Sample records for current theoretical understanding

  1. Planetary Sciences: American and Soviet Research

    NASA Technical Reports Server (NTRS)

    Donahue, Thomas M. (Editor); Trivers, Kathleen Kearney (Editor); Abramson, David M. (Editor)

    1991-01-01

    Papers presented at the US-USSR Workshop on Planetary Sciences are compiled. The purpose of the workshop was to examine the current state of theoretical understanding of how the planets were formed and how they evolved to their present state. The workshop assessed the types of observations and experiments that are needed to advance understanding of the formation and evolution of the solar system based on the current theoretical framework.

  2. A Holistic Theoretical Approach to Intellectual Disability: Going beyond the Four Current Perspectives

    ERIC Educational Resources Information Center

    Schalock, Robert L.; Luckasson, Ruth; Tassé, Marc J.; Verdugo, Miguel Angel

    2018-01-01

    This article describes a holistic theoretical framework that can be used to explain intellectual disability (ID) and organize relevant information into a usable roadmap to guide understanding and application. Developing the framework involved analyzing the four current perspectives on ID and synthesizing this information into a holistic…

  3. Theoretical Grounding: The "Missing Link" in Suicide Research.

    ERIC Educational Resources Information Center

    Rogers, James R.

    2001-01-01

    Discusses the strengths and limitations of the current pragmatic focus of research in suicidology and presents an argument for theoretical grounding as a precursor for continued advancement in this area. Presents an existential-constructivist framework of "meaning creation" as a theoretical heuristic for understanding suicide. Outlines general…

  4. A Holistic Theoretical Approach to Intellectual Disability: Going Beyond the Four Current Perspectives.

    PubMed

    Schalock, Robert L; Luckasson, Ruth; Tassé, Marc J; Verdugo, Miguel Angel

    2018-04-01

    This article describes a holistic theoretical framework that can be used to explain intellectual disability (ID) and organize relevant information into a usable roadmap to guide understanding and application. Developing the framework involved analyzing the four current perspectives on ID and synthesizing this information into a holistic theoretical framework. Practices consistent with the framework are described, and examples are provided of how multiple stakeholders can apply the framework. The article concludes with a discussion of the advantages and implications of a holistic theoretical approach to ID.

  5. A Systematic Review of Current Understandings of Employability

    ERIC Educational Resources Information Center

    Williams, Stella; Dodd, Lorna J.; Steele, Catherine; Randall, Raymond

    2016-01-01

    A theoretical framework is essential for the effective evaluation of employability. However, there are a wide range of definitions of employability coexisting in current literature. A review into existing ways in which employability has been conceptualised is needed to inform a better understanding of the nature of contributions made by various…

  6. Teaching for clinical reasoning - helping students make the conceptual links.

    PubMed

    McMillan, Wendy Jayne

    2010-01-01

    Dental educators complain that students struggle to apply what they have learnt theoretically in the clinical context. This paper is premised on the assumption that there is a relationship between conceptual thinking and clinical reasoning. The paper provides a theoretical framework for understanding the relationship between conceptual learning and clinical reasoning. A review of current literature is used to explain the way in which conceptual understanding influences clinical reasoning and the transfer of theoretical understandings to the clinical context. The paper argues that the connections made between concepts are what is significant about conceptual understanding. From this point of departure the paper describes teaching strategies that facilitate the kinds of learning opportunities that students need in order to develop conceptual understanding and to be able to transfer knowledge from theoretical to clinical contexts. Along with a variety of teaching strategies, the value of concept maps is discussed. The paper provides a framework for understanding the difficulties that students have in developing conceptual networks appropriate for later clinical reasoning. In explaining how students learn for clinical application, the paper provides a theoretical framework that can inform how dental educators facilitate the conceptual learning, and later clinical reasoning, of their students.

  7. Assessing Students' Understandings of Biological Models and Their Use in Science to Evaluate a Theoretical Framework

    ERIC Educational Resources Information Center

    Grünkorn, Juliane; Upmeier zu Belzen, Annette; Krüger, Dirk

    2014-01-01

    Research in the field of students' understandings of models and their use in science describes different frameworks concerning these understandings. Currently, there is no conjoint framework that combines these structures and so far, no investigation has focused on whether it reflects students' understandings sufficiently (empirical evaluation).…

  8. A Theoretical Framework towards Understanding of Emotional and Behavioural Difficulties

    ERIC Educational Resources Information Center

    Poulou, Maria S.

    2014-01-01

    Children's emotional and behavioural difficulties are the result of multiple individual, social and contextual factors working in concert. The current paper proposes a theoretical framework to interpret students' emotional and behavioural difficulties in schools, by taking into consideration teacher-student relationships, students'…

  9. Historical and Theoretical Perspectives on Appalachia's Economic Dependency.

    ERIC Educational Resources Information Center

    Salstrom, Paul

    The roots of Appalachia's economic dependency go back to the region's first settlers in the 1730s. Historical and theoretical analysis of this phenomenon is useful in understanding the current status of the area, including, the status of education. The early settler sought a "competency"--enough productive property to support a family.…

  10. Discovering the Literacy Gap: A Systematic Review of Reading and Writing Theories in Research

    ERIC Educational Resources Information Center

    Hodges, Tracey S.; Feng, Luxi; Kuo, Li-Jen; McTigue, Erin

    2016-01-01

    Research is failing to consistently report theoretical frameworks, increasing the gap between research and practice, and increasing the difficulty teachers face in effectively matching interventions with student needs. However, this lack of theoretical understanding has not been well documented in the current literature. The purpose of this…

  11. Technological Difficulties: A Theoretical Frame for Understanding the Non-Relativistic Permanence of Traditional Print Literacy in Elementary Education

    ERIC Educational Resources Information Center

    Hassett, Dawnene D.

    2006-01-01

    Currently, definitions of "science", "reading", and "literacy" in the US lend a seemingly nonrelativistic permanence to these terms, and render them resistant to critique. This paper offers a theoretical frame for critiquing this permanence, analysing why early-literacy instruction is tightly tied to traditional forms…

  12. Narratives of Menstrual Product Consumption: Convenience, Culture, or Commoditization?

    ERIC Educational Resources Information Center

    Davidson, Anna

    2012-01-01

    The environmental and social costs of consumer societies have increasingly been recognized. Achieving sustainable household consumption requires an understanding of the underlying roots of current consumption levels. Using the case study of menstrual care practices, different theoretical frameworks--or narratives--for understanding household…

  13. Understanding Developmental Reversals in False Memory: Reply to Ghetti (2008) and Howe (2008)

    ERIC Educational Resources Information Center

    Brainerd, C. J.; Reyna, V. F.; Ceci, S. J.; Holliday, R. E.

    2008-01-01

    S. Ghetti (2008) and M. L. Howe (2008) presented probative ideas for future research that will deepen scientific understanding of developmental reversals on false memory and establish boundary conditions for these counterintuitive patterns. Ghetti extended the purview of current theoretical principles by formulating hypotheses about how…

  14. Feminist Literary Criticism; Explorations in Theory.

    ERIC Educational Resources Information Center

    Donovan, Josephine, Ed.

    A collection of five essays (plus preface and afterword) by noted feminist critics, this book provides an overview of the existing body of feminist literary criticism in order to promote an understanding of the issues feminist critics are currently discussing among themselves and with other critics. A theoretical framework for understanding this…

  15. Some Key Issues in Creating Inquiry-Based Instructional Practices that Aim at the Understanding of Simple Electric Circuits

    ERIC Educational Resources Information Center

    Kock, Zeger-Jan; Taconis, Ruurd; Bolhuis, Sanneke; Gravemeijer, Koeno

    2013-01-01

    Many students in secondary schools consider the sciences difficult and unattractive. This applies to physics in particular, a subject in which students attempt to learn and understand numerous theoretical concepts, often without much success. A case in point is the understanding of the concepts current, voltage and resistance in simple electric…

  16. Nursing theory and concept development: a theoretical model of clinical nurses' intentions to stay in their current positions.

    PubMed

    Cowden, Tracy L; Cummings, Greta G

    2012-07-01

    We describe a theoretical model of staff nurses' intentions to stay in their current positions. The global nursing shortage and high nursing turnover rate demand evidence-based retention strategies. Inconsistent study outcomes indicate a need for testable theoretical models of intent to stay that build on previously published models, are reflective of current empirical research and identify causal relationships between model concepts. Two systematic reviews of electronic databases of English language published articles between 1985-2011. This complex, testable model expands on previous models and includes nurses' affective and cognitive responses to work and their effects on nurses' intent to stay. The concepts of desire to stay, job satisfaction, joy at work, and moral distress are included in the model to capture the emotional response of nurses to their work environments. The influence of leadership is integrated within the model. A causal understanding of clinical nurses' intent to stay and the effects of leadership on the development of that intention will facilitate the development of effective retention strategies internationally. Testing theoretical models is necessary to confirm previous research outcomes and to identify plausible sequences of the development of behavioral intentions. Increased understanding of the causal influences on nurses' intent to stay should lead to strategies that may result in higher retention rates and numbers of nurses willing to work in the health sector. © 2012 Blackwell Publishing Ltd.

  17. Time-Variable Phenomena in the Jovian System

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S. (Editor); West, Robert A. (Editor); Rahe, Jurgen (Editor); Pereyda, Margarita

    1989-01-01

    The current state of knowledge of dynamic processes in the Jovian system is assessed and summaries are provided of both theoretical and observational foundations upon which future research might be based. There are three sections: satellite phenomena and rings; magnetospheric phenomena, Io's torus, and aurorae; and atmospheric phenomena. Each chapter discusses time dependent theoretical framework for understanding and interpreting what is observed; others describe the evidence and nature of observed changes or their absence. A few chapters provide historical perspective and attempt to present a comprehensive synthesis of the current state of knowledge.

  18. Studying Supernovae under the Current Paradigm

    DOE PAGES

    Fryer, Chris L.

    2016-10-27

    Abstract The convection-enhanced paradigm behind core-collapse supernovae (SNe) invokes a multi-physics model where convection above the proto-neutron star is able to convert the energy released in the collapse to produce the violent explosions observed as SNe. Over the past decade, the evidence in support of this engine has grown, including constraints placed by SN neutrinos, energies, progenitors and remnants. Although considerable theoretical work remains to utilize this data, our understanding of normal SNe is advancing. To achieve a deeper level of understanding, we must find ways to compare detailed simulations with the increasing set of observational data. Here we reviewmore » the current constraints and how we can apply our current understanding to broaden our understanding of these powerful engines.« less

  19. Studying Supernovae under the Current Paradigm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryer, Chris L.

    Abstract The convection-enhanced paradigm behind core-collapse supernovae (SNe) invokes a multi-physics model where convection above the proto-neutron star is able to convert the energy released in the collapse to produce the violent explosions observed as SNe. Over the past decade, the evidence in support of this engine has grown, including constraints placed by SN neutrinos, energies, progenitors and remnants. Although considerable theoretical work remains to utilize this data, our understanding of normal SNe is advancing. To achieve a deeper level of understanding, we must find ways to compare detailed simulations with the increasing set of observational data. Here we reviewmore » the current constraints and how we can apply our current understanding to broaden our understanding of these powerful engines.« less

  20. Understanding the "Other": Rethinking Multiculturalism in South Korea through Gadamer's Philosophical Hermeneutics

    ERIC Educational Resources Information Center

    Kim, Jeong-Hee; So, Kyunghee

    2018-01-01

    In this paper, we interrogate the current state of multiculturalism and multicultural education in South Korea and offer a possible theoretical framework that is lacking in the field of multicultural education. We provide three principles of multicultural understanding grounded in Gadamer's philosophical hermeneutics to inform multiculturalism in…

  1. A Brief History of CME Science

    NASA Technical Reports Server (NTRS)

    Alexander, David; Richardson, Ian G.; Zurbuchen, Thomas H.

    2006-01-01

    We present here a brief summary of the rich heritage of observational and theoretical research leading to the development of our current understanding of the initiation, structure, and evolution of Coronal Mass Ejections.

  2. To Be Cared for and to Care: Understanding Theoretical Conceptions of Care as a Framework for Effective Inclusion in Early Childhood Education and Care

    ERIC Educational Resources Information Center

    Wood, Rebecca

    2015-01-01

    This article argues that incorporating theoretical conceptions of care into Early Childhood Education and Care (ECEC) programmes creates a foundation for achieving the effective inclusion of children with disabilities. Critical examinations of the origins of care theory and current conceptions of care are used to consider the differing valuation…

  3. Understanding access to healthcare among Indigenous peoples: A comparative analysis of biomedical and postcolonial perspectives.

    PubMed

    Horrill, Tara; McMillan, Diana E; Schultz, Annette S H; Thompson, Genevieve

    2018-03-25

    As nursing professionals, we believe access to healthcare is fundamental to health and that it is a determinant of health. Therefore, evidence suggesting access to healthcare is problematic for many Indigenous peoples is concerning. While biomedical perspectives underlie our current understanding of access, considering alternate perspectives could expand our awareness of and ability to address this issue. In this paper, we critique how access to healthcare is understood through a biomedical lens, how a postcolonial theoretical lens can extend that understanding, and the subsequent implications this alternative view raises for the nursing profession. Drawing on peer-reviewed published and gray literature concerning healthcare access and Indigenous peoples to inform this critique, we focus on the underlying theoretical lens shaping our current understanding of access. A postcolonial analysis provides a way of understanding healthcare as a social space and social relationship, presenting a unique perspective on access to healthcare. The novelty of this finding is of particular importance for the profession of nursing, as we are well situated to influence these social aspects, improving access to healthcare services broadly, and among Indigenous peoples specifically. © 2018 The Authors Nursing Inquiry published by John Wiley & Sons Ltd.

  4. Why Haven't We Solved Instructed SLA? A Sociocognitive Account

    ERIC Educational Resources Information Center

    Toth, Paul D.; Moranski, Kara

    2018-01-01

    Translating current principles of language learning into effective classroom practice requires a nuanced understanding of the cognitive and social factors that shape how learners engage in instructional activity. In this paper, we identify four principles that represent a current theoretical consensus in the field, which we hope will guide…

  5. Report on the Program “Fluid-mediated particle transport in geophysical flows” at the Kavli Institute for Theoretical Physics, UC Santa Barbara, September 23 to December 12, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, James T.; Meiburg, Eckart; Valance, Alexandre

    2015-09-15

    The Kavli Institute of Theoretical Physics (KITP) program held at UC Santa Barbara in the fall of 2013 addressed the dynamics of dispersed particulate flows in the environment. By focusing on the prototypes of aeolian transport and turbidity currents, it aimed to establish the current state of our understanding of such two-phase flows, to identify key open questions, and to develop collaborative research strategies for addressing these questions. Here, we provide a brief summary of the program outcome.

  6. Report on the Program "Fluid-mediated particle transport in geophysical flows" at the Kavli Institute for Theoretical Physics, UC Santa Barbara, September 23 to December 12, 2013

    NASA Astrophysics Data System (ADS)

    Jenkins, James T.; Meiburg, Eckart; Valance, Alexandre

    2015-09-01

    The Kavli Institute of Theoretical Physics (KITP) program held at UC Santa Barbara in the fall of 2013 addressed the dynamics of dispersed particulate flows in the environment. By focusing on the prototypes of aeolian transport and turbidity currents, it aimed to establish the current state of our understanding of such two-phase flows, to identify key open questions, and to develop collaborative research strategies for addressing these questions. Here, we provide a brief summary of the program outcome.

  7. Information Processing: A Review of Implications of Johnstone's Model for Science Education

    ERIC Educational Resources Information Center

    St Clair-Thompson, Helen; Overton, Tina; Botton, Chris

    2010-01-01

    The current review is concerned with an information processing model used in science education. The purpose is to summarise the current theoretical understanding, in published research, of a number of factors that are known to influence learning and achievement. These include field independence, working memory, long-term memory, and the use of…

  8. Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes.

    PubMed

    Brechwald, Whitney A; Prinstein, Mitchell J

    2011-03-01

    This article reviews empirical and theoretical contributions to a multidisciplinary understanding of peer influence processes in adolescence over the past decade. Five themes of peer influence research from this decade were identified, including a broadening of the range of behaviors for which peer influence occurs, distinguishing the sources of influence, probing the conditions under which influence is amplified/attenuated (moderators), testing theoretically based models of peer influence processes (mechanisms), and preliminary exploration of behavioral neuroscience perspectives on peer influence. This review highlights advances in each of these areas, underscores gaps in current knowledge of peer influence processes, and outlines important challenges for future research.

  9. Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes

    PubMed Central

    Brechwald, Whitney A.; Prinstein, Mitchell J.

    2013-01-01

    This article reviews empirical and theoretical contributions to a multidisciplinary understanding of peer influence processes in adolescence over the past decade. Five themes of peer influence research from this decade were identified, including a broadening of the range of behaviors for which peer influence occurs, distinguishing the sources of influence, probing the conditions under which influence is amplified/attenuated (moderators), testing theoretically based models of peer influence processes (mechanisms), and preliminary exploration of behavioral neuroscience perspectives on peer influence. This review highlights advances in each of these areas, underscores gaps in current knowledge of peer influence processes, and outlines important challenges for future research. PMID:23730122

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuevas, F.A.; Curilef, S., E-mail: scurilef@ucn.cl; Plastino, A.R., E-mail: arplastino@ugr.es

    The spread of a wave-packet (or its deformation) is a very important topic in quantum mechanics. Understanding this phenomenon is relevant in connection with the study of diverse physical systems. In this paper we apply various 'spreading measures' to characterize the evolution of an initially localized wave-packet in a tight-binding lattice, with special emphasis on information-theoretical measures. We investigate the behavior of both the probability distribution associated with the wave packet and the concomitant probability current. Complexity measures based upon Renyi entropies appear to be particularly good descriptors of the details of the delocalization process. - Highlights: > Spread ofmore » highly localized wave-packet in the tight-binding lattice. > Entropic and information-theoretical characterization is used to understand the delocalization. > The behavior of both the probability distribution and the concomitant probability current is investigated. > Renyi entropies appear to be good descriptors of the details of the delocalization process.« less

  11. Trying to Get Ahead of the Curve: Raising and Understanding Current Themes in New Literacies Practices

    ERIC Educational Resources Information Center

    Wilber, Dana

    2012-01-01

    This article addresses the following questions: What impact does using the theoretical framework of new literacies have on understanding language, literacy, and learning practices today as technologies are constantly being developed and used? What is the state of research in this area? What are some new directions the field might take in order to…

  12. Theoretical Framework for Interaction Game Design

    DTIC Science & Technology

    2016-05-19

    modeling. We take a data-driven quantitative approach to understand conversational behaviors by measuring conversational behaviors using advanced sensing...current state of the art, human computing is considered to be a reasonable approach to break through the current limitation. To solicit high quality and...proper resources in conversation to enable smooth and effective interaction. The last technique is about conversation measurement , analysis, and

  13. Theoretical model of gravitational perturbation of current collector axisymmetric flow field

    NASA Astrophysics Data System (ADS)

    Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1990-05-01

    Some designs of liquid-metal current collectors in homopolar motors and generators are essentially rotating liquid-metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. An investigation at David Taylor Research Center is being performed to understand the role of gravity in modifying this ejection instability. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical-current-collector ejection values neglecting gravity effects. The purpose of this paper is to document the derivation of the mathematical model which determines the perturbation of the liquid-metal base flow due to gravitational effects. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid-flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector.

  14. Traditional fire-use, landscape transition, and the legacies of social theory past.

    PubMed

    Coughlan, Michael R

    2015-12-01

    Fire-use and the scale and character of its effects on landscapes remain hotly debated in the paleo- and historical-fire literature. Since the second half of the nineteenth century, anthropology and geography have played important roles in providing theoretical propositions and testable hypotheses for advancing understandings of the ecological role of human-fire-use in landscape histories. This article reviews some of the most salient and persistent theoretical propositions and hypotheses concerning the role of humans in historical fire ecology. The review discusses this history in light of current research agendas, such as those offered by pyrogeography. The review suggests that a more theoretically cognizant historical fire ecology should strive to operationalize transdisciplinary theory capable of addressing the role of human variability in the evolutionary history of landscapes. To facilitate this process, researchers should focus attention on integrating more current human ecology theory into transdisciplinary research agendas.

  15. Theory and practice in sport psychology and motor behaviour needs to be constrained by integrative modelling of brain and behaviour.

    PubMed

    Keil, D; Holmes, P; Bennett, S; Davids, K; Smith, N

    2000-06-01

    Because of advances in technology, the non-invasive study of the human brain has enhanced the knowledge base within the neurosciences, resulting in an increased impact on the psychological study of human behaviour. We argue that application of this knowledge base should be considered in theoretical modelling within sport psychology and motor behaviour alongside existing ideas. We propose that interventions founded on current theoretical and empirical understanding in both psychology and the neurosciences may ultimately lead to greater benefits for athletes during practice and performance. As vehicles for exploring the arguments of a greater integration of psychology and neurosciences research, imagery and perception-action within the sport psychology and motor behaviour domains will serve as exemplars. Current neuroscience evidence will be discussed in relation to theoretical developments; the implications for sport scientists will be considered.

  16. El paradigma jerarquico de formacion de estructuras

    NASA Astrophysics Data System (ADS)

    Lambas, D. G.

    This contribution aims at showing our current understanding of the hierarchical clustering scenario for structure formation, its main success in terms of agreement of theoretical predictions and observations, and the most direct tests that provide confidence on the validity of the paradigm. FULL TEXT IN SPANISH

  17. Transitory Moments in Infant/Toddler Play: Agentic Imagination

    ERIC Educational Resources Information Center

    Ridgway, Avis; Li, Liang; Quiñones, Gloria

    2016-01-01

    Studying relationships in infant/toddler play, using visual narrative methodology to identify transitory moments, supports our current research on babies and toddlers. We use Vygotsky's theorisation of play to understand children's affective and intellectual aspirations in play. The theoretical discussion, using cultural-historical concepts,…

  18. Wife Abuse and the Wife Abuser: Review and Recommendations.

    ERIC Educational Resources Information Center

    Carden, Ann D.

    1994-01-01

    Reviews clinical, theoretical, and empirical literature on wife abuse/abusers. Presents historical and contextual information, overview of domestic violence, prevalence data, and descriptions of evolution and current status of public and professional awareness and response. Proposes integrative model for understanding etiologic, dynamic, and…

  19. Theoretical Approaches in Evolutionary Ecology: Environmental Feedback as a Unifying Perspective.

    PubMed

    Lion, Sébastien

    2018-01-01

    Evolutionary biology and ecology have a strong theoretical underpinning, and this has fostered a variety of modeling approaches. A major challenge of this theoretical work has been to unravel the tangled feedback loop between ecology and evolution. This has prompted the development of two main classes of models. While quantitative genetics models jointly consider the ecological and evolutionary dynamics of a focal population, a separation of timescales between ecology and evolution is assumed by evolutionary game theory, adaptive dynamics, and inclusive fitness theory. As a result, theoretical evolutionary ecology tends to be divided among different schools of thought, with different toolboxes and motivations. My aim in this synthesis is to highlight the connections between these different approaches and clarify the current state of theory in evolutionary ecology. Central to this approach is to make explicit the dependence on environmental dynamics of the population and evolutionary dynamics, thereby materializing the eco-evolutionary feedback loop. This perspective sheds light on the interplay between environmental feedback and the timescales of ecological and evolutionary processes. I conclude by discussing some potential extensions and challenges to our current theoretical understanding of eco-evolutionary dynamics.

  20. Consequences of Psychotherapy Clients' Mental Health Ideology.

    ERIC Educational Resources Information Center

    Milling, Len; Kirsch, Irving

    Current theoretical approaches to understanding emotional difficulties are dominated by the medical model of mental illness, which assumes that emotional dysfunction can be viewed the same way as physical dysfunction. To examine the relationship between psychotherapy clients' beliefs about the medical model of psychotherapy and their behavior…

  1. Wave heating of the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Arregui, Iñigo

    2015-04-01

    Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding of coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding of the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us to understand and quantify magnetic wave heating of the solar atmosphere.

  2. Possibility of designing catalysts beyond the traditional volcano curve: a theoretical framework for multi-phase surfaces.

    PubMed

    Wang, Ziyun; Wang, Hai-Feng; Hu, P

    2015-10-01

    The current theory of catalyst activity in heterogeneous catalysis is mainly obtained from the study of catalysts with mono-phases, while most catalysts in real systems consist of multi-phases, the understanding of which is far short of chemists' expectation. Density functional theory (DFT) and micro-kinetics simulations are used to investigate the activities of six mono-phase and nine bi-phase catalysts, using CO hydrogenation that is arguably the most typical reaction in heterogeneous catalysis. Excellent activities that are beyond the activity peak of traditional mono-phase volcano curves are found on some bi-phase surfaces. By analyzing these results, a new framework to understand the unexpected activities of bi-phase surfaces is proposed. Based on the framework, several principles for the design of multi-phase catalysts are suggested. The theoretical framework extends the traditional catalysis theory to understand more complex systems.

  3. Wave heating of the solar atmosphere

    PubMed Central

    Arregui, Iñigo

    2015-01-01

    Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding of coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding of the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us to understand and quantify magnetic wave heating of the solar atmosphere. PMID:25897091

  4. Accretion in active galactic nuclei and disk-jet coupling

    NASA Astrophysics Data System (ADS)

    Czerny, B.; You, B.

    2016-02-01

    We review the current state of understanding how accretion onto a black hole proceeds and what the key elements needed to form relativistic jets are. Theoretical progress is severely undermined by the lack of thorough understanding of the microphysics involved in accretion discs and in the formation of jets, particularly in the presence of strong magnetic fields. Therefore, all proposed solutions are still models that need to be validated by observational constraints.

  5. An examination of fuel particle heating during fire spread

    Treesearch

    Jack D. Cohen; Mark A. Finney

    2010-01-01

    Recent high intensity wildfires and our demonstrated inability to control extreme fire behavior suggest a need for alternative approaches for preventing wildfire disasters. Current fire spread models are not sufficiently based on a basic understanding of fire spread processes to provide more effective management alternatives. An experimental and theoretical approach...

  6. Imagining Globalization through Latin American Literature

    ERIC Educational Resources Information Center

    Seminet, Georgia

    2009-01-01

    Through a combination of practical applications and theoretical underpinnings, this article explores the question of how to approach the teaching of Latin American Literature in the current period of globalization. Many theorists argue that we need new epistemologies in which to ground our pedagogy for the 21st century. Understanding the effects…

  7. Particle Acceleration in Relativistic Outflows

    NASA Technical Reports Server (NTRS)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  8. Understanding Learning Cultures

    ERIC Educational Resources Information Center

    Hodkinson, Phil; Biesta, Gert; James, David

    2007-01-01

    This paper sets out an explanation about the nature of learning cultures and how they work. In so doing, it directly addresses some key weaknesses in current situated learning theoretical writing, by working to overcome unhelpful dualisms, such as the individual and the social, and structure and agency. It does this through extensive use of some…

  9. Empathy: Historic and Current Conceptualizations, Measurement, and a Cognitive Theoretical Perspective

    ERIC Educational Resources Information Center

    Deutsch, F.; Madle, R. A.

    1975-01-01

    This paper reviews literature on conceptualizations of empathy, examining (1) whether empathetic response is an understanding or sharing of affect; (2) whether empathetic response is a response to an object, another's affect, and/or circumstance; (3) which mechanisms explain empathy; and (4) whether various definitions of empathy require…

  10. Understanding the Current Dynamical States of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Pooley, David

    2008-09-01

    We appear to be on the verge of a major paradigm shift in our understanding of the current dynamical states of Galactic globular clusters. Fregeau (2008) brought together two recent theoretical breakthroughs as well as an observational breakthrough made possible by Chandra -- that a globular cluster's X-ray source population scales with its dynamical encounter frequency -- to persuasively argue that we have misunderstood the dynamical states of Galactic globular clusters. The observational evidence hinges on Chandra results from clusters which are classified as "core collapsed," of which there are only a handful of observations. I propose a nearly complete census with Chandra of the rest of the "core collapsed" globular clusters.

  11. The Intersection of Theory and Application in Elucidating Pattern Formation in Developmental Biology

    PubMed Central

    Othmer, Hans G.; Painter, Kevin; Umulis, David; Xue, Chuan

    2009-01-01

    We discuss theoretical and experimental approaches to three distinct developmental systems that illustrate how theory can influence experimental work and vice-versa. The chosen systems – Drosophila melanogaster, bacterial pattern formation, and pigmentation patterns – illustrate the fundamental physical processes of signaling, growth and cell division, and cell movement involved in pattern formation and development. These systems exemplify the current state of theoretical and experimental understanding of how these processes produce the observed patterns, and illustrate how theoretical and experimental approaches can interact to lead to a better understanding of development. As John Bonner said long ago ‘We have arrived at the stage where models are useful to suggest experiments, and the facts of the experiments in turn lead to new and improved models that suggest new experiments. By this rocking back and forth between the reality of experimental facts and the dream world of hypotheses, we can move slowly toward a satisfactory solution of the major problems of developmental biology.’ PMID:19844610

  12. Optical Air Flow Measurements in Flight

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Jentink, Henk W.

    2004-01-01

    This document has been written to assist the flight-test engineer and researcher in using optical flow measurements in flight applications. The emphasis is on describing tradeoffs in system design to provide desired measurement performance as currently understood. Optical system components are discussed with examples that illustrate the issues. The document concludes with descriptions of optical measurement systems designed for a variety of applications including aeronautics research, airspeed measurement, and turbulence hazard detection. Theoretical discussion is minimized, but numerous references are provided to supply ample opportunity for the reader to understand the theoretical underpinning of optical concepts.

  13. Approaches for scalable modeling and emulation of cyber systems : LDRD final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, Jackson R.; Minnich, Ronald G.; Armstrong, Robert C.

    2009-09-01

    The goal of this research was to combine theoretical and computational approaches to better understand the potential emergent behaviors of large-scale cyber systems, such as networks of {approx} 10{sup 6} computers. The scale and sophistication of modern computer software, hardware, and deployed networked systems have significantly exceeded the computational research community's ability to understand, model, and predict current and future behaviors. This predictive understanding, however, is critical to the development of new approaches for proactively designing new systems or enhancing existing systems with robustness to current and future cyber threats, including distributed malware such as botnets. We have developed preliminarymore » theoretical and modeling capabilities that can ultimately answer questions such as: How would we reboot the Internet if it were taken down? Can we change network protocols to make them more secure without disrupting existing Internet connectivity and traffic flow? We have begun to address these issues by developing new capabilities for understanding and modeling Internet systems at scale. Specifically, we have addressed the need for scalable network simulation by carrying out emulations of a network with {approx} 10{sup 6} virtualized operating system instances on a high-performance computing cluster - a 'virtual Internet'. We have also explored mappings between previously studied emergent behaviors of complex systems and their potential cyber counterparts. Our results provide foundational capabilities for further research toward understanding the effects of complexity in cyber systems, to allow anticipating and thwarting hackers.« less

  14. Why do children and adolescents bully their peers? A critical review of key theoretical frameworks.

    PubMed

    Thomas, Hannah J; Connor, Jason P; Scott, James G

    2018-05-01

    Bullying is a significant public health problem for children and adolescents worldwide. Evidence suggests that both being bullied (bullying victimisation) and bullying others (bullying perpetration) are associated with concurrent and future mental health problems. The onset and course of bullying perpetration are influenced by individual as well as systemic factors. Identifying effective solutions to address bullying requires a fundamental understanding of why it occurs. Drawing from multi-disciplinary domains, this review provides a summary and synthesis of the key theoretical frameworks applied to understanding and intervening on the issue of bullying. A number of explanatory models have been used to elucidate the dynamics of bullying, and broadly these correspond with either system (e.g., social-ecological, family systems, peer-group socialisation) or individual-level (e.g., developmental psychopathology, genetic, resource control, social-cognitive) frameworks. Each theory adds a unique perspective; however, no single framework comprehensively explains why bullying occurs. This review demonstrates that the integration of theoretical perspectives achieves a more nuanced understanding of bullying which is necessary for strengthening evidence-based interventions. Future progress requires researchers to integrate both the systems and individual-level theoretical frameworks to further improve current interventions. More effective intervention across different systems as well as tailoring interventions to the specific needs of the individuals directly involved in bullying will reduce exposure to a key risk factor for mental health problems.

  15. Refinement of a Conceptual Model for Adolescent Readiness to Engage in End-of-Life Discussions.

    PubMed

    Bell, Cynthia J; Zimet, Gregory D; Hinds, Pamela S; Broome, Marion E; McDaniel, Anna M; Mays, Rose M; Champion, Victoria L

    Adolescents living with incurable cancer require ongoing support to process grief, emotions, and information as disease progresses including treatment options (phase 1 clinical trials and/or hospice/palliative care). Little is known about how adolescents become ready for such discussions. The purpose of this study was to explore the process of adolescent readiness for end-of-life preparedness discussions, generating a theoretical understanding for guiding clinical conversations when curative options are limited. We explored 2 in-depth cases across time using case-study methodology. An à priori conceptual model based on current end-of-life research guided data collection and analysis. Multiple sources including in-depth adolescent interviews generated data collection on model constructs. Analysis followed a logical sequence establishing a chain of evidence linking raw data to study conclusions. Synthesis and data triangulation across cases and time led to theoretical generalizations. Initially, we proposed a linear process of readiness with 3 domains: a cognitive domain (awareness), an emotional domain (acceptance), and a behavioral domain (willingness), which preceded preparedness. Findings led to conceptual model refinement showing readiness is a dynamic internal process that interacts with preparedness. Current awareness context facilitates the type of preparedness discussions (cognitive or emotional). Furthermore, social constraint inhibits discussions. Data support theoretical understanding of the dynamism of readiness. Future research that validates adolescent conceptualization will ensure age-appropriate readiness representation. Understanding the dynamic process of readiness for engaging in end-of-life preparedness provides clinician insight for guiding discussions that facilitate shared decision making and promote quality of life for adolescents and their families.

  16. Pacific western boundary currents and their roles in climate.

    PubMed

    Hu, Dunxin; Wu, Lixin; Cai, Wenju; Gupta, Alex Sen; Ganachaud, Alexandre; Qiu, Bo; Gordon, Arnold L; Lin, Xiaopei; Chen, Zhaohui; Hu, Shijian; Wang, Guojian; Wang, Qingye; Sprintall, Janet; Qu, Tangdong; Kashino, Yuji; Wang, Fan; Kessler, William S

    2015-06-18

    Pacific Ocean western boundary currents and the interlinked equatorial Pacific circulation system were among the first currents of these types to be explored by pioneering oceanographers. The widely accepted but poorly quantified importance of these currents-in processes such as the El Niño/Southern Oscillation, the Pacific Decadal Oscillation and the Indonesian Throughflow-has triggered renewed interest. Ongoing efforts are seeking to understand the heat and mass balances of the equatorial Pacific, and possible changes associated with greenhouse-gas-induced climate change. Only a concerted international effort will close the observational, theoretical and technical gaps currently limiting a robust answer to these elusive questions.

  17. A Distance Judgment Function Based on Space Perception Mechanisms: Revisiting Gilinsky's (1951) Equation

    ERIC Educational Resources Information Center

    Ooi, Teng Leng; He, Zijiang J.

    2007-01-01

    In her seminal article in "Psychological Review," A. S. Gilinsky (1951) successfully described the relationship between physical distance (D) and perceived distance (d) with the equation d = DA/(A + D), where A = constant. To understand its theoretical underpinning, the authors of the current article capitalized on space perception mechanisms…

  18. Toward a Dynamic, Multidimensional Research Framework for Strategic Processing

    ERIC Educational Resources Information Center

    Dinsmore, Daniel L.

    2017-01-01

    While the empirical literature on strategic processing is vast, understanding how and why certain strategies work for certain learners is far from clear. The purpose of this review is to systematically examine the theoretical and empirical literature on strategic process to parse out current conceptual and methodological progress to inform new…

  19. A New Big Five: Fundamental Principles for an Integrative Science of Personality

    ERIC Educational Resources Information Center

    McAdams, Dan P.; Pals, Jennifer L.

    2006-01-01

    Despite impressive advances in recent years with respect to theory and research, personality psychology has yet to articulate clearly a comprehensive framework for understanding the whole person. In an effort to achieve that aim, the current article draws on the most promising empirical and theoretical trends in personality psychology today to…

  20. Research on Automatic Classification, Indexing and Extracting. Annual Progress Report.

    ERIC Educational Resources Information Center

    Baker, F.T.; And Others

    In order to contribute to the success of several studies for automatic classification, indexing and extracting currently in progress, as well as to further the theoretical and practical understanding of textual item distributions, the development of a frequency program capable of supplying these types of information was undertaken. The program…

  1. Gender, Change and Identity: Mature Women Students in Universities.

    ERIC Educational Resources Information Center

    Merrill, Barbara

    This book examines women's lives, past and present, to understand experiences of mature women students in universities. Chapter 1 explores current research and literature on mature women students in adult and continuing education. Chapter 2 reflects on the value of sociology and particular theoretical approaches such as feminist sociology, action,…

  2. Contact, Attitude and Motivation in the Learning of Catalan at Advanced Levels

    ERIC Educational Resources Information Center

    Hamilton, Colleen; Serrano, Raquel

    2015-01-01

    The theoretical complexity of current understandings of second language (L2) identity has brought the study of language learning motivations from basic concepts of intrinsic, integrative and instrumental motives to a more dynamic construct that interacts with background factors, learning contexts and proficiency levels. This cross-sectional study…

  3. An Organizational and Qualitative Approach to Improving University Course Scheduling

    ERIC Educational Resources Information Center

    Hill, Duncan L.

    2010-01-01

    Focusing on the current timetabling process at the University of Toronto Mississauga (UTM), I apply David Wesson's theoretical framework in order to understand (1) how increasing enrollment interacts with a decentralized timetabling process to limit the flexibility of course schedules and (2) the resultant impact on educational quality. I then…

  4. Social Learning Theory: Toward a Unified Approach of Pediatric Procedural Pain

    ERIC Educational Resources Information Center

    Page, Lynn Olson; Blanchette, Jennifer A.

    2009-01-01

    Undermanaged procedural pain has been shown to have short and long term effects on children. While significant progress regarding empirically supported treatments has been made, theoretical bases for the development and management of procedural pain are lacking. This paper examines the role of social learning theory in our current understanding of…

  5. Qualitative Timetabling: An Organizational and Qualitative Approach to Improving University Course Scheduling

    ERIC Educational Resources Information Center

    Hill, Duncan L.

    2008-01-01

    Focusing on the current timetabling process at the University of Toronto Mississauga, I apply David Wesson's theoretical framework in order to understand how increasing enrolment interacts with a decentralized timetabling process to limit the flexibility of course schedules, and the resultant impact on educational quality. I then apply Robert…

  6. Topics in Finance Part I--Introduction and Stockholder Wealth Maximization

    ERIC Educational Resources Information Center

    Laux, Judy

    2010-01-01

    The following article represents the first in a series dedicated to presenting students the opportunity to better understand the key theoretical constructs in the introductory financial management course. The current essay offers an introduction to the series and covers the topics of stockholder wealth maximization and its close cousin, agency…

  7. Young, Gifted, and Female: A Look at Academic and Social Needs

    ERIC Educational Resources Information Center

    Meredith, Corine Cadle

    2009-01-01

    This article illuminates the current status of our understanding regarding the academic and social-emotional needs of gifted, early adolescent females in the United States. A synthesis of both theoretical and empirical studies addresses two foundational questions. First, how do we describe the unique population of gifted, female, adolescent…

  8. New Developments in ESP Teaching and Learning Research

    ERIC Educational Resources Information Center

    Sarré, Cédric, Ed.; Whyte, Shona, Ed.

    2017-01-01

    This volume intends to address key issues related to research in English for Specific Purposes (ESP) teaching and learning by bringing together current research at the intersection of the theoretical and practical dimensions of ESP. Readers will discover a treasury of information they will find useful to their own understanding of research into…

  9. A Brief History of Family Life Education in Romania

    ERIC Educational Resources Information Center

    Momanu, Mariana; Popa, Nicoleta Laura; Samoila, Magda-Elena

    2018-01-01

    Starting from the state of conceptual diversity, semantic ambiguity, and poor connection of family life education practices to current policies and theoretical models in Romania, our study aims at understanding the underlying meanings of these issues by recourse to the history of approaches in the field. To this purpose, we carried out a…

  10. "I Was Dead Restorative Today": From Restorative Justice to Restorative Approaches in School

    ERIC Educational Resources Information Center

    McCluskey, G.; Lloyd, G.; Stead, J.; Kane, J.; Riddell, S.; Weedon, E.

    2008-01-01

    This paper explores definitions and understandings of restorative practices in education. It offers a critique of current theoretical models of restorative justice originally derived from the criminal justice system and now becoming popular in educational settings. It questions the appropriateness of these concepts as they are being introduced to…

  11. Coping, acculturation, and psychological adaptation among migrants: a theoretical and empirical review and synthesis of the literature

    PubMed Central

    Kuo, Ben C.H.

    2014-01-01

    Given the continuous, dynamic demographic changes internationally due to intensive worldwide migration and globalization, the need to more fully understand how migrants adapt and cope with acculturation experiences in their new host cultural environment is imperative and timely. However, a comprehensive review of what we currently know about the relationship between coping behavior and acculturation experience for individuals undergoing cultural changes has not yet been undertaken. Hence, the current article aims to compile, review, and examine cumulative cross-cultural psychological research that sheds light on the relationships among coping, acculturation, and psychological and mental health outcomes for migrants. To this end, this present article reviews prevailing literature pertaining to: (a) the stress and coping conceptual perspective of acculturation; (b) four theoretical models of coping, acculturation and cultural adaptation; (c) differential coping pattern among diverse acculturating migrant groups; and (d) the relationship between coping variabilities and acculturation levels among migrants. In terms of theoretical understanding, this review points to the relative strengths and limitations associated with each of the four theoretical models on coping-acculturation-adaptation. These theories and the empirical studies reviewed in this article further highlight the central role of coping behaviors/strategies in the acculturation process and outcome for migrants and ethnic populations, both conceptually and functionally. Moreover, the review shows that across studies culturally preferred coping patterns exist among acculturating migrants and migrant groups and vary with migrants' acculturation levels. Implications and limitations of the existing literature for coping, acculturation, and psychological adaptation research are discussed and recommendations for future research are put forth. PMID:25750766

  12. Planetary geosciences, 1988

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T. (Editor); Plescia, Jeff L. (Editor); James, Odette B. (Editor); Macpherson, Glenn (Editor)

    1989-01-01

    Research topics within the NASA Planetary Geosciences Program are presented. Activity in the fields of planetary geology, geophysics, materials, and geochemistry is covered. The investigator's current research efforts, the importance of that work in understanding a particular planetary geoscience problem, the context of that research, and the broader planetary geoscience effort is described. As an example, theoretical modelling of the stability of water ice within the Martian regolith, the applicability of that work to understanding Martian volatiles in general, and the geologic history of Mars is discussed.

  13. The Substorm Current Wedge Revisited

    NASA Astrophysics Data System (ADS)

    Kepko, Larry; McPherron, Robert; Apatenkov, Sergey; Baumjohann, Wolfgang; Birn, Joachim; Lester, Mark; Nakamura, Rumi; Pulkkinen, Tuija; Sergeev, Victor

    2015-04-01

    Almost 40 years ago the concept of the substorm current wedge was developed to explain the magnetic signatures observed on the ground and in geosynchronous orbit during substorm expansion. In the ensuing decades new observations, including radar and low-altitude spacecraft, MHD simulations, and theoretical considerations have tremendously advanced our understanding of this system. The AMPTE/IRM, THEMIS and Cluster missions have added considerable observational knowledge, especially on the important role of fast flows in producing the stresses that generate the substorm current wedge. Recent detailed, multi-spacecraft, multi-instrument observations both in the magnetosphere and in the ionosphere have brought a wealth of new information about the details of the temporal evolution and structure of the current system. In this paper, we briefly review recent in situ and ground-based observations and theoretical work that have demonstrated a need for an update of the original picture. We present a revised, time-dependent picture of the substorm current wedge that follows its evolution from the initial substorm flows through substorm expansion and recovery, and conclude by identifying open questions.

  14. Substorm Current Wedge Revisited

    NASA Astrophysics Data System (ADS)

    Kepko, L.; McPherron, R. L.; Amm, O.; Apatenkov, S.; Baumjohann, W.; Birn, J.; Lester, M.; Nakamura, R.; Pulkkinen, T. I.; Sergeev, V.

    2015-07-01

    Almost 40 years ago the concept of the substorm current wedge was developed to explain the magnetic signatures observed on the ground and in geosynchronous orbit during substorm expansion. In the ensuing decades new observations, including radar and low-altitude spacecraft, MHD simulations, and theoretical considerations have tremendously advanced our understanding of this system. The AMPTE/IRM, THEMIS and Cluster missions have added considerable observational knowledge, especially on the important role of fast flows in producing the stresses that generate the substorm current wedge. Recent detailed, multi-spacecraft, multi-instrument observations both in the magnetosphere and in the ionosphere have brought a wealth of new information about the details of the temporal evolution and structure of the current system. While the large-scale picture remains valid, the new details call for revision and an update of the original view. In this paper we briefly review the historical development of the substorm current wedge, review recent in situ and ground-based observations and theoretical work, and discuss the current active research areas. We conclude with a revised, time-dependent picture of the substorm current wedge that follows its evolution from the initial substorm flows through substorm expansion and recovery.

  15. Some Key Issues in Creating Inquiry-Based Instructional Practices that Aim at the Understanding of Simple Electric Circuits

    NASA Astrophysics Data System (ADS)

    Kock, Zeger-Jan; Taconis, Ruurd; Bolhuis, Sanneke; Gravemeijer, Koeno

    2013-04-01

    Many students in secondary schools consider the sciences difficult and unattractive. This applies to physics in particular, a subject in which students attempt to learn and understand numerous theoretical concepts, often without much success. A case in point is the understanding of the concepts current, voltage and resistance in simple electric circuits. In response to these problems, reform initiatives in education strive for a change of the classroom culture, putting emphasis on more authentic contexts and student activities containing elements of inquiry. The challenge then becomes choosing and combining these elements in such a manner that they foster an understanding of theoretical concepts. In this article we reflect on data collected and analyzed from a series of 12 grade 9 physics lessons on simple electric circuits. Drawing from a theoretical framework based on individual (conceptual change based) and socio-cultural views on learning, instruction was designed addressing known conceptual problems and attempting to create a physics (research) culture in the classroom. As the success of the lessons was limited, the focus of the study became to understand which inherent characteristics of inquiry based instruction complicate the process of constructing conceptual understanding. From the analysis of the data collected during the enactment of the lessons three tensions emerged: the tension between open inquiry and student guidance, the tension between students developing their own ideas and getting to know accepted scientific theories, and the tension between fostering scientific interest as part of a scientific research culture and the task oriented school culture. An outlook will be given on the implications for science lessons.

  16. Final Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotov, Valeri

    2016-05-29

    The research in this program involves theoretical investigations of electronic, optical and mechanical properties of graphene and its derivatives, such as bi-layer graphene, graphene-based van der Waals heterostructures, strained graphene, as well as graphene on various surfaces. One line of research has been development of theoretical models that support graphene’s large array of possible technological applications. For example one of our goals has been the understanding of surface plasmons and spin relaxation mechanisms in graphene, related to novel optoelectronics and spintronics applications. Our current research focus is on understanding the role of correlations in graphene under mechanical deformations, such asmore » strain. The main goal is to describe the mutual interplay between strain and electron-electron interactions which could lead to the formation of novel elec- tronic phases with strongly modified electronic, magnetic and optical properties. This direction of research contributes to deeper understanding of interactions in graphene and related atomically-thin materials - a subject at the forefront of research on graphene and its derivatives.« less

  17. Theory of BCS-BEC Crossover in Ultracold Fermi Gases: Insights into Thermodynamical and Spectroscopic Experiments

    NASA Astrophysics Data System (ADS)

    Levin, Kathryn

    2009-05-01

    In this talk we summarize our theoretical understanding of the atomic Fermi superfluids with an emphasis on understanding current experiments. We compare and contrast different theoretical approaches for dealing with finite temperature, and discuss their respective implications for these trapped gases. Armed with a basic picture of the thermodynamics we turn to a variety of different measurements based on radio frequency spectroscopy, including both momentum integrated and momentum resolved experiments. As recently reviewed in arXiv 0810.1940 and 0810.1938, we show how a broad range of experimental phenomena can be accomodated within our natural extension of the BCS-Leggett ground state to finite temperature, and briefly touch on the applicability of BCS-BEC crossover theory to the high temperature superconductors. Co-authors: Qijin Chen, Yan He and Chih-Chun Chien

  18. Chemical Education Research: Improving Chemistry Learning

    NASA Astrophysics Data System (ADS)

    Dudley Herron, J.; Nurrenbern, Susan C.

    1999-10-01

    Chemical education research is the systematic investigation of learning grounded in a theoretical foundation that focuses on understanding and improving learning of chemistry. This article reviews many activities, changes, and accomplishments that have taken place in this area of scholarly activity despite its relatively recent emergence as a research area. The article describes how the two predominant broad perspectives of learning, behaviorism and constructivism, have shaped and influenced chemical education research design, analysis, and interpretation during the 1900s. Selected research studies illustrate the range of research design strategies and results that have contributed to an increased understanding of learning in chemistry. The article also provides a perspective of current and continuing challenges that researchers in this area face as they strive to bridge the gap between chemistry and education - disciplines with differing theoretical bases and research paradigms.

  19. The application of the Internet of Things to animal ecology.

    PubMed

    Guo, Songtao; Qiang, Min; Luan, Xiaorui; Xu, Pengfei; He, Gang; Yin, Xiaoyan; Xi, Luo; Jin, Xuelin; Shao, Jianbin; Chen, Xiaojiang; Fang, Dingyi; Li, Baoguo

    2015-11-01

    For ecologists, understanding the reaction of animals to environmental changes is critical. Using networked sensor technology to measure wildlife and environmental parameters can provide accurate, real-time and comprehensive data for monitoring, research and conservation of wildlife. This paper reviews: (i) conventional detection technology; (ii) concepts and applications of the Internet of Things (IoT) in animal ecology; and (iii) the advantages and disadvantages of IoT. The current theoretical limits of IoT in animal ecology are also discussed. Although IoT offers a new direction in animal ecological research, it still needs to be further explored and developed as a theoretical system and applied to the appropriate scientific frameworks for understanding animal ecology. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  20. Mesoscopic coherence in light scattering from cold, optically dense and disordered atomic systems

    NASA Astrophysics Data System (ADS)

    Kupriyanov, D. V.; Sokolov, I. M.; Havey, M. D.

    2017-02-01

    Coherent effects manifested in light scattering from cold, optically dense and disordered atomic systems are reviewed from a primarily theoretical point of view. Development of the basic theoretical tools is then elaborated through several physical atomic physics based processes which have been at least partly explored experimentally. These include illustrations drawn from the coherent backscattering effect, random lasing in atomic gases, quantum memories and light-atoms interface assisted by the light trapping mechanism. Current understanding and challenges associated with the transition to high atomic densities and cooperativity in the scattering process are also discussed in some detail.

  1. Alienation and Engagement: Development of an Alternative Theoretical Framework for Understanding Student Learning

    ERIC Educational Resources Information Center

    Case, Jennifer M.

    2008-01-01

    In this paper it is suggested that the themes of alienation and engagement offer a productive alternative perspective for characterising the student experience of learning in higher education, compared to current dominant perspectives such as that offered by approaches to learning and related concepts. A conceptual and historical background of the…

  2. Birds Do It, Bees Do It: Evolution and the Comparative Psychology of Mate Choice

    ERIC Educational Resources Information Center

    Boothroyd, Lynda G.; McLaughlin, Edward

    2011-01-01

    The primary theoretical framework for the study of human physical attraction is currently Darwinian sexual selection. Not only has this perspective enabled the discovery of what appear to be strong universals in human mate choice but it has also facilitated our understanding of systematic variation in preferences both between and within…

  3. Benchmarking Attosecond Physics with Atomic Hydrogen

    DTIC Science & Technology

    2015-05-25

    theoretical simulations are available in this regime. We provided accurate reference data on the photoionization yield and the CEP-dependent...this difficulty. This experiment claimed to show that, contrary to current understanding, the photoionization of an atomic electron is not an... photoion yield and transferrable intensity calibration. The dependence of photoionization probability on laser intensity is one of the most

  4. Shining Light into Cosmic Dark Ages

    NASA Astrophysics Data System (ADS)

    Fialkov, Anastasia

    2018-06-01

    Exploration of the early Universe is ongoing. One of the most interesting probes of the epoch is the redshifted 21-cm line of neutral hydrogen. Modeling of this signal is difficult due to large uncertainties in both astrophysical and cosmological parameters that describe the high redshift Universe. In my talk I will discuss current theoretical understanding and the status of modeling.

  5. The Cortical Organization of Lexical Knowledge: A Dual Lexicon Model of Spoken Language Processing

    ERIC Educational Resources Information Center

    Gow, David W., Jr.

    2012-01-01

    Current accounts of spoken language assume the existence of a lexicon where wordforms are stored and interact during spoken language perception, understanding and production. Despite the theoretical importance of the wordform lexicon, the exact localization and function of the lexicon in the broader context of language use is not well understood.…

  6. The Problem of Projects: Understanding the Theoretical Underpinnings of Project-Led PBL

    ERIC Educational Resources Information Center

    Hanney, Roy; Savin-Baden, Maggi

    2013-01-01

    For many years there has been a sharp division between project-based learning, and problem-based learning, with the former adopting a more technical rationalist approach while the latter adopts a more Socratic or dialogic approach. This article argues that current notions of project-based learning are too narrow and that combining the two…

  7. Will-to-Fight: Japan’s Imperial Institution and the U.S. Strategy to End World War II

    DTIC Science & Technology

    2012-05-17

    Military Theory ........................................................................................................................... 6 Current U.S...simultaneously.6 Individual Mental Models or gestalt represent those deep-seated, personal, perhaps unconscious assumptions about the way the world works based...disciplines provide a theoretical framework for understanding the interplay of expert knowledge, goals, personal gestalt , contemporary thought, and

  8. Assessing Adults' Career Exploration: Development and Validation of the Vocational and Maternal Identity Exploration Scales

    ERIC Educational Resources Information Center

    Gross-Spector, Michal; Cinamon, Rachel Gali

    2018-01-01

    To promote our theoretical understanding regarding the exploration process during adulthood, the current study focusses on this process as it relates to work and family life roles and the relations between them, during the transition to motherhood. Two instruments assessing vocational and maternal exploration, relating to self and environment…

  9. Starbursts and their dynamics

    NASA Technical Reports Server (NTRS)

    Norman, Colin

    1987-01-01

    Detailed mechanisms associated with dynamical process occurring in starburst galaxies are considered including the role of bars, waves, mergers, sinking satellites, self gravitating gas and bulge heating. The current understanding of starburst galaxies both observational and theoretical is placed in the context of theories of galaxy formations, Hubble sequence evolution, starbursts and activity, and the nature of quasar absorption lines.

  10. Expert Perceptions of Approaches to Protecting Isolated Wetlands in the Northeastern United States

    Treesearch

    Kristin Floress; Mary Beth Kolozsvary; Jean Mangun

    2017-01-01

    In this article, we describe how protecting vernal pools was discussed by experts in the northeastern United States (U.S) within the context of a theoretical policy framework. We offer insight about characteristics of feasible vernal pool policy solutions, and identify gaps in our understanding, particularly regarding conditions in states currently lacking specific...

  11. Sexual Grooming of Children: Review of Literature and Theoretical Considerations

    ERIC Educational Resources Information Center

    Craven, Samantha; Brown, Sarah; Gilchrist, Elizabeth

    2006-01-01

    The current review aims to outline the existing understanding of sexual grooming. Issues of poor definition, the adoption of the term "grooming" and the prevalence of sexual grooming will be discussed. Consideration will be given to how prominent theories of child sexual abuse often neglect sexual grooming. This will be followed by a detailed…

  12. Using Item Response Theory to Conduct a Distracter Analysis on Conceptual Inventory of Natural Selection

    ERIC Educational Resources Information Center

    Battisti, Bryce Thomas; Hanegan, Nikki; Sudweeks, Richard; Cates, Rex

    2010-01-01

    Concept inventories are often used to assess current student understanding although conceptual change models are problematic. Due to controversies with conceptual change models and the realities of student assessment, it is important that concept inventories are evaluated using a variety of theoretical models to improve quality. This study used a…

  13. Social Justice, Capabilities and the Quality of Education in Low Income Countries

    ERIC Educational Resources Information Center

    Tikly, Leon; Barrett, Angeline M.

    2011-01-01

    The paper sets out a theoretical approach for understanding the quality of education in low income countries from a social justice perspective. The paper outlines and critiques the two dominant approaches that currently frame the debate about education quality, namely, the human capital and human rights approaches. Drawing principally on the ideas…

  14. Electric Current Flow Through Two-Dimensional Networks

    NASA Astrophysics Data System (ADS)

    Gaspard, Mallory

    In modern nanotechnology, two-dimensional atomic network structures boast promising applications as nanoscale circuit boards to serve as the building blocks of more sustainable and efficient, electronic devices. However, properties associated with the network connectivity can be beneficial or deleterious to the current flow. Taking a computational approach, we will study large uniform networks, as well as large random networks using Kirchhoff's Equations in conjunction with graph theoretical measures of network connectedness and flows, to understand how network connectivity affects overall ability for successful current flow throughout a network. By understanding how connectedness affects flow, we may develop new ways to design more efficient two-dimensional materials for the next generation of nanoscale electronic devices, and we will gain a deeper insight into the intricate balance between order and chaos in the universe. Rensselaer Polytechnic Institute, SURP Institutional Grant.

  15. Why is understanding when Plate Tectonics began important for understanding Earth?

    NASA Astrophysics Data System (ADS)

    Korenaga, J.

    2015-12-01

    Almost all kinds of geological activities on Earth depend critically on the operation of plate tectonics, but did plate tectonics initiate right after the solidification of a putative magma ocean, or did it start much later, e.g., sometime during the Archean? This problem of the initiation of plate tectonics in the Earth history presents us a unique combination of observational and theoretical challenges. Finding geological evidence for the onset of plate tectonics is difficult because plate tectonics is a dynamic process that continuously destroys a remnant of the past. We therefore need to rely on more secondary traces, the interpretation of which often involves theoretical considerations. At the same time, it is still hard to predict, on a firm theoretical ground, when plate tectonics should have prevailed, because there is no consensus on why plate tectonics currently takes place on Earth. Knowing when plate tectonics began is one thing, and understanding why it did so is another. The initiation of plate tectonics is one of the last frontiers in earth science, which encourages a concerted effort from both geologists and geophysicists to identify key geological evidence and distinguish between competing theories of early Earth evolution. Such an endeavor is essential to arrive at a self-contained theory for the evolution of terrestrial planets.

  16. Mono- and binuclear non-heme iron chemistry from a theoretical perspective.

    PubMed

    Rokob, Tibor András; Chalupský, Jakub; Bím, Daniel; Andrikopoulos, Prokopis C; Srnec, Martin; Rulíšek, Lubomír

    2016-09-01

    In this minireview, we provide an account of the current state-of-the-art developments in the area of mono- and binuclear non-heme enzymes (NHFe and NHFe2) and the smaller NHFe(2) synthetic models, mostly from a theoretical and computational perspective. The sheer complexity, and at the same time the beauty, of the NHFe(2) world represents a challenge for experimental as well as theoretical methods. We emphasize that the concerted progress on both theoretical and experimental side is a conditio sine qua non for future understanding, exploration and utilization of the NHFe(2) systems. After briefly discussing the current challenges and advances in the computational methodology, we review the recent spectroscopic and computational studies of NHFe(2) enzymatic and inorganic systems and highlight the correlations between various experimental data (spectroscopic, kinetic, thermodynamic, electrochemical) and computations. Throughout, we attempt to keep in mind the most fascinating and attractive phenomenon in the NHFe(2) chemistry, which is the fact that despite the strong oxidative power of many reactive intermediates, the NHFe(2) enzymes perform catalysis with high selectivity. We conclude with our personal viewpoint and hope that further developments in quantum chemistry and especially in the field of multireference wave function methods are needed to have a solid theoretical basis for the NHFe(2) studies, mostly by providing benchmarking and calibration of the computationally efficient and easy-to-use DFT methods.

  17. Atomically Resolved STM Characterization of the 3-D Dirac Semimetal Cd3As2

    NASA Astrophysics Data System (ADS)

    Butler, Christopher; Tseng, Yi; Hsing, Cheng-Rong; Wu, Yu-Mi; Sankar, Raman; Wang, Mei-Fang; Wei, Ching-Ming; Chou, Fang-Cheng; Lin, Minn-Tsong

    Dirac semimetals such as Cd3As2 are a recently discovered class of materials which host three-dimensional linear dispersion around point-like band crossings in the bulk Brillouin zone, and hence represent three-dimensional analogues of graphene. This electronic phase is enabled by specific crystal symmetries: In the case of Cd3As2, a C4 rotational symmetry associated with its peculiar corkscrew arrangement of systematic Cd vacancies. Although this arrangement underpins the current crystallographic understanding of Cd3As2, and all its theoretical implications, it is strangely absent in surface microscopic investigations reported previously. Here we use a combined approach of scanning tunneling microscopy and ab initio calculations to show that the currently held crystallographic model of Cd3As2 is indeed predictive of a periodic zig-zag superstructure at the (112) surface, which we observe in scanning tunneling microscopy images. This helps to reconcile the current state of microscopic surface observations with the prevailing crystallographic and theoretical models.

  18. An Overview of the Current Understanding of Gamma-Ray Bursts in the Fermi Era

    NASA Technical Reports Server (NTRS)

    Bhat, P. N.; Guiriec, Sylvain

    2011-01-01

    Gamma-ray bursts are the most luminous explosions in the Universe, and their origin as well as mechanism are the focus of intense research and debate. More than three decades since their serendipitous discovery, followed by several breakthroughs from space-borne and ground-based observations, they remain one of the most interesting astrophysical phenomena yet to be completely understood. Since the launch of Fermi with its unprecedented energy band width spanning seven decades, the study of gamma-ray burst research has entered a new phase. Here we review the current theoretical understanding and observational highlights of gamma-ray burst astronomy and point out some of the potential promises of multi-wavelength observations in view of the upcoming ground based observational facilities .

  19. Minimum current principle and variational method in theory of space charge limited flow

    NASA Astrophysics Data System (ADS)

    Rokhlenko, A.

    2015-10-01

    In spirit of the principle of least action, which means that when a perturbation is applied to a physical system, its reaction is such that it modifies its state to "agree" with the perturbation by "minimal" change of its initial state. In particular, the electron field emission should produce the minimum current consistent with boundary conditions. It can be found theoretically by solving corresponding equations using different techniques. We apply here the variational method for the current calculation, which can be quite effective even when involving a short set of trial functions. The approach to a better result can be monitored by the total current that should decrease when we on the right track. Here, we present only an illustration for simple geometries of devices with the electron flow. The development of these methods can be useful when the emitter and/or anode shapes make difficult the use of standard approaches. Though direct numerical calculations including particle-in-cell technique are very effective, but theoretical calculations can provide an important insight for understanding general features of flow formation and even sometimes be realized by simpler routines.

  20. Wolf-Rayet phenomena

    NASA Technical Reports Server (NTRS)

    Conti, P. S.

    1982-01-01

    The properties of stars showing Wolf-Rayet phenomena are outlined along with the direction of future work. Emphasis is placed on the characteristics of W-R spectra. Specifically the following topics are covered: the absolute visual magnitudes; the heterogeneity of WN spectra; the existence of transition type spectra and compositions the mass loss rates; and the existence of very luminous and possibly very massive W-R stars. Also, a brief overview of current understanding of the theoretical aspects of stellar evolution and stellar winds and the various scenarios that have been proposed to understand W-R spectra are included.

  1. Commonalities between Disaster and Climate Change Risks for Health: A Theoretical Framework.

    PubMed

    Banwell, Nicola; Rutherford, Shannon; Mackey, Brendan; Street, Roger; Chu, Cordia

    2018-03-16

    Disasters and climate change have significant implications for human health worldwide. Both climate change and the climate-sensitive hazards that result in disasters, are discussed in terms of direct and indirect impacts on health. A growing body of literature has argued for the need to link disaster risk reduction and climate change adaptation. However, there is limited articulation of the commonalities between these health impacts. Understanding the shared risk pathways is an important starting point for developing joint strategies for adapting to, and reducing, health risks. Therefore, this article discusses the common aspects of direct and indirect health risks of climate change and climate-sensitive disasters. Based on this discussion a theoretical framework is presented for understanding these commonalities. As such, this article hopes to extend the current health impact frameworks and provide a platform for further research exploring opportunities for linked adaptation and risk reduction strategies.

  2. Commonalities between Disaster and Climate Change Risks for Health: A Theoretical Framework

    PubMed Central

    Banwell, Nicola; Rutherford, Shannon; Mackey, Brendan; Street, Roger; Chu, Cordia

    2018-01-01

    Disasters and climate change have significant implications for human health worldwide. Both climate change and the climate-sensitive hazards that result in disasters, are discussed in terms of direct and indirect impacts on health. A growing body of literature has argued for the need to link disaster risk reduction and climate change adaptation. However, there is limited articulation of the commonalities between these health impacts. Understanding the shared risk pathways is an important starting point for developing joint strategies for adapting to, and reducing, health risks. Therefore, this article discusses the common aspects of direct and indirect health risks of climate change and climate-sensitive disasters. Based on this discussion a theoretical framework is presented for understanding these commonalities. As such, this article hopes to extend the current health impact frameworks and provide a platform for further research exploring opportunities for linked adaptation and risk reduction strategies. PMID:29547592

  3. Cattell-Horn-Carroll Cognitive-Achievement Relations: What We Have Learned from the Past 20 Years of Research

    ERIC Educational Resources Information Center

    McGrew, Kevin S.; Wendling, Barbara J.

    2010-01-01

    Contemporary Cattell-Horn-Carroll (CHC) theory of cognitive abilities has evolved over the past 20 years and serves as the theoretical foundation for a number of current cognitive ability assessments. CHC theory provides a means by which we can better understand the relationships between cognitive abilities and academic achievement, an important…

  4. A Meaningful Method: Research with Adolescent Girls Who Use Crystal Methamphetamine

    ERIC Educational Resources Information Center

    Newbury, Janet; Hoskins, Marie L.

    2008-01-01

    Embarking on a study in which we hope to gain a contextualized understanding of the experiences of adolescent girls who use crystal methamphetamines, it is crucial for us to select a research methodology congruent with our aims. In the current article, we share the theoretical basis and decision making process that has lead us to a multi-modal…

  5. Scientific-Theoretical Background the Organization of Geobotany Employees of the Micro Enterprises Sport and Recreation Sector

    ERIC Educational Resources Information Center

    Andruhina, Tatyana V.; Dorozhkin, Evgenij M.; Zaitseva, Ekaterina V.; Komleva, Svetlana V.; Sosnin, Alexander S.; Savinova, Valentina A.

    2016-01-01

    The relevance of the research problem due to the needs of the labor market, terms of developing economy of micro-entrepreneurship in sport and recreation sector and the demands of the subject of labour activity to professional training without discontinuing work. The purpose of the article is to understand the current issues aspects of pedagogical…

  6. One Health: From theory to practice

    PubMed Central

    Little, Adam

    2012-01-01

    One Health approaches to human and veterinary medicine are critical to professionals addressing global issues of food security and disease prevention. However, we have yet to develop a sufficient strategy to translate our theoretical understanding to practical application. This paper will explore the current shortcomings of One Health, within both the medical and veterinary communities, and highlight solutions to overcome these challenges. PMID:23024395

  7. Perspectives in metabolic engineering: understanding cellular regulation towards the control of metabolic routes.

    PubMed

    Zadran, Sohila; Levine, Raphael D

    2013-01-01

    Metabolic engineering seeks to redirect metabolic pathways through the modification of specific biochemical reactions or the introduction of new ones with the use of recombinant technology. Many of the chemicals synthesized via introduction of product-specific enzymes or the reconstruction of entire metabolic pathways into engineered hosts that can sustain production and can synthesize high yields of the desired product as yields of natural product-derived compounds are frequently low, and chemical processes can be both energy and material expensive; current endeavors have focused on using biologically derived processes as alternatives to chemical synthesis. Such economically favorable manufacturing processes pursue goals related to sustainable development and "green chemistry". Metabolic engineering is a multidisciplinary approach, involving chemical engineering, molecular biology, biochemistry, and analytical chemistry. Recent advances in molecular biology, genome-scale models, theoretical understanding, and kinetic modeling has increased interest in using metabolic engineering to redirect metabolic fluxes for industrial and therapeutic purposes. The use of metabolic engineering has increased the productivity of industrially pertinent small molecules, alcohol-based biofuels, and biodiesel. Here, we highlight developments in the practical and theoretical strategies and technologies available for the metabolic engineering of simple systems and address current limitations.

  8. False-Belief Understanding and Language Ability Mediate the Relationship between Emotion Comprehension and Prosocial Orientation in Preschoolers.

    PubMed

    Ornaghi, Veronica; Pepe, Alessandro; Grazzani, Ilaria

    2016-01-01

    Emotion comprehension (EC) is known to be a key correlate and predictor of prosociality from early childhood. In the present study, we examined this relationship within the broad theoretical construct of social understanding which includes a number of socio-emotional skills, as well as cognitive and linguistic abilities. Theory of mind, especially false-belief understanding, has been found to be positively correlated with both EC and prosocial orientation. Similarly, language ability is known to play a key role in children's socio-emotional development. The combined contribution of false-belief understanding and language to explaining the relationship between EC and prosociality has yet to be investigated. Thus, in the current study, we conducted an in-depth exploration of how preschoolers' false-belief understanding and language ability each contribute to modeling the relationship between children's comprehension of emotion and their disposition to act prosocially toward others, after controlling for age and gender. Participants were 101 4- to 6-year-old children (54% boys), who were administered measures of language ability, false-belief understanding, EC and prosocial orientation. Multiple mediation analysis of the data suggested that false-belief understanding and language ability jointly and fully mediated the effect of preschoolers' EC on their prosocial orientation. Analysis of covariates revealed that gender exerted no statistically significant effect, while age had a trivial positive effect. Theoretical and practical implications of the findings are discussed.

  9. Molten thermoplastic dripping behavior induced by flame spread over wire insulation under overload currents.

    PubMed

    He, Hao; Zhang, Qixing; Tu, Ran; Zhao, Luyao; Liu, Jia; Zhang, Yongming

    2016-12-15

    The dripping behavior of the molten thermoplastic insulation of copper wire, induced by flame spread under overload currents, was investigated for a better understanding of energized electrical wire fires. Three types of sample wire, with the same polyethylene insulation thickness and different core diameters, were used in this study. First, overload current effects on the transient one-dimensional wire temperature profile were predicted using simplified theoretical analysis; the heating process and equilibrium temperature were obtained. Second, experiments on the melting characteristics were conducted in a laboratory environment, including drop formation and frequency, falling speed, and combustion on the steel base. Third, a relationship between molten mass loss and volume variation was proposed to evaluate the dripping time and frequency. A strong current was a prerequisite for the wire dripping behavior and the averaged dripping frequency was found to be proportional to the square of the current based on the theoretical and experimental results. Finally, the influence of dripping behavior on the flame propagation along the energized electrical wire was discussed. The flame width, bright flame height and flame spreading velocity presented different behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. [Ideas about a "good death" in Palliative Care Nursing].

    PubMed

    Steffen-Bürgi, Barbara

    2009-10-01

    In the modern hospice movement and in Palliative Care, helping severely ill and dying patients to have a "good end of life" and a "good death" has high priority. The concept of a "good death" reflects the corresponding ideal of a "good dying". This concept analy-sis aimed at clarifying the current understanding of the characteristics of a "good death" as well as at presenting a coherent theoretical and ideational basis. The meaning of an ideal death as a point of reference and leitmotif in structuring palliative and hospice care, the theoretical background, and the components of a "good death" will be described in this article.

  11. From the big bang to the brain.

    PubMed

    Boliek, C A; Lohmeier, H

    1999-01-01

    Current research on the capacities of the infant has lead to a better understanding of developmental processes underlying cognition and motor skill acquisition. ASHA's Eighth Annual Research Symposium on Infant-Toddler Development, in November 1998, included a presentation on developmental cognitive science by Dr. Andrew Meltzoff and a presentation on motor skill acquisition by Dr. Esther Thelen. The theoretical constructs and data presented served to broaden our current perspectives on infant abilities. The data reported by Meltzoff and Thelen challenged several long-standing theories of infant cognition and motor development. Alternative theoretical models were used to describe skill acquisition during the first several years of life. Our response will include a brief summary of each investigator's presentation, discuss their findings with respect to research in the area of infant speech physiology and production, and provide possible future directions and challenges for individuals conducting developmental research.

  12. Special issue on asteroids - Introduction

    NASA Astrophysics Data System (ADS)

    Novaković, Bojan; Hsieh, Henry H.; Gronchi, Giovanni F.

    2018-04-01

    The articles in this special issue are devoted to asteroids, small solar system bodies that primarily populate a region between the orbits of Mars and Jupiter, known as the asteroid belt, but can also be found throughout the Solar System. Asteroids are considered to be a key to understanding the formation and evolution of our planetary system. Their properties allow us to test current theoretical models and develop new theoretical concepts pertaining to evolutionary processes in the Solar System. There have been major advances in asteroid science in the last decade, and that trend continues. Eighteen papers accepted for this special issue cover a wide range of asteroid-related subjects, pushing the boundaries of our understanding of these intriguing objects even further. Here we provide the reader with a brief overview of these thrilling papers, with an invitation for interested scientists to read each work in detail for a better understanding of these recent cutting edge results. As many topics in asteroid science remain open challenges, we hope that this special issue will be an important reference point for future research on this compelling topic.

  13. Field-induced assembly of colloidal ellipsoids into well-defined microtubules

    PubMed Central

    Crassous, Jérôme J.; Mihut, Adriana M.; Wernersson, Erik; Pfleiderer, Patrick; Vermant, Jan; Linse, Per; Schurtenberger, Peter

    2014-01-01

    Current theoretical attempts to understand the reversible formation of stable microtubules and virus shells are generally based on shape-specific building blocks or monomers, where the local curvature of the resulting structure is explicitly built-in via the monomer geometry. Here we demonstrate that even simple ellipsoidal colloids can reversibly self-assemble into regular tubular structures when subjected to an alternating electric field. Supported by model calculations, we discuss the combined effects of anisotropic shape and field-induced dipolar interactions on the reversible formation of self-assembled structures. Our observations show that the formation of tubular structures through self-assembly requires much less geometrical and interaction specificity than previously thought, and advance our current understanding of the minimal requirements for self-assembly into regular virus-like structures. PMID:25409686

  14. [Gender theory and politics: historical fragments and current challenges].

    PubMed

    Meyer, Dagmar Estermann

    2004-01-01

    This text approaches contemporary gender theories and politics focusing on the tensions permeating these theories. It briefly revisits historical aspects to introduce an understanding of the to the concept of gender in the field of Feminist Studies, and discusses the theoretical and political developments associated with its use. It presents some results from investigations that make the positions of the subject of woman, and particularly the subject of mother, problematic in discourses running through current health and education policies and programs. It concludes by suggesting that studies relating gender, health and education from this perspective contribute to understanding and outlining power structures that come into play with certain educational emphases, knowledge, diagnostic instruments, and ways of assisting and educating women, men and children in these areas today.

  15. The Solidarities and Cultural Practices of Russia's Young People at the Beginning of the Twenty-First Century: The Theoretical Context

    ERIC Educational Resources Information Center

    Omel'chenko, E. L.

    2015-01-01

    The article looks at the experience of studying young people in today's Russia and the way the experience correlates with Western traditions of research. The analysis that is proposed is oriented toward understanding the analytical and empirical potential of the concept of solidarity applicable to the current agenda. [This article was translated…

  16. Empirical User Studies Inform the Design of an E-Notetaking and Information Assimilation System for Students in Higher Education

    ERIC Educational Resources Information Center

    Reimer, Yolanda Jacobs; Brimhall, Erin; Cao, Chen; O'Reilly, Kevin

    2009-01-01

    The research presented in this paper reaches towards a better theoretical understanding of how students in higher education currently take notes, how this process is evolving in the digital age to include information assimilation, and the kinds of support students need to be successful with their changing academic tasks. To gain insight into these…

  17. Personality is of central concern to understand health: towards a theoretical model for health psychology

    PubMed Central

    Ferguson, Eamonn

    2013-01-01

    This paper sets out the case that personality traits are central to health psychology. To achieve this, three aims need to be addressed. First, it is necessary to show that personality influences a broad range of health outcomes and mechanisms. Second, the simple descriptive account of Aim 1 is not sufficient, and a theoretical specification needs to be developed to explain the personality-health link and allow for future hypothesis generation. Third, once Aims 1 and 2 are met, it is necessary to demonstrate the clinical utility of personality. In this review I make the case that all three Aims are met. I develop a theoretical framework to understand the links between personality and health drawing on current theorising in the biology, evolution, and neuroscience of personality. I identify traits (i.e., alexithymia, Type D, hypochondriasis, and empathy) that are of particular concern to health psychology and set these within evolutionary cost-benefit analysis. The literature is reviewed within a three-level hierarchical model (individual, group, and organisational) and it is argued that health psychology needs to move from its traditional focus on the individual level to engage group and organisational levels. PMID:23772230

  18. Advantages of Structure-Based Drug Design Approaches in Neurological Disorders

    PubMed Central

    Aarthy, Murali; Panwar, Umesh; Selvaraj, Chandrabose; Singh, Sanjeev Kumar

    2017-01-01

    Objective: The purpose of the review is to portray the theoretical concept on neurological disorders from research data. Background: The freak changes in chemical response of nerve impulse causes neurological disorders. The research evidence of the effort done in the older history suggests that the biological drug targets and their effective feature with responsive drugs could be valuable in promoting the future development of health statistics structure for improved treatment for curing the nervous disorders. Methods: In this review, we summarized the most iterative theoretical concept of structure based drug design approaches in various neurological disorders to unfathomable understanding of reported information for future drug design and development. Results: On the premise of reported information we analyzed the model of theoretical drug designing process for understanding the mechanism and pathology of the neurological diseases which covers the development of potentially effective inhibitors against the biological drug targets. Finally, it also suggests the management and implementation of the current treatment in improving the human health system behaviors. Conclusion: With the survey of reported information we concluded the development strategies of diagnosis and treatment against neurological diseases which leads to supportive progress in the drug discovery. PMID:28042767

  19. False-Belief Understanding and Language Ability Mediate the Relationship between Emotion Comprehension and Prosocial Orientation in Preschoolers

    PubMed Central

    Ornaghi, Veronica; Pepe, Alessandro; Grazzani, Ilaria

    2016-01-01

    Emotion comprehension (EC) is known to be a key correlate and predictor of prosociality from early childhood. In the present study, we examined this relationship within the broad theoretical construct of social understanding which includes a number of socio-emotional skills, as well as cognitive and linguistic abilities. Theory of mind, especially false-belief understanding, has been found to be positively correlated with both EC and prosocial orientation. Similarly, language ability is known to play a key role in children’s socio-emotional development. The combined contribution of false-belief understanding and language to explaining the relationship between EC and prosociality has yet to be investigated. Thus, in the current study, we conducted an in-depth exploration of how preschoolers’ false-belief understanding and language ability each contribute to modeling the relationship between children’s comprehension of emotion and their disposition to act prosocially toward others, after controlling for age and gender. Participants were 101 4- to 6-year-old children (54% boys), who were administered measures of language ability, false-belief understanding, EC and prosocial orientation. Multiple mediation analysis of the data suggested that false-belief understanding and language ability jointly and fully mediated the effect of preschoolers’ EC on their prosocial orientation. Analysis of covariates revealed that gender exerted no statistically significant effect, while age had a trivial positive effect. Theoretical and practical implications of the findings are discussed. PMID:27774075

  20. Understanding HIV disclosure: A review and application of the Disclosure Processes Model

    PubMed Central

    Chaudoir, Stephenie R.; Fisher, Jeffrey D.; Simoni, Jane M.

    2014-01-01

    HIV disclosure is a critical component of HIV/AIDS prevention and treatment efforts, yet the field lacks a comprehensive theoretical framework with which to study how HIV-positive individuals make decisions about disclosing their serostatus and how these decisions affect them. Recent theorizing in the context of the Disclosure Processes Model has suggested that the disclosure process consists of antecedent goals, the disclosure event itself, mediating processes and outcomes, and a feedback loop. In this paper, we apply this new theoretical framework to HIV disclosure in order to review the current state of the literature, identify gaps in existing research, and highlight the implications of the framework for future work in this area. PMID:21514708

  1. The lambda point experiment in microgravity

    NASA Technical Reports Server (NTRS)

    Lipa, J. A.

    1988-01-01

    The motivation and potential for performing very high resolution measurements of the heat capacity singularity at the lambda point of helium in microgravity conditions was briefly discussed. It is clear that tests extending deep into the asymptotic region can be performed, where the theoretical predictions take on their simplest form. This advantageous situation should lead to a major improvement in the understanding of the range of applicability of current theoretical ideas in this field. The lambda transition holds out the prospect of giving the maximum advance of any system, and with the application of cryogenic techniques, the potential of this system can be realized. The technology for the initial experiments is already developed, and results could be obtained in 1990.

  2. Social energy exchange theory for postpartum depression.

    PubMed

    Posmontier, Bobbie; Waite, Roberta

    2011-01-01

    Postpartum depression (PPD), a significant health problem affecting about 19.4% of postpartum women worldwide, may result in long-term cognitive and behavior problems in children, spousal depression, widespread family dysfunction, and chronic and increasingly severe maternal depression. Although current theoretical frameworks provide a rich context for studying PPD,none provides a framework that specifically addresses the dynamic relationship of the inner personal experience with the social and cultural context of PPD. The authors propose the social energy exchange theory for postpartum depression to understand how PPD impedes this dynamic relationship and suggest it as a theoretical framework for the study of interventions that would target intra- and interpersonal disturbance within the social and cultural context.

  3. Lifting primordial non-Gaussianity above the noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welling, Yvette; Woude, Drian van der; Pajer, Enrico, E-mail: welling@strw.leidenuniv.nl, E-mail: D.C.vanderWoude@uu.nl, E-mail: enrico.pajer@gmail.com

    2016-08-01

    Primordial non-Gaussianity (PNG) in Large Scale Structures is obfuscated by the many additional sources of non-linearity. Within the Effective Field Theory approach to Standard Perturbation Theory, we show that matter non-linearities in the bispectrum can be modeled sufficiently well to strengthen current bounds with near future surveys, such as Euclid. We find that the EFT corrections are crucial to this improvement in sensitivity. Yet, our understanding of non-linearities is still insufficient to reach important theoretical benchmarks for equilateral PNG, while, for local PNG, our forecast is more optimistic. We consistently account for the theoretical error intrinsic to the perturbative approachmore » and discuss the details of its implementation in Fisher forecasts.« less

  4. Using intervention mapping to deconstruct cognitive work hardening: a return-to-work intervention for people with depression.

    PubMed

    Wisenthal, Adeena; Krupa, Terry

    2014-12-12

    Mental health related work disability leaves are increasing at alarming rates with depression emerging as the most common mental disorder in the workforce. Treatments are available to alleviate depressive symptoms and associated functional impacts; however, they are not specifically aimed at preparing people to return to work. Cognitive work hardening (CWH) is a novel intervention that addresses this gap in the health care system. This paper presents a theoretical analysis of the components and underlying mechanisms of CWH using Intervention Mapping (IM) as a tool to deconstruct its elements. The cognitive sequelae of depression and their relevance to return-to-work (RTW) are examined together with interpersonal skills and other work-related competencies that affect work ability. IM, a tool typically used to create programs, is used to deconstruct an existing program, namely CWH, into its component parts and link them to theories and models in the literature. CWH has been deconstructed into intervention elements which are linked to program performance objectives through underlying theoretical models. In this way, linkages are made between tools and materials of the intervention and the overall program objective of 'successful RTW for people with depression'. An empirical study of the efficacy of CWH is currently underway which should provide added insight and understanding into this intervention. The application of IM to CWH illustrates the theoretical underpinnings of the treatment intervention and assists with better understanding the linkage between intervention elements and intervention objective. Applying IM to deconstruct an existing program (rather than create a program) presents an alternate application of the IM tool which can have implications for other programs in terms of enhancing understanding, grounding in theoretical foundations, communicating program design, and establishing a basis for program evaluation and improvement.

  5. Metabolic and hemodynamic events following changes in neuronal activity: current hypotheses, theoretical predictions and in vivo NMR experimental findings

    PubMed Central

    Mangia, Silvia; Giove, Federico; Tkáč, Ivan; Logothetis, Nikos K.; Henry, Pierre-Gilles; Olman, Cheryl A.; Maraviglia, Bruno; Di Salle, Francesco; Uğurbil, Kâmil

    2009-01-01

    Unraveling the energy metabolism and the hemodynamic outcomes of excitatory and inhibitory neuronal activity is critical not only for our basic understanding of overall brain function, but also for the understanding of many brain disorders. Methodologies of magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are powerful tools for the non-invasive investigation of brain metabolism and physiology. However, the temporal and spatial resolution of in vivo MRS and MRI is not suitable to provide direct evidence for hypotheses that involve metabolic compartmentalization between different cell types, or to untangle the complex neuronal micro-circuitry which results in changes of electrical activity. This review aims at describing how the current models of brain metabolism, mainly built on the basis of in vitro evidence, relate to experimental findings recently obtained in vivo by 1H MRS, 13C MRS and MRI. The hypotheses related to the role of different metabolic substrates, the metabolic neuron-glia interactions, along with the available theoretical predictions of the energy budget of neurotransmission, will be discussed. In addition, the cellular and network mechanisms that characterize different types of increased and suppressed neuronal activity will be considered within the sensitivity-constraints of MRS and MRI. PMID:19002199

  6. Brain activity and cognition: a connection from thermodynamics and information theory.

    PubMed

    Collell, Guillem; Fauquet, Jordi

    2015-01-01

    The connection between brain and mind is an important scientific and philosophical question that we are still far from completely understanding. A crucial point to our work is noticing that thermodynamics provides a convenient framework to model brain activity, whereas cognition can be modeled in information-theoretical terms. In fact, several models have been proposed so far from both approaches. A second critical remark is the existence of deep theoretical connections between thermodynamics and information theory. In fact, some well-known authors claim that the laws of thermodynamics are nothing but principles in information theory. Unlike in physics or chemistry, a formalization of the relationship between information and energy is currently lacking in neuroscience. In this paper we propose a framework to connect physical brain and cognitive models by means of the theoretical connections between information theory and thermodynamics. Ultimately, this article aims at providing further insight on the formal relationship between cognition and neural activity.

  7. Economic Analysis in the Pacific Northwest Land Resources Project: Theoretical Considerations and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Morse, D. R. A.; Sahlberg, J. T.

    1977-01-01

    The Pacific Northwest Land Resources Inventory Demonstration Project i s an a ttempt to combine a whole spectrum of heterogeneous geographic, institutional and applications elements in a synergistic approach to the evaluation of remote sensing techniques. This diversity is the prime motivating factor behind a theoretical investigation of alternative economic analysis procedures. For a multitude of reasons--simplicity, ease of understanding, financial constraints and credibility, among others--cost-effectiveness emerges as the most practical tool for conducting such evaluation determinatIons in the Pacific Northwest. Preliminary findings in two water resource application areas suggest, in conformity with most published studies, that Lands at-aided data collection methods enjoy substantial cost advantages over alternative techniques. The pntential for sensitivity analysis based on cost/accuracy tradeoffs is considered on a theoretical plane in the absence of current accuracy figures concerning the Landsat-aided approach.

  8. Theoretical investigations of X-ray bursts

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    1987-01-01

    Current theoretical understanding of the X-ray burst phenomenon is reviewed, providing a framework in which the burst radiation can be used as a diagnostic of the fundamental properties of the underlying neutron star. The typical Type I X-ray burst is detected as a rapid increase in emission to a level about a factor of 10 above that seen during the quiescent state and recurs on time scales which range from several hours to several days. The thermonuclear flash model has successfully reproduced the basic features of the X-ray burst phenomenon and thereby provided strong theoretical evidence that neutron stars are involved. Topics covered include: theory of the emission spectrum; oscillation modes and prospects for diagnosing the thermal state of neutron stars through experiments on board the X-Ray Timing Explorer or the Advanced X-Ray Astrophysics Facility; applications to the mass and radius of a neutron star.

  9. Theory of current-driven skyrmions in disordered magnets.

    PubMed

    Koshibae, Wataru; Nagaosa, Naoto

    2018-04-20

    An emergent topological particle in magnets, skyrmion, has several unique features distinct from the other magnetic textures such as domain wall, helical structure, and vortex. It is characterized by a topological integer called skyrmion number N sk , which counts how many times the directions of the magnetic moments wrap the unit sphere. This N sk gives the chiral nature of the skyrmion dynamics, and leads to the extremely small critical current density j c for the current-driven motion in terms of spin transfer torque effect. The finite j c indicates the pinning effect due to the disorder such as impurities and defects, and the behaviors of skyrmions under disorder have not been explored well theoretically although it is always relevant in real systems. Here we reveal by a numerical simulation of Landau-Lifshitz-Gilbert equation that there are four different skyrmion phases with the strong disorder, i.e., (A) pinned state, (B) depinned state, (C) skyrmion multiplication/annihilation, and (D) segregation of skyrmions, as the current density increases, while only two phases (A) and (B) appear in the weak disorder case. The microscopic mechanisms of the new phases (C) and (D) are analyzed theoretically. These results offer a coherent understanding of the skyrmion dynamics under current with disorder.

  10. On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments

    NASA Astrophysics Data System (ADS)

    Prasai, Binay; Wilson, A. R.; Wiley, B. J.; Ren, Y.; Petkov, Valeri

    2015-10-01

    The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au100-xPdx (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when ``tuned up'' against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au100-xPdx (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when ``tuned up'' against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design. Electronic supplementary information (ESI) available: XRD patterns, TEM and 3D structure modelling methodology. See DOI: 10.1039/c5nr04678e

  11. Revealing the distribution of transmembrane currents along the dendritic tree of a neuron from extracellular recordings

    PubMed Central

    Cserpán, Dorottya; Meszéna, Domokos; Wittner, Lucia; Tóth, Kinga; Ulbert, István; Somogyvári, Zoltán

    2017-01-01

    Revealing the current source distribution along the neuronal membrane is a key step on the way to understanding neural computations; however, the experimental and theoretical tools to achieve sufficient spatiotemporal resolution for the estimation remain to be established. Here, we address this problem using extracellularly recorded potentials with arbitrarily distributed electrodes for a neuron of known morphology. We use simulations of models with varying complexity to validate the proposed method and to give recommendations for experimental applications. The method is applied to in vitro data from rat hippocampus. PMID:29148974

  12. Maternal depression and infant development: theory and current evidence.

    PubMed

    Miklush, Lisa; Connelly, Cynthia D

    2013-01-01

    Maternal depression (MD) is a condition that has wide-ranging effects on the woman, her family, and the broader global society. It is generally agreed that MD is associated with untoward effects on the developmental trajectory of offspring. The aim of this article is to review the historical and theoretical underpinnings informing current thought linking MD with infant development, and to highlight some of the neuroendocrine and epigenetic processes related to MD and its sequelae. A broad understanding of the association between MD and infant developmental outcomes can inform nursing care of the childbearing family.

  13. [Regulation of the use of animals in Brazil in the twentieth century and the process of forming the current regime applied to biomedical research].

    PubMed

    Machado, Carlos José Saldanha; Filipecki, Ana Tereza Pinto; Teixeira, Márcia de Oliveira; Klein, Helena Espellet

    2010-03-01

    The article analyzes Brazilian public policy and legislation concerning the use of animals in teaching and biomedical research. It examines the institutional and judicial framework and legal status of animal protection in Brazil, including the legislative debate that preceded enactment of Law 11.794/2008, which defined procedures to be employed in the scientific use of animals. It underscores certain features of current regulatory practice and also explores considerations of a theoretical and methodological nature, with a view to broadening our understanding of the question.

  14. The growth threshold conjecture: a theoretical framework for understanding T-cell tolerance.

    PubMed

    Arias, Clemente F; Herrero, Miguel A; Cuesta, José A; Acosta, Francisco J; Fernández-Arias, Cristina

    2015-07-01

    Adaptive immune responses depend on the capacity of T cells to target specific antigens. As similar antigens can be expressed by pathogens and host cells, the question naturally arises of how can T cells discriminate friends from foes. In this work, we suggest that T cells tolerate cells whose proliferation rates remain below a permitted threshold. Our proposal relies on well-established facts about T-cell dynamics during acute infections: T-cell populations are elastic (they expand and contract) and they display inertia (contraction is delayed relative to antigen removal). By modelling inertia and elasticity, we show that tolerance to slow-growing populations can emerge as a population-scale feature of T cells. This result suggests a theoretical framework to understand immune tolerance that goes beyond the self versus non-self dichotomy. It also accounts for currently unexplained observations, such as the paradoxical tolerance to slow-growing pathogens or the presence of self-reactive T cells in the organism.

  15. Fast solver for large scale eddy current non-destructive evaluation problems

    NASA Astrophysics Data System (ADS)

    Lei, Naiguang

    Eddy current testing plays a very important role in non-destructive evaluations of conducting test samples. Based on Faraday's law, an alternating magnetic field source generates induced currents, called eddy currents, in an electrically conducting test specimen. The eddy currents generate induced magnetic fields that oppose the direction of the inducing magnetic field in accordance with Lenz's law. In the presence of discontinuities in material property or defects in the test specimen, the induced eddy current paths are perturbed and the associated magnetic fields can be detected by coils or magnetic field sensors, such as Hall elements or magneto-resistance sensors. Due to the complexity of the test specimen and the inspection environments, the availability of theoretical simulation models is extremely valuable for studying the basic field/flaw interactions in order to obtain a fuller understanding of non-destructive testing phenomena. Theoretical models of the forward problem are also useful for training and validation of automated defect detection systems. Theoretical models generate defect signatures that are expensive to replicate experimentally. In general, modelling methods can be classified into two categories: analytical and numerical. Although analytical approaches offer closed form solution, it is generally not possible to obtain largely due to the complex sample and defect geometries, especially in three-dimensional space. Numerical modelling has become popular with advances in computer technology and computational methods. However, due to the huge time consumption in the case of large scale problems, accelerations/fast solvers are needed to enhance numerical models. This dissertation describes a numerical simulation model for eddy current problems using finite element analysis. Validation of the accuracy of this model is demonstrated via comparison with experimental measurements of steam generator tube wall defects. These simulations generating two-dimension raster scan data typically takes one to two days on a dedicated eight-core PC. A novel direct integral solver for eddy current problems and GPU-based implementation is also investigated in this research to reduce the computational time.

  16. Co-Creating theories and research design for an interdisciplinary project dealing with capacity building for people with migration background in Austria

    NASA Astrophysics Data System (ADS)

    Weber, Karin; Tscharner, Susanna; Stickler, Therese; Fuchs, Britta; Damyanovic, Doris; Hübl, Johannes

    2017-04-01

    Understanding spatial and social aspects of vulnerability is of growing importance in the context of climate change and natural hazards. The interplay of structural factors, socio-demographic aspects, current risk communication strategies, spatial planning instruments and related processes and the current spatial and environmental situation, including hazards and hazard zones, geographical locations, building and settlement types, contributing to people`s vulnerabilities needs to be analysed and understood to reduce vulnerability and to foster resilience. The project "CCCapMig" (Climate change and capacity building for people with migration background in Austria) aims at linking spatial and technical, as well as organisational and social aspects of climate change and natural hazards. This paper focuses on the co-creation of the theoretical framework and concepts and outlines the research design for this interdisciplinary cross-analysis of several case studies in rural Austria. The project is designed as an inter- and transdisciplinary survey and brings together engineering sciences, spatial sciences and social sciences. Reflecting the interdisciplinary approach, a theoretical framework was developed that refers to a combination of both theories and frameworks from vulnerability research, theories of risk perception and spatial theories and methods like the Sustainable Livelihoods Framework, the Protection-Motivation Theory and Landscape-Planning Theories: The "Sustainable Livelihoods Framework" adapted (by FA0) for disaster risk management offers an analytical framework to understand the emergence of vulnerabilities from the perspective of people`s livelihoods on individual and community level. It includes human, social, natural, physical and financial aspects and the role of institutions, policies and legal rights in reducing or increasing exposure to disaster risk and coping capacities. Additionally, theories on risk perception, especially Protection-Motivation Theory, developed by social sciences, will be used as assessment frame to understand people`s flood damage mitigation behaviour. Furthermore, spatial theories and landscape planning approaches (like an everyday, evidence-based approach) are combined with theories from social sciences reflecting the interdisciplinary approach of this project that has become standard in studies on disaster and climate change. This theoretical approach was developed through a collaborative research at the beginning of the research design in order to a) develop further and test existing concepts, b) to fine-tune the proposed method setting, c) to foster common understanding of theories and methods within the interdisciplinary research team. In general, the research process is characterised by critical theory and brings in reflective elements, allowing feedback circles between methods and theories. End-users and decision-makers will be integral partners, ensuring that feasibility of the recommendations and guidelines will be guaranteed. Consequently, the methods of data collection in this project reflect the results of the critical discussion of the theoretical frameworks and combine methods of social sciences: interviews with inhabitants living in hazard zones, detailed surveys of families, focus group discussions, and expert interviews with local and regional stakeholders involved in disaster risk management. In addition to that, structural factors, demographic data, current risk communication strategies, legal instruments and related processes and the current spatial and environmental situation (including hazards and hazard zones, geographical locations, building and settlement types) are analysed.

  17. Femtoscopy in Relativistic Heavy Ion Collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisa, M; Pratt, S; Soltz, R A

    2005-07-29

    Analyses of two-particle correlations have provided the chief means for determining spatio-temporal characteristics of relativistic heavy ion collisions. We discuss the theoretical formalism behind these studies and the experimental methods used in carrying them out. Recent results from RHIC are put into context in a systematic review of correlation measurements performed over the past two decades. The current understanding of these results are discussed in terms of model comparisons and overall trends.

  18. Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Harrison, J. S.; Ounaies, Z.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The purpose of this review is to detail the current theoretical understanding of the origin of piezoelectric and ferroelectric phenomena in polymers; to present the state-of-the-art in piezoelectric polymers and emerging material systems that exhibit promising properties; and to discuss key characterization methods, fundamental modeling approaches, and applications of piezoelectric polymers. Piezoelectric polymers have been known to exist for more than forty years, but in recent years they have gained notoriety as a valuable class of smart materials.

  19. An historical perspective - Brown is not a color. [astrophysics of infrared dwarf stars

    NASA Technical Reports Server (NTRS)

    Tarter, J. C.

    1986-01-01

    Major shifts in theoretical understanding of the star formation process and the possible components of the local mass density are reviewed. Those aspects of brown dwarf structure and evolution that are still not well enough understood are outlined, and the types of observations that might force the modification of current theories to accommodate the existence of brown dwarfs are suggested. The appropriateness of the name 'brown dwarf' is defended.

  20. Incremental validity of anxiety sensitivity in terms of motivation to quit, reasons for quitting, and barriers to quitting among community-recruited daily smokers.

    PubMed

    Zvolensky, Michael J; Vujanovic, Anka A; Miller, Marcel O Bonn; Bernstein, Amit; Yartz, Andrew R; Gregor, Kristin L; McLeish, Alison C; Marshall, Erin C; Gibson, Laura E

    2007-09-01

    The present investigation examined the relationships between anxiety sensitivity and motivation to quit smoking, barriers to smoking cessation, and reasons for quitting smoking among 329 adult daily smokers (160 females; M (age) = 26.08 years, SD = 10.92). As expected, after covarying for the theoretically relevant variables of negative affectivity, gender, Axis I psychopathology, nonclinical panic attack history, number of cigarettes smoked per day, and current levels of alcohol consumption, we found that anxiety sensitivity was significantly incrementally related to level of motivation to quit smoking as well as current barriers to quitting smoking. Partially consistent with the hypotheses, after accounting for the variance explained by other theoretically relevant variables, we found that anxiety sensitivity was significantly associated with self-control reasons for quitting smoking (intrinsic factors) as well as immediate reinforcement and social influence reasons for quitting (extrinsic factors). Results are discussed in relation to better understanding the role of anxiety sensitivity in psychological processes associated with smoking cessation.

  1. New Experimental Capabilities and Theoretical Insights of High Pressure Compression Waves

    NASA Astrophysics Data System (ADS)

    Orlikowski, Daniel; Nguyen, Jeffrey H.; Patterson, J. Reed; Minich, Roger; Martin, L. Peter; Holmes, Neil C.

    2007-12-01

    Currently there are three platforms that offer quasi-isentropic compression or ramp-wave compression (RWC): light-gas gun, magnetic flux (Z-pinch), and laser. We focus here on the light-gas gun technique and on some current theoretical insights from experimental data. An impedance gradient through the length of the impactor provides the pressure pulse upon impact to the subject material. Applications and results are given concerning high-pressure strength and the liquid-to-solid, phase transition of water giving its first associated phase fraction history. We also introduce the Korteweg-deVries-Burgers equation as a means to understand the evolution of these RWC waves as they propagate through the thickness of the subject material. This model equation has the necessary competition between non-linear, dispersion, and dissipation processes, which is shown through observed structures that are manifested in the experimental particle velocity histories. Such methodology points towards a possibility of quantifying dissipation, through which RWC experiments may be analyzed.

  2. Effects of Message Framing on Influenza Vaccination: Understanding the Role of Risk Disclosure, Perceived Vaccine Efficacy, and Felt Ambivalence.

    PubMed

    Kim, Sungsu; Pjesivac, Ivanka; Jin, Yan

    2017-10-20

    The current study examined the effects of framing in promotional health messages on intention to vaccinate against seasonal influenza virus. The findings of an experimental study (N = 86) indicated that exposure to both benefits and side effects of vaccination (gain-framed with risk disclosure message) led to lower intention to receive the flu vaccine. This relationship was mediated by both perceived vaccine efficacy and felt ambivalence in a serial order, revealing the underlying psychological mechanisms important for understanding health-related behaviors. Theoretical implications of constructing sub-framed messages are discussed and the concept of second-order framing is introduced.

  3. Scientific assessment of stratospheric ozone: 1989, volume 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A scientific review is presented of the current understanding of stratospheric ozone. There have been highly significant advances in the understanding of the impact of human activities on the Earth's protective ozone layer. There are four major findings that each heighten the concern that chlorine and bromine containing chemicals can lead to a significant depletion of stratospheric ozone: (1) Antarctic ozone hole (the weight of evidence indicates that chlorinated and brominated chemicals are responsible for the ozone hole; (2) Perturbed arctic chemistry (the same potentially ozone destroying processes were identified in the Arctic stratosphere); (3) Long term ozone decreases; and (4) Model limitations (gaps in theoretical models used for assessment studies).

  4. Evolution of spatially structured host-parasite interactions.

    PubMed

    Lion, S; Gandon, S

    2015-01-01

    Spatial structure has dramatic effects on the demography and the evolution of species. A large variety of theoretical models have attempted to understand how local dispersal may shape the coevolution of interacting species such as host-parasite interactions. The lack of a unifying framework is a serious impediment for anyone willing to understand current theory. Here, we review previous theoretical studies in the light of a single epidemiological model that allows us to explore the effects of both host and parasite migration rates on the evolution and coevolution of various life-history traits. We discuss the impact of local dispersal on parasite virulence, various host defence strategies and local adaptation. Our analysis shows that evolutionary and coevolutionary outcomes crucially depend on the details of the host-parasite life cycle and on which life-history trait is involved in the interaction. We also discuss experimental studies that support the effects of spatial structure on the evolution of host-parasite interactions. This review highlights major similarities between some theoretical results, but it also reveals an important gap between evolutionary and coevolutionary models. We discuss possible ways to bridge this gap within a more unified framework that would reconcile spatial epidemiology, evolution and coevolution. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  5. Theoretical research program to study transition metal trimers and embedded clusters

    NASA Technical Reports Server (NTRS)

    Walch, S. P.

    1984-01-01

    Small transition metal clusters were studied at a high level of approximation, including all the valence electrons in the calculation and extensive electron correlation, in order to understand the electronic structure of these small metal clusters. By comparison of dimers, trimers, and possibly higher clusters, the information obtained was used to provide insights into the electronic structure of bulk transition metals. Small metal clusters are currently of considerable experimental interest and some information is becomming available both from matrix electron spin resonance studies and from gas phase spectroscopy. Collaboration between theorists and experimentalists is thus expected to be especially profitable at this time since there is some experimental information which can serve to guide the theoretical work.

  6. Theory versus practice in Strategic Environmental Assessment (SEA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobos, Víctor, E-mail: vlobosg@gmail.com; Centro de Estudios del Desarrollo, San Crescente 551, Las Condes, Santiago; Partidario, Maria

    Could the theory of Strategic Environmental Assessment (SEA) be ahead of its time and decoupled from its practice? This paper evolved in search for this leading research question. Over the years the discourse on SEA experienced a gradual shift from the technocratic and rationalist thinking that supported its origin to more strategic approaches and integrated concepts, suggested since the mid 1990's. In this paper we share the results of our analysis of international thinking and practical experience with SEA. Results reveal that SEA practice changes very slowly when compared to advanced thinking supporting the noted shift. Current SEA practice showsmore » to be still predominantly rooted in the logic of projects' environmental impact assessment (EIA). It is strongly bound to legal and regulatory requirements, and the motivation for its application persists being the delivery of environmental (or final) reports to meet legal obligations. Even though advanced SEA theoretical thinking claim its potential to help decisions to look forward, change mind-sets and the rationale of decision-making to meet sustainability challenges and enhance societal values, we note a weak relationship between the theoretical development of SEA and its practice. Why is this happening? Which factors explain this apparent inertia, resistance to change, in the SEA practice? Results appear to demonstrate the influence of assumptions, understandings, concepts, and beliefs in the use of SEA, which in turn suggest the political sensitivity of the instrument. - Highlights: • Theoretical thinking in SEA is ahead of its time. • SEA international practice reveals inertia to move out of project’ EIA comfort zone. • World current SEA practice show similar understandings of 30 years ago. • 100 world reports and survey of practitioners supported world review. • SEA great challenge is to change paradigms into new scientific complexity theories.« less

  7. Unpacking the concept of patient satisfaction: a feminist analysis.

    PubMed

    Turris, Sheila A

    2005-05-01

    The aim of this paper is to present a feminist critique of the concept of patient satisfaction. Fiscal restraint, health care restructuring, shifting demographics, biomedical technological advances, and a significant shortage of health care professionals are stretching health care systems across North America to the breaking point. A simultaneous focus on consumerism and health service accountability is placing additional pressure on the system. The concept of patient satisfaction, with roots in the consumer movement of the 1960s, has both practical and political relevance in the current health care system and is commonly used to guide research related to consumer experiences of health care. Because the quality of health care encounters may lead to treatment-seeking delays, patient satisfaction research may be an effective vehicle for addressing this public health issue. However, there is wide agreement that patient satisfaction is an under-theorized concept. Using current conceptualizations of patient satisfaction, we end up all too often producing a checklist approach to 'achieving' patient satisfaction, rather than developing an understanding of the larger issues underlying individual experiences of health care. We focus on the symptoms rather than the problems. Without further theoretical refinement, the results of research into patient satisfaction are of limited use. To push forward theoretical development we might apply a variety of theoretical lenses to the analysis of both the concept and the results of patient satisfaction research. Feminism, in particular, offers a perspective that may provoke further refinement of patient satisfaction as a concept. Without a deeper understanding of the values and beliefs (or the worldview) that informs our approaches to researching patient satisfaction, researchers will be reacting to the most obvious indicators and failing to address the underlying issues related to individual experiences of health care.

  8. Building a Unified Computational Model for the Resonant X-Ray Scattering of Strongly Correlated Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansil, Arun

    2016-12-01

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspectsmore » of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering—density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization—to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers, and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.« less

  9. Addressing gaps on risk and resilience factors for alcohol use outcomes in sexual and gender minority populations

    PubMed Central

    Talley, Amelia E.; Gilbert, Paul A.; Mitchell, Jason; Goldbach, Jeremy; Marshall, Brandon D. L.; Kaysen, Debra

    2016-01-01

    Issues In 2011, the Institute of Medicine (IOM) released a report that constituted the first comprehensive effort by a federal body to understand the current state of science pertinent to the health needs of sexual and gender minority populations. This mini-review summarises recent empirical, methodological and theoretical advances in alcohol-related research among to lesbian, gay, bisexual and transgender populations and highlights progress toward addressing gaps, with a particular interest in those identified by the IOM report. Approach Articles published since 2011 were identified from PsycINFO and PubMed database searches, using various combinations of keyword identifiers (alcohol, alcohol abuse, substance abuse, LGBT, lesbian, gay, bisexual, transgender). Reference sections of included articles were also examined for additional citations. Key Findings Recent empirical work has contributed to a greater understanding of sub-group differences within this diverse population. Evidence has supported theorised influences that can account for alcohol-related disparities, yet important gaps remain. Studies that examine the role of gender identity and its intersection with sexual identity within transgender and gender non-conforming sub-populations are lacking. Methodological advances in this literature have begun to allow for examinations of how minority-specific and general risk factors of alcohol misuse may contribute to patterns of alcohol involvement over time and within social-relational contexts. Conclusions The recommendations made in the current mini-review are meant to facilitate future collaborative efforts, scale development, thoughtful methodological design and analysis, and theoretically-driven nuanced hypotheses to better understand, and ultimately address, alcohol-related disparities among sexual and gender minority populations. PMID:27072658

  10. Theoretical relation between halo current-plasma energy displacement/deformation in EAST

    NASA Astrophysics Data System (ADS)

    Khan, Shahab Ud-Din; Khan, Salah Ud-Din; Song, Yuntao; Dalong, Chen

    2018-04-01

    In this paper, theoretical model for calculating halo current has been developed. This work attained novelty as no theoretical calculations for halo current has been reported so far. This is the first time to use theoretical approach. The research started by calculating points for plasma energy in terms of poloidal and toroidal magnetic field orientations. While calculating these points, it was extended to calculate halo current and to developed theoretical model. Two cases were considered for analyzing the plasma energy when flows down/upward to the diverter. Poloidal as well as toroidal movement of plasma energy was investigated and mathematical formulations were designed as well. Two conducting points with respect to (R, Z) were calculated for halo current calculations and derivations. However, at first, halo current was established on the outer plate in clockwise direction. The maximum generation of halo current was estimated to be about 0.4 times of the plasma current. A Matlab program has been developed to calculate halo current and plasma energy calculation points. The main objective of the research was to establish theoretical relation with experimental results so as to precautionary evaluate the plasma behavior in any Tokamak.

  11. Observational Signatures of Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2014-01-01

    Magnetic reconnection is often referred to as the primary source of energy release during solar flares. Directly observing reconnection occurring in the solar atmosphere, however, is not trivial considering that the scale size of the diffusion region is magnitudes smaller than the observational capabilities of current instrumentation, and coronal magnetic field measurements are not currently sufficient to capture the process. Therefore, predicting and studying observationally feasible signatures of the precursors and consequences of reconnection is necessary for guiding and verifying the simulations that dominate our understanding. I will present a set of such observations, particularly in connection with long-duration solar events, and compare them with recent simulations and theoretical predictions.

  12. Dark matter and dark energy interactions: theoretical challenges, cosmological implications and observational signatures.

    PubMed

    Wang, B; Abdalla, E; Atrio-Barandela, F; Pavón, D

    2016-09-01

    Models where dark matter and dark energy interact with each other have been proposed to solve the coincidence problem. We review the motivations underlying the need to introduce such interaction, its influence on the background dynamics and how it modifies the evolution of linear perturbations. We test models using the most recent observational data and we find that the interaction is compatible with the current astronomical and cosmological data. Finally, we describe the forthcoming data sets from current and future facilities that are being constructed or designed that will allow a clearer understanding of the physics of the dark sector.

  13. Comparison of experimental and theoretical reaction rail currents, rail voltages, and airgap fields for the linear induction motor research vehicle

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1977-01-01

    Measurements of reaction rail currents, reaction rail voltages, and airgap magnetic fields in tests of the Linear Induction Motor Research Vehicle (LIMRV) were compared with theoretical calculations from the mesh/matrix theory. It was found that the rail currents and magnetic fields predicted by the theory are within 20 percent of the measured currents and fields at most motor locations in most of the runs, but differ by as much as a factor of two in some cases. The most consistent difference is a higher experimental than theoretical magnetic field near the entrance of the motor and a lower experimental than theoretical magnetic field near the exit. The observed differences between the theoretical and experimental magnetic fields and currents do not account for the differences of as much as 26 percent between the theoretical and experimental thrusts.

  14. The Shock and Vibration Digest. Volume 12, Number 12,

    DTIC Science & Technology

    1980-12-01

    accelerations is presented. R.G. Schwarz It is shown that while the technique is theoretically cor- Fortschritt-Berichte der VDI -Zt., Series 8, No. 30, rect, it...is subject to experimental limitations due to in- 188 pp, 22 figs, 7 tables (1980). Summary in VDI -Z accuracies in current accelerometer technology...relationship of the so- better understanding of the fatigue life of wind turbine called K-value of the proposed standard VDI 2057 to the pal blades

  15. Theoretical Transport Studies of Non-equilibrium Carriers Driven by High Electric Fields

    DTIC Science & Technology

    2012-04-25

    for two different types of confinement. Motivated by our desire to understand scattering processes in quantum wires in a simple way, in the final...Π’s are probability propagators. The probability propagators can be found, for example, by solving a Master equation if the motion is fully inco - herent...shown that when the transport is coherent (i.e. there are no phase- breaking scattering processes ), the current in the conductor is related to the

  16. How to resolve microsecond current fluctuations in single ion channels: The power of beta distributions

    PubMed Central

    Schroeder, Indra

    2015-01-01

    Abstract A main ingredient for the understanding of structure/function correlates of ion channels is the quantitative description of single-channel gating and conductance. However, a wealth of information provided from fast current fluctuations beyond the temporal resolution of the recording system is often ignored, even though it is close to the time window accessible to molecular dynamics simulations. This kind of current fluctuations provide a special technical challenge, because individual opening/closing or blocking/unblocking events cannot be resolved, and the resulting averaging over undetected events decreases the single-channel current. Here, I briefly summarize the history of fast-current fluctuation analysis and focus on the so-called “beta distributions.” This tool exploits characteristics of current fluctuation-induced excess noise on the current amplitude histograms to reconstruct the true single-channel current and kinetic parameters. A guideline for the analysis and recent applications demonstrate that a construction of theoretical beta distributions by Markov Model simulations offers maximum flexibility as compared to analytical solutions. PMID:26368656

  17. Studies of beam injection with a compensated bump and uncompensated bump in a synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbar Fakhri, Ali; Prajapati, S. K.; Ghodke, A. D.

    2013-08-15

    Synchrotron radiation sources Indus-1 and Indus-2 have a synchrotron as the common injector. A three kicker compensated bump injection scheme was employed for beam injection into this synchrotron. The stored beam current in the synchrotron is higher, when all the three kickers are operated at the same current than when kickers are operated at currents required to generate compensated bump. Beam dynamics studies have been done to understand why this happens. Theoretical studies indicate that higher stored current in the later case is attributed to smaller residual oscillations of injected beam. These studies also reveal that if the angle ofmore » the injected beam during beam injection is kept varying, the performance could be further improved. This is experimentally confirmed by injecting the beam on rising part of the injection septum magnet current pulse.« less

  18. Brain activity and cognition: a connection from thermodynamics and information theory

    PubMed Central

    Collell, Guillem; Fauquet, Jordi

    2015-01-01

    The connection between brain and mind is an important scientific and philosophical question that we are still far from completely understanding. A crucial point to our work is noticing that thermodynamics provides a convenient framework to model brain activity, whereas cognition can be modeled in information-theoretical terms. In fact, several models have been proposed so far from both approaches. A second critical remark is the existence of deep theoretical connections between thermodynamics and information theory. In fact, some well-known authors claim that the laws of thermodynamics are nothing but principles in information theory. Unlike in physics or chemistry, a formalization of the relationship between information and energy is currently lacking in neuroscience. In this paper we propose a framework to connect physical brain and cognitive models by means of the theoretical connections between information theory and thermodynamics. Ultimately, this article aims at providing further insight on the formal relationship between cognition and neural activity. PMID:26136709

  19. CONFERENCE DESCRIPTION Theory of Fusion Plasmas: Varenna-Lausanne International Workshop

    NASA Astrophysics Data System (ADS)

    Garbet, X.; Sauter, O.

    2010-12-01

    The Joint Varenna-Lausanne international workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favourable for informal and in-depth discussions. Invited and contributed papers present state-of-the-art research in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always welcomes a fruitful mix of experienced researchers and students, to allow a better understanding of the key theoretical physics models and applications. Theoretical issues related to burning plasmas Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive Macroinstabilities Plasma-Edge Physics and Divertors Fast particles instabilities Further details: http://Varenna-Lausanne.epfl.ch The conference is organized by: Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Association EURATOM - Confédération Suisse 'Piero Caldirola' International Centre for the Promotion of Science and International School of Plasma Physics Istituto di Fisica del Plasma del CNR, Milano Editors: X Garbet (CEA, Cadarache, France) and O Sauter (CRPP-EPFL, Lausanne, Switzerland)

  20. On the hunt for elusive ``meanings''

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael

    2012-09-01

    The feature article discussed in this forum presents an interesting description of how students work in the context of a virtual world, where they design phenomena that they subsequently investigate by analyzing graphical representations. The study is aligned with the current canon of science education interested in understanding the inter-psychological and intra-psychological determinants of learning. Its main focus is on "meaning making." In this contribution to the forum, I articulate some shortcomings inherent in this theoretical notion, which, in essence, hides rather than reveals the real issues in and of learning. I offer some alternative avenues, both theoretical and methodological, for framing pertinent issues; in so doing, I (endeavor to) open up new avenues for research in science education. In essence, therefore, I offer possible avenues in response to the question, "What more can there be done by science education research?" that would allow us to eschew what I perceive to be hidden contradictions that interfere with making theoretical and practical advances in our field.

  1. Quantifying heterogeneity attributable to polythetic diagnostic criteria: theoretical framework and empirical application.

    PubMed

    Olbert, Charles M; Gala, Gary J; Tupler, Larry A

    2014-05-01

    Heterogeneity within psychiatric disorders is both theoretically and practically problematic: For many disorders, it is possible for 2 individuals to share very few or even no symptoms in common yet share the same diagnosis. Polythetic diagnostic criteria have long been recognized to contribute to this heterogeneity, yet no unified theoretical understanding of the coherence of symptom criteria sets currently exists. A general framework for analyzing the logical and mathematical structure, coherence, and diversity of Diagnostic and Statistical Manual diagnostic categories (DSM-5 and DSM-IV-TR) is proposed, drawing from combinatorial mathematics, set theory, and information theory. Theoretical application of this framework to 18 diagnostic categories indicates that in most categories, 2 individuals with the same diagnosis may share no symptoms in common, and that any 2 theoretically possible symptom combinations will share on average less than half their symptoms. Application of this framework to 2 large empirical datasets indicates that patients who meet symptom criteria for major depressive disorder and posttraumatic stress disorder tend to share approximately three-fifths of symptoms in common. For both disorders in each of the datasets, pairs of individuals who shared no common symptoms were observed. Any 2 individuals with either diagnosis were unlikely to exhibit identical symptomatology. The theoretical and empirical results stemming from this approach have substantive implications for etiological research into, and measurement of, psychiatric disorders.

  2. Theoretical Studies of Low Frequency Instabilities in the Ionosphere. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimant, Y. S.

    2003-08-20

    The objective of the current project is to provide a theoretical basis for better understanding of numerous radar and rocket observations of density irregularities and related effects in the lower equatorial and high-latitude ionospheres. The research focused on: (1) continuing efforts to develop a theory of nonlinear saturation of the Farley-Buneman instability; (2) revision of the kinetic theory of electron-thermal instability at low altitudes; (3) studying the effects of strong anomalous electron heating in the high-latitude electrojet; (4) analytical and numerical studies of the combined Farley-Bunemadion-thermal instabilities in the E-region ionosphere; (5) studying the effect of dust charging in Polarmore » Mesospheric Clouds. Revision of the kinetic theory of electron thermal instability at low altitudes.« less

  3. The relativity of biological function.

    PubMed

    Laubichler, Manfred D; Stadler, Peter F; Prohaska, Sonja J; Nowick, Katja

    2015-12-01

    Function is a central concept in biological theories and explanations. Yet discussions about function are often based on a narrow understanding of biological systems and processes, such as idealized molecular systems or simple evolutionary, i.e., selective, dynamics. Conflicting conceptions of function continue to be used in the scientific literature to support certain claims, for instance about the fraction of "functional DNA" in the human genome. Here we argue that all biologically meaningful interpretations of function are necessarily context dependent. This implies that they derive their meaning as well as their range of applicability only within a specific theoretical and measurement context. We use this framework to shed light on the current debate about functional DNA and argue that without considering explicitly the theoretical and measurement contexts all attempts to integrate biological theories are prone to fail.

  4. Microcirculation and the physiome projects.

    PubMed

    Bassingthwaighte, James B

    2008-11-01

    The Physiome projects comprise a loosely knit worldwide effort to define the Physiome through databases and theoretical models, with the goal of better understanding the integrative functions of cells, organs, and organisms. The projects involve developing and archiving models, providing centralized databases, and linking experimental information and models from many laboratories into self-consistent frameworks. Increasingly accurate and complete models that embody quantitative biological hypotheses, adhere to high standards, and are publicly available and reproducible, together with refined and curated data, will enable biological scientists to advance integrative, analytical, and predictive approaches to the study of medicine and physiology. This review discusses the rationale and history of the Physiome projects, the role of theoretical models in the development of the Physiome, and the current status of efforts in this area addressing the microcirculation.

  5. University Students' Understanding of the Concepts Empirical, Theoretical, Qualitative and Quantitative Research

    ERIC Educational Resources Information Center

    Murtonen, Mari

    2015-01-01

    University research education in many disciplines is frequently confronted by problems with students' weak level of understanding of research concepts. A mind map technique was used to investigate how students understand central methodological concepts of empirical, theoretical, qualitative and quantitative. The main hypothesis was that some…

  6. From recording discrete actions to studying continuous goal-directed behaviours in team sports.

    PubMed

    Correia, Vanda; Araújo, Duarte; Vilar, Luís; Davids, Keith

    2013-01-01

    This paper highlights the importance of examining interpersonal interactions in performance analysis of team sports, predicated on the relationship between perception and action, compared to the traditional cataloguing of actions by individual performers. We discuss how ecological dynamics may provide a potential unifying theoretical and empirical framework to achieve this re-emphasis in research. With reference to data from illustrative studies on performance analysis and sport expertise, we critically evaluate some of the main assumptions and methodological approaches with regard to understanding how information influences action and decision-making during team sports performance. Current data demonstrate how the understanding of performance behaviours in team sports by sport scientists and practitioners may be enhanced with a re-emphasis in research on the dynamics of emergent ongoing interactions. Ecological dynamics provides formal and theoretically grounded descriptions of player-environment interactions with respect to key performance goals and the unfolding information of competitive performance. Developing these formal descriptions and explanations of sport performance may provide a significant contribution to the field of performance analysis, supporting design and intervention in both research and practice.

  7. What can we learn from a two-brain approach to verbal interaction?

    PubMed

    Schoot, Lotte; Hagoort, Peter; Segaert, Katrien

    2016-09-01

    Verbal interaction is one of the most frequent social interactions humans encounter on a daily basis. In the current paper, we zoom in on what the multi-brain approach has contributed, and can contribute in the future, to our understanding of the neural mechanisms supporting verbal interaction. Indeed, since verbal interaction can only exist between individuals, it seems intuitive to focus analyses on inter-individual neural markers, i.e. between-brain neural coupling. To date, however, there is a severe lack of theoretically-driven, testable hypotheses about what between-brain neural coupling actually reflects. In this paper, we develop a testable hypothesis in which between-pair variation in between-brain neural coupling is of key importance. Based on theoretical frameworks and empirical data, we argue that the level of between-brain neural coupling reflects speaker-listener alignment at different levels of linguistic and extra-linguistic representation. We discuss the possibility that between-brain neural coupling could inform us about the highest level of inter-speaker alignment: mutual understanding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Corruption and population health outcomes: an analysis of data from 133 countries using structural equation modeling.

    PubMed

    Factor, Roni; Kang, Minah

    2015-09-01

    The current study aims to develop a theoretical framework for understanding the antecedents of corruption and the effects of corruption on various health indicators. Using structural equation models, we analyzed a multinational dataset of 133 countries that included three main groups of variables--antecedents of corruption, corruption measures, and health indicators. Controlling for various factors, our results suggest that corruption rises as GDP per capita falls and as the regime becomes more autocratic. Higher corruption is associated with lower levels of health expenditure as a percentage of GDP per capita, and with poorer health outcomes. Countries with higher GDP per capita and better education for women have better health outcomes regardless of health expenditures and regime type. Our results suggest that there is no direct relationship between health expenditures and health outcomes after controlling for the other factors in the model. Our study enhances our understanding of the conceptual and theoretical links between corruption and health outcomes in a population, including factors that may mediate how corruption can affect health outcomes.

  9. Lexical ambiguity resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, S.; Cottrell, G.; Tanenhaus, M.

    1987-01-01

    This book collects much of the best research currently available on the problem of lexical ambiguity resolution in the processing of human language. When taken out of context, sentences are usually ambiguous. When actually uttered in a dialogue or written in text, these same sentences often have unique interpretations. The inherent ambiguity of isolated sentences, becomes obvious in the attempt to write a computer program to understand them. Different views have emerged on the nature of context and the mechanisms by which it directs unambiguous understanding of words and sentences. These perspectives are represented and discussed. Eighteen original papers frommore » a valuable source book for cognitive scientists in AI, psycholinguistics, neuropsychology, or theoretical linguistics.« less

  10. Disk Dispersal: Theoretical Understanding and Observational Constraints

    NASA Astrophysics Data System (ADS)

    Gorti, U.; Liseau, R.; Sándor, Z.; Clarke, C.

    2016-12-01

    Protoplanetary disks dissipate rapidly after the central star forms, on time-scales comparable to those inferred for planet formation. In order to allow the formation of planets, disks must survive the dispersive effects of UV and X-ray photoevaporation for at least a few Myr. Viscous accretion depletes significant amounts of the mass in gas and solids, while photoevaporative flows driven by internal and external irradiation remove most of the gas. A reasonably large fraction of the mass in solids and some gas get incorporated into planets. Here, we review our current understanding of disk evolution and dispersal, and discuss how these might affect planet formation. We also discuss existing observational constraints on dispersal mechanisms and future directions.

  11. Visualizing the Impact of Art: An Update and Comparison of Current Psychological Models of Art Experience

    PubMed Central

    Pelowski, Matthew; Markey, Patrick S.; Lauring, Jon O.; Leder, Helmut

    2016-01-01

    The last decade has witnessed a renaissance of empirical and psychological approaches to art study, especially regarding cognitive models of art processing experience. This new emphasis on modeling has often become the basis for our theoretical understanding of human interaction with art. Models also often define areas of focus and hypotheses for new empirical research, and are increasingly important for connecting psychological theory to discussions of the brain. However, models are often made by different researchers, with quite different emphases or visual styles. Inputs and psychological outcomes may be differently considered, or can be under-reported with regards to key functional components. Thus, we may lose the major theoretical improvements and ability for comparison that can be had with models. To begin addressing this, this paper presents a theoretical assessment, comparison, and new articulation of a selection of key contemporary cognitive or information-processing-based approaches detailing the mechanisms underlying the viewing of art. We review six major models in contemporary psychological aesthetics. We in turn present redesigns of these models using a unified visual form, in some cases making additions or creating new models where none had previously existed. We also frame these approaches in respect to their targeted outputs (e.g., emotion, appraisal, physiological reaction) and their strengths within a more general framework of early, intermediate, and later processing stages. This is used as a basis for general comparison and discussion of implications and future directions for modeling, and for theoretically understanding our engagement with visual art. PMID:27199697

  12. New phenomena in non-equilibrium quantum physics

    NASA Astrophysics Data System (ADS)

    Kitagawa, Takuya

    From its beginning in the early 20th century, quantum theory has become progressively more important especially due to its contributions to the development of technologies. Quantum mechanics is crucial for current technology such as semiconductors, and also holds promise for future technologies such as superconductors and quantum computing. Despite of the success of quantum theory, its applications have been mostly limited to equilibrium or static systems due to 1. lack of experimental controllability of non-equilibrium quantum systems 2. lack of theoretical frameworks to understand non-equilibrium dynamics. Consequently, physicists have not yet discovered too many interesting phenomena in non-equilibrium quantum systems from both theoretical and experimental point of view and thus, non-equilibrium quantum physics did not attract too much attentions. The situation has recently changed due to the rapid development of experimental techniques in condensed matter as well as cold atom systems, which now enables a better control of non-equilibrium quantum systems. Motivated by this experimental progress, we constructed theoretical frameworks to study three different non-equilibrium regimes of transient dynamics, steady states and periodically drives. These frameworks provide new perspectives for dynamical quantum process, and help to discover new phenomena in these systems. In this thesis, we describe these frameworks through explicit examples and demonstrate their versatility. Some of these theoretical proposals have been realized in experiments, confirming the applicability of the theories to realistic experimental situations. These studies have led to not only the improved fundamental understanding of non-equilibrium processes in quantum systems, but also suggested entirely different venues for developing quantum technologies.

  13. Visualizing the Impact of Art: An Update and Comparison of Current Psychological Models of Art Experience.

    PubMed

    Pelowski, Matthew; Markey, Patrick S; Lauring, Jon O; Leder, Helmut

    2016-01-01

    The last decade has witnessed a renaissance of empirical and psychological approaches to art study, especially regarding cognitive models of art processing experience. This new emphasis on modeling has often become the basis for our theoretical understanding of human interaction with art. Models also often define areas of focus and hypotheses for new empirical research, and are increasingly important for connecting psychological theory to discussions of the brain. However, models are often made by different researchers, with quite different emphases or visual styles. Inputs and psychological outcomes may be differently considered, or can be under-reported with regards to key functional components. Thus, we may lose the major theoretical improvements and ability for comparison that can be had with models. To begin addressing this, this paper presents a theoretical assessment, comparison, and new articulation of a selection of key contemporary cognitive or information-processing-based approaches detailing the mechanisms underlying the viewing of art. We review six major models in contemporary psychological aesthetics. We in turn present redesigns of these models using a unified visual form, in some cases making additions or creating new models where none had previously existed. We also frame these approaches in respect to their targeted outputs (e.g., emotion, appraisal, physiological reaction) and their strengths within a more general framework of early, intermediate, and later processing stages. This is used as a basis for general comparison and discussion of implications and future directions for modeling, and for theoretically understanding our engagement with visual art.

  14. Viewpoints on the 2017 American Conference on Theoretical Chemistry

    DOE PAGES

    Goldsmith, Zachary K.; Provazza, Justin; Seritan, Stefan

    2017-10-19

    From July 17th to 21st, theoretical chemists from the United States and abroad gathered at Boston University to take part in the 2017 American Conference on Theoretical Chemistry (ACTC, http://meetatbu.com/actc). The ACTC grew out of a Gordon Research Conference held biennially from 1962 to 1970. The conference in its current form has been held every three years since 1972. The 2017 conference was chaired by Sharon Hammes-Schiffer (Univ. of Illinois at Urbana-Champaign) and vice-chaired by Todd J. Martiń ez (Stanford Univ). David F. Coker of Boston University served as the Deputy Chair and Local Organizer. More than 30 professors atmore » the forefronts of their respective fields gave talks describing recent research developments. Additionally, over 170 students and postdocs contributed posters detailing their research efforts in theoretical chemistry and its numerous intersecting disciplines. This Viewpoint contains accounts of many of the talks given at the ACTC, delineated by the following concentrations: energy and electron transfer, materials and interfaces, quantum dynamics and spectroscopy, electronic structure, machine learning, and modeling in solution and biological environments. However, most talks could have easily been categorized under two or more of the concentrations listed, emblematic of the large and growing interdisciplinarity in the theoretical chemistry community. The 2017 ACTC was a demonstration of both the depth at which theoretical chemists are understanding fundamental phenomena and the large breadth of topics to which a theoretical chemistry perspective is being applied.« less

  15. Viewpoints on the 2017 American Conference on Theoretical Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsmith, Zachary K.; Provazza, Justin; Seritan, Stefan

    From July 17th to 21st, theoretical chemists from the United States and abroad gathered at Boston University to take part in the 2017 American Conference on Theoretical Chemistry (ACTC, http://meetatbu.com/actc). The ACTC grew out of a Gordon Research Conference held biennially from 1962 to 1970. The conference in its current form has been held every three years since 1972. The 2017 conference was chaired by Sharon Hammes-Schiffer (Univ. of Illinois at Urbana-Champaign) and vice-chaired by Todd J. Martiń ez (Stanford Univ). David F. Coker of Boston University served as the Deputy Chair and Local Organizer. More than 30 professors atmore » the forefronts of their respective fields gave talks describing recent research developments. Additionally, over 170 students and postdocs contributed posters detailing their research efforts in theoretical chemistry and its numerous intersecting disciplines. This Viewpoint contains accounts of many of the talks given at the ACTC, delineated by the following concentrations: energy and electron transfer, materials and interfaces, quantum dynamics and spectroscopy, electronic structure, machine learning, and modeling in solution and biological environments. However, most talks could have easily been categorized under two or more of the concentrations listed, emblematic of the large and growing interdisciplinarity in the theoretical chemistry community. The 2017 ACTC was a demonstration of both the depth at which theoretical chemists are understanding fundamental phenomena and the large breadth of topics to which a theoretical chemistry perspective is being applied.« less

  16. Understanding Self-Controlled Motor Learning Protocols through the Self-Determination Theory

    PubMed Central

    Sanli, Elizabeth A.; Patterson, Jae T.; Bray, Steven R.; Lee, Timothy D.

    2013-01-01

    The purpose of the present review was to provide a theoretical understanding of the learning advantages underlying a self-controlled practice context through the tenets of the self-determination theory (SDT). Three micro-theories within the macro-theory of SDT (Basic psychological needs theory, Cognitive Evaluation Theory, and Organismic Integration Theory) are used as a framework for examining the current self-controlled motor learning literature. A review of 26 peer-reviewed, empirical studies from the motor learning and medical training literature revealed an important limitation of the self-controlled research in motor learning: that the effects of motivation have been assumed rather than quantified. The SDT offers a basis from which to include measurements of motivation into explanations of changes in behavior. This review suggests that a self-controlled practice context can facilitate such factors as feelings of autonomy and competence of the learner, thereby supporting the psychological needs of the learner, leading to long term changes to behavior. Possible tools for the measurement of motivation and regulation in future studies are discussed. The SDT not only allows for a theoretical reinterpretation of the extant motor learning research supporting self-control as a learning variable, but also can help to better understand and measure the changes occurring between the practice environment and the observed behavioral outcomes. PMID:23430980

  17. Understanding Self-Controlled Motor Learning Protocols through the Self-Determination Theory.

    PubMed

    Sanli, Elizabeth A; Patterson, Jae T; Bray, Steven R; Lee, Timothy D

    2012-01-01

    The purpose of the present review was to provide a theoretical understanding of the learning advantages underlying a self-controlled practice context through the tenets of the self-determination theory (SDT). Three micro-theories within the macro-theory of SDT (Basic psychological needs theory, Cognitive Evaluation Theory, and Organismic Integration Theory) are used as a framework for examining the current self-controlled motor learning literature. A review of 26 peer-reviewed, empirical studies from the motor learning and medical training literature revealed an important limitation of the self-controlled research in motor learning: that the effects of motivation have been assumed rather than quantified. The SDT offers a basis from which to include measurements of motivation into explanations of changes in behavior. This review suggests that a self-controlled practice context can facilitate such factors as feelings of autonomy and competence of the learner, thereby supporting the psychological needs of the learner, leading to long term changes to behavior. Possible tools for the measurement of motivation and regulation in future studies are discussed. The SDT not only allows for a theoretical reinterpretation of the extant motor learning research supporting self-control as a learning variable, but also can help to better understand and measure the changes occurring between the practice environment and the observed behavioral outcomes.

  18. Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots.

    PubMed

    Keller, A J; Lim, J S; Sánchez, David; López, Rosa; Amasha, S; Katine, J A; Shtrikman, Hadas; Goldhaber-Gordon, D

    2016-08-05

    In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.

  19. Experimental Evidence for Quantum Interference and Vibrationally Induced Decoherence in Single-Molecule Junctions

    NASA Astrophysics Data System (ADS)

    Ballmann, Stefan; Härtle, Rainer; Coto, Pedro B.; Elbing, Mark; Mayor, Marcel; Bryce, Martin R.; Thoss, Michael; Weber, Heiko B.

    2012-08-01

    We analyze quantum interference and decoherence effects in single-molecule junctions both experimentally and theoretically by means of the mechanically controlled break junction technique and density-functional theory. We consider the case where interference is provided by overlapping quasidegenerate states. Decoherence mechanisms arising from electronic-vibrational coupling strongly affect the electrical current flowing through a single-molecule contact and can be controlled by temperature variation. Our findings underline the universal relevance of vibrations for understanding charge transport through molecular junctions.

  20. Experimental evidence for quantum interference and vibrationally induced decoherence in single-molecule junctions.

    PubMed

    Ballmann, Stefan; Härtle, Rainer; Coto, Pedro B; Elbing, Mark; Mayor, Marcel; Bryce, Martin R; Thoss, Michael; Weber, Heiko B

    2012-08-03

    We analyze quantum interference and decoherence effects in single-molecule junctions both experimentally and theoretically by means of the mechanically controlled break junction technique and density-functional theory. We consider the case where interference is provided by overlapping quasidegenerate states. Decoherence mechanisms arising from electronic-vibrational coupling strongly affect the electrical current flowing through a single-molecule contact and can be controlled by temperature variation. Our findings underline the universal relevance of vibrations for understanding charge transport through molecular junctions.

  1. Accretion powered X-ray pulsars

    NASA Technical Reports Server (NTRS)

    White, N. E.; Swank, J. H.; Holt, S. S.

    1982-01-01

    A unified description of the properties of 14 X-ray pulsars is presented and compared with the current theoretical understanding of these systems. The sample extends over six orders of magnitude in luminosity, with the only trend in the phase averaged spectra being that the lower luminosity systems appear to have less abrupt high energy cutoffs. There is no correlation of luminosity with power law index, high energy cutoff energy or iron line EW. Detailed pulse phase spectroscopy is given for five systems.

  2. On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments.

    PubMed

    Prasai, Binay; Wilson, A R; Wiley, B J; Ren, Y; Petkov, Valeri

    2015-11-14

    The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au(100-x)Pd(x) (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when "tuned up" against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.

  3. Flavor Physics in the Quark Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonelli, Mario; /Frascati; Asner, David Mark

    2010-08-26

    In the past decade, one of the major challenges of particle physics has been to gain an in-depth understanding of the role of quark flavor. In this time frame, measurements and the theoretical interpretation of their results have advanced tremendously. A much broader understanding of flavor particles has been achieved, apart from their masses and quantum numbers, there now exist detailed measurements of the characteristics of their interactions allowing stringent tests of Standard Model predictions. Among the most interesting phenomena of flavor physics is the violation of the CP symmetry that has been subtle and difficult to explore. In themore » past, observations of CP violation were confined to neutral K mesons, but since the early 1990s, a large number of CP-violating processes have been studied in detail in neutral B mesons. In parallel, measurements of the couplings of the heavy quarks and the dynamics for their decays in large samples of K,D, and B mesons have been greatly improved in accuracy and the results are being used as probes in the search for deviations from the Standard Model. In the near future, there will be a transition from the current to a new generation of experiments, thus a review of the status of quark flavor physics is timely. This report is the result of the work of the physicists attending the 5th CKM workshop, hosted by the University of Rome 'La Sapienza', September 9-13, 2008. It summarizes the results of the current generation of experiments that is about to be completed and it confronts these results with the theoretical understanding of the field which has greatly improved in the past decade.« less

  4. Growth in Mathematical Understanding While Learning How To Teach: A Theoretical Perspective.

    ERIC Educational Resources Information Center

    Cavey, Laurie O.

    This theoretical paper outlines a conceptual framework for examining growth in prospective teachers' mathematical understanding as they engage in thinking about and planning for the mathematical learning of others. The framework is based on the Pirie-Kieren (1994) Dynamical Theory for the Growth of Mathematical Understanding and extends into the…

  5. Theoretical kinetics study of the F((2)P) + NH3 hydrogen abstraction reaction.

    PubMed

    Espinosa-Garcia, J; Fernandez-Ramos, A; Suleimanov, Y V; Corchado, J C

    2014-01-23

    The hydrogen abstraction reaction of fluorine with ammonia represents a true chemical challenge because it is very fast, is followed by secondary abstraction reactions, which are also extremely fast, and presents an experimental/theoretical controversy about rate coefficients. Using a previously developed full-dimensional analytical potential energy surface, we found that the F + NH3 → HF + NH2 system is a barrierless reaction with intermediate complexes in the entry and exit channels. In order to understand the reactivity of the title reaction, thermal rate coefficidents were calculated using two approaches: ring polymer molecular dynamics and quasi-classical trajectory calculations, and these were compared with available experimental data for the common temperature range 276-327 K. The theoretical results obtained show behavior practically independent of temperature, reproducing Walther-Wagner's experiment, but in contrast with Persky's more recent experiment. However, quantitatively, our results are 1 order of magnitude larger than those of Walther-Wagner and reasonably agree with the Persky at the lowest temperature, questioning so Walther-Wagner's older data. At present, the reason for this discrepancy is not clear, although we point out some possible reasons in the light of current theoretical calculations.

  6. Childhood Bullying: A Review of Constructs, Contexts, and Nursing Implications

    PubMed Central

    Liu, Jianghong; Graves, Nicola

    2011-01-01

    Bullying among children as a pervasive problem has been increasingly recognized as an important public health issue. However, while much attention has been given to understanding the impact of bullying on victims, it is equally important to examine predictors of bullying and potential outcomes for bullies themselves. The current literature on bullying lacks consensus on a utilizable definition of bullying in research, which can vary by theoretical framework. In an attempt to bridge the gaps in the literature, this paper will provide a review of the state of the science on bullying among children, including the major theoretical constructs of bullying and their respective viewpoints on predictors and correlates of bullying. A secondary aim for this paper is to summarize empirical evidence for predictors of bullying and victimization, which can provide strategies for intervention and prevention by public health nursing professionals. By calling attention to the variability in the bullying literature and the limitations of current evidence available, researchers can better address methodological gaps and effectively move toward developing studies to inform nursing treatment programs and enhance public health initiatives that reduce violence in school settings. PMID:22092466

  7. Can the REBT theory explain loneliness? Theoretical and clinical applications.

    PubMed

    Hyland, Philip; McGinty, Gráinne; Karatzias, Thanos; Murphy, Jamie; Vallières, Frédérique; McHugh Power, Joanna

    2018-06-05

    Loneliness is a common psychological experience affecting a significant minority of the general population. Loneliness may in part be related to the existence of dysfunctional cognitive evaluations. To date, however, loneliness has yet to be explicitly assessed within a cognitive-behavioural theoretical framework. The current study sought to determine the association between negative cognitions, within the context of Rational Emotive Behaviour Therapy (REBT), and the experience of loneliness. A multinational sample of university students (n = 397) completed self-report assessments of rational and irrational beliefs, and loneliness. Structural equation modelling results found that the REBT model of psychopathology, and the REBT model of psychological health, provided satisfactory representations of loneliness, explaining 36% and 23% of variance in loneliness, respectively. Several dysfunctional ("Demandingness", "Catastrophising" and "Self-Downing" beliefs) and functional ("Preferences" and "Self-Acceptance" beliefs) cognitions were directly and indirectly associated with loneliness. These results highlight that cognitions and loneliness are meaningfully related, and indicate that cognitive-behavioural models may be useful in understanding loneliness. More specifically, current results suggest that REBT may offer a viable psychotherapeutic approach to treating loneliness.

  8. Recanalization of Chronic Total Occlusion Lesions: A Critical Appraisal of Current Devices and Techniques

    PubMed Central

    2016-01-01

    Chronic Total Occlusion (CTO) has been considered as one of the “final frontier” in interventional cardiology. Until recently, the patients with CTO are often managed surgically or medically due to lack of published evidence of clinical benefits and lower success rate of percutaneous recanalization of CTO. However, the introduction of enhanced guidewires, microcatheters combined with novel specialized devices and techniques reduce the number of unapproachable CTO. In this review article, current techniques and devices of percutaneous recanalization of CTO have been systematically summarized, which may help budding interventional cardiologists to theoretically understand these complex procedures and to deliver safe and effective percutaneous management of CTO to the patients. PMID:27790503

  9. Scaling laws for AC gas breakdown and implications for universality

    NASA Astrophysics Data System (ADS)

    Loveless, Amanda M.; Garner, Allen L.

    2017-10-01

    The reduced dependence on secondary electron emission and electrode surface properties makes radiofrequency (RF) and microwave (MW) plasmas advantageous over direct current (DC) plasmas for various applications, such as microthrusters. Theoretical models relating molecular constants to alternating current (AC) breakdown often fail due to incomplete understanding of both the constants and the mechanisms involved. This work derives simple analytic expressions for RF and MW breakdown, demonstrating the transition between these regimes at their high and low frequency limits, respectively. We further show that the limiting expressions for DC, RF, and MW breakdown voltage all have the same universal scaling dependence on pressure and gap distance at high pressure, agreeing with experiment.

  10. Primary Care Practice Transformation Is Hard Work

    PubMed Central

    Crabtree, Benjamin F.; Nutting, Paul A.; Miller, William L.; McDaniel, Reuben R.; Stange, Kurt C.; Jaén, Carlos Roberto; Stewart, Elizabeth

    2010-01-01

    Background Serious shortcomings remain in clinical care in the United States despite widespread use of improvement strategies for enhancing clinical performance based on knowledge transfer approaches. Recent calls to transform primary care practice to a patient-centered medical home present even greater challenges and require more effective approaches. Methods Our research team conducted a series of National Institutes of Health funded descriptive and intervention projects to understand organizational change in primary care practice settings, emphasizing a complexity science perspective. The result was a developmental research effort that enabled the identification of critical lessons relevant to enabling practice change. Results A summary of findings from a 15-year program of research highlights the limitations of viewing primary care practices in the mechanistic terms that underlie current or traditional approaches to quality improvement. A theoretical perspective that views primary care practices as dynamic complex adaptive systems with “agents” who have the capacity to learn, and the freedom to act in unpredictable ways provides a better framework for grounding quality improvement strategies. This framework strongly emphasizes that quality improvement interventions should not only use a complexity systems perspective, but also there is a need for continual reflection, careful tailoring of interventions, and ongoing attention to the quality of interactions among agents in the practice. Conclusions It is unlikely that current strategies for quality improvement will be successful in transforming current primary care practice to a patient-centered medical home without a stronger guiding theoretical foundation. Our work suggests that a theoretical framework guided by complexity science can help in the development of quality improvement strategies that will more effectively facilitate practice change. PMID:20856145

  11. Cosmological N-body Simulation of Galaxy and Large-Scale Structure Formation: The Gravity Frontier

    NASA Astrophysics Data System (ADS)

    Klypin, Anatoly

    2015-04-01

    One of the first N-body simulations done almost 50 years ago had only 200 self-gravitating particles. Even this first baby step made substantial impact on understanding how astronomical objects should form. Now powerful supercomputers and new algorithms allow astronomers produce N-body simulations that employ up to a trillion dark matter particles and produce vital theoretical predictions regarding formation, evolution, structure and statistics of objects ranging from dwarf galaxies to clusters and superclusters of galaxies. With only gravity involved in these theoretical models, one would naively expect that by now we should know everything we need about N-body dynamics of cosmological fluctuations. Not the case. It appears that the Universe was not cooperative and gave us divergencies in the initial conditions generated during the Inflation epoch and subsequent expansion of the Universe - the infinite phase-space density and divergent density fluctuations. Ever increasing observational demands on statistics and accuracy of theoretical predictions is another driving force for more realistic and larger N-body simulations. Large current and new planned observational projects such as BOSS, eBOSS, Euclid, LSST will bring information on spatial distribution, motion, and properties of millions of galaxies at different redshifts. Direct simulations of evolution of gas and formation of stars for millions of forming galaxies will not be available for years leaving astronomers with the only option - to develop methods to combine large N-body simulations with models of galaxy formation to produce accurate theoretical predictions. I will discuss the current status of the field and directions of its development.

  12. Conceptual parameters of acculturation within the Asian and Pacific Islander American populations: applications for nursing practice and research.

    PubMed

    Baker, Dian

    2011-01-01

    Asian and Pacific Islander Americans (A&PIAs) are experiencing health inequities. For example, A&PIA is the only racial/ethnic group in America to experience cancer as their leading cause of death. Several studies within the A&PIA population have pointed to acculturation as a significant variable to explain their health and health-seeking behaviors. Acculturation is a key construct in understanding the health of the A&PIA population. The purpose of this concept analysis is to provide a current conceptual understanding of the relationship between acculturation and health, especially within the A&PIA populations, which will serve as a pragmatic guideline for nursing practice and research. Understanding the contemporary issues surrounding the conceptual application of acculturation will aid in the development of appropriate programs to reduce health inequities. Acculturation was explored using the Morse method of concept analysis. An iterative historical and contemporary literature review across the disciplines of anthropology, sociology, psychology, medicine, and nursing was completed. Analytical questions asked of the resultant data provided the theoretical definition, antecedents, key attributes, outcomes, and implications. The concept analysis resulted in a new theoretical definition that includes multidimensional concepts of acculturation. Dilemmas in the measurement of key attributes of acculturation include unidirectional and bidirectional analysis, psychometric issues, and the appropriateness of proxy measurements. Outcomes of acculturation on health can be positive or negative and depend on an individual's or group's ability to navigate freely with necessary supports. Results of the conceptual analysis resulted in recommendations for nursing practice and future acculturation research. While debate continues about the appropriate use and definition of acculturation, researchers agree that it is an important construct in understanding the health of migrating individuals and groups. Currently there is no testable framework that delineates the role of acculturation in health. Further research is indicated to clarify the relationship between acculturation and health. © 2011 Wiley Periodicals, Inc.

  13. Experimental results on current-driven turbulence in plasmas - a survey

    NASA Astrophysics Data System (ADS)

    de Kluiver, H.; Perepelkin, N. F.; Hirose, A.

    1991-01-01

    The experimental consequences of plasma turbulence driven by a current parallel to a magnetic field and concurrent anomalous plasma heating are reviewed, with an attempt to deduce universalities in key parameters such as the anomalous electrical conductivities observed in diverse devices. It has been found that the nature of plasma turbulence and turbulent heating depends on several parameters including the electric field, current and magnetic fields. A classification of turbulence regimes based on these parameters has been made. Experimental observations of the anomalous electrical conductivity, plasma heating, skin effect, runaway electron braking and turbulent fluctuations are surveyed, and current theoretical understanding is briefly reviewed. Experimental results recently obtained in stellarators (SIRIUS, URAGAN at Kharkov), and in tokamaks (TORTUR at Nieuwegein, STOR-1M at Saskatoon) are presented in some detail in the light of investigating the feasibility of using turbulent heating as a means of injecting a large power into toroidal devices.

  14. Homogeneous Studies of Transiting Extrasolar Planets: Current Status and Future Plans

    NASA Astrophysics Data System (ADS)

    Taylor, John

    2011-09-01

    We now know of over 500 planets orbiting stars other than our Sun. The jewels in the crown are the transiting planets, for these are the only ones whose masses and radii are measurable. They are fundamental for our understanding of the formation, evolution, structure and atmospheric properties of extrasolar planets. However, their characterization is not straightforward, requiring extremely high-precision photometry and spectroscopy as well as input from theoretical stellar models. I summarize the motivation and current status of a project to measure the physical properties of all known transiting planetary systems using homogeneous techniques (Southworth 2008, 2009, 2010, 2011 in preparation). Careful attention is paid to the treatment of limb darkening, contaminating light, correlated noise, numerical integration, orbital eccentricity and orientation, systematic errors from theoretical stellar models, and empirical constraints. Complete error budgets are calculated for each system and can be used to determine which type of observation would be most useful for improving the parameter measurements. Known correlations between the orbital periods, masses, surface gravities, and equilibrium temperatures of transiting planets can be explored more safely due to the homogeneity of the properties. I give a sneak preview of Homogeneous Studies Paper 4, which includes the properties of thirty transiting planetary systems observed by the CoRoT, Kepler and Deep Impact space missions. Future opportunities are discussed, plus remaining problems with our understanding of transiting planets. I acknowledge funding from the UK STFC in the form of an Advanced Fellowship.

  15. Exceptional Lithium Storage in a Co(OH) 2 Anode: Hydride Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyunchul; Choi, Woon Ih; Jang, Yoonjung

    Current lithium ion battery technology is tied in with conventional reaction mechanisms such as insertion, conversion, and alloying reactions even though most future applications like EVs demand much higher energy densities than current ones. Exploring the exceptional reaction mechanism and related electrode materials can be critical for pushing current battery technology to a next level. Here, we introduce an exceptional reaction with a Co(OH)(2) material which exhibits an initial charge capacity of 1112 mAh g(-1), about twice its theoretical value based on known conventional conversion reaction, and retains its first cycle capacity after 30 cycles. The combined results of synchrotronmore » X-ray diffraction and X-ray absorption spectroscopy indicate that nanosized Co metal particles and LiOH are generated by conversion reaction at high voltages, and CoxHy, Li2O, and LiH are subsequently formed by hydride reaction between Co metal, LiOH, and other lithium species at low voltages, resulting in a anomalously high capacity beyond the theoretical capacity of Co(OH)(2). This is further corroborated by AIMD simulations, localized STEM, and XPS. These findings will provide not only further understanding of exceptional lithium storage of recent nanostructured materials but also valuable guidance to develop advanced electrode materials with high energy density for next-generation batteries.« less

  16. Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves

    NASA Astrophysics Data System (ADS)

    Grach, S. M.; Sergeev, E. N.; Mishin, E. V.; Shindin, A. V.

    2016-11-01

    A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of nonlinear phenomena that occur in the ionospheric F-layer irradiated by high-power high-frequency ground-based transmitters. The main focus is on the dynamic features of high-frequency turbulence (plasma waves) and low-frequency turbulence (density irregularities of various scales) that have been studied in experiments at the Sura and HAARP heating facilities operated in temporal and frequency regimes specially designed with consideration of the characteristic properties of nonlinear processes in the perturbed ionosphere using modern radio receivers and optical instruments. Experimental results are compared with theoretical turbulence models for a magnetized collisional plasma in a high-frequency electromagnetic field, allowing the identification of the processes responsible for the observed features of artificial ionospheric turbulence.

  17. Attentive Motion Discrimination Recruits an Area in Inferotemporal Cortex

    PubMed Central

    Stemmann, Heiko

    2016-01-01

    Attentional selection requires the interplay of multiple brain areas. Theoretical accounts of selective attention predict different areas with different functional properties to support endogenous covert attention. To test these predictions, we devised a demanding attention task requiring motion discrimination and spatial selection and performed whole-brain imaging in macaque monkeys. Attention modulated the early visual cortex, motion-selective dorsal stream areas, the lateral intraparietal area, and the frontal eye fields. This pattern of activation supports early selection, feature-based, and biased-competition attention accounts, as well as the frontoparietal theory of attentional control. While high-level motion-selective dorsal stream areas did not exhibit strong attentional modulation, ventral stream areas V4d and the dorsal posterior inferotemporal cortex (PITd) did. The PITd in fact was, consistently across task variations, the most significantly and most strongly attention-modulated area, even though it did not exhibit signs of motion selectivity. Thus the recruitment of the PITd in attention tasks involving different kinds of motion analysis is not predicted by any theoretical account of attention. These functional data, together with known anatomical connections, suggest a general and possibly critical role of the PITd in attentional selection. SIGNIFICANCE STATEMENT Attention is the key cognitive function that selects sensory information relevant to the current goals, relegating other information to the shadows of consciousness. To better understand the neural mechanisms of this interplay between sensory processing and internal cognitive state, we must learn more about the brain areas supporting attentional selection. Here, to test theoretical accounts of attentional selection, we used a novel task requiring sustained attention to motion. We found that, surprisingly, among the most strongly attention-modulated areas is one that is neither selective for the sensory feature relevant for current goals nor one hitherto thought to be involved in attentional control. This discovery suggests a need for an extension of current theoretical accounts of the brain circuits for attentional selection. PMID:27881778

  18. Solar Spicules: Prospects for Breakthroughs in Understanding with Solar-B

    NASA Astrophysics Data System (ADS)

    Sterling, A.

    Spicules densely populate the lower solar atmosphere; any image or movie of the chromosphere shows a plethora of them or their "cousins," such as mottles or fibrils. Yet despite several decades of effort we still do not know the mechanism that generates them, or how important their contribution is to the material and energy balance of the overall solar atmosphere. Solar-B will provide exciting new chromospheric observations at high time- and spatial-resolution, along with associated quality magnetic field data, that promise to open doors to revolutionary breakthroughs in spicule research. In this presentation we will review the current observational and theoretical status of spicule studies, and discuss prospects for advances in spicule understanding during the Solar-B era.

  19. Solar Spicules: Prospects for Breakthroughs in Understanding with Solar-B

    NASA Technical Reports Server (NTRS)

    Sterling, A. C.

    2004-01-01

    Spicules densely populate the lower solar atmosphere; any image or movie of the chromosphere shows a plethora of them or their "cousins," such as mottles or fibrils. Yet despite several decades of effort we still do not know the mechanism that generates them, or how important their contribution is to the material and energy balance of the overall solar atmosphere. Solar-B will provide exciting new chromospheric observations at high time- and spatial-resolution, along with associated quality magnetic field data, that promise to open doors to revolutionary breakthroughs in spicule research. In this presentation we will review the current observational and theoretical status of spicule studies, and discuss prospects for advances in spicule understanding during the Solar-B era.

  20. Lattice Gauge Theories Within and Beyond the Standard Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelzer, Zechariah John

    The Standard Model of particle physics has been very successful in describing fundamental interactions up to the highest energies currently probed in particle accelerator experiments. However, the Standard Model is incomplete and currently exhibits tension with experimental data for interactions involvingmore » $B$~mesons. Consequently, $B$-meson physics is of great interest to both experimentalists and theorists. Experimentalists worldwide are studying the decay and mixing processes of $B$~mesons in particle accelerators. Theorists are working to understand the data by employing lattice gauge theories within and beyond the Standard Model. This work addresses the theoretical effort and is divided into two main parts. In the first part, I present a lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$~mesons that are mediated by both charged currents ($$B \\to \\pi \\ell \

  1. Identification of a limiting mechanism in GaSb-rich superlattice midwave infrared detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delmas, Marie; Rodriguez, Jean-Baptiste; Rossignol, Rémi

    2016-05-07

    GaSb-rich superlattice (SL) p-i-n photodiodes grown by molecular beam epitaxy were studied theoretically and experimentally in order to understand the poor dark current characteristics typically obtained. This behavior, independent of the SL-grown material quality, is usually attributed to the presence of defects due to Ga-related bonds, limiting the SL carrier lifetime. By analyzing the photoresponse spectra of reverse-biased photodiodes at 80 K, we have highlighted the presence of an electric field, breaking the minibands into localized Wannier-Stark states. Besides the influence of defects in such GaSb-rich SL structures, this electric field induces a strong tunneling current at low bias which canmore » be the main limiting mechanism explaining the high dark current density of the GaSb-rich SL diode.« less

  2. Silence, shame and abuse in health care: theoretical development on basis of an intervention project among staff.

    PubMed

    Wijma, Barbro; Zbikowski, Anke; Brüggemann, A Jelmer

    2016-02-27

    As health care exists to alleviate patients' suffering it is unacceptable that it inflicts unnecessary suffering on patients. We therefore have developed and evaluated a drama pedagogical model for staff interventions using Forum Play, focusing on staff's experiences of failed encounters where they have perceived that the patient felt abused. In the current paper we present how our preliminary theoretical framework of intervening against abuse in health care developed and was revised during this intervention. During and after the intervention, five important lessons were learned and incorporated in our present theoretical framework. First, a Forum Play intervention may break the silence culture that surrounds abuse in health care. Second, organizing staff training in groups was essential and transformed abuse from being an individual problem inflicting shame into a collective responsibility. Third, initial theoretical concepts "moral resources" and "the vicious violence triangle" proved valuable and became useful pedagogical tools during the intervention. Four, the intervention can be understood as having strengthened staff's moral resources. Five, regret appeared to be an underexplored resource in medical training and clinical work.The occurrence of abuse in health care is a complex phenomenon and the research area is in need of theoretical understanding. We hope this paper can inspire others to further develop theories and interventions in order to counteract abuse in health care.

  3. Enhancing implementation of tobacco use prevention and cessation counselling guideline among dental providers: a cluster randomised controlled trial.

    PubMed

    Amemori, Masamitsu; Korhonen, Tellervo; Kinnunen, Taru; Michie, Susan; Murtomaa, Heikki

    2011-02-14

    Tobacco use adversely affects oral health. Tobacco use prevention and cessation (TUPAC) counselling guidelines recommend that healthcare providers ask about each patient's tobacco use, assess the patient's readiness and willingness to stop, document tobacco use habits, advise the patient to stop, assist and help in quitting, and arrange monitoring of progress at follow-up appointments. Adherence to such guidelines, especially among dental providers, is poor. To improve guideline implementation, it is essential to understand factors influencing it and find effective ways to influence those factors. The aim of the present study protocol is to introduce a theory-based approach to diagnose implementation difficulties of TUPAC counselling guidelines among dental providers. Theories of behaviour change have been used to identify key theoretical domains relevant to the behaviours of healthcare providers involved in implementing clinical guidelines. These theoretical domains will inform the development of a questionnaire aimed at assessing the implementation of the TUPAC counselling guidelines among Finnish municipal dental providers. Specific items will be drawn from the guidelines and the literature on TUPAC studies. After identifying potential implementation difficulties, we will design two interventions using theories of behaviour change to link them with relevant behaviour change techniques aiming to improve guideline adherence. For assessing the implementation of TUPAC guidelines, the electronic dental record audit and self-reported questionnaires will be used. To improve guideline adherence, the theoretical-domains approach could provide a comprehensive basis for assessing implementation difficulties, as well as designing and evaluating interventions. After having identified implementation difficulties, we will design and test two interventions to enhance TUPAC guideline adherence. Using the cluster randomised controlled design, we aim to provide further evidence on intervention effects, as well as on the validity and feasibility of the theoretical-domain approach. The empirical data collected within this trial will be useful in testing whether this theoretical-domain approach can improve our understanding of the implementation of TUPAC guidelines among dental providers. Current Controlled Trials ISRCTN15427433.

  4. Developing the next generation of diverse computer scientists: the need for enhanced, intersectional computing identity theory

    NASA Astrophysics Data System (ADS)

    Rodriguez, Sarah L.; Lehman, Kathleen

    2017-10-01

    This theoretical paper explores the need for enhanced, intersectional computing identity theory for the purpose of developing a diverse group of computer scientists for the future. Greater theoretical understanding of the identity formation process specifically for computing is needed in order to understand how students come to understand themselves as computer scientists. To ensure that the next generation of computer scientists is diverse, this paper presents a case for examining identity development intersectionally, understanding the ways in which women and underrepresented students may have difficulty identifying as computer scientists and be systematically oppressed in their pursuit of computer science careers. Through a review of the available scholarship, this paper suggests that creating greater theoretical understanding of the computing identity development process will inform the way in which educational stakeholders consider computer science practices and policies.

  5. Mundane science use in a practice theoretical perspective: Different understandings of the relations between citizen-consumers and public communication initiatives build on scientific claims.

    PubMed

    Halkier, Bente

    2015-08-13

    Public communication initiatives play a part in placing complicated scientific claims in citizen-consumers' everyday contexts. Lay reactions to scientific claims framed in public communication, and attempts to engage citizens, have been important subjects of discussion in the literatures of public understanding and public engagement with science. Many of the public communication initiatives, however, address lay people as consumers rather than citizens. This creates specific challenges for understanding public engagement with science and scientific citizenship. The article compares five different understandings of the relations between citizen-consumers and public issue communication involving science, where the first four types are widely represented in the Public Understanding of Science discussions. The fifth understanding is a practice theoretical perspective. The article suggests how the public understanding of and engagement in science literature can benefit from including a practice theoretical approach to research about mundane science use and public engagement. © The Author(s) 2015.

  6. Advances in high gradient normal conducting accelerator structures

    DOE PAGES

    Simakov, Evgenya Ivanovna; Dolgashev, Valery A.; Tantawi, Sami G.

    2018-03-09

    Here, this paper reviews the current state-of-the-art in understanding the phenomena of ultra-high vacuum radio-frequency (rf) breakdown in accelerating structures and the efforts to improve stable operation of the structures at accelerating gradients above 100 MV/m. Numerous studies have been conducted recently with the goal of understanding the dependence of the achievable accelerating gradients and breakdown rates on the frequency of operations, the geometry of the structure, material and method of fabrication, and operational temperature. Tests have been conducted with single standing wave accelerator cells as well as with the multi-cell traveling wave structures. Notable theoretical effort was directed atmore » understanding the physical mechanisms of the rf breakdown and its statistical behavior. Finally, the achievements presented in this paper are the result of the large continuous self-sustaining collaboration of multiple research institutions in the United States and worldwide.« less

  7. Advances in high gradient normal conducting accelerator structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simakov, Evgenya Ivanovna; Dolgashev, Valery A.; Tantawi, Sami G.

    Here, this paper reviews the current state-of-the-art in understanding the phenomena of ultra-high vacuum radio-frequency (rf) breakdown in accelerating structures and the efforts to improve stable operation of the structures at accelerating gradients above 100 MV/m. Numerous studies have been conducted recently with the goal of understanding the dependence of the achievable accelerating gradients and breakdown rates on the frequency of operations, the geometry of the structure, material and method of fabrication, and operational temperature. Tests have been conducted with single standing wave accelerator cells as well as with the multi-cell traveling wave structures. Notable theoretical effort was directed atmore » understanding the physical mechanisms of the rf breakdown and its statistical behavior. Finally, the achievements presented in this paper are the result of the large continuous self-sustaining collaboration of multiple research institutions in the United States and worldwide.« less

  8. Childhood Stuttering – Where are we and Where are we going?

    PubMed Central

    Smith, Anne; Weber, Christine

    2017-01-01

    Remarkable progress has been made over the past two decades in expanding our understanding of the behavioral, peripheral physiological, and central neurophysiological bases of stuttering in early childhood. It is clear that stuttering is a neurodevelopmental disorder characterized by atypical development of speech motor planning and execution networks. The speech motor system must interact in complex ways with neural systems mediating language, other cognitive, and emotional processes. During the time window when stuttering typically appears and follows its path to either recovery or persistence, all of these neurobehavioral systems are undergoing rapid and dramatic developmental changes. We summarize our current understanding of the various developmental trajectories relevant for the understanding of stuttering in early childhood. We also present theoretical and experimental approaches that we believe will be optimal for even more rapid progress toward developing better and more targeted treatment for stuttering in the preschool children who are more likely to persist in stuttering. PMID:27701705

  9. What neuropsychology tells us about human tool use? The four constraints theory (4CT): mechanics, space, time, and effort.

    PubMed

    Osiurak, François

    2014-06-01

    Our understanding of human tool use comes mainly from neuropsychology, particularly from patients with apraxia or action disorganization syndrome. However, there is no integrative, theoretical framework explaining what these neuropsychological syndromes tell us about the cognitive/neural bases of human tool use. The goal of the present article is to fill this gap, by providing a theoretical framework for the study of human tool use: The Four Constraints Theory (4CT). This theory rests on two basic assumptions. First, everyday tool use activities can be formalized as multiple problem situations consisted of four distinct constraints (mechanics, space, time, and effort). Second, each of these constraints can be solved by the means of a specific process (technical reasoning, semantic reasoning, working memory, and simulation-based decision-making, respectively). Besides presenting neuropsychological evidence for 4CT, this article shall address epistemological, theoretical and methodological issues I will attempt to resolve. This article will discuss how 4CT diverges from current cognitive models about several widespread hypotheses (e.g., notion of routine, direct and automatic activation of tool knowledge, simulation-based tool knowledge).

  10. On the Origin of Protein Superfamilies and Superfolds

    NASA Astrophysics Data System (ADS)

    Magner, Abram; Szpankowski, Wojciech; Kihara, Daisuke

    2015-02-01

    Distributions of protein families and folds in genomes are highly skewed, having a small number of prevalent superfamiles/superfolds and a large number of families/folds of a small size. Why are the distributions of protein families and folds skewed? Why are there only a limited number of protein families? Here, we employ an information theoretic approach to investigate the protein sequence-structure relationship that leads to the skewed distributions. We consider that protein sequences and folds constitute an information theoretic channel and computed the most efficient distribution of sequences that code all protein folds. The identified distributions of sequences and folds are found to follow a power law, consistent with those observed for proteins in nature. Importantly, the skewed distributions of sequences and folds are suggested to have different origins: the skewed distribution of sequences is due to evolutionary pressure to achieve efficient coding of necessary folds, whereas that of folds is based on the thermodynamic stability of folds. The current study provides a new information theoretic framework for proteins that could be widely applied for understanding protein sequences, structures, functions, and interactions.

  11. Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells.

    PubMed

    Kuklja, M M; Kotomin, E A; Merkle, R; Mastrikov, Yu A; Maier, J

    2013-04-21

    Solid oxide fuel cells (SOFC) are under intensive investigation since the 1980's as these devices open the way for ecologically clean direct conversion of the chemical energy into electricity, avoiding the efficiency limitation by Carnot's cycle for thermochemical conversion. However, the practical development of SOFC faces a number of unresolved fundamental problems, in particular concerning the kinetics of the electrode reactions, especially oxygen reduction reaction. We review recent experimental and theoretical achievements in the current understanding of the cathode performance by exploring and comparing mostly three materials: (La,Sr)MnO3 (LSM), (La,Sr)(Co,Fe)O3 (LSCF) and (Ba,Sr)(Co,Fe)O3 (BSCF). Special attention is paid to a critical evaluation of advantages and disadvantages of BSCF, which shows the best cathode kinetics known so far for oxides. We demonstrate that it is the combined experimental and theoretical analysis of all major elementary steps of the oxygen reduction reaction which allows us to predict the rate determining steps for a given material under specific operational conditions and thus control and improve SOFC performance.

  12. Beyond Learning by Doing: Theoretical Currents in Experiential Education

    ERIC Educational Resources Information Center

    Roberts, Jay W.

    2011-01-01

    What is experiential education? What are its theoretical roots? Where does this approach come from? Offering a fresh and distinctive take, this book is about going beyond "learning by doing" through an exploration of its underlying theoretical currents. As an increasingly popular pedagogical approach, experiential education encompasses a variety…

  13. Face-space: A unifying concept in face recognition research.

    PubMed

    Valentine, Tim; Lewis, Michael B; Hills, Peter J

    2016-10-01

    The concept of a multidimensional psychological space, in which faces can be represented according to their perceived properties, is fundamental to the modern theorist in face processing. Yet the idea was not clearly expressed until 1991. The background that led to the development of face-space is explained, and its continuing influence on theories of face processing is discussed. Research that has explored the properties of the face-space and sought to understand caricature, including facial adaptation paradigms, is reviewed. Face-space as a theoretical framework for understanding the effect of ethnicity and the development of face recognition is evaluated. Finally, two applications of face-space in the forensic setting are discussed. From initially being presented as a model to explain distinctiveness, inversion, and the effect of ethnicity, face-space has become a central pillar in many aspects of face processing. It is currently being developed to help us understand adaptation effects with faces. While being in principle a simple concept, face-space has shaped, and continues to shape, our understanding of face perception.

  14. Assessment of electrochemical properties of a biogalvanic system for tissue characterisation

    PubMed Central

    Chandler, J.H.; Culmer, P.R.; Jayne, D.G.; Neville, A.

    2015-01-01

    Biogalvanic characterisation is a promising method for obtaining health-specific tissue information. However, there is a dearth of understanding in the literature regarding the underlying galvanic cell, electrode reactions and their controlling factors which limits the application of the technique. This work presents a parametric electrochemical investigation into a zinc–copper galvanic system using salt (NaCl) solution analogues at physiologically-relevant concentrations (1.71, 17.1 & 154 mM). The potential difference at open cell, closed cell maximum current and the internal resistance (based on published characterisation methods) were measured. Additionally, independent and relative polarisation scans of the electrodes were performed to improve understanding of the system. Our findings suggest that the prominent reaction at the cathode is that of oxygen-reduction, not hydrogen-evolution. Results indicate that cell potentials are influenced by the concentration of dissolved oxygen at low currents and maximum closed cell currents are limited by the rate of oxygen diffusion to the cathode. Characterised internal resistance values for the salt solutions did not correspond to theoretical values at the extremes of concentration (1.71 and 154 mM) due to electrode resistance and current limitation. Existing biogalvanic models do not consider these phenomena and should be improved to advance the technique and its practical application. PMID:25460609

  15. B Physics and CP Violation

    NASA Astrophysics Data System (ADS)

    Kowalewski, R. V.

    2004-03-01

    These lectures present the phenomenology of B meson decays and their impact on our understanding of CP violation in the quark sector, with an emphasis on measurements made at the e+e- B factories. Some of the relevant theoretical ideas such as the Operator Product Expansion and Heavy Quark Symmetry are introduced, and applications to the determination of CKM matrix elements given. The phenomenon of B flavor oscillations is reviewed, and the mechanisms for and current status of CP violation in the B system is given. The status of rare B decays is also discussed.

  16. Adolescent Work, Vocational Development, and Education

    PubMed Central

    Zimmer-Gembeck, Melanie J.; Mortimer, Jeylan T.

    2006-01-01

    This review examines contemporary issues in vocational development with emphasis on adolescents’ work experiences in social context. Attention is directed to the changing social and cultural context for vocational development, the influence of work experience on adolescent development and educational achievement, and theoretical approaches that guide contemporary studies of vocational development and career maturity. In light of the utility of current theories, new directions are suggested to enhance understanding of adolescent employment, vocational development, and educational pursuits. Social policy initiatives to promote adolescents’ exercise of agency and their vocational development are considered. PMID:17387375

  17. Understanding the Theoretical Framework of Technological Pedagogical Content Knowledge: A Collaborative Self-Study to Understand Teaching Practice and Aspects of Knowledge

    ERIC Educational Resources Information Center

    Fransson, Goran; Holmberg, Jorgen

    2012-01-01

    This paper describes a self-study research project that focused on our experiences when planning, teaching, and evaluating a course in initial teacher education. The theoretical framework of technological pedagogical content knowledge (TPACK) was used as a conceptual structure for the self-study. Our understanding of the framework in relation to…

  18. Gene-Environment Interactions in Cardiovascular Disease

    PubMed Central

    Flowers, Elena; Froelicher, Erika Sivarajan; Aouizerat, Bradley E.

    2011-01-01

    Background Historically, models to describe disease were exclusively nature-based or nurture-based. Current theoretical models for complex conditions such as cardiovascular disease acknowledge the importance of both biologic and non-biologic contributors to disease. A critical feature is the occurrence of interactions between numerous risk factors for disease. The interaction between genetic (i.e. biologic, nature) and environmental (i.e. non-biologic, nurture) causes of disease is an important mechanism for understanding both the etiology and public health impact of cardiovascular disease. Objectives The purpose of this paper is to describe theoretical underpinnings of gene-environment interactions, models of interaction, methods for studying gene-environment interactions, and the related concept of interactions between epigenetic mechanisms and the environment. Discussion Advances in methods for measurement of genetic predictors of disease have enabled an increasingly comprehensive understanding of the causes of disease. In order to fully describe the effects of genetic predictors of disease, it is necessary to place genetic predictors within the context of known environmental risk factors. The additive or multiplicative effect of the interaction between genetic and environmental risk factors is often greater than the contribution of either risk factor alone. PMID:21684212

  19. Nonlinear bivariate dependency of price-volume relationships in agricultural commodity futures markets: A perspective from Multifractal Detrended Cross-Correlation Analysis

    NASA Astrophysics Data System (ADS)

    He, Ling-Yun; Chen, Shu-Peng

    2011-01-01

    Nonlinear dependency between characteristic financial and commodity market quantities (variables) is crucially important, especially between trading volume and market price. Studies on nonlinear dependency between price and volume can provide practical insights into market trading characteristics, as well as the theoretical understanding of market dynamics. Actually, nonlinear dependency and its underlying dynamical mechanisms between price and volume can help researchers and technical analysts in understanding the market dynamics by integrating the market variables, instead of investigating them in the current literature. Therefore, for investigating nonlinear dependency of price-volume relationships in agricultural commodity futures markets in China and the US, we perform a new statistical test to detect cross-correlations and apply a new methodology called Multifractal Detrended Cross-Correlation Analysis (MF-DCCA), which is an efficient algorithm to analyze two spatially or temporally correlated time series. We discuss theoretically the relationship between the bivariate cross-correlation exponent and the generalized Hurst exponents for time series of respective variables. We also perform an empirical study and find that there exists a power-law cross-correlation between them, and that multifractal features are significant in all the analyzed agricultural commodity futures markets.

  20. Cognition in multiple sclerosis

    PubMed Central

    Benedict, Ralph; Enzinger, Christian; Filippi, Massimo; Geurts, Jeroen J.; Hamalainen, Paivi; Hulst, Hanneke; Inglese, Matilde; Leavitt, Victoria M.; Rocca, Maria A.; Rosti-Otajarvi, Eija M.; Rao, Stephen

    2018-01-01

    Cognitive decline is recognized as a prevalent and debilitating symptom of multiple sclerosis (MS), especially deficits in episodic memory and processing speed. The field aims to (1) incorporate cognitive assessment into standard clinical care and clinical trials, (2) utilize state-of-the-art neuroimaging to more thoroughly understand neural bases of cognitive deficits, and (3) develop effective, evidence-based, clinically feasible interventions to prevent or treat cognitive dysfunction, which are lacking. There are obstacles to these goals. Our group of MS researchers and clinicians with varied expertise took stock of the current state of the field, and we identify several important practical and theoretical challenges, including key knowledge gaps and methodologic limitations related to (1) understanding and measurement of cognitive deficits, (2) neuroimaging of neural bases and correlates of deficits, and (3) development of effective treatments. This is not a comprehensive review of the extensive literature, but instead a statement of guidelines and priorities for the field. For instance, we provide recommendations for improving the scientific basis and methodologic rigor for cognitive rehabilitation research. Toward this end, we call for multidisciplinary collaborations toward development of biologically based theoretical models of cognition capable of empirical validation and evidence-based refinement, providing the scientific context for effective treatment discovery. PMID:29343470

  1. Brain stimulation, mathematical, and numerical training: Contribution of core and noncore skills.

    PubMed

    Looi, C Y; Cohen Kadosh, R

    2016-01-01

    Mathematical abilities that are correlated with various life outcomes vary across individuals. One approach to improve mathematical abilities is by understanding the underlying cognitive functions. Theoretical and experimental evidence suggest that mathematical abilities are subserved by "core" and "noncore" skills. Core skills are commonly regarded as the "innate" capacity to attend to and process numerical information, while noncore skills are those that are important for mathematical cognition, but are not exclusive to the mathematical domain such as executive functions, spatial skills, and attention. In recent years, mathematical training has been combined with the application of noninvasive brain stimulation to further enhance training outcomes. However, the development of more strategic training paradigms is hindered by the lack of understanding on the contributory nature of core and noncore skills and their neural underpinnings. In the current review, we will examine the effects of brain stimulation with focus on transcranial electrical stimulation on core and noncore skills, and its impact on mathematical and numerical training. We will conclude with a discussion on the theoretical and experimental implications of these studies and directions for further research. © 2016 Elsevier B.V. All rights reserved.

  2. [A Grounded Theory Approach on Nurses' Experience with Workplace Bullying].

    PubMed

    Kang, Jiyeon; Yun, Seonyoung

    2016-04-01

    The purpose of this qualitative study was to explore the workplace bullying experience of Korean nurses. Participants were twenty current or former hospital nurses who had experienced workplace bullying. Data were collected through focus group and individual in-depth interviews from February to May, 2015. Theoretical sampling method was applied to the point of theoretical saturation. Transcribed interview contents were analyzed using Corbin and Strauss's grounded theory method. A total of 110 concepts, 48 sub-categories, and 17 categories were identified through the open coding process. As a result of axial coding based on the paradigm model, the central phenomenon of nurses' workplace bullying experience was revealed as 'teaching that has become bullying', and the core category was extracted as 'surviving in love-hate teaching' consisting of a four-step process: confronting reality, trial and error, relationship formation, and settlement. The relationship formation was considered to be the key phase to proceed to the positive settlement phase, and the participants utilized various strategies such as having an open mind, developing human relationships, understanding each other in this phase. The in-depth understanding of the workplace bullying experience has highlighted the importance of effective communication for cultivating desirable human relationships between nurses.

  3. The Measurement, Nomological Net, and Theory of Perceived Self-Esteem Instability: Applying the Conservation of Resources Theory to Understand the Construct.

    PubMed

    Howard, Matt C

    2018-01-01

    The current article performs the first focused investigation into the construct of perceived self-esteem instability (P-SEI). Four studies investigate the construct's measurement, nomological net, and theoretical dynamics. Study 1 confirms the factor structure of a P-SEI Measure, supporting that P-SEI can be adequately measured. Study 2 identifies an initial nomological net surrounding P-SEI, showing that the construct is strongly related to stable aspects of the self (i.e., neuroticism and core self-evaluations). In Studies 3 and 4, the Conservation of Resources Theory is applied to develop and test five hypotheses. These studies show that P-SEI is predicted by self-esteem level and stressors, and the relationship of certain stressors is moderated by self-esteem contingencies. P-SEI also predicts stress, depression, anxiety, and certain defensive postures. From these studies and the integration of Conservation of Resources Theory, we suggest that P-SEI emerges through an interaction between environmental influences and personal resources, and we provide a theoretical model to better understand the construct of P-SEI. We suggest that this theory-driven model can prompt the initial field of study on P-SEI.

  4. Theoretical study of thermodynamic properties and reaction rates of importance in the high-speed research program

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen; Bauschlicher, Charles; Jaffe, Richard

    1992-01-01

    One of the primary goals of NASA's high-speed research program is to determine the feasibility of designing an environmentally safe commercial supersonic transport airplane. The largest environmental concern is focused on the amount of ozone destroying nitrogen oxides (NO(x)) that would be injected into the lower stratosphere during the cruise portion of the flight. The limitations placed on NO(x) emission require more than an order of magnitude reduction over current engine designs. To develop strategies to meet this goal requires first gaining a fundamental understanding of the combustion chemistry. To accurately model the combustor requires a computational fluid dynamics approach that includes both turbulence and chemistry. Since many of the important chemical processes in this regime involve highly reactive radicals, an experimental determination of the required thermodynamic data and rate constants is often very difficult. Unlike experimental approaches, theoretical methods are as applicable to highly reactive species as stable ones. Also our approximation of treating the dynamics classically becomes more accurate with increasing temperature. In this article we review recent progress in generating thermodynamic properties and rate constants that are required to understand NO(x) formation in the combustion process. We also describe our one-dimensional modeling efforts to validate an NH3 combustion reaction mechanism. We have been working in collaboration with researchers at LeRC, to ensure that our theoretical work is focused on the most important thermodynamic quantities and rate constants required in the chemical data base.

  5. Photoexcited escape probability, optical gain, and noise in quantum well infrared photodetectors

    NASA Technical Reports Server (NTRS)

    Levine, B. F.; Zussman, A.; Gunapala, S. D.; Asom, M. T.; Kuo, J. M.; Hobson, W. S.

    1992-01-01

    We present a detailed and thorough study of a wide variety of quantum well infrared photodetectors (QWIPs), which were chosen to have large differences in their optical and transport properties. Both n- and p-doped QWIPs, as well as intersubband transitions based on photoexcitation from bound-to-bound, bound-to-quasi-continuum, and bound-to-continuum quantum well states were investigated. The measurements and theoretical analysis included optical absorption, responsivity, dark current, current noise, optical gain, hot carrier mean free path; net quantum efficiency, quantum well escape probability, quantum well escape time, as well as detectivity. These results allow a better understanding of the optical and transport physics and thus a better optimization of the QWIP performance.

  6. Problem Behaviors of Homeless Youth: A Social Capital Perspective

    PubMed Central

    Bantchevska, Denitza; Bartle-Haring, Suzanne; Dashora, Pushpanjali; Glebova, Tatiana; Slesnick, Natasha

    2008-01-01

    Homeless youth are one of the most marginalized groups in our society. Many researchers identify much higher levels of various problem behaviors among these youth compared to their non-homeless peers. The current study examined the utility of social capital in predicting problem behaviors among homeless youth. Overall, the theoretically derived social capital variable significantly predicted substance use frequency, sexual risk behavior, depression, delinquent behavior as well as number of days homeless. Thus, social capital was useful in understanding and predicting the current life situation among these youth and may be worthy of further study. Findings suggest that meaningful change should utilize interventions that go beyond the individual and are geared towards modifying the social context of individuals’ lives. PMID:18787647

  7. Transformational leadership in sport: current status and future directions.

    PubMed

    Arthur, Calum A; Bastardoz, Nicolas; Eklund, Robert

    2017-08-01

    Borrowed from organizational psychology, the concept of transformational leadership has now been applied to a sport context for a decade. Our review covers and critically discusses empirical articles published on this growing topic. However, because the majority of studies used cross-sectional designs and single-source questionnaires to tap what has been a fuzzy construct, current theoretical and methodological issues impede understanding of whether transformational leadership matters for sport outcomes. To make a difference to applied practice and policy, the transformational leadership construct requires a refined definition and stronger empirical tests allowing for robust causal inference. We highlight avenues for advancing research on transformational leadership in the sport context. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  8. Understanding the amplitudes of noise correlation measurements

    USGS Publications Warehouse

    Tsai, Victor C.

    2011-01-01

    Cross correlation of ambient seismic noise is known to result in time series from which station-station travel-time measurements can be made. Part of the reason that these cross-correlation travel-time measurements are reliable is that there exists a theoretical framework that quantifies how these travel times depend on the features of the ambient noise. However, corresponding theoretical results do not currently exist to describe how the amplitudes of the cross correlation depend on such features. For example, currently it is not possible to take a given distribution of noise sources and calculate the cross correlation amplitudes one would expect from such a distribution. Here, we provide a ray-theoretical framework for calculating cross correlations. This framework differs from previous work in that it explicitly accounts for attenuation as well as the spatial distribution of sources and therefore can address the issue of quantifying amplitudes in noise correlation measurements. After introducing the general framework, we apply it to two specific problems. First, we show that we can quantify the amplitudes of coherency measurements, and find that the decay of coherency with station-station spacing depends crucially on the distribution of noise sources. We suggest that researchers interested in performing attenuation measurements from noise coherency should first determine how the dominant sources of noise are distributed. Second, we show that we can quantify the signal-to-noise ratio of noise correlations more precisely than previous work, and that these signal-to-noise ratios can be estimated for given situations prior to the deployment of seismometers. It is expected that there are applications of the theoretical framework beyond the two specific cases considered, but these applications await future work.

  9. Non-suicidal self-injury and life stress: A systematic meta-analysis and theoretical elaboration

    PubMed Central

    Liu, Richard T.; Cheek, Shayna M.; Nestor, Bridget A.

    2016-01-01

    Recent years have seen a considerable growth of interest in the study of life stress and non-suicidal self-injury (NSSI). The current article presents a systematic review of the empirical literature on this association. In addition to providing a comprehensive meta-analysis, the current article includes a qualitative review of the findings for which there were too few cases (i.e., < 3) for reliable approximations of effect sizes. Across the studies included in the meta-analysis, a significant but modest relation between life stress and NSSI was found (pooled OR = 1.81 [95% CI = 1.49–2.21]). After an adjustment was made for publication bias, the estimated effect size was smaller but still significant (pooled OR = 1.33 [95% CI = 1.08–1.63]). This relation was moderated by sample type, NSSI measure type, and length of period covered by the NSSI measure. The empirical literature is characterized by several methodological limitations, particularly the frequent use of cross-sectional analyses involving temporal overlap between assessments of life stress and NSSI, leaving unclear the precise nature of the relation between these two phenomena (e.g., whether life stress may be a cause, concomitant, or consequence of NSSI). Theoretically informed research utilizing multi-wave designs, assessing life stress and NSSI over relatively brief intervals, and featuring interview-based assessments of these constructs holds promise for advancing our understanding of their relation. The current review concludes with a theoretical elaboration of the association between NSSI and life stress, with the aim of providing a conceptual framework to guide future study in this area. PMID:27267345

  10. Development of Probabilistic Understanding in Fourth Grade

    ERIC Educational Resources Information Center

    English, Lyn D.; Watson, Jane M.

    2016-01-01

    The authors analyzed the development of 4th-grade students' understanding of the transition from experimental relative frequencies of outcomes to theoretical probabilities with a focus on the foundational statistical concepts of variation and expectation. After observing the decreasing variation from the theoretical probability as the sample size…

  11. Praxis and reflexivity for interprofessional education: towards an inclusive theoretical framework for learning.

    PubMed

    Hutchings, Maggie; Scammell, Janet; Quinney, Anne

    2013-09-01

    While there is growing evidence of theoretical perspectives adopted in interprofessional education, learning theories tend to foreground the individual, focusing on psycho-social aspects of individual differences and professional identity to the detriment of considering social-structural factors at work in social practices. Conversely socially situated practice is criticised for being context-specific, making it difficult to draw generalisable conclusions for improving interprofessional education. This article builds on a theoretical framework derived from earlier research, drawing on the dynamics of Dewey's experiential learning theory and Archer's critical realist social theory, to make a case for a meta-theoretical framework enabling social-constructivist and situated learning theories to be interlinked and integrated through praxis and reflexivity. Our current analysis is grounded in an interprofessional curriculum initiative mediated by a virtual community peopled by health and social care users. Student perceptions, captured through quantitative and qualitative data, suggest three major disruptive themes, creating opportunities for congruence and disjuncture and generating a model of zones of interlinked praxis associated with professional differences and identity, pedagogic strategies and technology-mediated approaches. This model contributes to a framework for understanding the complexity of interprofessional learning and offers bridges between individual and structural factors for engaging with the enablements and constraints at work in communities of practice and networks for interprofessional education.

  12. Flow networks for Ocean currents

    NASA Astrophysics Data System (ADS)

    Tupikina, Liubov; Molkenthin, Nora; Marwan, Norbert; Kurths, Jürgen

    2014-05-01

    Complex networks have been successfully applied to various systems such as society, technology, and recently climate. Links in a climate network are defined between two geographical locations if the correlation between the time series of some climate variable is higher than a threshold. Therefore, network links are considered to imply heat exchange. However, the relationship between the oceanic and atmospheric flows and the climate network's structure is still unclear. Recently, a theoretical approach verifying the correlation between ocean currents and surface air temperature networks has been introduced, where the Pearson correlation networks were constructed from advection-diffusion dynamics on an underlying flow. Since the continuous approach has its limitations, i.e., by its high computational complexity, we here introduce a new, discrete construction of flow-networks, which is then applied to static and dynamic velocity fields. Analyzing the flow-networks of prototypical flows we find that our approach can highlight the zones of high velocity by degree and transition zones by betweenness, while the combination of these network measures can uncover how the flow propagates within time. We also apply the method to time series data of the Equatorial Pacific Ocean Current and the Gulf Stream ocean current for the changing velocity fields, which could not been done before, and analyse the properties of the dynamical system. Flow-networks can be powerful tools to theoretically understand the step from system's dynamics to network's topology that can be analyzed using network measures and is used for shading light on different climatic phenomena.

  13. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    PubMed Central

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-01-01

    Local surface charge density of lipid membranes influences membrane–protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values. PMID:27561322

  14. Medicine and the humanities--theoretical and methodological issues.

    PubMed

    Puustinen, Raimo; Leiman, M; Viljanen, A M

    2003-12-01

    Engel's biopsychosocial model, Cassell's promotion of the concept "person" in medical thinking and Pellegrino's and Thomasma's philosophy of medicine are attempts to widen current biomedical theory of disease and to approach medicine as a form of human activity in pursuit of healing. To develop this approach further we would like to propose activity theory as a possible means for understanding the nature of medical practice. By "activity theory" we refer to developments which have evolved from Vygotsky's research on socially mediated mental functions and processes. Analysing medicine as activity enforces the joint consideration of target and subject: who is doing what to whom. This requires the use of historical, linguistic, anthropological, and semiotic tools. Therefore, if we analyse medicine as an activity, humanities are both theoretically and methodologically "inbound" (or internal) to the analysis itself. On the other hand, literature studies or anthropological writings provide material for analysing the various forms of medical practices.

  15. Monetary and affective judgments of consumer goods: modes of evaluation matter.

    PubMed

    Seta, John J; Seta, Catherine E; McCormick, Michael; Gallagher, Ashleigh H

    2014-01-01

    Participants who evaluated 2 positively valued items separately reported more positive attraction (using affective and monetary measures) than those who evaluated the same two items as a unit. In Experiments 1-3, this separate/unitary evaluation effect was obtained when participants evaluated products that they were purchasing for a friend. Similar findings were obtained in Experiments 4 and 5 when we considered the amount participants were willing to spend to purchase insurance for items that they currently owned. The averaging/summation model was contrasted with several theoretical perspectives and implicated averaging and summation integration processes in how items are evaluated. The procedural and theoretical similarities and differences between this work and related research on unpacking, comparison processes, public goods, and price bundling are discussed. Overall, the results support the operation of integration processes and contribute to an understanding of how these processes influence the evaluation and valuation of private goods.

  16. Two-Particle Dispersion in Isotropic Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Salazar, Juan P. L. C.; Collins, Lance R.

    2009-01-01

    Two-particle dispersion is of central importance to a wide range of natural and industrial applications. It has been an active area of research since Richardson's (1926) seminal paper. This review emphasizes recent results from experiments, high-end direct numerical simulations, and modern theoretical discussions. Our approach is complementary to Sawford's (2001), whose review focused primarily on stochastic models of pair dispersion. We begin by reviewing the theoretical foundations of relative dispersion, followed by experimental and numerical findings for the dissipation subrange and inertial subrange. We discuss the findings in the context of the relevant theory for each regime. We conclude by providing a critical analysis of our current understanding and by suggesting paths toward further progress that take full advantage of exciting developments in modern experimental methods and peta-scale supercomputing.

  17. [Risk, uncertainty and ignorance in medicine].

    PubMed

    Rørtveit, G; Strand, R

    2001-04-30

    Exploration of healthy patients' risk factors for disease has become a major medical activity. The rationale behind primary prevention through exploration and therapeutic risk reduction is not separated from the theoretical assumption that every form of uncertainty can be expressed as risk. Distinguishing "risk" (as quantitative probabilities in a known sample space), "strict uncertainty" (when the sample space is known, but probabilities of events cannot be quantified) and "ignorance" (when the sample space is not fully known), a typical clinical situation (primary risk of coronary disease) is analysed. It is shown how strict uncertainty and sometimes ignorance can be present, in which case the orthodox decision theoretical rationale for treatment breaks down. For use in such cases, a different ideal model of rationality is proposed, focusing on the patient's considered reasons. This model has profound implications for the current understanding of medical professionalism as well as for the design of clinical guidelines.

  18. Dynamics of Single-Photon Emission from Electrically Pumped Color Centers

    NASA Astrophysics Data System (ADS)

    Khramtsov, Igor A.; Agio, Mario; Fedyanin, Dmitry Yu.

    2017-08-01

    Low-power, high-speed, and bright electrically driven true single-photon sources, which are able to operate at room temperature, are vital for the practical realization of quantum-communication networks and optical quantum computations. Color centers in semiconductors are currently the best candidates; however, in spite of their intensive study in the past decade, the behavior of color centers in electrically controlled systems is poorly understood. Here we present a physical model and establish a theoretical approach to address single-photon emission dynamics of electrically pumped color centers, which interprets experimental results. We support our analysis with self-consistent numerical simulations of a single-photon emitting diode based on a single nitrogen-vacancy center in diamond and predict the second-order autocorrelation function and other emission characteristics. Our theoretical findings demonstrate remarkable agreement with the experimental results and pave the way to the understanding of single-electron and single-photon processes in semiconductors.

  19. Clinical neuropsychology within adolescent and young-adult psychiatry: conceptualizing theory and practice.

    PubMed

    Allott, Kelly; Proffitt, Tina-Marie; McGorry, Patrick D; Pantelis, Christos; Wood, Stephen J; Cumner, Marnie; Brewer, Warrick J

    2013-01-01

    Historically, clinical neuropsychology has made significant contributions to the understanding of brain-behavior relationships, particularly in neurological conditions. During the past several decades, neuropsychology has also become established as an important discipline in psychiatric settings. Cognition is increasingly recognized as being core to psychiatric illnesses and predictive of functional outcomes, augmenting theories regarding symptomatology and illness progression. Adult-type psychiatric disorders (including schizophrenia and other psychotic, mood, anxiety, eating, substance-related, and personality disorders) typically emerge during adolescence or young adulthood, a critical neurodevelopmental period. Clinical neuropsychological assessment in adolescent psychiatric patients is particularly valuable in informing clinical formulation and intervention and can be therapeutic across a number of levels. This article articulates the theoretical considerations and practical challenges and applications of clinical neuropsychology within adolescent and young-adult psychiatry. The importance of considering the neurodevelopmental context and its relationship to current theoretical models underpinning clinical practice are discussed.

  20. Cultural prototypes and dimensions of honor.

    PubMed

    Cross, Susan E; Uskul, Ayse K; Gerçek-Swing, Berna; Sunbay, Zeynep; Alözkan, Cansu; Günsoy, Ceren; Ataca, Bilge; Karakitapoglu-Aygün, Zahide

    2014-02-01

    Research evidence and theoretical accounts of honor point to differing definitions of the construct in differing cultural contexts. The current studies address the question "What is honor?" using a prototype approach in Turkey and the Northern United States. Studies 1a/1b revealed substantial differences in the specific features generated by members of the two groups, but Studies 2 and 3 revealed cultural similarities in the underlying dimensions of self-respect, moral behavior, and social status/respect. Ratings of the centrality and personal importance of these factors were similar across the two groups, but their association with other relevant constructs differed. The tripartite nature of honor uncovered in these studies helps observers and researchers alike understand how diverse responses to situations can be attributed to honor. Inclusion of a prototype analysis into the literature on honor cultures can provide enhanced coverage of the concept that may lead to testable hypotheses and new theoretical developments.

  1. Community stakeholder responses to advocacy advertising

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, B.; Sinclair, J.

    Focus group research was used to examine how community stakeholders, a group with local industry experience, responded to coal industry advocacy messages. The stakeholders expressed beliefs about both the advertiser and the coal industry, and while their knowledge led to critical consideration of the industry campaign, they also expressed a desire to identify with positive messages about their community. Applying a postpositivist research perspective, a new model is introduced to integrate these beliefs in terms of advertiser trust and industry accountability under the existing theoretical framework of persuasion knowledge. Agent and topic knowledge are combined in this model based onmore » responses to the industry advocacy campaign. In doing so, this study integrates a priori theory within a new context, extending the current theoretical framework to include an understanding of how community stakeholders - a common target for marketplace advocacy - interpret industry messages.« less

  2. Theory and practical understanding of the migration behavior of proteins and peptides in CE and related techniques.

    PubMed

    Freitag, Ruth; Hilbrig, Frank

    2007-07-01

    CEC is defined as an analytical method, where the analytes are separated on a chromatographic column in the presence of an applied voltage. The separation of charged analytes in CEC is complex, since chromatographic interaction, electroosmosis and electrophoresis contribute to the experimentally observed behavior. The putative contribution of effects such as surface electrodiffusion has been suggested. A sound theoretical treatment incorporating all effects is currently not available. The question of whether the different effects contribute in an independent or an interdependent manner is still under discussion. In this contribution, the state-of-the-art in the theoretical description of the individual contributions as well as models for the retention behavior and in particular possible dimensionless 'retention factors' is discussed, together with the experimental database for the separation of charged analytes, in particular proteins and peptides, by CEC and related techniques.

  3. Low Fertility, Socioeconomic Development, and Gender Equity1

    PubMed Central

    Anderson, Thomas; Kohler, Hans-Peter

    2015-01-01

    While new empirical findings and theoretical frameworks provide insight into the interrelations between socioeconomic development, gender equity, and low fertility, puzzling exceptions and outliers in these findings call for a more all-encompassing framework to understand the interplay between these processes. We argue that the pace and onset of development are two important factors to be considered when analyzing gender equity and fertility. Within the developed world, “first-wave developers”—or countries that began socioeconomic development in the 19th/early 20th century – currently have much higher fertility levels than “late developers”. We lay out a novel theoretical approach to explain why this is the case and provide empirical evidence to support our argument. Our approach not only explains historical periods of low fertility but also sheds light on why there exists such large variance in fertility rates among today’s developed countries. PMID:26526031

  4. Generation of Plasma Density Irregularities in the Midlatitude/Subauroral F Region

    NASA Astrophysics Data System (ADS)

    Mishin, E. V.

    2017-12-01

    A concise review is given of the current state of the theoretical understanding of the creation of small- and meso-scale plasma density irregularities in the midlatitude/subauroral F region during quiet and disturbed periods. The former are discussed in terms of the temperature gradient instability (TGI) in the vicinity of the ionospheric projection of the plasmapause and the Perkins instability. During active conditions some part of the midlatitude ionosphere becomes the subauroral region dominated by enhanced westward flows (SAPS and SAID) driven by poleward electric fields. Their irregular, often nonlinear wave structure leads to the formation of plasma density irregularities in the plasmasphere and conjugate ionosphere. Here, meso-scale irregularities are due to the positive feedback magnetosphere-ionosphere coupling instability, while small scales resulted from the gradient drift instability (GDI), temperature GDI, and the ion frictional heating instability. The theoretical predictions are compared with satellite observations in the perturbed subauroral geospace.

  5. Derivation of the open-circuit voltage of organic solar cells

    NASA Astrophysics Data System (ADS)

    Staple, Douglas B.; Oliver, Patricia A. K.; Hill, Ian G.

    2014-05-01

    Organic photovoltaic cells have improved in efficiency from 1% two decades ago to over 10% today. Continued improvement necessitates a theoretical understanding of the factors determining efficiency. Organic photovoltaic efficiency can be parameterized in terms of open-circuit voltage, short-circuit current, and fill factor. Here we present a theory that explains the dependencies of open-circuit voltage on semiconductor energy levels, light intensity, solar cell and light-source temperatures, charge-carrier recombination, and external fluorescence efficiency. The present theory also explains why recombination at the donor-acceptor heterointerface is a dominant process in heterojunction-based cells. Furthermore, the Carnot efficiency appears, highlighting the connection to basic thermodynamics. The theory presented here is consistent with and builds on the experimental and theoretical observations already in the literature. Crucially, the present theory can be straightforwardly derived in a line-by-line fashion using standard tools from statistical physics.

  6. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    NASA Astrophysics Data System (ADS)

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-08-01

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.

  7. Expert performance in sport and the dynamics of talent development.

    PubMed

    Phillips, Elissa; Davids, Keith; Renshaw, Ian; Portus, Marc

    2010-04-01

    Research on expertise, talent identification and development has tended to be mono-disciplinary, typically adopting genocentric or environmentalist positions, with an overriding focus on operational issues. In this paper, the validity of dualist positions on sport expertise is evaluated. It is argued that, to advance understanding of expertise and talent development, a shift towards a multidisciplinary and integrative science focus is necessary, along with the development of a comprehensive multidisciplinary theoretical rationale. Here we elucidate dynamical systems theory as a multidisciplinary theoretical rationale for capturing how multiple interacting constraints can shape the development of expert performers. This approach suggests that talent development programmes should eschew the notion of common optimal performance models, emphasize the individual nature of pathways to expertise, and identify the range of interacting constraints that impinge on performance potential of individual athletes, rather than evaluating current performance on physical tests referenced to group norms.

  8. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy.

    PubMed

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-08-26

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.

  9. ECUT: Energy Conversion and Utilization Technologies program. Heterogeneous catalysis modeling program concept

    NASA Technical Reports Server (NTRS)

    Voecks, G. E.

    1983-01-01

    Insufficient theoretical definition of heterogeneous catalysts is the major difficulty confronting industrial suppliers who seek catalyst systems which are more active, selective, and stable than those currently available. In contrast, progress was made in tailoring homogeneous catalysts to specific reactions because more is known about the reaction intermediates promoted and/or stabilized by these catalysts during the course of reaction. However, modeling heterogeneous catalysts on a microscopic scale requires compiling and verifying complex information on reaction intermediates and pathways. This can be achieved by adapting homogeneous catalyzed reaction intermediate species, applying theoretical quantum chemistry and computer technology, and developing a better understanding of heterogeneous catalyst system environments. Research in microscopic reaction modeling is now at a stage where computer modeling, supported by physical experimental verification, could provide information about the dynamics of the reactions that will lead to designing supported catalysts with improved selectivity and stability.

  10. The Impact of Solid Surface Features on Fluid-Fluid Interface Configuration

    NASA Astrophysics Data System (ADS)

    Araujo, J. B.; Brusseau, M. L. L.

    2017-12-01

    Pore-scale fluid processes in geological media are critical for a broad range of applications such as radioactive waste disposal, carbon sequestration, soil moisture distribution, subsurface pollution, land stability, and oil and gas recovery. The continued improvement of high-resolution image acquisition and processing have provided a means to test the usefulness of theoretical models developed to simulate pore-scale fluid processes, through the direct quantification of interfaces. High-resolution synchrotron X-ray microtomography is used in combination with advanced visualization tools to characterize fluid distributions in natural geologic media. The studies revealed the presence of fluid-fluid interface associated with macroscopic features on the surfaces of the solids such as pits and crevices. These features and respective fluid interfaces, which are not included in current theoretical or computational models, may have a significant impact on accurate simulation and understanding of multi-phase flow, energy, heat and mass transfer processes.

  11. Perceptions of Psychological Coercion and Human Trafficking in the West Midlands of England: Beginning to Know the Unknown.

    PubMed

    Dando, Coral J; Walsh, David; Brierley, Robin

    2016-01-01

    Modern slavery is less overt than historical state-sanctioned slavery because psychological abuse is typically used to recruit and then control victims. The recent UK Draft Modern Slavery Bill, and current UK government anti-slavery strategy relies heavily on a shared understanding and public cooperation to tackle this crime. Yet, UK research investigating public understanding of modern slavery is elusive. We report community survey data from 682 residents of the Midlands of England, where modern slavery is known to occur, concerning their understanding of nonphysical coercion and human trafficking (one particular form of modern slavery). Analysis of quantitative data and themed categorization of qualitative data revealed a mismatch between theoretical frameworks and understanding of psychological coercion, and misconceptions concerning the nature of human trafficking. Many respondents did not understand psychological coercion, believed that human trafficking did not affect them, and confused trafficking with immigration. The public are one of the most influential interest groups, but only if well informed and motivated towards positive action. Our findings suggest the need for strategically targeted public knowledge exchange concerning this crime.

  12. Perceptions of Psychological Coercion and Human Trafficking in the West Midlands of England: Beginning to Know the Unknown

    PubMed Central

    Dando, Coral J.; Walsh, David; Brierley, Robin

    2016-01-01

    Modern slavery is less overt than historical state-sanctioned slavery because psychological abuse is typically used to recruit and then control victims. The recent UK Draft Modern Slavery Bill, and current UK government anti-slavery strategy relies heavily on a shared understanding and public cooperation to tackle this crime. Yet, UK research investigating public understanding of modern slavery is elusive. We report community survey data from 682 residents of the Midlands of England, where modern slavery is known to occur, concerning their understanding of nonphysical coercion and human trafficking (one particular form of modern slavery). Analysis of quantitative data and themed categorization of qualitative data revealed a mismatch between theoretical frameworks and understanding of psychological coercion, and misconceptions concerning the nature of human trafficking. Many respondents did not understand psychological coercion, believed that human trafficking did not affect them, and confused trafficking with immigration. The public are one of the most influential interest groups, but only if well informed and motivated towards positive action. Our findings suggest the need for strategically targeted public knowledge exchange concerning this crime. PMID:27149330

  13. College Fund Raising Using Theoretical Perspectives to Understand Donor Motives

    ERIC Educational Resources Information Center

    Mann, Timothy

    2007-01-01

    This paper provides senior leadership teams with a body of literature that will guide the development of "fund-raising strategy" and provides an "interdisciplinary" context for understanding "donor motives". Consideration of these "theoretical foundations" can help shape the fund-raising philosophy of the institution. These perspectives also have…

  14. Understanding Literacy: Theoretical Foundations for Research in Media Ecology.

    ERIC Educational Resources Information Center

    Ramos, Lori

    2000-01-01

    Reviews the major scholarship of Harold Innis, Eric Havelock, Marshall McLuhan, Jack Goody, Walter Ong and Elizabeth Eisenstein, as they focused on the development of writing systems, and later, printing. Discusses how their theoretical frameworks are central to understanding media ecology, an emerging field of interdisciplinary study for…

  15. Preservation of Newspapers: Theoretical Approaches and Practical Achievements

    ERIC Educational Resources Information Center

    Hasenay, Damir; Krtalic, Maja

    2010-01-01

    The preservation of newspapers is the main topic of this paper. A theoretical overview of newspaper preservation is given, with an emphasis on the importance of a systematic and comprehensive approach. Efficient newspaper preservation implies understanding the meaning of preservation in general, as well as understanding specific approaches,…

  16. Theoretical derivation of anodizing current and comparison between fitted curves and measured curves under different conditions.

    PubMed

    Chong, Bin; Yu, Dongliang; Jin, Rong; Wang, Yang; Li, Dongdong; Song, Ye; Gao, Mingqi; Zhu, Xufei

    2015-04-10

    Anodic TiO2 nanotubes have been studied extensively for many years. However, the growth kinetics still remains unclear. The systematic study of the current transient under constant anodizing voltage has not been mentioned in the original literature. Here, a derivation and its corresponding theoretical formula are proposed to overcome this challenge. In this paper, the theoretical expressions for the time dependent ionic current and electronic current are derived to explore the anodizing process of Ti. The anodizing current-time curves under different anodizing voltages and different temperatures are experimentally investigated in the anodization of Ti. Furthermore, the quantitative relationship between the thickness of the barrier layer and anodizing time, and the relationships between the ionic/electronic current and temperatures are proposed in this paper. All of the current-transient plots can be fitted consistently by the proposed theoretical expressions. Additionally, it is the first time that the coefficient A of the exponential relationship (ionic current j(ion) = A exp(BE)) has been determined under various temperatures and voltages. And the results indicate that as temperature and voltage increase, ionic current and electronic current both increase. The temperature has a larger effect on electronic current than ionic current. These results can promote the research of kinetics from a qualitative to quantitative level.

  17. Theoretical derivation of anodizing current and comparison between fitted curves and measured curves under different conditions

    NASA Astrophysics Data System (ADS)

    Chong, Bin; Yu, Dongliang; Jin, Rong; Wang, Yang; Li, Dongdong; Song, Ye; Gao, Mingqi; Zhu, Xufei

    2015-04-01

    Anodic TiO2 nanotubes have been studied extensively for many years. However, the growth kinetics still remains unclear. The systematic study of the current transient under constant anodizing voltage has not been mentioned in the original literature. Here, a derivation and its corresponding theoretical formula are proposed to overcome this challenge. In this paper, the theoretical expressions for the time dependent ionic current and electronic current are derived to explore the anodizing process of Ti. The anodizing current-time curves under different anodizing voltages and different temperatures are experimentally investigated in the anodization of Ti. Furthermore, the quantitative relationship between the thickness of the barrier layer and anodizing time, and the relationships between the ionic/electronic current and temperatures are proposed in this paper. All of the current-transient plots can be fitted consistently by the proposed theoretical expressions. Additionally, it is the first time that the coefficient A of the exponential relationship (ionic current jion = A exp(BE)) has been determined under various temperatures and voltages. And the results indicate that as temperature and voltage increase, ionic current and electronic current both increase. The temperature has a larger effect on electronic current than ionic current. These results can promote the research of kinetics from a qualitative to quantitative level.

  18. Simulation study on characteristics of long-range interaction in randomly asymmetric exclusion process

    NASA Astrophysics Data System (ADS)

    Zhao, Shi-Bo; Liu, Ming-Zhe; Yang, Lan-Ying

    2015-04-01

    In this paper we investigate the dynamics of an asymmetric exclusion process on a one-dimensional lattice with long-range hopping and random update via Monte Carlo simulations theoretically. Particles in the model will firstly try to hop over successive unoccupied sites with a probability q, which is different from previous exclusion process models. The probability q may represent the random access of particles. Numerical simulations for stationary particle currents, density profiles, and phase diagrams are obtained. There are three possible stationary phases: the low density (LD) phase, high density (HD) phase, and maximal current (MC) in the system, respectively. Interestingly, bulk density in the LD phase tends to zero, while the MC phase is governed by α, β, and q. The HD phase is nearly the same as the normal TASEP, determined by exit rate β. Theoretical analysis is in good agreement with simulation results. The proposed model may provide a better understanding of random interaction dynamics in complex systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 41274109 and 11104022), the Fund for Sichuan Youth Science and Technology Innovation Research Team (Grant No. 2011JTD0013), and the Creative Team Program of Chengdu University of Technology.

  19. Effect of Initial State of Lithium on the Propensity for Dendrite Formation: A Theoretical Study

    DOE PAGES

    Barai, Pallab; Higa, Kenneth; Srinivasan, Venkat

    2016-12-17

    Mechanical constraints have been widely used experimentally to prevent the growth of dendrites within lithium metal. The only article known to the authors that tries to theoretically understand how mechanical forces prevent dendrite growth was published by Monroe and Newman [J. Electrochem. Soc., 150 (10) A1377 (2005)]. Based on the assumption that surface tension prevents the growth of interfacial roughness, Monroe and Newman considered pre-stressed conditions of the lithium electrodes. This scenario indicates that prevention of dendrite growth by mechanical means is only possible by using electrolytes with shear modulus at least two times larger than that of lithium metal.more » Here, a different scenario of relaxed lithium metal (without any pre-existing surface stresses) has been considered in the present analysis. Deposition of lithium due to electrochemical reaction at the lithium/electrolyte interface induces compressive stress at the electrode, the electrolyte, and the newly deposited lithium metal. Present simulations indicate that during operation at low current densities, the scenario of relaxed lithium leads to no dendrites. Rather, the present study points to the importance of including the effect of current distribution to accurately capture the mechanical forces needed to prevent dendrite growth.« less

  20. Effect of Initial State of Lithium on the Propensity for Dendrite Formation: A Theoretical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barai, Pallab; Higa, Kenneth; Srinivasan, Venkat

    Mechanical constraints have been widely used experimentally to prevent the growth of dendrites within lithium metal. The only article known to the authors that tries to theoretically understand how mechanical forces prevent dendrite growth was published by Monroe and Newman [J. Electrochem. Soc., 150 (10) A1377 (2005)]. Based on the assumption that surface tension prevents the growth of interfacial roughness, Monroe and Newman considered pre-stressed conditions of the lithium electrodes. This scenario indicates that prevention of dendrite growth by mechanical means is only possible by using electrolytes with shear modulus at least two times larger than that of lithium metal.more » Here, a different scenario of relaxed lithium metal (without any pre-existing surface stresses) has been considered in the present analysis. Deposition of lithium due to electrochemical reaction at the lithium/electrolyte interface induces compressive stress at the electrode, the electrolyte, and the newly deposited lithium metal. Present simulations indicate that during operation at low current densities, the scenario of relaxed lithium leads to no dendrites. Rather, the present study points to the importance of including the effect of current distribution to accurately capture the mechanical forces needed to prevent dendrite growth.« less

  1. Recreational 3,4-methylenedioxymethamphetamine or 'ecstasy': Current perspective and future research prospects.

    PubMed

    Parrott, Andrew C; Downey, Luke A; Roberts, Carl A; Montgomery, Cathy; Bruno, Raimondo; Fox, Helen C

    2017-08-01

    The purpose of this article is to debate current understandings about the psychobiological effects of recreational 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy'), and recommend theoretically-driven topics for future research. Recent empirical findings, especially those from novel topic areas were reviewed. Potential causes for the high variance often found in group findings were also examined. The first empirical reports into psychobiological and psychiatric aspects from the early 1990s concluded that regular users demonstrated some selective psychobiological deficits, for instance worse declarative memory, or heightened depression. More recent research has covered a far wider range of psychobiological functions, and deficits have emerged in aspects of vision, higher cognitive skill, neurohormonal functioning, and foetal developmental outcomes. However, variance levels are often high, indicating that while some recreational users develop problems, others are less affected. Potential reasons for this high variance are debated. An explanatory model based on multi-factorial causation is then proposed. A number of theoretically driven research topics are suggested, in order to empirically investigate the potential causes for these diverse psychobiological deficits. Future neuroimaging studies should study the practical implications of any serotonergic and/or neurohormonal changes, using a wide range of functional measures.

  2. Theoretical analysis of low-power fast optogenetic control of firing of Chronos-expressing neurons.

    PubMed

    Saran, Sant; Gupta, Neha; Roy, Sukhdev

    2018-04-01

    A detailed theoretical analysis of low-power, fast optogenetic control of firing of Chronos-expressing neurons has been presented. A three-state model for the Chronos photocycle has been formulated and incorporated in a fast-spiking interneuron circuit model. The effect of excitation wavelength, pulse irradiance, pulse width, and pulse frequency has been studied in detail and compared with ChR2. Theoretical simulations are in excellent agreement with recently reported experimental results and bring out additional interesting features. At very low irradiances ([Formula: see text]), the plateau current in Chronos exhibits a maximum. At [Formula: see text], the plateau current is 2 orders of magnitude smaller and saturates at longer pulse widths ([Formula: see text]) compared to ChR2 ([Formula: see text]). [Formula: see text] in Chronos saturates at much shorter pulse widths (1775 pA at 1.5 ms and [Formula: see text]) than in ChR2. Spiking fidelity is also higher at lower irradiances and longer pulse widths compared to ChR2. Chronos exhibits an average maximal driven rate of over [Formula: see text] in response to [Formula: see text] stimuli, each of 1-ms pulse-width, in the intensity range 0 to [Formula: see text]. The analysis is important to not only understand the photodynamics of Chronos and Chronos-expressing neurons but also to design opsins with optimized properties and perform precision experiments with required spatiotemporal resolution.

  3. Combined experimental and theoretical description of direct current magnetron sputtering of Al by Ar and Ar/N2 plasma

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan; Ries, Stefan; Bibinov, Nikita; Awakowicz, Peter; Mráz, Stanislav; Schneider, Jochen M.; Mussenbrock, Thomas

    2018-05-01

    Direct current magnetron sputtering of Al by Ar and Ar/N2 low pressure plasmas was characterized by experimental and theoretical means in a unified consideration. Experimentally, the plasmas were analyzed by optical emission spectroscopy, while the film deposition rate was determined by weight measurements and laser optical microscopy, and the film composition by energy dispersive x-ray spectroscopy. Theoretically, a global particle and power balance model was used to estimate the electron temperature T e and the electron density n e of the plasma at constant discharge power. In addition, the sputtering process and the transport of the sputtered atoms were described using Monte Carlo models—TRIDYN and dsmcFoam, respectively. Initially, the non-reactive situation is characterized based on deposition experiment results, which are in agreement with predictions from simulations. Subsequently, a similar study is presented for the reactive case. The influence of the N2 addition is found to be twofold, in terms of (i) the target and substrate surface conditions (e.g., sputtering, secondary electron emission, particle sticking) and (ii) the volumetric changes of the plasma density n e governing the ion flux to the surfaces (e.g., due to additional energy conversion channels). It is shown that a combined experimental/simulation approach reveals a physically coherent and, in particular, quantitative understanding of the properties (e.g., electron density and temperature, target surface nitrogen content, sputtered Al density, deposited mass) involved in the deposition process.

  4. In the ruins of representation: identity, individuality, subjectification.

    PubMed

    Papadopoulos, Dimitris

    2008-03-01

    This paper explores a threefold shift in our understanding of identity formation and self-relationality: from an essentialist understanding of identity, to discursive and constructivist approaches, to, finally, the notion of embodied subjectification. The main target of this paper is to historicize these ideas and to localize them in the current social and political conditions of North-Atlantic societies. The core argument is that these three steps in reformulating the concept of identity correspond to an emerging form of subjectivity, affirmative subjectivity, which is bound to the proliferation of the post-Fordist reorganization of the social and political realm. The three theoretical shifts and their social situatedness will be illustrated through a rereading of some ideas from Lev S. Vygotsky's late theory, Michel Foucault's account of government and Jacques Rancière's political philosophy.

  5. Current at Metal-Organic Interfaces

    NASA Astrophysics Data System (ADS)

    Kern, Klaus

    2012-02-01

    Charge transport through atomic and molecular constrictions greatly affects the operation and performance of organic electronic devices. Much of our understanding of the charge injection and extraction processes in these systems relays on our knowledge of the electronic structure at the metal-organic interface. Despite significant experimental and theoretical advances in studying charge transport in nanoscale junctions, a microscopic understanding at the single atom/molecule level is missing. In the present talk I will present our recent results to probe directly the nanocontact between single molecules and a metal electrode using scanning probe microscopy and spectroscopy. The experiments provide unprecedented microscopic details of single molecule and atom junctions and open new avenues to study quantum critical and many body phenomena at the atomic scale. Implications for energy conversion devices and carbon based nanoelectronics will also be discussed.

  6. Nurses’ Wisdom in Action in the Emergency Department

    PubMed Central

    Matney, Susan A.; Staggers, Nancy; Clark, Lauren

    2016-01-01

    Nurses seek to understand better what practicing with wisdom means and how to apply wisdom to practice; however, the experience of wisdom in nursing has not been well defined or researched. This study was designed to understand how emergency department (ED) nurses construct the meaning of wisdom within the culture of clinical nursing practice. Using Charmaz’s constructivist grounded theory methodology, we developed a preliminary theory capturing the experience of wisdom in practice. The core theoretical model focuses on two juxtaposed processes, technical and affective, and is grounded in expertise. Significant findings were the recognition of affective categories, such as emotional intelligence, required to practice using wisdom. Results reinforce and extend the current wisdom literature and provide a new perspective on wisdom in practice in a nursing context. PMID:28462339

  7. An assessment of workplace programmes designed to control inhalation risks using respiratory protective equipment.

    PubMed

    Bell, Nikki; Vaughan, Nicholas P; Morris, Len; Griffin, Peter

    2012-04-01

    Few studies have assessed respiratory protective equipment (RPE) failures at the organizational level despite evidence to suggest that compliance with good practice may be low. The aim of this study was to develop an understanding of what current RPE programmes look like across industry and how this compares with good practice. Twenty cross-industry site visits were conducted with companies that had RPE programmes in place. Visits involved management interviews to explore current RPE systems and procedures and the decision making underpinning these. Observations of RPE operatives were included followed by short interviews to discuss the behaviours observed. Post-site assessments jointly undertaken by an RPE scientist and psychologist produced ratings for each site on six critical aspects of RPE programmes (knowledge/awareness, selection, use, training/information, supervision, and storage/cleaning/maintenance). Overall ratings for theoretical competence (i.e. management knowledge of RPE) and practical control (i.e. actual RPE practice on the shop floor) were also given. Qualitative analysis was performed on all interview data. The performance of RPE programmes varied across industry. Fewer than half the companies visited were considered to have an acceptable level of theoretical competence and practical control. Four distinct groups emerged from the 20 sites studied, ranging from Learners (low theoretical competence and practical control--four sites), Developers (acceptable theoretical competence and low practical control--five sites), and Fortuitous (low theoretical competence and acceptable practical control--two sites), to Proficient (acceptable theoretical competence and practical control--nine sites). None of the companies visited were achieving optimal control through the use of RPE. Widespread inadequacies were found with programme implementation, particularly training, supervision, and maintenance. Our taxonomy based on the four groups (Learners, Developers, Fortuitous, and Proficient) provided a useful expert-informed tool for explaining the variation in performance of RPE programmes across industry. Although further research and development are required, this taxonomy offers a useful starting point for the development of practical tools that may assist managers in making the much-needed improvements to all facets of programme implementation, particularly training, supervision, and maintenance.

  8. Children's understanding of the immune system: Integrating the cognitive-developmental and intuitive theories' perspectives

    NASA Astrophysics Data System (ADS)

    Landry-Boozer, Kristine L.

    Traditional cognitive-developmental researchers have provided a large body of evidence supporting the stage-like progression of children's cognitive development. Further, from this body of research comes evidence that children's understanding of HIV/AIDS develops in much the same way as their understanding of other illness-related concepts. Researchers from a newer perspective assert that biological concepts develop from intuitive theories. In general, as children are exposed to relevant content and have opportunities to organize this information, their theories become more accurate and differentiated. According to this perspective, there are no broad structural constraints on developing concepts, as asserted by cognitive developmental theorists. The purpose of the current study was two-fold: to provide support for both theoretical perspectives, while at the same time to explore children's conceptualizations of the immune system, which has not been done previously in the cognitive-developmental literature. One hundred ninety children ranging in age from 4 years old through 11 years old, and a group of adults, participated. Each participant was interviewed regarding health concepts and the body's function in maintaining health. Participants were also asked to report if they had certain experiences that would have led to relevant content exposure. Qualitative analyses were utilized to code the interviews with rubrics based on both theoretical perspectives. Quantitative analyses consisted of a series of univariate ANOVAs (and post hoc tests when appropriate) examining all three coding variables (accuracy, differentiation, and developmental level) across various age-group combinations and exposure groups. Results of these analyses provided support for both theoretical perspectives. When the data were analyzed for developmental level by all ages, a stage-like progression consistent with Piagetian stages emerged. When accuracy and differentiation were examined (intuitive theories perspective), discrete groups could not be formed. Instead, a gradual increase in accuracy and differentiation was observed. Additional support for this perspective was found when the responses of participants who had additional exposure provided responses that were more accurate, differentiated, and sophisticated than those of participants with no additional exposure. Theoretical and educational implications of these findings are discussed.

  9. Observations of Near-Surface Current Shear Help Describe Oceanic Oil and Plastic Transport

    NASA Astrophysics Data System (ADS)

    Laxague, Nathan J. M.; Ö-zgökmen, Tamay M.; Haus, Brian K.; Novelli, Guillaume; Shcherbina, Andrey; Sutherland, Peter; Guigand, Cédric M.; Lund, Björn; Mehta, Sanchit; Alday, Matias; Molemaker, Jeroen

    2018-01-01

    Plastics and spilled oil pose a critical threat to marine life and human health. As a result of wind forcing and wave motions, theoretical and laboratory studies predict very strong velocity variation with depth over the upper few centimeters of the water column, an observational blind spot in the real ocean. Here we present the first-ever ocean measurements of the current vector profile defined to within 1 cm of the free surface. In our illustrative example, the current magnitude averaged over the upper 1 cm of the ocean is shown to be nearly four times the average over the upper 10 m, even for mild forcing. Our findings indicate that this shear will rapidly separate pieces of marine debris which vary in size or buoyancy, making consideration of these dynamics essential to an improved understanding of the pathways along which marine plastics and oil are transported.

  10. Influence of Joule heating on current-induced domain wall depinning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moretti, Simone, E-mail: simone.moretti@usal.es; Raposo, Victor; Martinez, Eduardo

    2016-06-07

    The domain wall depinning from a notch in a Permalloy nanostrip on top of a SiO{sub 2}/Si substrate is studied theoretically under application of static magnetic fields and the injection of short current pulses. The influence of Joule heating on current-induced domain wall depinning is explored self-consistently by coupling the magnetization dynamics in the ferromagnetic strip to the heat transport throughout the system. Our results indicate that Joule heating plays a remarkable role in these processes, resulting in a reduction in the critical depinning field and/or in a temporary destruction of the ferromagnetic order for typically injected current pulses. Inmore » agreement with experimental observations, similar pinning-depinning phase diagrams can be deduced for both current polarities when the Joule heating is taken into account. These observations, which are incompatible with the sole contribution of spin transfer torques, provide a deeper understanding of the physics underlying these processes and establish the real scope of the spin transfer torque. They are also relevant for technological applications based on current-induced domain-wall motion along soft strips.« less

  11. Evolution of Theoretical Perspectives in My Research

    NASA Astrophysics Data System (ADS)

    Otero, Valerie K.

    2009-11-01

    Over the past 10 years I have been using socio-cultural theoretical perspectives to understand how people learn physics in a highly interactive, inquiry-based physics course such as Physics and Everyday Thinking [1]. As a result of using various perspectives (e.g. Distributed Cognition and Vygotsky's Theory of Concept Formation), my understanding of how these perspectives can be useful for investigating students' learning processes has changed. In this paper, I illustrate changes in my thinking about the role of socio-cultural perspectives in understanding physics learning and describe elements of my thinking that have remained fairly stable. Finally, I will discuss pitfalls in the use of certain perspectives and discuss areas that need attention in theoretical development for PER.

  12. Mechanism of phase control in a klystron-like relativistic backward wave oscillator by an input signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Renzhen; Song, Zhimin; Deng, Yuqun

    Theoretical analyses and particle-in-cell (PIC) simulations are carried out to understand the mechanism of microwave phase control realized by the external RF signal in a klystron-like relativistic backward wave oscillator (RBWO). Theoretical calculations show that a modulated electron beam can lead the microwave field with an arbitrary initial phase to the same equilibrium phase, which is determined by the phase factor of the modulated current, and the difference between them is fixed. Furthermore, PIC simulations demonstrate that the phase of input signal has a close relation to that of modulated current, which initiates the phase of the irregularly microwave duringmore » the build-up of oscillation. Since the microwave field is weak during the early time of starting oscillation, it is easy to be induced, and a small input signal is sufficient to control the phase of output microwave. For the klystron-like RBWO with two pre-modulation cavities and a reentrant input cavity, an input signal with 100 kW power and 4.21 GHz frequency can control the phase of 5 GW output microwave with relative phase difference less than 6% when the diode voltage is 760 kV, and beam current is 9.8 kA, corresponding to a power ratio of output microwave to input signal of 47 dB.« less

  13. Sharing methodology: a worked example of theoretical integration with qualitative data to clarify practical understanding of learning and generate new theoretical development.

    PubMed

    Yardley, Sarah; Brosnan, Caragh; Richardson, Jane

    2013-01-01

    Theoretical integration is a necessary element of study design if clarification of experiential learning is to be achieved. There are few published examples demonstrating how this can be achieved. This methodological article provides a worked example of research methodology that achieved clarification of authentic early experiences (AEEs) through a bi-directional approach to theory and data. Bi-directional refers to our simultaneous use of theory to guide and interrogate empirical data and the use of empirical data to refine theory. We explain the five steps of our methodological approach: (1) understanding the context; (2) critique on existing applications of socio-cultural models to inform study design; (3) data generation; (4) analysis and interpretation and (5) theoretical development through a novel application of Metis. These steps resulted in understanding of how and why different outcomes arose from students participating in AEE. Our approach offers a mechanism for clarification without which evidence-based effective ways to maximise constructive learning cannot be developed. In our example it also contributed to greater theoretical understanding of the influence of social interactions. By sharing this example of research undertaken to develop both theory and educational practice we hope to assist others seeking to conduct similar research.

  14. Learning Physical Domains: Toward a Theoretical Framework.

    ERIC Educational Resources Information Center

    Forbus, Kenneth D.; Gentner, Dedre

    People use and extend their knowledge of the physical world constantly. Understanding how this fluency is achieved would be an important milestone in understanding human learning and intelligence, as well as a useful guide for constructing machines that learn. This paper presents a theoretical framework that is being developed in an attempt to…

  15. Utilizing the Theoretical Framework of Collective Identity to Understand Processes in Youth Programs

    ERIC Educational Resources Information Center

    Futch, Valerie A.

    2016-01-01

    This article explores collective identity as a useful theoretical framework for understanding social and developmental processes that occur in youth programs. Through narrative analysis of past participant interviews (n = 21) from an after-school theater program, known as "The SOURCE", it was found that participants very clearly describe…

  16. Internal Medicine Residents' Beliefs, Attitudes, and Experiences Relating to Palliative Care: A Qualitative Study.

    PubMed

    Kawaguchi, S; Mirza, R; Nissim, R; Ridley, J

    2017-05-01

    Internal medicine residents are frequently called upon to provide palliative care to hospitalized patients, but report feeling unprepared to do so effectively. Curricular development to enhance residents' palliative care skills and competencies requires an understanding of current beliefs, attitudes and learning priorities. We conducted a qualitative study consisting of semi-structured interviews with ten internal medicine residents to explore their understanding of and experiences with palliative care. All of the residents interviewed had a sound theoretical understanding of palliative care, but faced many challenges in being able to provide care in practice. The challenges described by residents were system-related, patient-related and provider-related. They identified several priority areas for further learning, and discussed ways in which their current education in palliative care could be enhanced. Our findings provide important insights to guide curricular development for internal medicine trainees. The top five learning priorities in palliative care that residents identified in our study were: 1) knowing how and when to initiate a palliative approach, 2) improving communication skills, 3) improving symptom management skills, 4) identifying available resources, and 5) understanding the importance of palliative care. Residents felt that their education in palliative care could be improved by having a mandatory rotation in palliative care, more frequent didactic teaching sessions, more case-based teaching from palliative care providers, opportunities to be directly observed, and increased support from palliative care providers after-hours.

  17. Loss of coherence and memory effects in quantum dynamics Loss of coherence and memory effects in quantum dynamics

    NASA Astrophysics Data System (ADS)

    Benatti, Fabio; Floreanini, Roberto; Scholes, Greg

    2012-08-01

    The last years have witnessed fast growing developments in the use of quantum mechanics in technology-oriented and information-related fields, especially in metrology, in the developments of nano-devices and in understanding highly efficient transport processes. The consequent theoretical and experimental outcomes are now driving new experimental tests of quantum mechanical effects with unprecedented accuracies that carry with themselves the concrete possibility of novel technological spin-offs. Indeed, the manifold advances in quantum optics, atom and ion manipulations, spintronics and nano-technologies are allowing direct experimental verifications of new ideas and their applications to a large variety of fields. All of these activities have revitalized interest in quantum mechanics and created a unique framework in which theoretical and experimental physics have become fruitfully tangled with information theory, computer, material and life sciences. This special issue aims to provide an overview of what is currently being pursued in the field and of what kind of theoretical reference frame is being developed together with the experimental and theoretical results. It consists of three sections: 1. Memory effects in quantum dynamics and quantum channels 2. Driven open quantum systems 3. Experiments concerning quantum coherence and/or decoherence The first two sections are theoretical and concerned with open quantum systems. In all of the above mentioned topics, the presence of an external environment needs to be taken into account, possibly in the presence of external controls and/or forcing, leading to driven open quantum systems. The open system paradigm has proven to be central in the analysis and understanding of many basic issues of quantum mechanics, such as the measurement problem, quantum communication and coherence, as well as for an ever growing number of applications. The theory is, however, well-settled only when the so-called Markovian or memoryless, approximation applies. When strong coupling or long environmental relaxation times make memory effects important for a realistic description of the dynamics, new strategies are asked for and the assessment of the general structure of non-Markovian dynamical equations for realistic systems is a crucial issue. The impact of quantum phenomena such as coherence and entanglement in biology has recently started to be considered as a possible source of the high efficiency of certain biological mechanisms, including e.g. light harvesting in photosynthesis and enzyme catalysis. In this effort, the relatively unknown territory of driven open quantum systems is being explored from various directions, with special attention to the creation and stability of coherent structures away from thermal equilibrium. These investigations are likely to advance our understanding of the scope and role of quantum mechanics in living systems; at the same time they provide new ideas for the developments of next generations of devices implementing highly efficient energy harvesting and conversion. The third section concerns experimental studies that are currently being pursued. Multidimensional nonlinear spectroscopy, in particular, has played an important role in enabling experimental detection of the signatures of coherence. Recent remarkable results suggest that coherence—both electronic and vibrational—survive for substantial timescales even in complex biological systems. The papers reported in this issue describe work at the forefront of this field, where researchers are seeking a detailed understanding of the experimental signatures of coherence and its implications for light-induced processes in biology and chemistry.

  18. Diurnal tidal currents attributed to free baroclinic coastal-trapped waves on the Pacific shelf off the southeastern coast of Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Kuroda, Hiroshi; Kusaka, Akira; Isoda, Yutaka; Honda, Satoshi; Ito, Sayaka; Onitsuka, Toshihiro

    2018-04-01

    To understand the properties of tides and tidal currents on the Pacific shelf off the southeastern coast of Hokkaido, Japan, we analyzed time series of 9 current meters that were moored on the shelf for 1 month to 2 years. Diurnal tidal currents such as the K1 and O1 constituents were more dominant than semi-diurnal ones by an order of magnitude. The diurnal tidal currents clearly propagated westward along the coast with a typical phase velocity of 2 m s-1 and wavelength of 200 km. Moreover, the shape and phase of the diurnal currents measured by a bottom-mounted ADCP were vertically homogeneous, except in the vicinity of the bottom boundary layer. These features were very consistent with theoretically estimated properties of free baroclinic coastal-trapped waves of the first mode. An annual (semi-annual) variation was apparent for the phase (amplitude) of the O1 tidal current, which was correlated with density stratification (intensity of an along-shelf current called the Coastal Oyashio). These possible causes are discussed in terms of the propagation and generation of coastal-trapped waves.

  19. Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate

    NASA Technical Reports Server (NTRS)

    Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.

    1993-01-01

    Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.

  20. Connections Between Theory and Experiment for Gold and Silver Nanoclusters.

    PubMed

    Weerawardene, K L Dimuthu M; Häkkinen, Hannu; Aikens, Christine M

    2018-04-20

    Ligand-stabilized gold and silver nanoparticles are of tremendous current interest in sensing, catalysis, and energy applications. Experimental and theoretical studies have closely interacted to elucidate properties such as the geometric and electronic structures of these fascinating systems. In this review, the interplay between theory and experiment is described; areas such as optical absorption and doping, where the theory-experiment connections are well established, are discussed in detail; and the current status of these connections in newer fields of study, such as luminescence, transient absorption, and the effects of solvent and the surrounding environment, are highlighted. Close communication between theory and experiment has been extremely valuable for developing an understanding of these nanocluster systems in the past decade and will undoubtedly continue to play a major role in future years.

  1. Connections Between Theory and Experiment for Gold and Silver Nanoclusters

    NASA Astrophysics Data System (ADS)

    Weerawardene, K. L. Dimuthu M.; Häkkinen, Hannu; Aikens, Christine M.

    2018-04-01

    Ligand-stabilized gold and silver nanoparticles are of tremendous current interest in sensing, catalysis, and energy applications. Experimental and theoretical studies have closely interacted to elucidate properties such as the geometric and electronic structures of these fascinating systems. In this review, the interplay between theory and experiment is described; areas such as optical absorption and doping, where the theory-experiment connections are well established, are discussed in detail; and the current status of these connections in newer fields of study, such as luminescence, transient absorption, and the effects of solvent and the surrounding environment, are highlighted. Close communication between theory and experiment has been extremely valuable for developing an understanding of these nanocluster systems in the past decade and will undoubtedly continue to play a major role in future years.

  2. Airframe noise

    NASA Astrophysics Data System (ADS)

    Crighton, David G.

    1991-08-01

    Current understanding of airframe noise was reviewed as represented by experiment at model and full scale, by theoretical modeling, and by empirical correlation models. The principal component sources are associated with the trailing edges of wing and tail, deflected trailing edge flaps, flap side edges, leading edge flaps or slats, undercarriage gear elements, gear wheel wells, fuselage and wing boundary layers, and panel vibration, together with many minor protrusions like radio antennas and air conditioning intakes which may contribute significantly to perceived noise. There are also possibilities for interactions between the various mechanisms. With current engine technology, the principal airframe noise mechanisms dominate only at low frequencies, typically less than 1 kHz and often much lower, but further reduction of turbomachinery noise in particular may make airframe noise the principal element of approach noise at frequencies in the sensitive range.

  3. Family wellbeing of individuals with autism spectrum disorder: A scoping review.

    PubMed

    Tint, Ami; Weiss, Jonathan A

    2016-04-01

    Families play an important role in supporting individuals with autism spectrum disorder across the lifespan. Indicators of family wellbeing can help to establish benchmarks for service provision and evaluation; however, a critical first step is a clear understanding of the construct in question. The purpose of the current scoping review was to (a) summarize current conceptualizations and measurements of family wellbeing, (b) synthesize key findings, and (c) highlight gaps and limitations in the extant literature. A final review of 86 articles highlighted the difficulty of synthesizing findings of family wellbeing in the autism spectrum disorder literature due to varied measurement techniques and the limited use of a common theoretical direction. Considerations for future research are presented with an eye toward policy relevance. © The Author(s) 2015.

  4. Microstructure design for fast oxygen conduction

    DOE PAGES

    Aidhy, Dilpuneet S.; Weber, William J.

    2015-11-11

    Research from the last decade has shown that in designing fast oxygen conducting materials for electrochemical applications has largely shifted to microstructural features, in contrast to material-bulk. In particular, understanding oxygen energetics in heterointerface materials is currently at the forefront, where interfacial tensile strain is being considered as the key parameter in lowering oxygen migration barriers. Nanocrystalline materials with high densities of grain boundaries have also gathered interest that could possibly allow leverage over excess volume at grain boundaries, providing fast oxygen diffusion channels similar to those previously observed in metals. In addition, near-interface phase transformations and misfit dislocations aremore » other microstructural phenomenon/features that are being explored to provide faster diffusion. In this review, the current understanding on oxygen energetics, i.e., thermodynamics and kinetics, originating from these microstructural features is discussed. Moreover, our experimental observations, theoretical predictions and novel atomistic mechanisms relevant to oxygen transport are highlighted. In addition, the interaction of dopants with oxygen vacancies in the presence of these new microstructural features, and their future role in the design of future fast-ion conductors, is outlined.« less

  5. The Role of History in Debates Regarding the Boundaries of Medical Confidentiality and Privacy

    PubMed Central

    Ferguson, Angus H.

    2016-01-01

    Medical confidentiality and privacy are often given a long pedigree as core issues in medical ethics that can be traced back to the Hippocratic Oath. However, it is only recently that focused historical work has begun to examine and analyse in greater detail how the boundaries of medical confidentiality and privacy have evolved within a variety of cultural contexts during the modern period. Such research illustrates the ways in which this process has been shaped by a range of issues, individuals, interest groups and events; and been influenced as much by pragmatic concerns as by theoretical arguments. This paper presents a case for the merits of promoting further historical work on these topics. It suggests that greater support for, and recognition of, historical research has a number of potential benefits. These include providing meaningful context to current interdisciplinary discussions of the collection and use of patient information; improving knowledge and understanding of the foundations on which current policy and practice are built; and promoting public engagement and understanding of the evolution of medical confidentiality and privacy as complex public interest issues. PMID:26877972

  6. NASA Iced Aerodynamics and Controls Current Research

    NASA Technical Reports Server (NTRS)

    Addy, Gene

    2009-01-01

    This slide presentation reviews the state of current research in the area of aerodynamics and aircraft control with ice conditions by the Aviation Safety Program, part of the Integrated Resilient Aircraft Controls Project (IRAC). Included in the presentation is a overview of the modeling efforts. The objective of the modeling is to develop experimental and computational methods to model and predict aircraft response during adverse flight conditions, including icing. The Aircraft icing modeling efforts includes the Ice-Contaminated Aerodynamics Modeling, which examines the effects of ice contamination on aircraft aerodynamics, and CFD modeling of ice-contaminated aircraft aerodynamics, and Advanced Ice Accretion Process Modeling which examines the physics of ice accretion, and works on computational modeling of ice accretions. The IRAC testbed, a Generic Transport Model (GTM) and its use in the investigation of the effects of icing on its aerodynamics is also reviewed. This has led to a more thorough understanding and models, both theoretical and empirical of icing physics and ice accretion for airframes, advanced 3D ice accretion prediction codes, CFD methods for iced aerodynamics and better understanding of aircraft iced aerodynamics and its effects on control surface effectiveness.

  7. The search for sterile neutrinos at reactors and underground laboratories

    NASA Astrophysics Data System (ADS)

    Langford, Thomas

    2017-01-01

    From the initial discovery of neutrinos to the observation of neutrino oscillations, unexpected results have lead to deeper understanding of physics. However, as experiments and theoretical predictions have improved, new anomalies have surfaced that could point to beyond the Standard Model physics. Leading hypotheses invoke a new form of matter, sterile neutrinos, as a possible resolution of these outstanding questions. New experimental efforts are underway to probe short-baseline neutrino oscillations with reactors and radioactive sources. This talk will highlight developments in current and next generation experiments and present possible outcomes for the next few years.

  8. Burst Oscillations: A New Spin on Neutron Stars

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2007-01-01

    Observations with NASA's Rossi X-ray Timing Explorer (RXTE) have shown that the X-ray flux during thermonuclear X-ray bursts fr-om accreting neutron stars is often strongly pulsed at frequencies as high as 620 Hz. We now know that these oscillations are produced by spin modulation of the thermonuclear flux from the neutron star surface. In addition to revealing the spin frequency, they provide new ways to probe the properties and physics of accreting neutron stars. I will briefly review our current observational and theoretical understanding of these oscillations and discuss what they are telling us about neutron stars.

  9. Grave mapping in support of the search for missing persons in conflict contexts.

    PubMed

    Congram, Derek; Kenyhercz, Michael; Green, Arthur Gill

    2017-09-01

    We review the current and potential uses of Geographic Information Software (GIS) and "spatial thinking" for understanding body disposal behaviour in times of mass fatalities, particularly armed conflict contexts. The review includes observations made by the authors during the course of their academic research and professional consulting on the use of spatial analysis and GIS to support Humanitarian Forensic Action (HFA) to search for the dead, theoretical and statistical considerations in modelling grave site locations, and suggestions on how this work may be advanced further. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Traveling waves in actin dynamics and cell motility

    PubMed Central

    Allard, Jun; Mogilner, Alex

    2012-01-01

    Much of current understanding of cell motility arose from studying steady treadmilling of actin arrays. Recently, there have been a growing number of observations of a more complex, non-steady, actin behavior, including self-organized waves. It is becoming clear that these waves result from activation and inhibition feedbacks in actin dynamics acting on different scales, but the exact molecular nature of these feedbacks and respective roles of biomechanics and biochemistry are still unclear. Here, we review recent advances achieved in experimental and theoretical studies of actin waves and discuss mechanisms and physiological significance of wavy protrusions. PMID:22985541

  11. Applications of DC-Self Bias in CCP Deposition Systems

    NASA Astrophysics Data System (ADS)

    Keil, D. L.; Augustyniak, E.; Sakiyama, Y.

    2013-09-01

    In many commercial CCP plasma process systems the DC-self bias is available as a reported process parameter. Since commercial systems typically limit the number of onboard diagnostics, there is great incentive to understand how DC-self bias can be expected to respond to various system perturbations. This work reviews and examines DC self bias changes in response to tool aging, chamber film accumulation and wafer processing. The diagnostic value of the DC self bias response to transient and various steady state current draw schemes are examined. Theoretical models and measured experimental results are compared and contrasted.

  12. Growing Mathematical Understanding through Collective Image Making, Collective Image Having, and Collective Property Noticing

    ERIC Educational Resources Information Center

    Martin, Lyndon C.; Towers, Jo

    2015-01-01

    In the research reported in this paper, we develop a theoretical perspective to describe and account for the growth of collective mathematical understanding. We discuss collective processes in mathematics, drawing in particular on theoretical work in the domains of improvisational jazz and theatre. Using examples of data from a study of elementary…

  13. Student Voice as a Contested Practice: Power and Participation in Two Student Voice Projects

    ERIC Educational Resources Information Center

    Robinson, Carol; Taylor, Carol

    2013-01-01

    This article applies theoretical understandings of power relations within student voice work to two empirical examples of school-based student voice projects. The article builds on and refines theoretical understandings of power and participation developed in previous articles written by the authors. The first article argued that at the heart of…

  14. Developing a Theoretical Framework for Examining Student Understanding of Fractional Concepts: An Historical Accounting

    ERIC Educational Resources Information Center

    Cooper, Susan M.; Wilkerson, Trena L.; Montgomery, Mark; Mechell, Sara; Arterbury, Kristin; Moore, Sherrie

    2012-01-01

    In 2007, a group of mathematics educators and researchers met to examine rational numbers and why children have such an issue with them. An extensive review of the literature on fractional understanding was conducted. The ideas in that literature were then consolidated into a theoretical framework for examining fractions. Once that theoretical…

  15. Spin Hall effects

    NASA Astrophysics Data System (ADS)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical point of view, focusing on well-established and accepted physics. In such a young field, there remains much to be understood and explored, hence some of the future challenges and opportunities of this rapidly evolving area of spintronics are outlined.

  16. Theory and practice of clinical ethics support services: narrative and hermeneutical perspectives.

    PubMed

    Porz, Rouven; Landeweer, Elleke; Widdershoven, Guy

    2011-09-01

    In this paper we introduce narrative and hermeneutical perspectives to clinical ethics support services (CESS). We propose a threefold consideration of 'theory' and show how it is interwoven with 'practice' as we go along. First, we look at theory in its foundational role: in our case 'narrative ethics' and 'philosophical hermeneutics' provide a theoretical base for clinical ethics by focusing on human identities entangled in stories and on moral understanding as a dialogical process. Second, we consider the role of theoretical notions in helping practitioners to understand their situation in clinical ethics practice, by using notions like 'story', 'responsibility', or 'vulnerability' to make explicit and explain their practical experience. Such theoretical notions help us to interpret clinical situations from an ethical perspective and to foster moral awareness of practitioners. And, thirdly, we examine how new theoretical concepts are developed by interpreting practice, using practice to form and improve our ethical theory. In this paper, we discuss this threefold use of theory in clinical ethics support services by reflecting on our own theoretical assumptions, methodological steps and practical experiences as ethicists, and by providing examples from our daily work. In doing so, we illustrate that theory and practice are interwoven, as theoretical understanding is dependent upon practical experience, and vice-versa. © 2011 Blackwell Publishing Ltd.

  17. Reading Comprehension to 1970: Its Theoretical and Empirical Bases, and Its Implementation in Secondary Professional Textbooks, Instructional Materials, and Tests.

    ERIC Educational Resources Information Center

    Harker, William John

    This study was designed: (1) to determine current concepts of reading comprehension deriving from experimental investigations and theoretical statements, and (2) to establish whether these concepts are represented consistently in current secondary professional reading textbooks, instructional materials, and published tests. Current knowledge of…

  18. Theoretical Overview on the Improvement of Interest in Learning Theoretical Course for Engineering Students

    ERIC Educational Resources Information Center

    Xiao, Manlin; Zhang, Jianglin

    2016-01-01

    The phenomenon that engineering students have little interest in theoretical knowledge learning is more and more apparent. Therefore, most students fail to understand and apply theories to solve practical problems. To solve this problem, the importance of improving students' interest in the learning theoretical course is discussed firstly in this…

  19. Games and Diabetes: A Review Investigating Theoretical Frameworks, Evaluation Methodologies, and Opportunities for Design Grounded in Learning Theories.

    PubMed

    Lazem, Shaimaa; Webster, Mary; Holmes, Wayne; Wolf, Motje

    2015-09-02

    Here we review 18 articles that describe the design and evaluation of 1 or more games for diabetes from technical, methodological, and theoretical perspectives. We undertook searches covering the period 2010 to May 2015 in the ACM, IEEE, Journal of Medical Internet Research, Studies in Health Technology and Informatics, and Google Scholar online databases using the keywords "children," "computer games," "diabetes," "games," "type 1," and "type 2" in various Boolean combinations. The review sets out to establish, for future research, an understanding of the current landscape of digital games designed for children with diabetes. We briefly explored the use and impact of well-established learning theories in such games. The most frequently mentioned theoretical frameworks were social cognitive theory and social constructivism. Due to the limitations of the reported evaluation methodologies, little evidence was found to support the strong promise of games for diabetes. Furthermore, we could not establish a relation between design features and the game outcomes. We argue that an in-depth discussion about the extent to which learning theories could and should be manifested in the design decisions is required. © 2015 Diabetes Technology Society.

  20. A Game Theoretical Approach to Hacktivism: Is Attack Likelihood a Product of Risks and Payoffs?

    PubMed

    Bodford, Jessica E; Kwan, Virginia S Y

    2018-02-01

    The current study examines hacktivism (i.e., hacking to convey a moral, ethical, or social justice message) through a general game theoretic framework-that is, as a product of costs and benefits. Given the inherent risk of carrying out a hacktivist attack (e.g., legal action, imprisonment), it would be rational for the user to weigh these risks against perceived benefits of carrying out the attack. As such, we examined computer science students' estimations of risks, payoffs, and attack likelihood through a game theoretic design. Furthermore, this study aims at constructing a descriptive profile of potential hacktivists, exploring two predicted covariates of attack decision making, namely, peer prevalence of hacking and sex differences. Contrary to expectations, results suggest that participants' estimations of attack likelihood stemmed solely from expected payoffs, rather than subjective risks. Peer prevalence significantly predicted increased payoffs and attack likelihood, suggesting an underlying descriptive norm in social networks. Notably, we observed no sex differences in the decision to attack, nor in the factors predicting attack likelihood. Implications for policymakers and the understanding and prevention of hacktivism are discussed, as are the possible ramifications of widely communicated payoffs over potential risks in hacking communities.

  1. Electromagnetic diagnostic techniques for hypervelocity projectile detection, velocity measurement, and size characterization: Theoretical concept and first experimental test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhlig, W. Casey; Heine, Andreas, E-mail: andreas.heine@emi.fraunhofer.de

    2015-11-14

    A new measurement technique is suggested to augment the characterization and understanding of hypervelocity projectiles before impact. The electromagnetic technique utilizes magnetic diffusion principles to detect particles, measure velocity, and indicate relative particle dimensions. It is particularly suited for detection of small particles that may be difficult to track utilizing current characterization methods, such as high-speed video or flash radiography but can be readily used for large particle detection, where particle spacing or location is not practical for other measurement systems. In this work, particles down to 2 mm in diameter have been characterized while focusing on confining the detection signalmore » to enable multi-particle characterization with limited particle-to-particle spacing. The focus of the paper is on the theoretical concept and the analysis of its applicability based on analytical and numerical calculation. First proof-of-principle experimental tests serve to further validate the method. Some potential applications are the characterization of particles from a shaped-charge jet after its break-up and investigating debris in impact experiments to test theoretical models for the distribution of particles size, number, and velocity.« less

  2. Research in Theoretical High Energy Physics- Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Nobuchika

    PI Dr. Okada’s research interests are centered on phenomenological aspects of particle physics. It has been abundantly clear in recent years that an extension of the Standard Model (SM), i.e. new physics beyond the SM, is needed to explain a number of experimental observations such as the neutrino oscillation data, the existence of non-baryonic dark matter, and the observed baryon asymmetry of the Universe. In addition, the SM suffers from several theoretical/conceptual problems, such as the gauge hierarchy problem, the fermion mass hierarchy problem, and the origin of the electroweak symmetry breaking. It is believed that these problems can alsomore » be solved by new physics beyond the SM. The main purpose of the Dr. Okada’s research is a theoretical investigation of new physics opportunities from various phenomenological points of view, based on the recent progress of experiments/observations in particle physics and cosmology. There are many possibilities to go beyond the SM and many new physics models have been proposed. The major goal of the project is to understand the current status of possible new physics models and obtain the future prospects of new physics phenomena toward their discoveries.« less

  3. A Memory Based Model of Posttraumatic Stress Disorder: Evaluating Basic Assumptions Underlying the PTSD Diagnosis

    PubMed Central

    Rubin, David C.; Berntsen, Dorthe; Johansen, Malene Klindt

    2009-01-01

    In the mnemonic model of PTSD, the current memory of a negative event, not the event itself determines symptoms. The model is an alternative to the current event-based etiology of PTSD represented in the DSM. The model accounts for important and reliable findings that are often inconsistent with the current diagnostic view and that have been neglected by theoretical accounts of the disorder, including the following observations. The diagnosis needs objective information about the trauma and peritraumatic emotions, but uses retrospective memory reports that can have substantial biases. Negative events and emotions that do not satisfy the current diagnostic criteria for a trauma can be followed by symptoms that would otherwise qualify for PTSD. Predisposing factors that affect the current memory have large effects on symptoms. The inability-to-recall-an-important-aspect-of-the-trauma symptom does not correlate with other symptoms. Loss or enhancement of the trauma memory affects PTSD symptoms in predictable ways. Special mechanisms that apply only to traumatic memories are not needed, increasing parsimony and the knowledge that can be applied to understanding PTSD. PMID:18954211

  4. Simulation of Theoretical Most-Extreme Geomagnetic Sudden Commencements

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Love, J. J.; Wiltberger, M. J.; Rigler, E. J.

    2016-12-01

    We report results from a numerical simulation of geomagnetic sudden commencements driven by solar wind conditions given by theoretical-limit extreme coronal-mass ejections (CMEs) estimated by Tsurutani and Lakhina [2014]. The CME characteristics at Earth are a step function that jumps from typical quiet values to 2700 km/s flow speed and a magnetic field magnitude of 127 nT. These values are used to drive three coupled models: a global magnetohydrodynamic (MHD) magnetospheric model (BATS-R-US), a ring current model (the Rice Convection Model, RCM), and a height-integrated ionospheric electrodynamics model (the Ridley Ionosphere Model, RIM), all coupled together using the Space Weather Modeling Framework (SWMF). Additionally, simulations from the Lyon-Fedder-Mobarry MHD model are performed for comparison. The commencement is simulated with both purely northward and southward IMF orientations. Low-latitude ground-level geomagnetic variations, both B and dB/dt, are estimated in response to the storm sudden commencement. For a northward interplanetary magnetic field (IMF) storm, the combined models predict a maximum sudden commencement response, Dst-equivalent of +200 nT and a maximum local dB/dt of 200nT/s. While this positive Dst response is driven mainly by magnetopause currents, complicated and dynamic Birkeland current patterns also develop, which drive the strong dB/dt responses at high latitude. For southward IMF conditions, erosion of dayside magnetic flux allows magnetopause currents to approach much closer to the Earth, leading to a stronger terrestrial response (Dst-equivalent of +250 nT). Further, high latitude signals from Region 1 Birkeland currents move to lower latitudes during the southward IMF case, increasing the risk to populated areas around the globe. Results inform fundamental understanding of solar-terrestrial interaction and benchmark estimates for induction hazards of interest to the electric-power grid industry.

  5. Retheorizing sexual harassment in medical education: women students' perceptions at five U.S. medical schools.

    PubMed

    Wear, Delese; Aultman, Julie M; Borges, Nicole J

    2007-01-01

    The literature consistently reports that sexual harassment occurs with regularity in medical education, mostly in clinical settings, and most of it goes unreported. Reasons for nonreporting include the fear of retaliation, a reluctance to be viewed as a victim, a fear that one is being "too sensitive," and the belief that nothing will be done. We wanted to examine with greater concentration the stories women students tell about sexual harassment, including what they count as sexual harassment, for more or different clues to their persistent nonreporting. We used focus groups to interview 30 women students at 5 U.S. medical schools. We used systematic inductive guidelines to analyze the transcribed data, linking to and building new theoretical frameworks to provide an interpretive understanding of the lived experiences of the women in our study. Consistent with previous literature, most of the students interviewed had either witnessed or observed sexual harassment. We selected 2 theoretical lenses heretofore not used to explain responses to sexual harassment: 3rd-wave feminist theory to think about how current women students conceive sexual harassment and personality theory to explain beliefs about nonreporting. Medical educators need new ways to understand how contemporary women students define and respond to sexual harassment.

  6. Exploring the function of selective attention and hypervigilance for threat in anxiety.

    PubMed

    Richards, Helen J; Benson, Valerie; Donnelly, Nick; Hadwin, Julie A

    2014-02-01

    Theoretical frameworks of anxiety propose that attentional biases to threat-related stimuli cause or maintain anxious states. The current paper draws on theoretical frameworks and key empirical studies to outline the distinctive attentional processes highlighted as being important in understanding anxiety. We develop a conceptual framework to make a distinction between two attentional biases: selective attention to threat and hypervigilance for threat. We suggest that these biases each have a different purpose and can account for the typical patterns of facilitated and impaired attention evident in anxious individuals. The framework is novel in its specification of the eye movement behavior associated with these attentional biases. We highlight that selective attention involves narrowing overt attention onto threat to ensure that these stimuli receive processing priority, leading to rapid engagement with task-relevant threat and delayed disengagement from task-irrelevant threat. We show that hypervigilance operates in the presence and absence of threat and involves monitoring for potential dangers via attentional broadening or excessive scanning of the environment with numerous eye movements, leading to improved threat detection and increased distraction from task-irrelevant threat. We conclude that future research could usefully employ eye movement measures to more clearly understand the diverse roles of attention in anxiety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Relational autonomy in informed consent (RAIC) as an ethics of care approach to the concept of informed consent.

    PubMed

    Osuji, Peter I

    2018-03-01

    The perspectives of the dominant Western ethical theories, have dominated the concepts of autonomy and informed consent for many years. Recently this dominant understanding has been challenged by ethics of care which, although, also emanates from the West presents a more nuanced concept: relational autonomy, which is more faithful to our human experience. By paying particular attention to relational autonomy, particularity and Process approach to ethical deliberations in ethics of care, this paper seeks to construct a concept of informed consent from the perspective of ethics of care which is here called relational autonomy-in-informed consent (RAIC). Thus, providing a broader theoretical basis for informed consent beyond the usual theoretical perspectives that are particularly Western. Care ethics provides such a broader basis because it appeals to a global perspective that encompasses lessons from other cultures, and this will help to enrich the current ideas of bioethics principles of autonomy and informed consent. This objective will be achieved by exploring the ethics of care emphasis on relationships based on a universal experience of caring; and by contrasting its concept of autonomy as relational with the understanding of autonomy in the approaches of the dominant moral theories that reflect rational, individualistic, and rights-oriented autonomy of the American liberalism.

  8. A theoretical framework for understanding neuromuscular response to lower extremity joint injury.

    PubMed

    Pietrosimone, Brian G; McLeod, Michelle M; Lepley, Adam S

    2012-01-01

    Neuromuscular alterations are common following lower extremity joint injury and often lead to decreased function and disability. These neuromuscular alterations manifest in inhibition or abnormal facilitation of the uninjured musculature surrounding an injured joint. Unfortunately, these neural alterations are poorly understood, which may affect clinical recognition and treatment of these injuries. Understanding how these neural alterations affect physical function may be important for proper clinical management of lower extremity joint injuries. Pertinent articles focusing on neuromuscular consequences and treatment of knee and ankle injuries were collected from peer-reviewed sources available on the Web of Science and Medline databases from 1975 through 2010. A theoretical model to illustrate potential relationships between neural alterations and clinical impairments was constructed from the current literature. Lower extremity joint injury affects upstream cortical and spinal reflexive excitability pathways as well as downstream muscle function and overall physical performance. Treatment targeting the central nervous system provides an alternate means of treating joint injury that may be effective for patients with neuromuscular alterations. Disability is common following joint injury. There is mounting evidence that alterations in the central nervous system may relate to clinical changes in biomechanics that may predispose patients to further injury, and novel clinical interventions that target neural alterations may improve therapeutic outcomes.

  9. A Theoretical Framework for Understanding Neuromuscular Response to Lower Extremity Joint Injury

    PubMed Central

    Pietrosimone, Brian G.; McLeod, Michelle M.; Lepley, Adam S.

    2012-01-01

    Background: Neuromuscular alterations are common following lower extremity joint injury and often lead to decreased function and disability. These neuromuscular alterations manifest in inhibition or abnormal facilitation of the uninjured musculature surrounding an injured joint. Unfortunately, these neural alterations are poorly understood, which may affect clinical recognition and treatment of these injuries. Understanding how these neural alterations affect physical function may be important for proper clinical management of lower extremity joint injuries. Methods: Pertinent articles focusing on neuromuscular consequences and treatment of knee and ankle injuries were collected from peer-reviewed sources available on the Web of Science and Medline databases from 1975 through 2010. A theoretical model to illustrate potential relationships between neural alterations and clinical impairments was constructed from the current literature. Results: Lower extremity joint injury affects upstream cortical and spinal reflexive excitability pathways as well as downstream muscle function and overall physical performance. Treatment targeting the central nervous system provides an alternate means of treating joint injury that may be effective for patients with neuromuscular alterations. Conclusions: Disability is common following joint injury. There is mounting evidence that alterations in the central nervous system may relate to clinical changes in biomechanics that may predispose patients to further injury, and novel clinical interventions that target neural alterations may improve therapeutic outcomes. PMID:23016066

  10. Active learning in optics and photonics: Liquid Crystal Display in the do-it-yourself

    NASA Astrophysics Data System (ADS)

    Vauderwange, Oliver; Haiss, Ulrich; Wozniak, Peter; Israel, Kai; Curticapean, Dan

    2015-10-01

    Monitors are in the center of media productions and hold an important function as the main visual interface. Tablets and smartphones are becoming more and more important work tools in the media industry. As an extension to our lecture contents an intensive discussion of different display technologies and its applications is taking place now. The established LCD (Liquid Crystal Display) technology and the promising OLED (Organic Light Emitting Diode) technology are in the focus. The classic LCD is currently the most important display technology. The paper will present how the students should develop sense for display technologies besides the theoretical scientific basics. The workshop focuses increasingly on the technical aspects of the display technology and has the goal of deepening the students understanding of the functionality by building simple Liquid Crystal Displays by themselves. The authors will present their experience in the field of display technologies. A mixture of theoretical and practical lectures has the goal of a deeper understanding in the field of digital color representation and display technologies. The design and development of a suitable learning environment with the required infrastructure is crucial. The main focus of this paper is on the hands-on optics workshop "Liquid Crystal Display in the do-it-yourself".

  11. Creation of a Mock Universe: Photometric Astronomy on Simulation

    NASA Astrophysics Data System (ADS)

    Nene, Ajinkya; Rodriguez, Aldo; Primack, Joel R.

    2016-01-01

    A major focus in astronomy is to understand how galaxies form and evolve in the Universe. The current model known as ΛCDM explains that galaxies form and evolve in halos composed of cold dark matter. In an effort to understand galactic processes in relation to halos, researchers have developed statistical methods to connect galaxies to their halos. One of these approaches is abundance matching: a technique in which the galaxy number density of a property is connected to a theoretical halo number density. In this study, we exploit the abundance matching technique and create a massive photometric mock catalog. We populate millions of dark matter halos in the Bolshoi-Planck Simulation with highly defined galaxies that each has: luminosities, magnitudes, fluxes, masses, and Sérsic profiles. Our catalog acts as an interface between cold dark matter theory and observations: astronomers can use this mock galaxy catalog to compare ΛCDM predictions to observations as well as constrain galaxy formation models. Using our catalog, we can make powerful predictions about both theoretical data and about future astronomical surveys. We demonstrate the usability of our catalog through angular power spectra. Specifically, we shed light on the controversial intrahalo light phenomena. We emphasize that this is the first catalog of this accuracy and size and has incredible potential for application.

  12. Peering Into the Bondi Radius of the Supermassive Black Hole of NGC3115

    NASA Astrophysics Data System (ADS)

    Irwin, Jimmy; Quataert, E.; Mathews, W.; Strader, J.; Brodie, J.; Bregman, J.; Larsen, S.

    2010-03-01

    Understanding accretion onto black holes remains one of the most active areas of research in astrophysics today, both for the intrinsic interest of black holes and because of their impact on larger scale problems in galaxy and structure formation. The key to understanding the accretion process lies in correctly modeling the behavior of the accreting gas once it falls within the gravitational influence of the black hole, the Bondi radius, R_B. The lack of significant observed radiation from most nearby massive black holes has prompted a significant theoretical effort aimed at explaining the very low radiative efficiencies and/or accretion rates. Determining which (if any!) of these scenarios describes low-L_X black hole systems is of fundamental importance to our understanding of accretion physics and black hole demography. Observational work has focused on using spatially unresolved spectral information to constrain theoretical models. While such studies have been successful in ruling out classical ADAF models in some instances, the main limitation has been the inability of even Chandra to resolve the accretion flow inside R_B and directly determine the temperature and density profile of the accretion flow, as it is the shape of the density profile that most strongly distinguishes the theoretical models (ADAFs, CDAFs, ADIOS). Measuring T(R) and rho(R) of an accretion flow is the only way of determining if current accretion models actually describe what is occurring inside the flow region. We present results from a deep (125 ksec) Chandra observation of the nearby S0 galaxy NGC3115, one of the very few galaxies with a resolvable Bondi radius (2"-4"). Based on these results, we discuss the possibility of deriving for the first time T(R) and rho(R) inside the Bondi radius of a black hole with an ultralong Chandra observation.

  13. You can lead a horse to water … what Self-Determination Theory can contribute to our understanding of clinical policy implementation.

    PubMed

    Smith, Geoffrey P; Williams, Theresa M

    2017-01-01

    There has been increasing reliance on policy directives as instruments for shaping clinical practice in health care, despite it being widely recognized that there is a significant translation gap between clinical policy and its implementation. Self-Determination Theory, a widely researched and empirically validated theory of human needs' fulfilment and motivation, offers a potentially valuable theoretical framework for understanding not only why the current policy environment has not led to the anticipated improvement in the quality and safety of clinical care but, importantly, also provides guidance about how organizations can create an environment that can nurture behavioural change in the workforce. We describe an alternative approach to clinical policy-making underpinned by Self-Determination Theory, which we believe has broad application for the science of clinical implementation theory.

  14. Predicting and understanding undergraduate students' intentions to gamble in a casino using an extended model of the theory of reasoned action and the theory of planned behavior.

    PubMed

    Lee, Hyung-Seok

    2013-06-01

    Given that current television programming contains numerous gambling portrayals, it is imperative to understand whether and to what extent these gambling behaviors in media influence individuals' beliefs, attitudes, and intentions. This study explores an extended model of the theory of reasoned action (TRA) by including gambling media exposure as a distal, mediating and mediated factor in predicting undergraduate students' intentions to gamble in a casino. Findings show that the extended model of TRA clearly indicates that the constructs of gambling media exposure, prior gambling experience, and level of gambling addiction contribute to the prediction of undergraduate students' casino gambling intentions. Theoretical implications of gambling media effects and practical implications for public policy are discussed, and future research directions are outlined.

  15. Individual interviews with African-American women regarding condom use: a pilot study.

    PubMed

    Hunter, Teressa Sanders

    2010-07-01

    African-American women between 25 and 34 years of age are disproportionately affected by HIV/AIDS. Current prevention techniques, including education, have not had a significant influence on decreasing the rates of HIV and increasing safer sexual practices among some African-American women. This pilot study is one step towards increasing the understanding of this serious problem and developing effective interventions to stem the tide of HIV infection in African-American women. A grounded theory approach was used to address the process that unmarried, heterosexual, African-American women used to negotiate condom use with their sexual partner. Major concepts, connections between the categories, and theoretical codes are identified in this study and can be used to predict, speculate, explain, and understand the reported behavior of African-American women in negotiating condom use with their sexual partner.

  16. Representations and processes of human spatial competence.

    PubMed

    Gunzelmann, Glenn; Lyon, Don R

    2011-10-01

    This article presents an approach to understanding human spatial competence that focuses on the representations and processes of spatial cognition and how they are integrated with cognition more generally. The foundational theoretical argument for this research is that spatial information processing is central to cognition more generally, in the sense that it is brought to bear ubiquitously to improve the adaptivity and effectiveness of perception, cognitive processing, and motor action. We describe research spanning multiple levels of complexity to understand both the detailed mechanisms of spatial cognition, and how they are utilized in complex, naturalistic tasks. In the process, we discuss the critical role of cognitive architectures in developing a consistent account that spans this breadth, and we note some areas in which the current version of a popular architecture, ACT-R, may need to be augmented. Finally, we suggest a framework for understanding the representations and processes of spatial competence and their role in human cognition generally. Copyright © 2011 Cognitive Science Society, Inc.

  17. Data Science in the Research Domain Criteria Era: Relevance of Machine Learning to the Study of Stress Pathology, Recovery, and Resilience

    PubMed Central

    Galatzer-Levy, Isaac R.; Ruggles, Kelly; Chen, Zhe

    2017-01-01

    Diverse environmental and biological systems interact to influence individual differences in response to environmental stress. Understanding the nature of these complex relationships can enhance the development of methods to: (1) identify risk, (2) classify individuals as healthy or ill, (3) understand mechanisms of change, and (4) develop effective treatments. The Research Domain Criteria (RDoC) initiative provides a theoretical framework to understand health and illness as the product of multiple inter-related systems but does not provide a framework to characterize or statistically evaluate such complex relationships. Characterizing and statistically evaluating models that integrate multiple levels (e.g. synapses, genes, environmental factors) as they relate to outcomes that a free from prior diagnostic benchmarks represents a challenge requiring new computational tools that are capable to capture complex relationships and identify clinically relevant populations. In the current review, we will summarize machine learning methods that can achieve these goals. PMID:29527592

  18. Childhood Stuttering: Where Are We and Where Are We Going?

    PubMed

    Smith, Anne; Weber, Christine

    2016-11-01

    Remarkable progress has been made over the past two decades in expanding our understanding of the behavioral, peripheral physiologic, and central neurophysiologic bases of stuttering in early childhood. It is clear that stuttering is a neurodevelopmental disorder characterized by atypical development of speech motor planning and execution networks. The speech motor system must interact in complex ways with neural systems mediating language and other cognitive and emotional processes. During the time when stuttering typically appears and follows its path to either recovery or persistence, all of these neurobehavioral systems are undergoing rapid and dramatic developmental changes. We summarize our current understanding of the various developmental trajectories relevant for the understanding of stuttering in early childhood. We also present theoretical and experimental approaches that we believe will be optimal for even more rapid progress toward developing better and more targeted treatment for stuttering in the preschool children who are more likely to persist in stuttering. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Enhancing implementation of tobacco use prevention and cessation counselling guideline among dental providers: a cluster randomised controlled trial

    PubMed Central

    2011-01-01

    Background Tobacco use adversely affects oral health. Tobacco use prevention and cessation (TUPAC) counselling guidelines recommend that healthcare providers ask about each patient's tobacco use, assess the patient's readiness and willingness to stop, document tobacco use habits, advise the patient to stop, assist and help in quitting, and arrange monitoring of progress at follow-up appointments. Adherence to such guidelines, especially among dental providers, is poor. To improve guideline implementation, it is essential to understand factors influencing it and find effective ways to influence those factors. The aim of the present study protocol is to introduce a theory-based approach to diagnose implementation difficulties of TUPAC counselling guidelines among dental providers. Methods Theories of behaviour change have been used to identify key theoretical domains relevant to the behaviours of healthcare providers involved in implementing clinical guidelines. These theoretical domains will inform the development of a questionnaire aimed at assessing the implementation of the TUPAC counselling guidelines among Finnish municipal dental providers. Specific items will be drawn from the guidelines and the literature on TUPAC studies. After identifying potential implementation difficulties, we will design two interventions using theories of behaviour change to link them with relevant behaviour change techniques aiming to improve guideline adherence. For assessing the implementation of TUPAC guidelines, the electronic dental record audit and self-reported questionnaires will be used. Discussion To improve guideline adherence, the theoretical-domains approach could provide a comprehensive basis for assessing implementation difficulties, as well as designing and evaluating interventions. After having identified implementation difficulties, we will design and test two interventions to enhance TUPAC guideline adherence. Using the cluster randomised controlled design, we aim to provide further evidence on intervention effects, as well as on the validity and feasibility of the theoretical-domain approach. The empirical data collected within this trial will be useful in testing whether this theoretical-domain approach can improve our understanding of the implementation of TUPAC guidelines among dental providers. Trial registration Current Controlled Trials ISRCTN15427433 PMID:21320312

  20. Understanding ferromagnetic hysteresis: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Bijan Kumar

    2018-05-01

    This work presents a theoretical-mathematical model for the ferromagnetic hysteresis. Theoretical understanding on ferromagnetism can be achieved through addressing the self-interaction propensity between the magnetic dipole moments associated with the magnetic domains, in conjunction with the pinning effects of the dipoles with the defects in the domain sites. An expression which relates ferromagnetic magnetization to the effective magnetic field was established in our previous work (AIP Conference Proceedings 1665, 130042 (2015)). Using this relation and solving for the reversible and the irreversible components of the magnetization, we successfully show that the magnetic saturation and the magnetic remanence can be achieved theoretically. This work also estimates the range of the external field that can be used to trace a reversible M-H curve.

  1. Situated Learning in Youth Elite Football: A Danish Case Study among Talented Male under-18 Football Players

    ERIC Educational Resources Information Center

    Christensen, Mette Krogh; Laursen, Dan Norgaard; Sorensen, Jan Kahr

    2011-01-01

    Background: The application of a social theory of learning and the notion of situated learning as a theoretical basis for understanding students' learning in PE is broadly recognised. Nevertheless, it is far more unusual for this theoretical approach to provide a basis for understanding learning processes in talent development in elite sport.…

  2. Integrated primary care, the collaboration imperative inter-organizational cooperation in the integrated primary care field: a theoretical framework

    PubMed Central

    Valentijn, Pim P; Bruijnzeels, Marc A; de Leeuw, Rob J; Schrijvers, Guus J.P

    2012-01-01

    Purpose Capacity problems and political pressures have led to a rapid change in the organization of primary care from mono disciplinary small business to complex inter-organizational relationships. It is assumed that inter-organizational collaboration is the driving force to achieve integrated (primary) care. Despite the importance of collaboration and integration of services in primary care, there is no unambiguous definition for both concepts. The purpose of this study is to examine and link the conceptualisation and validation of the terms inter-organizational collaboration and integrated primary care using a theoretical framework. Theory The theoretical framework is based on the complex collaboration process of negotiation among multiple stakeholder groups in primary care. Methods A literature review of health sciences and business databases, and targeted grey literature sources. Based on the literature review we operationalized the constructs of inter-organizational collaboration and integrated primary care in a theoretical framework. The framework is being validated in an explorative study of 80 primary care projects in the Netherlands. Results and conclusions Integrated primary care is considered as a multidimensional construct based on a continuum of integration, extending from segregation to integration. The synthesis of the current theories and concepts of inter-organizational collaboration is insufficient to deal with the complexity of collaborative issues in primary care. One coherent and integrated theoretical framework was found that could make the complex collaboration process in primary care transparent. This study presented theoretical framework is a first step to understand the patterns of successful collaboration and integration in primary care services. These patterns can give insights in the organization forms needed to create a good working integrated (primary) care system that fits the local needs of a population. Preliminary data of the patterns of collaboration and integration will be presented.

  3. Content-oriented Approach to Organization of Theories and Its Utilization

    NASA Astrophysics Data System (ADS)

    Hayashi, Yusuke; Bourdeau, Jacqueline; Mizoguch, Riichiro

    In spite of the fact that the relation between theory and practice is a foundation of scientific and technological development, the trend of increasing the gap between theory and practice accelerates in these years. The gap embraces a risk of distrust of science and technology. Ontological engineering as the content-oriented research is expected to contribute to the resolution of the gap. This paper presents the feasibility of organization of theoretical knowledge on ontological engineering and new-generation intelligent systems based on it through an application of ontological engineering in the area of learning/instruction support. This area also has the problem of the gap between theory and practice, and its resolution is strongly required. So far we proposed OMNIBUS ontology, which is a comprehensive ontology that covers different learning/instructional theories and paradigms, and SMARTIES, which is a theory-aware and standard-compliant authoring system for making learning/instructional scenarios based on OMNIBUS ontology. We believe the theory-awareness and standard-compliance bridge the gap between theory and practice because it links theories to practical use of standard technologies and enables practitioners to easily enjoy theoretical support while using standard technologies in practice. The following goals are set in order to achieve it; computers (1) understand a variety of learning/instructional theories based on the organization of them, (2) utilize the understanding for helping authors' learning/instructional scenario making and (3) make such theoretically sound scenarios interoperable within the framework of standard technologies. This paper suggests an ontological engineering solution to the achievement of these three goals. Although the evaluation is far from complete in terms of practical use, we believe that the results of this study address high-level technical challenges from the viewpoint of the current state of the art in the research area of artificial intelligence not only in education but also in general, and therefore we hope that constitute a substantial contribution for organization of theoretical knowledge in many other areas.

  4. Intrinsic charge trapping in amorphous oxide films: status and challenges

    NASA Astrophysics Data System (ADS)

    Strand, Jack; Kaviani, Moloud; Gao, David; El-Sayed, Al-Moatasem; Afanas’ev, Valeri V.; Shluger, Alexander L.

    2018-06-01

    We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)–O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2‑ ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection conditions.

  5. The Impossibility of a Theory of Everything

    NASA Astrophysics Data System (ADS)

    Porter, Tom G.

    Interdisciplinary work is a philosophical necessity to advance human understanding. This will be demonstrated through a review of ancient and recent literature about why a theory of everything is impossible. Interdisciplinary work that includes theoretically separate perspectives about how the world works is needed to advance understanding. Any one discipline will improve through interactions with other disciplines. This is different from a convergence of theories, because interdisciplinary work fails when independence among the theories is absent. A non-trivial example of the consequence is the 5 billion financial crisis caused in 1998 by Long Term Credit Management (LTCM) hedge fund. The LTCM example shows how the use of analogy and metaphor that facilitates interdisciplinary work is also the means where theoretical independence is undermined. Advancement of human understanding requires collaboration among theoretically separate perspectives.

  6. The Roy Adaptation Model: A Theoretical Framework for Nurses Providing Care to Individuals With Anorexia Nervosa.

    PubMed

    Jennings, Karen M

    Using a nursing theoretical framework to understand, elucidate, and propose nursing research is fundamental to knowledge development. This article presents the Roy Adaptation Model as a theoretical framework to better understand individuals with anorexia nervosa during acute treatment, and the role of nursing assessments and interventions in the promotion of weight restoration. Nursing assessments and interventions situated within the Roy Adaptation Model take into consideration how weight restoration does not occur in isolation but rather reflects an adaptive process within external and internal environments, and has the potential for more holistic care.

  7. Current distribution within parallel-connected battery cells

    NASA Astrophysics Data System (ADS)

    Brand, Martin J.; Hofmann, Markus H.; Steinhardt, Marco; Schuster, Simon F.; Jossen, Andreas

    2016-12-01

    Parallel connections can be found in many battery applications. Therefore, it is of high interest to understand how the current distributes within parallel battery cells. However, the number of publications on this topic is comparably low. Furthermore, the measurement set-ups are often not clearly defined in existing publications and it is likely that additional impedances distorted the measured current distributions. In this work, the principles of current distributions within parallel-connected battery cells are investigated theoretically, with an equivalent electric circuit model, and by measurements. A measurement set-up is developed that does not significantly influence the measurements, as proven by impedance spectroscopy. On this basis, two parameter scenarios are analyzed: the ΔR scenario stands for battery cells with differing impedances but similar capacities and the ΔC scenario for differing capacities and similar impedances. Out of 172 brand-new lithium-ion battery cells, pairs are built to practically represent the ΔR and ΔC scenarios. If a charging pulse is applied to the ΔR scenario, currents initially divide according to the current divider but equalize in constant current phases. The current divider has no effect on ΔC pairs but, as a rule of thumb for long-term loads, currents divide according to the battery cell capacities.

  8. Using Data Assimilation Methods of Prediction of Solar Activity

    NASA Technical Reports Server (NTRS)

    Kitiashvili, Irina N.; Collins, Nancy S.

    2017-01-01

    The variable solar magnetic activity known as the 11-year solar cycle has the longest history of solar observations. These cycles dramatically affect conditions in the heliosphere and the Earth's space environment. Our current understanding of the physical processes that make up global solar dynamics and the dynamo that generates the magnetic fields is sketchy, resulting in unrealistic descriptions in theoretical and numerical models of the solar cycles. The absence of long-term observations of solar interior dynamics and photospheric magnetic fields hinders development of accurate dynamo models and their calibration. In such situations, mathematical data assimilation methods provide an optimal approach for combining the available observational data and their uncertainties with theoretical models in order to estimate the state of the solar dynamo and predict future cycles. In this presentation, we will discuss the implementation and performance of an Ensemble Kalman Filter data assimilation method based on the Parker migratory dynamo model, complemented by the equation of magnetic helicity conservation and long-term sunspot data series. This approach has allowed us to reproduce the general properties of solar cycles and has already demonstrated a good predictive capability for the current cycle, 24. We will discuss further development of this approach, which includes a more sophisticated dynamo model, synoptic magnetogram data, and employs the DART Data Assimilation Research Testbed.

  9. Early Estimation of Solar Activity Cycle: Potential Capability and Limits

    NASA Technical Reports Server (NTRS)

    Kitiashvili, Irina N.; Collins, Nancy S.

    2017-01-01

    The variable solar magnetic activity known as the 11-year solar cycle has the longest history of solar observations. These cycles dramatically affect conditions in the heliosphere and the Earth's space environment. Our current understanding of the physical processes that make up global solar dynamics and the dynamo that generates the magnetic fields is sketchy, resulting in unrealistic descriptions in theoretical and numerical models of the solar cycles. The absence of long-term observations of solar interior dynamics and photospheric magnetic fields hinders development of accurate dynamo models and their calibration. In such situations, mathematical data assimilation methods provide an optimal approach for combining the available observational data and their uncertainties with theoretical models in order to estimate the state of the solar dynamo and predict future cycles. In this presentation, we will discuss the implementation and performance of an Ensemble Kalman Filter data assimilation method based on the Parker migratory dynamo model, complemented by the equation of magnetic helicity conservation and longterm sunspot data series. This approach has allowed us to reproduce the general properties of solar cycles and has already demonstrated a good predictive capability for the current cycle, 24. We will discuss further development of this approach, which includes a more sophisticated dynamo model, synoptic magnetogram data, and employs the DART Data Assimilation Research Testbed.

  10. Immiscible displacement of oil by water in consolidated porous media due to capillary imbibition under ultrasonic waves.

    PubMed

    Hamida, Tarek; Babadagli, Tayfun

    2007-09-01

    Numerous studies done in the last four decades have demonstrated that acoustic stimulation may enhance recovery in oil reservoirs. This technology is not only technically feasible, but also serves as an economical, environmentally friendly alternative to currently accepted enhanced oil recovery (EOR) method. It requires low capital expenditure, and yields almost immediate improvement without any additional EOR agents. Despite a vast body of empirical and theoretical support, this method lacks sufficient understanding to make meaningful and consistent engineering predictions. This is in part due to the complex nature of the physical processes involved, as well as due to a shortage of fundamental/experimental research. Much of what the authors believe is happening within acoustically stimulated porous media is speculative and theoretical. This paper focuses on the effects of ultrasound on the interfacial forces between immiscible fluids. Capillary (spontaneous) imbibition of an aqueous phase into oil (or air)-saturated Berea sandstone and Indiana limestone samples experiments were conducted. Solutions of water, brine (15,000 and 150,000 ppm NaCl), anionic surfactant (sodium dodecyl diphenyloxide disulfonate), nonionic surfactant (alcohol ethoxylate) and polymer (xanthan gum) were prepared as the aqueous phase. Both counter-current and co-current geometries were tested. Due to the intrinsically unforced, gentle nature of the process, and their strong dependence on wettability, interfacial tension, viscosity and density, such experiments provide valuable insight into some of the governing mechanisms behind ultrasonic stimulation.

  11. Theoretical models of Kapton heating in solar array geometries

    NASA Technical Reports Server (NTRS)

    Morton, Thomas L.

    1992-01-01

    In an effort to understand pyrolysis of Kapton in solar arrays, a computational heat transfer program was developed. This model allows for the different materials and widely divergent length scales of the problem. The present status of the calculation indicates that thin copper traces surrounded by Kapton and carrying large currents can show large temperature increases, but the other configurations seen on solar arrays have adequate heat sinks to prevent substantial heating of the Kapton. Electron currents from the ambient plasma can also contribute to heating of thin traces. Since Kapton is stable at temperatures as high as 600 C, this indicates that it should be suitable for solar array applications. There are indications that the adhesive sued in solar arrays may be a strong contributor to the pyrolysis problem seen in solar array vacuum chamber tests.

  12. Theory of magnetic reconnection in solar and astrophysical plasmas.

    PubMed

    Pontin, David I

    2012-07-13

    Magnetic reconnection is a fundamental process in a plasma that facilitates the release of energy stored in the magnetic field by permitting a change in the magnetic topology. In this paper, we present a review of the current state of understanding of magnetic reconnection. We discuss theoretical results regarding the formation of current sheets in complex three-dimensional magnetic fields and describe the fundamental differences between reconnection in two and three dimensions. We go on to outline recent developments in modelling of reconnection with kinetic theory, as well as in the magnetohydrodynamic framework where a number of new three-dimensional reconnection regimes have been identified. We discuss evidence from observations and simulations of Solar System plasmas that support this theory and summarize some prominent locations in which this new reconnection theory is relevant in astrophysical plasmas.

  13. Biofield Science: Current Physics Perspectives.

    PubMed

    Kafatos, Menas C; Chevalier, Gaétan; Chopra, Deepak; Hubacher, John; Kak, Subhash; Theise, Neil D

    2015-11-01

    This article briefly reviews the biofield hypothesis and its scientific literature. Evidence for the existence of the biofield now exists, and current theoretical foundations are now being developed. A review of the biofield and related topics from the perspective of physical science is needed to identify a common body of knowledge and evaluate possible underlying principles of origin of the biofield. The properties of such a field could be based on electromagnetic fields, coherent states, biophotons, quantum and quantum-like processes, and ultimately the quantum vacuum. Given this evidence, we intend to inquire and discuss how the existence of the biofield challenges reductionist approaches and presents its own challenges regarding the origin and source of the biofield, the specific evidence for its existence, its relation to biology, and last but not least, how it may inform an integrated understanding of consciousness and the living universe.

  14. Towards a Theoretical Framework for Understanding PGCE Student Teacher Learning in the Wild Coast Rural Schools' Partnership Project

    ERIC Educational Resources Information Center

    Pennefather, Jane

    2016-01-01

    This article focuses on a theoretical model that I am developing in order to understand student teacher learning in a rural context and the enabling conditions that can support this learning. The question of whether a supervised teaching practice in a rural context can contribute to the development of student teacher professional learning and…

  15. Modeling the Role of Priming in Executive Control: Cognitive and Neural Constraints

    DTIC Science & Technology

    2012-01-24

    theoretical and empirical advances in our understanding of cognitive control. We discovered new phenomena and developed theories to account for them. We...developed theories of cognitive control and visual attention that integrated mathematical psychology with cognitive science and with neuroscience. We...significant theoretical and empirical advances in our understanding of cognitive control. We discovered new phenomena and developed theories to account

  16. Theory of winds in late-type evolved and pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Macgregor, K. B.

    1983-01-01

    Recent observational results confirm that many of the physical processes which are known to occur in the Sun also occur among late-type stars in general. One such process is the continuous loss of mass from a star in the form of a wind. There now exists an abundance of either direct or circumstantial evidence which suggests that most (if not all) stars in the cool portion of the HR diagram possess winds. An attempt is made to assess the current state of theoretical understanding of mass loss from two distinctly different classes of late-type stars: the post-main-sequence giant/supergiant stars and the pre-main-sequence T Tauri stars. Toward this end, the observationally inferred properties of the wind associated with each of the two stellar classes under consideration are summarized and compared against the predictions of existing theoretical models. Although considerable progress has been made in attempting to identify the mechanisms responsible for mass loss from cool stars, many fundamental problems remain to be solved.

  17. Simulating Astrophysical Jets with Inertial Confinement Fusion Machines

    NASA Astrophysics Data System (ADS)

    Blue, Brent

    2005-10-01

    Large-scale directional outflows of supersonic plasma, also known as `jets', are ubiquitous phenomena in astrophysics. The traditional approach to understanding such phenomena is through theoretical analysis and numerical simulations. However, theoretical analysis might not capture all the relevant physics and numerical simulations have limited resolution and fail to scale correctly in Reynolds number and perhaps other key dimensionless parameters. Recent advances in high energy density physics using large inertial confinement fusion devices now allow controlled laboratory experiments on macroscopic volumes of plasma of direct relevance to astrophysics. This talk will present an overview of these facilities as well as results from current laboratory astrophysics experiments designed to study hydrodynamic jets and Rayleigh-Taylor mixing. This work is performed under the auspices of the U. S. DOE by Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48, Los Alamos National Laboratory under Contract No. W-7405-ENG-36, and the Laboratory for Laser Energetics under Contract No. DE-FC03-92SF19460.

  18. Modeling Supernova Shocks with Intense Lasers.

    NASA Astrophysics Data System (ADS)

    Blue, Brent

    2006-04-01

    Large-scale directional outflows of supersonic plasma are ubiquitous phenomena in astrophysics, with specific application to supernovae. The traditional approach to understanding such phenomena is through theoretical analysis and numerical simulations. However, theoretical analysis might not capture all the relevant physics and numerical simulations have limited resolution and fail to scale correctly in Reynolds number and perhaps other key dimensionless parameters. Recent advances in high energy density physics using large inertial confinement fusion devices now allow controlled laboratory experiments on macroscopic volumes of plasma of direct relevance to astrophysics. This talk will present an overview of these facilities as well as results from current laboratory astrophysics experiments designed to study hydrodynamic jets and Rayleigh-Taylor mixing. This work is performed under the auspices of the U. S. DOE by Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48, Los Alamos National Laboratory under Contract No. W-7405-ENG-36, and the Laboratory for Laser Energetics under Contract No. DE-FC03-92SF19460.

  19. A theoretical study on hot charge-transfer states and dimensional effects of organic photocells based on an ideal diode model.

    PubMed

    Shimazaki, Tomomi; Nakajima, Takahito

    2017-05-21

    This paper discusses an ideal diode model with hot charge-transfer (CT) states to analyze the power conversion efficiency of an organic photocell. A free carrier generation mechanism via sunlight in an organic photocell consists of four microscopic processes: photon absorption, exciton dissociation, CT, and charge separation. The hot CT state effect has been actively investigated to understand the charge separation process. We previously reported a theoretical method to calculate the efficiency of the charge separation process via a hot CT state (T. Shimazaki et al., Phys. Chem. Chem. Phys., 2015, 17, 12538 and J. Chem. Phys., 2016, 144, 234906). In this paper, we integrate the simulation method into the ideal photocell diode model and calculate several properties such as short circuit current, open circuit voltage, and power conversion efficiency. Our results highlight that utilizing the dimensional (entropy) effect together with the hot CT state can play an essential role in developing more efficient organic photocell devices.

  20. Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics

    NASA Technical Reports Server (NTRS)

    Rohrs, C. E.; Valavani, L.; Athans, M.; Stein, G.

    1985-01-01

    This paper examines the robustness properties of existing adaptive control algorithms to unmodeled plant high-frequency dynamics and unmeasurable output disturbances. It is demonstrated that there exist two infinite-gain operators in the nonlinear dynamic system which determines the time-evolution of output and parameter errors. The pragmatic implications of the existence of such infinite-gain operators is that: (1) sinusoidal reference inputs at specific frequencies and/or (2) sinusoidal output disturbances at any frequency (including dc), can cause the loop gain to increase without bound, thereby exciting the unmodeled high-frequency dynamics, and yielding an unstable control system. Hence, it is concluded that existing adaptive control algorithms as they are presented in the literature referenced in this paper, cannot be used with confidence in practical designs where the plant contains unmodeled dynamics because instability is likely to result. Further understanding is required to ascertain how the currently implemented adaptive systems differ from the theoretical systems studied here and how further theoretical development can improve the robustness of adaptive controllers.

  1. Understanding and Changing Food Consumption Behavior Among Children: The Comprehensive Child Consumption Patterns Model.

    PubMed

    Jeffries, Jayne K; Noar, Seth M; Thayer, Linden

    2015-01-01

    Current theoretical models attempting to explain diet-related weight status among children center around three individual-level theories. Alone, these theories fail to explain why children are engaging or not engaging in health-promoting eating behaviors. Our Comprehensive Child Consumption Patterns model takes a comprehensive approach and was developed specifically to help explain child food consumption behavior and addresses many of the theoretical gaps found in previous models, including integration of the life course trajectory, key influencers, perceived behavioral control, and self-regulation. Comprehensive Child Consumption Patterns model highlights multiple levels of the socioecological model to explain child food consumption, illustrating how negative influence at multiple levels can lead to caloric imbalance and contribute to child overweight and obesity. Recognizing the necessity for multi-level and system-based interventions, this model serves as a template for holistic, integrated interventions to improve child eating behavior, ultimately impacting life course health development. © The Author(s) 2015.

  2. The Too-Much-Precision Effect.

    PubMed

    Loschelder, David D; Friese, Malte; Schaerer, Michael; Galinsky, Adam D

    2016-12-01

    Past research has suggested a fundamental principle of price precision: The more precise an opening price, the more it anchors counteroffers. The present research challenges this principle by demonstrating a too-much-precision effect. Five experiments (involving 1,320 experts and amateurs in real-estate, jewelry, car, and human-resources negotiations) showed that increasing the precision of an opening offer had positive linear effects for amateurs but inverted-U-shaped effects for experts. Anchor precision backfired because experts saw too much precision as reflecting a lack of competence. This negative effect held unless first movers gave rationales that boosted experts' perception of their competence. Statistical mediation and experimental moderation established the critical role of competence attributions. This research disentangles competing theoretical accounts (attribution of competence vs. scale granularity) and qualifies two putative truisms: that anchors affect experts and amateurs equally, and that more precise prices are linearly more potent anchors. The results refine current theoretical understanding of anchoring and have significant implications for everyday life.

  3. Improving models of democracy: the example of lagged effects of economic development, education, and gender equality.

    PubMed

    Balaev, Mikhail

    2014-07-01

    The author examines how time delayed effects of economic development, education, and gender equality influence political democracy. Literature review shows inadequate understanding of lagged effects, which raises methodological and theoretical issues with the current quantitative studies of democracy. Using country-years as a unit of analysis, the author estimates a series of OLS PCSE models for each predictor with a systematic analysis of the distributions of the lagged effects. The second set of multiple OLS PCSE regressions are estimated including all three independent variables. The results show that economic development, education, and gender have three unique trajectories of the time-delayed effects: Economic development has long-term effects, education produces continuous effects regardless of the timing, and gender equality has the most prominent immediate and short term effects. The results call for the reassessment of model specifications and theoretical setups in the quantitative studies of democracy. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The robust nature of the biopsychosocial model challenge and threat: a reply to Wright and Kirby.

    PubMed

    Blascovich, Jim; Mendes, Wendy Berry; Tomaka, Joe; Salomon, Kristen; Seery, Mark

    2003-01-01

    This article responds to Wright and Kirby's (this issue) critique of our biopsychosocial (BPS) analysis of challenge and threat motivation. We counter their arguments by reviewing the current state of our theory as well as supporting data, then turn to their specific criticisms. We believe that Wright and Kirby failed to accurately represent the corpus of our work, including both our theoretical model and its supporting data. They critiqued our model from a contextual, rational-economic perspective that ignores the complexity and subjectivity of person-person and person-environmental interactions as well as nonconscious influences. Finally, they provided criticisms regarding possible underspecificity of antecedent components of our model that do not so much indicate theoretical flaws as provide important and interesting questions for future research. We conclude by affirming that our BPS model of challenge and threat is an evolving, generative theory directed toward understanding the complexity of personality and social psychological factors underlying challenge and threat states.

  5. TLM-PSD model for optimization of energy and power density of vertically aligned carbon nanotube supercapacitor

    PubMed Central

    Ghosh, Arunabha; Le, Viet Thong; Bae, Jung Jun; Lee, Young Hee

    2013-01-01

    Electrochemical capacitors with fast charging-discharging rates are very promising for hybrid electric vehicle industries including portable electronics. Complicated pore structures have been implemented in active materials to increase energy storage capacity, which often leads to degrade dynamic response of ions. In order to understand this trade-off phenomenon, we report a theoretical model based on transmission line model which is further combined with pore size distribution function. The model successfully explained how pores length, and pore radius of active materials and electrolyte conductivity can affect capacitance and dynamic performance of different capacitors. The powerfulness of the model was confirmed by comparing with experimental results of a micro-supercapacitor consisted of vertically aligned multiwalled carbon nanotubes (v-MWCNTs), which revealed a linear current increase up to 600 Vs−1 scan rate demonstrating an ultrafast dynamic behavior, superior to randomly entangled singlewalled carbon nanotube device, which is clearly explained by the theoretical model. PMID:24145831

  6. Soft-phonon dynamics of the thermoelectric β-SnSe at high temperatures

    NASA Astrophysics Data System (ADS)

    Chatterji, Tapan; Wdowik, Urszula D.; Jagło, Grzegorz; Rols, Stéphane; Wagner, Frank R.

    2018-07-01

    Results of inelastic neutron scattering experiments on SnSe single crystals at high temperatures along with theoretical studies based on the density functional theory are reported. Our experiments reveal significant softening of the transverse acoustic branch along the [ 0 , ξ , 0 ] direction in the low-temperature α-SnSe of Pbnm symmetry as temperature approaches Tc = 807 K from below. This process is followed by a condensation of the zone-boundary Y-phonon of the high-temperature β-SnSe with Cmcm symmetry at the onset of phase transition. The employed theoretical approach supports experimental observations and demonstrates that the phase change in SnSe is mediated by an unstable zone-boundary phonon with the Y2+ irreducible representation within the Cmcm symmetry space group of the high-temperature β-SnSe. The present work provides a detailed understanding of the soft-mode dynamics in SnSe and conclusively shows that the α ⇌ β structural transformation in this currently topical thermoelectric material is of displacive type.

  7. Vibrationally resolved photoelectron spectroscopy of electronic excited states of DNA bases: application to the ã state of thymine cation.

    PubMed

    Hochlaf, Majdi; Pan, Yi; Lau, Kai-Chung; Majdi, Youssef; Poisson, Lionel; Garcia, Gustavo A; Nahon, Laurent; Al Mogren, Muneerah Mogren; Schwell, Martin

    2015-02-19

    For fully understanding the light-molecule interaction dynamics at short time scales, recent theoretical and experimental studies proved the importance of accurate characterizations not only of the ground (D0) but also of the electronic excited states (e.g., D1) of molecules. While ground state investigations are currently straightforward, those of electronic excited states are not. Here, we characterized the à electronic state of ionic thymine (T(+)) DNA base using explicitly correlated coupled cluster ab initio methods and state-of-the-art synchrotron-based electron/ion coincidence techniques. The experimental spectrum is composed of rich and long vibrational progressions corresponding to the population of the low frequency modes of T(+)(Ã). This work challenges previous numerous works carried out on DNA bases using common synchrotron and VUV-based photoelectron spectroscopies. We provide hence a powerful theoretical and experimental framework to study the electronic structure of ionized DNA bases that could be generalized to other medium-sized biologically relevant systems.

  8. A review of molecular phase separation in binary self-assembled monolayers of thiols on gold surfaces

    NASA Astrophysics Data System (ADS)

    Ong, Quy; Nianias, Nikolaos; Stellacci, Francesco

    2017-09-01

    Binary self-assembled monolayers (SAMs) on gold surfaces have been known to undergo molecular phase separation to various degrees and have been subject to both experimental and theoretical studies. On gold nanoparticles in particular, binary SAMs ligand shells display intriguing morphologies. Consequently, unexpected behaviors of the nanoparticles with respect to their biological, chemical, and interfacial properties have been observed. It is critical that the phase separation of binary SAMs be understood at both molecular and macroscopic level to create, and then manipulate, the useful properties of the functionalized surfaces. We look into the current understanding of molecular phase separation of binary SAMs on gold surfaces, represented by Au(111) flat surfaces and Au nanoparticles, from both theoretical and experimental aspects. We point out shortcomings and describe several research strategies that will address them in the future. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Pule Pileni.

  9. Bridging the gap between theoretical ecology and real ecosystems: modeling invertebrate community composition in streams.

    PubMed

    Schuwirth, Nele; Reichert, Peter

    2013-02-01

    For the first time, we combine concepts of theoretical food web modeling, the metabolic theory of ecology, and ecological stoichiometry with the use of functional trait databases to predict the coexistence of invertebrate taxa in streams. We developed a mechanistic model that describes growth, death, and respiration of different taxa dependent on various environmental influence factors to estimate survival or extinction. Parameter and input uncertainty is propagated to model results. Such a model is needed to test our current quantitative understanding of ecosystem structure and function and to predict effects of anthropogenic impacts and restoration efforts. The model was tested using macroinvertebrate monitoring data from a catchment of the Swiss Plateau. Even without fitting model parameters, the model is able to represent key patterns of the coexistence structure of invertebrates at sites varying in external conditions (litter input, shading, water quality). This confirms the suitability of the model concept. More comprehensive testing and resulting model adaptations will further increase the predictive accuracy of the model.

  10. Assessment of Environmental Enteropathy in the MAL-ED Cohort Study: Theoretical and Analytic Framework

    PubMed Central

    Kosek, Margaret; Guerrant, Richard L.; Kang, Gagandeep; Bhutta, Zulfiqar; Yori, Pablo Peñataro; Gratz, Jean; Gottlieb, Michael; Lang, Dennis; Lee, Gwenyth; Haque, Rashidul; Mason, Carl J.; Ahmed, Tahmeed; Lima, Aldo; Petri, William A.; Houpt, Eric; Olortegui, Maribel Paredes; Seidman, Jessica C.; Mduma, Estomih; Samie, Amidou; Babji, Sudhir

    2014-01-01

    Individuals in the developing world live in conditions of intense exposure to enteric pathogens due to suboptimal water and sanitation. These environmental conditions lead to alterations in intestinal structure, function, and local and systemic immune activation that are collectively referred to as environmental enteropathy (EE). This condition, although poorly defined, is likely to be exacerbated by undernutrition as well as being responsible for permanent growth deficits acquired in early childhood, vaccine failure, and loss of human potential. This article addresses the underlying theoretical and analytical frameworks informing the methodology proposed by the Etiology, Risk Factors and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) cohort study to define and quantify the burden of disease caused by EE within a multisite cohort. Additionally, we will discuss efforts to improve, standardize, and harmonize laboratory practices within the MAL-ED Network. These efforts will address current limitations in the understanding of EE and its burden on children in the developing world. PMID:25305293

  11. Improvement of cognitive function in schizophrenia with N-acetylcysteine: A theoretical review.

    PubMed

    Yolland, Caitlin O B; Phillipou, Andrea; Castle, David J; Neill, Erica; Hughes, Matthew E; Galletly, Cherrie; Smith, Zoe M; Francis, Paul S; Dean, Olivia M; Sarris, Jerome; Siskind, Dan; Harris, Anthony W F; Rossell, Susan L

    2018-05-30

    Schizophrenia is a debilitating psychiatric illness associated with positive and negative symptoms as well as significant impairments in cognition. Current antipsychotic medications do not alleviate these cognitive deficits, and more effective therapeutic options are required. Increased oxidative stress and altered antioxidant levels, including glutathione (GSH) have been observed both in individuals with cognitive impairment and in people with schizophrenia. A GSH precursor, the antioxidant N-acetylcysteine (NAC) has been investigated as a novel treatment for the cognitive symptoms of schizophrenia, and recent research suggests that NAC may be a promising adjunctive treatment option. However, the current literature lacks integration as to why NAC may effectively improve cognition in schizophrenia. The present theoretical synthesis aimed to address this gap by examining the processes by which NAC may improve cognitive function in schizophrenia. The schizophrenia literature was reviewed in three key domains: cognitive impairment, the relationship between oxidative stress and cognition, and the efficacy of NAC as a novel treatment. This led to a theoretical analysis of the neurobiological processes by which NAC may improve cognition in schizophrenia. This theoretical review concluded that improved cognition may result from a combination of factors, including decreased oxidative stress, neuroprotection of cognitive networks and an increase in glutamatergic modulation of the N-methyl-d-aspartate receptor system. Whilst a number of mechanisms by which NAC may improve cognition and symptoms in schizophrenia have been proposed, there is still limited understanding of the specific metabolic pathways involved and how they interrelate and modify specific symptomology. Exploration of how NAC treatment may act to improve cognitive function could guide clinical trials by investigation of the specific neurotransmitter systems and processes involved, allowing for targeted neurological outcome measures. Future research would benefit from the investigation of both in vivo cortical GSH concentration and peripheral plasma GSH in a population of individuals with chronic schizophrenia.

  12. Ethnic status and engagement with health services: Attitudes toward help-seeking and intercultural willingness to interact among South East Asian students in Australia.

    PubMed

    Logan, Shanna; Steel, Zachary; Hunt, Caroline

    2017-04-01

    Previous research has demonstrated the importance of intercultural willingness to interact; however, these investigations have yet to be applied to a health context or to compare an ethnic minority with a majority sample. Consequently, the current study sought to better understand engagement with health services by investigating both attitudes towards seeking psychological help and intercultural willingness to interact within an ethnic minority South East Asian population, relative to an Anglo Australian sample. As predicted, negative attitudes towards seeking psychological help were higher in the South East Asian sample, with this relationship persisting across generations, despite significant differences in acculturation. In contrast, intercultural willingness to interact was not associated with ethnicity status but was associated with higher anxiety, uncertainty, ethnocentrism and help-seeking, consistent with current empirical and theoretical literature. The current study also sought to examine factors associated with help-seeking attitudes and found that ethnocentrism was a significant predictor, when accounting for previous health experience.

  13. Examining depletion theories under conditions of within-task transfer.

    PubMed

    Brewer, Gene A; Lau, Kevin K H; Wingert, Kimberly M; Ball, B Hunter; Blais, Chris

    2017-07-01

    In everyday life, mental fatigue can be detrimental across many domains including driving, learning, and working. Given the importance of understanding and accounting for the deleterious effects of mental fatigue on behavior, a growing body of literature has studied the role of motivational and executive control processes in mental fatigue. In typical laboratory paradigms, participants complete a task that places demand on these self-control processes and are later given a subsequent task. Generally speaking, decrements to subsequent task performance are taken as evidence that the initial task created mental fatigue through the continued engagement of motivational and executive functions. Several models have been developed to account for negative transfer resulting from this "ego depletion." In the current study, we provide a brief literature review, specify current theoretical approaches to ego-depletion, and report an empirical test of current models of depletion. Across 4 experiments we found minimal evidence for executive control depletion along with strong evidence for motivation mediated ego depletion. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, LiFeng; Ye, WenHua; He, XianTu; Wu, JunFeng; Fan, ZhengFeng; Xue, Chuang; Guo, HongYu; Miao, WenYong; Yuan, YongTeng; Dong, JiaQin; Jia, Guo; Zhang, Jing; Li, YingJun; Liu, Jie; Wang, Min; Ding, YongKun; Zhang, WeiYan

    2017-05-01

    Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has been briefly described, several of which are novel.

  15. Psychotherapy, psychopathology, research and practice: pathways of connections and integration.

    PubMed

    Castonguay, Louis G

    2011-03-01

    This paper describes three pathways of connections between different communities of knowledge seekers: integration of psychotherapeutic approaches, integration of psychotherapy and psychopathology, and integration of science and practice. Some of the issues discussed involve the delineation and investigation of common factors (e.g., principles of change), improvement of major forms of psychotherapy, clinical implications of psychopathology research, as well as current and future directions related to practice-research networks. The aim of this paper is to suggest that building bridges across theoretical orientations, scientific fields, professional experiences, and epistemological views may be a fruitful strategy to improve our understanding and the impact of psychotherapy.

  16. Exploring 'new' bioactivities of polymers at the nano-bio interface.

    PubMed

    Wang, Chunming; Dong, Lei

    2015-01-01

    A biological system is essentially an elegant assembly of polymeric nanostructures. The polymers in the body, biomacromolecules, are both building blocks and versatile messengers. We propose that non-biologically derived polymers can be potential therapeutic candidates with unique advantages. Emerging findings about polycations, polysaccharides, immobilised multivalent ligands, and biomolecular coronas provide evidence that polymers are activated at the nano-bio interface, while emphasising the current theoretical and practical challenges. Our increasing understanding of the nano-bio interface and evolving approaches to establish the therapeutic potential of polymers enable the development of polymer drugs with high specificities for broad applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A bio-psycho-social model of violence related to mental health problems.

    PubMed

    Steinert, Tilman; Whittington, Richard

    2013-01-01

    Psychiatry is characterised by bio-psycho-social approaches and therapies. Thus there should be an interest in comprehensive theoretical models for didactic purposes. A narrative synthesis of key themes in the current literature on psychiatric aspects of violence was conducted with the aim of integrating biological, psychological and sociological ideas in this area. Two didactical models are proposed for 1) individual disposition and for 2) acting in specific situations, each including available evidence-based knowledge. The proposed models may be helpful for a comprehensive understanding of all relevant influencing factors in violent mentally ill people and for didactical purposes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Breaking Through the Glass Ceiling: Recent Experimental Approaches to Probe the Properties of Supercooled Liquids near the Glass Transition.

    PubMed

    Smith, R Scott; Kay, Bruce D

    2012-03-15

    Experimental measurements of the properties of supercooled liquids at temperatures near their glass transition temperatures, Tg, are requisite for understanding the behavior of glasses and amorphous solids. Unfortunately, many supercooled molecular liquids rapidly crystallize at temperatures far above their Tg, making such measurements difficult to nearly impossible. In this Perspective, we discuss some recent alternative approaches to obtain experimental data in the temperature regime near Tg. These new approaches may yield the additional experimental data necessary to test current theoretical models of the dynamical slowdown that occurs in supercooled liquids approaching the glass transition.

  19. The Blazhko Effect

    NASA Astrophysics Data System (ADS)

    Kovács, G.

    2009-09-01

    Current status of (the lack of) understanding Blazhko effect is reviewed. We focus mostly on the various components of the failure of the models and touch upon the observational issues only at a degree needed for the theoretical background. Attention is to be paid to models based on radial mode resonances, since they seem to be not fully explored yet, especially if we consider possible non-standard effects (e.g., heavy element enhancement). To aid further modeling efforts, we stress the need for accurate time-series spectral line analysis to reveal any possible non-radial component(s) and thereby let to include (or exclude) non-radial modes in explaining the Blazhko phenomenon.

  20. Theories of white dwarf oscillations

    NASA Technical Reports Server (NTRS)

    Vanhorn, H. M.

    1980-01-01

    The current status of theoretical understanding of the oscillations observed in the ZZ Ceti stars and cataclysmic variables is briefly reviewed. Nonradial g-mode oscillations appear to provide a satisfactory explanation for the low amplitude variables such as R548, with periods in the range of approximately 200 to 300 seconds, but for the longer period (800 to 1000 seconds) oscillators, the situation is still unclear. Rotation may play an important role in this problem, and the effects of both slow and fast rotation upon the mode structure are discussed. In the cataclysmic variables, both accretion and thermonuclear burning may act to excite oscillations of the white dwarf.

  1. Fast X-Ray Timing: A Window into the Strong-Field Regime

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2010-01-01

    The dynamical time-scales in the vicinity of neutron star surfaces and black hole horizons are in the millisecond range. Over the past decade, timing signatures on such scales, either quasi-periodic oscillations (QPOs) and/or coherent pulsations, have been discovered and studied from both neutron stars and black holes with NASA's Rossi X-ray Timing Explorer, Although theoretical interpretations are still hotly debated, these timing properties almost certainly reflect the dynamics of matter in regions dominated by relativistic gravity. I will survey our current understanding of these timing properties, with a focus on how they might he used as probes of fundamental physics.

  2. Planet Formation

    NASA Astrophysics Data System (ADS)

    Klahr, Hubert; Brandner, Wolfgang

    2006-05-01

    This volume addresses fundamental questions concerning the formation of planetary systems in general, and of our solar system in particular. Drawing from recent advances in observational, experimental, and theoretical research, it summarises our current understanding of the planet formation processes, and addresses major open questions and research issues. Chapters are written by leading experts in the field of planet formation and extrasolar planet studies. The book is based on a meeting held at Ringberg Castle in Bavaria, where experts gathered together to present and exchange their ideas and findings. It is a comprehensive resource for graduate students and researchers, and is written to be accessible to newcomers to the field.

  3. The Solidification Velocity of Undercooled Nickel and Titanium Alloys with Dilute Solute

    NASA Technical Reports Server (NTRS)

    Algoso, Paul R.; Altgilbers, A. S.; Hofmeister, William H.; Bayuzick, Robert J.

    2003-01-01

    The study of solidification velocity is important for two reasons. First, understanding the manner in which the degree of undercooling of the liquid and solidification velocity affect the microstructure of the solid is fundamental. Second, there is disagreement between theoretical predictions of the relationship between undercooling and solidification velocity and experimental results. Thus, the objective of this research is to accurately and systematically quantify the solidification velocity as a function of undercooling for dilute nickel-and titanium-based alloys. The alloys chosen for study cover a wide range of equilibrium partition coefficients, and the results are compared to current theory.

  4. Observations and Interpretation of Magnetofluid Turbulence at Small Scales

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.; Sahraoui, Fouad

    2011-01-01

    High time resolution magnetic field measurements from the four Cluster spacecraft have revealed new features of the properties of magnetofluid turbulence at small spatial scales; perhaps even revealing the approach to the dissipation regime at scales close to the electron inertial length. Various analysis techniques and theoretical ideas have been put forward to account for the properties of those measurements. The talk will describe the current state of observations and theory, and will point out on-going and planned research that will further our understanding of how magnetofluid turbulence dissipates. The observations and theories are directly germane to studies being planned as part of NASA's forthcoming Magnetospheric Multiscale Mission.

  5. FOR LOVE OR REWARD? CHARACTERISING PREFERENCES FOR GIVING TO PARENTS IN AN EXPERIMENTAL SETTING*

    PubMed Central

    Porter, Maria; Adams, Abi

    2017-01-01

    Understanding the motivations behind intergenerational transfers is an important and active research area in economics. The existence and responsiveness of familial transfers have consequences for the design of intra and intergenerational redistributive programmes, particularly as such programmes may crowd out private transfers amongst altruistic family members. Yet, despite theoretical and empirical advances in this area, significant gaps in our knowledge remain. In this article, we advance the current literature by shedding light on both the motivation for providing intergenerational transfers, and on the nature of preferences for such giving behaviour, by using experimental techniques and revealed preference methods. PMID:29151611

  6. Studies of the Stability and Dynamics of Levitated Drops

    NASA Technical Reports Server (NTRS)

    Anikumar, A.; Lee, Chun Ping; Wang, T. G.

    1996-01-01

    This is a review of our experimental and theoretical studies relating to equilibrium and stability of liquid drops, typically of low viscosity, levitated in air by a sound field. The major emphasis here is on the physical principles and understanding behind the stability of levitated drops. A comparison with experimental data is also given, along with some fascinating pictures from high-speed photography. One of the aspects we shall deal with is how a drop can suddenly burst in an intense sound field; a phenomenon which can find applications in atomization technology. Also, we are currently investigating the phenomenon of suppression of coalescence between drops levitated in intense acoustic fields.

  7. Atmospheric dynamics of tidally synchronized extrasolar planets.

    PubMed

    Cho, James Y-K

    2008-12-13

    Tidally synchronized planets present a new opportunity for enriching our understanding of atmospheric dynamics on planets. Subject to an unusual forcing arrangement (steady irradiation on the same side of the planet throughout its orbit), the dynamics on these planets may be unlike that on any of the Solar System planets. Characterizing the flow pattern and temperature distribution on the extrasolar planets is necessary for reliable interpretation of data currently being collected, as well as for guiding future observations. In this paper, several fundamental concepts from atmospheric dynamics, likely to be central for characterization, are discussed. Theoretical issues that need to be addressed in the near future are also highlighted.

  8. Staying theoretically sensitive when conducting grounded theory research.

    PubMed

    Reay, Gudrun; Bouchal, Shelley Raffin; A Rankin, James

    2016-09-01

    Background Grounded theory (GT) is founded on the premise that underlying social patterns can be discovered and conceptualised into theories. The method and need for theoretical sensitivity are best understood in the historical context in which GT was developed. Theoretical sensitivity entails entering the field with no preconceptions, so as to remain open to the data and the emerging theory. Investigators also read literature from other fields to understand various ways to construct theories. Aim To explore the concept of theoretical sensitivity from a classical GT perspective, and discuss the ontological and epistemological foundations of GT. Discussion Difficulties in remaining theoretically sensitive throughout research are discussed and illustrated with examples. Emergence - the idea that theory and substance will emerge from the process of comparing data - and staying open to the data are emphasised. Conclusion Understanding theoretical sensitivity as an underlying guiding principle of GT helps the researcher make sense of important concepts, such as delaying the literature review, emergence and the constant comparative method (simultaneous collection, coding and analysis of data). Implications for practice Theoretical sensitivity and adherence to the GT research method allow researchers to discover theories that can bridge the gap between theory and practice.

  9. Teaching of evolution in public schools: A cross-cultural examination

    NASA Astrophysics Data System (ADS)

    Stewart, Joshua M.

    The current study sought to examine how the cultural settings of Colorado, United States, and Baden-Wurttemberg, Germany, influenced perspectives, understandings, and acceptance of college students who want to become teachers (i.e., prospective teachers) in regard to the theory of evolution, creationism, and intelligent design with both quantitative and qualitative components. The quantitative sample for the study consisted of 221 German prospective teachers from Baden-Wurttemberg and 231 United States prospective teachers from Colorado. The quantitative component consisted of a 42-item survey with both Likert and true/false items to examine how (1) country of origin, (2) religious participation, and (3) educational background influence students' views and understandings of the theory of evolution and alternative conceptions. Additionally, in a Likert 6-item motivated reasoning task (a theoretical construct), prospective teachers were asked to read and critique arguments supporting and opposing the theory of evolution; differences in how students critiqued arguments were hypothesized to demonstrate biases. For a separate sample from the same locations (8 German and 11 United States students), a qualitative component examined prospective teachers' positions on teaching the theory of evolution in public schools. Prospective teachers were asked to provide support for their position, anticipate opposing arguments, and implications that both positions would have for students. Lastly, prospective teachers were also asked to explain and define the theory of evolution. The current study aided in examining how teachers' perspectives, understandings, and acceptance impacted what was taught in the science classroom. The researcher found that country of origin, religious behavior, and educational background predicted prospective teachers' responses to numerous criterion variables used in the current study. Further, qualitative results expressed major differences between prospective teachers' views regarding the inclusion of evolution or alternative conceptions in public schools, between Colorado and Baden-Wurttemberg. As a potential indicator, findings from the current study may be useful in understanding potential differences between these two countries, in regard to perceptions of the theory of evolution and alternative conceptions. Further, findings from the current study might also inform how these topics might be covered in educational settings with a lowered risk of conflict.

  10. The physical and compositional properties of dust: what do we really know?

    NASA Astrophysics Data System (ADS)

    Jones, A.

    Many things in current interstellar dust studies are taken as well understood givens by much of the community. For example, it is widely held that interstellar dust is made up of only three components, i.e., “astronomical silicates”, graphite and polycyclic aromatic hydrocarbons, and that our understanding of these is now complete and sufficient enough to interpret astronomical observations of dust in galaxies. To zeroth order this is a reasonable approximation. However, while these “three pillars” of dust modelling have been useful in advancing our understanding over the last few decades, it is now apparent that they are insufficient to explain the observed evolution of the dust properties from one region to another. Thus, it is time to abandon the “three pillars” approach and to seek more physically-realistic interstellar dust analogues. The analysis of the pre-solar grains extracted from meteorites, interplanetary dust particles and from the Stardust mission, and the interpretation of x-ray scattering and absorption observations, supports the view that our current view of the interstellar dust composition(s) is indeed too naïve. The aim of this review is to point out where our current views are rather secure and, perhaps more importantly, where they are far from secure and we must re-think our ideas. To this aim ten aspects of interstellar dust will be scrutinised and re-evaluated in terms of their validity within the current observational, experimental, modelling and theoretical constraints. It is concluded from this analysis that we really do need to re-assess many of the fundamental assumptions relating to what we think we really do ‘know’ about interstellar dust. In particular, it is clear that unravelling the nature dust evolution in the interstellar medium is perhaps the key to significantly advancing our current understanding of interstellar dust. For example, the dust in the diffuse interstellar medium, molecular clouds, photo-dissociation regions and HII regions is not exactly the same but exhibits important evolution within and between these different regions. An understanding of these evolutionary and regional variations exhibited by dust is now critical.

  11. Understanding the Role of Numeracy in Health: Proposed Theoretical Framework and Practical Insights

    PubMed Central

    Lipkus, Isaac M.; Peters, Ellen

    2009-01-01

    Numeracy, that is how facile people are with mathematical concepts and their applications, is gaining importance in medical decision making and risk communication. This paper proposes six critical functions of health numeracy. These functions are integrated into a theoretical framework on health numeracy that has implications for risk-communication and medical-decision-making processes. We examine practical underpinnings for targeted interventions aimed at improving such processes as a function of health numeracy. It is hoped that the proposed functions and theoretical framework will spur more research to determine how an understanding of health numeracy can lead to more effective communication and decision outcomes. PMID:19834054

  12. Carbon chemistry of circumstellar envelopes

    NASA Technical Reports Server (NTRS)

    Bieging, John H.

    1990-01-01

    The chemical composition of envelopes surrounding cool evolved stars, as determined from microwave spectroscopic observations, is reviewed. Emphasis is placed on recent observations with the new large mm-wavelength telescopes and interferometer arrays, and on new theoretical work, especially concerning ion-molecule chemistry of carbon-bearing in these envelopes. Thermal (as opposed to maser) emission lines are discussed. Much progress has been made in the past few years in the theoretical understanding of these objects. It is already clear, however, that observations with the new generation of mm-telescopes will require substantial improvements in the theoretical models to achieve a thorough understanding of the data now becoming available.

  13. A Detection-Theoretic Model of Echo Inhibition

    ERIC Educational Resources Information Center

    Saberi, Kourosh; Petrosyan, Agavni

    2004-01-01

    A detection-theoretic analysis of the auditory localization of dual-impulse stimuli is described, and a model for the processing of spatial cues in the echo pulse is developed. Although for over 50 years "echo suppression" has been the topic of intense theoretical and empirical study within the hearing sciences, only a rudimentary understanding of…

  14. Systems engineering medicine: engineering the inflammation response to infectious and traumatic challenges

    PubMed Central

    Parker, Robert S.; Clermont, Gilles

    2010-01-01

    The complexity of the systemic inflammatory response and the lack of a treatment breakthrough in the treatment of pathogenic infection demand that advanced tools be brought to bear in the treatment of severe sepsis and trauma. Systems medicine, the translational science counterpart to basic science's systems biology, is the interface at which these tools may be constructed. Rapid initial strides in improving sepsis treatment are possible through the use of phenomenological modelling and optimization tools for process understanding and device design. Higher impact, and more generalizable, treatment designs are based on mechanistic understanding developed through the use of physiologically based models, characterization of population variability, and the use of control-theoretic systems engineering concepts. In this review we introduce acute inflammation and sepsis as an example of just one area that is currently underserved by the systems medicine community, and, therefore, an area in which contributions of all types can be made. PMID:20147315

  15. Cortical travelling waves: mechanisms and computational principles

    PubMed Central

    Muller, Lyle; Chavane, Frédéric; Reynolds, John

    2018-01-01

    Multichannel recording technologies have revealed travelling waves of neural activity in multiple sensory, motor and cognitive systems. These waves can be spontaneously generated by recurrent circuits or evoked by external stimuli. They travel along brain networks at multiple scales, transiently modulating spiking and excitability as they pass. Here, we review recent experimental findings that have found evidence for travelling waves at single-area (mesoscopic) and whole-brain (macroscopic) scales. We place these findings in the context of the current theoretical understanding of wave generation and propagation in recurrent networks. During the large low-frequency rhythms of sleep or the relatively desynchronized state of the awake cortex, travelling waves may serve a variety of functions, from long-term memory consolidation to processing of dynamic visual stimuli. We explore new avenues for experimental and computational understanding of the role of spatiotemporal activity patterns in the cortex. PMID:29563572

  16. Understanding the relationship between religiosity and marriage: an investigation of the immediate and longitudinal effects of religiosity on newlywed couples.

    PubMed

    Sullivan, K T

    2001-12-01

    The association between religiosity and marital outcome has been repeatedly demonstrated, but a complete understanding of this relationship is hindered by limitations of theory and method. The purpose of the current study was to test 3 explanatory models by assessing 2 samples of newlywed couples. Findings indicated that religiosity was associated with attitudes toward divorce, commitment, and help seeking cross-sectionally. Longitudinal effects, however, were most consistent with a moderating model, wherein religiosity had a positive impact on husbands' and wives' marital satisfaction for couples with less neurotic husbands and a negative impact for couples with more neurotic husbands. Overall, the impact of religiosity was weak over the first 4 years of marriage. Theoretical propositions are offered to guide future research in delineating the types of marriages that may be most affected by religiosity.

  17. [Swan Song: The Advent of the Psychotic Nucleus].

    PubMed

    Zúñiga, Fernando Muñoz

    2012-09-01

    Different forms of artistic expression, such as literature and cinema, constitute an inexhaustible source for the study of mental illness. The use of psychodynamic models may contribute to a better understanding of the spectrum between personality disorders and the psychosis spectrum, thus enriching the phenomenological approach in the psychiatric clinical practice. To examine from psychodynamic standpoints the main character of the American film Black Swan, and the nature of her psychotic symptoms. Reviewing of sources and relevant theoretical currents. Analysis shows the usefulness of a psychodynamically- oriented dimensional model for understanding the so-called psychotic breaks as well as the applicability of psychoanalytic psychosis theories in general psychiatric practice, as they may provide a more flexible clinical approach, closer to the patient's subjective experience. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  18. CAM Modalities Can Stimulate Advances in Theoretical Biology

    PubMed Central

    2005-01-01

    Most complementary medicine is distinguished by not being supported by underlying theory accepted by Western science. However, for those who accept their validity, complementary and alternative medicine (CAM) modalities offer clues to understanding physiology and medicine more deeply. Ayurveda and vibrational medicine are stimulating new approaches to biological regulation. The new biophysics can be integrated to yield a single consistent theory, which may well underly much of CAM—a true ‘physics of physick’. The resulting theory seems to be a new, fundamental theory of health and etiology. It suggests that many CAM approaches to health care are scientifically in advance of those based on current Western biology. Such theories may well constitute the next steps in our scientific understanding of biology itself. If successfully developed, these ideas could result in a major paradigm shift in both biology and medicine, which will benefit all interested parties—consumers, health professionals, scientists, institutions and governments. PMID:15841271

  19. Theory of interstellar medium diagnostics

    NASA Technical Reports Server (NTRS)

    Fahr, H. J.

    1983-01-01

    The theoretical interpretation of observed interplanetary resonance luminescence patterns is used as one of the must promising methods to determine the state of the local interstellar medium (LISM). However, these methods lead to discrepant results that would be hard to understand in the framework of any physical LISM scenario. Assuming that the observational data are reliable, two possibilities which could help to resolve these discrepancies are discussed: (1) the current modeling of resonance luminescence patterns is unsatisfactory and has to be improved, and (2) the extrapolated interstellar parameters are not indicative of the unperturbed LISM state, but rather designate an intermediate state attained in the outer regions of the solar system. It is shown that a quantitative treatment of the neutral gas-plasma interaction effects in the interface between the heliospheric and the interstellar plasmas is of major importance for the correct understanding of the whole complex.

  20. Exploring the post-genomic world: differing explanatory and manipulatory functions of post-genomic sciences

    PubMed Central

    Holmes, Christina; Carlson, Siobhan M.; McDonald, Fiona; Jones, Mavis; Graham, Janice

    2016-01-01

    Richard Lewontin proposed that the ability of a scientific field to create a narrative for public understanding garners it social relevance. This article applies Lewontin's conceptual framework of the functions of science (manipulatory and explanatory) to compare and explain the current differences in perceived societal relevance of genetics/genomics and proteomics. We provide three examples to illustrate the social relevance and strong cultural narrative of genetics/genomics for which no counterpart exists for proteomics. We argue that the major difference between genetics/genomics and proteomics is that genomics has a strong explanatory function, due to the strong cultural narrative of heredity. Based on qualitative interviews and observations of proteomics conferences, we suggest that the nature of proteins, lack of public understanding, and theoretical complexity exacerbates this difference for proteomics. Lewontin's framework suggests that social scientists may find that omics sciences affect social relations in different ways than past analyses of genetics. PMID:27134568

  1. Advancing understanding of executive function impairments and psychopathology: bridging the gap between clinical and cognitive approaches

    PubMed Central

    Snyder, Hannah R.; Miyake, Akira; Hankin, Benjamin L.

    2015-01-01

    Executive function (EF) is essential for successfully navigating nearly all of our daily activities. Of critical importance for clinical psychological science, EF impairments are associated with most forms of psychopathology. However, despite the proliferation of research on EF in clinical populations, with notable exceptions clinical and cognitive approaches to EF have remained largely independent, leading to failures to apply theoretical and methodological advances in one field to the other field and hindering progress. First, we review the current state of knowledge of EF impairments associated with psychopathology and limitations to the previous research in light of recent advances in understanding and measuring EF. Next, we offer concrete suggestions for improving EF assessment. Last, we suggest future directions, including integrating modern models of EF with state of the art, hierarchical models of dimensional psychopathology as well as translational implications of EF-informed research on clinical science. PMID:25859234

  2. Peers, stereotypes and health communication through the cultural lens of adolescent Appalachian mothers.

    PubMed

    Dalton, Elizabeth; Miller, Laura

    2016-01-01

    The purpose of this study was to understand how young Appalachian mothers retrospectively construct sexual and reproductive health communication events. Sixteen in-depth qualitative interviews were conducted with mothers between the ages of 18 and 22 from the South Central Appalachian region of the USA. Findings indicate that within this population, peer influence, stereotypes medical encounters and formal health education are experienced within a culture that exhibits tension between normalising and disparaging adolescent sexuality. Theoretical and applied implications acknowledge the role of Appalachian cultural values, including egalitarianism, traditional gender roles and fatalism, in understanding the social construction of young people's sexuality in this region. Practical implications for sexual education and the nature of communication in the healthcare setting can be applied to current education curricula and medical communication practices. We suggest that future programmes may be more effective if they are adapted to the specific culture within which they are taught.

  3. An Affect-Centered Model of the Psyche and its Consequences for a New Understanding of Nonlinear Psychodynamics

    NASA Astrophysics Data System (ADS)

    Ciompi, Luc

    At variance with a purely cognitivistic approach, an affect-centered model of mental functioning called `fractal affect-logic' is presented on the basis of current emotional-psychological and neurobiological research. Functionally integrated feeling-thinking-behaving programs generated by action appear in this model as the basic `building blocks' of the psyche. Affects are understood as the essential source of energy that mobilises and organises both linear and nonlinear affective-cognitive dynamics, under the influence of appropriate control parameters and order parameters. Global patterns of affective-cognitive functioning form dissipative structures in the sense of Prigogine, with affect-specific attractors and repulsors, bifurcations, high sensitivity for initial conditions and a fractal overall structure that may be represented in a complex potential landscape of variable configuration. This concept opens new possibilities of understanding normal and pathological psychodynamics and sociodynamics, with numerous practical and theoretical implications.

  4. Revisiting Confucianism as a conceptual framework for Asian family study.

    PubMed

    Park, Mijung; Chesla, Catherine

    2007-08-01

    Confucianism is the central philosophic background for much of the culture in East Asia (EA), particularly for understanding family and social context. The purpose of this article is to examine more fully Confucianism as a conceptual framework for understanding EA family processes and health practices. Confucianism stresses the traditional boundaries of ethical responsibility and the ideal of good human life as a whole. Embedded within Confucian values are five principal relationships, through which each person defines a sense of identity, duty, and responsibility. Current studies of EA families that consider Confucianism as a theoretical base focus almost exclusively on filial piety and collectivism. Focusing only on these two aspects prevents scholars from exploring more complex interpretations of EA family life. A broader inclusion of multiple concepts from Confucianism can provide guidance in exploring the complex and multidimensional aspects of EA family life and allow for broader articulation of family processes.

  5. The Neutrino: A Better Understanding Through Astrophysics: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneller, James P.

    The final report for the award "The Neutrino: A Better Understanding Through Astrophysics" is given. The goals of the work were the following: to construct new theoretical approaches to the problem of neutrino propagation in media including where neutrino-neutrino interactions are important; to pioneer the use of new approaches, including super-scattering operators, for the evolution of neutrino thermal and statistical ensembles; to implement these new approaches in computer codes to study neutrino evolution in supernovae and other hot, dense environments; to increase the realism of simulated signals of a Galactic supernovae neutrino burst in current and future neutrino detectors; tomore » study the simulated signals to determine the ability to extract information on the missing neutrino mixing parameters and the dynamics of the supernova explosion; and to study sterile neutrinos and non-standard interactions of neutrinos in supernovae and their effect upon the signal. Accomplishments made in these areas are described.« less

  6. Magnetic behavior study of samarium nitride using density functional theory

    NASA Astrophysics Data System (ADS)

    Som, Narayan N.; Mankad, Venu H.; Dabhi, Shweta D.; Patel, Anjali; Jha, Prafulla K.

    2018-02-01

    In this work, the state-of-art density functional theory is employed to study the structural, electronic and magnetic properties of samarium nitride (SmN). We have performed calculation for both ferromagnetic and antiferromagnetic states in rock-salt phase. The calculated results of optimized lattice parameter and magnetic moment agree well with the available experimental and theoretical values. From energy band diagram and electronic density of states, we observe a half-metallic behaviour in FM phase of rock salt SmN in while metallicity in AFM I and AFM III phases. We present and discuss our current understanding of the possible half-metallicity together with the magnetic ordering in SmN. The calculated phonon dispersion curves shows dynamical stability of the considered structures. The phonon density of states and Eliashberg functional have also been analysed to understand the superconductivity in SmN.

  7. Negative Magnetoresistance without Chiral Anomaly in Topological Insulators.

    PubMed

    Dai, Xin; Du, Z Z; Lu, Hai-Zhou

    2017-10-20

    An intriguing phenomenon in topological semimetals and topological insulators is the negative magnetoresistance (MR) observed when a magnetic field is applied along the current direction. A prevailing understanding to the negative MR in topological semimetals is the chiral anomaly, which, however, is not well defined in topological insulators. We calculate the MR of a three-dimensional topological insulator, by using the semiclassical equations of motion, in which the Berry curvature explicitly induces an anomalous velocity and orbital moment. Our theoretical results are in quantitative agreement with the experiments. The negative MR is not sensitive to temperature and increases as the Fermi energy approaches the band edge. The orbital moment and g factors also play important roles in the negative MR. Our results give a reasonable explanation to the negative MR in 3D topological insulators and will be helpful in understanding the anomalous quantum transport in topological states of matter.

  8. Evolution of the Valley Position in Bulk Transition-Metal Chalcogenides and Their Monolayer Limit.

    PubMed

    Yuan, Hongtao; Liu, Zhongkai; Xu, Gang; Zhou, Bo; Wu, Sanfeng; Dumcenco, Dumitru; Yan, Kai; Zhang, Yi; Mo, Sung-Kwan; Dudin, Pavel; Kandyba, Victor; Yablonskikh, Mikhail; Barinov, Alexei; Shen, Zhixun; Zhang, Shoucheng; Huang, Yingsheng; Xu, Xiaodong; Hussain, Zahid; Hwang, Harold Y; Cui, Yi; Chen, Yulin

    2016-08-10

    Layered transition metal chalcogenides with large spin orbit coupling have recently sparked much interest due to their potential applications for electronic, optoelectronic, spintronics, and valleytronics. However, most current understanding of the electronic structure near band valleys in momentum space is based on either theoretical investigations or optical measurements, leaving the detailed band structure elusive. For example, the exact position of the conduction band valley of bulk MoS2 remains controversial. Here, using angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES), we systematically imaged the conduction/valence band structure evolution across representative chalcogenides MoS2, WS2, and WSe2, as well as the thickness dependent electronic structure from bulk to the monolayer limit. These results establish a solid basis to understand the underlying valley physics of these materials, and also provide a link between chalcogenide electronic band structure and their physical properties for potential valleytronics applications.

  9. Evolution of the Valley Position in Bulk Transition-Metal Chalcogenides and Their Monolayer Limit

    DOE PAGES

    Yuan, Hongtao; Liu, Zhongkai; Xu, Gang; ...

    2016-07-12

    Valley physics based on layered transition metal chalcogenides have recently sparked much interest due to their potential spintronics and valleytronics applications. However, most current understanding of the electronic structure near band valleys in momentum space is based on either theoretical investigations or optical measurements, leaving the detailed band structure elusive. For example, the exact position of the conduction band valley of bulk MoS 2 remains controversial. Here, using angle-resolved photoemission spectroscopy with sub-micron spatial resolution (micro- ARPES), we systematically imaged the conduction/valence band structure evolution across representative chalcogenides MoS 2, WS 2 and WSe 2, as well as the thicknessmore » dependent electronic structure from bulk to the monolayer limit. These results establish a solid basis to understand the underlying valley physics of these materials, and also provide a link between chalcogenide electronic band structure and their physical properties for potential valleytronics applications.« less

  10. Geometry and Dynamics for Markov Chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Barp, Alessandro; Briol, François-Xavier; Kennedy, Anthony D.; Girolami, Mark

    2018-03-01

    Markov Chain Monte Carlo methods have revolutionised mathematical computation and enabled statistical inference within many previously intractable models. In this context, Hamiltonian dynamics have been proposed as an efficient way of building chains which can explore probability densities efficiently. The method emerges from physics and geometry and these links have been extensively studied by a series of authors through the last thirty years. However, there is currently a gap between the intuitions and knowledge of users of the methodology and our deep understanding of these theoretical foundations. The aim of this review is to provide a comprehensive introduction to the geometric tools used in Hamiltonian Monte Carlo at a level accessible to statisticians, machine learners and other users of the methodology with only a basic understanding of Monte Carlo methods. This will be complemented with some discussion of the most recent advances in the field which we believe will become increasingly relevant to applied scientists.

  11. Mesocosms Reveal Ecological Surprises from Climate Change.

    PubMed

    Fordham, Damien A

    2015-12-01

    Understanding, predicting, and mitigating the impacts of climate change on biodiversity poses one of the most crucial challenges this century. Currently, we know more about how future climates are likely to shift across the globe than about how species will respond to these changes. Two recent studies show how mesocosm experiments can hasten understanding of the ecological consequences of climate change on species' extinction risk, community structure, and ecosystem functions. Using a large-scale terrestrial warming experiment, Bestion et al. provide the first direct evidence that future global warming can increase extinction risk for temperate ectotherms. Using aquatic mesocosms, Yvon-Durocher et al. show that human-induced climate change could, in some cases, actually enhance the diversity of local communities, increasing productivity. Blending these theoretical and empirical results with computational models will improve forecasts of biodiversity loss and altered ecosystem processes due to climate change.

  12. The New Physics and Cosmology - Dialogues with the Dalai Lama

    NASA Astrophysics Data System (ADS)

    Zajonc, Arthur; Houshmand, Zara

    2004-03-01

    What happens when the Dalai Lama meets with leading physicists and a historian? This book is the carefully edited record of the fascinating discussions at a Mind and Life conference in which five leading physicists and a historian (David Finkelstein, George Greenstein, Piet Hut, Arthur Zajonc, Anton Zeilinger, and Tu Weiming) discussed with the Dalai Lama current thought in theoretical quantum physics, in the context of Buddhist philosophy. A contribution to the science-religion interface, and a useful explanation of our basic understanding of quantum reality, couched at a level that intelligent readers without a deep involvement in science can grasp. In the tradition of other popular books on resonances between modern quantum physics and Zen or Buddhist mystical traditions--notably The Dancing Wu Li Masters and The Tao of Physics , this book gives a clear and useful update of the genuine correspondences between these two rather disparate approaches to understanding the nature of reality.

  13. Cannabis and cognitive dysfunction: parallels with endophenotypes of schizophrenia?

    PubMed

    Solowij, Nadia; Michie, Patricia T

    2007-01-01

    Currently, there is a lot of interest in cannabis use as a risk factor for the development of schizophrenia. Cognitive dysfunction associated with long-term or heavy cannabis use is similar in many respects to the cognitive endophenotypes that have been proposed as vulnerability markers of schizophrenia. In this overview, we examine the similarities between these in the context of the neurobiology underlying cognitive dysfunction, particularly implicating the endogenous cannabinoid system, which plays a significant role in attention, learning and memory, and in general, inhibitory regulatory mechanisms in the brain. Closer examination of the cognitive deficits associated with specific parameters of cannabis use and interactions with neurodevelopmental stages and neural substrates will better inform our understanding of the nature of the association between cannabis use and psychosis. The theoretical and clinical significance of further research in this field is in enhancing our understanding of underlying pathophysiology and improving the provision of treatments for substance use and mental illness.

  14. Modelling the collective response of heterogeneous cell populations to stationary gradients and chemical signal relay

    NASA Astrophysics Data System (ADS)

    Pineda, M.; Eftimie, R.

    2017-12-01

    The directed motion of cell aggregates toward a chemical source occurs in many relevant biological processes. Understanding the mechanisms that control this complex behavior is of great relevance for our understanding of developmental biological processes and many diseases. In this paper, we consider a self-propelled particle model for the movement of heterogeneous subpopulations of chemically interacting cells towards an imposed stable chemical gradient. Our simulations show explicitly how self-organisation of cell populations (which could lead to engulfment or complete cell segregation) can arise from the heterogeneity of chemotactic responses alone. This new result complements current theoretical and experimental studies that emphasise the role of differential cell-cell adhesion on self-organisation and spatial structure of cellular aggregates. We also investigate how the speed of individual cell aggregations increases with the chemotactic sensitivity of the cells, and decreases with the number of cells inside the aggregates

  15. Signage as a tool for behavioral change: Direct and indirect routes to understanding the meaning of a sign.

    PubMed

    Meis, Julia; Kashima, Yoshihisa

    2017-01-01

    Signs, prompts, and symbols are a common means to change behavior in our society. Understanding the psychological mechanisms by which signage influences behavior is a critical first step to achieve the desired outcome. In the current research, we propose a theoretical model of sign-to-behavior process. The model suggests that when one encounters a sign, it is encoded to construct an action representation (comprehension process), which is then acted on unless its enactment is inhibited (decision process). We test the implications of the model in two studies. In support of our hypothesis, for unfamiliar signs, clarity of purpose predicts perceived effectiveness of a sign; however, for familiar signs, clarity of purpose does not matter. Insights gained from the studies will help to design effective signs. Practical implications of the model are discussed, and future research directions are outlined.

  16. Signage as a tool for behavioral change: Direct and indirect routes to understanding the meaning of a sign

    PubMed Central

    Kashima, Yoshihisa

    2017-01-01

    Signs, prompts, and symbols are a common means to change behavior in our society. Understanding the psychological mechanisms by which signage influences behavior is a critical first step to achieve the desired outcome. In the current research, we propose a theoretical model of sign-to-behavior process. The model suggests that when one encounters a sign, it is encoded to construct an action representation (comprehension process), which is then acted on unless its enactment is inhibited (decision process). We test the implications of the model in two studies. In support of our hypothesis, for unfamiliar signs, clarity of purpose predicts perceived effectiveness of a sign; however, for familiar signs, clarity of purpose does not matter. Insights gained from the studies will help to design effective signs. Practical implications of the model are discussed, and future research directions are outlined. PMID:28854203

  17. Mechanisms of Dynamic Nuclear Polarization in Insulating Solids

    PubMed Central

    Can, T.V.; Ni, Q.Z.; Griffin, R.G.

    2015-01-01

    Dynamic nuclear polarization (DNP) is a technique used to enhance signal intensities in NMR experiments by transferring the high polarization of electrons to their surrounding nuclei. The past decade has witnessed a renaissance in the development of DNP, especially at high magnetic fields, and its application in several areas including biophysics, chemistry, structural biology and materials science. Recent technical and theoretical advances have expanded our understanding of established experiments: for example, the cross effect DNP in samples spinning at the magic angle. Furthermore, new experiments suggest that our understanding of the Overhauser effect and its applicability to insulating solids needs to be re-examined. In this article, we summarize important results of the past few years and provide quantum mechanical explanations underlying these results. We also discuss future directions of DNP and current limitations, including the problem of resolution in protein spectra recorded at 80–100 K. PMID:25797002

  18. A multisensory perspective of working memory

    PubMed Central

    Quak, Michel; London, Raquel Elea; Talsma, Durk

    2015-01-01

    Although our sensory experience is mostly multisensory in nature, research on working memory representations has focused mainly on examining the senses in isolation. Results from the multisensory processing literature make it clear that the senses interact on a more intimate manner than previously assumed. These interactions raise questions regarding the manner in which multisensory information is maintained in working memory. We discuss the current status of research on multisensory processing and the implications of these findings on our theoretical understanding of working memory. To do so, we focus on reviewing working memory research conducted from a multisensory perspective, and discuss the relation between working memory, attention, and multisensory processing in the context of the predictive coding framework. We argue that a multisensory approach to the study of working memory is indispensable to achieve a realistic understanding of how working memory processes maintain and manipulate information. PMID:25954176

  19. Exploring the post-genomic world: differing explanatory and manipulatory functions of post-genomic sciences.

    PubMed

    Holmes, Christina; Carlson, Siobhan M; McDonald, Fiona; Jones, Mavis; Graham, Janice

    2016-01-02

    Richard Lewontin proposed that the ability of a scientific field to create a narrative for public understanding garners it social relevance. This article applies Lewontin's conceptual framework of the functions of science (manipulatory and explanatory) to compare and explain the current differences in perceived societal relevance of genetics/genomics and proteomics. We provide three examples to illustrate the social relevance and strong cultural narrative of genetics/genomics for which no counterpart exists for proteomics. We argue that the major difference between genetics/genomics and proteomics is that genomics has a strong explanatory function, due to the strong cultural narrative of heredity. Based on qualitative interviews and observations of proteomics conferences, we suggest that the nature of proteins, lack of public understanding, and theoretical complexity exacerbates this difference for proteomics. Lewontin's framework suggests that social scientists may find that omics sciences affect social relations in different ways than past analyses of genetics.

  20. Systems engineering medicine: engineering the inflammation response to infectious and traumatic challenges.

    PubMed

    Parker, Robert S; Clermont, Gilles

    2010-07-06

    The complexity of the systemic inflammatory response and the lack of a treatment breakthrough in the treatment of pathogenic infection demand that advanced tools be brought to bear in the treatment of severe sepsis and trauma. Systems medicine, the translational science counterpart to basic science's systems biology, is the interface at which these tools may be constructed. Rapid initial strides in improving sepsis treatment are possible through the use of phenomenological modelling and optimization tools for process understanding and device design. Higher impact, and more generalizable, treatment designs are based on mechanistic understanding developed through the use of physiologically based models, characterization of population variability, and the use of control-theoretic systems engineering concepts. In this review we introduce acute inflammation and sepsis as an example of just one area that is currently underserved by the systems medicine community, and, therefore, an area in which contributions of all types can be made.

  1. Theoretical model and experimental investigation of current density boundary condition for welding arc study

    NASA Astrophysics Data System (ADS)

    Boutaghane, A.; Bouhadef, K.; Valensi, F.; Pellerin, S.; Benkedda, Y.

    2011-04-01

    This paper presents results of theoretical and experimental investigation of the welding arc in Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding (GMAW) processes. A theoretical model consisting in simultaneous resolution of the set of conservation equations for mass, momentum, energy and current, Ohm's law and Maxwell equation is used to predict temperatures and current density distribution in argon welding arcs. A current density profile had to be assumed over the surface of the cathode as a boundary condition in order to make the theoretical calculations possible. In stationary GTAW process, this assumption leads to fair agreement with experimental results reported in literature with maximum arc temperatures of ~21 000 K. In contrast to the GTAW process, in GMAW process, the electrode is consumable and non-thermionic, and a realistic boundary condition of the current density is lacking. For establishing this crucial boundary condition which is the current density in the anode melting electrode, an original method is setup to enable the current density to be determined experimentally. High-speed camera (3000 images/s) is used to get geometrical dimensions of the welding wire used as anode. The total area of the melting anode covered by the arc plasma being determined, the current density at the anode surface can be calculated. For a 330 A arc, the current density at the melting anode surface is found to be of 5 × 107 A m-2 for a 1.2 mm diameter welding electrode.

  2. Nitrogen fixation on early Mars and other terrestrial planets: experimental demonstration of abiotic fixation reactions to nitrite and nitrate.

    PubMed

    Summers, David P; Khare, Bishun

    2007-04-01

    Understanding the abiotic fixation of nitrogen is critical to understanding planetary evolution and the potential origin of life on terrestrial planets. Nitrogen, an essential biochemical element, is certainly necessary for life as we know it to arise. The loss of atmospheric nitrogen can result in an incapacity to sustain liquid water and impact planetary habitability and hydrological processes that shape the surface. However, our current understanding of how such fixation may occur is almost entirely theoretical. This work experimentally examines the chemistry, in both gas and aqueous phases, that would occur from the formation of NO and CO by the shock heating of a model carbon dioxide/nitrogen atmosphere such as is currently thought to exist on early terrestrial planets. The results show that two pathways exist for the abiotic fixation of nitrogen from the atmosphere into the crust: one via HNO and another via NO(2). Fixation via HNO, which requires liquid water, could represent fixation on a planet with liquid water (and hence would also be a source of nitrogen for the origin of life). The pathway via NO(2) does not require liquid water and shows that fixation could occur even when liquid water has been lost from a planet's surface (for example, continuing to remove nitrogen through NO(2) reaction with ice, adsorbed water, etc.).

  3. A Systematic Underpinning and Framing of the Servicescape: Reflections on Future Challenges in Healthcare Services

    PubMed Central

    Kwon, Gyu Hyun

    2018-01-01

    Ever since Bitner defined the term “servicescape” as the physical environment in which the service is assembled, several scholars have attempted to better understand the impact of the built environment in the context of different service settings. While servicescape is a topic of increasing academic interest among scholars and practitioners, most studies in the area are dedicated to understanding the built environment of hedonic service. More studies are needed to examine utilitarian servicescape and in this paper, we have focused on the healthcare environment. This study aims to identify the gap in servicescape and healthscape studies by providing a theoretical structure of the current servicescape literature and comprehend the academic differences between hedonic servicescape and utilitarian healthscape studies. After reviewing 44 selected papers based on rigorous criteria, we: (1) framed the servicescape factors; (2) analyzed the servicescape literature from the perspectives of terminologies, research fields, methodologies, and frameworks; and (3) identified the current paths of healthscape research. Through this work, we highlight the significance of adopting different dimensions and factors to evaluate the distinguished service environment by the servicescape type and propose several research agendas for future studies on healthscapes. The research findings can contribute to a deep understanding of healthscapes and can introduce a new viewpoint for interpreting the servicescape in diversified service settings. PMID:29534035

  4. Tracing organizing principles: learning from the history of systems biology.

    PubMed

    Green, Sara; Wolkenhauer, Olaf

    2013-01-01

    With the emergence of systems biology, the identification of organizing principles is being highlighted as a key research aim. Researchers attempt to "reverse engineer" the functional organization of biological systems using methodologies from mathematics, engineering and computer science while taking advantage of data produced by new experimental techniques. While systems biology is a relatively new approach, the quest for general principles of biological organization dates back to systems theoretic approaches in early and mid-twentieth century. The aim of this paper is to draw on this historical background in order to increase the understanding of the motivation behind the search for general principles and to clarify different epistemic aims within systems biology. We pinpoint key aspects of earlier approaches that also underlie the current practice. These are i) the focus on relational and system-level properties, ii) the inherent critique of reductionism and fragmentation of knowledge resulting from overspecialization, and iii) the insight that the ideal of formulating abstract organizing principles is complementary to, rather than conflicting with, the aim of formulating detailed explanations of biological mechanisms. We argue that looking back not only helps us understand the current practice but also points to possible future directions for systems biology.

  5. Trajectories on the path to reciprocity-A theoretical framework for collaborating with socioeconomically disadvantaged communities.

    PubMed

    Minas, Maria; Ribeiro, Maria Teresa; Anglin, James P

    2018-01-01

    The importance of cultivating connection to enhance individual, relational and collective well-being is gaining attention in the current literature on building community. Although these goals are being increasingly considered, the concept of reciprocity has been less prominent than may be warranted in the field of psychology. This article presents a theoretical framework on the dynamics of reciprocity which resulted from grounded theory (GT) research involving 2 complementary studies. The first study involved 22 participants from different socioeconomic backgrounds engaged in "reflecting-team with appreciative audiences" sessions (Madsen, 2007) in Portugal. The second study involved participant observation of 15 community programs recognized as good-practices in collaboration with socioeconomically disadvantaged participants, at national and international levels, across 9 countries. The theoretical framework emphasizes the centrality of building reciprocity for the development of individuals, families, communities, and programs. It integrates the trajectories of reciprocity; quadrants reflecting the standpoints assumed according to socioeconomic and cultural positions; basic social-psychological processes inherent to the process of building reciprocity; and characterizes different types of programs. The resulting framework is analyzed in relation to prior literature for a broader understanding of synergies and challenges, and the article concludes by suggesting implications for further research and practice. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. [Measuring Participation - Discussion of the Theoretical Foundations of Current Assessment Instruments].

    PubMed

    Gebhard, B; Fink, A

    2015-09-01

    For children and adolescents social participation is a central goal of rehabilitation processes. Available measurements and evaluation tools are exposed to the problem that the theoretical foundation of the construct of participation is still unclear as well as differentiation from activity in the International Classification of Functioning, Disabilities and Health (ICF/ICF-CY) of the WHO is not made sufficiently. The objectives of this article were (1) to illustrate the scientific discussions on the term and understanding of participation from rehabilitation science perspectives and (2) to conclude implications for practice and science. A systematic search for participation instruments was performed in MEDLINE, CINAHL, PsycINFO, ERIC und EMBASE in August 2014. The available instruments are based on very different definitions of participation. The discussion about the term seems to be not yet complete. A major demand is a better operationalization of activity and participation according to the ICF/ICF-CY in the instruments. Before using an existing instrument, the transferability should be tested for the own context. The theoretical assumptions of participation in conjunction to ICF/ICF-CY as well as the objectives of the instrument should all be clearly understood before using an existing instrument but also before the development of new instruments. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Effects of memory rehearsal on driver performance: experiment and theoretical account.

    PubMed

    Salvucci, Dario D; Beltowska, Joanna

    2008-10-01

    We report an experiment and a theoretical analysis concerning the effects of an exclusively cognitive task, specifically a memory rehearsal task, on driver performance. Although recent work on driver distraction has elucidated the sometimes significant effects of cognitive processing on driver performance, these studies have typically mixed cognitive with perceptual and motor processing, making it difficult to isolate the effects of cognitive processing alone. We asked participants to drive in a driving simulator during only the rehearsal stage of a serial-recall memory task while we measured their ability to maintain a central lane position and respond to the illumination of a lead vehicle's brake lights. Memory rehearsal significantly affected drivers' steering performance as measured by lateral deviation from lane center, and it also significantly affected drivers' response time to the braking stimulus for the higher load memory task. These results lend support to a theoretical account of cognitive distraction provided by threaded cognition theory in terms of a cognitive bottleneck in procedural processing, and they also suggest that consideration of task urgency may be important in accounting for performance trade-offs among concurrent tasks. The experiment augments the current understanding of cognitive driver distraction and suggests that even exclusively cognitive secondary tasks may sometimes affect driver performance.

  8. An Alternative to the Stay/Switch Equation Assessed When Using a Changeover-Delay

    PubMed Central

    MacDonall, James S.

    2015-01-01

    An alternative to the generalized matching equation for understanding concurrent performances is the stay/switch model. For the stay/switch model, the important events are the contingencies and behaviors at each alternative. The current experiment compares the descriptions by two stay/switch equations, the original, empirically derived stay/switch equation and a more theoretically derived equation based on ratios of stay to switch responses matching ratios of stay to switch reinforcers. The present experiment compared descriptions by the original stay/switch equation when using and not using a changeover delay. It also compared descriptions by the more theoretical equation with and without a changeover delay. Finally, it compared descriptions of the concurrent performances by these two equations. Rats were trained in 15 conditions on identical concurrent random-interval schedules in each component of a multiple schedule. A COD operated in only one component. There were no consistent differences in the variance accounted for by each equation of concurrent performances whether or not a COD was used. The simpler equation found greater sensitivity to stay than to switch reinforcers. It also found a COD eliminated the influence of switch reinforcers. Because estimates of parameters were more meaningful when using the more theoretical stay/switch equation it is preferred. PMID:26299548

  9. An alternative to the stay/switch equation assessed when using a changeover-delay.

    PubMed

    MacDonall, James S

    2015-11-01

    An alternative to the generalized matching equation for understanding concurrent performances is the stay/switch model. For the stay/switch model, the important events are the contingencies and behaviors at each alternative. The current experiment compares the descriptions by two stay/switch equations, the original, empirically derived stay/switch equation and a more theoretically derived equation based on ratios of stay to switch responses matching ratios of stay to switch reinforcers. The present experiment compared descriptions by the original stay/switch equation when using and not using a changeover delay. It also compared descriptions by the more theoretical equation with and without a changeover delay. Finally, it compared descriptions of the concurrent performances by these two equations. Rats were trained in 15 conditions on identical concurrent random-interval schedules in each component of a multiple schedule. A COD operated in only one component. There were no consistent differences in the variance accounted for by each equation of concurrent performances whether or not a COD was used. The simpler equation found greater sensitivity to stay than to switch reinforcers. It also found a COD eliminated the influence of switch reinforcers. Because estimates of parameters were more meaningful when using the more theoretical stay/switch equation it is preferred. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Nonlinear theory of diffusive acceleration of particles by shock waves

    NASA Astrophysics Data System (ADS)

    Malkov, M. A.; Drury, L. O'C.

    2001-04-01

    Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data.

  11. Amplifying Dynamic Nuclear Polarization of Frozen Solutions by Incorporating Dielectric Particles

    PubMed Central

    2014-01-01

    There is currently great interest in understanding the limits on NMR signal enhancements provided by dynamic nuclear polarization (DNP), and in particular if the theoretical maximum enhancements can be achieved. We show that over a 2-fold improvement in cross-effect DNP enhancements can be achieved in MAS experiments on frozen solutions by simply incorporating solid particles into the sample. At 9.4 T and ∼105 K, enhancements up to εH = 515 are obtained in this way, corresponding to 78% of the theoretical maximum. We also underline that degassing of the sample is important to achieve highest enhancements. We link the amplification effect to the dielectric properties of the solid material, which probably gives rise to scattering, diffraction, and amplification of the microwave field in the sample. This is substantiated by simulations of microwave propagation. A reduction in sample heating at a given microwave power also likely occurs due to reduced dielectric loss. Simulations indicate that the microwave field (and thus the DNP enhancement) is inhomogeneous in the sample, and we deduce that in these experiments between 5 and 10% of the solution actually yields the theoretical maximum signal enhancement of 658. The effect is demonstrated for a variety of particles added to both aqueous and organic biradical solutions. PMID:25285480

  12. Coil-current effect in Kibble balances: analysis, measurement, and optimization

    NASA Astrophysics Data System (ADS)

    Li, S.; Bielsa, F.; Stock, M.; Kiss, A.; Fang, H.

    2018-02-01

    The Kibble balance is expected to become an important instrument in the near future for realizing the unit of mass, the kilogram, in the revised international system of units (SI). The Kibble balance assumes an equality of two magnetic profiles measured in the weighing and velocity phases. A recent study conducted in the Kibble balance group at the Bureau International des Poids et Mesures (BIPM) showed that the coil current could significantly affect the magnetic profile, which should be carefully taken into account in the Kibble balance experiment. This paper gives a deeper understanding and investigation of the effect, and discusses the magnetic profile change due to the coil current, for both the classical two-mode and the one-mode Kibble balances. The coil current effect has been theoretically and experimentally investigated based on a typical magnet design with an air gap. One important conclusion found in the one-mode Kibble balance is that the magnetic profile change measured in the velocity phase is twice the change in the weighing phase. A compensation suggestion, to minimize the profile change due to the coil current in a BIPM-type magnet, is presented.

  13. Effect of Noise on DNA Sequencing via Transverse Electronic Transport

    PubMed Central

    Krems, Matt; Zwolak, Michael; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2009-01-01

    Abstract Previous theoretical studies have shown that measuring the transverse current across DNA strands while they translocate through a nanopore or channel may provide a statistically distinguishable signature of the DNA bases, and may thus allow for rapid DNA sequencing. However, fluctuations of the environment, such as ionic and DNA motion, introduce important scattering processes that may affect the viability of this approach to sequencing. To understand this issue, we have analyzed a simple model that captures the role of this complex environment in electronic dephasing and its ability to remove charge carriers from current-carrying states. We find that these effects do not strongly influence the current distributions due to the off-resonant nature of tunneling through the nucleotides—a result we expect to be a common feature of transport in molecular junctions. In particular, only large scattering strengths, as compared to the energetic gap between the molecular states and the Fermi level, significantly alter the form of the current distributions. Since this gap itself is quite large, the current distributions remain protected from this type of noise, further supporting the possibility of using transverse electronic transport measurements for DNA sequencing. PMID:19804730

  14. Steady-State Modeling of Modular Multilevel Converter Under Unbalanced Grid Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaojie M.; Wang, Zhiqiang; Liu, Bo

    This paper presents a steady-state model of MMC for the second-order phase voltage ripple prediction under unbalanced conditions, taking the impact of negative-sequence current control into account. From the steady-state model, a circular relationship is found among current and voltage quantities, which can be used to evaluate the magnitudes and initial phase angles of different circulating current components. Moreover, in order to calculate the circulating current in a point-to-point MMC-based HVdc system under unbalanced grid conditions, the derivation of equivalent dc impedance of an MMC is discussed as well. According to the dc impedance model, an MMC inverter can bemore » represented as a series connected R-L-C branch, with its equivalent resistance and capacitance directly related to the circulating current control parameters. Experimental results from a scaled-down three-phase MMC system under an emulated single-line-to-ground fault are provided to support the theoretical analysis and derived model. In conclusion, this new models provides an insight into the impact of different control schemes on the fault characteristics and improves the understanding of the operation of MMC under unbalanced conditions.« less

  15. Steady-State Modeling of Modular Multilevel Converter Under Unbalanced Grid Conditions

    DOE PAGES

    Shi, Xiaojie M.; Wang, Zhiqiang; Liu, Bo; ...

    2016-11-16

    This paper presents a steady-state model of MMC for the second-order phase voltage ripple prediction under unbalanced conditions, taking the impact of negative-sequence current control into account. From the steady-state model, a circular relationship is found among current and voltage quantities, which can be used to evaluate the magnitudes and initial phase angles of different circulating current components. Moreover, in order to calculate the circulating current in a point-to-point MMC-based HVdc system under unbalanced grid conditions, the derivation of equivalent dc impedance of an MMC is discussed as well. According to the dc impedance model, an MMC inverter can bemore » represented as a series connected R-L-C branch, with its equivalent resistance and capacitance directly related to the circulating current control parameters. Experimental results from a scaled-down three-phase MMC system under an emulated single-line-to-ground fault are provided to support the theoretical analysis and derived model. In conclusion, this new models provides an insight into the impact of different control schemes on the fault characteristics and improves the understanding of the operation of MMC under unbalanced conditions.« less

  16. Optimized calculation of the synergy conditions between electron cyclotron current drive and lower hybrid current drive on EAST

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Bo-Jiang, Ding; Y, Peysson; J, Decker; Miao-Hui, Li; Xin-Jun, Zhang; Xiao-Jie, Wang; Lei, Zhang

    2016-01-01

    The optimized synergy conditions between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) with normal parameters of the EAST tokamak are studied by using the C3PO/LUKE code based on the understanding of the synergy mechanisms so as to obtain a higher synergistic current and provide theoretical reference for the synergistic effect in the EAST experiment. The dependences of the synergistic effect on the parameters of two waves (lower hybrid wave (LHW) and electron cyclotron wave (ECW)), including the radial position of the power deposition, the power value of the LH and EC waves, and the parallel refractive indices of the LHW (N∥) are presented and discussed. Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2011GB102000, 2012GB103000, and 2013GB106001), the National Natural Science Foundation of China (Grant Nos. 11175206 and 11305211), the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (Grant No. 11261140328), and the Fundamental Research Funds for the Central Universities of China (Grant No. JZ2015HGBZ0472).

  17. Theoretical magnetograms based on quantitative simulation of a magnetospheric substorm

    NASA Technical Reports Server (NTRS)

    Chen, C.-K.; Wolf, R. A.; Karty, J. L.; Harel, M.

    1982-01-01

    Substorm currents derived from the Rice University computer simulation of the September 19, 1976 substorm event are used to compute theoretical magnetograms as a function of universal time for various stations, integrating the Biot-Savart law over a maze of about 2700 wires and bands that carry the ring, Birkeland and horizontal ionospheric currents. A comparison of theoretical results with corresponding observations leads to a claim of general agreement, especially for stations at high and middle magnetic latitudes. Model results suggest that the ground magnetic field perturbations arise from complicated combinations of different kinds of currents, and that magnetic field disturbances due to different but related currents cancel each other out despite the inapplicability of Fukushima's (1973) theorem. It is also found that the dawn-dusk asymmetry in the horizontal magnetic field disturbance component at low latitudes is due to a net downward Birkeland current at noon, a net upward current at midnight, and, generally, antisunward-flowing electrojets.

  18. Theoretical Studies of Stratospheric and Tropospheric Clouds and Aerosols in Support of SOLVE

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    2002-01-01

    We proposed a number of theoretical efforts to support NASA's SOLVE Mission which took place in Kiruna, Sweden in the winter of 1999-2000. We proposed to serve as one of the DC-8 project scientists, to work with various instrument teams to better understand the composition of polar stratospheric clouds, and their properties, and to help understand the physical conditions which lead to cloud formation in the polar winter.

  19. An Expanded Theoretical Framework of Care Coordination Across Transitions in Care Settings.

    PubMed

    Radwin, Laurel E; Castonguay, Denise; Keenan, Carolyn B; Hermann, Cherice

    2016-01-01

    For many patients, high-quality, patient-centered, and cost-effective health care requires coordination among multiple clinicians and settings. Ensuring optimal care coordination requires a clear understanding of how clinician activities and continuity during transitions affect patient-centeredness and quality outcomes. This article describes an expanded theoretical framework to better understand care coordination. The framework provides clear articulation of concepts. Examples are provided of ways to measure the concepts.

  20. Health Sector Reform and Social Determinants of Health: building up theoretical and methodological interconnections to approach complex global challenges.

    PubMed

    Junior, Garibaldi Dantas Gurgel

    2014-01-01

    Health Sector Reform and Social Determinants of Health are central issues for the current international policy debate, considering the turbulent scenario and the threat of economic recession in a global scale. Although these themes have been discussed for a long time, three major issues still calls the attention of the scientific community and health policymakers. The first one is the matter of how to approach scientifically the intricate connections between them in order to understand the consequences of policies for healthcare services, once this debate will become much more tensioned in the coming years. The second one is the lack of explanatory frameworks to investigate the policies of reform strategies, simultaneously observed in a variety of countries within distinct health services, which aim to achieve multiple and contradictory goals vis-à-vis the so-called social determinants of health. The third one is the challenge that governments face in developing and sustaining equitable health services, bearing in mind the intense political dispute behind the health sector reform processes. This article discusses an all-embracing theoretical and methodological scheme to address these questions. The aim is to connect macro- and middle-range theories to examine Social Determinants and Health Sector Reform interdependent issues, with view to developing new knowledge and attaining scientific understanding upon the role of universal and equitable healthcare systems, in order to avoid deepening economic crises.

  1. Howard Brenner's Legacy for Biological Transport Processes

    NASA Astrophysics Data System (ADS)

    Nitsche, Johannes

    2014-11-01

    This talk discusses the manner in which Howard Brenner's theoretical contributions have had, and long will have, strong and direct impact on the understanding of transport processes occurring in biological systems. His early work on low Reynolds number resistance/mobility coefficients of arbitrarily shaped particles, and particles near walls and in pores, is an essential component of models of hindered diffusion through many types of membranes and tissues, and convective transport in microfluidic diagnostic systems. His seminal contributions to macrotransport (coarse-graining, homogenization) theory presaged the growing discipline of multiscale modeling. For biological systems they represent the key to infusing diffusion models of a wide variety of tissues with a sound basis in their microscopic structure and properties, often over a hierarchy of scales. Both scientific currents are illustrated within the concrete context of diffusion models of drug/chemical diffusion through the skin. This area of theory, which is key to transdermal drug development and risk assessment of chemical exposure, has benefitted very directly from Brenner's contributions. In this as in other areas, Brenner's physicochemical insight, mathematical virtuosity, drive for fully justified analysis free of ad hoc assumptions, quest for generality, and impeccable exposition, have consistently elevated the level of theoretical understanding and presentation. We close with anecdotes showing how his personal qualities and warmth helped to impart high standards of rigor to generations of grateful research students. Authors are Johannes M. Nitsche, Ludwig C. Nitsche and Gerald B. Kasting.

  2. Hearing impairment, cognition and speech understanding: exploratory factor analyses of a comprehensive test battery for a group of hearing aid users, the n200 study

    PubMed Central

    Rönnberg, Jerker; Lunner, Thomas; Ng, Elaine Hoi Ning; Lidestam, Björn; Zekveld, Adriana Agatha; Sörqvist, Patrik; Lyxell, Björn; Träff, Ulf; Yumba, Wycliffe; Classon, Elisabet; Hällgren, Mathias; Larsby, Birgitta; Signoret, Carine; Pichora-Fuller, M. Kathleen; Rudner, Mary; Danielsson, Henrik; Stenfelt, Stefan

    2016-01-01

    Abstract Objective: The aims of the current n200 study were to assess the structural relations between three classes of test variables (i.e. HEARING, COGNITION and aided speech-in-noise OUTCOMES) and to describe the theoretical implications of these relations for the Ease of Language Understanding (ELU) model. Study sample: Participants were 200 hard-of-hearing hearing-aid users, with a mean age of 60.8 years. Forty-three percent were females and the mean hearing threshold in the better ear was 37.4 dB HL. Design: LEVEL1 factor analyses extracted one factor per test and/or cognitive function based on a priori conceptualizations. The more abstract LEVEL 2 factor analyses were performed separately for the three classes of test variables. Results: The HEARING test variables resulted in two LEVEL 2 factors, which we labelled SENSITIVITY and TEMPORAL FINE STRUCTURE; the COGNITIVE variables in one COGNITION factor only, and OUTCOMES in two factors, NO CONTEXT and CONTEXT. COGNITION predicted the NO CONTEXT factor to a stronger extent than the CONTEXT outcome factor. TEMPORAL FINE STRUCTURE and SENSITIVITY were associated with COGNITION and all three contributed significantly and independently to especially the NO CONTEXT outcome scores (R2 = 0.40). Conclusions: All LEVEL 2 factors are important theoretically as well as for clinical assessment. PMID:27589015

  3. Hearing impairment, cognition and speech understanding: exploratory factor analyses of a comprehensive test battery for a group of hearing aid users, the n200 study.

    PubMed

    Rönnberg, Jerker; Lunner, Thomas; Ng, Elaine Hoi Ning; Lidestam, Björn; Zekveld, Adriana Agatha; Sörqvist, Patrik; Lyxell, Björn; Träff, Ulf; Yumba, Wycliffe; Classon, Elisabet; Hällgren, Mathias; Larsby, Birgitta; Signoret, Carine; Pichora-Fuller, M Kathleen; Rudner, Mary; Danielsson, Henrik; Stenfelt, Stefan

    2016-11-01

    The aims of the current n200 study were to assess the structural relations between three classes of test variables (i.e. HEARING, COGNITION and aided speech-in-noise OUTCOMES) and to describe the theoretical implications of these relations for the Ease of Language Understanding (ELU) model. Participants were 200 hard-of-hearing hearing-aid users, with a mean age of 60.8 years. Forty-three percent were females and the mean hearing threshold in the better ear was 37.4 dB HL. LEVEL1 factor analyses extracted one factor per test and/or cognitive function based on a priori conceptualizations. The more abstract LEVEL 2 factor analyses were performed separately for the three classes of test variables. The HEARING test variables resulted in two LEVEL 2 factors, which we labelled SENSITIVITY and TEMPORAL FINE STRUCTURE; the COGNITIVE variables in one COGNITION factor only, and OUTCOMES in two factors, NO CONTEXT and CONTEXT. COGNITION predicted the NO CONTEXT factor to a stronger extent than the CONTEXT outcome factor. TEMPORAL FINE STRUCTURE and SENSITIVITY were associated with COGNITION and all three contributed significantly and independently to especially the NO CONTEXT outcome scores (R(2) = 0.40). All LEVEL 2 factors are important theoretically as well as for clinical assessment.

  4. Integrating cognitive rehabilitation: A preliminary program description and theoretical review of an interdisciplinary cognitive rehabilitation program.

    PubMed

    Fleeman, Jennifer A; Stavisky, Christopher; Carson, Simon; Dukelow, Nancy; Maier, Sheryl; Coles, Heather; Wager, John; Rice, Jordyn; Essaff, David; Scherer, Marcia

    2015-01-01

    Interdisciplinary cognitive rehabilitation is emerging as the expected standard of care for individuals with mild to moderate degrees of cognitive impairment for a variety of etiologies. There is a growing body of evidence in cognitive rehabilitation literature supporting the involvement of multiple disciplines, with the use of cognitive support technologies (CSTs), in delivering cognitive therapy to individuals who require cognitive rehabilitative therapies. This article provides an overview of the guiding theories related to traditional approaches of cognitive rehabilitation and the positive impact of current theoretical models of an interdisciplinary approach in clinical service delivery of this rehabilitation. A theoretical model of the Integrative Cognitive Rehabilitation Program (ICRP) will be described in detail along with the practical substrates of delivering specific interventions to individuals and caregivers who are living with mild to moderate cognitive impairment. The ultimate goal of this article is to provide a clinically useful resource for direct service providers. It will serve to further clinical knowledge and understanding of the evolution from traditional silo based treatment paradigms to the current implementation of multiple perspectives and disciplines in the pursuit of patient centered care. The article will discuss the theories that contributed to the development of the interdisciplinary team and the ICRP model, implemented with individuals with mild to moderate cognitive deficits, regardless of etiology. The development and implementation of specific assessment and intervention strategies in this cognitive rehabilitation program will also be discussed. The assessment and intervention strategies utilized as part of ICRP are applicable to multiple clinical settings in which individuals with cognitive impairment are served. This article has specific implications for rehabilitation which include: (a) An Interdisciplinary Approach is an effective method for cognitive rehabilitation; and (b) Recent theories offer beneficial evaluation and intervention techniques for cognitive rehabilitation.

  5. Towards a Theoretical Framework for the Comparative Understanding of Globalisation, Higher Education, the Labour Market and Inequality

    ERIC Educational Resources Information Center

    Kupfer, Antonia

    2011-01-01

    This paper is a theoretical examination of three major empirical trends that affect many people: globalisation, increasingly close relations between higher education (HE) and labour markets, and increasing social inequality. Its aim is to identify key theoretical resources and their contribution to the development of a comparative theoretical…

  6. Parameters affecting mechanical and thermal responses in bone drilling: A review.

    PubMed

    Lee, JuEun; Chavez, Craig L; Park, Joorok

    2018-04-11

    Surgical bone drilling is performed variously to correct bone fractures, install prosthetics, or for therapeutic treatment. The primary concern in bone drilling is to extract donor bone sections and create receiving holes without damaging the bone tissue either mechanically or thermally. We review current results from experimental and theoretical studies to investigate the parameters related to such effects. This leads to a comprehensive understanding of the mechanical and thermal aspects of bone drilling to reduce their unwanted complications. This review examines the important bone-drilling parameters of bone structure, drill-bit geometry, operating conditions, and material evacuation, and considers the current techniques used in bone drilling. We then analyze the associated mechanical and thermal effects and their contributions to bone-drilling performance. In this review, we identify a favorable range for each parameter to reduce unwanted complications due to mechanical or thermal effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Efficient and Effective Change Principles in Active Videogames

    PubMed Central

    Fenner, Ashley A.; Howie, Erin K.; Feltz, Deborah L.; Gray, Cindy M.; Lu, Amy Shirong; Mueller, Florian “Floyd”; Simons, Monique; Barnett, Lisa M.

    2015-01-01

    Abstract Active videogames have the potential to enhance population levels of physical activity but have not been successful in achieving this aim to date. This article considers a range of principles that may be important to the design of effective and efficient active videogames from diverse discipline areas, including behavioral sciences (health behavior change, motor learning, and serious games), business production (marketing and sales), and technology engineering and design (human–computer interaction/ergonomics and flow). Both direct and indirect pathways to impact on population levels of habitual physical activity are proposed, along with the concept of a game use lifecycle. Examples of current active and sedentary electronic games are used to understand how such principles may be applied. Furthermore, limitations of the current usage of theoretical principles are discussed. A suggested list of principles for best practice in active videogame design is proposed along with suggested research ideas to inform practice to enhance physical activity. PMID:26181680

  8. Solid Polymer Electrolyte (SPE) fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Many previously demonstrated improved fuel cell features were consolidated to (1) obtain a better understanding of the observed characteristics of the operating laboratory-sized cells; (2) evaluate appropriate improved fuel cell features in 0.7 sq ft cell hardware; and (3) study the resultant fuel cell capability and determine its impact on various potential fuel cell space missions. The observed performance characteristics of the fuel cell at high temperatures and high current densities were matched with a theoretical model based on the change in Gibbs free energy voltage with respect to temperature and internal resistance change with current density. Excellent agreement between the observed and model performance was obtained. The observed performance decay with operational time on cells with very low noble metal loadings (0.05 mg/sq cm) were shown to be related to loss in surface area. Cells with the baseline amount of noble catalyst electrode loading demonstrated over 40,000 hours of stable performance.

  9. Efficient and Effective Change Principles in Active Videogames.

    PubMed

    Straker, Leon M; Fenner, Ashley A; Howie, Erin K; Feltz, Deborah L; Gray, Cindy M; Lu, Amy Shirong; Mueller, Florian Floyd; Simons, Monique; Barnett, Lisa M

    2015-02-01

    Active videogames have the potential to enhance population levels of physical activity but have not been successful in achieving this aim to date. This article considers a range of principles that may be important to the design of effective and efficient active videogames from diverse discipline areas, including behavioral sciences (health behavior change, motor learning, and serious games), business production (marketing and sales), and technology engineering and design (human-computer interaction/ergonomics and flow). Both direct and indirect pathways to impact on population levels of habitual physical activity are proposed, along with the concept of a game use lifecycle. Examples of current active and sedentary electronic games are used to understand how such principles may be applied. Furthermore, limitations of the current usage of theoretical principles are discussed. A suggested list of principles for best practice in active videogame design is proposed along with suggested research ideas to inform practice to enhance physical activity.

  10. Biofield Science: Current Physics Perspectives

    PubMed Central

    Chevalier, Gaétan; Chopra, Deepak; Hubacher, John; Kak, Subhash; Theise, Neil D.

    2015-01-01

    This article briefly reviews the biofield hypothesis and its scientific literature. Evidence for the existence of the biofield now exists, and current theoretical foundations are now being developed. A review of the biofield and related topics from the perspective of physical science is needed to identify a common body of knowledge and evaluate possible underlying principles of origin of the biofield. The properties of such a field could be based on electromagnetic fields, coherent states, biophotons, quantum and quantum-like processes, and ultimately the quantum vacuum. Given this evidence, we intend to inquire and discuss how the existence of the biofield challenges reductionist approaches and presents its own challenges regarding the origin and source of the biofield, the specific evidence for its existence, its relation to biology, and last but not least, how it may inform an integrated understanding of consciousness and the living universe. PMID:26665039

  11. Rethinking the process of detrainment: jets in obstructed natural flows

    NASA Astrophysics Data System (ADS)

    Mossa, Michele; de Serio, Francesca

    2016-12-01

    A thorough understanding of the mixing and diffusion of turbulent jets released in porous obstructions is still lacking in literature. This issue is undoubtedly of interest because it is not strictly limited to vegetated flows, but also includes outflows which come from different sources and which spread among oyster or wind farms, as well as aerial pesticide treatments sprayed onto orchards. The aim of the present research is to analyze this process from a theoretical point of view. Specifically, by examining the entrainment coefficient, it is deduced that the presence of a canopy prevents a momentum jet from having an entrainment process, but rather promotes its detrainment. In nature, detrainment is usually associated with buoyancy-driven flows, such as plumes or density currents flowing in a stratified environment. The present study proves that detrainment occurs also when a momentum-driven jet is issued in a not-stratified obstructed current, such as a vegetated flow.

  12. Procedural Metacognition and False Belief Understanding in 3- to 5-Year-Old Children

    PubMed Central

    Bernard, Stéphane; Proust, Joëlle; Clément, Fabrice

    2015-01-01

    Some studies, so far limited in number, suggest the existence of procedural metacognition in young children, that is, the practical capacity to monitor and control one’s own cognitive activity in a given task. The link between procedural metacognition and false belief understanding is currently under theoretical discussion. If data with primates seem to indicate that procedural metacognition and false belief understanding are not related, no study in developmental psychology has investigated this relation in young children. The present paper aims, first, to supplement the findings concerning young children’s abilities to monitor and control their uncertainty (procedural metacognition) and, second, to explore the relation between procedural metacognition and false belief understanding. To examine this, 82 3- to 5-year-old children were presented with an opt-out task and with 3 false belief tasks. Results show that children can rely on procedural metacognition to evaluate their perceptual access to information, and that success in false belief tasks does not seem related to success in the task we used to evaluate procedural metacognition. These results are coherent with a procedural view of metacognition, and are discussed in the light of recent data from primatology and developmental psychology. PMID:26517260

  13. Procedural Metacognition and False Belief Understanding in 3- to 5-Year-Old Children.

    PubMed

    Bernard, Stéphane; Proust, Joëlle; Clément, Fabrice

    2015-01-01

    Some studies, so far limited in number, suggest the existence of procedural metacognition in young children, that is, the practical capacity to monitor and control one's own cognitive activity in a given task. The link between procedural metacognition and false belief understanding is currently under theoretical discussion. If data with primates seem to indicate that procedural metacognition and false belief understanding are not related, no study in developmental psychology has investigated this relation in young children. The present paper aims, first, to supplement the findings concerning young children's abilities to monitor and control their uncertainty (procedural metacognition) and, second, to explore the relation between procedural metacognition and false belief understanding. To examine this, 82 3- to 5-year-old children were presented with an opt-out task and with 3 false belief tasks. Results show that children can rely on procedural metacognition to evaluate their perceptual access to information, and that success in false belief tasks does not seem related to success in the task we used to evaluate procedural metacognition. These results are coherent with a procedural view of metacognition, and are discussed in the light of recent data from primatology and developmental psychology.

  14. Conceptualizing and Measuring Working Memory and its Relationship to Aphasia

    PubMed Central

    Wright, Heather Harris; Fergadiotis, Gerasimos

    2011-01-01

    Background General agreement exists in the literature that individuals with aphasia can exhibit a working memory deficit that contributes to their language processing impairments. Though conceptualized within different working memory frameworks, researchers have suggested that individuals with aphasia have limited working memory capacity, impaired attention-control processes as well as impaired inhibitory mechanisms. However, across studies investigating working memory ability in individuals with aphasia, different measures have been used to quantify their working memory ability and identify the relationship between working memory and language performance. Aims The primary objectives of this article are to (1) review current working memory theoretical frameworks, (2) review tasks used to measure working memory, and (3) discuss findings from studies that have investigated working memory as they relate to language processing in aphasia. Main Contribution Though findings have been consistent across studies investigating working memory ability in individuals with aphasia, discussion of how working memory is conceptualized and defined is often missing, as is discussion of results within a theoretical framework. This is critical, as working memory is conceptualized differently across the different theoretical frameworks. They differ in explaining what limits capacity and the source of individual differences as well as how information is encoded, maintained, and retrieved. When test methods are considered within a theoretical framework, specific hypotheses can be tested and stronger conclusions that are less susceptible to different interpretations can be made. Conclusions Working memory ability has been investigated in numerous studies with individuals with aphasia. To better understand the underlying cognitive constructs that contribute to the language deficits exhibited by individuals with aphasia, future investigations should operationally define the cognitive constructs of interest and discuss findings within theoretical frameworks. PMID:22639480

  15. Generating or developing grounded theory: methods to understand health and illness.

    PubMed

    Woods, Phillip; Gapp, Rod; King, Michelle A

    2016-06-01

    Grounded theory is a qualitative research methodology that aims to explain social phenomena, e.g. why particular motivations or patterns of behaviour occur, at a conceptual level. Developed in the 1960s by Glaser and Strauss, the methodology has been reinterpreted by Strauss and Corbin in more recent times, resulting in different schools of thought. Differences arise from different philosophical perspectives concerning knowledge (epistemology) and the nature of reality (ontology), demanding that researchers make clear theoretical choices at the commencement of their research when choosing this methodology. Compared to other qualitative methods it has ability to achieve understanding of, rather than simply describing, a social phenomenon. Achieving understanding however, requires theoretical sampling to choose interviewees that can contribute most to the research and understanding of the phenomenon, and constant comparison of interviews to evaluate the same event or process in different settings or situations. Sampling continues until conceptual saturation is reached, i.e. when no new concepts emerge from the data. Data analysis focusses on categorising data (finding the main elements of what is occurring and why), and describing those categories in terms of properties (conceptual characteristics that define the category and give meaning) and dimensions (the variations within properties which produce specificity and range). Ultimately a core category which theoretically explains how all other categories are linked together is developed from the data. While achieving theoretical abstraction in the core category, it should be logical and capture all of the variation within the data. Theory development requires understanding of the methodology not just working through a set of procedures. This article provides a basic overview, set in the literature surrounding grounded theory, for those wanting to increase their understanding and quality of research output.

  16. Large fluctuations of the macroscopic current in diffusive systems: a numerical test of the additivity principle.

    PubMed

    Hurtado, Pablo I; Garrido, Pedro L

    2010-04-01

    Most systems, when pushed out of equilibrium, respond by building up currents of locally conserved observables. Understanding how microscopic dynamics determines the averages and fluctuations of these currents is one of the main open problems in nonequilibrium statistical physics. The additivity principle is a theoretical proposal that allows to compute the current distribution in many one-dimensional nonequilibrium systems. Using simulations, we validate this conjecture in a simple and general model of energy transport, both in the presence of a temperature gradient and in canonical equilibrium. In particular, we show that the current distribution displays a Gaussian regime for small current fluctuations, as prescribed by the central limit theorem, and non-Gaussian (exponential) tails for large current deviations, obeying in all cases the Gallavotti-Cohen fluctuation theorem. In order to facilitate a given current fluctuation, the system adopts a well-defined temperature profile different from that of the steady state and in accordance with the additivity hypothesis predictions. System statistics during a large current fluctuation is independent of the sign of the current, which implies that the optimal profile (as well as higher-order profiles and spatial correlations) are invariant upon current inversion. We also demonstrate that finite-time joint fluctuations of the current and the profile are well described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.

  17. A Chinese young adult non-scientist's epistemologies and her understandings of the concept of speed

    NASA Astrophysics Data System (ADS)

    Cao, Ying; Brizuela, Barbara M.

    2015-08-01

    Past research has investigated students' epistemologies while they were taking courses that required an integrated understanding of mathematical and scientific concepts. However, past studies have not investigated students who are not currently enrolled in such classes. Additionally, past studies have primarily focused on individuals who are native English speakers from Western cultures. In this paper, we aim to investigate whether Hammer and his colleagues' claims concerning learners' epistemologies could be extended to individuals who lack advanced mathematics and science training, have had different cultural and learning experiences, and have grown up speaking and learning in another language. To this end, we interviewed a participant with these characteristics about her understandings of the concept of speed. Our findings show that previous theoretical frameworks can be used to explain the epistemologies of the individual examined in this study. The case suggests that these theories may be relevant regardless of the learner's mathematics and science background, language, educational experience, and cultural background. In the future, more cases should be examined with learners from different academic backgrounds and cultures to further support this finding.

  18. Undergraduate Nursing Students' Understandings of Mental Health: A Review of the Literature.

    PubMed

    Barry, Sinead; Ward, Louise

    2017-02-01

    The purpose of this literature review was to identify research and current literature surrounding nursing students' understandings of mental health. The aim is to share findings from an extensive international and national literature review exploring undergraduate nurse education specific to mental health content. Data were collected utilising a comprehensive search of electronic databases including CINAHL (EBSCO), MEDLINE, and PsycINFO 1987-(Ovid) from 2008 to 2016. The initial search terms were altered to include undergraduate, mental health, nursing, education, experience, and knowledge. Three content themes emerged which included: 1. Undergraduate nursing students' knowledge has been considered compromised due to concerns relating to the variation and inconsistencies within the comprehensive nursing curriculums representation of mental health, 2. Undergraduate nursing students knowledge of mental health is thought to be compromised due to the quality of mental health theoretical and experiential learning opportunities, and 3. Research indicates that nursing students' knowledge of mental health was influenced by their experience of undertaking mental health content. Based on these findings greater consideration of students' understandings of mental health is required.

  19. The status of the concept of 'phoneme' in psycholinguistics.

    PubMed

    Uppstad, Per Henning; Tønnessen, Finn Egil

    2010-10-01

    The notion of the phoneme counts as a break-through of modern theoretical linguistics in the early twentieth century. It paved the way for descriptions of distinctive features at different levels in linguistics. Although it has since then had a turbulent existence across altering theoretical positions, it remains a powerful concept of a fundamental unit in spoken language. At the same time, its conceptual status remains highly unclear. The present article aims to clarify the status of the concept of 'phoneme' in psycholinguistics, based on the scientific concepts of description, understanding and explanation. Theoretical linguistics has provided mainly descriptions. The ideas underlying this article are, first, that these descriptions may not be directly relevant to psycholinguistics and, second, that psycholinguistics in this sense is not a sub-discipline of theoretical linguistics. Rather, these two disciplines operate with different sets of features and with different orientations when it comes to the scientific concepts of description, understanding and explanation.

  20. Theoretical Studies of Small-System Thermodynamics in Energetic Materials

    DTIC Science & Technology

    2016-01-06

    SECURITY CLASSIFICATION OF: This is a comprehensive theoretical research program to investigate the fundamental principles of small-system thermodynamics ...a.k.a. nanothermodynamics). The proposed work is motivated by our desire to better understand the fundamental dynamics and thermodynamics of...for Public Release; Distribution Unlimited Final Report: Theoretical Studies of Small-System Thermodynamics in Energetic Materials The views, opinions

  1. Measuring Theoretical Orientations of Counselor Trainees in Turkey: The Role of Personal and Professional Variables

    ERIC Educational Resources Information Center

    Demir, Ilkay; Gazioglu, Esra Ismen

    2017-01-01

    The first aim of this study was to explore the reliability and validity of the Turkish version of the Theoretical Orientation Profile Scale-Revised, and the second aim was to understand the relative influence of personal and professional variables on the choice of a guiding theoretical orientation among Turkish counselor trainees. Results showed…

  2. Is DNA a metal, semiconductor or insulator? A theoretical approach

    NASA Astrophysics Data System (ADS)

    Rey-Gonzalez, Rafael; Fonseca-Romero, Karen; Plazas, Carlos; Grupo de Óptica e Información Cuántica Team

    Over the last years, scientific interest for designing and making low dimensional electronic devices with traditional or novel materials has been increased. These experimental and theoretical researches in electronic properties at molecular scale are looking for developing efficient devices able to carry out tasks which are currently done by silicon transistors and devices. Among the new materials DNA strands are highlighted, but the experimental results have been contradictories pointing to behaviors as conductor, semiconductor or insulator. To contribute to the understanding of the origin of the disparity of the measurements, we perform a numerical calculation of the electrical conductance of DNA segments, modeled as 1D disordered finite chains. The system is described into a Tight binding model with nearest neighbor interactions and a s orbital per site. Hydration effects are included as random variations of self-energies. The electronic current as a function of applied bias is calculated using Launder formalism, where the transmission probability is determined into the transfer matrix formalism. We find a conductor-to-semiconductor-to-insulator transition as a function of the three effects taken into account: chain size, intrinsic disorder, and hydration We thank Fundación para la Promoción de la Investigación y la Tecnología, Colombia, and Dirección de Investigación de Bogotá, Universidad Nacional de Colombia, for partial financial support.

  3. Coping and Sexual Harassment: How Victims Cope across Multiple Settings.

    PubMed

    Scarduzio, Jennifer A; Sheff, Sarah E; Smith, Mathew

    2018-02-01

    The ways sexual harassment occurs both online and in face-to-face settings has become more complicated. Sexual harassment that occurs in cyberspace or online sexual harassment adds complexity to the experiences of victims, current research understandings, and the legal dimensions of this phenomenon. Social networking sites (SNS) are a type of social media that offer unique opportunities to users and sometimes the communication that occurs on SNS can cross the line from flirtation into online sexual harassment. Victims of sexual harassment employ communicative strategies such as coping to make sense of their experiences of sexual harassment. The current study qualitatively examined problem-focused, active emotion-focused, and passive emotion-focused coping strategies employed by sexual harassment victims across multiple settings. We conducted 26 in-depth interviews with victims that had experienced sexual harassment across multiple settings (e.g., face-to-face and SNS). The findings present 16 types of coping strategies-five problem-focused, five active emotion-focused, and six passive emotion-focused. The victims used an average of three types of coping strategies during their experiences. Theoretical implications extend research on passive emotion-focused coping strategies by discussing powerlessness and how victims blame other victims. Furthermore, theoretically the findings reveal that coping is a complex, cyclical process and that victims shift among types of coping strategies over the course of their experience. Practical implications are offered for victims and for SNS sites.

  4. Transformation of Adolescent Peer Relations in the Social Media Context: Part 2-Application to Peer Group Processes and Future Directions for Research.

    PubMed

    Nesi, Jacqueline; Choukas-Bradley, Sophia; Prinstein, Mitchell J

    2018-04-07

    As social media use becomes increasingly widespread among adolescents, research in this area has accumulated rapidly. Researchers have shown a growing interest in the impact of social media on adolescents' peer experiences, including the ways that the social media context shapes a variety of peer relations constructs. This paper represents Part 2 of a two-part theoretical review. In this review, we offer a new model for understanding the transformative role of social media in adolescents' peer experiences, with the goal of stimulating future empirical work that is grounded in theory. The transformation framework suggests that the features of the social media context transform adolescents' peer experiences by changing their frequency or immediacy, amplifying demands, altering their qualitative nature, and/or offering new opportunities for compensatory or novel behaviors. In the current paper, we consider the ways that social media may transform peer relations constructs that often occur at the group level. Our review focuses on three key constructs: peer victimization, peer status, and peer influence. We selectively review and highlight existing evidence for the transformation of these domains through social media. In addition, we discuss methodological considerations and key conceptual principles for future work. The current framework offers a new theoretical perspective through which peer relations researchers may consider adolescent social media use.

  5. Advances in theory and their application within the field of zeolite chemistry.

    PubMed

    Van Speybroeck, Veronique; Hemelsoet, Karen; Joos, Lennart; Waroquier, Michel; Bell, Robert G; Catlow, C Richard A

    2015-10-21

    Zeolites are versatile and fascinating materials which are vital for a wide range of industries, due to their unique structural and chemical properties, which are the basis of applications in gas separation, ion exchange and catalysis. Given their economic impact, there is a powerful incentive for smart design of new materials with enhanced functionalities to obtain the best material for a given application. Over the last decades, theoretical modeling has matured to a level that model guided design has become within reach. Major hurdles have been overcome to reach this point and almost all contemporary methods in computational materials chemistry are actively used in the field of modeling zeolite chemistry and applications. Integration of complementary modeling approaches is necessary to obtain reliable predictions and rationalizations from theory. A close synergy between experimentalists and theoreticians has led to a deep understanding of the complexity of the system at hand, but also allowed the identification of shortcomings in current theoretical approaches. Inspired by the importance of zeolite characterization which can now be performed at the single atom and single molecule level from experiment, computational spectroscopy has grown in importance in the last decade. In this review most of the currently available modeling tools are introduced and illustrated on the most challenging problems in zeolite science. Directions for future model developments will be given.

  6. The timing and intensity of column collapse during explosive volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Carazzo, Guillaume; Kaminski, Edouard; Tait, Stephen

    2015-02-01

    Volcanic columns produced by explosive eruptions commonly reach, at some stage, a collapse regime with associated pyroclastic density currents propagating on the ground. The threshold conditions for the entrance into this regime are mainly controlled by the mass flux and exsolved gas content at the source. However, column collapse is often partial and the controls on the fraction of total mass flux that feeds the pyroclastic density currents, defined here as the intensity of collapse, are unknown. To better understand this regime, we use a new experimental apparatus reproducing at laboratory scale the convecting and collapsing behavior of hot particle-laden air jets. We validate the predictions of a 1D theoretical model for the entrance into the regime of partial collapse. Furthermore, we show that where a buoyant plume and a collapsing fountain coexist, the intensity of collapse can be predicted by a universal scaling relationship. We find that the intensity of collapse in the partial collapse regime is controlled by magma gas content and temperature, and always exceeds 40%, independent of peak mass flux and total erupted volume. The comparison between our theoretical predictions and a set of geological data on historic and pre-historic explosive eruptions shows that the model can be used to predict both the onset and intensity of column collapse, hence it can be used for rapid assessment of volcanic hazards notably ash dispersal during eruptive crises.

  7. Reviews of theoretical frameworks: Challenges and judging the quality of theory application.

    PubMed

    Hean, Sarah; Anderson, Liz; Green, Chris; John, Carol; Pitt, Richard; O'Halloran, Cath

    2016-06-01

    Rigorous reviews of available information, from a range of resources, are required to support medical and health educators in their decision making. The aim of this article is to highlight the importance of a review of theoretical frameworks specifically as a supplement to reviews that focus on a synthesis of the empirical evidence alone. Establishing a shared understanding of theory as a concept is highlighted as a challenge and some practical strategies to achieving this are presented. This article also introduces the concept of theoretical quality, arguing that a critique of how theory is applied should complement the methodological appraisal of the literature in a review. We illustrate the challenge of establishing a shared meaning of theory through reference to experiences of an on-going review of this kind conducted in the field of interprofessional education (IPE) and use a high scoring paper selected in this review to illustrate how theoretical quality can be assessed. In reaching a shared understanding of theory as a concept, practical strategies that promote experiential and practical ways of knowing are required in addition to more propositional ways of sharing knowledge. Concepts of parsimony, testability, operational adequacy and empirical adequacy are explored as concepts that establish theoretical quality. Reviews of theoretical frameworks used in medical education are required to inform educational practice. Review teams should make time and effort to reach a shared understanding of the term theory. Theory reviews, and reviews more widely, should add an assessment of theory application to the protocol of their review method.

  8. The Role of Trait Emotional Intelligence in Academic Performance: Theoretical Overview and Empirical Update.

    PubMed

    Perera, Harsha N

    2016-01-01

    Considerable debate still exists among scholars over the role of trait emotional intelligence (TEI) in academic performance. The dominant theoretical position is that TEI should be orthogonal or only weakly related to achievement; yet, there are strong theoretical reasons to believe that TEI plays a key role in performance. The purpose of the current article is to provide (a) an overview of the possible theoretical mechanisms linking TEI with achievement and (b) an update on empirical research examining this relationship. To elucidate these theoretical mechanisms, the overview draws on multiple theories of emotion and regulation, including TEI theory, social-functional accounts of emotion, and expectancy-value and psychobiological model of emotion and regulation. Although these theoretical accounts variously emphasize different variables as focal constructs, when taken together, they provide a comprehensive picture of the possible mechanisms linking TEI with achievement. In this regard, the article redresses the problem of vaguely specified theoretical links currently hampering progress in the field. The article closes with a consideration of directions for future research.

  9. Child murder by parents and evolutionary psychology.

    PubMed

    Friedman, Susan Hatters; Cavney, James; Resnick, Phillip J

    2012-12-01

    This article explores the contribution of evolutionary theory to the understanding of causation and motive in filicide cases and also reviews special issues in the forensic evaluation of alleged perpetrators of filicide. Evolutionary social psychology seeks to understand the context in which our brains evolved, to understand human behaviors. The authors propose evolutionary theory as a framework theory to meaningfully appreciate research about filicide. Using evolutionary psychology as a theoretical lens, this article reviews the research on filicide over the past 40 years, and describes epidemiologic and typologic studies of filicide, and theoretical analyses from a range of disciplines. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. A theoretical analysis of the current-voltage characteristics of solar cells

    NASA Technical Reports Server (NTRS)

    Fang, R. C. Y.; Hauser, J. R.

    1977-01-01

    The correlation of theoretical and experimental data is discussed along with the development of a complete solar cell analysis. The dark current-voltage characteristics, and the parameters for solar cells are analyzed. The series resistance, and impurity gradient effects on solar cells were studied, the effects of nonuniformities on solar cell performance were analyzed.

  11. A Critical Analysis of Approaches To Targeted PTSD Prevention: Current Status and Theoretically Derived Future Directions

    ERIC Educational Resources Information Center

    Feldner, Matthew T.; Monson, Candice M.; Friedman, Matthew J.

    2007-01-01

    Although efforts to prevent posttraumatic stress disorder (PTSD) have met with relatively limited success, theoretically driven preventive approaches with promising efficacy are emerging. The current article critically reviews investigations of PTSD prevention programs that target persons at risk for being exposed to a traumatic event or who have…

  12. Rethinking High School Principal Compensation Practices: An Analysis of Salaries in South Carolina and Theoretical Models

    ERIC Educational Resources Information Center

    Newman, Tim A.

    2012-01-01

    This study described the current state of principal salaries in South Carolina and compared the salaries of similar size schools by specific report card performance and demographic variables. Based on the findings, theoretical models were proposed, and comparisons were made with current salary data. School boards, human resource personnel and…

  13. Holography, Gravity and Condensed Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartnoll, Sean

    Over the five years of funding from this grant, I produced 26 publications. These include a book-long monograph on "Holographic Quantum Matter" that is currently in press with MIT press. The remainder were mostly published in Physical Review Letters, the Journal of High Energy Physics, Nature Physics, Classical and Quantum Gravity and Physical Review B. Over this period, the field of holography applied to condensed matter physics developed from a promising theoretical approach to a mature conceptual and practical edifice, whose ideas were realized in experiments. My own work played a central role in this development. In particular, in themore » final year of this grant, I co-authored two experimental papers in which ideas that I had developed in earlier years were shown to usefully describe transport in strongly correlated materials — these papers were published in Science and in the Proceedings of the National Academy of Sciences (obviously my contribution to these papers was theoretical). My theoretical work in this period developed several new directions of research that have proven to be influential. These include (i) The construction of highly inhomogeneous black hole event horizons, realizing disordered fixed points and describing new regimes of classical gravity, (ii) The conjecture of a bound on diffusivities that could underpin transport in strongly interacting media — an idea which may be proven in the near future and has turned out to be intimately connected to studies of quantum chaos in black holes and strongly correlated media, (iii) The characterization of new forms of hydrodynamic transport, e.g. with phase-disordered order parameters. These studies pertain to key open questions in our understanding of how non-quasiparticle, intrinsically strongly interacting systems can behave. In addition to the interface between holography and strongly interacting condensed matter systems, I made several advances on understanding the role of entanglement in quantum gravity. These included the first computation of holographic entanglement beyond the bulk classical limit as well understanding short distance entanglement in the emergent spacetime of the c=1 matrix quantum mechanics. The objective here is ultimately to understanding how a priori non-local degrees of freedom can re-arrange themselves quantum mechanically to support emergent local dynamics. Much of work funded by this grant involved collaboration with postdocs and graduate students, several of which were directly funded by the grant. These students have now successfully graduated to postdoctoral positions and in one case to high tech industry. The ideas developed in this work have directly fed into my current research in which I am aiming to prove fundamental bounds on entropy production and transport from quantum mechanics and statistical physics. As often, as with much of my previous work, black hole physics can be an inspiration for extreme dynamics such as fundamental bounds, but ultimately one hopes to prove them using more general tools of quantum field theory.« less

  14. Use of the theoretical domains framework to further understanding of what influences application of fluoride varnish to children's teeth: a national survey of general dental practitioners in Scotland.

    PubMed

    Gnich, Wendy; Bonetti, Debbie; Sherriff, Andrea; Sharma, Shilpi; Conway, David I; Macpherson, Lorna M D

    2015-06-01

    Despite recent improvements in the oral health of Scotland's population, the persistence of childhood dental caries underscores a need to reduce the disease burden experienced by children living in Scotland. Application of fluoride varnish (FV) to children's teeth provides an evidence-based approach to achieving this goal. Despite policy, health service targets and professional recommendations supporting application, not all children receive FV in line with guidance. The objective of this study was to use the theoretical domains framework (TDF) to further an understanding of what may influence fluoride varnish application (FVA) in General Dental Practice in Scotland. A postal questionnaire assessing current behaviour (frequency of FVA) and theoretical domains (TDs) was sent to all General Dental Practitioners (GDPs) in Scotland. Correlations and linear regression models were used to examine the association between FVA and the TDs. One thousand and ninety (53.6%) eligible GDPs responded. Respondents reported applying FV more frequently to increased risk and younger children (aged 2-5 years). Higher scores in eight TDs (Knowledge, Social/professional role and identity, Beliefs about consequences, Motivation and goals, Environmental context and resources, Social influences, Emotion and Behavioural regulation) were associated with greater frequency of FVA. Four beliefs in particular appear to be driving GDPs' decision to apply FV (recognizing that FVA is a guideline recommended behaviour (Knowledge), that FVA is perceived as an important part of the GDPs' professional role (Professional role/identity), that FV is something parents want for their children (Social influences) and that FV is something GDPs really wanted to do (Emotion). The findings of this study support the use of the TDF as a tool to understand GDPs application of FV and suggest that a multifaceted intervention, targeting dental professionals and families, and more specifically those domains and items associated with FVA may have the greatest likelihood of influencing the evidence-based behaviour. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Organizational Socialization: A Social Learning Interpretation

    DTIC Science & Technology

    1982-02-01

    approaches to socialization, they lack a clear theoretical basis for understanding and application. This paper proposes a social learning theoretical ... framework . Particular attention is given to the relevancy that modeling and self-control can have for organizational socialization. Specific examples of

  16. Using our Heads and HARTSS*: Developing Perspective-Taking Skills for Socioscientific Reasoning (*Humanities, ARTs, and Social Sciences)

    NASA Astrophysics Data System (ADS)

    Kahn, Sami; Zeidler, Dana L.

    2016-04-01

    Functional scientific literacy demands an informed citizenry capable of negotiating controversial socioscientific issues (SSI). Perspective taking is critical to SSI implementation as it enables understanding of the diverse cognitive and emotional perspectives of others. Science teacher educators must therefore facilitate teachers' promotion of classroom environments that value diverse perspectives. The purpose of this theoretical paper is to propose the HARTSS model through which successful practices that promote perspective taking in the humanities, arts, and social sciences are identified and translated into socioscientific contexts, thereby developing an array of promising interventions designed for science teacher educators to foster perspective taking in current and future science teachers and their students.

  17. "I just feel like I am broken. I am the worst pregnant woman ever": A qualitative exploration of the "at odds" experience of women's antenatal distress.

    PubMed

    Staneva, Aleksandra A; Bogossian, Fiona; Morawska, Alina; Wittkowski, Anja

    2017-06-01

    Advances in perinatal mental health research have provided valuable insights around risk factors for the overall development of maternal distress. However, there is still a limited understanding of the experience of women struggling emotionally during pregnancy. We explored how women view, experience, and interpret psychological distress antenatally. Eighteen Australian women participated in in-depth interviews that were analyzed thematically within a critical realist theoretical framework. We present and situate the current findings within the dominant discourse of the good mother, which arguably promotes guilt and stigma and results in women self-labeling as bad mothers.

  18. Dendritic Learning as a Paradigm Shift in Brain Learning.

    PubMed

    Sardi, Shira; Vardi, Roni; Goldental, Amir; Tugendhaft, Yael; Uzan, Herut; Kanter, Ido

    2018-06-20

    Experimental and theoretical results reveal a new underlying mechanism for fast brain learning process, dendritic learning, as opposed to the misdirected research in neuroscience over decades, which is based solely on slow synaptic plasticity. The presented paradigm indicates that learning occurs in closer proximity to the neuron, the computational unit, dendritic strengths are self-oscillating, and weak synapses, which comprise the majority of our brain and previously were assumed to be insignificant, play a key role in plasticity. The new learning sites of the brain call for a reevaluation of current treatments for disordered brain functionality and for a better understanding of proper chemical drugs and biological mechanisms to maintain, control and enhance learning.

  19. Should we expect population thresholds for wildlife disease?

    USGS Publications Warehouse

    Lloyd-Smith, James O.; Cross, P.C.; Briggs, C.J.; Daugherty, M.; Getz, W.M.; Latto, J.; Sanchez, M.; Smith, A.; Swei, A.

    2005-01-01

    Host population thresholds for invasion or persistence of infectious disease are core concepts of disease ecology, and underlie on-going and controversial disease control policies based on culling and vaccination. Empirical evidence for these thresholds in wildlife populations has been sparse, however, though recent studies have narrowed this gap. Here we review the theoretical bases for population thresholds for disease, revealing why they are difficult to measure and sometimes are not even expected, and identifying important facets of wildlife ecology left out of current theories. We discuss strengths and weaknesses of selected empirical studies that have reported disease thresholds for wildlife, identify recurring obstacles, and discuss implications of our imperfect understanding of wildlife thresholds for disease control policy.

  20. Modeling of vortex generated sound in solid propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Flandro, G. A.

    1980-01-01

    There is considerable evidence based on both full scale firings and cold flow simulations that hydrodynamically unstable shear flows in solid propellant rocket motors can lead to acoustic pressure fluctuations of significant amplitude. Although a comprehensive theoretical understanding of this problem does not yet exist, procedures were explored for generating useful analytical models describing the vortex shedding phenomenon and the mechanisms of coupling to the acoustic field in a rocket combustion chamber. Since combustion stability prediction procedures cannot be successful without incorporation of all acoustic gains and losses, it is clear that a vortex driving model comparable in quality to the analytical models currently employed to represent linear combustion instability must be formulated.

  1. Pedophilia and sexual offenses against children.

    PubMed

    Seto, Michael C

    2004-01-01

    This article reviews the definition and assessment of pedophilia, describes the relationship between pedophilia and sexual offenses against children, and provides an overview of our current theoretical understanding of the etiology of pedophilia. A great deal is known about the assessment of pedophilia--attributable to public and professional concerns regarding the empirical association between pedophilia and sexual offenses against children--but much remains to be learned about pedophilia, including its prevalence in the general population, cross-cultural manifestations, developmental trajectories, and causes. Recent research suggests that neurodevelopmental problems and childhood sexual abuse play a role in the etiology of pedophilia, but the mechanisms that are involved are unknown. Future directions for research on assessment methods and etiology are highlighted.

  2. Cognitive tutor: applied research in mathematics education.

    PubMed

    Ritter, Steven; Anderson, John R; Koedinger, Kenneth R; Corbett, Albert

    2007-04-01

    For 25 years, we have been working to build cognitive models of mathematics, which have become a basis for middle- and high-school curricula. We discuss the theoretical background of this approach and evidence that the resulting curricula are more effective than other approaches to instruction. We also discuss how embedding a well specified theory in our instructional software allows us to dynamically evaluate the effectiveness of our instruction at a more detailed level than was previously possible. The current widespread use of the software is allowing us to test hypotheses across large numbers of students. We believe that this will lead to new approaches both to understanding mathematical cognition and to improving instruction.

  3. Time-Dependent Thermal Transport Theory.

    PubMed

    Biele, Robert; D'Agosta, Roberto; Rubio, Angel

    2015-07-31

    Understanding thermal transport in nanoscale systems presents important challenges to both theory and experiment. In particular, the concept of local temperature at the nanoscale appears difficult to justify. Here, we propose a theoretical approach where we replace the temperature gradient with controllable external blackbody radiations. The theory recovers known physical results, for example, the linear relation between the thermal current and the temperature difference of two blackbodies. Furthermore, our theory is not limited to the linear regime and goes beyond accounting for nonlinear effects and transient phenomena. Since the present theory is general and can be adapted to describe both electron and phonon dynamics, it provides a first step toward a unified formalism for investigating thermal and electronic transport.

  4. Modeling trans-spinal direct current stimulation for the modulation of the lumbar spinal motor pathways

    NASA Astrophysics Data System (ADS)

    Kuck, A.; Stegeman, D. F.; van Asseldonk, E. H. F.

    2017-10-01

    Objective. Trans-spinal direct current stimulation (tsDCS) is a potential new technique for the treatment of spinal cord injury (SCI). TsDCS aims to facilitate plastic changes in the neural pathways of the spinal cord with a positive effect on SCI recovery. To establish tsDCS as a possible treatment option for SCI, it is essential to gain a better understanding of its cause and effects. We seek to understand the acute effect of tsDCS, including the generated electric field (EF) and its polarization effect on the spinal circuits, to determine a cellular target. We further ask how these findings can be interpreted to explain published experimental results. Approach. We use a realistic full body finite element volume conductor model to calculate the EF of a 2.5 mA direct current for three different electrode configurations. We apply the calculated electric field to realistic motoneuron models to investigate static changes in membrane resting potential. The results are combined with existing knowledge about the theoretical effect on a neuronal level and implemented into an existing lumbar spinal network model to simulate the resulting changes on a network level. Main results. Across electrode configurations, the maximum EF inside the spinal cord ranged from 0.47 V m-1 to 0.82 V m-1. Axon terminal polarization was identified to be the dominant cellular target. Also, differences in electrode placement have a large influence on axon terminal polarization. Comparison between the simulated acute effects and the electrophysiological long-term changes observed in human tsDCS studies suggest an inverse relationship between the two. Significance. We provide methods and knowledge for better understanding the effects of tsDCS and serve as a basis for a more targeted and optimized application of tsDCS.

  5. Scale dependence of deuteron electrodisintegration

    NASA Astrophysics Data System (ADS)

    More, S. N.; Bogner, S. K.; Furnstahl, R. J.

    2017-11-01

    Background: Isolating nuclear structure properties from knock-out reactions in a process-independent manner requires a controlled factorization, which is always to some degree scale and scheme dependent. Understanding this dependence is important for robust extractions from experiment, to correctly use the structure information in other processes, and to understand the impact of approximations for both. Purpose: We seek insight into scale dependence by exploring a model calculation of deuteron electrodisintegration, which provides a simple and clean theoretical laboratory. Methods: By considering various kinematic regions of the longitudinal structure function, we can examine how the components—the initial deuteron wave function, the current operator, and the final-state interactions (FSIs)—combine at different scales. We use the similarity renormalization group to evolve each component. Results: When evolved to different resolutions, the ingredients are all modified, but how they combine depends strongly on the kinematic region. In some regions, for example, the FSIs are largely unaffected by evolution, while elsewhere FSIs are greatly reduced. For certain kinematics, the impulse approximation at a high renormalization group resolution gives an intuitive picture in terms of a one-body current breaking up a short-range correlated neutron-proton pair, although FSIs distort this simple picture. With evolution to low resolution, however, the cross section is unchanged but a very different and arguably simpler intuitive picture emerges, with the evolved current efficiently represented at low momentum through derivative expansions or low-rank singular value decompositions. Conclusions: The underlying physics of deuteron electrodisintegration is scale dependent and not just kinematics dependent. As a result, intuition about physics such as the role of short-range correlations or D -state mixing in particular kinematic regimes can be strongly scale dependent. Understanding this dependence is crucial in making use of extracted properties.

  6. Advanced Concepts Theory Annual Report 1983.

    DTIC Science & Technology

    1984-05-18

    variety of theoretical models, tools, and computational strategies to understand, guide, and predict the behavior of high brightness, laboratory x-ray... theoretical models must treat hard and soft x-ray emission from different electron configurations with K, L, and M shells, and they must include... theoretical effort has basis for comprehending the trends which appear in the been devoted to elucidating the effects of opacity on the numerical results

  7. Philosophical Foundations for Curriculum Decision: A Reflective Analysis

    ERIC Educational Resources Information Center

    Belbase, Shashidhar

    2011-01-01

    This paper discusses the author's curriculum experiences under different philosophical, epistemological and theoretical backdrops. The analysis of different perspectives bridges epistemological and philosophical/theoretical lenses to my understanding of curriculum and different curricular decisions. This praxeological experience as a student and…

  8. Electronically non-adiabatic interactions of molecules at metal surfaces

    NASA Astrophysics Data System (ADS)

    Wodtke, Alec M.; Tully, John C.; Auerbach, Daniel J.

    When neutral molecules with low levels of vibrational excitation collide at metal surfaces, vibrational coupling to electron-hole pairs (EHPs) is not thought to be strong unless incidence energies are high. However, there is accumulating evidence that coupling of large-amplitude molecular vibration to metallic electron degrees of freedom can be much stronger even at the lowest accessible incidence energies. As reaching a chemical transition-state also involves large-amplitude vibrational motion, we pose the basic question: are electronically non-adiabatic couplings important at transition states of reactions at metal surfaces? We have indirect evidence in at least one example that the dynamics and rates of chemical reactions at metal surfaces may be strongly influenced by electronically non-adiabatic coupling. This implies that theoretical approaches relying on the Born-Oppenheimer approximation (BOA) may not accurately reflect the nature of transition-state traversal in reactions of catalytic importance. Developing a predictive understanding of surface reactivity beyond the BOA represents one of the most important challenges to current research in physical chemistry. This article reviews the experimental evidence and underlying theoretical framework concerning these and related topics.

  9. The Alliance Negotiation Scale: A psychometric investigation.

    PubMed

    Doran, Jennifer M; Safran, Jeremy D; Muran, J Christopher

    2016-08-01

    This study investigates the utility and psychometric properties of a new measure of psychotherapy process, the Alliance Negotiation Scale (ANS; Doran, Safran, Waizmann, Bolger, & Muran, 2012). The ANS was designed to operationalize the theoretical construct of negotiation (Safran & Muran, 2000), and to extend our current understanding of the working alliance concept (Bordin, 1979). The ANS was also intended to improve upon existing measures such as the Working Alliance Inventory (WAI; Horvath & Greenberg, 1986, 1989) and its short form (WAI-S; Tracey & Kokotovic, 1989) by expanding the emphasis on negative therapy process. The present study investigates the psychometric validity of the ANS test scores and interpretation-including confirming its original factor structure and evaluating its internal consistency and construct validity. Construct validity was examined through the ANS' convergence and divergence with several existing scales that measure theoretically related constructs. The results bolster and extend previous findings about the psychometric integrity of the ANS, and begin to illuminate the relationship between negotiation and other important variables in psychotherapy research. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. A high pressure modulated molecular beam mass spectrometric sampling system

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.; Miller, R. A.

    1977-01-01

    The current state of understanding of free-jet high pressure sampling is critically reviewed and modifications of certain theoretical and empirical considerations are presented. A high pressure, free-jet expansion, modulated molecular beam, mass spectrometric sampling apparatus was constructed and this apparatus is described in detail. Experimental studies have demonstrated that the apparatus can be used to sample high temperature systems at pressures up to one atmosphere. Condensible high temperature gaseous species have been routinely sampled and the mass spectrometric detector has provided direct identification of sampled species. System sensitivity is better than one tenth of a part per million. Experimental results obtained with argon and nitrogen beams are presented and compared to theoretical predictions. These results and the respective comparison are taken to indicate acceptable performance of the sampling apparatus. Results are also given for two groups of experiments related to hot corrosion studies. The formation of gaseous sodium sulfate in doped methane-oxygen flames was characterized and the oxidative vaporization of metals was studied in an atmospheric pressure flowing gas system to which gaseous salt partial pressures were added.

  11. Deploying electromagnetic particle-in-cell (EM-PIC) codes on Xeon Phi accelerators boards

    NASA Astrophysics Data System (ADS)

    Fonseca, Ricardo

    2014-10-01

    The complexity of the phenomena involved in several relevant plasma physics scenarios, where highly nonlinear and kinetic processes dominate, makes purely theoretical descriptions impossible. Further understanding of these scenarios requires detailed numerical modeling, but fully relativistic particle-in-cell codes such as OSIRIS are computationally intensive. The quest towards Exaflop computer systems has lead to the development of HPC systems based on add-on accelerator cards, such as GPGPUs and more recently the Xeon Phi accelerators that power the current number 1 system in the world. These cards, also referred to as Intel Many Integrated Core Architecture (MIC) offer peak theoretical performances of >1 TFlop/s for general purpose calculations in a single board, and are receiving significant attention as an attractive alternative to CPUs for plasma modeling. In this work we report on our efforts towards the deployment of an EM-PIC code on a Xeon Phi architecture system. We will focus on the parallelization and vectorization strategies followed, and present a detailed performance evaluation of code performance in comparison with the CPU code.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ditzler, Gregory; Morrison, J. Calvin; Lan, Yemin

    Background: Some of the current software tools for comparative metagenomics provide ecologists with the ability to investigate and explore bacterial communities using α– & β–diversity. Feature subset selection – a sub-field of machine learning – can also provide a unique insight into the differences between metagenomic or 16S phenotypes. In particular, feature subset selection methods can obtain the operational taxonomic units (OTUs), or functional features, that have a high-level of influence on the condition being studied. For example, in a previous study we have used information-theoretic feature selection to understand the differences between protein family abundances that best discriminate betweenmore » age groups in the human gut microbiome. Results: We have developed a new Python command line tool, which is compatible with the widely adopted BIOM format, for microbial ecologists that implements information-theoretic subset selection methods for biological data formats. We demonstrate the software tools capabilities on publicly available datasets. Conclusions: We have made the software implementation of Fizzy available to the public under the GNU GPL license. The standalone implementation can be found at http://github.com/EESI/Fizzy.« less

  13. PrEParing Women to Prevent HIV: An Integrated Theoretical Framework to PrEP Black Women in the United States.

    PubMed

    Chapman Lambert, Crystal; Marrazzo, Jeanne; Amico, K Rivet; Mugavero, Michael J; Elopre, Latesha

    2018-04-05

    Preexposure prophylaxis (PrEP) with optimal adherence has demonstrated efficacy in reducing HIV incidence in women. Black women are disproportionately burdened by the HIV epidemic, accounting for more than half of all new HIV cases in women, thereby making PrEP an ideal prevention strategy for this group. However, to date, PrEP uptake by women in the United States has been slow. Further domestic research is needed to understand the multilevel factors related to PrEP awareness, uptake, and implementation in Black women. Our purpose was to review the current status of HIV prevention in Black women. We summarize clinical trials germane to federal approval of PrEP; discuss important PrEP studies focused on women, including non-oral options; and review multilevel barriers to PrEP uptake. Lastly, we discuss the use of an integrated theoretical framework to organize multilevel factors related to PrEP uptake by Black women in order to guide intervention development. Copyright © 2018 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.

  14. Exploring the Nuclear Phase Diagram with Beam Energy Scans

    NASA Astrophysics Data System (ADS)

    Horvat, Stephen

    2017-04-01

    The nuclear phase diagram is mapped using beam energy scans of relativistic heavy-ion collisions. This mapping is possible because different collision energies develop along different trajectories through the phase diagram. High energy collisions will evolve though a crossover phase transition according to lattice QCD, but lower collision energies may traverse a first order phase transition. There are hints for this first order phase transition and its critical endpoint, but further measurements and theoretical guidance is needed. In addition to mapping the phase transition, beam energy scans allow us to see if we can turn off the signatures of deconfinement. If an observable is a real signature for the formation of the deconfined state called quark-gluon plasma, then it should turn off at sufficiently low collision energies. In this summary talk I will show the current state of the field using beam energy scan results from RHIC and SPS, I will show where precise theoretical guidance is needed for understanding recent measurements, and I will motivate the need for more data and new measurements from FAIR, NICA, RHIC, and the SPS.

  15. An integrative theoretical framework of acculturation and salutogenesis.

    PubMed

    Riedel, Jeannette; Wiesmann, Ulrich; Hannich, Hans-Joachim

    2011-12-01

    During the last two decades, the number of international migrants worldwide has constantly risen. In this context, cross-cultural dimensions of psychological disorders receive increased attention, especially depression, anxiety and post-traumatic stress disorders among the migrant population. In this paper we propose a theoretical framework for the understanding of migrant mental health. This framework combines elements from Berry's acculturation model and Antonovsky's salutogenic theory. The former illustrates the main factors that affect an individual's adaptation in a new cultural context. The term acculturative stress denotes unresolved problems resulting from intercultural contact that cannot be overcome easily by simply adjusting or assimilating. The latter specifies the relationship between culturally associated stress and mental health more distinctive, introducing the concepts of generalized resistance resources and sense of coherence that determine mental health outcomes of migrants during acculturative stress periods. Specifically, we provide an integrative framework of acculturation and salutogenesis that helps to integrate inconsistent findings in the migrant mental health literature. The current paper focuses on the effect of resource factors for positive mental health outcomes in the migrant population and summarises some implications for future research activities.

  16. Fizzy: feature subset selection for metagenomics.

    PubMed

    Ditzler, Gregory; Morrison, J Calvin; Lan, Yemin; Rosen, Gail L

    2015-11-04

    Some of the current software tools for comparative metagenomics provide ecologists with the ability to investigate and explore bacterial communities using α- & β-diversity. Feature subset selection--a sub-field of machine learning--can also provide a unique insight into the differences between metagenomic or 16S phenotypes. In particular, feature subset selection methods can obtain the operational taxonomic units (OTUs), or functional features, that have a high-level of influence on the condition being studied. For example, in a previous study we have used information-theoretic feature selection to understand the differences between protein family abundances that best discriminate between age groups in the human gut microbiome. We have developed a new Python command line tool, which is compatible with the widely adopted BIOM format, for microbial ecologists that implements information-theoretic subset selection methods for biological data formats. We demonstrate the software tools capabilities on publicly available datasets. We have made the software implementation of Fizzy available to the public under the GNU GPL license. The standalone implementation can be found at http://github.com/EESI/Fizzy.

  17. Multidisciplinary approaches to understanding collective cell migration in developmental biology.

    PubMed

    Schumacher, Linus J; Kulesa, Paul M; McLennan, Rebecca; Baker, Ruth E; Maini, Philip K

    2016-06-01

    Mathematical models are becoming increasingly integrated with experimental efforts in the study of biological systems. Collective cell migration in developmental biology is a particularly fruitful application area for the development of theoretical models to predict the behaviour of complex multicellular systems with many interacting parts. In this context, mathematical models provide a tool to assess the consistency of experimental observations with testable mechanistic hypotheses. In this review, we showcase examples from recent years of multidisciplinary investigations of neural crest cell migration. The neural crest model system has been used to study how collective migration of cell populations is shaped by cell-cell interactions, cell-environmental interactions and heterogeneity between cells. The wide range of emergent behaviours exhibited by neural crest cells in different embryonal locations and in different organisms helps us chart out the spectrum of collective cell migration. At the same time, this diversity in migratory characteristics highlights the need to reconcile or unify the array of currently hypothesized mechanisms through the next generation of experimental data and generalized theoretical descriptions. © 2016 The Authors.

  18. Peace Data Standard: A Practical and Theoretical Framework for Using Technology to Examine Intergroup Interactions

    PubMed Central

    Guadagno, Rosanna E.; Nelson, Mark; Lock Lee, Laurence

    2018-01-01

    The current paper presents a theoretical framework for standardizing Peace Data as a means of understanding the conditions under which people’s technology use results in positive engagement and peace. Thus, the main point of our paper is that Big Data can be conceptualized in terms of its value to peace. We define peace as a set of positive, prosocial behaviors that maximize mutually beneficial positive outcomes resulting from interactions with others. To accomplish this goal, we present hypothetical and real-world, data driven examples that illustrate our thinking in this domain and present guidelines for how to identify, collect, utilize, and evaluate Peace Data generated during mediated interactions and further suggest that Peace Data has four primary components: group identity information, behavior data, longitudinal data, and metadata. This paper concludes with a call for participation in a Peace Data association and suggested for guidelines for how scholars and practitioners can identify Peace Data in their own domains. Ethical considerations and suggestions for future research are also discussed. PMID:29892239

  19. The commodification of the body and its parts.

    PubMed

    Sharp, L A

    2000-01-01

    The human body--and its parts--has long been a target for commodification within myriad cultural settings. A discussion of commodification requires that one consider, first, the significance of the body within anthropology and, second, what defines a body "part." After exploring these initial questions, this article outlines dominant theoretical approaches to commodification within anthropology, with Mauss and Marx figuring prominently. The discussion then turns to historically well-documented forms of body commodification: These include slavery and other oppressive labor practices; female reproduction; and the realms of sorcery and endocannibalism. An analysis here uncovers dominant established approaches that continue to drive current studies. The remainder of this article concerns emergent biotechnologies, whose application in clinical and other related scientific arenas marks a paradigmatic shift in anthropological understandings of the commodified, fragmented body. The following contexts are explored with care: reproductive technologies; organ transplantation; cosmetic and transsexual surgeries; genetics and immunology; and, finally, the category of the cyborg. The article concludes with suggestions for an integrated theoretical vision, advocating greater cross-fertilization of analytical approaches and the inclusion of an ethics of body commodification within anthropology.

  20. Fizzy. Feature subset selection for metagenomics

    DOE PAGES

    Ditzler, Gregory; Morrison, J. Calvin; Lan, Yemin; ...

    2015-11-04

    Background: Some of the current software tools for comparative metagenomics provide ecologists with the ability to investigate and explore bacterial communities using α– & β–diversity. Feature subset selection – a sub-field of machine learning – can also provide a unique insight into the differences between metagenomic or 16S phenotypes. In particular, feature subset selection methods can obtain the operational taxonomic units (OTUs), or functional features, that have a high-level of influence on the condition being studied. For example, in a previous study we have used information-theoretic feature selection to understand the differences between protein family abundances that best discriminate betweenmore » age groups in the human gut microbiome. Results: We have developed a new Python command line tool, which is compatible with the widely adopted BIOM format, for microbial ecologists that implements information-theoretic subset selection methods for biological data formats. We demonstrate the software tools capabilities on publicly available datasets. Conclusions: We have made the software implementation of Fizzy available to the public under the GNU GPL license. The standalone implementation can be found at http://github.com/EESI/Fizzy.« less

  1. Poynting vector analysis for wireless power transfer between magnetically coupled coils with different loads.

    PubMed

    Guo, Yunsheng; Li, Jiansheng; Hou, Xiaojuan; Lv, Xiaolong; Liang, Hao; Zhou, Ji; Wu, Hongya

    2017-04-07

    Wireless power transfer is a nonradiative type of transmission that is performed in the near-field region. In this region, the electromagnetic fields that are produced by both the transmitting and receiving coils are evanescent fields, which should not transmit energy. This then raises the question of how the energy can be transferred. Here we describe a theoretical study of the two evanescent field distributions at different terminal loads. It is shown that the essential principle of wireless energy transfer is the superposition of the two evanescent fields, and the resulting superimposed field is mediated through the terminal load. If the terminal load is either capacitive or inductive, then the superimposed field cannot transfer the energy because its Poynting vector is zero; in contrast, if the load is resistive, energy can then be conveyed from the transmitting coil to the receiving coil. The simulation results for the magnetic field distributions and the time-domain current waveforms agree very well with the results of the theoretical analysis. This work thus provides a comprehensive understanding of the energy transfer mechanism involved in the magnetic resonant coupling system.

  2. Review of solar fuel-producing quantum conversion processes

    NASA Technical Reports Server (NTRS)

    Peterson, D. B.; Biddle, J. R.; Fujita, T.

    1984-01-01

    The status and potential of fuel-producing solar photochemical processes are discussed. Research focused on splitting water to produce dihydrogen and is at a relatively early stage of development. Current emphasis is primarily directed toward understanding the basic chemistry underlying such quantum conversion processes. Theoretical analyses by various investigators predict a limiting thermodynamic efficiency of 31% for devices with a single photosystem operating with unfocused sunlight at 300 K. When non-idealities are included, it appears unlikely that actual devices will have efficiencies greater than 12 to 15%. Observed efficiencies are well below theoretical limits. Cyclic homogeneous photochemical processes for splitting water have efficiencies considerably less than 1%. Efficiency can be significantly increased by addition of a sacrificial reagent; however, such systems are no longer cyclic and it is doubtful that they would be economical on a commercial scale. The observed efficiencies for photoelectrochemical processes are also low but such systems appear more promising than homogeneous photochemical systems. Operating and systems options, including operation at elevated temperature and hybrid and coupled quantum-thermal conversion processes, are also considered.

  3. Fast protein folding kinetics

    PubMed Central

    Gelman, Hannah; Gruebele, Martin

    2014-01-01

    Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816

  4. An Integrative Bio-Psycho-Social Theory of Anorexia Nervosa.

    PubMed

    Munro, Calum; Randell, Louise; Lawrie, Stephen M

    2017-01-01

    The need for novel approaches to understanding and treating anorexia nervosa (AN) is well recognized. The aim of this paper is to describe an integrative bio-psycho-social theory of maintaining factors in AN. We took a triangulation approach to develop a clinically relevant theory with face validity and internal consistency. We developed theoretical ideas from our clinical practice and reviewed theoretical ideas within the eating disorders and wider bio-psycho-social literature. The synthesis of these ideas and concepts into a clinically meaningful framework is described here. We suggest eight key factors central to understanding the maintenance and treatment resistance of anorexia nervosa: genetic or experiential predisposing factors; dysfunctional feelings processing and regulation systems; excessive vulnerable feelings; 'feared self' beliefs; starvation as a maladaptive physiological feelings regulation mechanism; maladaptive psychological coping modes; maladaptive social behaviour; and unmet physical and psychological core needs. Each of these factors serves to maintain the disorder. The concept of universal physical and psychological core needs can provide an underpinning integrative framework for working with this distinctly physical and psychological disorder. This framework could be used within any treatment model. We suggest that treatments which help address the profound lack of trust, emotional security and self-acceptance in this patient group will in turn address unmet needs and improve well-being. Copyright © 2016 John Wiley & Sons, Ltd. The concept of unmet physical and psychological needs can be used as an underlying integrative framework for understanding and working with this patient group, alongside any treatment model. A functional understanding of the neuro-biological, physiological and psychological mechanisms involved in anorexia nervosa can help patients reduce self-criticism and shame. Fears about being or becoming fat, greedy, needy, selfish and unacceptable ('Feared Self') drive over-compensatory self-depriving behaviour ('Anorexic Self'). Psychological treatment for anorexia nervosa should emphasize a focus on feelings and fostering experiences of acceptance and trust. Treatment for patients with anorexia nervosa needs to be longer than current clinical practice. Copyright © 2016 John Wiley & Sons, Ltd.

  5. A review of conceptualisation of expressed emotion in caregivers of older adults with dementia.

    PubMed

    Li, Chao-Yin; Murray, MaryAnne

    2015-02-01

    To clarify the concept of 'expressed emotion' and its application to caregivers of older adults with dementia. Expressed emotion has been a useful construct for understanding the quality of family relationships affecting patients with mental illness and their caregivers. However, this concept has been developed without precisely defining 'expressed emotion' as it pertains to dementia patients. Clarity regarding expressed emotion will enable nurses to apply knowledge of expressed emotion and provide important information for the development of new clinical interventions for this specific population. Integrative review. A review of literature on expressed emotion by caregivers of older adults with dementia. The inclusion criteria were: (1) published in English or Chinese during 1970-2012; (2) included both research and theoretical review articles on expressed emotion in nursing and other disciplines such as psychology, psychiatry and sociology. Initially, 236 articles were screened, and finally, 32 articles were evaluated for this review. Emotional expression and expressed emotion were discussed to clarify the distinctions and address overlap between these two similar terms. In addition, expressed emotion was examined further from three different aspects: trait or state, social control and cross-cultural. Finally, the results of reviewed papers for expressed emotion on dementia patients were explored and synthesised. A conceptual definition and a theoretical framework for the concept of expressed emotion are urgently needed to further our understanding of this critical phenomenon. With increasing attention to caregiving for patients with dementia, including the concept of expressed emotion in the research of this field may accelerate understanding of the importance of the family dynamics in advanced ageing caregiving. The expressed emotion concept could guide much of current clinical practice and help professional nurses understand the family's experience and perspective on mental illness, especially regarding dementia within the family. © 2014 John Wiley & Sons Ltd.

  6. Understanding diagnosis and management of dementia and guideline implementation in general practice: a qualitative study using the theoretical domains framework.

    PubMed

    Murphy, Kerry; O'Connor, Denise A; Browning, Colette J; French, Simon D; Michie, Susan; Francis, Jill J; Russell, Grant M; Workman, Barbara; Flicker, Leon; Eccles, Martin P; Green, Sally E

    2014-03-03

    Dementia is a growing problem, causing substantial burden for patients, their families, and society. General practitioners (GPs) play an important role in diagnosing and managing dementia; however, there are gaps between recommended and current practice. The aim of this study was to explore GPs' reported practice in diagnosing and managing dementia and to describe, in theoretical terms, the proposed explanations for practice that was and was not consistent with evidence-based guidelines. Semi-structured interviews were conducted with GPs in Victoria, Australia. The Theoretical Domains Framework (TDF) guided data collection and analysis. Interviews explored the factors hindering and enabling achievement of 13 recommended behaviours. Data were analysed using content and thematic analysis. This paper presents an in-depth description of the factors influencing two behaviours, assessing co-morbid depression using a validated tool, and conducting a formal cognitive assessment using a validated scale. A total of 30 GPs were interviewed. Most GPs reported that they did not assess for co-morbid depression using a validated tool as per recommended guidance. Barriers included the belief that depression can be adequately assessed using general clinical indicators and that validated tools provide little additional information (theoretical domain of 'Beliefs about consequences'); discomfort in using validated tools ('Emotion'), possibly due to limited training and confidence ('Skills'; 'Beliefs about capabilities'); limited awareness of the need for, and forgetting to conduct, a depression assessment ('Knowledge'; 'Memory, attention and decision processes'). Most reported practising in a manner consistent with the recommendation that a formal cognitive assessment using a validated scale be undertaken. Key factors enabling this were having an awareness of the need to conduct a cognitive assessment ('Knowledge'); possessing the necessary skills and confidence ('Skills'; 'Beliefs about capabilities'); and having adequate time and resources ('Environmental context and resources'). This is the first study to our knowledge to use a theoretical approach to investigate the barriers and enablers to guideline-recommended diagnosis and management of dementia in general practice. It has identified key factors likely to explain GPs' uptake of the guidelines. The results have informed the design of an intervention aimed at supporting practice change in line with dementia guidelines, which is currently being evaluated in a cluster randomised trial.

  7. An appraisal of theoretical approaches to examining behaviours in relation to Human Papillomavirus (HPV) vaccination of young women

    PubMed Central

    Batista Ferrer, Harriet; Audrey, Suzanne; Trotter, Caroline; Hickman, Matthew

    2015-01-01

    Background Interventions to increase uptake of Human Papillomavirus (HPV) vaccination by young women may be more effective if they are underpinned by an appropriate theoretical model or framework. The aims of this review were: to describe the theoretical models or frameworks used to explain behaviours in relation to HPV vaccination of young women, and: to consider the appropriateness of the theoretical models or frameworks used for informing the development of interventions to increase uptake. Methods Primary studies were identified through a comprehensive search of databases from inception to December 2013. Results Thirty-four relevant studies were identified, of which 31 incorporated psychological health behaviour models or frameworks and three used socio-cultural models or theories. The primary studies used a variety of approaches to measure a diverse range of outcomes in relation to behaviours of professionals, parents, and young women. The majority appeared to use theory appropriately throughout. About half of the quantitative studies presented data in relation to goodness of fit tests and the proportion of the variability in the data. Conclusion Due to diverse approaches and inconsistent findings across studies, the current contribution of theory to understanding and promoting HPV vaccination uptake is difficult to assess. Ecological frameworks encourage the integration of individual and social approaches by encouraging exploration of the intrapersonal, interpersonal, organisational, community and policy levels when examining public health issues. Given the small number of studies using such approach, combined with the importance of these factors in predicting behaviour, more research in this area is warranted. PMID:26314783

  8. Transcranial direct current stimulation in obsessive-compulsive disorder: emerging clinical evidence and considerations for optimal montage of electrodes.

    PubMed

    Senço, Natasha M; Huang, Yu; D'Urso, Giordano; Parra, Lucas C; Bikson, Marom; Mantovani, Antonio; Shavitt, Roseli G; Hoexter, Marcelo Q; Miguel, Eurípedes C; Brunoni, André R

    2015-07-01

    Neuromodulation techniques for obsessive-compulsive disorder (OCD) treatment have expanded with greater understanding of the brain circuits involved. Transcranial direct current stimulation (tDCS) might be a potential new treatment for OCD, although the optimal montage is unclear. To perform a systematic review on meta-analyses of repetitive transcranianal magnetic stimulation (rTMS) and deep brain stimulation (DBS) trials for OCD, aiming to identify brain stimulation targets for future tDCS trials and to support the empirical evidence with computer head modeling analysis. Systematic reviews of rTMS and DBS trials on OCD in Pubmed/MEDLINE were searched. For the tDCS computational analysis, we employed head models with the goal of optimally targeting current delivery to structures of interest. Only three references matched our eligibility criteria. We simulated four different electrodes montages and analyzed current direction and intensity. Although DBS, rTMS and tDCS are not directly comparable and our theoretical model, based on DBS and rTMS targets, needs empirical validation, we found that the tDCS montage with the cathode over the pre-supplementary motor area and extra-cephalic anode seems to activate most of the areas related to OCD.

  9. Cosmopolitanism: Extending Our Theoretical Framework for Transcultural Technical Communication Research and Teaching

    ERIC Educational Resources Information Center

    Palmer, Zsuzsanna Bacsa

    2013-01-01

    The effects of globalization on communication products and processes have resulted in document features and interactional practices that are sometimes difficult to describe within current theoretical frameworks of inter/transcultural technical communication. Although it has been recognized in our field that the old theoretical frameworks and…

  10. Aphasia: Current Concepts in Theory and Practice

    PubMed Central

    Tippett, Donna C.; Niparko, John K.; Hillis, Argye E.

    2014-01-01

    Recent advances in neuroimaging contribute to a new insights regarding brain-behavior relationships and expand understanding of the functional neuroanatomy of language. Modern concepts of the functional neuroanatomy of language invoke rich and complex models of language comprehension and expression, such as dual stream networks. Increasingly, aphasia is seen as a disruption of cognitive processes underlying language. Rehabilitation of aphasia incorporates evidence based and person-centered approaches. Novel techniques, such as methods of delivering cortical brain stimulation to modulate cortical excitability, such as repetitive transcranial magnetic stimulation and transcranial direct current stimulation, are just beginning to be explored. In this review, we discuss the historical context of the foundations of neuroscientific approaches to language. We sample the emergent theoretical models of the neural substrates of language and cognitive processes underlying aphasia that contribute to more refined and nuanced concepts of language. Current concepts of aphasia rehabilitation are reviewed, including the promising role of cortical stimulation as an adjunct to behavioral therapy and changes in therapeutic approaches based on principles of neuroplasticity and evidence-based/person-centered practice to optimize functional outcomes. PMID:24904925

  11. Community College Students' Health Insurance Enrollment, Maintenance, and Talking With Parents Intentions: An Application of the Reasoned Action Approach.

    PubMed

    Huhman, Marian; Quick, Brian L; Payne, Laura

    2016-05-01

    A primary objective of health care reform is to provide affordable and quality health insurance to individuals. Currently, promotional efforts have been moderately successful in registering older, more mature adults yet comparatively less successful in registering younger adults. With this challenge in mind, we conducted extensive formative research to better understand the attitudes, subjective norms, and perceived behavioral control of community college students. More specifically, we examined how each relates to their intentions to enroll in a health insurance plan, maintain their current health insurance plan, and talk with their parents about their parents having health insurance. In doing so, we relied on the revised reasoned action approach advanced by Fishbein and his associates (Fishbein & Ajzen, 2010; Yzer, 2012, 2013). Results showed that the constructs predicted intentions to enroll in health insurance for those with no insurance and for those with government-sponsored insurance and intentions to maintain insurance for those currently insured. Our study demonstrates the applicability of the revised reasoned action framework within this context and is discussed with an emphasis on the practical and theoretical contributions.

  12. Constraining Roche-Lobe Overflow Models Using the Hot-Subdwarf Wide Binary Population

    NASA Astrophysics Data System (ADS)

    Vos, Joris; Vučković, Maja

    2017-12-01

    One of the important issues regarding the final evolution of stars is the impact of binarity. A rich zoo of peculiar, evolved objects are born from the interaction between the loosely bound envelope of a giant, and the gravitational pull of a companion. However, binary interactions are not understood from first principles, and the theoretical models are subject to many assumptions. It is currently agreed upon that hot subdwarf stars can only be formed through binary interaction, either through common envelope ejection or stable Roche-lobe overflow (RLOF) near the tip of the red giant branch (RGB). These systems are therefore an ideal testing ground for binary interaction models. With our long term study of wide hot subdwarf (sdB) binaries we aim to improve our current understanding of stable RLOF on the RGB by comparing the results of binary population synthesis studies with the observed population. In this article we describe the current model and possible improvements, and which observables can be used to test different parts of the interaction model.

  13. Magnetic field oscillations of the critical current in long ballistic graphene Josephson junctions

    NASA Astrophysics Data System (ADS)

    Rakyta, Péter; Kormányos, Andor; Cserti, József

    2016-06-01

    We study the Josephson current in long ballistic superconductor-monolayer graphene-superconductor junctions. As a first step, we have developed an efficient computational approach to calculate the Josephson current in tight-binding systems. This approach can be particularly useful in the long-junction limit, which has hitherto attracted less theoretical interest but has recently become experimentally relevant. We use this computational approach to study the dependence of the critical current on the junction geometry, doping level, and an applied perpendicular magnetic field B . In zero magnetic field we find a good qualitative agreement with the recent experiment of M. Ben Shalom et al. [Nat. Phys. 12, 318 (2016), 10.1038/nphys3592] for the length dependence of the critical current. For highly doped samples our numerical calculations show a broad agreement with the results of the quasiclassical formalism. In this case the critical current exhibits Fraunhofer-like oscillations as a function of B . However, for lower doping levels, where the cyclotron orbit becomes comparable to the characteristic geometrical length scales of the system, deviations from the results of the quasiclassical formalism appear. We argue that due to the exceptional tunability and long mean free path of graphene systems a new regime can be explored where geometrical and dynamical effects are equally important to understand the magnetic field dependence of the critical current.

  14. How the World Gains Understanding of a Planet: Analysis of Scientific Understanding in Earth Sciences and of the Communication of Earth-Scientific Explanation

    NASA Astrophysics Data System (ADS)

    Voute, S.; Kleinhans, M. G.; de Regt, H.

    2010-12-01

    A scientific explanation for a phenomenon is based on relevant theory and initial and background conditions. Scientific understanding, on the other hand, requires intelligibility, which means that a scientist can recognise qualitative characteristic consequences of the theory without doing the actual calculations, and apply it to develop further explanations and predictions. If explanation and understanding are indeed fundamentally different, then it may be possible to convey understanding of earth-scientific phenomena to laymen without the full theoretical background. The aim of this thesis is to analyze how scientists and laymen gain scientific understanding in Earth Sciences, based on the newest insights in the philosophy of science, pedagogy, and science communication. All three disciplines have something to say about how humans learn and understand, even if at very different levels of scientists, students, children or the general public. If different disciplines with different approaches identify and quantify the same theory in the same manner, then there is likely to be something “real” behind the theory. Comparing methodology and learning styles of the different disciplines within the Earth Sciences and by critically analyze earth-scientific exhibitions in different museums may provide insight in the different approaches for earth-scientific explanation and communication. In order to gain earth-scientific understanding, a broad suite of tools is used, such as maps and images, symbols and diagrams, cross-sections and sketches, categorization and classification, modelling, laboratory experiments, (computer) simulations and analogies, remote sensing, and fieldwork. All these tools have a dual nature, containing both theoretical and embodied components. Embodied knowledge is created by doing the actual modelling, intervening in experiments and doing fieldwork. Scientific practice includes discovery and exploration, data collection and analyses, verification or falsification and conclusions that must be well grounded and argued. The intelligibility of theories is improved by the combination of these two types of understanding. This is also attested by the fact that both theoretical and embodied skills are considered essential for the training of university students at all levels. However, from surprised and confounded reactions of the public to natural disasters it appears that just showing scientific results is not enough to convey the scientific understanding to the public. By using the tools used by earth scientists to develop explanations and achieve understanding, laymen could achieve understanding as well without rigorous theoretical training. We are presently investigating in science musea whether engaging the public in scientific activities based on embodied skills leads to understanding of earth-scientific phenomena by laymen.

  15. Vaccine hesitancy: clarifying a theoretical framework for an ambiguous notion.

    PubMed

    Peretti-Watel, Patrick; Larson, Heidi J; Ward, Jeremy K; Schulz, William S; Verger, Pierre

    2015-02-25

    Today, according to many public health experts, public confidence in vaccines is waning. The term "vaccine hesitancy" (VH) is increasingly used to describe the spread of such vaccine reluctance. But VH is an ambiguous notion and its theoretical background appears uncertain. To clarify this concept, we first review the current definitions of VH in the public health literature and examine its most prominent characteristics. VH has been defined as a set of beliefs, attitudes, or behaviours, or some combination of them, shared by a large and heterogeneous portion of the population and including people who exhibit reluctant conformism (they may either decline a vaccine, delay it or accept it despite their doubts) and vaccine-specific behaviours. Secondly, we underline some of the ambiguities of this notion and argue that it is more a catchall category than a real concept. We also call into question the usefulness of understanding VH as an intermediate position along a continuum ranging from anti-vaccine to pro-vaccine attitudes, and we discuss its qualification as a belief, attitude or behaviour. Thirdly, we propose a theoretical framework, based on previous literature and taking into account some major structural features of contemporary societies, that considers VH as a kind of decision-making process that depends on people's level of commitment to healthism/risk culture and on their level of confidence in the health authorities and mainstream medicine.

  16. Hidden disorder in the α '→δ transformation of Pu-1.9 at.% Ga

    DOE PAGES

    Jeffries, J. R.; Manley, M. E.; Wall, M. A.; ...

    2012-06-06

    Enthalpy and entropy are thermodynamic quantities critical to determining how and at what temperature a phase transition occurs. At a phase transition, the enthalpy and temperature-weighted entropy differences between two phases are equal (ΔH=TΔS), but there are materials where this balance has not been experimentally or theoretically realized, leading to the idea of hidden order and disorder. In a Pu-1.9 at. % Ga alloy, the δ phase is retained as a metastable state at room temperature, but at low temperatures, the δ phase yields to a mixed-phase microstructure of δ- and α'-Pu. The previously measured sources of entropy associated withmore » the α'→δ transformation fail to sum to the entropy predicted theoretically. We report an experimental measurement of the entropy of the α'→δ transformation that corroborates the theoretical prediction, and implies that only about 65% of the entropy stabilizing the δ phase is accounted for, leaving a missing entropy of about 0.5 k B/atom. Some previously proposed mechanisms for generating entropy are discussed, but none seem capable of providing the necessary disorder to stabilize the δ phase. This hidden disorder represents multiple accessible states per atom within the δ phase of Pu that may not be included in our current understanding of the properties and phase stability of δ-Pu.« less

  17. The Far Infrared Vibration-Rotation Spectrum of the Ammonia Dimer.

    NASA Astrophysics Data System (ADS)

    Loeser, Jennifer Gertrud

    1995-11-01

    The ammonia dimer has been shown to exhibit unusual weak bonding properties relative to those of the other prototypical second row systems, the hydrogen fluoride dimer and the water dimer. The ultimate goal of the work initiated in this dissertation is to determine a complete intermolecular potential energy surface for the ammonia dimer. It is first necessary to observe its far infrared vibration-rotation-tunneling (VRT) spectrum and to develop a group theoretical model that explains this spectrum in terms of the internal dynamics of the ammonia dimer. These first steps are the subject of this dissertation. First, the current understanding of the ammonia dimer system is reviewed. Group theoretical descriptions of the nature of the ammonia dimer VRT states are explained in detail. An overview of the experimental and theoretical studies of the ammonia dimer made during the last decade is presented. Second, progress on the analysis of the microwave and far infrared spectrum of (ND_3)_2 below 13 cm^{-1} is reported. These spectra directly measure the 'donor -acceptor' interchange splittings in (ND_3) _2, and determine some of the monomer umbrella inversion tunneling splittings. Third, new 80-90 cm^{-1} far infrared spectra of (NH_3)_2 are presented and a preliminary analysis is proposed. Most of the new excited VRT states have been assigned as tunneling sublevels of an out-of-plane intermolecular vibration.

  18. Exploring the value of dignity in the work-life of nurses.

    PubMed

    Lawless, Jane; Moss, Cheryle

    2007-04-01

    In this paper the authors draw attention to the value of nurse dignity in the work-life of nurses. How does the profession currently understand this as a concept and construct? How might the valuing of worker dignity in the workplace affect the wellbeing of the workforce? A review of nursing literature and a theoretical lens on worker dignity derived from recent work by Hodson (2001) was used to explore these questions. In the context of current and international workforce issues associated with recruitment and retention, analysis of the construct of worker dignity within the profession takes on a strong imperative. The large existing body of research into nursing workplace environments highlights concern that nurses have in understanding and improving work-life quality. Findings of this inquiry reveal that while there is a degree of coherence between the nursing research and elements of Hodson's (2001) research on worker dignity, the dignity of nurses, as a specific construct and as an intrinsic human and worker right has received little explicit attention. Reasons for this may lie partly in approaches that privilege patient dignity over nurse dignity and which rely on the altruism and self-sacrifice of nurses to sustain patient care in environments dominated by cost-control agendas. The value of dignity in the work-life of nurses has been under-explored and there is a critical need for further theoretical work and research. This agenda goes beyond acceptance of dignity in the workplace as a human right towards the recognition that worker dignity may be a critical factor in sustaining development of healthy workplaces and healthy workforces. Directing explicit attention to nurse dignity may benefit the attainment of both nurse and organisational goals. Hodson's (2001) framework offers a new perspective on dignity in the workplace and leads to new insights and a slightly different view of a 'road well travelled' in nursing literature.

  19. Fusion cross sections measurements with MUSIC

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Fernández Niello, J. O.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Digiovine, B.; Esbensen, H.; Henderson, D.; Jiang, C. L.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Ugalde, C.; Paul, M.; Alcorta, M.; Bertone, P. F.; Lai, J.; Marley, S. T.

    2014-09-01

    The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. This work is supported by the U.S. DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357 and the Universidad Nacional de San Martin, Argentina, Grant SJ10/39.

  20. The Aristotelian conception of habit and its contribution to human neuroscience

    PubMed Central

    Bernacer, Javier; Murillo, Jose Ignacio

    2014-01-01

    The notion of habit used in neuroscience is an inheritance from a particular theoretical origin, whose main source is William James. Thus, habits have been characterized as rigid, automatic, unconscious, and opposed to goal-directed actions. This analysis leaves unexplained several aspects of human behavior and cognition where habits are of great importance. We intend to demonstrate the utility that another philosophical conception of habit, the Aristotelian, may have for neuroscientific research. We first summarize the current notion of habit in neuroscience, its philosophical inspiration and the problems that arise from it, mostly centered on the sharp distinction between goal-directed actions and habitual behavior. We then introduce the Aristotelian view and we compare it with that of William James. For Aristotle, a habit is an acquired disposition to perform certain types of action. If this disposition involves an enhanced cognitive control of actions, it can be considered a “habit-as-learning”. The current view of habit in neuroscience, which lacks cognitive control and we term “habit-as-routine”, is also covered by the Aristotelian conception. He classifies habits into three categories: (1) theoretical, or the retention of learning understood as “knowing that x is so”; (2) behavioral, through which the agent achieves a rational control of emotion-permeated behavior (“knowing how to behave”); and (3) technical or learned skills (“knowing how to make or to do”). Finally, we propose new areas of research where this “novel” conception of habit could serve as a framework concept, from the cognitive enrichment of actions to the role of habits in pathological conditions. In all, this contribution may shed light on the understanding of habits as an important feature of human action. Habits, viewed as a cognitive enrichment of behavior, are a crucial resource for understanding human learning and behavioral plasticity. PMID:25404908

Top