricted and open to the international aviation community. Appendix B contains the name and addresses of the 623 participants in the Conference.
Session on techniques and resources for storm-scale numerical weather prediction
NASA Technical Reports Server (NTRS)
Droegemeier, Kelvin
1993-01-01
The session on techniques and resources for storm-scale numerical weather prediction are reviewed. The recommendations of this group are broken down into three area: modeling and prediction, data requirements in support of modeling and prediction, and data management. The current status, modeling and technological recommendations, data requirements in support of modeling and prediction, and data management are addressed.
Architecture for distributed design and fabrication
NASA Astrophysics Data System (ADS)
McIlrath, Michael B.; Boning, Duane S.; Troxel, Donald E.
1997-01-01
We describe a flexible, distributed system architecture capable of supporting collaborative design and fabrication of semi-conductor devices and integrated circuits. Such capabilities are of particular importance in the development of new technologies, where both equipment and expertise are limited. Distributed fabrication enables direct, remote, physical experimentation in the development of leading edge technology, where the necessary manufacturing resources are new, expensive, and scarce. Computational resources, software, processing equipment, and people may all be widely distributed; their effective integration is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages current vendor and consortia developments to define software interfaces and infrastructure based on existing and merging networking, CIM, and CAD standards. Process engineers and product designers access processing and simulation results through a common interface and collaborate across the distributed manufacturing environment.
Investigation of a family of power conditioners integrated into a utility grid: Category 1
NASA Astrophysics Data System (ADS)
Wood, P.; Putkovich, R. P.
1981-07-01
Technical issues regarding ac and dc interface requirements were studied. A baseline design was selected to be a good example of existing technology which would not need significant development effort for its implementation in residential solar photovoltaic systems. Alternative technologies are evaluated to determine which meet the baseline specification, and their costs and losses are evaluated. Areas in which cost improvements can be obtained are studied, and the three best candidate technologies--the current sourced converter, the HF front end converter, and the programmed wave converter--are compared. It is concluded that the designs investigated will meet, or with slight improvement could meet, short term efficiency goals. Long term efficiency goals could be met if an isolation transformer were not required in the power conditioning equipment. None of the technologies studied can meet cost goals unless further improvements are possible.
Microtechnology management considering test and cost aspects for stacked 3D ICs with MEMS
NASA Astrophysics Data System (ADS)
Hahn, K.; Wahl, M.; Busch, R.; Grünewald, A.; Brück, R.
2018-01-01
Innovative automotive systems require complex semiconductor devices currently only available in consumer grade quality. The European project TRACE will develop and demonstrate methods, processes, and tools to facilitate usage of Consumer Electronics (CE) components to be deployable more rapidly in the life-critical automotive domain. Consumer electronics increasingly use heterogeneous system integration methods and "More than Moore" technologies, which are capable to combine different circuit domains (Analog, Digital, RF, MEMS) and which are integrated within SiP or 3D stacks. Making these technologies or at least some of the process steps available under automotive electronics requirements is an important goal to keep pace with the growing demand for information processing within cars. The approach presented in this paper aims at a technology management and recommendation system that covers technology data, functional and non-functional constraints, and application scenarios, and that will comprehend test planning and cost consideration capabilities.
Large, horizontal-axis wind turbines
NASA Technical Reports Server (NTRS)
Linscott, B. S.; Perkins, P.; Dennett, J. T.
1984-01-01
Development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generating systems are presented. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. There are several ongoing large wind system development projects and applied research efforts directed toward meeting the technology requirements for utility applications. Detailed information on these projects is provided. The Mod-O research facility and current applied research effort in aerodynamics, structural dynamics and aeroelasticity, composite and hybrid composite materials, and multiple system interaction are described. A chronology of component research and technology development for large, horizontal axis wind turbines is presented. Wind characteristics, wind turbine economics, and the impact of wind turbines on the environment are reported. The need for continued wind turbine research and technology development is explored. Over 40 references are sited and a bibliography is included.
2015 Science Mission Directorate Technology Highlights
NASA Technical Reports Server (NTRS)
Seablom, Michael S.
2016-01-01
The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation, e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.
Next Generation Multimedia Distributed Data Base Systems
NASA Technical Reports Server (NTRS)
Pendleton, Stuart E.
1997-01-01
The paradigm of client/server computing is changing. The model of a server running a monolithic application and supporting clients at the desktop is giving way to a different model that blurs the line between client and server. We are on the verge of plunging into the next generation of computing technology--distributed object-oriented computing. This is not only a change in requirements but a change in opportunities, and requires a new way of thinking for Information System (IS) developers. The information system demands caused by global competition are requiring even more access to decision making tools. Simply, object-oriented technology has been developed to supersede the current design process of information systems which is not capable of handling next generation multimedia.
The Exploration Water Recovery System
NASA Technical Reports Server (NTRS)
ORourke, Mary Jane E.; Carter, Layne; Holder, Donald W.; Tomes, Kristin M.
2006-01-01
The Exploration Water Recovery System is designed towards fulfillment of NASA s Vision for Space Exploration, which will require elevation of existing technologies to higher levels of optimization. This new system, designed for application to the Exploration infrastructure, presents a novel combination of proven air and water purification technologies. The integration of unit operations is modified from that of the current state-of-the-art water recovery system so as to optimize treatment of the various waste water streams, contaminant loads, and flow rates. Optimization is achieved primarily through the removal of volatile organic contaminants from the vapor phase prior to their absorption into the liquid phase. In the current state-of-the-art system, the water vapor in the cabin atmosphere is condensed, and the volatile organic contaminants present in that atmosphere are absorbed into the aqueous phase. Removal of contaminants the5 occurs via catalytic oxidation in the liquid phase. Oxidation kinetics, however, dictate that removal of volatile organic contaminants from the vapor phase can inherently be more efficient than their removal from the aqueous phase. Taking advantage of this efficiency reduces the complexity of the water recovery system. This reduction in system complexity is accompanied by reductions in the weight, volume, power, and resupply requirements of the system. Vapor compression distillation technology is used to treat the urine, condensate, and hygiene waste streams. This contributes to the reduction in resupply, as incorporation of vapor compression distillation technology at this point in the process reduces reliance on the expendable ion exchange and adsorption media used in the current state-of-the-art water recovery system. Other proven technologies that are incorporated into the Exploration Water Recovery System include the Trace Contaminant Control System and the Volatile Removal Assembly.
Artificial cognitive memory—changing from density driven to functionality driven
NASA Astrophysics Data System (ADS)
Shi, L. P.; Yi, K. J.; Ramanathan, K.; Zhao, R.; Ning, N.; Ding, D.; Chong, T. C.
2011-03-01
Increasing density based on bit size reduction is currently a main driving force for the development of data storage technologies. However, it is expected that all of the current available storage technologies might approach their physical limits in around 15 to 20 years due to miniaturization. To further advance the storage technologies, it is required to explore a new development trend that is different from density driven. One possible direction is to derive insights from biological counterparts. Unlike physical memories that have a single function of data storage, human memory is versatile. It contributes to functions of data storage, information processing, and most importantly, cognitive functions such as adaptation, learning, perception, knowledge generation, etc. In this paper, a brief review of current data storage technologies are presented, followed by discussions of future storage technology development trend. We expect that the driving force will evolve from density to functionality, and new memory modules associated with additional functions other than only data storage will appear. As an initial step toward building a future generation memory technology, we propose Artificial Cognitive Memory (ACM), a memory based intelligent system. We also present the characteristics of ACM, new technologies that can be used to develop ACM components such as bioinspired element cells (silicon, memristor, phase change, etc.), and possible methodologies to construct a biologically inspired hierarchical system.
NASA Technical Reports Server (NTRS)
Brown, Thomas; Klem, Mark; McRight, Patrick
2016-01-01
Current interest in human exploration beyond earth orbit is driving requirements for high performance, long duration space transportation capabilities. Continued advancement in photovoltaic power systems and investments in high performance electric propulsion promise to enable solar electric options for cargo delivery and pre-deployment of operational architecture elements. However, higher thrust options are required for human in-space transportation as well as planetary descent and ascent functions. While high thrust requirements for interplanetary transportation may be provided by chemical or nuclear thermal propulsion systems, planetary descent and ascent systems are limited to chemical solutions due to their higher thrust to weight and potential planetary protection concerns. Liquid hydrogen fueled systems provide high specific impulse, but pose challenges due to low propellant density and the thermal issues of long term propellant storage. Liquid methane fueled propulsion is a promising compromise with lower specific impulse, higher bulk propellant density and compatibility with proposed in-situ propellant production concepts. Additionally, some architecture studies have identified the potential for commonality between interplanetary and descent/ascent propulsion solutions using liquid methane (LCH4) and liquid oxygen (LOX) propellants. These commonalities may lead to reduced overall development costs and more affordable exploration architectures. With this increased interest, it is critical to understand the current state of LOX/LCH4 propulsion technology and the remaining challenges to its application to beyond earth orbit human exploration. This paper provides a survey of NASA's past and current methane propulsion related technology efforts, assesses the accomplishments to date, and examines the remaining risks associated with full scale development.
Progress of MCT Detector Technology at AIM Towards Smaller Pitch and Lower Dark Current
NASA Astrophysics Data System (ADS)
Eich, D.; Schirmacher, W.; Hanna, S.; Mahlein, K. M.; Fries, P.; Figgemeier, H.
2017-09-01
We present our latest results on cooled p-on- n planar mercury cadmium telluride (MCT) photodiode technology. Along with a reduction in dark current for raising the operating temperature ( T op), AIM INFRAROT-MODULE GmbH (AIM) has devoted its development efforts to shrinking the pixel size. Both are essential requirements to meet the market demands for reduced size, weight and power and high-operating temperature applications. Detectors based on the p-on- n technology developed at AIM now span the spectrum from the mid-wavelength infrared (MWIR) to the very long wavelength infrared (VLWIR) with cut-off wavelengths from 5 μm to about 13.5 μm at 80 K. The development of the p-on- n technology for VLWIR as well as for MWIR is mainly implemented in a planar photodetector design with a 20- μm pixel pitch. For the VLWIR, dark currents significantly reduced as compared to `Tennant's Rule 07' are demonstrated for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at a 20 K higher operating temperature than with previous AIM technology. For MWIR detectors with a 20- μm pitch, noise equivalent temperature differences of less than 30 mK are obtained up to 170 K. This technology has been transferred to our small pixel pitch high resolution (XGA) MWIR detector with 1024 × 768 pixels at a 10- μm pitch. Excellent performance at an operating temperature of 160 K is demonstrated.
NASA's future space power needs and requirements
NASA Technical Reports Server (NTRS)
Schnyer, A. D.; Sovie, Ronald J.
1990-01-01
The National Space Policy of 1988 established the U.S.'s long-range civil space goals, and has served to guide NASA's recent planning for future space mission operations. One of the major goals was to extend the human presence beyond earth's boundaries and to advance the scientific knowledge of the solar system. A broad spectrum of potential civil space mission opportunities and interests are currently being investigated by NASA to meet the espoused goals. Participation in many of these missions requires power systems with capabilities far beyond what exists today. In other mission examples, advanced power systems technology could enhance mission performance significantly. Power system requirements and issues that need resolution to ensure eventual mission accomplishment are addressed, in conjunction with the ongoing NASA technology development efforts and the need for even greater innovative efforts to match the ambitious solar exploration mission goals. Particular attention is given to potential lunar surface operations and technology goals, based on investigations to date. It is suggested that the nuclear reactor power systems can best meet long-life requirements as well as dramatically reduce the earth-surface-to-lunar-surface transportation costs due to the lunar day/night cycle impact on the solar system's energy storage mass requirements. The state of the art of candidate power systems and elements for the lunar application and the respective exploration technology goals for mission life requirements from 10 to 25 years are examined.
BTDI detector technology for reconnaissance application
NASA Astrophysics Data System (ADS)
Hilbert, Stefan; Eckardt, Andreas; Krutz, David
2017-11-01
The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design in a BTDI (Bidirectional Time Delay and Integration) architecture. This project demonstrates an approved technological design for high or multi-spectral resolution spaceborne instruments. DLR OS and BAE Systems were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy in order to keep pace with ambitious scientific and user requirements. Resulting from customer requirements and available technologies the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high-spectral resolution with intelligent control applications and new focal plane concepts opens the door to new remote sensing and smart deep space instruments. The paper gives an overview of the detector development and verification program at DLR on detector module level and key parameters like SNR, linearity, spectral response, quantum efficiency, PRNU, DSNU and MTF.
NASA Technical Reports Server (NTRS)
Alvarado, U. R. (Editor)
1980-01-01
The adequacy of current technology in terms of stage of maturity, of sensing, support systems, and information extraction was assessed relative to oil spills, waste pollution, and inputs to pollution trajectory models. Needs for advanced techniques are defined and the characteristics of a future satellite system are determined based on the requirements of U.S. agencies involved in pollution monitoring.
NASA Astrophysics Data System (ADS)
Heinemann, S.; McDougall, S. D.; Ryu, G.; Zhao, L.; Liu, X.; Holy, C.; Jiang, C.-L.; Modak, P.; Xiong, Y.; Vethake, T.; Strohmaier, S. G.; Schmidt, B.; Zimer, H.
2018-02-01
The advance of high power semiconductor diode laser technology is driven by the rapidly growing industrial laser market, with such high power solid state laser systems requiring ever more reliable diode sources with higher brightness and efficiency at lower cost. In this paper we report simulation and experimental data demonstrating most recent progress in high brightness semiconductor laser bars for industrial applications. The advancements are in three principle areas: vertical laser chip epitaxy design, lateral laser chip current injection control, and chip cooling technology. With such improvements, we demonstrate disk laser pump laser bars with output power over 250W with 60% efficiency at the operating current. Ion implantation was investigated for improved current confinement. Initial lifetime tests show excellent reliability. For direct diode applications <1 um smile and >96% polarization are additional requirements. Double sided cooling deploying hard solder and optimized laser design enable single emitter performance also for high fill factor bars and allow further power scaling to more than 350W with 65% peak efficiency with less than 8 degrees slow axis divergence and high polarization.
Technology for the Future: In-Space Technology Experiments Program, part 2
NASA Technical Reports Server (NTRS)
Breckenridge, Roger A. (Compiler); Clark, Lenwood G. (Compiler); Willshire, Kelli F. (Compiler); Beck, Sherwin M. (Compiler); Collier, Lisa D. (Compiler)
1991-01-01
The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme.
12 CFR 217.122 - Qualification requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... related processes; (ii) Have and document a process (which must capture business environment and internal... current business activities, risk profile, technological processes, and risk management processes; and (ii... assessment systems. (D) Business environment and internal control factors. The Board-regulated institution...
12 CFR 3.122 - Qualification requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... related processes; (ii) Have and document a process (which must capture business environment and internal... association's current business activities, risk profile, technological processes, and risk management...) Business environment and internal control factors. The national bank or Federal savings association must...
12 CFR 324.122 - Qualification requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... related processes; (ii) Have and document a process (which must capture business environment and internal... current business activities, risk profile, technological processes, and risk management processes; and (ii... assessment systems. (D) Business environment and internal control factors. The FDIC-supervised institution...
Cryogenics and the Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Salerno, Louis J.; Kittel, Peter; Rasky, Daniel J. (Technical Monitor)
1997-01-01
Current plans within NASA involve extending the human exploration of space from low earth orbit into the solar system, with the first human exploration of Mars presently planned in 2011. Integral to all hum Mars mission phases is cryogenic fluid management. Cryogenic fluids will be required both as propellant and for In-Situ Resource Utilization (ISRU). Without safe and efficient cryogen storage human Mars missions will not be possible. Effective control and handling of cryogenic fluids is the key to affordable Mars missions, and advancing active thermal control technology is synergistic with all of NASA's exploration initiatives and with existing and future instrument cooling programs, including MTPE and Origins. Present mission scenarios for human exploration require cryogenic propellant storage for up to 1700 days and for up to 60 metric tons. These requirements represent increases of an order of magnitude over previous storage masses and lifetimes. The key cryogenic terminology areas to be addressed in human Mars missions are long-term propellant storage, cryogenic refrigeration, cryogenic liquefaction, and zero gravity fluid management. Long-term storage for the thermal control of cryogenic propellants is best accomplished with a mix of passive and active technologies. Passive technologies such as advanced multilayer insulation (MLI) concepts will be combined with the development of active coolers (cryogenic refrigerators). Candidates for long-life active cooling applications include Reverse Turbo-Brayton, Stirling, and Pulse-Tube coolers. The integration of passive and active technologies will form a hybrid system optimized to minimize the launch mass while preserving the cryogenic propellants. Since cryogenic propellants are the largest mass that Mars missions must launch from earth, even a modest reduction in the percentage of propellant carried results in a significant weight saving. This paper will present a brief overview of cryogenic fluid management technology as it applies to the current human Mars mission scenarios.
LVFS: A Big Data File Storage Bridge for the HPC Community
NASA Astrophysics Data System (ADS)
Golpayegani, N.; Halem, M.; Mauoka, E.; Fonseca, L. F.
2015-12-01
Merging Big Data capabilities into High Performance Computing architecture starts at the file storage level. Heterogeneous storage systems are emerging which offer enhanced features for dealing with Big Data such as the IBM GPFS storage system's integration into Hadoop Map-Reduce. Taking advantage of these capabilities requires file storage systems to be adaptive and accommodate these new storage technologies. We present the extension of the Lightweight Virtual File System (LVFS) currently running as the production system for the MODIS Level 1 and Atmosphere Archive and Distribution System (LAADS) to incorporate a flexible plugin architecture which allows easy integration of new HPC hardware and/or software storage technologies without disrupting workflows, system architectures and only minimal impact on existing tools. We consider two essential aspects provided by the LVFS plugin architecture needed for the future HPC community. First, it allows for the seamless integration of new and emerging hardware technologies which are significantly different than existing technologies such as Segate's Kinetic disks and Intel's 3DXPoint non-volatile storage. Second is the transparent and instantaneous conversion between new software technologies and various file formats. With most current storage system a switch in file format would require costly reprocessing and nearly doubling of storage requirements. We will install LVFS on UMBC's IBM iDataPlex cluster with a heterogeneous storage architecture utilizing local, remote, and Seagate Kinetic storage as a case study. LVFS merges different kinds of storage architectures to show users a uniform layout and, therefore, prevent any disruption in workflows, architecture design, or tool usage. We will show how LVFS will convert HDF data produced by applying machine learning algorithms to Xco2 Level 2 data from the OCO-2 satellite to produce CO2 surface fluxes into GeoTIFF for visualization.
Solar Power Satellite Development: Advances in Modularity and Mechanical Systems
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.
2010-01-01
Space solar power satellites require innovative concepts in order to achieve economically and technically feasible designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment will be enabling design attributes. This paper reviews the current challenges of launching and building very large space systems. A building block approach is proposed in order to achieve near-term solar power satellite risk reduction while promoting the necessary long-term technology advances. Promising mechanical systems technologies anticipated in the coming decades including modularity, material systems, structural concepts, and in-space operations are described
Space Exploration Technologies Developed through Existing and New Research Partnerships Initiatives
NASA Technical Reports Server (NTRS)
Nall, Mark; Casas, Joseph
2004-01-01
The Space Partnership Development Program of NASA has been highly successful in leveraging commercial research investments to the strategic mission and applied research goals of the Agency through industry academic partnerships. This program is currently undergoing an outward-looking transformation towards Agency wide research and discovery goals that leverage partnership contributions to the strategic research needed to demonstrate enabling space exploration technologies encompassing both robotic spacecraft missions and human space flight. New Space Partnership Initiatives with incremental goals and milestones will allow a continuing series of accomplishments to be achieved throughout the duration of each initiative, permit the "lessons learned" and capabilities acquired from previous implementation steps to be incorporated into subsequent phases of the initiatives, and allow adjustments to be made to the implementation of the initiatives as new opportunities or challenges arise. An Agency technological risk reduction roadmap for any required technologies not currently available will identify the initiative focus areas for the development, demonstration and utilization of space resources supporting the production of power, air, and water, structures and shielding materials. This paper examines the successes to date, lessons learned, and programmatic outlook of enabling sustainable exploration and discovery through governmental, industrial, academic, and international partnerships. Previous government and industry technology development programs have demonstrated that a focused research program that appropriately shares the developmental risk can rapidly mature low Technology Readiness Level (TRL) technologies to the demonstration level. This cost effective and timely, reduced time to discovery, partnership approach to the development of needed technological capabilities addresses the dual use requirements by the investing partners. In addition, these partnerships help to ensure the attainment of complimenting human and robotic exploration goals for NASA while providing additional capabilities for sustainable scientific research benefiting life and security on Earth.
High-Capacity Communications from Martian Distances
NASA Technical Reports Server (NTRS)
Williams, W. Dan; Collins, Michael; Hodges, Richard; Orr, Richard S.; Sands, O. Scott; Schuchman, Leonard; Vyas, Hemali
2007-01-01
High capacity communications from Martian distances, required for the envisioned human exploration and desirable for data-intensive science missions, is challenging. NASA s Deep Space Network currently requires large antennas to close RF telemetry links operating at kilobit-per-second data rates. To accommodate higher rate communications, NASA is considering means to achieve greater effective aperture at its ground stations. This report, focusing on the return link from Mars to Earth, demonstrates that without excessive research and development expenditure, operational Mars-to-Earth RF communications systems can achieve data rates up to 1 Gbps by 2020 using technology that today is at technology readiness level (TRL) 4-5. Advanced technology to achieve the needed increase in spacecraft power and transmit aperture is feasible at an only moderate increase in spacecraft mass and technology risk. In addition, both power-efficient, near-capacity coding and modulation and greater aperture from the DSN array will be required. In accord with these results and conclusions, investment in the following technologies is recommended:(1) lightweight (1 kg/sq m density) spacecraft antenna systems; (2) a Ka-band receive ground array consisting of relatively small (10-15 m) antennas; (3) coding and modulation technology that reduces spacecraft power by at least 3 dB; and (4) efficient generation of kilowatt-level spacecraft RF power.
Sampayan, Stephen E.
1998-01-01
A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.
Sampayan, S.E.
1998-03-03
A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.
Future Space Transportation Technology: Prospects and Priorities
NASA Technical Reports Server (NTRS)
Billie, Matt; Reed, Lisa; Harris, David
2003-01-01
The Transportation Working Group (TWG) was chartered by the NASA Exploration Team (NEXT) to conceptualize, define, and advocate within NASA the space transportation architectures and technologies required to enable the human and robotic exploration and development of space envisioned by the NEXT. In 2002, the NEXT tasked the TWG to assess exploration space transportation requirements versus current and prospective Earth-to-Orbit (ETO) and in-space transportation systems, technologies, and research, in order to identify investment gaps and recommend priorities. The result was a study now being incorporated into future planning by the NASA Space Architect and supporting organizations. This paper documents the process used to identify exploration space transportation investment gaps, as well as the group's recommendations for closing these gaps and prioritizing areas of future investment for NASA work on advanced propulsion systems.
Positioning navigation and timing service applications in cyber physical systems
NASA Astrophysics Data System (ADS)
Qu, Yi; Wu, Xiaojing; Zeng, Lingchuan
2017-10-01
The positioning navigation and timing (PNT) architecture was discussed in detail, whose history, evolvement, current status and future plan were presented, main technologies were listed, advantages and limitations of most technologies were compared, novel approaches were introduced, and future capacities were sketched. The concept of cyber-physical system (CPS) was described and their primary features were interpreted. Then the three-layer architecture of CPS was illustrated. Next CPS requirements on PNT services were analyzed, including requirements on position reference and time reference, requirements on temporal-spatial error monitor, requirements on dynamic services, real-time services, autonomous services, security services and standard services. Finally challenges faced by PNT applications in CPS were concluded. The conclusion was expected to facilitate PNT applications in CPS, and furthermore to provide references to the design and implementation of both architectures.
NASA Technical Reports Server (NTRS)
Keys, Andrew S.
2006-01-01
Aeroassist technology development is a vital part of the NASA In-Space Propulsion Technology (ISPT) Program. One of the main focus areas of ISPT is aeroassist technologies through the Aerocapture Technology (AT) Activity. Within the ISPT, the current aeroassist technology development focus is aerocapture. Aerocapture relies on the exchange of momentum with an atmosphere to achieve thrust, in this case a decelerating thrust leading to orbit capture. Without aerocapture, a substantial propulsion system would be needed on the spacecraft to perform the same reduction of velocity. This could cause reductions in the science payload delivered to the destination, increases in the size of the launch vehicle (to carry the additional fuel required for planetary capture) or could simply make the mission impossible due to additional propulsion requirements. The AT is advancing each technology needed for the successful implementation of aerocapture in future missions. The technology development focuses on both rigid aeroshell systems as well as the development of inflatable aerocapture systems, advanced aeroshell performance sensors, lightweight structure and higher temperature adhesives. Inflatable systems such as tethered trailing ballutes ('balloon parachutes'), clamped ballutes, and inflatable aeroshells are also under development. Aerocapture-specific computational tools required to support future aerocapture missions are also an integral part of the ATP. Tools include: engineering reference atmosphere models, guidance and navigation, aerothermodynamic modeling, radiation modeling and flight simulation. Systems analysis plays a key role in the AT development process. The NASA in-house aerocapture systems analysis team has been taken with multiple systems definition and concept studies to complement the technology development tasks. The team derives science requirements, develops guidance and navigation algorithms, as well as engineering reference atmosphere models and aeroheating specifications. The study team also creates designs for the overall mission spacecraft. Presentation slides are provided to further describe the aerocapture project.
High-speed civil transport study
NASA Technical Reports Server (NTRS)
1989-01-01
A system study of the potential for a high-speed commercial transport has addressed technological, economic, and environmental constraints. Market projections indicate a need for fleets of transports with supersonic or greater cruise speeds by the year 2000 to 2005. The associated design requirements called for a vehicle to carry 250 to 300 passengers over a range of 5,000 to 6,000 nautical miles. The study was initially unconstrained in terms of vehicle characteristic, such as cruise speed, propulsion systems, fuels, or structural materials. Analyses led to a focus on the most promising vehicle concepts. These were concepts that used a kerosene-type fuel and cruised at Mach numbers between 2.0 to 3.2. Further systems study identified the impact of environmental constraints (for community noise, sonic boom, and engine emissions) on economic attractiveness and technological needs. Results showed that current technology cannot produce a viable high-speed civil transport; significant advances are required to reduce takeoff gross weight and allow for both economic attractiveness and environmental accepatability. Specific technological requirements were identified to meet these needs.
Ramsey, Alex
2015-01-01
The past decade has witnessed revolutionary changes to the delivery of health services, ushered in to a great extent by the introduction of electronic health record systems. More recently, a new class of technological advancements—technology-based behavioral health interventions, which involve the delivery of evidence-informed practices via computers, web-based applications, mobile phones, wearable sensors, or other technological platforms—has emerged and is primed to once again radically shift current models for behavioral healthcare. Despite the promise and potential of these new therapeutic approaches, a greater understanding of the impact of technology-based interventions on cornerstone issues of mental health and addiction services—namely access, quality, and cost—is needed. The current review highlights 1) relevant conceptual frameworks that guide this area of research, 2) key studies that inform the relevance of technology-based interventions for behavioral healthcare access, quality, and cost, 3) pressing methodological issues that require attention, 4) unresolved questions that warrant further investigation, and 5) practical implications that underscore important new directions for this emerging area of research. PMID:26161047
Ramsey, Alex
2015-08-01
The past decade has witnessed revolutionary changes to the delivery of health services, ushered in to a great extent by the introduction of electronic health record systems. More recently, a new class of technological advancements-technology-based behavioral health interventions, which involve the delivery of evidence-informed practices via computers, web-based applications, mobile phones, wearable sensors, or other technological platforms-has emerged and is primed to once again radically shift current models for behavioral healthcare. Despite the promise and potential of these new therapeutic approaches, a greater understanding of the impact of technology-based interventions on cornerstone issues of mental health and addiction services-namely access, quality, and cost -is needed. The current review highlights 1) relevant conceptual frameworks that guide this area of research, 2) key studies that inform the relevance of technology-based interventions for behavioral healthcare access, quality, and cost, 3) pressing methodological issues that require attention, 4) unresolved questions that warrant further investigation, and 5) practical implications that underscore important new directions for this emerging area of research.
Alternative oxidation technologies for organic mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borduin, L.C.; Fewell, T.
1998-07-01
The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site (SRS), and direct chemical oxidation at Lawrence Livermore National Laboratory (LLNL). All three technologies are at advanced stages of development ormore » are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory (LBNL), and steam reforming, a commercial process being supported by the Department of Energy (DOE). Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented.« less
Combustion Sensors: Gas Turbine Applications
NASA Technical Reports Server (NTRS)
Human, Mel
2002-01-01
This report documents efforts to survey the current research directions in sensor technology for gas turbine systems. The work is driven by the current and future requirements on system performance and optimization. Accurate real time measurements of velocities, pressure, temperatures, and species concentrations will be required for objectives such as combustion instability attenuation, pollutant reduction, engine health management, exhaust profile control via active control, etc. Changing combustor conditions - engine aging, flow path slagging, or rapid maneuvering - will require adaptive responses; the effectiveness of such will be only as good as the dynamic information available for processing. All of these issues point toward the importance of continued sensor development. For adequate control of the combustion process, sensor data must include information about the above mentioned quantities along with equivalence ratios and radical concentrations, and also include both temporal and spatial velocity resolution. Ultimately these devices must transfer from the laboratory to field installations, and thus must become low weight and cost, reliable and maintainable. A primary conclusion from this study is that the optics-based sensor science will be the primary diagnostic in future gas turbine technologies.
Lesselroth, Blake J; Adams, Kathleen; Tallett, Stephanie; Wood, Scott D; Keeling, Amy; Cheng, Karen; Church, Victoria L; Felder, Robert; Tran, Hanna
2013-01-01
Our objectives were to (1) develop an in-depth understanding of the workflow and information flow in medication reconciliation, and (2) design medication reconciliation support technology using a combination of rapid-cycle prototyping and human-centered design. Although medication reconciliation is a national patient safety goal, limitations both of physical environment and in workflow can make it challenging to implement durable systems. We used several human factors techniques to gather requirements and develop a new process to collect a medication history at hospital admission. We completed an ethnography and time and motion analysis of pharmacists in order to illustrate the processes used to reconcile medications. We then used the requirements to design prototype multimedia software for collecting a bedside medication history. We observed how pharmacists incorporated the technology into their physical environment and documented usability issues. Admissions occurred in three phases: (1) list compilation, (2) order processing, and (3) team coordination. Current medication reconciliation processes at the hospital average 19 minutes to complete and do not include a bedside interview. Use of our technology during a bedside interview required an average of 29 minutes. The software represents a viable proof-of-concept to automate parts of history collection and enhance patient communication. However, we discovered several usability issues that require attention. We designed a patient-centered technology to enhance how clinicians collect a patient's medication history. By using multiple human factors methods, our research team identified system themes and design constraints that influence the quality of the medication reconciliation process and implementation effectiveness of new technology. Evidence-based design, human factors, patient-centered care, safety, technology.
Research requirements to reduce civil helicopter life cycle cost
NASA Technical Reports Server (NTRS)
Blewitt, S. J.
1978-01-01
The problem of the high cost of helicopter development, production, operation, and maintenance is defined and the cost drivers are identified. Helicopter life cycle costs would decrease by about 17 percent if currently available technology were applied. With advanced technology, a reduction of about 30 percent in helicopter life cycle costs is projected. Technological and managerial deficiencies which contribute to high costs are examined, basic research and development projects which can reduce costs include methods for reduced fuel consumption; improved turbine engines; airframe and engine production methods; safety; rotor systems; and advanced transmission systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raridon, M.H.; Hicks, S.C.
1991-01-01
Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.
Multidisciplinary propulsion simulation using NPSS
NASA Technical Reports Server (NTRS)
Claus, Russell W.; Evans, Austin L.; Follen, Gregory J.
1992-01-01
The current status of the Numerical Propulsion System Simulation (NPSS) program, a cooperative effort of NASA, industry, and universities to reduce the cost and time of advanced technology propulsion system development, is reviewed. The technologies required for this program include (1) interdisciplinary analysis to couple the relevant disciplines, such as aerodynamics, structures, heat transfer, combustion, acoustics, controls, and materials; (2) integrated systems analysis; (3) a high-performance computing platform, including massively parallel processing; and (4) a simulation environment providing a user-friendly interface. Several research efforts to develop these technologies are discussed.
Godin, Jessica; Chen, Chun-Hao; Cho, Sung Hwan; Qiao, Wen; Tsai, Frank; Lo, Yu-Hwa
2008-10-01
Microfluidics and photonics come together to form a field commonly referred to as 'optofluidics'. Flow cytometry provides the field with a technology base from which both microfluidic and photonic components be developed and integrated into a useful device. This article reviews some of the more recent developments to familiarize a reader with the current state of the technologies and also highlights the requirements of the device and how researchers are working to meet these needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robin Stewart
The DOE's National Energy Technology Laboratory (NETL) currently manages the largest research program in the country for controlling coal-based mercury emissions. NETL has shown through various field test programs that the determination of cost-effective mercury control strategies is complex and highly coal- and plant-specific. However, one particular technology has the potential for widespread application: the injection of activated carbon upstream of either an electrostatic precipitator (ESP) or a fabric filter baghouse. This technology has potential application to the control of mercury emissions on all coal-fired power plants, even those with wet and dry scrubbers. This is a low capital costmore » technology in which the largest cost element is the cost of sorbents. Therefore, the obvious solutions for reducing the costs of mercury control must focus on either reducing the amount of sorbent needed or decreasing the cost of sorbent production. NETL has researched the economics and performance of novel sorbents and determined that there are alternatives to the commercial standard (NORIT DARCO{reg_sign} Hg) and that this is an area where significant technical improvements can still be made. In addition, a key barrier to the application of sorbent injection technology to the power industry is the availability of activated carbon production. Currently, about 450 million pounds ($250 million per year) of activated carbon is produced and used in the U.S. each year - primarily for purification of drinking water, food, and beverages. If activated carbon technology were to be applied to all 1,100 power plants, EPA and DOE estimate that it would require an additional $1-$2 billion per year, which would require increasing current capacity by a factor of two to eight. A new facility to produce activated carbon would cost approximately $250 million, would increase current U.S. production by nearly 25%, and could take four to five years to build. This means that there could be significant shortages in supply if response to new demand is not well-timed.« less
Cryogenic Fluid Transfer for Exploration
NASA Technical Reports Server (NTRS)
Chato, David J.
2007-01-01
This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost effective approaches to the required on-orbit demonstration are suggested.
Cryogenic Fluid Transfer for Exploration
NASA Technical Reports Server (NTRS)
Chato, David J.
2008-01-01
This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost-effective approaches to the required on-orbit demonstration are suggested.
Mahoney, Christopher M; Imbarlina, Cayla; Yates, Cecelia C; Marra, Kacey G
2018-01-01
Tissue engineered scaffolds for adipose restoration/repair has significantly evolved in recent years. Patients requiring soft tissue reconstruction, caused by defects or pathology, require biomaterials that will restore void volume with new functional tissue. The gold standard of autologous fat grafting (AFG) is not a reliable option. This review focuses on the latest therapeutic strategies for the treatment of adipose tissue defects using biomolecule formulations and delivery, and specifically engineered biomaterials. Additionally, the clinical need for reliable off-the-shelf therapies, animal models, and challenges facing current technologies are discussed.
NASA Technical Reports Server (NTRS)
Chie, C. M.; White, M. A.; Lindsey, W. C.; Davarian, F.; Dixon, R. C.
1984-01-01
Functional requirements and specifications are defined for an autonomous integrated receive system (AIRS) to be used as an improvement in the current tracking and data relay satellite system (TDRSS), and as a receiving system in the future tracking and data acquisition system (TDAS). The AIRS provides improved acquisition, tracking, bit error rate (BER), RFI mitigation techniques, and data operations performance compared to the current TDRSS ground segment receive system. A computer model of the AIRS is used to provide simulation results predicting the performance of AIRS. Cost and technology assessments are included.
Cathodic Protection Measurement Through Inline Inspection Technology Uses and Observations
NASA Astrophysics Data System (ADS)
Ferguson, Briana Ley
This research supports the evaluation of an impressed current cathodic protection (CP) system of a buried coated steel pipeline through alternative technology and methods, via an inline inspection device (ILI, CP ILI tool, or tool), in order to prevent and mitigate external corrosion. This thesis investigates the ability to measure the current density of a pipeline's CP system from inside of a pipeline rather than manually from outside, and then convert that CP ILI tool reading into a pipe-to-soil potential as required by regulations and standards. This was demonstrated through a mathematical model that utilizes applications of Ohm's Law, circuit concepts, and attenuation principles in order to match the results of the ILI sample data by varying parameters of the model (i.e., values for over potential and coating resistivity). This research has not been conducted previously in order to determine if the protected potential range can be achieved with respect to the predicted current density from the CP ILI device. Kirchhoff's method was explored, but certain principals could not be used in the model as manual measurements were required. This research was based on circuit concepts which indirectly affected electrochemical processes. Through Ohm's law, the results show that a constant current density is possible in the protected potential range; therefore, indicates polarization of the pipeline, which leads to calcareous deposit development with respect to electrochemistry. Calcareous deposit is desirable in industry since it increases the resistance of the pipeline coating and lowers current, thus slowing the oxygen diffusion process. This research conveys that an alternative method for CP evaluation from inside of the pipeline is possible where the pipe-to-soil potential can be estimated (as required by regulations) from the ILI tool's current density measurement.
Power management and distribution considerations for a lunar base
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Coleman, Anthony S.
1991-01-01
Design philosophies and technology needs for the power management and distribution (PMAD) portion of a lunar base power system are discussed. A process is described whereby mission planners may proceed from a knowledge of the PMAD functions and mission performance requirements to a definition of design options and technology needs. Current research efforts at the NASA LRC to meet the PMAD system needs for a Lunar base are described. Based on the requirements, the lunar base PMAD is seen as best being accomplished by a utility like system, although with some additional demands including autonomous operation and scheduling and accurate, predictive modeling during the design process.
Perovskite Solar Cells and Devices at EPFL Valais Wallis.
Nazeeruddin, Mohammad Khaja
2016-09-22
Stability required! Perovskite solar cells have emerged as one of the most exciting fields of research, owing to their impressive rise in power conversion efficiency surpassing 22% in six short years of research. Current research is focused on ways to improve stability of perovskite-based devices, a key characteristic required to bring this technology from the lab into the market. In this Editorial, guest editor Prof. Mohammad Khaja Nazeeruddin describes the context of this Special Issue, and summarizes the work being performed in his research group toward this low-cost near-future photovoltaic technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advanced sensors and instrumentation
NASA Technical Reports Server (NTRS)
Calloway, Raymond S.; Zimmerman, Joe E.; Douglas, Kevin R.; Morrison, Rusty
1990-01-01
NASA is currently investigating the readiness of Advanced Sensors and Instrumentation to meet the requirements of new initiatives in space. The following technical objectives and technologies are briefly discussed: smart and nonintrusive sensors; onboard signal and data processing; high capacity and rate adaptive data acquisition systems; onboard computing; high capacity and rate onboard storage; efficient onboard data distribution; high capacity telemetry; ground and flight test support instrumentation; power distribution; and workstations, video/lighting. The requirements for high fidelity data (accuracy, frequency, quantity, spatial resolution) in hostile environments will continue to push the technology developers and users to extend the performance of their products and to develop new generations.
An Assessment of the State-of-the-art in Multidisciplinary Aeromechanical Analyses
NASA Technical Reports Server (NTRS)
Datta, Anubhav; Johnson, Wayne
2008-01-01
This paper presents a survey of the current state-of-the-art in multidisciplinary aeromechanical analyses which integrate advanced Computational Structural Dynamics (CSD) and Computational Fluid Dynamics (CFD) methods. The application areas to be surveyed include fixed wing aircraft, turbomachinery, and rotary wing aircraft. The objective of the authors in the present paper, together with a companion paper on requirements, is to lay out a path for a High Performance Computing (HPC) based next generation comprehensive rotorcraft analysis. From this survey of the key technologies in other application areas it is possible to identify the critical technology gaps that stem from unique rotorcraft requirements.
Line-focus concentrating collector program
NASA Technical Reports Server (NTRS)
Dugan, V. L.
1980-01-01
The Line-Focus Concentrating Collector Program has emphasized the development and dissemination of concentrating solar technology in which the reflected sunlight is focused onto a linear or line receiver. Although a number of different types of line-focus concentrators were developed, the parabolic trough has gained the widest acceptance and utilization within the industrial and applications sectors. The trough is best applied for application scenarios which require temperatures between 140 and 600 F. Another concept, the bowl, is investigated for applications which may require temperatures in the range between 600 and 1200 F. Current technology emphases are upon the reduction of system installation cost and the implementation of production oriented engineering.
Capability Investment Strategy to Enable JPL Future Space Missions
NASA Technical Reports Server (NTRS)
Lincoln, William; Merida, Sofia; Adumitroaie, Virgil; Weisbin, Charles R.
2006-01-01
The Jet Propulsion Laboratory (JPL) formulates and conducts deep space missions for NASA (the National Aeronautics and Space Administration). The Chief Technologist of JPL has responsibility for strategic planning of the laboratory's advanced technology program to assure that the required technological capabilities to enable future missions are ready as needed. The responsibilities include development of a Strategic Plan (Antonsson, E., 2005). As part of the planning effort, a structured approach to technology prioritization, based upon the work of the START (Strategic Assessment of Risk and Technology) (Weisbin, C.R., 2004) team, was developed. The purpose of this paper is to describe this approach and present its current status relative to the JPL technology investment.
Three-dimensional imaging technology offers promise in medicine.
Karako, Kenji; Wu, Qiong; Gao, Jianjun
2014-04-01
Medical imaging plays an increasingly important role in the diagnosis and treatment of disease. Currently, medical equipment mainly has two-dimensional (2D) imaging systems. Although this conventional imaging largely satisfies clinical requirements, it cannot depict pathologic changes in 3 dimensions. The development of three-dimensional (3D) imaging technology has encouraged advances in medical imaging. Three-dimensional imaging technology offers doctors much more information on a pathology than 2D imaging, thus significantly improving diagnostic capability and the quality of treatment. Moreover, the combination of 3D imaging with augmented reality significantly improves surgical navigation process. The advantages of 3D imaging technology have made it an important component of technological progress in the field of medical imaging.
Aerospace Measurements: Challenges and Opportunities
NASA Technical Reports Server (NTRS)
Conway, Bruce A.
1992-01-01
New aerospace research initiatives offer both challenges and opportunities to rapidly-emerging electronics and electro-optics technology. Defining and implementing appropriate measurement technology development programs in response to the aeronautical ground facility research and testing needs of the new initiatives poses some particularly important problems. This paper discusses today's measurement challenges along with some of the technological opportunities which offer some hope for meeting the challenges, and describes measurement technology activities currently underway in the Langley Research Center's Instrument Research Division to address modern aerospace research and design engineering requirements. Projected and realized benefits and payoffs from the ongoing measurement and instrumentation efforts will be emphasized. A discussion of future trends in the aerospace measurement technology field will be included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jared Verba; Michael Milvich
2008-05-01
Current Intrusion Detection System (IDS) technology is not suited to be widely deployed inside a Supervisory, Control and Data Acquisition (SCADA) environment. Anomaly- and signature-based IDS technologies have developed methods to cover information technology-based networks activity and protocols effectively. However, these IDS technologies do not include the fine protocol granularity required to ensure network security inside an environment with weak protocols lacking authentication and encryption. By implementing a more specific and more intelligent packet inspection mechanism, tailored traffic flow analysis, and unique packet tampering detection, IDS technology developed specifically for SCADA environments can be deployed with confidence in detecting maliciousmore » activity.« less
Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 3: Operations technology
NASA Technical Reports Server (NTRS)
Vilja, John O.
1990-01-01
The study was initiated to identify operational problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the OEPSS study were organized into a series of OEPSS Data Books. This volume describes operations technologies that will enhance operational efficiency of propulsion systems. A total of 15 operations technologies were identified that will eliminate or mitigate operations problems described in Volume 2. A recommended development plan is presented for eight promising technologies that will simplify the propulsion system and reduce operational requirements.
Or, Calvin K.L.; Valdez, Rupa S.; Casper, Gail R.; Carayon, Pascale; Burke, Laura J.; Brennan, Patricia Flatley; Karsh, Ben-Tzion
2010-01-01
Sicker patients with greater care needs are being discharged to their homes to assume responsibility for their own care with fewer nurses available to aid them. This situation brings with it a host of human factors and ergonomic (HFE) concerns, both for the home care nurse and the home dwelling patient, that can affect quality of care and patient safety. Many of these concerns are related to the critical home care tasks of information access, communication, and patient self-monitoring and self-management. Currently, a variety of health information technologies (HITs) are being promoted as possible solutions to those problems, but those same technologies bring with them a new set of HFE concerns. This paper reviews the HFE considerations for information access, communication, and patients self-monitoring and self-management, discusses how HIT can potentially mitigate current problems, and explains how the design and implementation of HIT itself requires careful HFE attention. PMID:19713630
Miniature Biosensor with Health Risk Assessment Feedback
NASA Technical Reports Server (NTRS)
Hanson, Andrea; Downs, Meghan; Kalogera, Kent; Buxton, Roxanne; Cooper, Tommy; Cooper, Alan; Cooper, Ross
2016-01-01
Heart rate (HR) monitoring is a medical requirement during exercise on the International Space Station (ISS), fitness tests, and extravehicular activity (EVA); however, NASA does not currently have the technology to consistently and accurately monitor HR and other physiological data during these activities. Performance of currently available HR monitor technologies is dependent on uninterrupted contact with the torso and are prone to data drop-out and motion artifact. Here, we seek an alternative to the chest strap and electrode based sensors currently in use on ISS today. This project aims to develop a high performance, robust earbud based biosensor with focused efforts on improved HR data quality during exercise or EVA. A health risk assessment algorithm will further advance the goals of autonomous crew health care for exploration missions.
Jacobsen, G; Elli, F; Horgan, S
2004-08-01
Minimally invasive surgical techniques have revolutionized the field of surgery. Telesurgical manipulators (robots) and new information technologies strive to improve upon currently available minimally invasive techniques and create new possibilities. A retrospective review of all robotic cases at a single academic medical center from August 2000 until November 2002 was conducted. A comprehensive literature evaluation on robotic surgical technology was also performed. Robotic technology is safely and effectively being applied at our institution. Robotic and information technologies have improved upon minimally invasive surgical techniques and created new opportunities not attainable in open surgery. Robotic technology offers many benefits over traditional minimal access techniques and has been proven safe and effective. Further research is needed to better define the optimal application of this technology. Credentialing and educational requirements also need to be delineated.
Study of high-speed civil transports
NASA Technical Reports Server (NTRS)
1989-01-01
A systems study to identify the economic potential for a high-speed commercial transport (HSCT) has considered technology, market characteristics, airport infrastructure, and environmental issues. Market forecasts indicate a need for HSCT service in the 2000/2010 time frame conditioned on economic viability and environmental acceptability. Design requirements focused on a 300 passenger, 3 class service, and 6500 nautical mile range based on the accelerated growth of the Pacific region. Compatibility with existing airports was an assumed requirement. Mach numbers between 2 and 25 were examined in conjunction with the appropriate propulsion systems, fuels, structural materials, and thermal management systems. Aircraft productivity was a key parameter with aircraft worth, in comparison to aircraft price, being the airline-oriented figure of merit. Aircraft screening led to determination that Mach 3.2 (TSJF) would have superior characteristics to Mach 5.0 (LNG) and the recommendation that the next generation high-speed commercial transport aircraft use a kerosene fuel. The sensitivity of aircraft performance and economics to environmental constraints (e.g., sonic boom, engine emissions, and airport/community noise) was identified together with key technologies. In all, current technology is not adequate to produce viable HSCTs for the world marketplace. Technology advancements must be accomplished to meet environmental requirements (these requirements are as yet undetermined for sonic boom and engine emissions). High priority is assigned to aircraft gross weight reduction which benefits both economics and environmental aspects. Specific technology requirements are identified and national economic benefits are projected.
Medical Grade Water Generation for Intravenous Fluid Production on Exploration Missions
NASA Technical Reports Server (NTRS)
Niederhaus, Charles E.; Barlow, Karen L.; Griffin, DeVon W.; Miller, Fletcher J.
2008-01-01
This document describes the intravenous (IV) fluids requirements for medical care during NASA s future Exploration class missions. It further discusses potential methods for generating such fluids and the challenges associated with different fluid generation technologies. The current Exploration baseline mission profiles are introduced, potential medical conditions described and evaluated for fluidic needs, and operational issues assessed. Conclusions on the fluid volume requirements are presented, and the feasibility of various fluid generation options are discussed. A separate report will document a more complete trade study on the options to provide the required fluids.At the time this document was developed, NASA had not yet determined requirements for medical care during Exploration missions. As a result, this study was based on the current requirements for care onboard the International Space Station (ISS). While we expect that medical requirements will be different for Exploration missions, this document will provide a useful baseline for not only developing hardware to generate medical water for injection (WFI), but as a foundation for meeting future requirements. As a final note, we expect WFI requirements for Exploration will be higher than for ISS care, and system capacity may well need to be higher than currently specified.
NASA Technical Reports Server (NTRS)
Hinkel, Heather; Cryan, Scott; Zipay, John; Strube, Matthew
2015-01-01
This paper will describe the technology development efforts NASA has underway for Automated Rendezvous and Docking/Capture (AR&D/C) sensors and a docking mechanism and the challenges involved. The paper will additionally address how these technologies will be extended to other missions requiring AR&D/C whether robotic or manned. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion crew vehicle. The commonality assessment also considered several future exploration and science missions requiring an AR&D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a threedimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build time instead of at design time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal nonrecurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR&D/C today. These sensor specifications are tightly coupled to the docking system capabilities and requirements for final docking conditions. The paper will describe NASA's efforts to develop a standard docking system for use across NASA human spaceflight missions to multiple destinations. It will describe the current design status and the considerations and technologies involved in developing this docking mechanism.
NASA Technical Reports Server (NTRS)
Hinkel, Heather; Strube, Matthew; Zipay, John J.; Cryan, Scott
2015-01-01
This paper will describe the technology development efforts NASA has underway for Automated Rendezvous and Docking/Capture (AR and D/C) sensors and a docking mechanism and the challenges involved. The paper will additionally address how these technologies will be extended to other missions requiring AR and D/C whether robotic or manned. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion crew vehicle. The commonality assessment also considered several future exploration and science missions requiring an AR and D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a threedimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build time instead of at design time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal nonrecurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR and D/C today. These sensor specifications are tightly coupled to the docking system capabilities and requirements for final docking conditions. The paper will describe NASA's efforts to develop a standard docking system for use across NASA human spaceflight missions to multiple destinations. It will describe the current design status and the considerations and technologies involved in developing this docking mechanism.
NASA Technical Reports Server (NTRS)
Hinkel, Heather; Strube, Matthew; Zipay, John J.; Cryan, Scott
2016-01-01
This paper will describe the technology development efforts NASA has underway for Automated Rendezvous and Docking/Capture (AR&D/C) sensors and a docking mechanism and the challenges involved. The paper will additionally address how these technologies will be extended to other missions requiring AR&D/C whether robotic or manned. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion spacecraft. The commonality assessment also considered several future exploration and science missions requiring an AR&D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a three-dimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build-time instead of at design-time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal non-recurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR&D/C today. These sensor specifications are tightly coupled to the docking system capabilities and requirements for final docking conditions. The paper will describe NASA's efforts to develop a standard docking system for use across NASA human spaceflight missions to multiple destinations. It will describe the current design status and the considerations and technologies involved in developing this docking mechanism.
AIAA/MSFC Symposium on Space Industrialization: Proceedings
NASA Technical Reports Server (NTRS)
1976-01-01
Current and projected technologies required for utilizing extraterrestrial environments to produce energy, information, or materials and provide services of value on Earth or to Earth are discussed. Topics include: space habitats, space transportation, materials processing, solar space power, and exoindustrial management concepts.
An Overview Of The Ecosystem Services Research Program Decision Support Framework
There is an increasing understanding that top-down regulatory and technology driven responses are not sufficient to address current and emerging environmental challenges such as climate change, sustainable communities, and environmental justice. Such problems require ways to dee...
Improving the effectiveness of traffic monitoring based on wireless location technology.
DOT National Transportation Integrated Search
2004-01-01
A fundamental requirement for effectively monitoring and operating transportation facilities is reliable, accurate data on traffic flow. The current state of the practice is to use networks of point detectors to gather information on traffic flow at ...
Automatic control of a robotic vehicle
NASA Technical Reports Server (NTRS)
Mcreynolds, S. R.
1976-01-01
Over the last several years Jet Propulsion Laboratory has been engaged in a project to develop some of the technology required to build a robotic vehicle for exploring planetary surfaces. An overview of hardware and software being developed for this project is given. Particular emphasis is placed on the description of the current design for the Vehicle System required for locomotion and the path planning algorithm.
High-κ gate dielectrics: Current status and materials properties considerations
NASA Astrophysics Data System (ADS)
Wilk, G. D.; Wallace, R. M.; Anthony, J. M.
2001-05-01
Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 μm complementary metal-oxide-semiconductor (CMOS) technology. A systematic consideration of the required properties of gate dielectrics indicates that the key guidelines for selecting an alternative gate dielectric are (a) permittivity, band gap, and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. A review of current work and literature in the area of alternate gate dielectrics is given. Based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward successful integration into the expected processing conditions for future CMOS technologies, especially due to their tendency to form at interfaces with Si (e.g. silicates). These pseudobinary systems also thereby enable the use of other high-κ materials by serving as an interfacial high-κ layer. While work is ongoing, much research is still required, as it is clear that any material which is to replace SiO2 as the gate dielectric faces a formidable challenge. The requirements for process integration compatibility are remarkably demanding, and any serious candidates will emerge only through continued, intensive investigation.
Estimating Energy Consumption of Mobile Fluid Power in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, Lauren; Zigler, Bradley T.
This report estimates the market size and energy consumption of mobile off-road applications utilizing hydraulic fluid power, and summarizes technology gaps and implementation barriers. Mobile fluid power is the use of hydraulic fluids under pressure to transmit power in mobile equipment applications. The mobile off-road fluid power sector includes various uses of hydraulic fluid power equipment with fundamentally diverse end-use application and operational requirements, such as a skid steer loader, a wheel loader or an agriculture tractor. The agriculture and construction segments dominate the mobile off-road fluid power market in component unit sales volume. An estimated range of energy consumedmore » by the mobile off-road fluid power sector is 0.36 - 1.8 quads per year, which was 1.3 percent - 6.5 percent of the total energy consumed in 2016 by the transportation sector. Opportunities for efficiency improvements within the fluid power system result from needs to level and reduce the peak system load requirements and develop new technologies to reduce fluid power system level losses, both of which may be facilitated by characterizing duty cycles to define standardized performance test methods. There are currently no commonly accepted standardized test methods for evaluating equipment level efficiency over a duty cycle. The off-road transportation sector currently meets criteria emissions requirements, and there are no efficiency regulations requiring original equipment manufacturers (OEM) to invest in new architecture development to improve the fuel economy of mobile off-road fluid power systems. In addition, the end-user efficiency interests are outweighed by low equipment purchase or lease price concerns, required payback periods, and reliability and durability requirements of new architecture. Current economics, low market volumes with high product diversity, and regulation compliance challenge OEM investment in commercialization of new architecture development.« less
On-board processing satellite network architecture and control study
NASA Technical Reports Server (NTRS)
Campanella, S. Joseph; Pontano, Benjamin A.; Chalmers, Harvey
1987-01-01
The market for telecommunications services needs to be segmented into user classes having similar transmission requirements and hence similar network architectures. Use of the following transmission architecture was considered: satellite switched TDMA; TDMA up, TDM down; scanning (hopping) beam TDMA; FDMA up, TDM down; satellite switched MF/TDMA; and switching Hub earth stations with double hop transmission. A candidate network architecture will be selected that: comprises multiple access subnetworks optimized for each user; interconnects the subnetworks by means of a baseband processor; and optimizes the marriage of interconnection and access techniques. An overall network control architecture will be provided that will serve the needs of the baseband and satellite switched RF interconnected subnetworks. The results of the studies shall be used to identify elements of network architecture and control that require the greatest degree of technology development to realize an operational system. This will be specified in terms of: requirements of the enabling technology; difference from the current available technology; and estimate of the development requirements needed to achieve an operational system. The results obtained for each of these tasks are presented.
Cloning: can it be good for us? An overview of cloning technology and its moral implications.
FitzGerald, K
2001-01-01
Adequate answers to moral questions about cloning require a working knowledge of the science and technology involved, both present and anticipated. This essay presents an overview of the current state of somatic cell nuclear transfer technology (SCNT), the type of cloning that now permits whole organism reproduction from adult DNA. This essay explains the basic science and technology of SCNT and explores its potential uses. Next, this essay notes remaining scientific obstacles and unanswered moral questions that must be resolved before SCNT can be used for human reproduction. Attention is given to aspects related to cloning for therapeutic and research purposes.
Space Transportation Propulsion Technology Symposium. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1991-01-01
The Space Transportation Propulsion Technology Symposium was held to provide a forum for communication within the propulsion within the propulsion technology developer and user communities. Emphasis was placed on propulsion requirements and initiatives to support current, next generation, and future space transportation systems, with the primary objectives of discerning whether proposed designs truly meet future transportation needs and identifying possible technology gaps, overlaps, and other programmatic deficiencies. Key space transportation propulsion issues were addressed through four panels with government, industry, and academia membership. The panels focused on systems engineering and integration; development, manufacturing and certification; operational efficiency; and program development and cultural issues.
Nuclear Thermal Propulsion Technology - Summary of FY 1991 Interagency Panel Planning
NASA Technical Reports Server (NTRS)
Clark, John S.; Mcdaniel, Patrick; Howe, Steven; Stanley, Marland
1991-01-01
An Interagency (NASA/DOE/DOD) technical panel has been working in 1991 to evaluate nuclear thermal propulsion (NTP) concepts on a consistent basis, and to continue technology development project planning for a joint project in nuclear propulsion for Space Exploration Initiative (SEI). This paper summarizes the efforts of the panel to date and summarizes the technology plans defined for NTP. Concepts were categorized based on probable technology readiness data, and innovative 'proof-of-concept' tests and analyses were defined. While further studies will be required to provide a consistent comparison of all of the NTP concepts, the current status of the studies is presented.
A holistic framework to improve the uptake and impact of eHealth technologies.
van Gemert-Pijnen, Julia E W C; Nijland, Nicol; van Limburg, Maarten; Ossebaard, Hans C; Kelders, Saskia M; Eysenbach, Gunther; Seydel, Erwin R
2011-12-05
Many eHealth technologies are not successful in realizing sustainable innovations in health care practices. One of the reasons for this is that the current development of eHealth technology often disregards the interdependencies between technology, human characteristics, and the socioeconomic environment, resulting in technology that has a low impact in health care practices. To overcome the hurdles with eHealth design and implementation, a new, holistic approach to the development of eHealth technologies is needed, one that takes into account the complexity of health care and the rituals and habits of patients and other stakeholders. The aim of this viewpoint paper is to improve the uptake and impact of eHealth technologies by advocating a holistic approach toward their development and eventual integration in the health sector. To identify the potential and limitations of current eHealth frameworks (1999-2009), we carried out a literature search in the following electronic databases: PubMed, ScienceDirect, Web of Knowledge, PiCarta, and Google Scholar. Of the 60 papers that were identified, 44 were selected for full review. We excluded those papers that did not describe hands-on guidelines or quality criteria for the design, implementation, and evaluation of eHealth technologies (28 papers). From the results retrieved, we identified 16 eHealth frameworks that matched the inclusion criteria. The outcomes were used to posit strategies and principles for a holistic approach toward the development of eHealth technologies; these principles underpin our holistic eHealth framework. A total of 16 frameworks qualified for a final analysis, based on their theoretical backgrounds and visions on eHealth, and the strategies and conditions for the research and development of eHealth technologies. Despite their potential, the relationship between the visions on eHealth, proposed strategies, and research methods is obscure, perhaps due to a rather conceptual approach that focuses on the rationale behind the frameworks rather than on practical guidelines. In addition, the Web 2.0 technologies that call for a more stakeholder-driven approach are beyond the scope of current frameworks. To overcome these limitations, we composed a holistic framework based on a participatory development approach, persuasive design techniques, and business modeling. To demonstrate the impact of eHealth technologies more effectively, a fresh way of thinking is required about how technology can be used to innovate health care. It also requires new concepts and instruments to develop and implement technologies in practice. The proposed framework serves as an evidence-based roadmap.
A Holistic Framework to Improve the Uptake and Impact of eHealth Technologies
van Limburg, Maarten; Ossebaard, Hans C; Kelders, Saskia M; Eysenbach, Gunther; Seydel, Erwin R
2011-01-01
Background Many eHealth technologies are not successful in realizing sustainable innovations in health care practices. One of the reasons for this is that the current development of eHealth technology often disregards the interdependencies between technology, human characteristics, and the socioeconomic environment, resulting in technology that has a low impact in health care practices. To overcome the hurdles with eHealth design and implementation, a new, holistic approach to the development of eHealth technologies is needed, one that takes into account the complexity of health care and the rituals and habits of patients and other stakeholders. Objective The aim of this viewpoint paper is to improve the uptake and impact of eHealth technologies by advocating a holistic approach toward their development and eventual integration in the health sector. Methods To identify the potential and limitations of current eHealth frameworks (1999–2009), we carried out a literature search in the following electronic databases: PubMed, ScienceDirect, Web of Knowledge, PiCarta, and Google Scholar. Of the 60 papers that were identified, 44 were selected for full review. We excluded those papers that did not describe hands-on guidelines or quality criteria for the design, implementation, and evaluation of eHealth technologies (28 papers). From the results retrieved, we identified 16 eHealth frameworks that matched the inclusion criteria. The outcomes were used to posit strategies and principles for a holistic approach toward the development of eHealth technologies; these principles underpin our holistic eHealth framework. Results A total of 16 frameworks qualified for a final analysis, based on their theoretical backgrounds and visions on eHealth, and the strategies and conditions for the research and development of eHealth technologies. Despite their potential, the relationship between the visions on eHealth, proposed strategies, and research methods is obscure, perhaps due to a rather conceptual approach that focuses on the rationale behind the frameworks rather than on practical guidelines. In addition, the Web 2.0 technologies that call for a more stakeholder-driven approach are beyond the scope of current frameworks. To overcome these limitations, we composed a holistic framework based on a participatory development approach, persuasive design techniques, and business modeling. Conclusions To demonstrate the impact of eHealth technologies more effectively, a fresh way of thinking is required about how technology can be used to innovate health care. It also requires new concepts and instruments to develop and implement technologies in practice. The proposed framework serves as an evidence-based roadmap. PMID:22155738
The way to zeros: The future of semiconductor device and chemical mechanical polishing technologies
NASA Astrophysics Data System (ADS)
Tsujimura, Manabu
2016-06-01
For the last 60 years, the development of cutting-edge semiconductor devices has strongly emphasized scaling; the effort to scale down current CMOS devices may well achieve the target of 5 nm nodes by 2020. Planarization by chemical mechanical polishing (CMP), is one technology essential for supporting scaling. This paper summarizes the history of CMP transitions in the planarization process as well as the changing degree of planarity required, and, finally, introduces innovative technologies to meet the requirements. The use of CMP was triggered by the replacement of local oxidation of silicon (LOCOS) as the element isolation technology by shallow trench isolation (STI) in the 1980s. Then, CMP’s use expanded to improving embedability of aluminum wiring, tungsten (W) contacts, Cu wiring, and, more recently, to its adoption in high-k metal gate (HKMG) and FinFET (FF) processes. Initially, the required degree of planarity was 50 nm, but now 0 nm is required. Further, zero defects on a post-CMP wafer is now the goal, and it is possible that zero psi CMP loading pressure will be required going forward. Soon, it seems, everything will have to be “zero” and perfect. Although the process is also chemical in nature, the CMP process is actually mechanical with a load added using slurry particles several tens of nm in diameter. Zero load in the loading process, zero nm planarity with no trace of processing, and zero residual foreign material, including the very slurry particles used in the process, are all required. This article will provide an overview of how to achieve these new requirements and what technologies should be employed.
Benyakorn, Songpoom; Riley, Steven J; Calub, Catrina A; Schweitzer, Julie B
2016-09-01
Care (i.e., evaluation and intervention) delivered through technology is used in many areas of mental health services, including for persons with attention deficit hyperactivity disorder (ADHD). Technology can facilitate care for individuals with ADHD, their parents, and their care providers. The adoption of technological tools for ADHD care requires evidence-based studies to support the transition from development to integration into use in the home, school, or work for persons with the disorder. The initial phase, which is development of technological tools, has begun in earnest; however, the evidence base for many of these tools is lacking. In some instances, the uptake of a piece of technology into home use or clinical practice may be further along than the research to support its use. In this study, we review the current evidence regarding technology for ADHD and also propose a model to evaluate the support for other tools that have yet to be tested. We propose using the Research Domain Criteria as a framework for evaluating the tools' relationships to dimensions related to ADHD. This article concludes with recommendations for testing new tools that may have promise in improving the evaluation or treatment of persons with ADHD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farooq, M.O.
1988-01-01
The failure of the standard Growth Approach to economic development to solve the problems of underdevelopment in LDCs has caused an alternative approach, Basic Needs Approach (BNA), to attain prominence in development thought. BNA emphasizes poverty-minimizing growth. Its strategy of direct attack on poverty has better potential for LDCs' development and fulfillment of their populations' basic needs than the trickle-down mechanism of the Growth Approach. BNA requires, among other things, (a) suitable rural financial markets (RFMs) as parts of the overall financial system, and (b) indigenous technological capabilities. The financial system, if it functions as a central element in anmore » institutionalized technology policy, can link technology-related institutions that generate, evaluate, and promote appropriate technologies (ATs) with RFMs that can support adoption and diffusion of ATs in the agro-rural sector. The above argument uses Bangladesh as a case for illustration. In the light of an institutional framework presented, examined, and extended in this dissertation, it is found that Bangladesh currently does not have an institutionalized technology policy. The current organizational framework and policies related to technological development are not conducive to BNA.« less
Collaboration in Research and Engineering for Advanced Technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrieling, P. Douglas
SNL/CA proposes the Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) facility to support customer-driven national security mission requirements while demonstrating a fiscally responsible approach to cost-control. SNL/CA realizes that due to the current backlog of capital projects in NNSA that following the normal Line Item process to procure capital funding is unlikely and therefore SNL/CA will be looking at all options including Alternative Financing.
Siau, Keng
2003-03-01
The health care industry is currently experiencing a fundamental change. Health care organizations are reorganizing their processes to reduce costs, be more competitive, and provide better and more personalized customer care. This new business strategy requires health care organizations to implement new technologies, such as Internet applications, enterprise systems, and mobile technologies in order to achieve their desired business changes. This article offers a conceptual model for implementing new information systems, integrating internal data, and linking suppliers and patients.
Flat panel ferroelectric electron emission display system
Sampayan, Stephen E.; Orvis, William J.; Caporaso, George J.; Wieskamp, Ted F.
1996-01-01
A device which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density.
Reducing Size, Weight, and Power (SWaP) of Perception Systems in Small Autonomous Aerial Systems
NASA Technical Reports Server (NTRS)
Jones, Kennie H.; Gross, Jason
2014-01-01
The objectives are to examine recent trends in the reduction of size, weight, and power (SWaP) requirements of sensor systems for environmental perception and to explore new technology that may overcome limitations in current systems. Improving perception systems to facilitate situation awareness is critical in the move to introduce increasing autonomy in aerial systems. Whether the autonomy is in the current state-of-the-art of increasing automation or is enabling cognitive decisions that facilitate adaptive behavior, collection of environmental information and fusion of that information into knowledge that can direct actuation is imperative to decisions resulting in appropriate behavior. Artificial sensory systems such as cameras, radar, LIDAR, and acoustic sensors have been in use on aircraft for many years but, due to the large size and weight of the airplane and electrical power made available through powerful engines, the SWaP requirements of these sensors was inconsequential. With the proliferation of Remote Piloted Vehicles (RPV), the trend is in significant reduction in SWaP of the vehicles. This requires at least an equivalent reduction in SWaP for the sensory systems. A survey of some currently available sensor systems and changing technology will reveal the trend toward reduction of SWaP of these systems and will predict future reductions. A new technology will be introduced that provides an example of a desirable new trend. A new device replaces multiple conventional sensory devices facilitating synchronization, localization, altimetry, collision avoidance, terrain mapping, and data communication in a single integrated, small form-factor, extremely lightweight, and low power device that it is practical for integration into small autonomous vehicles and can facilitate cooperative behavior. The technology is based on Ultra WideBand (UWB) radio using short pulses of energy rather than continuous sine waves. The characteristics of UWB yield several desirable characteristics to facilitate integration of perception for autonomous activities. The capabilities of this device and its limitations will be assessed.
Expansion of Microbial Monitoring Capabilities on the International Space Station (ISS)
NASA Technical Reports Server (NTRS)
Khodadad, Christina L.; Oubre, Cherie; Castro, Victoria; Flint, Stephanie; Melendez, Orlando; Ott, C. Mark; Roman, Monsi
2017-01-01
Microbial monitoring is one of the tools that the National Aeronautics and Space Administration (NASA) uses on the International Space Station (ISS) to help maintain crew health and safety. In combination with regular housekeeping and disinfection when needed, microbial monitoring provides important information to the crew about the quality of the environment. Rotation of astronauts, equipment, and cargo on the ISS can affect the microbial load in the air, surfaces, and water. The current ISS microbial monitoring methods are focused on culture-based enumeration during flight and require a significant amount of crew time as well as long incubation periods of up to 5 days there by proliferating potential pathogens. In addition, the samples require return to Earth for complete identification of the microorganisms cultivated. Although the current approach assess the quality of the ISS environment, molecular technology offers faster turn-around of information particularly beneficial in an off-nominal situation. In 2011, subject matter experts from industry and academia recommended implementation of molecular-based technologies such as quantitative real-time polymerase chain reaction (qPCR) for evaluation to replace current, culture-based technologies. The RAZOR EX (BioFire Defense, Inc, Salt Lake City, UT) a ruggedized, compact, COTS (commercial off the shelf) qPCR instrument was tested, evaluated and selected in the 2 X 2015 JSC rapid flight hardware demonstration initiative as part of the Water Monitoring Suite. RAZOR EX was launched to ISS on SpaceX-9 in July 2016 to evaluate the precision and accuracy of the hardware by testing various concentrations of DNA in microgravity compared to ground controls. Flight testing was completed between September 2016 and March 2017. Data presented will detail the hardware performance of flight testing results compared to ground controls. Future goals include additional operational ground-based testing and assay development to determine if this technology can meet spaceflight microbial monitoring requirements.
NASA Technical Reports Server (NTRS)
Cooper, David M.; Arnold, James O.
1991-01-01
Aerobraking is one of the largest contributors to making both lunar and Mars missions affordable. The use of aerobraking/aeroassist over all propulsive approaches saves as much as 60 percent of the initial mass required in low earth orbit (LEO); thus, the number and size of earth to orbit launch vehicles is reduced. Lunar transfer vehicles (LTV), which will be used to transport personnel and materials from LEO to lunar outpost, will aerobrake into earth's atmosphere at approximately 11 km/sec on return from the lunar surface. Current plans for both manned and robotic missions to Mars use aerocapture during arrival at Mars and at return to Earth. At Mars, the entry velocities will range from about 6 to 9.5 km/sec, and at Earth the return velocity will be about 12.5 to 14 km/sec. These entry velocities depend on trajectories, flight dates, and mission scenarios and bound the range of velocities required for the current studies. In order to successfully design aerobrakes to withstand the aerodynamic forces and heating associated with these entry velocities, as well as to make them efficient, several critical technologies must be developed. These are vehicle concepts and configurations, aerothermodynamics, thermal protection system materials, and guidance, navigation, and control systems. The status of each of these technologies are described, and what must be accomplished in each area to meet the requirements of the Space Exploration Initiative is outlined.
Information technology strategic planning: art or science?
Hutsell, Richard; Mancini-Newell, Lulcy
2005-01-01
It had been almost a decade since the hospitals that make up the Daughters of Charity Health System (DCHS) had engaged in a formal information technology strategic planning process. In the summer of 2002, as the health system re-formed, there was a unique opportunity to introduce a planning process that reflected the governance style of the new health system. DCHS embarked on this journey, with the CIO initiating and formally sponsoring the information technology strategic planning process in a dynamic and collaborative manner The system sought to develop a plan tailored to encompass both enterprise-wide and local requirements; to develop a governance model to engage the members of the local health ministries in plan development, both now and in the future; and to conduct the process in a manner that reflected the values of the Daughters of Charity. The DCHS CIO outlined a premise that the CIO would guide and be continuously involved in the development of this tailored process, in conjunction with an external resource. Together, there would be joint responsibility for introducing a flexible information technology strategic planning methodology; providing an education on the current state of healthcare IT, including future trends and success factors; facilitating support to tap into existing internal talent; cultivating a collaborative process to support both current requirements and future vision; and developing a well-functioning governance structure that would enable the plan to evolve and reflect user community requirements. This article highlights the planning process, including the lessons learned, the benchmarking during and in post-planning, and finally, but most importantly, the unexpected benefit that resulted from this planning process.
Nields, Morgan W
2010-05-01
Digital mammography is routinely used in the US to screen asymptomatic women for breast cancer and currently over 50% of US screening centers employ the technology. In spite of FDAs knowledge that digital mammography requires less radiation than film mammography and that its equivalence has been proven in a prospective randomized trial, the agency has failed to allow the technology market access via the 510(k) pre market clearance pathway. As a result of the restrictive Pre Market Approval process, only four suppliers have received FDA approval. The resulting lack of a competitive market has kept costs high, restricted technological innovation, and impeded product improvements as a result of PMA requirements. Meanwhile, at least twelve companies are on the market in the EU and the resulting competitive market has lowered costs and provided increased technological choice. A cultural change with new leadership occurred in the early 90's at FDA. The historical culture at the Center for Devices and Radiological Health of collaboration and education gave way to one characterized by a lack of reliance on outside scientific expertise, tolerance of decision making by unqualified reviewers, and an emphasis on enforcement and punishment. Digital mammography fell victim to this cultural change and as a result major innovations like breast CT and computer aided detection technologies are also withheld from the market. The medical device law, currently under review by the Institute of Medicine, should be amended by the Congress so that new technologies can be appropriately classified in accordance with the risk based assessment classification system detailed in Chapter V of the Federal Food, Drug, and Cosmetic Act. A panel of scientific experts chartered by the NIH or IOM should determine the classification appropriate for new technologies that have no historical regulatory framework. This would be binding on FDA. Unless the law is changed we will likely again experience additional debacles similar to that of digital mammography where important technology has been withheld from millions of women for more than a decade. Copyright 2010 AUR. Published by Elsevier Inc. All rights reserved.
An update on pharmaceutical film coating for drug delivery.
Felton, Linda A; Porter, Stuart C
2013-04-01
Pharmaceutical coating processes have generally been transformed from what was essentially an art form in the mid-twentieth century to a much more technology-driven process. This review article provides a basic overview of current film coating processes, including a discussion on polymer selection, coating formulation additives and processing equipment. Substrate considerations for pharmaceutical coating processes are also presented. While polymeric coating operations are commonplace in the pharmaceutical industry, film coating processes are still not fully understood, which presents serious challenges with current regulatory requirements. Novel analytical technologies and various modeling techniques that are being used to better understand film coating processes are discussed. This review article also examines the challenges of implementing process analytical technologies in coating operations, active pharmaceutical ingredients in polymer film coatings, the use of high-solids coating systems and continuous coating and other novel coating application methods.
Source-separated urine opens golden opportunities for microbial electrochemical technologies.
Ledezma, Pablo; Kuntke, Philipp; Buisman, Cees J N; Keller, Jürg; Freguia, Stefano
2015-04-01
The food security of a booming global population demands a continuous and sustainable supply of fertilisers. Their current once-through use [especially of the macronutrients nitrogen (N), phosphorus (P), and potassium (K)] requires a paradigm shift towards recovery and reuse. In the case of source-separated urine, efficient recovery could supply 20% of current macronutrient usage and remove 50-80% of nutrients present in wastewater. However, suitable technology options are needed to allow nutrients to be separated from urine close to the source. Thus far none of the proposed solutions has been widely implemented due to intrinsic limitations. Microbial electrochemical technologies (METs) have proved to be technically and economically viable for N recovery from urine, opening the path for novel decentralised systems focused on nutrient recovery and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Belle II DEPFET pixel detector
NASA Astrophysics Data System (ADS)
Lütticke, F.
2013-02-01
The existing Japanese Flavour Factory (KEKB) is currently being upgraded and is foreseen to be comissioned by 2014. The new e+e- collider (SuperKEKB) will have an instantaneous luminosity of 8 × 1035cm-2s-1, 40 times higher than the current world record set by KEKB. In order to handle the increased event rate and the higher background and provide high data quality, the Belle detector is upgraded to Belle II. The increased particle rate requires a new vertex pixel detector with high granularity. This silicon detector will be based on DEPFET technology and will consist of two layers of active pixel sensors. By integrating a field effect transistor into every pixel on top of a fully depleted bulk, the DEPFET technology combines detection and in-pixel amplification. This technology allows good signal to noise performance with a very low material budget.
A Modular Approach To Developing A Large Deployable Reflector
NASA Astrophysics Data System (ADS)
Pittman, R.; Leidich, C.; Mascy, F.; Swenson, B.
1984-01-01
NASA is currently studying the feasibility of developing a Large Deployable Reflector (LDR) astronomical facility to perform astrophysical studies of the infrared and submillimeter portion of the spectrum in the mid 1990's. The LDR concept was recommended by the Astronomy Survey Committee of the National Academy of Sciences as one of two space based projects to be started this decade. The current baseline calls for a 20 m (65.6 ft) aperture telescope diffraction limited at 30 μm and automatically deployed from a single Shuttle launch. The volume, performance, and single launch constraints place great demands on the technology and place LDR beyond the state-of-the-art in certain areas such as lightweight reflector segments. The advent of the Shuttle is opening up many new options and capabilities for producing large space systems. Until now, LDR has always been conceived as an integrated system, deployed autonomously in a single launch. This paper will look at a combination of automatic deployment and on-orbit assembly that may reduce the technological complexity and cost of the LDR system. Many technological tools are now in use or under study that will greatly enhance our capabilities to do assembly in space. Two Shuttle volume budget scenarios will be examined to assess the potential of these tools to reduce the LDR system complexity. Further study will be required to reach the full optimal combination of deployment and assembly, since in most cases the capabilities of these new tools have not been demonstrated. In order to take maximum advantage of these concepts, the design of LDR must be flexible and allow one subsystem to be modified without adversely affecting the entire system. One method of achieving this flexibility is to use a modular design approach in which the major subsystems are physically separated during launch and assembled on orbit. A modular design approach facilitates this flexibility but requires that the subsystems be interfaced in a simple, straightforward, and controlled manner. NASA is currently defining a technology development plan for LDR which will identify the technology advances that are required. The modular approach offers the flexibility to easily incorporate these new advances into the design.
The political economy of the assessment of value of new health technologies.
Karnon, Jonathan; Edney, Laura; Afzali, Hossein
2018-04-01
Health technology assessment provides a common framework for evaluating the costs and benefits of new health technologies to inform decisions on the public funding of new pharmaceuticals and other health technologies. In Australia and England, empirical analyses of the opportunity costs of government spending on new health technologies suggest more quality adjusted life years are being forgone than are being gained by a non-trivial proportion of funded health technologies. This essay considers the relevance of available empirical estimates of opportunity costs and explores the relationship between the public funding of health technologies and broader political and economic factors. We conclude that the benefits of a general reduction in the prices paid by governments for new technologies outweigh the costs, but evidence of informed public acceptance of reduced access to new health technologies may be required to shift the current approach to assessing the value of new health technologies.
NASA Development of Aerocapture Technologies
NASA Technical Reports Server (NTRS)
James, Bonnie; Munk, Michelle; Moon, Steve
2003-01-01
Aeroassist technology development is a vital part of the NASA ln-Space Propulsion Program (ISP), which is managed by the NASA Headquarters Office of Space Science, and implemented by the Marshall Space Flight Center in Huntsville, Alabama. Aeroassist is the general term given to various techniques to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propulsive fuel. Within the ISP, the current aeroassist technology development focus is aerocapture. The objective of the ISP Aerocapture Technology Project (ATP) is to develop technologies that can enable and/or benefit NASA science missions by significantly reducing cost, mass, and/or travel times. To accomplish this objective, the ATP identifies and prioritizes the most promising technologies using systems analysis, technology advancement and peer review, coupled with NASA Headquarters Office of Space Science target requirements. Plans are focused on developing mid-Technology Readiness Level (TRL) technologies to TRL 6 (ready for technology demonstration in space).
NASA Development of Aerocapture Technologies
NASA Technical Reports Server (NTRS)
James, Bonnie; Munk, Michelle; Moon, Steve
2004-01-01
Aeroassist technology development is a vital part of the NASA In-Space Propulsion Program (ISP), which is managed by the NASA Headquarters Office of Space Science, and implemented by the Marshall Space Flight Center in Huntsville, Alabama. Aeroassist is the general term given to various techniques to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propulsive fuel. Within the ISP, the current aeroassist technology development focus is aerocapture. The objective of the ISP Aerocapture Technology Project (ATP) is to develop technologies that can enable and/or benefit NASA science missions by significantly reducing cost, mass, and/or travel times. To accomplish this objective, the ATP identifies and prioritizes the most promising technologies using systems analysis, technology advancement and peer review, coupled with NASA Headquarters Office of Space Science target requirements. Plans are focused on developing mid-Technology Readiness Level (TRL) technologies to TRL 6 (ready for technology demonstration in space).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeze, R.A.; McWhorter, D.B.
Many emerging remediation technologies are designed to remove contaminant mass from source zones at DNAPL sites in response to regulatory requirements. There is often concern in the regulated community as to whether mass removal actually reduces risk, or whether the small risk reductions achieved warrant the large costs incurred. This paper sets out a proposed framework for quantifying the degree to which risk is reduced as mass is removed from DNAPL source areas in shallow, saturated, low-permeability media. Risk is defined in terms of meeting an alternate concentration limit (ACL) at a compliance well in an aquifer underlying the sourcemore » zone. The ACL is back-calculated from a carcinogenic health-risk characterization at a downgradient water-supply well. Source-zone mass-removal efficiencies are heavily dependent on the distribution of mass between media (fractures, matrix) and phase (aqueous, sorbed, NAPL). Due to the uncertainties in currently available technology performance data, the scope of the paper is limited to developing a framework for generic technologies rather than making specific risk-reduction calculations for individual technologies. Despite the qualitative nature of the exercise, results imply that very high total mass-removal efficiencies are required to achieve significant long-term risk reduction with technology applications of finite duration. This paper is not an argument for no action at contaminated sites. Rather, it provides support for the conclusions of Cherry et al. (1992) that the primary goal of current remediation should be short-term risk reduction through containment, with the aim to pass on to future generations site conditions that are well-suited to the future applications of emerging technologies with improved mass-removal capabilities.« less
Ka-band SAR interferometry studies for the SWOT mission
NASA Astrophysics Data System (ADS)
Fernandez, D. E.; Fu, L.; Rodriguez, E.; Hodges, R.; Brown, S.
2008-12-01
The primary objective of the NRC Decadal Survey recommended SWOT (Surface Water and Ocean Topography) Mission is to measure the water elevation of the global oceans, as well as terrestrial water bodies (such as rivers, lakes, reservoirs, and wetlands), to answer key scientific questions on the kinetic energy of ocean circulation, the spatial and temporal variability of the world's surface freshwater storage and discharge, and to provide societal benefits on predicting climate change, coastal zone management, flood prediction, and water resources management. The SWOT mission plans to carry the following suite of microwave instruments: a Ka-band interferometer, a dual-frequency nadir altimeter, and a multi-frequency water-vapor radiometer dedicated to measuring wet tropospheric path delay to correct the radar measurements. We are currently funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) to reduce the risk of the main technological drivers of SWOT, by addressing the following technologies: the Ka-band radar interferometric antenna design, the on-board interferometric SAR processor, and the internally calibrated high-frequency radiometer. The goal is to significantly enhance the readiness level of the new technologies required for SWOT, while laying the foundations for the next-generation missions to map water elevation for studying Earth. The first two technologies address the challenges of the Ka-band SAR interferometry, while the high- frequency radiometer addresses the requirement for small-scale wet tropospheric corrections for coastal zone applications. In this paper, we present the scientific rational, need and objectives behind these technology items currently under development.
Optics Requirements For The Generation-X X-Ray Telescope
NASA Technical Reports Server (NTRS)
O'Dell, S. .; Elsner, R. F.; Kolodziejczak, J. J.; Ramsey, B. D.; Weisskopf, M. C.; Zhang, W. W.; Content, D. A.; Petre, R.; Saha, T. T.; Reid, P. B.;
2008-01-01
US, European, and Japanese space agencies each now operate successful X-ray missions -- NASA s Chandra, ESA s XMM-Newton, and JAXA s Suzaku observatories. Recently these agencies began a collaboration to develop the next major X-ray astrophysics facility -- the International X-ray Observatory (IXO) -- for launch around 2020. IXO will provide an order-of-magnitude increase in effective area, while maintaining good (but not sub-arcsecond) angular resolution. X-ray astronomy beyond IXO will require optics with even larger aperture areas and much better angular resolution. We are currently conducting a NASA strategic mission concept study to identify technology issues and to formulate a technology roadmap for a mission -- Generation-X (Gen-X) -- to provide these capabilities. Achieving large X-ray collecting areas in a space observatory requires extremely lightweight mirrors.
Eisenstein, Eric L; Diener, Lawrence W; Nahm, Meredith; Weinfurt, Kevin P
2011-12-01
New technologies may be required to integrate the National Institutes of Health's Patient Reported Outcome Management Information System (PROMIS) into multi-center clinical trials. To better understand this need, we identified likely PROMIS reporting formats, developed a multi-center clinical trial process model, and identified gaps between current capabilities and those necessary for PROMIS. These results were evaluated by key trial constituencies. Issues reported by principal investigators fell into two categories: acceptance by key regulators and the scientific community, and usability for researchers and clinicians. Issues reported by the coordinating center, participating sites, and study subjects were those faced when integrating new technologies into existing clinical trial systems. We then defined elements of a PROMIS Tool Kit required for integrating PROMIS into a multi-center clinical trial environment. The requirements identified in this study serve as a framework for future investigators in the design, development, implementation, and operation of PROMIS Tool Kit technologies.
Diener, Lawrence W.; Nahm, Meredith; Weinfurt, Kevin P.
2013-01-01
New technologies may be required to integrate the National Institutes of Health’s Patient Reported Outcome Management Information System (PROMIS) into multi-center clinical trials. To better understand this need, we identified likely PROMIS reporting formats, developed a multi-center clinical trial process model, and identified gaps between current capabilities and those necessary for PROMIS. These results were evaluated by key trial constituencies. Issues reported by principal investigators fell into two categories: acceptance by key regulators and the scientific community, and usability for researchers and clinicians. Issues reported by the coordinating center, participating sites, and study subjects were those faced when integrating new technologies into existing clinical trial systems. We then defined elements of a PROMIS Tool Kit required for integrating PROMIS into a multi-center clinical trial environment. The requirements identified in this study serve as a framework for future investigators in the design, development, implementation, and operation of PROMIS Tool Kit technologies. PMID:20703765
Photovoltaics for high capacity space power systems
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1988-01-01
The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays of storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.
Photovoltaics for high capacity space power systems
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1988-01-01
The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays or storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.
A perspective on microarrays: current applications, pitfalls, and potential uses
Jaluria, Pratik; Konstantopoulos, Konstantinos; Betenbaugh, Michael; Shiloach, Joseph
2007-01-01
With advances in robotics, computational capabilities, and the fabrication of high quality glass slides coinciding with increased genomic information being available on public databases, microarray technology is increasingly being used in laboratories around the world. In fact, fields as varied as: toxicology, evolutionary biology, drug development and production, disease characterization, diagnostics development, cellular physiology and stress responses, and forensics have benefiting from its use. However, for many researchers not familiar with microarrays, current articles and reviews often address neither the fundamental principles behind the technology nor the proper designing of experiments. Although, microarray technology is relatively simple, conceptually, its practice does require careful planning and detailed understanding of the limitations inherently present. Without these considerations, it can be exceedingly difficult to ascertain valuable information from microarray data. Therefore, this text aims to outline key features in microarray technology, paying particular attention to current applications as outlined in recent publications, experimental design, statistical methods, and potential uses. Furthermore, this review is not meant to be comprehensive, but rather substantive; highlighting important concepts and detailing steps necessary to conduct and interpret microarray experiments. Collectively, the information included in this text will highlight the versatility of microarray technology and provide a glimpse of what the future may hold. PMID:17254338
Space Transportation Materials and Structures Technology Workshop. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Cazier, F. W., Jr. (Compiler); Gardner, J. E. (Compiler)
1992-01-01
The workshop was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems; Propulsion Systems; and Entry Systems. The goals accomplished were (1) to develop important strategic planning information necessary to transition materials and structures technologies from lab research programs into robust and affordable operational systems; (2) to provide a forum for the exchange of information and ideas between technology developers and users; and (3) to provide senior NASA management with a review of current space transportation programs, related subjects, and specific technology needs. The workshop thus provided a foundation on which a NASA and industry effort to address space transportation materials and structures technologies can grow.
Technology transfer within the government
NASA Technical Reports Server (NTRS)
Christensen, Carissa Bryce
1992-01-01
The report of a workshop panel concerned with technology transfer within the government is presented. The suggested subtopics for the panel were as follows: (1) transfer from non-NASA U.S. government technology developers to NASA space missions/programs; and (2) transfer from NASA to other U.S. government civil space mission programs. Two presentations were made to the panel: Roles/Value of Early Strategic Planning Within the Space Exploration Initiative (SEI) to Facilitate Later Technology Transfer To and From Industry; and NOAA Satellite Programs and Technology Requirements. The panel discussion addresses the following major issues: DOD/NASA cooperation; alternative mechanisms for interagency communication and interactions; current technology transfer relationships among federal research agencies, and strategies for improving this transfer; technology transfer mechanisms appropriate to intragovernment transfer; the importance of industry as a technology transfer conduit; and measures of merit.
NASA Technical Reports Server (NTRS)
Brush, A. S.; Phillips, R. L.
1991-01-01
NASA Lewis Research Center and associated contractors have conducted a program to assess the potential requirements for a high-current switch to conceptually design a switch using the best existing technology, and to build and demonstrate a breadboard which meets the requirements. The result is the high current remote bus isolator (HRBI). The HRBI is rated at 180 V dc, 335 A continuous with a 1200 A interrupt rating. It also incorporates remote-control and protective features called for by the Space Station Freedom PMAD dc test bed design. Two breadboard 335 A circuit breakers were built and tested that demonstrate a promising concept of paralleled current-limiting modules. The units incorporated all control and protective features required by advanced aerospace power systems. Component stresses in each unit were determined by design, and are consistent with a life of many thousands of fault operations.
Technology in Paralympic sport: performance enhancement or essential for performance?
Burkett, Brendan
2010-02-01
People with disabilities often depend on assistive devices to enable activities of daily living as well as to compete in sport. Technological developments in sport can be controversial. To review, identify and describe current technological developments in assistive devices used in the summer Paralympic Games; and to prepare for the London 2012 Games, the future challenges and the role of technology are debated. A systematic review of the peer-reviewed literature and personal observations of technological developments at the Athens (2004) and Beijing (2008) Paralympic Games was conducted. Standard assistive devices can inhibit the Paralympians' abilities to perform the strenuous activities of their sports. Although many Paralympic sports only require technology similar to their Olympic counterparts, several unique technological modifications have been made in prosthetic and wheelchair devices. Technology is essential for the Paralympic athlete, and the potential technological advantage for a Paralympian, when competing against an Olympian, is unclear. Technology must match the individual requirements of the athlete with the sport in order for Paralympians to safely maximise their performance. Within the 'performance enhancement or essential for performance?' debate, any potential increase in mechanical performance from an assistive device must be considered holistically with the compensatory consequences the disability creates. To avoid potential technology controversies at the 2012 London Olympic and Paralympic Games, the role of technology in sport must be clarified.
KNOW ESSENTIALS: a tool for informed decisions in the absence of formal HTA systems.
Mathew, Joseph L
2011-04-01
Most developing countries and resource-limited settings lack robust health technology assessment (HTA) systems. Because the development of locally relevant HTA is not immediately viable, and the extrapolation of external HTA is inappropriate, a new model for evaluating health technologies is required. The aim of this study was to describe the development and application of KNOW ESSENTIALS, a tool facilitating evidence-based decisions on health technologies by stakeholders in settings lacking formal HTA systems. Current HTA methodology was examined through literature search. Additional issues relevant to resource-limited settings, but not adequately addressed in current methodology, were identified through further literature search, appraisal of contextually relevant issues, discussion with healthcare professionals familiar with the local context, and personal experience. A set of thirteen elements important for evidence-based decisions was identified, selected and combined into a tool with the mnemonic KNOW ESSENTIALS. Detailed definitions for each element, coding for the elements, and a system to evaluate a given health technology using the tool were developed. Developing countries and resource-limited settings face several challenges to informed decision making. Models that are relevant and applicable in high-income countries are unlikely in such settings. KNOW ESSENTIALS is an alternative that facilitates evidence-based decision making by stakeholders without formal expertise in HTA. The tool could be particularly useful, as an interim measure, in healthcare systems that are developing HTA capacity. It could also be useful anywhere when rapid evidence-based decisions on health technologies are required.
Research to Operations: The Critical Transition
NASA Technical Reports Server (NTRS)
Fogarty, Jennifer A.
2009-01-01
Space Life Sciences Directorate (SLSD) specializes in transitioning technology and knowledge to medical operations. This activity encompasses funding a spectrum of research and technology efforts, such as understanding fundamental biological mechanisms altered by microgravity and executing technology watches for state of the art diagnostic imaging equipment. This broad spectrum approach to fulfilling the need to protect crewmember health and performance during long and short duration missions to the International Space Station, moon and Mars is made possible by having a line of site between research and operations. Currently, SLSD's line of site is articulated in a transition to medical practice (TMP) process. This process is designed to shepherd information and knowledge gained through fundamental and mechanistic research toward the development of an operational solution such as a pre-flight selection criteria; an in-flight countermeasure, monitoring capability or treatment; or a post-flight reconditioning program. The TMP process is also designed to assist with the customization of mature hardware or technology for NASA specific use. The benefits of this process are that the concept of operational usability is interjected early in the research, design, or acquisition phase, and stakeholders are involved early to identify requirements and also periodically asked to assess requirements compliance of research or technology development project. Currently a device known as the actiwatch is being assessed for the final transition to operational use. Specific examples of research to operations transition success help to illustrate the process and bolster communication between the research and medical operations communities.
Electric and Hybrid Vehicle Technology: TOPTEC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-01
Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance ofmore » today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.« less
Electric and Hybrid Vehicle Technology: TOPTEC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance ofmore » today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.« less
Electric and hybrid vehicle technology: TOPTEC
NASA Astrophysics Data System (ADS)
Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between 'refueling' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of 'Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.
A Practical, Affordable Cryogenic Propellant Depot Based on ULA's Flight Experience
NASA Technical Reports Server (NTRS)
Kutter, Bernard F.; Zegler, Frank; O'Neil, Gary; Pitchford, Brian
2008-01-01
Mankind is embarking on the next step in the journey of human exploration. We are returning to the moon and eventually moving to Mars and beyond. The current Exploration architecture seeks a balance between the need for a robust infrastructure on the lunar surface, and the performance limitations of Ares I and V. The ability to refuel or top-off propellant tanks from orbital propellant depots offers NASA the opportunity to cost effectively and reliably satisfy these opposing requirements. The ability to cache large orbital quantities of propellant is also an enabling capability for missions to Mars and beyond. This paper describes an option for a propellant depot that enables orbital refueling supporting Exploration, national security, science and other space endeavors. This proposed concept is launched using a single EELV medium class rocket and thus does not require any orbital assembly. The propellant depot provides cryogenic propellant storage that utilizes flight proven technologies augmented with technologies currently under development. The propellant depot system, propellant management, flight experience, and key technologies are also discussed. Options for refueling the propellant depot along with an overview of Exploration architecture impacts are also presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-18
... farming activities (43 CFR 426.10 and the Act of July 7, 1970, Pub. L. 91-310). We are required to... information technology. We will summarize all comments received regarding this notice. We will publish that...
Environmental impacts of biofuel production and use
The 2007 Energy Independence and Security Act (EISA) required a significant increase in the production and use of renewable fuels. Given the current state of technology and infrastructure, nearly all of the projected volume of biofuel consumption over the foreseeable future is ex...
A PORTABLE MICROREACTOR SYSTEM TO SYNTHESIZE HYDROGEN PEROXIDE - PHASE I
In the event that vehicles of buildings become contaminated by hazardous chemical or biological materials, a well-studied and effective decontaminant is hydrogen peroxide vapor (HPV). Unfortunately, the current technology for generating HPV requires 35 weight percent hydro...
Crowe, Barbara J; Rio, Robin
2004-01-01
This article reviews the use of technology in music therapy practice and research for the purpose of providing music therapy educators and clinicians with specific and accurate accounts of the types and benefits of technology being used in various settings. Additionally, this knowledge will help universities comply with National Association of Schools of Music requirements and help to standardize the education and training of music therapists in this rapidly changing area. Information was gathered through a literature review of music therapy and related professional journals and a wide variety of books and personal communications. More data were gathered in a survey requesting information on current use of technology in education and practice. This solicitation was sent to all American Music Therapy Association approved universities and clinical training directors. Technology applications in music therapy are organized according to the following categories: (a) adapted musical instruments, (b) recording technology, (c) electric/electronic musical instruments, (d) computer applications, (e) medical technology, (f) assistive technology for the disabled, and (g) technology-based music/sound healing practices. The literature reviewed covers 177 books and articles from a span of almost 40 years. Recommendations are made for incorporating technology into music therapy course work and for review and revision of AMTA competencies. The need for an all-encompassing clinical survey of the use of technology in current music therapy practice is also identified.
NASA Technical Reports Server (NTRS)
Crabill, Norman L.; Dash, Ernie R.
1991-01-01
The weather information requirements for pilots and the deficiencies of the current aviation weather support system in meeting these requirements are defined. As the amount of data available to pilots increases significantly in the near future, expert system technology will be needed to assist pilots in assimilating that information. Some other desirable characteristics of an automation-assisted system for weather data acquisition, dissemination, and assimilation are also described.