Sample records for current water quality

  1. Surface water-quality assessment of the lower Kansas River basin, Kansas and Nebraska: analysis of available water-quality data through 1986

    USGS Publications Warehouse

    Jordan, P.R.; Stamer, J.K.

    1991-01-01

    Beginning in 1986, the U.S. Congress appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water-Quality Assessment (NAWQA) Program. The long-term goals of the full-scale program are to: (1) provide a nationally consistent description of current water-quality conditions for a large part of the Nation's surface- and ground-water resources; (2) define long-term trends (or lack of trends) in water quality; and (3) identify, describe, and explain, insofar as possible, the major factors that affect current conditions and trends in water quality. This information, obtained on a continuing basis, will be made available to water managers, policy makers, and the public to provide an improved scientific basis for evaluating the effectiveness of water-quality-management programs and for predicting the likely effects of contemplated changes in land-and water-management practices. At present (1990), the assessment program is in a pilot phase in seven areas that represent diverse hydrologic environments and water-quality conditions.This report completes one of the first activities undertaken as part of the lower Kansas River basin pilot study, which was to compile, screen, and interpret available water-quality data for the study unit through 1986. The report includes information on the sources and types of water-quality data available, the utility of available water-quality data for assessment purposes, and a description of current water-quality conditions and trends and their relation to natural and human factors.

  2. Density currents in the Chicago River: Characterization, effects on water quality, and potential sources

    USGS Publications Warehouse

    Jackson, P. Ryan; Garcia, Carlos M.; Oberg, Kevin A.; Johnson, Kevin K.; Garcia, Marcelo H.

    2008-01-01

    Bidirectional flows in a river system can occur under stratified flow conditions and in addition to creating significant errors in discharge estimates, the upstream propagating currents are capable of transporting contaminants and affecting water quality. Detailed field observations of bidirectional flows were made in the Chicago River in Chicago, Illinois in the winter of 2005-06. Using multiple acoustic Doppler current profilers simultaneously with a water-quality profiler, the formation of upstream propagating density currents within the Chicago River both as an underflow and an overflow was observed on three occasions. Density differences driving the flow primarily arise from salinity differences between intersecting branches of the Chicago River, whereas water temperature is secondary in the creation of these currents. Deicing salts appear to be the primary source of salinity in the North Branch of the Chicago River, entering the waterway through direct runoff and effluent from a wastewater-treatment plant in a large metropolitan area primarily served by combined sewers. Water-quality assessments of the Chicago River may underestimate (or overestimate) the impairment of the river because standard water-quality monitoring practices do not account for density-driven underflows (or overflows). Chloride concentrations near the riverbed can significantly exceed concentrations at the river surface during underflows indicating that full-depth parameter profiles are necessary for accurate water-quality assessments in urban environments where application of deicing salt is common.

  3. Microbial Source Tracking: Current and Future Molecular Tools in Microbial Water Quality Forensics

    EPA Science Inventory

    Current regulations in the United States stipulate that the microbial quality of waters used for consumption and recreational activities should be determined regularly by measuring microbial indicators of fecal pollution. Hence, the microbial risk associated with these waters is...

  4. A network for continuous monitoring of water quality in the Sabine River basin, Texas and Louisiana

    USGS Publications Warehouse

    Blakey, J.F.; Skinner, P.W.

    1973-01-01

    Level I operations at a proposed site would monitor current and potential problems, water-quality changes in subreaches of streams, and water-quality trends in time and place. Level II operations would monitor current or potential problems only. An optimum system would require Level I operations at all nine stations. A minimum system would require Level II operations at most of the stations.

  5. Developing Water Quality Criteria for Suspended and Bedded Sediments (SABs)

    EPA Pesticide Factsheets

    This paper provides an introduction to SABS and water quality criteria and discusses the types and status of water quality criteria that have been or are currently being used by the States, Canada and elsewhere.

  6. U.S. EPA'S STRATEGY FOR GROUND WATER QUALITY MONITORING AT HAZARDOUS WASTE LAND DISPOSAL FACILITIES LOCATED IN KARST TERRANES

    EPA Science Inventory

    Ground water monitoring of hazardous waste land disposal units by a network of wells is ineffective when located in karstic terranes. The U.S. Environmental Protection Agency (EPA) is currently proposing to modify its current ground water quality monitoring requirement of one upg...

  7. User’s manual to update the National Wildlife Refuge System Water Quality Information System (WQIS)

    USGS Publications Warehouse

    Chojnacki, Kimberly A.; Vishy, Chad J.; Hinck, Jo Ellen; Finger, Susan E.; Higgins, Michael J.; Kilbride, Kevin

    2013-01-01

    National Wildlife Refuges may have impaired water quality resulting from historic and current land uses, upstream sources, and aerial pollutant deposition. National Wildlife Refuge staff have limited time available to identify and evaluate potential water quality issues. As a result, water quality–related issues may not be resolved until a problem has already arisen. The National Wildlife Refuge System Water Quality Information System (WQIS) is a relational database developed for use by U.S. Fish and Wildlife Service staff to identify existing water quality issues on refuges in the United States. The WQIS database relies on a geospatial overlay analysis of data layers for ownership, streams and water quality. The WQIS provides summary statistics of 303(d) impaired waters and total maximum daily loads for the National Wildlife Refuge System at the national, regional, and refuge level. The WQIS allows U.S. Fish and Wildlife Service staff to be proactive in addressing water quality issues by identifying and understanding the current extent and nature of 303(d) impaired waters and subsequent total maximum daily loads. Water quality data are updated bi-annually, making it necessary to refresh the WQIS to maintain up-to-date information. This manual outlines the steps necessary to update the data and reports in the WQIS.

  8. Studies on the current state of water quality in the Segamat River

    NASA Astrophysics Data System (ADS)

    Razelan, Faridah Mohd; Tahir, Wardah; E. M Yahaya, Nasehir Khan

    2018-04-01

    Nowadays, pollution has become a major concern in developed and developing countries. In a study on the current state of Segamat River water quality; on-site data collection and observation and also laboratory data analysis have been implemented. Studies showed that the downstream of the Segamat River has recorded a significant reduction in quality of water during the dry season compared to the wet season. The deterioration of water quality is caused by the activities along the river such as palm oil plantation, municipal waste and waste from settlements. It was also recorded that the point sources were dominating the pollution at Segamat River during the dry season. However, during the wet season, the water quality was impaired by the non-point sources which originated from the upstream of the river.

  9. Statistical analysis of the water-quality monitoring program, Upper Klamath Lake, Oregon, and optimization of the program for 2013 and beyond

    USGS Publications Warehouse

    Eldridge, Sara L. Caldwell; Wherry, Susan A.; Wood, Tamara M.

    2014-01-01

    Upper Klamath Lake in south-central Oregon has become increasingly eutrophic over the past century and now experiences seasonal cyanobacteria-dominated and potentially toxic phytoplankton blooms. Growth and decline of these blooms create poor water-quality conditions that can be detrimental to fish, including two resident endangered sucker species. Upper Klamath Lake is the primary water supply to agricultural areas within the upper Klamath Basin. Water from the lake is also used to generate power and to enhance and sustain downstream flows in the Klamath River. Water quality in Upper Klamath Lake has been monitored by the Klamath Tribes since the early 1990s and by the U.S. Geological Survey (USGS) since 2002. Management agencies and other stakeholders have determined that a re-evaluation of the goals for water-quality monitoring is warranted to assess whether current data-collection activities will continue to adequately provide data for researchers to address questions of interest and to facilitate future natural resource management decisions. The purpose of this study was to (1) compile an updated list of the goals and objectives for long-term water-quality monitoring in Upper Klamath Lake with input from upper Klamath Basin stakeholders, (2) assess the current water-quality monitoring programs in Upper Klamath Lake to determine whether existing data-collection strategies can fulfill the updated goals and objectives for monitoring, and (3) identify potential modifications to future monitoring plans in accordance with the updated monitoring objectives and improve stakeholder cooperation and data-collection efficiency. Data collected by the Klamath Tribes and the USGS were evaluated to determine whether consistent long-term trends in water-quality variables can be described by the dataset and whether the number and distribution of currently monitored sites captures the full range of environmental conditions and the multi-scale variability of water-quality parameters in the lake. Also, current monitoring strategies were scrutinized for unnecessary redundancy within the overall network.

  10. Assessing metaldehyde concentrations in surface water catchments and implications for drinking water abstraction

    NASA Astrophysics Data System (ADS)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; Cherry, Katherine

    2015-04-01

    Metaldehyde is an active ingredient in agricultural pesticides such as slug pellets, which are heavily applied to UK farmland during the autumn application season. There is current concern that existing drinking water treatment processes may be inadequate in reducing potentially high levels of metaldehyde in surface waters to below the UK drinking water quality regulation limit of 0.1 µg/l. In addition, current water quality monitoring methods can miss short term fluctuations in metaldehyde concentration caused by rainfall driven runoff, hampering prediction of the potential risk of exposure. Datasets describing levels, fate and transport of metaldehyde in river catchments are currently very scarce. This work presents results from an ongoing study to quantify the presence of metaldehyde in surface waters within a UK catchment used for drinking water abstraction. High resolution water quality data from auto-samplers installed in rivers are coupled with radar rainfall, catchment characteristics and land use data to i) understand which hydro-meteorological characteristics of the catchment trigger the peak migration of metaldehyde to surface waters; ii) assess the relationship between measured metaldehyde levels and catchment characteristics such as land use, topographic index, proximity to water bodies and runoff generation area; iii) describe the current risks to drinking water supply and discuss mitigation options based on modelling and real-time control of water abstraction. Identifying the correlation between catchment attributes and metaldehyde generation will help in the development of effective catchment management strategies, which can help to significantly reduce the amount of metaldehyde finding its way into river water. Furthermore, the effectiveness of current water quality monitoring strategy in accurately quantifying the generation of metaldehyde from the catchment and its ability to benefit the development of effective catchment management practices has also been investigated.

  11. A summary of the U.S. Geological Survey National Water-Quality Assessment program

    USGS Publications Warehouse

    Hirsch, R.M.; Alley, W.M.; Wilber, W.G.

    1988-01-01

    Beginning in 1986, the Congress appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water Quality Assessment Program. At present, the program is in a pilot phase with field studies occurring in seven areas around the Nation. In 1990, a committee of the National Academy of Sciences will complete an evaluation of the design and potential utility of the program. A decision about moving to full-scale implementation will be made upon completion of this evaluation. The program is intended to address a wide range of national water quality issues that include chemical contamination, acidification, eutrophication, salinity, sedimentation, and sanitary quality. The goals of the program are to: (1) provide nationally consistent descriptions of current water quality conditions for a large part of the Nation 's water resources; (2) define long-term trends (or lack of trends) in water quality; and (3) identify and describe the relations of both current conditions and trends in water quality to natural and human factors. This information will be provided to water managers, policy makers, and the public to provide an improved scientific basis for evaluating the effectiveness of water quality management programs and for predicting the likely effects of contemplated changes in land- and water-management practices. (USGS)

  12. Development of Water Quality Modeling in the United States

    EPA Science Inventory

    This presentation describes historical trends in water quality model development in the United States, reviews current efforts, and projects promising future directions. Water quality modeling has a relatively long history in the United States. While its origins lie in the work...

  13. Upper Illinois River basin

    USGS Publications Warehouse

    Friedel, Michael J.

    1998-01-01

    During the past 25 years, industry and government made large financial investments that resulted in better water quality across the Nation; however, many water-quality concerns remain. Following a 1986 pilot project, the U.S. Geological Survey began implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. This program differs from other national water-quality assessment studies in that the NAWQA integrates monitoring of surface- and ground-water quality with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers (water-bearing sediments and rocks), (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality.The Upper Illinois River Basin National Water- Quality Assessment (NAWQA) study will increase the scientific understanding of surface- and ground-water quality and the factors that affect water quality in the basin. The study also will provide information needed by water-resource managers to implement effective water-quality management actions and evaluate long-term changes in water quality.

  14. Season-long Changes in Infiltration Rates Associated with Irrigation Water Sodicity and pH

    USDA-ARS?s Scientific Manuscript database

    There is increasing need to substitute low quality waters, including saline sodic waters and treated municipal waste water for fresh water when irrigating land in arid and semi-arid regions of the world. In almost all instances low quality waters are more sodic than the fresh waters currently utili...

  15. Relationship between Hydrodynamic Conditions and Water Quality in Landscape Water Body

    NASA Astrophysics Data System (ADS)

    Kang, Mengxin; Tian, Yimei; Zhang, Haiya; Wang, Dehong

    2018-01-01

    The urban landscape water usually lacks necessary water cycle and water speed is closed to zero, which easily lead to eutrophication in water system and deterioration of water quality. Therefore, understanding the impact of water circulation on the water quality is of great significance. With that significance, this research has been done to investigate the relationship between hydrodynamic conditions and water quality of urban landscape water based on adopted water quality indexes such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP) and nitrogen-ammonia (NH3-N). Moreover, MIKE 21 model is used to simulate the hydrodynamics and water quality under different cases in an urban landscape lake. The results of simulation show that water circulation system could effectively improve current speeds, reduce the proportion of stagnation area, and solve the problem of water quality deterioration caused by reclaimed water in the lake.

  16. WETLANDS AND WATER QUALITY TRADING: REVIEW OF CURRENT SCIENCE AND ECONOMIC PRACTICES WITH SELECTED CASE STUDIES

    EPA Science Inventory

    The study evaluates the technical, economic, and administrative aspects of establishing water quality trading (WQT) programs where the nutrient removal capacity of wetlands is used to improve water quality. WQT is a potentially viable approach for wastewater dischargers to cost-e...

  17. A geospatial approach to identify water quality issues for National Wildlife Refuges in Oregon and Washington

    USGS Publications Warehouse

    Hinck, Jo Ellen; Chojnacki, Kimberly; Finger, Susan E.; Linder, Greg; Kilbride, Kevin

    2011-01-01

    Many National Wildlife Refuges (Refuges) have impaired water quality resulting from historic and current land uses, upstream sources, and aerial pollutant deposition. Competing duties limit the time available for Refuge staff to identify and evaluate potential water quality issues. As a result, water quality–related issues may not be resolved until a problem has already arisen. This study developed a geospatial approach for identifying and prioritizing water quality issues affecting natural resources (including migratory birds and federally listed species) within Refuge boundaries. We assessed the location and status of streams pursuant to the Clean Water Act in relation to individual Refuges in Oregon and Washington, United States. Although twelve Refuges in Oregon (60%) and eight Refuges in Washington (40%) were assessed under the Clean Water Act, only 12% and 3% of total Refuge stream lengths were assessed, respectively. Very few assessed Refuge streams were not designated as impaired (0% in Oregon, 1% in Washington). Despite the low proportions of stream lengths assessed, most Refuges in Oregon (70%) and Washington (65%) are located in watersheds with approved total maximum daily loads. We developed summaries of current water quality issues for individual Refuges and identified large gaps for Refuge-specific water quality data and habitat utilization by sensitive species. We conclude that monitoring is warranted on many Refuges to better characterize water quality under the Clean Water Act.

  18. Hydrogeology and ground-water quality of the Bay Mills Indian Community Study Area, near Brimley, Michigan

    USGS Publications Warehouse

    ,

    1996-01-01

    Bay Mills Indian Community (BMIC) near Brimley, Mich. (fig. 1), with a population of about 1,000, needs hydrogeologic and ground-water-quality information to help assure a reliable ground-water supply for future economic development. Currently (1995), three wells supply water to a housing development adjacent to Mission Hill, but the remainder of BMIC is dependent on private low-capacity wells. Currently (1995), motel and gaming facilities are being constructed at the former Fisherman's Wharf site. These facilities will require large-capacity wells for public supply and fire protection. In addition, a proposed fish hatchery would require a water supply that would meet stringent water-quality requirements and be capable of producing about 500 to 600 gallons per minute (gal/min). This report summarizes hydrogeologic and ground-water-quality information needed to effectively plan for water-supply development at BMIC and is the result of a cooperative effort between BMIC and the U.S. Geological Survey (USGS).

  19. Water Resources Data for Illinois - Water Year 2005 (Includes Historical Data)

    USGS Publications Warehouse

    LaTour, J.K.; Weldon, E.A.; Dupre, D.H.; Halfar, T.M.

    2006-01-01

    This annual Water-Data Report for Illinois contains current water year (Oct. 1, 2004, to Sept. 30, 2005) and historical data of discharge, stage, water quality and biology of streams; stage of lakes and reservoirs; levels and quality of ground water; and records of precipitation, air temperature, dew point, solar radiation, and wind speed. The current year's (2005) data provided in this report include (1) discharge for 182 surface-water gaging stations and for 9 crest-stage partial-record stations; (2) stage for 33 surface-water gaging stations; (3) water-quality records for 10 surface-water stations; (4) sediment-discharge records for 14 surface-water stations; (5) water-level records for 98 ground-water wells; (6) water-quality records for 17 ground-water wells; (7) precipitation records for 48 rain gages; (8) records of air temperature, dew point, solar radiation and wind speed for 1 meteorological station; and (9) biological records for 6 sample sites. Also included are miscellaneous data collected at various sites not in the systematic data-collection network. Data were collected and compiled as a part of the National Water Information System (NWIS) maintained by the U.S. Geological Survey in cooperation with Federal, State, and local agencies.

  20. 40 CFR 35.1620-2 - Contents of applications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification that the project is consistent with State Water Quality Management work program (see § 35.1513 of... past trends and current water quality of the lake. (E) A description of the type and amount of public... due to degraded water quality. Indicate the cause of the impairment, such as algae, vascular aquatic...

  1. 40 CFR 35.1620-2 - Contents of applications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certification that the project is consistent with State Water Quality Management work program (see § 35.1513 of... past trends and current water quality of the lake. (E) A description of the type and amount of public... due to degraded water quality. Indicate the cause of the impairment, such as algae, vascular aquatic...

  2. Producing Quality Water for Industrial Use.

    ERIC Educational Resources Information Center

    Schaezler, Donald J.

    1978-01-01

    This article discusses the quality of water demanded by industrial plants and the techniques which are currently employed to achieve them. Both quality and quantity requirements are considered including total plant operation, physical and chemical operating controls, and systems monitoring. (CS)

  3. Water quality in the Cambridge, Massachusetts, drinking-water source area, 2005-8

    USGS Publications Warehouse

    Smith, Kirk P.; Waldron, Marcus C.

    2015-01-01

    During 2005-8, the U.S. Geological Survey, in cooperation with the Cambridge, Massachusetts, Water Department, measured concentrations of sodium and chloride, plant nutrients, commonly used pesticides, and caffeine in base-flow and stormwater samples collected from 11 tributaries in the Cambridge drinking-water source area. These data were used to characterize current water-quality conditions, to establish a baseline for future comparisons, and to describe trends in surface-water quality. The data also were used to assess the effects of watershed characteristics on surface-water quality and to inform future watershed management.

  4. Assessment of Water-Quality Monitoring and a Proposed Water-Quality Monitoring Network for the Mosquito Lagoon Basin, East-Central Florida

    USGS Publications Warehouse

    Kroening, Sharon E.

    2008-01-01

    Surface- and ground-water quality data from the Mosquito Lagoon Basin were compiled and analyzed to: (1) describe historical and current monitoring in the basin, (2) summarize surface- and ground-water quality conditions with an emphasis on identifying areas that require additional monitoring, and (3) develop a water-quality monitoring network to meet the goals of Canaveral National Seashore (a National Park) and to fill gaps in current monitoring. Water-quality data were compiled from the U.S. Environmental Protection Agency's STORET system, the U.S. Geological Survey's National Water Information System, or from the agency which collected the data. Most water-quality monitoring focused on assessing conditions in Mosquito Lagoon. Significant spatial and/or seasonal variations in water-quality constituents in the lagoon were quantified for pH values, fecal coliform bacteria counts, and concentrations of dissolved oxygen, total nitrogen, total phosphorus, chlorophyll-a, and total suspended solids. Trace element, pesticide, and ground-water-quality data were more limited. Organochlorine insecticides were the major class of pesticides analyzed. A surface- and ground-water-quality monitoring network was designed for the Mosquito Lagoon Basin which emphasizes: (1) analysis of compounds indicative of human activities, including pesticides and other trace organic compounds present in domestic and industrial waste; (2) greater data collection in the southern part of Mosquito Lagoon where spatial variations in water-quality constituents were quantified; and (3) additional ground-water-quality data collection in the surficial aquifer system and Upper Floridan aquifer. Surface-water-quality data collected as part of this network would include a fixed-station monitoring network of eight sites in the southern part of the basin, including a canal draining Oak Hill. Ground-water quality monitoring should be done routinely at about 20 wells in the surficial aquifer system and Upper Floridan aquifer, distributed between developed and undeveloped parts of the basin. Water samples collected should be analyzed for a wide range of constituents, including physical properties, nutrients, suspended sediment, and constituents associated with increased urban development such as pesticides, other trace organic compounds associated with domestic and industrial waste, and trace elements.

  5. Geohydrology of the Antelope Valley Area, California and design for a ground-water-quality monitoring network

    USGS Publications Warehouse

    Duell, L.F.

    1987-01-01

    A basinwide ideal network and an actual network were designed to identify ambient groundwater quality, trends in groundwater quality, and degree of threat from potential pollution sources in Antelope Valley, California. In general, throughout the valley groundwater quality has remained unchanged, and no specific trends are apparent. The main source of groundwater for the valley is generally suitable for domestic, irrigation, and most industrial uses. Water quality data for selected constituents of some network wells and surface-water sites are presented. The ideal network of 77 sites was selected on the basis of site-specific criteria, geohydrology, and current land use (agricultural, residential, and industrial). These sites were used as a guide in the design of the actual network consisting of 44 existing wells. Wells are currently being monitored and were selected whenever possible because of budgetary constraints. Of the remaining ideal sites, 20 have existing wells not part of a current water quality network, and 13 are locations where no wells exist. The methodology used for the selection of sites, constituents monitored, and frequency of analysis will enable network users to make appropriate future changes to the monitoring network. (USGS)

  6. Evaluation of fog and rain water collected at Delta Barrage, Egypt as a new resource for irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Salem, Talaat A.; Omar, Mohie El Din M.; El Gammal, H. A. A.

    2017-11-01

    Alternative clean water resources are needed in Egypt to face the current water shortage and water quality deterioration. Therefore, this research investigates the suitability of harvesting fog and rain water for irrigation using a pilot fog collector for water quantity, water quality, and economic aspects. A pilot fog collector was installed at one location at Delta Barrage, Egypt. Freeze liquid nitrogen was fixed at the back of the fiberglass sheet to increase the condensation rate. The experiment was conducted during the period from November 2015 to February 2016. In general, all physicochemical variables are observed with higher values in the majority of fog than rain water. The fog is assumed to contain higher concentrations of anthropogenic emissions. TDS in both waters collected are less than 700 mg/l at sodium content less than 60%, classifying these waters as good for various plants under most conditions. In addition, SAR calculated values are less than 3.0 in each of fog and rain water, which proves the water suitability for all irrigated agriculture. Al and Fe concentrations were found common in all samples with values less than the permissible limits of the guidelines. These metals originate from soil material, ash and metal surfaces. The sensitive heavy metals (Cd and Pb) were within the permissible limits of the guideline in fog water, indicating this water is suitable for irrigation. On the contrary, rain water that has heavy metals is not permitted in irrigation water as per the Egyptian law. As per WQI, the rain water is classified as good quality while fog is classified as medium quality. Regarding the water quantity, a significant increase in the harvested fog quantity was observed after cooling the collector surface with freeze liquid nitrogen. The current fog collector produced the lowest water quantity among different fog collectors worldwide. However, these comparative results confirmed that quantity is different from one location to another worldwide even in the same country. The cost of the unit water volume of harvested water by the current pilot collector is relatively low among different collectors worldwide. This study proves that fog harvesting in Egypt is feasible using the current pilot collector in terms of water quantity, water quality, and economy. But it recommends collection of fog at various locations and times, since both water quantity and water quality are variable in time and space. It is more or less viable solution to meet the shortage of water in Egypt.

  7. Assessing the microbial quality of improved drinking water sources: results from the Dominican Republic.

    PubMed

    Baum, Rachel; Kayser, Georgia; Stauber, Christine; Sobsey, Mark

    2014-01-01

    Millennium Development Goal Target 7c (to halve between 1990 and 2015 the proportion of the global population without sustainable access to safe drinking water), was celebrated as achieved in 2012. However, new studies show that we may be prematurely celebrating. Access to safe drinking water may be overestimated if microbial water quality is considered. The objective of this study was to examine the relationship between microbial drinking water quality and drinking water source in the Puerto Plata region of the Dominican Republic. This study analyzed microbial drinking water quality data from 409 households in 33 communities. Results showed that 47% of improved drinking water sources were of high to very-high risk water quality, and therefore unsafe for drinking. This study provides evidence that the current estimate of safe water access may be overly optimistic, and microbial water quality data are needed to reliably assess the safety of drinking water.

  8. Assessing the Microbial Quality of Improved Drinking Water Sources: Results from the Dominican Republic

    PubMed Central

    Baum, Rachel; Kayser, Georgia; Stauber, Christine; Sobsey, Mark

    2014-01-01

    Millennium Development Goal Target 7c (to halve between 1990 and 2015 the proportion of the global population without sustainable access to safe drinking water), was celebrated as achieved in 2012. However, new studies show that we may be prematurely celebrating. Access to safe drinking water may be overestimated if microbial water quality is considered. The objective of this study was to examine the relationship between microbial drinking water quality and drinking water source in the Puerto Plata region of the Dominican Republic. This study analyzed microbial drinking water quality data from 409 households in 33 communities. Results showed that 47% of improved drinking water sources were of high to very-high risk water quality, and therefore unsafe for drinking. This study provides evidence that the current estimate of safe water access may be overly optimistic, and microbial water quality data are needed to reliably assess the safety of drinking water. PMID:24218411

  9. Update to permeable pavement research at the Edison ...

    EPA Pesticide Factsheets

    Abstract: The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable pavers; porous concrete; and permeable asphalt. The parking lot is instrumented with water content reflectometers and thermistors for continuous monitoring and has four lined sections for each surface to capture permeable pavement infiltrate for water quality analyses.Previous technical releases concerning the demonstration site focused on monitoring techniques, observed chloride and nutrient concentrations, and infiltration and evaporation rates. Thispresentation summarizes past findings and addresses current water quality efforts. This presentation summarizes past findings and addresses current water quality efforts.

  10. Water Quality in the New England Coastal Basins, Maine, New Hampshire, Massachusetts, and Rhode Island 1999-2001

    USGS Publications Warehouse

    Robinson, Keith W.; Flanagan, Sarah M.; Ayotte, Joseph D.; Campo, Kimberly W.; Chalmers, Ann; Coles, James F.; Cuffney, Thomas F.

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the New England Coastal Basins. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the New England Coastal Basins summarized in this report are discussed in detail in other reports that can be accessed from http://nh.water.usgs.gov/CurrentProjects/nawqa/nawqaweb.htm. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  11. RECREATIONAL WATER QUALITY AND SWIMMING ASSOCIATED HEALTH EFFECTS

    EPA Science Inventory

    The U.S. EPA's National Epidemiological and Environmental Assessment of Recreational Water study is currently underway with the goal of determining if new rapid methods for measuring water quality can be used to predict illness in swimmers. This lecture will provide a historical...

  12. National Water Quality Inventory, 1976 Report to Congress.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This report summarizes the state submissions and provides a national overview of water quality as required in Section 305(b) of the 1972 Federal Water Pollution Control Act Amendments (P.L. 92-500). Topics receiving the greatest coverage include toxic substances, quantitative assessments of the percentage of waters currently meeting the goals of…

  13. EPA Research Evaluating CAFO Impacts on Ground Water Quality

    EPA Science Inventory

    An overview of several projects will be presented on a research program currently underway at ORD’s Ground Water and Ecosystems Restoration Division (GWERD) to evaluate CAFO impacts on ground water quality. The overall research objectives are to characterize the potential for gro...

  14. Improvement of water quality at Dongbin Harbor with construction of an inland canal, Korea.

    PubMed

    Cho, Yong-Sik

    2014-01-01

    The behaviors of the water body of Dongbin Harbor located at Pohang City, Gyongpook Province, in Korea were numerically simulated in this study. A canal was planned to connect the harbor and the Hyeongsan River to improve water quality inside the harbor. The current system was first simulated by using a commercial program RMA2, with respect to both tidal currents and river flow. The progress inside the harbor from a supply of fresh water from the Hyeongsan River was then predicted by using RMA4. Both the present and future conditions (before and after construction of an inland canal) were taken into consideration in numerical simulations. It is concluded that the water quality inside the harbor can be improved considerably after construction of the canal.

  15. Water quality of the Fox River and four tributaries in Green Lake County, Wisconsin, 2001-2002

    USGS Publications Warehouse

    Graczyk, David J.; Garn, Herbert S.

    2003-01-01

    The purpose of this report is to summarize the water-quality data collected on the Fox River and its tributaries in Green Lake County, Wisconsin, from November 2001 through August 2002. The goals of the project were to (1) determine the current water quality of the Fox River and selected main tributaries in Green Lake County, (2) assess the spacial variation of the water-quality conditions of the main Fox River reach, and (3) build on the quantitative data base so that future monitoring can help detect and evaluate improving or declining water-quality conditions objectively.

  16. Michigan lakes: An assessment of water quality

    USGS Publications Warehouse

    Minnerick, R.J.

    2004-01-01

    Michigan has more than 11,000 inland lakes, that provide countless recreational opportunities and are an important resource that makes tourism and recreation a $15-billion-dollar per-year industry in the State (Stynes, 2002). Knowledge of the water-quality characteristics of inland lakes is essential for the current and future management of these resources.Historically the U. S. Geological Survey (USGS) and the Michigan Department of Environmental Quality (MDEQ) jointly have monitored water quality in Michigan's lakes and rivers. During the 1990's, however, funding for surface-water-quality monitoring was reduced greatly. In 1998, the citizens of Michigan passed the Clean Michigan Initiative to clean up, protect, and enhance Michigan's environmental infrastructure. Because of expanding water-quality-data needs, the MDEQ and the USGS jointly redesigned and implemented the Lake Water-Quality Assessment (LWQA) Monitoring Program (Michigan Department of Environmental Quality, 1997).

  17. Northern Great Plains Network water quality monitoring design for tributaries to the Missouri National Recreational River

    USGS Publications Warehouse

    Rowe, Barbara L.; Wilson, Stephen K.; Yager, Lisa; Wilson, Marcia H.

    2013-01-01

    The National Park Service (NPS) organized more than 270 parks with important natural resources into 32 ecoregional networks to conduct Inventory and Monitoring (I&M) activities for assessment of natural resources within park units. The Missouri National Recreational River (NRR) is among the 13 parks in the NPS Northern Great Plain Network (NGPN). Park managers and NGPN staff identified surface water resources as a high priority vital sign to monitor in park units. The objectives for the Missouri NRR water quality sampling design are to (1) assess the current status and long-term trends of select water quality parameters; and (2) document trends in streamflow at high-priority stream systems. Due to the large size of the Missouri River main stem, the NGPN water quality design for the Missouri NRR focuses on wadeable tributaries within the park unit. To correlate with the NGPN water quality protocols, monitoring of the Missouri NRR consists of measurement of field core parameters including dissolved oxygen, pH, specific conductance, and temperature; and streamflow. The purpose of this document is to discuss factors examined for selection of water quality monitoring on segments of the Missouri River tributaries within the Missouri NRR.Awareness of the complex history of the Missouri NRR aids in the current understanding and direction for designing a monitoring plan. Historical and current monitoring data from agencies and entities were examined to assess potential NGPN monitoring sites. In addition, the U.S. Environmental Protection Agency 303(d) list was examined for the impaired segments on tributaries to the Missouri River main stem. Because major tributaries integrate water quality effects from complex combinations of land use and environmental settings within contributing areas, a 20-mile buffer of the Missouri NRR was used to establish environmental settings that may impact the water quality of tributaries that feed the Missouri River main stem. For selection of monitoring sites, anthropogenic and natural influences to water quality were assessed for Missouri NRR tributaries. Factors that were examined include the size and contributions of tributaries within watersheds to the main stem; population density; and land use such as urban development and agricultural practices including concentrated animal feeding operations. Based on examination of these data in addition to the park’s legislation and management considerations, two sites were selected for monitoring water quality on Missouri NRR tributaries for the ice-free season (mid-May to mid-October) on a rotational basis every third year. Bow Creek at St. James was selected for water quality monitoring based on lack of long-term water quality monitoring, current recreational use, and proximity of the tributary to intense agricultural practices. In addition, land within the Bow Creek watershed is owned by the NPS. The Niobrara River at Verdel was selected for monitoring due to high use for public recreational activities, adjacent agricultural land use, and documented impairments for designated beneficial uses. Both sites will have access to real-time streamgages that will aid in a greater understanding of water quality.

  18. Classification management plan of groundwater quality in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Chun Ming; Chen, Yu Ying; Pan, Shih Cheng; Li, Hui Jun; Hsiao, Fang Ke

    2017-04-01

    Taiwan Environmental Protection Administration has been monitoring regional water quality for 14 years. Since the beginning of 2002 till now, there are 453 regional groundwater monitoring wells in ten groundwater subregions in Taiwan, and the monitoring of groundwater quality has been carried out for a long time. Currently, water quality monitoring project has reached 50 items, while the number of water quality monitoring data has reached more than 20,000. In order to use the monitoring data efficiently, this study constructed the localized groundwater quality indicators of Taiwan. This indicator takes into account the different users' point of view, incorporating the Taiwan groundwater pollution monitoring standards (Category II), irrigation water quality standard and drinking water source water quality standard. 50 items of water quality monitoring projects were simplified and classified. The groundwater quality parameters were divided into five items, such as potability for drinking water, salting, external influence, health influences and toxicity hazard. The weight of the five items of groundwater was calculated comprehensively, and the groundwater quality of each monitoring well was evaluated with three grades of good, ordinary, and poor. According to the monitoring results of the groundwater monitoring wells in October to December of 2016, about 70% of groundwater quality in Taiwan is in good to ordinary grades. The areas with poor groundwater quality were mostly distributed in coastal, agriculture and part of the urban areas. The conductivity or ammonia nitrogen concentration was higher in those regions, showing that groundwater may be salinized or affected by external influences. Groundwater quality indicators can clearly show the current comprehensive situation of the groundwater environment in Taiwan and can be used as a tool for groundwater quality classification management. The indicators can coordinate with the Taiwan land planning policy in the future, and will be able to effectively grasp the changes of the national sub-regional environmental resources, which can serve as one of the important references in national land zoning according to environmental resources. Keywords: Groundwater Quality Indicators, Groundwater Quality Classification management

  19. Water quality in the vicinity of Mosquito Creek Lake, Trumbull County, Ohio, in relation of the chemistry of locally occurring oil, natural gas, and brine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, G.J.; Burruss, R.C.; Ryder, R.T.

    1998-12-31

    The purpose of this report is to describe current water quality and the chemistry of oil, natural gas, and brine in the Mosquito Creek Lake area. Additionally, these data are used to characterize water quality in the Mosquito Creek Lake area in relation to past oil and natural gas well drilling and production. To meet the overall objective, several goals for this investigation were established. These include (1) collect water-quality and subsurface-gas data from shallow sediments and rock that can be used for future evaluation of possible effects of oil and natural gas well drilling and production on water supplies,more » (2) characterize current surface-water and ground-water quality as it relates to the natural occurrence and (or) release of oil, gas, and brine (3) sample and chemically characterize the oil in the shallow Mecca Oil Pool, gas from the Berea and Cussewago Sandstone aquifers, and the oil, gas, and brine from the Clinton sandstone, and (4) identify areas where aquifers are vulnerable to contamination from surface spills at oil and natural gas drilling and production sites.« less

  20. Amendment of water quality standards in China: viewpoint on strategic considerations.

    PubMed

    Zhao, Xiaoli; Wang, Hao; Tang, Zhi; Zhao, Tianhui; Qin, Ning; Li, Huixian; Wu, Fengchang; Giesy, John P

    2018-02-01

    Water quality standards (WQS) are the most important tool for protection of quality of aquatic environments in China and play a decisive role in the management of China's aquatic environments. Due to limited scientific information available previously, WQS were developed largely based on water quality criteria (WQC) or WQS recommended by developed countries, which may not be suitable for current circumstances in China. The Chinese government recently initiated the revision of Environmental Quality Standards for Surface Water (EQSSW) (GB3838-2002) to meet the challenge of environmental protection. This review analyzed how the WQS developed and applied in China differ from those of more developed countries and pointed out that the lack of strong scientific bases for China's WQC pose major limitations of current WQS. We focus on discussing the six aspects that require high attention on how to establish a national WQC system to support the revision of WQS (Table 1) such as development of methodology, refining water function zoning, establish priority pollutants list, improving protection drinking water sources, development of site-specific water quality criteria, and field toxicity test. It is essential that China and other developing countries established a relatively mature system for promulgating, applying, and enforcing WQC and to implement a dynamic system to incorporate most recent research results into periodically updated WQS.

  1. Modeling hydrodynamics, water quality, and benthic processes to predict ecological effects in Narragansett Bay

    EPA Science Inventory

    The environmental fluid dynamics code (EFDC) was used to study the three dimensional (3D) circulation, water quality, and ecology in Narragansett Bay, RI. Predictions of the Bay hydrodynamics included the behavior of the water surface elevation, currents, salinity, and temperatur...

  2. OVERVIEW OF WATERSHED FEATURES AND DYNAMICS ASSOCIATED WITH DRINKING AND RECREATIONAL WATER PROTECTION

    EPA Science Inventory

    This presentation will take a holistic view of the watershed; considering microbiological water quality needs and how they are influenced by activities in the watershed. It will look at the current indicators of microbiological water quality and their usefulness and then identify...

  3. GWERD CAFO Research Program – CAFO Impacts on Ground Water Quality

    EPA Science Inventory

    An overview of several projects will be presented on a research program currently underway at ORD’s Ground Water and Ecosystems Restoration Division (GWERD) to evaluate CAFO impacts on ground water quality. The overall research objectives are to characterize the potential for gro...

  4. WATERBORNE DISEASES AND MICROBIAL QUALITY MONITORING FOR RECREATIONAL WATER BODIES USING REGULATORY METHODS

    EPA Science Inventory

    This chapter will provide the reader with a historical perspective of microbial water quality and monitoring of recreational waters, with special attention to marine environments. It will review the regulations that are currently in effect in the United States and discuss critic...

  5. Monitoring of heavy metals in selected Water Supply Systems in Poland, in relation to current regulations

    NASA Astrophysics Data System (ADS)

    Szuster-Janiaczyk, Agnieszka; Zeuschner, Piotr; Noga, Paweł; Skrzypczak, Marta

    2018-02-01

    The study presents an analysis of water quality monitoring in terms of the content of heavy metals, which is conducted in three independent water supply systems in Poland. The analysis showed that the monitoring of heavy metals isn't reliable - both the quantity of tested water samples and the location of the monitoring points are the problem. The analysis of changes in water quality from raw water to tap water was possible only for one of the analysed systems and indicate a gradual deterioration of water quality, although still within acceptable limits of legal regulations.

  6. Water quality status and trends in the United States

    USGS Publications Warehouse

    Larsen, Matthew C.; Hamilton, Pixie A.; Werkheiser, William H.; Ahuja, Satinder

    2013-01-01

    Information about water quality is vital to ensure long-term availability and sustainability of water that is safe for drinking and recreation and suitable for industry, irrigation, fish, and wildlife. Protecting and enhancing water quality is a national priority, requiring information on water-quality status and trends, progress toward clean water standards, continuing problems, and emerging challenges. In this brief review, we discuss U.S. Geological Survey assessments of nutrient pollution, pesticides, mixtures of organic wastewater compounds (known as emerging contaminants), sediment-bound contaminants (like lead and DDT), and mercury, among other contaminants. Additionally, aspects of land use and current and emerging challenges associated with climate change are presented. Climate change must be considered, as water managers continue their efforts to maintain sufficient water of good quality for humans and for the ecosystem.

  7. Towards Sustainable Water Quality In Estuarine Impoundments: The Current State.

    NASA Astrophysics Data System (ADS)

    Wright, J.; Worrall, F.

    Several estuarine impoundment schemes have been built or are proposed in the UK and worldwide. The impounding of estuaries is currently a popular approach to urban regeneration in the UK. By creation of an aesthetically pleasing amenity impound- ment, including the drowning of "unsightly" tidal mud flats, it is hoped that prestige development will be encouraged in the estuarine area. Impounding fundamentally alters the dynamics of estuaries, with consequences in terms of sedimentation patterns and rates, and water quality. The SIMBA Project at- tempts to understand the controls on water quality in impoundments, with a view to- wards long term and sustainable high water quality through good barrage design and management practice. Detailed water quality surveys have been carried out on a total of 79 dates on the Tees, Tawe, Wansbeck and Blyth estuaries. Water quality parameters which have been determined are pH, Eh, dissolved oxygen (DO), biochemical oxygen demand (BOD), conductivity, transparency, suspended solids, alkalinity, temperature, nutri- ents (nitrate+nitrite, ammonium and orthophosphate), and a large range of dissolved metals. Statistical analyses are used to demonstrate the major controls on water qual- ity in impoundments. A distinction is made between total tidal exclusion (freshwater) systems, in which water quality is primarily influenced by external/catchment factors, and partial tidal exclusion systems, in which water quality is processed internally. This internal processing is due to density stratification creating compartments of saline wa- ter in contact with oxygen demanding sediments and isolated from the atmosphere, which leads to conditions of low DO and changes in redox conditions which may lead to release of metals and phosphate from the sediment.

  8. 76 FR 64380 - Agency Information Collection Activities: Proposed Collection; Comments Requested; Supplemental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... Information on Water Quality Consideration ACTION: 30-Day Notice of Information Collection. The Department of... currently approved collection. (2) Title of the Form/Collection: Supplemental Information on Water Quality..., including the validity of the methodology and assumptions used; --Enhance the quality, utility, and clarity...

  9. RECREATIONAL WATER QUALITY AND SWIMMER HEALTH - CAN FASTER METHODS OF MEASURING RECREATIONAL WATER HELP PREVENT SWIMMING ASSOCIATED ILLNESS?

    EPA Science Inventory

    Evidence from various sources around the world indicate that there is a relationship between gastroenteritis in swimmers and the quality of the bathing water as measured with bacterial indicators of fecal contamination. Current EPA guidelines recommend the use of cultural method...

  10. QPCR Determined Fecal Indicator Bacterial Densities in Marine Waters from Two Recreational Beaches

    EPA Science Inventory

    The use of real-time qPCR to determine fecal indicator bacteria (FIB) densities is currently being investigated by the U.S. EPA. The present recreational water quality guidelines, based on culturable FIB, prevent same day determinations of water quality whereas results from the ...

  11. Water quality program elements for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Ramanathan, Raghupathy; Straub, John E.; Schultz, John R.

    1991-01-01

    A strategy is outlined for the development of water-quality criteria and standards relevant to recycling and monitoring the in-flight water for the Space Station Freedom (SSF). The water-reclamation subsystem of the SSF's ECLSS is described, and the objectives of the water-quality are set forth with attention to contaminants. Quality parameters are listed for potable and hygiene-related water including physical and organic parameters, inorganic constituents, bactericides, and microbial content. Comparisons are made to the quality parameters established for the Shuttle's potable water and to the EPA's current standards. Specific research is required to develop in-flight monitoring techniques for unique SSF contaminants, ECLSS microbial control, and on- and off-line monitoring. After discussing some of the in-flight water-monitoring hardware it is concluded that water reclamation and recycling are necessary and feasible for the SSF.

  12. Water-quality assessment of Francis E Walter reservoir, Luzerne and Carbon counties, Pennsylvania

    USGS Publications Warehouse

    Barker, J.L.

    1983-01-01

    Water-quality data, both past and present, show that the waters of the upper Lehigh River basin are somewhat acidic, but otherwise are generally of good quality. This report contains a summary of all known water-quality data collected by the U.S. Geological Survey and other agencies, as well as a synopsis of current water-quality conditions in the reservoir and its tributaries. Water-quality data collected from June 1981 to May 1982 indicate that raising the pool level from 1,300 to approximately 1,392 feet above sea level (NGVD of 1929) has had some significant, if only temporary, detrimental impacts on the reservoir system and its discharge. Depth profile measurements show that, while the impoindment was thermally stratified for only about 2 weeks, the dissolved oxygen concentrations were depressed to levels critical to fishlife throughout much of the reservoir. Another effect of the raised pool was the lowering of pH in the impoinded water. Median pH values were less than 6.0 throughout the reservoir, whereas they commonly exceeded 6.5 at the normal pool elevation. Tests for fecal coliform and fecal streptococcus indicate the impoinded water is nearly free of enteric bacteria. Algal analyses and nutrient concentrations support the premise that the impoundment is nutrient poor and phosphorus limited. Raising the water level an additional 125 feet should have no permanent detrimental effect upon water quality and will greatly increase available habitat for fish and waterflow. Increased retention time should not alter the current trophic status and may decrease the concentration of available nutrients.

  13. Surface-water-quality assessment of the Kentucky River Basin, Kentucky; fixed-station network and selected water-quality data, April 1987 through August 1991

    USGS Publications Warehouse

    Griffin, M.S.; Martin, G.R.; White, K.D.

    1994-01-01

    This report describes selected data-collection activities and the associated data collected during the Kentucky River Basin pilot study of the U.S. Geological Survey's National Water-Quality Assessment Program. The data are intended to provide a nationally consistent description and improved understanding of current water quality in the basin. The data were collected at seven fixed stations that represent stream cross sections where constituent transport and water-quality trends can be evaluated. The report includes descriptions of (1) the basin; (2) the design of the fixed-station network; (3) the fixed-station sites; (4) the physical and chemical measurements; (5) the methods of sample collection, processing, and analysis; and (6) the quality-assurance and quality-control procedures. Water-quality data collected at the fixed stations during routine periodic sampling and supplemental high-flow sampling from April 1987 to August 1991 are presented.

  14. The Upper Colorado River; National Water-Quality Assessment Program; surface-water-monitoring network

    USGS Publications Warehouse

    Spahr, Norman E.; Driver, Nancy E.; Stephens, Verlin C.

    1996-01-01

    The U.S. Geological Survey began full implementation of the National Water-Quality Assessment (NAWQA) program in 1991. The long-term goals of the NAWQA program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams, rivers, and aquifers; (2) describe how water quality is changing over time; and (3) improve understanding of the primary natural and human factors that affect water-quality conditions (Leahy and others, 1990). To meet these goals, 60 study units representing the Nation's most important river basins and aquifers are being investigated. The program design balances the unique assessment requirements of individual study units with a nationally consistent design structure that incorporates a multiscale, interdisciplinary approach for assessment of surface and ground water.

  15. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Silver Creek, Clark and Floyd counties, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Crawford, Charles G.; Peters, James G.

    1979-01-01

    The Indiana State Board of Health is developing a State water-quality management plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Silver Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. Effluents from the Sellersburg and Clarksville-North wastewater-treatment facilities are the only point-source waste loads that significantly affect the water quality in the modeled segment of Silver Creek. Model simulations indicate that nitrification is the most significant factor affecting the dissolved-oxygen concentration in Silver Creek during summer and winter low flows. Natural streamflow in Silver Creek during the summer and annual 7-day, 10-year low flow is zero, so no benefit from dilution is provided. Present ammonia-nitrogen and dissolved-oxygen concentrations of effluent from the Sellersburg and Clarksville-North wastewater-treatment facilities will violate current Indiana water-quality standards for ammonia toxicity and dissolved oxygen during summer and winter low flows. The current biochemical-oxygen demand limits for the Sellersburg and Clarksville-North wastewater-treatment facilities are not sufficient to maintain an average dissolved-oxygen concentration of at least 5 milligrams per liter, the State 's water-quality standard for streams. Calculations of the stream 's assimilative capacity indicate that Silver Creek cannot assimilate additional waste loadings and meet current Indiana water-quality standards. (Kosco-USGS)

  16. Installation Restoration Program. Phase II, Stage 1. Problem Confirmation Study, Luke Air Force Base, Glendale, Arizona.

    DTIC Science & Technology

    1984-11-01

    CONTENTS Section Title Page 4.3 Water Chemistry Conditions 4-10 4.3.1 Groundwater Quality Results 4-10 0 4.4 Water Quality - General 4-11 4.4.1 Water...Quality - General 4-11 4.4.2 Water Quality at LAFB 4-11 4.4.3 Soil Quality - General 4-15 0 4.4.4 Soil Quality at LAFB 4-15 4.4.5 Conclusions 4-16 5...ALTERNATIVE MEASURES 5-1 5.1 General 5-1 0 5.1.1 Base Production Wells 5-2 5.1.2 Current and North Fire Depart- 5-2 ment Training Areas 5.2 Summary 5

  17. Assessing BMP Performance Using Microtox Toxicity Analysis

    EPA Science Inventory

    Best Management Practices (BMPs) have been shown to be effective in reducing runoff and pollutants from urban areas and thus provide a mechanism to improve downstream water quality. Currently, BMP performance regarding water quality improvement is assessed through measuring each...

  18. Mass imbalances in EPANET water-quality simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    EPANET is widely employed to simulate water quality in water distribution systems. However, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results, in general, only for small water-quality time steps; use of an adequately short time step may not be feasible. Overly long time steps can yield errors in concentrations and result in situations in which constituent mass is not conserved. Mass may not be conserved even when EPANET gives no errors or warnings. This paper explains how such imbalances can occur and provides examples of such cases; it also presents a preliminary event-driven approachmore » that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, to those obtained using the new approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations.« less

  19. Effect-Based Screening Methods for Water Quality Characterization Will Augment Conventional Analyte-by-Analyte Chemical Methods in Research As Well As Regulatory Monitoring

    EPA Science Inventory

    Conventional approaches to water quality characterization can provide data on individual chemical components of each water sample. This analyte-by-analyte approach currently serves many useful research and compliance monitoring needs. However these approaches, which require a ...

  20. Managing Water Quality in Wetlands with Foresty BMP's

    Treesearch

    Bob Rummer

    2004-01-01

    Forested wetlands are uniquely critical areas in forest operations that present special challenges to protect water quality. These locations are a direct interface between the impacts of forest operations and water. BMP's are designed to minimize nonpoint source pollution, but much of the science behind current guidelines is based on an understanding of erosion...

  1. Understanding the role of land use in urban stormwater quality management.

    PubMed

    Goonetilleke, Ashantha; Thomas, Evan; Ginn, Simon; Gilbert, Dale

    2005-01-01

    Urbanisation significantly impacts water environments with increased runoff and the degradation of water quality. The management of quantity impacts are straight forward, but quality impacts are far more complex. Current approaches to safeguard water quality are largely ineffective and guided by entrenched misconceptions with a primary focus on 'end-of-pipe' solutions. The outcomes of a research study presented in the paper, which investigated relationships between water quality and six different land uses offer practical guidance in the planning of future urban developments. In terms of safeguarding water quality, high-density residential development which results in a relatively smaller footprint would be the preferred option. The research study outcomes bring into question a number of fundamental concepts and misconceptions routinely accepted in stormwater quality management. The research findings confirmed the need to move beyond customary structural measures and identified the key role that urban planning can play in safeguarding urban water environments.

  2. Water Resources Data - New Jersey, Water Year 1999, Volume 3, Water-Quality Data

    USGS Publications Warehouse

    DeLuca, M.J.; Romanok, K.M.; Riskin, M.L.; Mattes, G.L.; Thomas, A.M.; Gray, B.J.

    2000-01-01

    Water-resources data for the 1999 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 3 contains a summary of surface and ground water hydrologic conditions for the 1999 water year, a listing of current water-resource projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 133 surface-water stations, 46 miscellaneous surface-water sites, 30 ground-water stations, 41 miscellaneous ground-water sites, and records of daily statistics of temperature and other physical measurements from 17 continuous-monitoring stations. Locations of water-quality stations are shown in figures 11 and 17-20. Locations of miscellaneous water-quality sites are shown in figures 29-32 and 34. These data represent the part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Jersey.

  3. Assessing BMP Performance Using Microtox Toxicity Analysis - Rhode Island

    EPA Science Inventory

    Best Management Practices (BMPs) have been shown to be effective in reducing runoff and pollutants from urban areas and thus provide a mechanism to improve downstream water quality. Currently, BMP performance regarding water quality improvement is assessed through measuring each...

  4. Assessing BMP Performance Using Microtox® Toxicity Analysis

    EPA Science Inventory

    Best Management Practices (BMPs) have been shown to be effective in reducing runoff and pollutants from urban areas and thus provide a mechanism to improve downstream water quality. Currently, BMP performance regarding water quality improvement is assessed through measuring each...

  5. WATER QUALITY AND SWIMMING-ASSOCIATED HEALTH EFFECTS

    EPA Science Inventory

    Evidence from various sources around the world indicate that there is a relationship between gastroenteritis in swimmers and the quality of the bathing water as measured with bacterial indicators of fecal contamination. Current EPA guidelines recommend the use of cultural method...

  6. Sources and summaries of water-quality information for the Rapid Creek basin, western South Dakota

    USGS Publications Warehouse

    Zogorski, John S.; Zogorski, E.M.; McKallip, T.E.

    1990-01-01

    This report provides a compilation of water quality information for the Rapid Creek basin in western South Dakota. Two types of information are included: First, past and current water quality monitoring data collected by the South Dakota Department of Water and Natural Resources, U.S. Forest Service, U.S. Geological Survey, and others are described. Second, a summary is included for all past water quality reports, publications, and theses that could be located during this study. A total of 62 documents were abstracted and included journal articles, abstracts, Federal agency reports and publications, university and State agency reports, local agency reports, and graduate theses. The report should be valuable to water resources managers, regulators, and others contemplating water quality research, monitoring, and regulatory programs in the Rapid Creek basin. (USGS)

  7. [Analysis on current status of drinking water quality in rural areas of China].

    PubMed

    Zhang, L; Chen, Y; Chen, C; Wang, H; Yan, H Z; Zhao, Y C

    1997-01-01

    An investigation on drinking water quality in rural areas of 180 counties in 26 provinces, municipalities and autonomous regions of China was carried out. The population surveyed was 89.39 million. 69.6% of which was supplied with ground water. Central water supply systems served 47.1% of population. Quality of drinking water was graded according to the "Guidelines for Implementation of the 'Sanitary Standard for Drinking Water' in Rural Areas". The rate of population supplied with unqualified drinking water was 42.7%. The bacteriological indices of drinking water exceeded the standard seriously. Organic pollution occurred extensively. Some regions supplied with water of high concentration of fluoride.

  8. Water quality parameters of harbors of Charlotte Amalie, St. Thomas, Virgin Islands: Acquisition of in situ water data, intercorrelation of selected water parameters, and initial correlation of these in situ biological, chemical and physical data with ERTS-1 bulk CCT MSS band 5 data

    NASA Technical Reports Server (NTRS)

    Coulbourn, W. C.; Olsen, D. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Remote sensing by the ERTS-1 satellite was compared with selected water quality parameters including pH, salinity, conductivity, dissolved oxygen, water depth, water temperature, turbidity, plankton concentration, current variables, chlorophylla, total carotenoids, and species diversity of the benthic community. Strong correlation between turbidity and MSS-sensed radiance was recorded and less strong correlations between the two plankton pigments and radiance. Turbidity and benthic species diversity were highly correlated furnishing an inferential tie between an easily sensed water quality variable and a sensitive indicator of average water quality conditions.

  9. High Plains regional ground-water study

    USGS Publications Warehouse

    Dennehy, Kevin F.

    2000-01-01

    Over the last 25 years, industry and government have made large financial investments aimed at improving water quality across the Nation. Significant progress has been made; however, many water-quality concerns remain. In 1991, the U.S. Geological Survey (USGS) began implementing a full-scale National Water-Quality Assessment Program to provide consistent and scientifically sound information for managing the Nation's water resources. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers, (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality. Assessing the quality of water in every location in the Nation would not be practical; therefore, NAWQA Program studies are conducted within a set of areas called study units (fig. 1). These study units are composed of more than 50 important river and aquifer systems that represent the diverse geography, water resources, and land and water uses of the Nation. The High Plains Regional Ground-Water Study is one such study area, designed to address issues relevant to the High Plains Aquifer system while supplementing water-quality information collected in other study units across the Nation. Implementation of the NAWQA Program for the High Plains Regional Ground-Water Study area began in 1998.

  10. Modelling the impacts of global change on concentrations of Escherichia coli in an urban river

    NASA Astrophysics Data System (ADS)

    Jalliffier-Verne, Isabelle; Leconte, Robert; Huaringa-Alvarez, Uriel; Heniche, Mourad; Madoux-Humery, Anne-Sophie; Autixier, Laurène; Galarneau, Martine; Servais, Pierre; Prévost, Michèle; Dorner, Sarah

    2017-10-01

    Discharges of combined sewer system overflows (CSOs) affect water quality in drinking water sources despite increasing regulation and discharge restrictions. A hydrodynamic model was applied to simulate the transport and dispersion of fecal contaminants from CSO discharges and to quantify the impacts of climate and population changes on the water quality of the river used as a drinking water source in Québec, Canada. The dispersion model was used to quantify Escherichia coli (E. coli) concentrations at drinking water intakes. Extreme flows during high and low water events were based on a frequency analysis in current and future climate scenarios. The increase of the number of discharges was quantified in current and future climate scenarios with regards to the frequency of overflows observed between 2009 and 2012. For future climate scenarios, effects of an increase of population were estimated according to current population growth statistics, independently of local changes in precipitation that are more difficult to predict than changes to regional scale hydrology. Under ;business-as-usual; scenarios restricting increases in CSO discharge frequency, mean E. coli concentrations at downstream drinking water intakes are expected to increase by up to 87% depending on the future climate scenario and could lead to changes in drinking water treatment requirements for the worst case scenarios. The greatest uncertainties are related to future local discharge loads. Climate change adaptation with regards to drinking water quality must focus on characterizing the impacts of global change at a local scale. Source water protection planning must consider the impacts of climate and population change to avoid further degradation of water quality.

  11. Water quality of the lower Columbia River basin; analysis of current and historical water-quality data through 1994

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Tanner, Dwight Q.; Morace, Jennifer L.; McKenzie, Stuart W.; Skach, Kenneth A.

    1996-01-01

    Trend tests showed significant (r < 0.05) downward trends from 1973 to 1994 for three constituents at the Columbia River at Warrendale: phosphorus in unfiltered water, total dissolved solids, and specific conductance. These trends may be a consequence of more conservative agricultural practices in the area upstream from Warrendale.

  12. Water quality in hard rocks of the Karkonosze National Park (Western Sudetes, SW Poland)

    NASA Astrophysics Data System (ADS)

    Marszałek, Henryk; Rysiukiewicz, Michał

    2017-12-01

    Long-term regional emissions of air pollutants in the second half of the twentieth century led to strong changes in the quality of surface and groundwater in the Karkonosze Mts. As a result, in the most valuable natural parts of these mountains, protected in the area of the Karkonosze National Park, there was strong deforestation, which assumed the size of an ecological disaster. The various protective activities introduced at the beginning of the 1990s led to the improvement not only of the water quality, but also other ecosystems. Based on the chemical analyses of water sampled in 40 points located in the whole Park, the current state of water quality was assessed. Concentrations of some microelements were higher only in few points compared to the drinking water quality standards, which indicates a significant improvement in water quality.

  13. Microbial Monitoring of Surface Water in South Africa: An Overview

    PubMed Central

    Luyt, Catherine D.; Tandlich, Roman; Muller, Wilhelmine J.; Wilhelmi, Brendan S.

    2012-01-01

    Infrastructural problems force South African households to supplement their drinking water consumption from water resources of inadequate microbial quality. Microbial water quality monitoring is currently based on the Colilert®18 system which leads to rapidly available results. Using Escherichia coli as the indicator microorganism limits the influence of environmental sources on the reported results. The current system allows for understanding of long-term trends of microbial surface water quality and the related public health risks. However, rates of false positive for the Colilert®18-derived concentrations have been reported to range from 7.4% to 36.4%. At the same time, rates of false negative results vary from 3.5% to 12.5%; and the Colilert medium has been reported to provide for cultivation of only 56.8% of relevant strains. Identification of unknown sources of faecal contamination is not currently feasible. Based on literature review, calibration of the antibiotic-resistance spectra of Escherichia coli or the bifidobacterial tracking ratio should be investigated locally for potential implementation into the existing monitoring system. The current system could be too costly to implement in certain areas of South Africa where the modified H2S strip test might be used as a surrogate for the Colilert®18. PMID:23066390

  14. How Much Will It Cost To Monitor Microbial Drinking Water Quality in Sub-Saharan Africa?

    PubMed Central

    2017-01-01

    Microbial water quality monitoring is crucial for managing water resources and protecting public health. However, institutional testing activities in sub-Saharan Africa are currently limited. Because the economics of water quality testing are poorly understood, the extent to which cost may be a barrier to monitoring in different settings is unclear. This study used cost data from 18 African monitoring institutions (piped water suppliers and health surveillance agencies in six countries) and estimates of water supply type coverage from 15 countries to assess the annual financial requirements for microbial water testing at both national and regional levels, using World Health Organization recommendations for sampling frequency. We found that a microbial water quality test costs 21.0 ± 11.3 USD, on average, including consumables, equipment, labor, and logistics, which is higher than previously calculated. Our annual cost estimates for microbial monitoring of piped supplies and improved point sources ranged between 8 000 USD for Equatorial Guinea and 1.9 million USD for Ethiopia, depending primarily on the population served but also on the distribution of piped water system sizes. A comparison with current national water and sanitation budgets showed that the cost of implementing prescribed testing levels represents a relatively modest proportion of existing budgets (<2%). At the regional level, we estimated that monitoring the microbial quality of all improved water sources in sub-Saharan Africa would cost 16.0 million USD per year, which is minimal in comparison to the projected annual capital costs of achieving Sustainable Development Goal 6.1 of safe water for all (14.8 billion USD). PMID:28459563

  15. How Much Will It Cost To Monitor Microbial Drinking Water Quality in Sub-Saharan Africa?

    PubMed

    Delaire, Caroline; Peletz, Rachel; Kumpel, Emily; Kisiangani, Joyce; Bain, Robert; Khush, Ranjiv

    2017-06-06

    Microbial water quality monitoring is crucial for managing water resources and protecting public health. However, institutional testing activities in sub-Saharan Africa are currently limited. Because the economics of water quality testing are poorly understood, the extent to which cost may be a barrier to monitoring in different settings is unclear. This study used cost data from 18 African monitoring institutions (piped water suppliers and health surveillance agencies in six countries) and estimates of water supply type coverage from 15 countries to assess the annual financial requirements for microbial water testing at both national and regional levels, using World Health Organization recommendations for sampling frequency. We found that a microbial water quality test costs 21.0 ± 11.3 USD, on average, including consumables, equipment, labor, and logistics, which is higher than previously calculated. Our annual cost estimates for microbial monitoring of piped supplies and improved point sources ranged between 8 000 USD for Equatorial Guinea and 1.9 million USD for Ethiopia, depending primarily on the population served but also on the distribution of piped water system sizes. A comparison with current national water and sanitation budgets showed that the cost of implementing prescribed testing levels represents a relatively modest proportion of existing budgets (<2%). At the regional level, we estimated that monitoring the microbial quality of all improved water sources in sub-Saharan Africa would cost 16.0 million USD per year, which is minimal in comparison to the projected annual capital costs of achieving Sustainable Development Goal 6.1 of safe water for all (14.8 billion USD).

  16. Real-time assessments of water quality: expanding nowcasting throughout the Great Lakes

    USGS Publications Warehouse

    ,

    2013-01-01

    Nowcasts are systems that inform the public of current bacterial water-quality conditions at beaches on the basis of predictive models. During 2010–12, the U.S. Geological Survey (USGS) worked with 23 local and State agencies to improve existing operational beach nowcast systems at 4 beaches and expand the use of predictive models in nowcasts at an additional 45 beaches throughout the Great Lakes. The predictive models were specific to each beach, and the best model for each beach was based on a unique combination of environmental and water-quality explanatory variables. The variables used most often in models to predict Escherichia coli (E. coli) concentrations or the probability of exceeding a State recreational water-quality standard included turbidity, day of the year, wave height, wind direction and speed, antecedent rainfall for various time periods, and change in lake level over 24 hours. During validation of 42 beach models during 2012, the models performed better than the current method to assess recreational water quality (previous day's E. coli concentration). The USGS will continue to work with local agencies to improve nowcast predictions, enable technology transfer of predictive model development procedures, and implement more operational systems during 2013 and beyond.

  17. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring.

    PubMed

    Peletz, Rachel; Kumpel, Emily; Bonham, Mateyo; Rahman, Zarah; Khush, Ranjiv

    2016-03-02

    Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies) across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO) Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies), served larger populations, operated in urban settings, and had higher water quality budgets (all p < 0.05). Our results indicate that smaller water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety.

  18. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring

    PubMed Central

    Peletz, Rachel; Kumpel, Emily; Bonham, Mateyo; Rahman, Zarah; Khush, Ranjiv

    2016-01-01

    Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies) across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO) Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies), served larger populations, operated in urban settings, and had higher water quality budgets (all p < 0.05). Our results indicate that smaller water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety. PMID:26950135

  19. The Effects of Storm Runoff on Water Quality and the Coping Strategy of a Deep Canyon-Shaped Source Water Reservoir in China

    PubMed Central

    Ma, Weixing; Huang, Tinglin; Li, Xuan; Zhou, Zizhen; Li, Yang; Zeng, Kang

    2015-01-01

    Storm runoff events in the flooding season affect the water quality of reservoirs and increase risks to the water supply, but coping strategies have seldom been reported. The phenomenon of turbid current intrusion resulting in water turbidity and anoxic conditions reappearing after storm runoff, resulting in the deterioration of water quality, was observed in the flooding season in the deep canyon-shaped Heihe Reservoir. The objective of this work was to elucidate the effects of storm runoff on the Heihe Reservoir water quality and find a coping strategy. In this study, an intensive sampling campaign measuring water temperature, dissolved oxygen, turbidity, nutrients, and metals were conducted in the reservoir over a period of two years, and the water-lifting aerators were improved to achieve single aeration and a full layer of mixing and oxygenation functions using different volumes of gas. The operation of the improved water-lifting aerators mixed the reservoir three months ahead of the natural mixing time, and good water quality was maintained during the induced mixing period, thereby extending the good water quality period. The results can provide an effective coping strategy to improve the water quality of a source water reservoir and ensure the safety of drinking water. PMID:26184258

  20. Water quality standards for the protection of human health and aquatic ecosystems in Korea: current state and future perspective.

    PubMed

    Kwak, Jin Il; Nam, Sun-Hwa; An, Youn-Joo

    2018-02-01

    Since the Korean Ministry of the Environment established the Master Plan for Water Environment (2006-2015), the need to revise the water quality standards (WQSs) has driven government projects to expand the standards for the protection of human health and aquatic ecosystems. This study aimed to provide an historical overview of how these WQSs were established, amended, and expanded over the past 10 years in Korea. Here, major projects related to national monitoring in rivers and the amendment of WQSs were intensely reviewed, including projects on the categorization of hazardous chemicals potentially discharged into surface water, the chemical ranking and scoring methodology for surface water (CRAFT, Chemical RAnking of surFace water polluTants), whole effluent toxicity (WET) management systems, the 4th, 5th, and 6th revisions of the water quality standards for the protection of human health, and efforts toward developing the 7th revision. In this review, we assimilated the past and current status as well as future perspectives of Korean surface WQSs. This research provides information that aids our understanding of how surface WQSs have been expanded, and how scientific approaches to ensure water quality have been applied at each step of the process in Korea.

  1. Century-scale perspective on water quality in selected river basins of the conterminous United States

    USGS Publications Warehouse

    Stets, Edward G.; Kelly, Valerie J.; Broussard, Whitney P.; Smith, Thor E.; Crawford, Charles G.

    2012-01-01

    Nutrient pollution in the form of excess nitrogen and phosphorus inputs is a well-known cause of water-quality degradation that has affected water bodies across the Nation throughout the 20th century. The recognition of excess nutrients as pollution developed later than the recognition of other water-quality problems, such as waterborne illness, industrial pollution, and organic wastes. Nevertheless, long-term analysis of nutrient pollution is fundamental to our understanding of the current magnitude of the problem, as well the origins and the effects. This report describes the century-scale changes in water quality across a range streams in order to place current water-quality concerns in historical context and presents this history on a national scale as well as for selected river reaches. The primary focus is on nutrient pollution, but the development and societal responses to other water-quality problems also are considered. Land use and agriculture in the selected river reaches also are analyzed to consider how these factors may relate to nutrient pollution. Finally, the availability of relevant nutrient and inorganic carbon data are presented for the selected river reaches. Sources of these data included Federal agencies, State-level reports, municipal public works facilities, public health surveys, and sanitary surveys. The availability of these data extends back more than a century for most of the selected river reaches and suggests that there is a tremendous opportunity to document the development of nutrient pollution in these river reaches.

  2. Simulating the Response of Urban Water Quality to Climate and Land Use Change in Partially Urbanized Basins

    NASA Astrophysics Data System (ADS)

    Sun, N.; Yearsley, J. R.; Nijssen, B.; Lettenmaier, D. P.

    2014-12-01

    Urban stream quality is particularly susceptible to extreme precipitation events and land use change. Although the projected effects of extreme events and land use change on hydrology have been resonably well studied, the impacts on urban water quality have not been widely examined due in part to the scale mismatch between global climate models and the spatial scales required to represent urban hydrology and water quality signals. Here we describe a grid-based modeling system that integrates the Distributed Hydrology Soil Vegetation Model (DHSVM) and urban water quality module adpated from EPA's Storm Water Management Model (SWMM) and Soil and water assessment tool (SWAT). Using the model system, we evaluate, for four partially urbanized catchments within the Puget Sound basin, urban water quality under current climate conditions, and projected potential changes in urban water quality associated with future changes in climate and land use. We examine in particular total suspended solids, toal nitrogen, total phosphorous, and coliform bacteria, with catchment representations at the 150-meter spatial resolution and the sub-daily timestep. We report long-term streamflow and water quality predictions in response to extreme precipitation events of varying magnitudes in the four partially urbanized catchments. Our simulations show that urban water quality is highly sensitive to both climatic and land use change.

  3. Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2014-01-01

    In the history of manned spaceflight, environmental monitoring has relied heavily on archival sampling. For short missions, this type of sample collection was sufficient; returned samples provided a snapshot of the presence of chemical and biological contaminants in the spacecraft air and water. However, with the construction of the International Space Station (ISS) and the subsequent extension of mission durations, soon to be up to one year, the need for enhanced, real-time environmental monitoring became more pressing. The past several years have seen the implementation of several real-time monitors aboard the ISS, complemented with reduced archival sampling. The station air is currently monitored for volatile organic compounds (VOCs) using gas chromatography-differential mobility spectrometry (Air Quality Monitor [AQM]). The water on ISS is analyzed to measure total organic carbon and biocide concentrations using the Total Organic Carbon Analyzer (TOCA) and the Colorimetric Water Quality Monitoring Kit (CWQMK), respectively. The current air and water monitors provide important data, but the number and size of the different instruments makes them impractical for future exploration missions. It is apparent that there is still a need for improvements in environmental monitoring capabilities. One such improvement could be realized by modifying a single instrument to analyze both air and water. As the AQM currently provides quantitative, compound-specific information for target compounds present in air samples, and many of the compounds are also targets for water quality monitoring, this instrument provides a logical starting point to evaluate the feasibility of this approach. In this presentation, we will discuss our recent studies aimed at determining an appropriate method for introducing VOCs from water samples into the gas phase and our current work, in which an electro-thermal vaporization unit has been interfaced with the AQM to analyze target analytes at the relevant concentrations at which they are routinely detected in archival water samples from the ISS.

  4. Preferences for policy attributes and willingness to pay for water quality improvements under uncertainty

    NASA Astrophysics Data System (ADS)

    Mullen, Jeffrey D.; Calhoun, Kayla C.; Colson, Gregory J.

    2017-04-01

    When exploring environmental policy options, sometimes neither the current state of the environmental good being analyzed nor the effectiveness of the proposed policy is known with certainty. This is the case with privately owned, residential, onsite wastewater treatment systems (septic systems)—there is ample evidence that they can contribute to water quality impairment, but their contribution is generally stochastic in nature and the efficacy of technological solutions is uncertain. Furthermore, the benefits of ameliorating water quality impairments are public in nature. Septic system owners are legally responsible for maintaining their systems, but requiring them to upgrade otherwise properly functioning tanks is outside the scope of water quality regulations. An incentive structure is necessary to induce private homeowners to invest in septic upgrades that deliver both private benefits in addition to the positive externality for the wider public and environment. The question for policy makers is how these private incentives should be financed, and whether public support can be garnered. Results of a choice experiment in Gwinnett County, Georgia, accounting for both sources of uncertainty—the current state of water quality and the efficacy of the intervention—in the design of water quality policy are presented. We find baseline water quality conditions and policy efficacy significantly affect public support for a policy transferring public funds to private homeowners, in terms of both sentiment and willingness to pay. The manner in which costs are shared across stakeholders also affects the selection of a policy option, but not willingness to pay for it.

  5. Groundwater studies: principal aquifer surveys

    USGS Publications Warehouse

    Burow, Karen R.; Belitz, Kenneth

    2014-01-01

    In 1991, the U.S. Congress established the National Water-Quality Assessment (NAWQA) program within the U.S. Geological Survey (USGS) to develop nationally consistent long-term datasets and provide information about the quality of the Nation’s streams and groundwater. The USGS uses objective and reliable data, water-quality models, and systematic scientific studies to assess current water-quality conditions, to identify changes in water quality over time, and to determine how natural factors and human activities affect the quality of streams and groundwater. NAWQA is the only non-regulatory Federal program to perform these types of studies; participation is voluntary. In the third decade (Cycle 3) of the NAWQA program (2013–2023), the USGS will evaluate the quality and availability of groundwater for drinking supply, improve our understanding of where and why water quality is degraded, and assess how groundwater quality could respond to changes in climate and land use. These goals will be addressed through the implementation of a new monitoring component in Cycle 3: Principal Aquifer Surveys.

  6. Water-quality data-collection activities in Colorado and Ohio; Phase III, evaluation of existing data for use in assessing regional water-quality conditions and trends

    USGS Publications Warehouse

    Norris, J. Michael; Hren, Janet; Myers, Donna N.; Chaney, Thomas H.; Childress, Carolyn J. Oblinger

    1990-01-01

    During the past several years, a growing number of questions have been raised by members of Congress and others about the status of current waterquality conditions in the Nation, trends in water quality, and the major factors that affect water-quality conditions and trends. One area of particular interest and concern has been the suitability of existing water-quality data for addressing these types of questions at regional and national scales. In response to these questions and concerns, the U.S. Geological Survey began a pilot study in Colorado and Ohio to (1) determine the characteristics of current water-quality data-collection activities of Federal, State, regional, and local agencies and universities; and (2) determine how well the data from these activities, collected for various purposes and using different procedures, can be used to improve our ability to address the aforementioned questions.Colorado and Ohio were chosen for the pilot study because they represent regions with different types of water-quality issues and programs. The results of the study are specific to the two States and are not intended to be extrapolated to other States.The study was divided into three phases whose objectives were:Phase I Identify and inventory 1984 water-quality data-collection programs, including costs, in Colorado and Ohio, and identify those programs that meet a set of broad criteria for producing data that potentially are appropriate for water-quality assessments of regional and national scope. Phase II Evaluate the quality assurance of field and laboratory procedures used to produce the data from programs that met the broad criteria of Phase I. Phase III Compile the qualifying data from Phase II and evaluate the extent to which the resulting data base can be used to address selected water-quality questions for the two States.This report presents the results of Phase III, focusing on (1) the number of measurements made at each data-collection site for selected constituents, (2) the areal distribution of those sites that have sufficient data for selected types of analyses, and (3) the availability of key ancillary information such as streamflow to address broad-scope questions such as:What are existing water-quality conditions?Has the water quality changed? andHow do existing water-quality conditions and changes in these conditions relate to natural factors and human-induced activities?

  7. Mass imbalances in EPANET water-quality simulations

    NASA Astrophysics Data System (ADS)

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    2018-04-01

    EPANET is widely employed to simulate water quality in water distribution systems. However, in general, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results only for short water-quality time steps. Overly long time steps can yield errors in concentration estimates and can result in situations in which constituent mass is not conserved. The use of a time step that is sufficiently short to avoid these problems may not always be feasible. The absence of EPANET errors or warnings does not ensure conservation of mass. This paper provides examples illustrating mass imbalances and explains how such imbalances can occur because of fundamental limitations in the water-quality routing algorithm used in EPANET. In general, these limitations cannot be overcome by the use of improved water-quality modeling practices. This paper also presents a preliminary event-driven approach that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, toward those obtained using the preliminary event-driven approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations. The results presented in this paper should be of value to those who perform water-quality simulations using EPANET or use the results of such simulations, including utility managers and engineers.

  8. Reconnaissance Report on Papillion Creek Reservoirs.

    DTIC Science & Technology

    1981-03-01

    The appearance of the reservoir and production of malodors are nonaesthetic. The general charateristics of the flood control reservoirs near Lincoln...characteristic of extremely unproductive soft transparent waters to extremely productive hard waters turbid with plankton. A more current trend in lake...quality and biological productivity . The process of nutrient enrichment does not always result in the degradation of water quality. Whether or not the

  9. IS IT NECESSARY TO CONTROL POTENTIALLY INFECTIOUS MICROORGANISMS IN ANIMAL WASTES?

    EPA Science Inventory

    This presentation will begin with a holistic view of the watershed; considering microbiological water quality needs and how they are influenced by activities in the watershed. It will look at the current indicators of microbiological water quality and their usefulness and then id...

  10. MODEL ANALYSIS OF RIPARIAN BUFFER EFFECTIVENESS FOR REDUCING NUTRIENT INPUTS TO STREAMS IN AGRICULTURAL LANDSCAPES

    EPA Science Inventory

    Federal and state agencies responsible for protecting water quality rely mainly on statistically-based methods to assess and manage risks to the nation's streams, lakes and estuaries. Although statistical approaches provide valuable information on current trends in water quality...

  11. PROTECTING HEALTH WITH SAME DAY WATER QUALITY MONITORING RESULTS FOR BATHING BEACHES

    EPA Science Inventory

    Current US Environmental Protection Agency guidelines recommend the use of cultural methods for E. coli and enterococci to monitor beach water quality. The guidelines recommend a single sample value or a geometric mean value from at least five samples. The single sample guideli...

  12. State-of-Science Approaches to Determine Sensitive Taxa for Water Quality Criteria Derivation

    EPA Science Inventory

    Current Ambient Water Quality Criteria (AWQC) guidelines specify pre-defined taxa diversity requirements, which has limited chemical-specific criteria development in the U.S. to less than 100 chemicals. A priori knowledge of sensitive taxa to toxicologically similar groups of che...

  13. Water Resources Data, New Jersey, Water Year 2003; Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Hoppe, Heidi L.; Heckathorn, Heather A.; Riskin, Melissa L.; Gray, Bonnie J.; Melvin, Emma-Lynn; Liu, Nicholas A.

    2004-01-01

    Water-resources data for the 2003 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2003 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 123 continuing-record surface-water stations, 35 ground-water sites, records of daily statistics of temperature and other physical measurements from 20 continuous-recording stations, and 5 special-study sites consisting of 2 surface-water sites, 1 spring site, and 240 groundwater sites. Locations of water-quality stations are shown in figures 21-25. Locations of special-study sites are shown in figures 49-53. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  14. Water Resources Data, New Jersey, Water Year 2005Volume 3 - Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Heckathorn, Heather A.; Lewis, Jason M.; Gray, Bonnie J.; Feinson, Lawrence S.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2005 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 118 continuing-record surface-water stations, 30 ground-water sites, records of daily statistics of temperature and other physical measurements from 9 continuous-recording stations, and 5 special studies that included 89 stream, 11 lake, and 29 ground-water sites. Locations of water-quality stations are shown in figures 23-25. Locations of special-study sites are shown in figures 41-46. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  15. FRAMEWORK FOR DEVELOPING AMBIENT WATER ...

    EPA Pesticide Factsheets

    Currently, Ambient Water Quality Criteria (AWQC) for aquatic life protection are derived according to the Guidelines for Derivation of Ambient Water Quality Criteria for the Protection of Aquatic Life and Their Uses, published in 1985. To ensure that AWQC are derived from the best available science, Office of Water assessed the need to update the Guidelines and identified issues that should be addressed in the revisions. In December 2002, EPA's Science Advisory Board concurred with EPA's assessment of the need to update the Guidelines as well as with the issues EPA identified to address. Updating the Guidelines is a Priority Strategic Action included in OST's Strategy for Water Quality Standards and Criteria (Next Priority Strategic Action #1). To revise existing methodology for deriving ambient water quality criteria for the protection of aquatic life.

  16. [Water environmental capacity calculation model for the rivers in drinking water source conservation area].

    PubMed

    Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming

    2008-09-01

    Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.

  17. Biomonitoring of water quality of the Osumi, Devolli, and Shkumbini rivers through benthic macroinvertebrates and chemical parameters.

    PubMed

    Duka, Sonila; Pepa, Bledar; Keci, Erjola; Paparisto, Anila; Lazo, Pranvera

    2017-04-16

    Environmental monitoring of river water quality in Albania, using biological and chemical parameters, is a fast and effective way to assess the quality of water bodies.The aim of this study was to investigate Ephemeroptera, Plecoptera and Trichoptera (EPT), Biotic index-Richness using macroinvertebrates to assess the water quality, with special reference to nutrient (phosphorus and nitrogen) levels in the Devolli, Shkumbini and Osumi rivers. Our objective was to investigate the relationships between the measures of benthic macroinvertebrate communities and nutrient concentrations to assess water quality. The rivers' benthic macroinvertebrates were collected during different seasons in 2012. The biological and chemical parameters used in the current study identified them as quick indicators of water quality assessment. The total number of macroinvertebrate individuals (n = 15,006) (Osumi river: n = 5,546 organisms; Devolli river: n = 3,469 organisms; and Shkumbini river: n = 5,991 organisms), together with the EPT group (Ephemeroptera, Plecoptera, and Trichoptera), showed that the water quality at the river stations during the above-mentioned period belonged to Classes II and III (fair water quality and good water quality, respectively). The classification of the water quality was also based on the nitrogen and total phosphorus contents. The pollution tolerance levels of macroinvertebrate taxa varied from the non-tolerating forms encountered in environments with low pollution levels to the tolerating forms that are typical of environments with considerable pollution levels.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Taiping; Yang, Zhaoqing

    Increased eutrophication and degraded water quality in estuarine and coastal waters have been a worldwide environmental concern. While it is commonly accepted that anthropogenic impact plays a major role in many emerging water quality issues, natural conditions such as restricted water circulations controlled by geometry may also substantially contribute to unfavorable water quality in certain ecosystems. To elucidate the contributions from different factors, a hydrodynamic-water quality model that integrates both physical transport and pollutant loadings is particularly warranted. A preliminary modeling study using the Environmental Fluid Dynamic Code (EFDC) is conducted to investigate hydrodynamic circulation and low dissolved oxygen (DO)more » in Hood Canal, a representative fjord in the U.S. Pacific Northwest. Because the water quality modeling work is still ongoing, this paper focuses on the progress in hydrodynamic modeling component. The hydrodynamic model has been set up using the publicly available forcing data and was calibrated against field observations or NOAA predictions for tidal elevation, current, salinity and temperature. The calibrated model was also used to estimate physical transport timescales such as residence time in the estuary. The preliminary model results demonstrate that the EFDC Hood Canal model is capable of capturing the general circulation patterns in Hood Canal, including weak tidal current and strong vertical stratification. The long residence time (i.e., on the order of 100 days for the entire estuary) also indicates that restricted water circulation could contribute to low DO in the estuary and also makes the system especially susceptible to anthropogenic disturbance, such as excess nutrient input.« less

  19. Ground-water quality in the western Snake River basin, Swan Falls to Glenns Ferry, Idaho

    USGS Publications Warehouse

    Parliman, D.J.

    1983-01-01

    Water-quality data were collected from 92 wells in the western Snake River basin, Swan Falls to Glenns Ferry, Idaho. Current data were compiled with pre-1980 data from 116 wells to define water-quality conditions in major aquifers. Factors affecting water quality are composition of aquifer materials, water temperature, and source of recharge. Mixing of water by interaquifer flow, from confined, hot water aquifers (40 degrees Celsius or greater) with water from cold water aquifers (less than 20 degrees Celsius) occurs along regional complex fault systems, and through partially cased boreholes. Cold water generally contains calcium, magnesium, and bicarbonate plus carbonate ions; hot water generally contains sodium, potassium, and bicarbonate plus carbonate ions. Warm water (between 20 degrees and 40 degrees Celsius) has an intermediate chemical composition resulting from mixing. Ground-water quality is acceptable for most uses, although it locally contains chemical constituents or physical properties that may restrict its use. Effects of thermal water used for irrigation on quality of shallow ground water are inconclusive. Long-term increase in concentrations of several constituents in parts of the study area may be due to effects of land- and water-use activities, such as infiltration of septic-tank effluent. (USGS)

  20. RAPIDLY-MEASURED INDICATORS OF RECREATIONAL WATER QUALITY ARE PREDICTIVE OF SWIMMING-ASSOCIATED GASTROINTESTINAL ILLNESS

    EPA Science Inventory

    Fecal indicator bacteria (FIB) are used to monitor recreational water quality worldwide. Current methods of measuring FIB require at least 24-hours for growth of bacterial colonies. We conducted studies at four Great Lake beaches to examine the relationship between novel and fas...

  1. A FASTER METHOD OF MEASURING RECREATIONAL WATER QUALITY FOR BETTER PROTECTION OF SWIMMER'S HEALTH

    EPA Science Inventory

    Introduction

    Fecal indicator bacteria (FIB) are used to monitor recreational water quality worldwide. Current methods of measuring FIB require at least 24-hours for visible bacterial colonies to grow. We previously reported that a faster method (< 2 hours) of measuring FI...

  2. RAPID, PCR-BASED METHODS FOR MEASURING THE QUALITY OF BATHING BEACH WATERS

    EPA Science Inventory

    The current methods for measuring the quality of recreational waters were developed in the 1970's and were recommended to the States by EPA in 1986. These methods detect and quantify Escherichia coli and enterococci, two bacteria that are consistently associated with fecal wast...

  3. WATER QUALITY INDICES: A SURVEY OF INDICES USED IN THE UNITED STATES

    EPA Science Inventory

    This study documents the extent to which water quality indices currently are being used in the United States. It reviews the indices published in the literature and surveys the States and interstate commissions to determine: (1) which agencies are using indices, (2) the type of i...

  4. Determination of water environment standards based on water quality criteria in China: Limitations and feasibilities.

    PubMed

    Wang, Tieyu; Zhou, Yunqiao; Bi, Cencen; Lu, Yonglong; He, Guizhen; Giesy, John P

    2017-07-01

    There is a need to formulate water environment standards (WESs) from the current water quality criteria (WQC) in China. To this end, we briefly summarize typical mechanisms applied in several countries with longer histories of developing WESs, and three limitations to formulating WESs in China were identified. After analyzing the feasibility factors including economic development, scientific support capability and environmental policies, we realized that China is still not ready for a complete change from its current nation-wide unified WES system to a local-standard-based system. Thus, we proposed a framework for transformation from WQC to WESs in China. The framework consists of three parts, including responsibilities, processes and policies. The responsibilities include research authorization, development of guidelines, and collection of information, at both national and local levels; the processes include four steps and an impact factor system to establish water quality standards; and the policies include seven specific proposals. Copyright © 2016. Published by Elsevier B.V.

  5. Evaluating sustainable water quality management in the U.S.: Urban, Agricultural, and Environmental Protection Practices

    NASA Astrophysics Data System (ADS)

    van Oel, P. R.; Alfredo, K. A.; Russo, T. A.

    2015-12-01

    Sustainable water management typically emphasizes water resource quantity, with focus directed at availability and use practices. When attention is placed on sustainable water quality management, the holistic, cross-sector perspective inherent to sustainability is often lost. Proper water quality management is a critical component of sustainable development practices. However, sustainable development definitions and metrics related to water quality resilience and management are often not well defined; water quality is often buried in large indicator sets used for analysis, and the policy regulating management practices create sector specific burdens for ensuring adequate water quality. In this research, we investigated the methods by which water quality is evaluated through internationally applied indicators and incorporated into the larger idea of "sustainability." We also dissect policy's role in the distribution of responsibility with regard to water quality management in the United States through evaluation of three broad sectors: urban, agriculture, and environmental water quality. Our research concludes that despite a growing intention to use a single system approach for urban, agricultural, and environmental water quality management, one does not yet exist and is even hindered by our current policies and regulations. As policy continues to lead in determining water quality and defining contamination limits, new regulation must reconcile the disparity in requirements for the contaminators and those performing end-of-pipe treatment. Just as the sustainable development indicators we researched tried to integrate environmental, economic, and social aspects without skewing focus to one of these three categories, policy cannot continue to regulate a single sector of society without considering impacts to the entire watershed and/or region. Unequal distribution of the water pollution burden creates disjointed economic growth, infrastructure development, and policy enactment across the sectors preventing a holistic approach to water quality management and, thus, rendering our system unsustainable.

  6. Estimation of water quality parameters of inland and coastal waters with the use of a toolkit for processing of remote sensing data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dekker, A.G.; Hoogenboom, H.J.; Rijkeboer, M.

    1997-06-01

    Deriving thematic maps of water quality parameters from a remote sensing image requires a number of processing steps, such as calibration, atmospheric correction, air/water interface correction, and application of water quality algorithms. A prototype software environment has recently been developed that enables the user to perform and control these processing steps. Main parts of this environment are: (i) access to the MODTRAN 3 radiative transfer code for removing atmospheric and air-water interface influences, (ii) a tool for analyzing of algorithms for estimating water quality and (iii) a spectral database, containing apparent and inherent optical properties and associated water quality parameters.more » The use of the software is illustrated by applying implemented algorithms for estimating chlorophyll to data from a spectral library of Dutch inland waters with CHL ranging from 1 to 500 pg 1{sup -1}. The algorithms currently implemented in the Toolkit software are recommended for optically simple waters, but for optically complex waters development of more advanced retrieval methods is required.« less

  7. The quality of drinking water in North Carolina farmworker camps.

    PubMed

    Bischoff, Werner E; Weir, Maria; Summers, Phillip; Chen, Haiying; Quandt, Sara A; Liebman, Amy K; Arcury, Thomas A

    2012-10-01

    The purpose of this study was to assess water quality in migrant farmworker camps in North Carolina and determine associations of water quality with migrant farmworker housing characteristics. We collected data from 181 farmworker camps in eastern North Carolina during the 2010 agricultural season. Water samples were tested using the Total Coliform Rule (TCR) and housing characteristics were assessed using North Carolina Department of Labor standards. A total of 61 (34%) of 181 camps failed the TCR. Total coliform bacteria were found in all 61 camps, with Escherichia coli also being detected in 2. Water quality was not associated with farmworker housing characteristics or with access to registered public water supplies. Multiple official violations of water quality standards had been reported for the registered public water supplies. Water supplied to farmworker camps often does not comply with current standards and poses a great risk to the physical health of farmworkers and surrounding communities. Expansion of water monitoring to more camps and changes to the regulations such as testing during occupancy and stronger enforcement are needed to secure water safety.

  8. The Quality of Drinking Water in North Carolina Farmworker Camps

    PubMed Central

    Weir, Maria; Summers, Phillip; Chen, Haiying; Quandt, Sara A.; Liebman, Amy K.; Arcury, Thomas A.

    2012-01-01

    Objectives. The purpose of this study was to assess water quality in migrant farmworker camps in North Carolina and determine associations of water quality with migrant farmworker housing characteristics. Methods. We collected data from 181 farmworker camps in eastern North Carolina during the 2010 agricultural season. Water samples were tested using the Total Coliform Rule (TCR) and housing characteristics were assessed using North Carolina Department of Labor standards. Results. A total of 61 (34%) of 181 camps failed the TCR. Total coliform bacteria were found in all 61 camps, with Escherichia coli also being detected in 2. Water quality was not associated with farmworker housing characteristics or with access to registered public water supplies. Multiple official violations of water quality standards had been reported for the registered public water supplies. Conclusions. Water supplied to farmworker camps often does not comply with current standards and poses a great risk to the physical health of farmworkers and surrounding communities. Expansion of water monitoring to more camps and changes to the regulations such as testing during occupancy and stronger enforcement are needed to secure water safety. PMID:22897558

  9. PROFILE: Integrating Stressor and Response Monitoring into a Resource-Based Water-Quality Assessment Framework.

    PubMed

    ROUX; KEMPSTER; KLEYNHANS; VAN; DU

    1999-01-01

    / South African water law as well as the country's water resource management policies are currently under review. The Water Law Principles, which were established as part of this review process, indicate a commitment to sustainable development of water resources and the protection of an ecological "reserve." Such policy goals highlight the limitations of traditional and current water-quality management strategies, which rely on stressor monitoring and associated regulation of pollution. The concept of an assimilative capacity is central to the implementation of the current water-quality management approach. Weaknesses inherent in basing water management on the concept of assimilative capacity are discussed. Response monitoring is proposed as a way of addressing some of the weaknesses. Following a global trend, the new policy goals emphasize the need to protect rather than to use the ability of ecosystems to recover from disturbances. This necessitates the adoption of response measurements to quantify ecological condition and monitor ecological change. Response monitoring focuses on properties that are essential to the sustainability of the ecosystem. These monitoring tools can be used to establish natural ranges of ecological change within ecosystems, as well as to quantify conceptually acceptable and unacceptable ranges of change. Through a framework of biological criteria and biological impairment standards, the results of response monitoring can become an integral part of future water resource management strategies in South Africa. KEY WORDS: Stressor monitoring; Response monitoring; Assimilative capacity; Ecosystem stability; Resilience; Biocriteria

  10. Water recovery and solid waste processing for aerospace and domestic applications

    NASA Technical Reports Server (NTRS)

    Murawczyk, C.

    1973-01-01

    The work is described accomplished in compiling information needed to establish the current water supply and waste water processing requirements for dwellings, and for developing a preliminary design for a waste water to potable water management system. Data generated was used in formulation of design criteria for the preliminary design of the waste water to potable water recycling system. The system as defined was sized for a group of 500 dwelling units. Study tasks summarized include: water consumption, nature of domestic water, consumer appliances for low water consumption, water quality monitoring, baseline concept, and current and projected costs.

  11. Water Quality in the Delmarva Peninsula, Delaware, Maryland, and Virginia, 1999-2001

    USGS Publications Warehouse

    Denver, Judith M.; Ator, Scott W.; Debrewer, Linda M.; Ferrari, Matthew J.; Barbaro, Jeffrey R.; Hancock, Tracy C.; Brayton, Michael J.; Nardi, Mark R.

    2004-01-01

    This report contains the major findings of a 1999-2001 assessment of water quality in the Delmarva Peninsula. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is assessed at many scales?from local ground-water flow paths to regional ground-water networks and in surface water?and is discussed in terms of local, State, and regional issues. Conditions in the Delmarva Peninsula are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies; universities; public interest groups; or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. Other products describing water-quality conditions in the Delmarva Peninsula are available. Detailed technical information, data and analyses, methodology, models, graphs, and maps that support the findings presented in this report can be accessed from http://md.water.usgs.gov/delmarva. Other reports in this series and data collected from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  12. Performance characterization of water recovery and water quality from chemical/organic waste products

    NASA Technical Reports Server (NTRS)

    Moses, W. M.; Rogers, T. D.; Chowdhury, H.; Cullingford, H. S.

    1989-01-01

    The water reclamation subsystems currently being evaluated for the Space Shuttle Freedom are briefly reviewed with emphasis on a waste water management system capable of processing wastes containing high concentrations of organic/inorganic materials. The process combines low temperature/pressure to vaporize water with high temperature catalytic oxidation to decompose volatile organics. The reclaimed water is of potable quality and has high potential for maintenance under sterile conditions. Results from preliminary experiments and modifications in process and equipment required to control reliability and repeatability of system operation are presented.

  13. Water-quality assessment and wastewater-management alternatives for Dardenne Creek in St Charles County, Missouri

    USGS Publications Warehouse

    Berkas, W.R.; Lodderhose, J.R.

    1985-01-01

    The quality of water in the 15 mile downstream reach of Dardenne Creek in St. Charles County, Missouri, was assessed to determine if it met the Missouri water quality standards. Concentrations of dissolved oxygen and total ammonia failed to meet water quality standards downstream from the Harvester-Dardenne and St. Peters Wastewater-Treatment Plants. The QUAL-II SEMCOG water quality model was calibrated and verified using two independent data sets from Dardenne Creek. Management alternatives using current, design capacity, and future expansion wastewater discharges from the St. Peters Wastewater-Treatment Plant were evaluated. Results of the computer simulation indicate that a nitrification-type advanced-treatment facility installed at the plant would produce a 5-day carbonaceous biochemical oxygen demand of 10 mg/L. An effluent limit of 5.0 mg/L of 5-day carbonaceous biochemical oxygen demand would further improve the water quality of Dardenne Creek; however, an additional treatment process, such as sand filtration, would be needed to meet this criterion. (USGS)

  14. Applications of turbidity monitoring to forest management in California.

    PubMed

    Harris, Richard R; Sullivan, Kathleen; Cafferata, Peter H; Munn, John R; Faucher, Kevin M

    2007-09-01

    Many California streams have been adversely affected by sedimentation caused by historic and current land uses, including timber harvesting. The impacts of timber harvesting and logging transportation systems on erosion and sediment delivery can be directly measured, modeled, or inferred from water quality measurements. California regulatory agencies, researchers, and land owners have adopted turbidity monitoring to determine effects of forest management practices on suspended sediment loads and water quality at watershed, project, and site scales. Watershed-scale trends in sediment discharge and responses to current forest practices may be estimated from data collected at automated sampling stations that measure turbidity, stream flow, suspended sediment concentrations, and other water quality parameters. Future results from these studies will provide a basis for assessing the effectiveness of modern forest practice regulations in protecting water quality. At the project scale, manual sampling of water column turbidity during high stream flow events within and downstream from active timber harvest plans can identify emerging sediment sources. Remedial actions can then be taken by managers to prevent or mitigate water quality impacts. At the site scale, manual turbidity sampling during storms or high stream flow events at sites located upstream and downstream from new, upgraded, or decommissioned stream crossings has proven to be a valuable way to determine whether measures taken to prevent post-construction erosion and sediment production are effective. Turbidity monitoring at the project and site scales is therefore an important tool for adaptive management. Uncertainty regarding the effects of current forest practices must be resolved through watershed-scale experiments. In the short term, this uncertainty will stimulate increased use of project and site-scale monitoring.

  15. Continuous water-quality and suspended-sediment transport monitoring in the San Francisco Bay, California, water years 2011–13

    USGS Publications Warehouse

    Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Shellenbarger, Gregory; Weidich, Kurt

    2014-01-01

    The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay. The San Francisco Bay area is home to millions of people, and the bay teems with both resident and migratory wildlife, plants, and fish. Fresh water mixes with salt water in the bay, which is subject both to riverine and marine (tides, waves, influx of salt water) influences. To understand this environment, the USGS, along with its partners, has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay. Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which causes gravity driven circulation patterns and stratification in the water column. Turbidity is measured using light-scattering from suspended solids in water, and is used as a surrogate for suspended-sediment concentration (SSC). Suspended sediment often carries adsorbed contaminants; attenuates sunlight in the water column; deposits on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; and deposits in ports and shipping channels, which can necessitate dredging. Dissolved oxygen, which is essential to a healthy ecosystem, is a fundamental indicator of water quality, and its concentration is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay reverse four times a day, and wind direction and intensity typically change on a daily cycle: consequently, salinity, water temperature, suspendedsediment concentration, and dissolvedoxygen concentration vary spatially and temporally throughout the bay, and continuous measurements are needed to observe these changes. The purpose of this fact sheet is to inform the public and resource managers of the availability of these water-quality data.

  16. Water use benefit index as a tool for community-based monitoring of water related trends in the Great Barrier Reef region

    NASA Astrophysics Data System (ADS)

    Smajgl, A.; Larson, S.; Hug, B.; De Freitas, D. M.

    2010-12-01

    SummaryThis paper presents a tool for documenting and monitoring water use benefits in the Great Barrier Reef catchments that allows temporal and spatial comparison along the region. Water, water use benefits and water allocations are currently receiving much attention from Australian policy makers and conservation practitioners. Because of the inherent complexity and variability in water quality, it is essential that scientific information is presented in a meaningful way to policy makers, managers and ultimately, to the general public who have to live with the consequences of the decisions. We developed an inexpensively populated and easily understandable water use benefit index as a tool for community-based monitoring of water related trends in the Great Barrier Reef region. The index is developed based on a comparative list of selected water-related indices integrating attributes across physico-chemical, economic, social, and ecological domains currently used in the assessment of water quality, water quantity and water use benefits in Australia. Our findings indicate that the proposed index allows the identification of water performance indicators by temporal and spatial comparisons. Benefits for decision makers and conservation practitioners include a flexible way of prioritization towards the domain with highest concern. The broader community benefits from a comprehensive and user-friendly tool, communicating changes in water quality trends more effectively.

  17. Microbial Community Analysis in Water Storage Tank Sediment Exposed to Monochloramine - Portland

    EPA Science Inventory

    Sediment accumulation in water storage facilities causes water quality degradation, including enhanced biological growth and more rapid disinfectant decay. The current research evaluated the microbial community composition after a drinking water storage facility’s sediment was e...

  18. Microbial Community Analysis in Water Storage Tank Sediment Exposed to Monochloramine

    EPA Science Inventory

    Sediment accumulation in water storage facilities causes water quality degradation, including enhanced biological growth and more rapid disinfectant decay. The current research evaluated the microbial community composition after a drinking water storage facility’s sediment was e...

  19. Global access to safe water: accounting for water quality and the resulting impact on MDG progress.

    PubMed

    Onda, Kyle; LoBuglio, Joe; Bartram, Jamie

    2012-03-01

    Monitoring of progress towards the Millennium Development Goal (MDG) drinking water target relies on classification of water sources as "improved" or "unimproved" as an indicator for water safety. We adjust the current Joint Monitoring Programme (JMP) estimate by accounting for microbial water quality and sanitary risk using the only-nationally representative water quality data currently available, that from the WHO and UNICEF "Rapid Assessment of Drinking Water Quality". A principal components analysis (PCA) of national environmental and development indicators was used to create models that predicted, for most countries, the proportions of piped and of other-improved water supplies that are faecally contaminated; and of these sources, the proportions that lack basic sanitary protection against contamination. We estimate that 1.8 billion people (28% of the global population) used unsafe water in 2010. The 2010 JMP estimate is that 783 million people (11%) use unimproved sources. Our estimates revise the 1990 baseline from 23% to 37%, and the target from 12% to 18%, resulting in a shortfall of 10% of the global population towards the MDG target in 2010. In contrast, using the indicator "use of an improved source" suggests that the MDG target for drinking-water has already been achieved. We estimate that an additional 1.2 billion (18%) use water from sources or systems with significant sanitary risks. While our estimate is imprecise, the magnitude of the estimate and the health and development implications suggest that greater attention is needed to better understand and manage drinking water safety.

  20. Dishwashing water recycling system and related water quality standards for military use.

    PubMed

    Church, Jared; Verbyla, Matthew E; Lee, Woo Hyoung; Randall, Andrew A; Amundsen, Ted J; Zastrow, Dustin J

    2015-10-01

    As the demand for reliable and safe water supplies increases, both water quality and available quantity are being challenged by population growth and climate change. Greywater reuse is becoming a common practice worldwide; however, in remote locations of limited water supply, such as those encountered in military installations, it is desirable to expand its classification to include dishwashing water to maximize the conservation of fresh water. Given that no standards for dishwashing greywater reuse by the military are currently available, the current study determined a specific set of water quality standards for dishwater recycling systems for U.S. military field operations. A tentative water reuse standard for dishwashing water was developed based on federal and state regulations and guidelines for non-potable water, and the developed standard was cross-evaluated by monitoring water quality data from a full-scale dishwashing water recycling system using an innovative electrocoagulation and ultrafiltration process. Quantitative microbial risk assessment (QMRA) was also performed based on exposure scenarios derived from literature data. As a result, a specific set of dishwashing water reuse standards for field analysis (simple, but accurate) was finalized as follows: turbidity (<1 NTU), Escherichia coli (<50 cfu mL(-1)), and pH (6-9). UV254 was recommended as a surrogate for organic contaminants (e.g., BOD5), but requires further calibration steps for validation. The developed specific water standard is the first for dishwashing water reuse and will be expected to ensure that water quality is safe for field operations, but not so stringent that design complexity, cost, and operational and maintenance requirements will not be feasible for field use. In addition the parameters can be monitored using simple equipment in a field setting with only modest training requirements and real-time or rapid sample turn-around. This standard may prove useful in future development of civilian guidelines. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Comparison of 2002 Water Year and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    USGS Publications Warehouse

    Spahr, N.E.

    2003-01-01

    Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines. Data were collected during water year 2002 following USGS protocols (U.S. Geological Survey, variously dated).

  2. Eutrophication of Water Bodies: Insights for an Age-Old Problem

    ERIC Educational Resources Information Center

    Lee, G. Fred; And Others

    1978-01-01

    Reviews the current state of information on the significance of phosphate as a water pollutant and the relationship between phosphorus loads and water quality. Areas that need additional research are discussed. (Author/BB)

  3. Water quality effects of short-rotation pine management for bioenergy feedstocks in the southeastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, Natalie A.; Jackson, C. Rhett; Bitew, Menberu M.

    There is growing interest in renewable and domestically produced energy which motivates the evaluation of woody bioenergy feedstock production. In the southeastern U.S., woody feedstock plantations, primarily of loblolly pine (Pinus taeda), would be intensively managed over short rotations (10–12 years) to achieve high yields. The primary differences in managing woody feedstocks for bioenergy production vs for pulp/sawtimber production include a higher frequency of pesticide and fertilizer applications, whole-tree removal, and greater ground disturbance (i.e., more bare ground during stand establishment and more frequent disturbance). And while the effects of pulp/sawtimber production on water quality are well-studied, the effects ofmore » growing short-rotation loblolly pine on water quality and the efficacy of current forestry Best Management Practices (BMPs) have not been evaluated for this emerging management system. We used a watershed-scale experiment in a before-after, control-impact design to evaluate the effects of growing loblolly pine for bioenergy on water quality in the Upper Coastal Plain of the southeastern U.S. Intensive management for bioenergy production and implementation of current forestry BMPs occurred on ~50% of two treatment watersheds, with one reference watershed in a minimally managed pine forest. Water quality metrics (nutrient and pesticide concentrations) were measured in stream water, groundwater, and interflow (i.e., shallow subsurface flow) for a two-year pre-treatment period, and for 3.5 years post-treatment. After 3.5 years, there was little change to stream water quality. Here, we report on observations where there were a few occurrences of saturated overland flow, but there were sediments and water dissipated within the streamside management zones in over 75% of these instances. Stream nutrient concentrations were low and temporal changes mainly reflected seasonal patterns in nitrogen cycling. Nitrate concentrations increased in groundwater post-treatment to < 2 mg N L -1, and these concentrations were below the U.S. drinking water standard (10 mg N L -1). Applied pesticides were almost always below detection in streams and groundwater. Overall, these findings highlight that current forestry BMPs can protect stream water quality from intensive pine management for bioenergy in the first 3.5 years. However, groundwater quality and transit times need to be considered in these low-gradient watersheds of the southeastern U.S. that are likely to become an important location for woody bioenergy feedstock production.« less

  4. Water quality effects of short-rotation pine management for bioenergy feedstocks in the southeastern United States

    DOE PAGES

    Griffiths, Natalie A.; Jackson, C. Rhett; Bitew, Menberu M.; ...

    2017-06-12

    There is growing interest in renewable and domestically produced energy which motivates the evaluation of woody bioenergy feedstock production. In the southeastern U.S., woody feedstock plantations, primarily of loblolly pine (Pinus taeda), would be intensively managed over short rotations (10–12 years) to achieve high yields. The primary differences in managing woody feedstocks for bioenergy production vs for pulp/sawtimber production include a higher frequency of pesticide and fertilizer applications, whole-tree removal, and greater ground disturbance (i.e., more bare ground during stand establishment and more frequent disturbance). And while the effects of pulp/sawtimber production on water quality are well-studied, the effects ofmore » growing short-rotation loblolly pine on water quality and the efficacy of current forestry Best Management Practices (BMPs) have not been evaluated for this emerging management system. We used a watershed-scale experiment in a before-after, control-impact design to evaluate the effects of growing loblolly pine for bioenergy on water quality in the Upper Coastal Plain of the southeastern U.S. Intensive management for bioenergy production and implementation of current forestry BMPs occurred on ~50% of two treatment watersheds, with one reference watershed in a minimally managed pine forest. Water quality metrics (nutrient and pesticide concentrations) were measured in stream water, groundwater, and interflow (i.e., shallow subsurface flow) for a two-year pre-treatment period, and for 3.5 years post-treatment. After 3.5 years, there was little change to stream water quality. Here, we report on observations where there were a few occurrences of saturated overland flow, but there were sediments and water dissipated within the streamside management zones in over 75% of these instances. Stream nutrient concentrations were low and temporal changes mainly reflected seasonal patterns in nitrogen cycling. Nitrate concentrations increased in groundwater post-treatment to < 2 mg N L -1, and these concentrations were below the U.S. drinking water standard (10 mg N L -1). Applied pesticides were almost always below detection in streams and groundwater. Overall, these findings highlight that current forestry BMPs can protect stream water quality from intensive pine management for bioenergy in the first 3.5 years. However, groundwater quality and transit times need to be considered in these low-gradient watersheds of the southeastern U.S. that are likely to become an important location for woody bioenergy feedstock production.« less

  5. Evaluating confidence in the impact of regulatory nutrient reduction and assessing the competing impact of climate change

    NASA Astrophysics Data System (ADS)

    Irby, I.; Friedrichs, M. A. M.

    2017-12-01

    Human impacts on the Chesapeake Bay through increased nutrient run-off as a result of land-use change, urbanization, and industrialization, have resulted in a degradation of water quality over the last half-century. These direct impacts, compounded with human-induced climate changes such as warming, rising sea level, and changes in precipitation, have elevated the conversation surrounding the future of the Bay's water quality. As a result, in 2010, a Total Maximum Daily Load (TMDL) was established for the Chesapeake Bay that limited nutrient and sediment input in an effort to increase dissolved oxygen. This research utilizes a multiple model approach to evaluate confidence in the estuarine water quality modeling portion of the TMDL. One of the models is then used to assess the potential impact climate change may have on the success of currently mandated nutrient reduction levels in 2050. Results demonstrate that although the models examined differ structurally and in biogeochemical complexity, they project a similar attainment of regulatory water quality standards after nutrient reduction, while also establishing that meeting water quality standards is relatively independent of hydrologic conditions. By developing a Confidence Index, this research identifies the locations and causes of greatest uncertainty in modeled projections of water quality. Although there are specific locations and times where the models disagree, this research lends an increased degree of confidence in the appropriateness of the TMDL levels and in the general impact nutrient reductions will have on Chesapeake Bay water quality under current environmental conditions. However, when examining the potential impacts of climate change, this research shows that the combined impacts of increasing temperature, sea level, and river flow negatively affect dissolved oxygen throughout the Chesapeake Bay and impact progress towards meeting the water quality standards associated with the TMDL with increased temperature as the primary culprit. These results, having been continually shared with the regulatory TMDL modelers, will aid in the decision making for the 2017 TMDL Mid-Point Assessment.

  6. A ground-water-quality monitoring program for Nevada

    USGS Publications Warehouse

    Nowlin, Jon O.

    1986-01-01

    A program was designed for the systematic monitoring of ground-water quality in Nevada. Basic hydrologic and water-quality principles are discussed in the formulation of a rational approach to developing a statewide monitoring program. A review of ground-water monitoring efforts in Nevada through 1977 indicates that few requirements for an effective statewide program are being met. A suggested program has been developed that consists of five major elements: (1) A Background-Quality Network to assess the existing water quality in Nevada aquifers, (2) a Contamination Source Inventory of known or potential threats to ground-water quality, (3) Surveillance Networks to monitor ground-water quality in selected hydrographic areas, (4) Intensive Surveys of individual instances of known or potential ground-water contamination, and (5) Ground-Water Data File to manage data generated by the other monitoring elements. Two indices have been developed to help assign rational priorities for monitoring ground water in the 255 hydrographic areas of Nevada: (1) A Hydrographic-Area Priority Index for surveillance monitoring, and (2) A Development-Potential Index for background monitoring of areas with little or no current development. Requirements for efficient management of data from ground-water monitoring are discussed and the three major systems containing Nevada ground-water data are reviewed. More than 11,000 chemical analyses of ground water have been acquired from existing systems and incorporated into a prototype data base.

  7. Comparison of Water Years 2004-05 and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    USGS Publications Warehouse

    Spahr, Norman E.; Hartle, David M.; Diaz, Paul

    2008-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were collected following USGS protocols.

  8. Comparison of 2006-2007 Water Years and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    USGS Publications Warehouse

    Solberg, P.A.; Moore, Bryan; Smits, Dennis

    2009-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were collected following USGS protocols (U.S. Geological Survey, variously dated).

  9. Microcumpter computation of water quality discharges

    USGS Publications Warehouse

    Helsel, Dennis R.

    1983-01-01

    A fully prompted program (SEDQ) has been developed to calculate daily and instantaneous water quality (QW) discharges. It is written in a version of BASIC, and requires inputs of gage heights, discharge rating curve, shifts, and water quality concentration information. Concentration plots may be modified interactively using the display screen. Semi-logarithmic plots of concentration and water quality discharge are output to the display screen, and optionally to plotters. A summary table of data is also output. SEDQ could be a model program for micro and minicomputer systems likely to be in use within the Water Resources Division, USGS, in the near future. The daily discharge-weighted mean concentration is one output from SEDQ. It is defined in this report, differentiated from the currently used mean concentration, and designated the ' equivalent concentration. ' (USGS)

  10. Toward developing long-life water quality sensors for the ISS using planar REDOX and conductivity sensors

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Kuhlman, G. M.; Keymeulen, D.; Myung, N.; Kounaves, S. P.

    2003-01-01

    REDOX and conductivity sensors are metal electrodes that are used to detect ionic species in solution by measuring the electrochemical cell current as the voltage is scanned. This paper describes the construction of the sensors, the potentiostat electronics, the measurement methodology, and applications to water quality measurements.

  11. Water resources of Tangipahoa Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2016-07-25

    Information concerning the availability, use, and quality of water in Tangipahoa Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  12. Water resources of St. Helena Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2016-07-27

    Information concerning the availability, use, and quality of water in St. Helena Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  13. Water resources of Livingston Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2016-07-27

    Information concerning the availability, use, and quality of water in Livingston Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  14. Water resources of East Feliciana Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2017-01-12

    Information concerning the availability, use, and quality of water in East Feliciana Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information is presented on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  15. Water resources of Orleans Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.; Lovelace, John K.

    2014-01-01

    Information concerning the availability, use, and quality of water in Orleans Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  16. Water resources of Caldwell Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.

    2014-01-01

    Information concerning the availability, use, and quality of water in Caldwell Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  17. Water resources of St. James Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2015-01-01

    Information concerning the availability, use, and quality of water in St. James Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  18. Water resources of Vermilion Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.

    2014-01-01

    Information concerning the availability, use, and quality of water in Vermilion Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  19. Water resources of St. Mary Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.; Lovelace, John K.

    2014-01-01

    Information concerning the availability, use, and quality of water in St. Mary Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for management of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  20. Water resources of De Soto Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.

    2014-01-01

    Information concerning the availability, use, and quality of water in De Soto Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata. usgs.gov/nwis) are the primary sources of the information presented here.

  1. Water resources of Jefferson Davis Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2014-01-01

    Information concerning the availability, use, and quality of water in Jefferson Davis Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  2. Water resources of St. Charles Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2015-01-01

    Information concerning the availability, use, and quality of water in St. Charles Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  3. Water resources of Terrebonne Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; Lovelace, John K.; White, Vincent E.

    2014-01-01

    Information concerning the availability, use, and quality of water in Terrebonne Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends,and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System http://waterdata.usgs.gov/nwis are the primary sources of the information presented here.

  4. Water resources of Acadia Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Larry B.; White, Vincent E.

    2014-01-01

    Information concerning the availability, use, and quality of water in Acadia Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  5. Water resources of La Salle Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2015-01-01

    Information concerning the availability, use, and quality of water in La Salle Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  6. Water resources of Sabine Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.; Lovelace, John K.

    2014-01-01

    Information concerning the availability, use, and quality of water in Sabine Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s (USGS) National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  7. Water resources of West Feliciana Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; Lovelace, John K.; Tomaszewski, Dan J.; Griffith, Jason M.

    2014-01-01

    Information concerning the availability, use, and quality of water in West Feliciana Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is discussed. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  8. Ground-water quality assessment of the central Oklahoma aquifer, Oklahoma - Analysis of available water-quality data through 1987

    USGS Publications Warehouse

    Parkhurst, David L.; Christenson, Scott C.; Schlottmann, Jamie L.

    1989-01-01

    Beginning in 1986, the Congress annually has appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water-Quality Assessment (NAWQA) Program. The long-term goals of a full-scale program would be to:Provide a nationally consistent description of current water-quality conditions for a large part of the Nation's surface- and ground-water resources;Define long-term trends (or lack of trends) in water quality; andIdentify, describe, and explain, as possible, the major factors that affect the observed water-quality conditions and trends.The results of the NAWQA Program will be made available to water managers, policy makers, and the public, and will provide an improved scientific basis for evaluating the effectiveness of water-quality management programs.At present (1988), the assessment program is in a pilot phase in seven project areas throughout the country that represent diverse hydrologic environments and water-quality conditions. The Central Oklahoma aquifer project is one of three pilot ground-water projects. One of the initial activities performed by each pilot project was to compile, screen, and interpret the large amount of water-quality data available within each study unit.The purpose of this report is to assess the water quality of the Central Oklahoma aquifer using the information available through 1987. The scope of the work includes compiling data from Federal, State, and local agencies; evaluating the suitability of the information for conducting a regional water-quality assessment; mapping regional variations in major-ion chemistry; calculating summary statistics of the available water-quality data; producing maps to show the location and number of samples that exceeded water-quality standards; and performing contingency-table analyses to determine the relation of geologic unit and depth to the occurrence of chemical constituents that exceed water-quality standards. This report provides an initial description of water-quality conditions in the Central Oklahoma aquifer study unit. No attempt was made in this report to determine the causes for regional variations in major-ion chemistry or to examine the reasons that some chemical constituents exceed water-quality standards.

  9. Perceptional and socio-demographic factors associated with household drinking water management strategies in rural Puerto Rico.

    PubMed

    Jain, Meha; Lim, Yili; Arce-Nazario, Javier A; Uriarte, María

    2014-01-01

    Identifying which factors influence household water management can help policy makers target interventions to improve drinking water quality for communities that may not receive adequate water quality at the tap. We assessed which perceptional and socio-demographic factors are associated with household drinking water management strategies in rural Puerto Rico. Specifically, we examined which factors were associated with household decisions to boil or filter tap water before drinking, or to obtain drinking water from multiple sources. We find that households differ in their management strategies depending on the institution that distributes water (i.e. government PRASA vs community-managed non-PRASA), perceptions of institutional efficacy, and perceptions of water quality. Specifically, households in PRASA communities are more likely to boil and filter their tap water due to perceptions of low water quality. Households in non-PRASA communities are more likely to procure water from multiple sources due to perceptions of institutional inefficacy. Based on informal discussions with community members, we suggest that water quality may be improved if PRASA systems improve the taste and odor of tap water, possibly by allowing for dechlorination prior to distribution, and if non-PRASA systems reduce the turbidity of water at the tap, possibly by increasing the degree of chlorination and filtering prior to distribution. Future studies should examine objective water quality standards to identify whether current management strategies are effective at improving water quality prior to consumption.

  10. Perceptional and Socio-Demographic Factors Associated with Household Drinking Water Management Strategies in Rural Puerto Rico

    PubMed Central

    Jain, Meha; Lim, Yili; Arce-Nazario, Javier A.; Uriarte, María

    2014-01-01

    Identifying which factors influence household water management can help policy makers target interventions to improve drinking water quality for communities that may not receive adequate water quality at the tap. We assessed which perceptional and socio-demographic factors are associated with household drinking water management strategies in rural Puerto Rico. Specifically, we examined which factors were associated with household decisions to boil or filter tap water before drinking, or to obtain drinking water from multiple sources. We find that households differ in their management strategies depending on the institution that distributes water (i.e. government PRASA vs community-managed non-PRASA), perceptions of institutional efficacy, and perceptions of water quality. Specifically, households in PRASA communities are more likely to boil and filter their tap water due to perceptions of low water quality. Households in non-PRASA communities are more likely to procure water from multiple sources due to perceptions of institutional inefficacy. Based on informal discussions with community members, we suggest that water quality may be improved if PRASA systems improve the taste and odor of tap water, possibly by allowing for dechlorination prior to distribution, and if non-PRASA systems reduce the turbidity of water at the tap, possibly by increasing the degree of chlorination and filtering prior to distribution. Future studies should examine objective water quality standards to identify whether current management strategies are effective at improving water quality prior to consumption. PMID:24586302

  11. Investigation of water quality in the Great Sand Dunes National Monument and Preserve, Saguache County, Colorado, February 1999 through September 2000: Qualifying for outstanding waters designation

    USGS Publications Warehouse

    Ferguson, Sheryl A.

    2003-01-01

    Great Sand Dunes National Monument and Preserve is located on the eastern side of the San Luis Valley in south-central Colorado. The monument covers 60.4 square miles in Saguache and Alamosa Counties and lies at the base of the Sangre de Cristo Mountains, where a unique combination of climate, topography, and hydrology has created and maintained the Nation?s tallest inland sand dunes. The Sangre de Cristo Mountains, which rise to more than 14,000 feet to the north and east of the dunes, are the source of several streams that flow around the dunes and eventually recharge the aquifer beneath the valley. Sand Creek and Medano Creeks are the largest of the streams in the monument that originate in the Sangre de Cristo Mountains; several ephemeral streams flow into Sand Creek and Medano Creek. Maintaining the high surface-water quality in the Great Sand Dunes National Monument and Preserve is identified as a critical issue by the National Park Service. Additionally, the National Park Service has indicated a desire to pursue an Outstanding Waters Designation, which offers the highest level of water-quality protection available under the Clean Water Act and Colorado regulations. This designation is designed to prevent any degradation from existing conditions (Chatman and others, 1997). Assessment is needed to evaluate whether the water quality of the streams in the monument meets the requirements for an Outstanding Waters Designation. Historically, prospecting and mining activities have occurred in the watersheds of Sand and Medano Creeks; currently, however, there is no mining activity in those watersheds. In addition, the camping and recreation that occur upstream from the monument on national preserve lands and water activities that occur in Medano Creek during the summer are a potential source of human-waste contamination. Figure 1. Location of study area, sampling sites, and indication of sites that meet or exceed instream standards. The U.S. Geological Survey (USGS), in cooperation with the National Park Service, investigated the water quality at 15 sites (fig. 1) from February 1999 through September 2000 to identify baseline water-quality conditions and to determine if the water met standards to qualify for the Outstanding Waters Designation. This report describes current water-quality conditions in streams in the monument and compares the water-quality data to Colorado instream standards to assist the State of Colorado Water Quality Control Commission in the determination of qualification for Outstanding Waters Designation.

  12. Uncertainty Management in Urban Water Engineering Adaptation to Climate Change

    EPA Science Inventory

    Current water resource planning and engineering assume a stationary climate, in which the observed historical water flow rate and water quality variations are often used to define the technical basis. When the non-stationarity is considered, however, climate change projection co...

  13. Water quality simulation of sewage impacts on the west coast of Mumbai, India.

    PubMed

    Vijay, R; Khobragade, P J; Sohony, R A

    2010-01-01

    Most coastal cities use the ocean as a site of waste disposal where pollutant loading degrades the quality of coastal waters. Presently, the west coast of Mumbai receives partially treated effluent from wastewater treatment facilities through ocean outfalls and discharges into creeks as well as wastewater/sewage from various open drains and nallahs which affect the water quality of creek and coastal water. Therefore, the objective of this paper is to simulate and assess the hydrodynamic behaviour and water quality due to impact of sewage and wastewater discharges from the west coast of Mumbai. Hydrodynamics and water quality were simulated based on present conditions and validated by using measured tide, current data and observed DO, BOD and FC. Observed and simulated results indicated non compliance to standards in Malad, Mahim creeks and the impact zones of ocean outfalls. The developed model could be used for generating various conditions of hydrodynamics and water quality considering the improvement in wastewater collection systems, treatment levels and proper disposal for proper planning and management of creeks and coastal environment.

  14. Observations on a Montana water quality proposal.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veil, J. A.; Puder, M. G.

    2006-01-12

    In May 2005, a group of petitioners led by the Northern Plains Resource Council (NPRC) submitted a petition to revise water quality requirements to the Montana Board of Environmental Review (BER). Under Montana law, the BER had to consider the petition and either reject it or propose it as a new regulation. In September 2005, the BER announced proposed changes to the Montana water quality regulations. The proposal, which included almost the exact language found in the petition, was directed toward discharges of water from coal bed natural gas (CBNG) production. The key elements of the proposal included: (1) Nomore » discharges of CBNG water are allowed to Montana surface waters unless operators can demonstrate that injection to aquifers with the potential for later recovery of the water is not feasible. (2) When operators can demonstrate the injection is not feasible, the CBNG water to be discharged must meet very strict technology-based limits for multiple parameters. (3) The Montana water quality standards for the sodium adsorption ratio (SAR) and electrical conductivity (EC) would be evaluated using the 7Q10 flow (lowest 7-consecutive-day flow in a 10-year period) rather than a monthly flow that is currently used. (4) SAR and EC would be reclassified as ''harmful parameters'', thereby greatly restricting the ability for CBNG discharges to be allowed under Montana's nondegradation regulations. The proposed regulations, if adopted in their current form, are likely to substantially reduce the amount of CBNG production in Montana. The impact also extends to Wyoming CBNG production through much greater restrictions on water quality that must be met at the interstate border.« less

  15. Water Quality in the Great Salt Lake Basins, Utah, Idaho, and Wyoming, 1998-2001

    USGS Publications Warehouse

    Waddell, Kidd M.; Gerner, Steven J.; Thiros, Susan A.; Giddings, Elise M.; Baskin, Robert L.; Cederberg, Jay R.; Albano, Christine M.

    2004-01-01

    This report contains the major findings of a 1998-2001 assessment of water quality in the Great Salt Lake Basins. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to water quality in other areas across the Nation. The water-quality conditions in the Great Salt Lake Basins summarized in this report are discussed in detail in other reports that can be accessed at http://ut.water.usgs.gov. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed at the national NAWQA Web site http://water.usgs.gov/nawqa.

  16. Water Quality in the Cook Inlet Basin Alaska, 1998-2001

    USGS Publications Warehouse

    Glass, Roy L.; Brabets, Timothy P.; Frenzel, Steven A.; Whitman, Matthew S.; Ourso, Robert T.

    2004-01-01

    This report contains the major findings of a 1998?2001 assessment of water quality in the Cook Inlet Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies; universities; public interest groups; or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Cook Inlet Basin summarized in this report are discussed in detail in other reports that can be accessed at http://ak.water.usgs.gov. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report, in addition to reports in this series from other basins, can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  17. Water Quality on the Island of Oahu, Hawaii, 1999-2001

    USGS Publications Warehouse

    Anthony, Stephen S.; Hunt, Charles D.; Brasher, Anne M.D.; Miller, Lisa D.; Tomlinson, Michael S.

    2004-01-01

    This report contains the major findings of a 1999-2001 assessment of water quality on the island of Oahu, Hawaii. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions on Oahu summarized in this report are discussed in detail in other reports that can be accessed from (http://hi.water.usgs.gov/nawqa). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  18. Water Quality in the Upper Illinois River Basin Illinois, Indiana, and Wisconsin, 1999-2001

    USGS Publications Warehouse

    Groschen, George E.; Arnold, Terri L.; Harris, Mitchell A.; Dupre, David H.; Fitzpatrick, Faith A.; Scudder, Barbara C.; Morrow, William S.; Terrio, Paul J.; Warner, Kelly L.; Murphy, Elizabeth A.

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the upper Illinois River Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public-interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report also is for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the upper Illinois River Basin summarized in this report are discussed in detail in other reports that can be accessed from (http://il.water.usgs.gov/nawqa/uirb). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site at (http://water.usgs.gov/nawqa).

  19. Water quality in the Northern Rockies Intermontane basins, Idaho, Montana, and Washington, 1999-2001

    USGS Publications Warehouse

    Clark, Gregory M.; Caldwell, Rodney R.; Maret, Terry R.; Bowers, Craig L.; Dutton, DeAnn M.; Becksmith, Michael A.

    2003-01-01

    This report contains the major findings of a 1999–2001 assessment of water quality in the Northern Rockies Intermontane Basins. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Northern Rockies Intermontane Basins summarized in this report are discussed in detail in other reports that can be accessed from (http://id.water.usgs.gov/nrok/index.html). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  20. Water quality in the Yellowstone River Basin, Wyoming, Montana, and North Dakota, 1999-2001

    USGS Publications Warehouse

    Peterson, David A.; Bartos, Timothy T.; Clark, Melanie L.; Miller, Kirk A.; Porter, Stephen D.; Quinn, Thomas L.

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the Yellowstone River Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report also is for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Yellowstone River Basin summarized in this report are discussed in detail in other reports that can be accessed from http://wy.water.usgs.gov/YELL/index.htm. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report, in addition to reports in this series from other basins, can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  1. Water Quality in the High Plains Aquifer, Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, 1999-2004

    USGS Publications Warehouse

    Gurdak, Jason J.; McMahon, Peter B.; Dennehy, Kevin; Qi, Sharon L.

    2009-01-01

    This report contains the major findings of a 1999-2004 assessment of water quality in the High Plains aquifer. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings for principal and other aquifers and major river basins across the Nation. In these reports, water quality is discussed in terms of local, regional, State, and national issues. Conditions in the aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or the private sector. The information will be useful in addressing a number of current issues, such as drinking-water quality, the effects of agricultural practices on water quality, source-water protection, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of ground water in areas near where they live and how that water quality compares to the quality of water in other areas across the region and the Nation. The water-quality conditions in the High Plains aquifer summarized in this report are discussed in greater detail in other reports that can be accessed in Appendix 1 of http://pubs.usgs.gov/pp/1749/. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa). This report accompanies the detailed and technical report of water-quality conditions in the High Plains aquifer 'Water-quality assessment of the High Plains aquifer, 1999-2004' (http://pubs.usgs.gov/pp/1749/)

  2. Long Term Hydrological (Radiological) Site Monitoring Data

    EPA Pesticide Factsheets

    Quality Data Asset includes all current and historical data on the quality of water with regard to the presence of water pollutants of all kinds regulated by the Clean Water Act. Under the new Interagency Agreement with the Department of Energy (DOE), the Radiation & Indoor Environments National Laboratory (R&IE), Office of Radiation and Indoor Air (ORIA), EPA, located in Las Vegas, NV, conducts a Long-Term Hydrological Monitoring Program (LTHMP) providing laboratory sampling/analysis and Quality Assurance and Control to measure radioactivity concentrations in the water sources near the sites of former underground nuclear explosions. The results of the LTHMP provide assurance that radioactive material from the tests have not migrated into water supplies.

  3. Linking water quality and well-being for improved assessment and valuation of ecosystem services

    PubMed Central

    Keeler, Bonnie L.; Polasky, Stephen; Brauman, Kate A.; Johnson, Kris A.; Finlay, Jacques C.; O’Neill, Ann; Kovacs, Kent; Dalzell, Brent

    2012-01-01

    Despite broad recognition of the value of the goods and services provided by nature, existing tools for assessing and valuing ecosystem services often fall short of the needs and expectations of decision makers. Here we address one of the most important missing components in the current ecosystem services toolbox: a comprehensive and generalizable framework for describing and valuing water quality-related services. Water quality is often misrepresented as a final ecosystem service. We argue that it is actually an important contributor to many different services, from recreation to human health. We present a valuation approach for water quality-related services that is sensitive to different actions that affect water quality, identifies aquatic endpoints where the consequences of changing water quality on human well-being are realized, and recognizes the unique groups of beneficiaries affected by those changes. We describe the multiple biophysical and economic pathways that link actions to changes in water quality-related ecosystem goods and services and provide guidance to researchers interested in valuing these changes. Finally, we present a valuation template that integrates biophysical and economic models, links actions to changes in service provision and value estimates, and considers multiple sources of water quality-related ecosystem service values without double counting. PMID:23091018

  4. Linking water quality and well-being for improved assessment and valuation of ecosystem services.

    PubMed

    Keeler, Bonnie L; Polasky, Stephen; Brauman, Kate A; Johnson, Kris A; Finlay, Jacques C; O'Neill, Ann; Kovacs, Kent; Dalzell, Brent

    2012-11-06

    Despite broad recognition of the value of the goods and services provided by nature, existing tools for assessing and valuing ecosystem services often fall short of the needs and expectations of decision makers. Here we address one of the most important missing components in the current ecosystem services toolbox: a comprehensive and generalizable framework for describing and valuing water quality-related services. Water quality is often misrepresented as a final ecosystem service. We argue that it is actually an important contributor to many different services, from recreation to human health. We present a valuation approach for water quality-related services that is sensitive to different actions that affect water quality, identifies aquatic endpoints where the consequences of changing water quality on human well-being are realized, and recognizes the unique groups of beneficiaries affected by those changes. We describe the multiple biophysical and economic pathways that link actions to changes in water quality-related ecosystem goods and services and provide guidance to researchers interested in valuing these changes. Finally, we present a valuation template that integrates biophysical and economic models, links actions to changes in service provision and value estimates, and considers multiple sources of water quality-related ecosystem service values without double counting.

  5. Design of Cycle 3 of the National Water-Quality Assessment Program, 2013-23: Part 2: Science plan for improved water-quality information and management

    USGS Publications Warehouse

    Rowe, Gary L.; Belitz, Kenneth; Demas, Charlie R.; Essaid, Hedeff I.; Gilliom, Robert J.; Hamilton, Pixie A.; Hoos, Anne B.; Lee, Casey J.; Munn, Mark D.; Wolock, David W.

    2013-01-01

    This report presents a science strategy for the third decade of the National Water-Quality Assessment (NAWQA) Program, which since 1991, has been responsible for providing nationally consistent information on the quality of the Nation's streams and groundwater; how water quality is changing over time; and the major natural and human factors that affect current water quality conditions and trends. The strategy is based on an extensive evaluation of the accomplishments of NAWQA over its first two decades, the current status of water-quality monitoring activities by USGS and its partners, and an updated analysis of stakeholder priorities. The plan is designed to address priority issues and national needs identified by NAWQA stakeholders and the National Research Council (2012) irrespective of budget constraints. This plan describes four major goals for the third decade (Cycle 3), the approaches for monitoring, modeling, and scientific studies, key partnerships required to achieve these goals, and products and outcomes that will result from planned assessment activities. The science plan for 2013–2023 is a comprehensive approach to meet stakeholder priorities for: (1) rebuilding NAWQA monitoring networks for streams, rivers, and groundwater, and (2) upgrading models used to extrapolate and forecast changes in water-quality and stream ecosystem condition in response to changing climate and land use. The Cycle 3 plan continues approaches that have been central to the Program’s long-term success, but adjusts monitoring intensities and study designs to address critical information needs and identified data gaps. Restoration of diminished monitoring networks and new directions in modeling and interpretative studies address growing and evolving public and stakeholder needs for water-quality information and improved management, particularly in the face of increasing challenges related to population growth, increasing demands for water, and changing land use and climate. However, a combination of funding growth and extensive collaboration with other USGS programs and other Federal, State, and local agencies, public interest groups, professional and trade associations, academia, and private industry will be needed to fully realize the monitoring and modeling goals laid out in this plan (USGS Fact Sheet 2013-3008).

  6. GEO-CAPE Coastal Ocean Ecosystem Dynamics White Paper ...

    EPA Pesticide Factsheets

    The Clean Water Act protects all navigable waters in the United States (CWA, 1988). The objective of the CWA is to "restore and maintain the chemical, physical, and biological integrity of the Nation's waters." This Federal mandate authorizes states, tribes, and U.S. territories, with guidance and oversight from the U.S. Environmental Protection Agency (EPA), to develop and implement water quality standards to protect the human and aquatic life uses of the Nation’s waterways. Water quality standards include designated uses, defined as the services that a water body supports such as drinking water, aquatic life, harvestable species, and recreation. These standards under the CWA Section 304(a) are applicable within state waters, defined as less than 3 nautical miles from shore. Therefore, a majority of research by the EPA addresses near-shore coastal waters within 3 nautical miles, estuaries and lakes where applicable water quality regulation could be implemented. Policy makers and environmental managers in EPA’s program and regional offices need tools enabling them to assess the sustainability of watershed ecosystems, and the services they provide, under current and future land use practices. The typical 1km resolution and current Case 1 algorithms of SeaWiFS, MODIS, and VIIRS provide limited assessments of near-shore coastal waters, estuaries and lakes. It has proven difficult to adequately resolve and derive products in smaller estuaries or waters in proxim

  7. Water Quality in the Delaware River Basin, Pennsylvania, New Jersey, New York, and Delaware, 1998-2001

    USGS Publications Warehouse

    Fischer, Jeffrey M.; Riva-Murray, Karen; Hickman, R. Edward; Chichester, Douglas C.; Brightbill, Robin A.; Romanok, Kristin M.; Bilger, Michael D.

    2004-01-01

    This report contains the major findings of a 1998-2001 assessment of water quality in the Delaware River Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Delaware River Basin summarized in this report are discussed in detail in other reports that can be accessed from http://nj.water.usgs.gov/nawqa/delr/. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report, in addition to reports in this series from other basins, can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  8. Drinking-water quality management: the Australian framework.

    PubMed

    Sinclair, Martha; Rizak, Samantha

    The most effective means of assuring drinking-water quality and the protection of public health is through adoption of a preventive management approach that encompasses all steps in water production from catchment to consumer. However, the reliance of current regulatory structures on compliance monitoring of treated water tends to promote a reactive management style where corrective actions are initiated after monitoring reveals that prescribed levels have been exceeded, and generally after consumers have received the noncomplying water. Unfortunately, the important limitations of treated water monitoring are often not appreciated, and there is a widespread tendency to assume that intensification of compliance monitoring or lowering of compliance limits is an effective strategy to improving the protection of public health. To address these issues and emphasize the role of preventive system management, the Australian National Health and Medical Research Council in collaboration with the Co-operative Research Centre for Water Quality and Treatment has developed a comprehensive quality management approach for drinking water. This Framework for Management of Drinking Water Quality will assist water suppliers in providing a higher level of assurance for drinking water quality and safety. The framework integrates quality and risk management principles, and provides a comprehensive, flexible, and proactive means of optimizing, drinking-water quality and protecting public health. It does not eliminate the requirement for compliance monitoring but allows it to be viewed in the proper perspective as providing verification that preventive measures are effective, rather than as the primary means of protecting public health.

  9. Uncertainty Management in Urban Water Engineering Adaptation to Climate Change - abstract

    EPA Science Inventory

    Current water resource planning and engineering assume a stationary climate, in which the observed historical water flow rate and water quality variations are often used to define the technical basis. When the non-stationarity is considered, however, climate change projection co...

  10. RAPID HEALTH-BASED METHOD FOR MEASURING MICROBIAL INDICATORS OF RECREATIONAL WATER QUALITY

    EPA Science Inventory

    Because the currently approved cultural methods for monitoring indicator bacteria in recreational water require 24 hours to produce results, the public may be exposed to potentially contaminated water before the water has been identified as hazardous. This project was initiated t...

  11. Quality assessment of groundwater from the south-eastern Arabian Peninsula.

    PubMed

    Zhang, H W; Sun, Y Q; Li, Y; Zhou, X D; Tang, X Z; Yi, P; Murad, A; Hussein, S; Alshamsi, D; Aldahan, A; Yu, Z B; Chen, X G; Mugwaneza, V D P

    2017-08-01

    Assessment of groundwater quality plays a significant role in the utilization of the scarce water resources globally and especially in arid regions. The increasing abstraction together with man-made contamination and seawater intrusion have strongly affected groundwater quality in the Arabia Peninsula, exemplified by the investigation given here from the United Arab Emirates, where the groundwater is seldom reviewed and assessed. In the aim of assessing current groundwater quality, we here present a comparison of chemical data linked to aquifers types. The results reveal that most of the investigated groundwater is not suitable for drinking, household, and agricultural purposes following the WHO permissible limits. Aquifer composition and climate have vital control on the water quality, with the carbonate aquifers contain the least potable water compared to the ophiolites and Quaternary clastics. Seawater intrusion along coastal regions has deteriorated the water quality and the phenomenon may become more intensive with future warming climate and rising sea level.

  12. Iowa ground-water quality

    USGS Publications Warehouse

    Buchmiller, R.C.; Squillace, P.J.; Drustrup, R.D.

    1987-01-01

    The U.S. Geological Survey, in cooperation with the University of Iowa Hygienic Laboratory, the Iowa Department of Natural Resources, and several counties in Iowa, currently (1986) is monitoring about 1,500 public and private wells for inorganic and organic constituents. The principal objective of this program, begun in 1982, is to collect water-quality data that will describe the long-term chemical quality of the surficial and major bedrock aquifer systems in Iowa (Detroy, 1985).

  13. Effects of tillage and application rate on atrazine transport to subsurface drainage: Evaluation of RZWQM using a six-year field study

    USDA-ARS?s Scientific Manuscript database

    Well-tested agricultural system models can improve our understanding of the water quality effects of management practices under different conditions. The Root Zone Water Quality Model (RZWQM) has been tested under a variety of conditions. However, the current model’s ability to simulate pesticide tr...

  14. Water quality in the St. Louis River Area of Concern, Lake Superior: Historical and current conditions and delisting implications

    EPA Science Inventory

    Water quality in the lower St. Louis River Area of Concern (AOC) from two stations over a 60 year period (19532013) and system-wide (20122013) was examined to determine if the AOC beneficial use impairment of excessive loading of sediment and nutrients could be considered for rem...

  15. An Instructional Delivery System for Manpower Management: A Report for Water Pollution Control Agencies. Second Edition.

    ERIC Educational Resources Information Center

    New York State Dept. of Environmental Conservation, Albany.

    This report contains information to assist organizations and personnel responsible for the quality and quantity of operators available for water quality control efforts. The text discusses in detail the current developments in operator instructional programs. Each of the seven sections of this report deals with a specific aspect of manpower…

  16. Water Quality in the Yakima River Basin, Washington, 1999-2000

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Morace, Jennifer L.; Johnson, Henry M.; Rinella, Joseph F.; Ebbert, James C.; Embrey, Sandra S.; Waite, Ian R.; Carpenter, Kurt D.; Wise, Daniel R.; Hughes, Curt A.

    2004-01-01

    This report contains the major findings of a 1999?2000 assessment of water quality in streams and drains in the Yakima River Basin. It is one of a series of reports by the NAWQA Program that present major findings on water resources in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is assessed at many scales?from large rivers that drain lands having many uses to small agricultural watersheds?and is discussed in terms of local, State, and regional issues. Conditions in the Yakima River Basin are compared to those found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, Tribal, State, or local agencies; universities; public interest groups; or the private sector. The information will be useful in addressing a number of current issues, such as source-water protection, pesticide registration, human health, drinking water, hypoxia and excessive growth of algae and plants, the effects of agricultural land use on water quality, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of water resources in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. Other products describing water-quality conditions in the Yakima River Basin are available. Detailed technical information, data and analyses, methodology, and maps that support the findings presented in this report can be accessed from http://or.water.usgs.gov/yakima. Other reports in this series and data collected from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  17. Water supply, demand, and quality indicators for assessing the spatial distribution of water resource vulnerability in the Columbia River Basin

    USGS Publications Warehouse

    Chang, Heejun; Jung, Il-Won; Strecker, Angela L.; Wise, Daniel; Lafrenz, Martin; Shandas, Vivek; ,; Yeakley, Alan; Pan, Yangdong; Johnson, Gunnar; Psaris, Mike

    2013-01-01

    We investigated water resource vulnerability in the US portion of the Columbia River basin (CRB) using multiple indicators representing water supply, water demand, and water quality. Based on the US county scale, spatial analysis was conducted using various biophysical and socio-economic indicators that control water vulnerability. Water supply vulnerability and water demand vulnerability exhibited a similar spatial clustering of hotspots in areas where agricultural lands and variability of precipitation were high but dam storage capacity was low. The hotspots of water quality vulnerability were clustered around the main stem of the Columbia River where major population and agricultural centres are located. This multiple equal weight indicator approach confirmed that different drivers were associated with different vulnerability maps in the sub-basins of the CRB. Water quality variables are more important than water supply and water demand variables in the Willamette River basin, whereas water supply and demand variables are more important than water quality variables in the Upper Snake and Upper Columbia River basins. This result suggests that current water resources management and practices drive much of the vulnerability within the study area. The analysis suggests the need for increased coordination of water management across multiple levels of water governance to reduce water resource vulnerability in the CRB and a potentially different weighting scheme that explicitly takes into account the input of various water stakeholders.

  18. [Drinking water quality and safety].

    PubMed

    Gómez-Gutiérrez, Anna; Miralles, Maria Josepa; Corbella, Irene; García, Soledad; Navarro, Sonia; Llebaria, Xavier

    2016-11-01

    The purpose of drinking water legislation is to guarantee the quality and safety of water intended for human consumption. In the European Union, Directive 98/83/EC updated the essential and binding quality criteria and standards, incorporated into Spanish national legislation by Royal Decree 140/2003. This article reviews the main characteristics of the aforementioned drinking water legislation and its impact on the improvement of water quality against empirical data from Catalonia. Analytical data reported in the Spanish national information system (SINAC) indicate that water quality in Catalonia has improved in recent years (from 88% of analytical reports in 2004 finding drinking water to be suitable for human consumption, compared to 95% in 2014). The improvement is fundamentally attributed to parameters concerning the organoleptic characteristics of water and parameters related to the monitoring of the drinking water treatment process. Two management experiences concerning compliance with quality standards for trihalomethanes and lead in Barcelona's water supply are also discussed. Finally, this paper presents some challenges that, in the opinion of the authors, still need to be incorporated into drinking water legislation. It is necessary to update Annex I of Directive 98/83/EC to integrate current scientific knowledge, as well as to improve consumer access to water quality data. Furthermore, a need to define common criteria for some non-resolved topics, such as products and materials in contact with drinking water and domestic conditioning equipment, has also been identified. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Water quality trends in the Blackwater River watershed, West Virginia

    USGS Publications Warehouse

    Smith, Jessica; Welsh, Stuart A.; Anderson, James T.; Fortney, Ronald H.

    2015-01-01

    An understanding of historic and current water quality is needed to manage and improve aquatic communities within the Blackwater River watershed, WV. The Blackwater River, which historically offered an excellent Salvelinus fontinalis (Brook Trout) fishery, has been affected by logging, coal mining, use of off-road vehicles, and land development. Using information-theoretic methods, we examined trends in water quality at 12 sites in the watershed for the 14 years of 1980–1993. Except for Beaver Creek, downward trends in acidity and upward trends in alkalinity, conductivity, and hardness were consistent with decreases in hydrogen ion concentration. Water-quality trends for Beaver Creek were inconsistent with the other sites and reflect ongoing coal-mining influences. Dissolved oxygen trended downward, possibly due to natural conditions, but remained above thresholds that would be detrimental to aquatic life. Water quality changed only slightly within the watershed from 1980–1993, possibly reflecting few changes in development and land uses during this time. These data serve as a baseline for future water-quality studies and may help to inform management planning.

  20. Desert amphibian selection of arid land breeding habitat undermines reproductive effort.

    PubMed

    Kiesow, Anja B; Griffis-Kyle, Kerry L

    2017-12-01

    Understanding how animals select habitat is important for understanding how to better conserve those species. As droughts become more frequent and water availability declines in many systems, understanding selection of water sources becomes even more important for conservation. Tinajas and anthropogenic catchments are critical ephemeral breeding sites for Sonoran Desert anurans. Tadpoles have been documented in both water types even though anthropogenic catchments can contain very high concentrations of ammonia. We currently do not know how amphibians are selecting breeding habitat. We tested three hypotheses of habitat selection based on resource quality, resource quality and territoriality, and proximity of water site to other water sites. Male Anaxyrus punctatus called from all sites regardless of habitat quality or male quality; however, they were found more often at sites within 2 km of other sites. This suggests that male desert anurans are selecting close breeding habitat regardless of quality for breeding, indicating ammoniated sites are likely either population sinks or ecological traps. Consequently, adding anthropogenic water sites, without managing to reduce ammonia, will provide low quality habitat that could cause long-term declines in desert anuran populations.

  1. Water Quality in the Santa Ana Basin, California, 1999-2001

    USGS Publications Warehouse

    Belitz, Kenneth; Hamlin, Scott N.; Burton, Carmen A.; Kent, Robert; Fay, Ronald G.; Johnson, Tyler D.

    2004-01-01

    This report contains the major findings of a 1999-2001 assessment of water quality in the Santa Ana River Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live and how that water quality compares to other areas across the Nation. The water-quality conditions in the Santa Ana River Basin summarized in this report are discussed in detail in other reports that can be accessed from http://ca.water.usgs.gov/ sana_nawqa/. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to other reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  2. Water Quality in the Acadian-Pontchartrain Drainages; Louisiana and Mississippi, 1999-2001

    USGS Publications Warehouse

    Demcheck, Dennis K.; Tollett, Roland W.; Mize, Scott V.; Skrobialowski, Stanley C.; Fendick, Robert B.; Swarzenski, Christopher M.; Porter, Stephen

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the Acadian-Pontchartrain Drainages Study Unit. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report also is for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to other areas across the Nation. The water-quality conditions in the Acadian-Pontchartrain Drainages Study Unit summarized in this report are discussed in detail in other reports that can be accessed from (http://la.water.usgs.gov/nawqa/default.htm). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to other reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  3. The World Health Organization's water safety plan is much more than just an integrated drinking water quality management plan.

    PubMed

    Viljoen, F C

    2010-01-01

    South Africa is a country of contrasts with far ranging variations in climate, precipitation rates, cultures, demographics, housing levels, education, wealth and skills levels. These differences have an impact on water services delivery as do expectations, affordability and available resources. Although South Africa has made much progress in supplying drinking water, the same cannot be said regarding water quality throughout the country. A concerted effort is currently underway to correct this situation and as part of this drive, water safety plans (WSP) are promoted. Rand Water, the largest water services provider in South Africa, used the World Health Organization (WHO) WSP framework as a guide for the development of its own WSP which was implemented in 2003. Through the process of implementation, Rand Water found the WHO WSP to be much more than just another integrated quality system.

  4. Water resources of West Baton Rouge Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2016-11-23

    Information concerning the availability, use, and quality of water in West Baton Rouge Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  5. Water resources of Calcasieu Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2017-01-12

    Information concerning the availability, use, and quality of water in Calcasieu Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://dx.doi.org/10.5066/F7P55KJN) are the primary sources of the information presented here.

  6. Water resources of East Baton Rouge Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2015-01-01

    Information concerning the availability, use, and quality of water in East Baton Rouge Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  7. Water resources of St. John the Baptist Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.; Fendick, Robert B.

    2015-01-01

    Information concerning the availability, use, and quality of water in St. John the Baptist Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  8. Regression equations for estimating concentrations of selected water-quality constituents for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota

    USGS Publications Warehouse

    Williams-Sether, Tara

    2004-01-01

    The Dakota Water Resources Act, passed by the U.S. Congress on December 15, 2000, authorized the Secretary of the Interior to conduct a comprehensive study of future water-quantity and quality needs of the Red River of the North Basin in North Dakota and possible options to meet those water needs. Previous Red River of the North Basin studies conducted by the Bureau of Reclamation used streamflow and water-quality data bases developed by the U.S. Geological Survey that included data for 1931-84. As a result of the recent congressional authorization and results of previous studies by the Bureau of Reclamation, redevelopment of the streamflow and water-quality data bases with current data through 1999 are needed in order to evaluate and predict the water-quantity and quality effects within the Red River of the North Basin. This report provides updated statistical summaries of selected water-quality constituents and streamflow and the regression relations between them.  Available data for 1931-99 were used to develop regression equations between 5 selected water-quality constituents and streamflow for 38 gaging stations in the Red River of the North Basin. The water-quality constituents that were regressed against streamflow were hardness (as CaCO3), sodium, chloride, sulfate, and dissolved solids. Statistical summaries of the selected water-quality constituents and streamflow for the gaging stations used in the regression equations development and the applications and limitations of the regression equations are presented in this report.

  9. Evaluation of Current Water Treatment and Distribution System Optimization to Provide Safe Drinking Water from Various Source Water Types and Conditions (Deliverable 5.2.C.1)

    EPA Science Inventory

    Increasingly, drinking water treatment plants (DWTPs) are being challenged by changes in the quality of their source waters and by their aging treatment and distribution system infrastructure. Individually or in combination, factors such as shrinking water and financial resources...

  10. Water-quality assessment of the Sacramento River basin, California : water quality of fixed sites, 1996-1998

    USGS Publications Warehouse

    Domagalski, Joseph L.; Dileanis, Peter D.

    2000-01-01

    Water-quality samples were collected from 12 sites in the Sacramento River Basin, Cali-fornia, from February 1996 through April 1998. Field measurements (dissolved oxygen, pH, specific conductance, alkalinity, and water tem-perature) were completed on all samples, and laboratory analyses were done for suspended sediments, nutrients, dissolved and particulate organic carbon, major ions, trace elements, and mercury species. Samples were collected at four types of locations on the Sacramento River?large tributaries to the Sacramento River, agricul-tural drainage canals, an urban stream, and a flood control channel. The samples were collected across a range of flow conditions representative of those sites during the timeframe of the study. The water samples from the Sacramento River indi-cate that specific conductance increases slightly downstream but that the water quality is indicative of dilute water. Water temperature of the Sacramento River increases below Shasta Lake during the spring and summer irrigation season owing to diversion of water out of the river and subsequent lower flow. All 12 sites had generally low concentrations of nutrients, but chlorophyll concentrations were not measured; therefore, the actual consequences of nutrient loading could not be adequately assessed. Concentrations of dis-solved organic carbon in samples from the Sacramento River and the major tributaries were generally low; the formation of trihalomethanes probably does not currently pose a problem when water from the Sacramento River and its major tributaries is chlorinated for drinking-water purposes. However, dissolved organic carbon concentrations were higher in the urban stream and in agricultural drainage canals, but were diluted upon mixing with the Sacramento River. The only trace element that currently poses a water-quality problem in the Sacramento River is mercury. A federal criterion for the protection of aquatic life was exceeded during this study, and floodwater concentrations of mercury were mostly higher than the criterion. Exceedances of water-quality standards happened most frequently during winter when suspended-sediment concen-trations also were elevated. Most mercury is found in association with suspended sediment. The greatest loading or transport of mercury out of the Sacramento River Basin to the San Francisco Bay occurs in the winter and principally follows storm events.

  11. Overview of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Leahy, P.P.; Thompson, T.H.

    1994-01-01

    The Nation's water resources are the basis for life and our economic vitality. These resources support a complex web of human activities and fishery and wildlife needs that depend upon clean water. Demands for good-quality water for drinking, recreation, farming, and industry are rising, and as a result, the American public is concerned about the condition and sustainability of our water resources. The American public is asking: Is it safe to swim in and drink water from our rivers or lakes? Can we eat the fish that come from them? Is our ground water polluted? Is water quality degrading with time, and if so, why? Has all the money we've spent to clean up our waters, done any good? The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program was designed to provide information that will help answer these questions. NAWQA is designed to assess historical, current, and future water-quality conditions in representative river basins and aquifers nationwide. One of the primary objectives of the program is to describe relations between natural factors, human activities, and water-quality conditions and to define those factors that most affect water quality in different parts of the Nation. The linkage of water quality to environmental processes is of fundamental importance to water-resource managers, planners, and policy makers. It provides a strong and unbiased basis for better decisionmaking by those responsible for making decisions that affect our water resources, including the United States Congress, Federal, State, and local agencies, environmental groups, and industry. Information from the NAWQA Program also will be useful for guiding research, monitoring, and regulatory activities in cost effective ways.

  12. Water Quality Assessment of Ayeyarwady River in Myanmar

    NASA Astrophysics Data System (ADS)

    Thatoe Nwe Win, Thanda; Bogaard, Thom; van de Giesen, Nick

    2015-04-01

    Myanmar's socio-economic activities, urbanisation, industrial operations and agricultural production have increased rapidly in recent years. With the increase of socio-economic development and climate change impacts, there is an increasing threat on quantity and quality of water resources. In Myanmar, some of the drinking water coverage still comes from unimproved sources including rivers. The Ayeyarwady River is the main river in Myanmar draining most of the country's area. The use of chemical fertilizer in the agriculture, the mining activities in the catchment area, wastewater effluents from the industries and communities and other development activities generate pollutants of different nature. Therefore water quality monitoring is of utmost importance. In Myanmar, there are many government organizations linked to water quality management. Each water organization monitors water quality for their own purposes. The monitoring is haphazard, short term and based on individual interest and the available equipment. The monitoring is not properly coordinated and a quality assurance programme is not incorporated in most of the work. As a result, comprehensive data on the water quality of rivers in Myanmar is not available. To provide basic information, action is needed at all management levels. The need for comprehensive and accurate assessments of trends in water quality has been recognized. For such an assessment, reliable monitoring data are essential. The objective of our work is to set-up a multi-objective surface water quality monitoring programme. The need for a scientifically designed network to monitor the Ayeyarwady river water quality is obvious as only limited and scattered data on water quality is available. However, the set-up should also take into account the current socio-economic situation and should be flexible to adjust after first years of monitoring. Additionally, a state-of-the-art baseline river water quality sampling program is required which will take place during the low water season of March, 2015. The water quality information available for the Ayeyarwady as well as the baseline sampling of March 2015 will be presented. Furthermore, the specific scientific ideas but also organisational challenges for the future surface water quality monitoring network of the Ayeyarwady will be discussed.

  13. Water quality of least-impaired lakes in eastern and southern Arkansas.

    PubMed

    Justus, Billy

    2010-09-01

    A three-phased study identified one least-impaired (reference) lake for each of four Arkansas lake classifications: three classifications in the Mississippi Alluvial Plain (MAP) ecoregion and a fourth classification in the South Central Plains (SCP) ecoregion. Water quality at three of the least-impaired lakes generally was comparable and also was comparable to water quality from Kansas and Missouri reference lakes and Texas least-impaired lakes. Water quality of one least-impaired lake in the MAP ecoregion was not as good as water quality in other least-impaired lakes in Arkansas or in the three other states: a probable consequence of all lakes in that classification having a designated use as a source of irrigation water. Chemical and physical conditions for all four lake classifications were at times naturally harsh as limnological characteristics changed temporally. As a consequence of allochthonous organic material, oxbow lakes isolated within watersheds comprised of swamps were susceptible to low dissolved oxygen concentrations to the extent that conditions would be limiting to some aquatic biota. Also, pH in lakes in the SCP ecoregion was <6.0, a level exceeding current Arkansas water-quality standards but typical of black water systems. Water quality of the deepest lakes exceeded that of shallow lakes. N/P ratios and trophic state indices may be less effective for assessing water quality for shallow lakes (<2 m) than for deep lakes because there is an increased exposure of sediment (and associated phosphorus) to disturbance and light in the former.

  14. RAPID HEALTH-BASED METHOD FOR MEASURING MICROBIAL INDICATORS OF RECREATIONAL WATER QUALITY - 2006 EPA SCIENCE FORUM

    EPA Science Inventory

    Because the current approved cultural methods for monitoring indicator bacteria in recreational water require 24 hours to produce results, the public may be exposed to potentially contaminated water before the water has been identified as hazardous. This project was initiated to...

  15. Water-quality data-collection activities in Colorado and Ohio; Phase II, Evaluation of 1984 field and laboratory quality-assurance practices

    USGS Publications Warehouse

    Childress, Carolyn J. Oblinger; Chaney, Thomas H.; Myers, Donna; Norris, J. Michael; Hren, Janet

    1987-01-01

    Serious questions have been raised by Congress about the usefulness of water-quality data for addressing issues of regional and national scope and, especially, for characterizing the current quality of the Nation's streams and ground water. In response, the U.S. Geological Survey has undertaken a pilot study in Colorado and Ohio to (1) determine the characteristics of current (1984) water-quality data-collection activities of Federal, regional, State, and local agencies, and academic institutions; and (2) determine how well the data from these activities, collected for various purposes and using different procedures, can be used to improve our ability to answer major broad-scope questions, such as:A. What are (or were) natural or near-natural water-quality conditions?B. What are existing water-quality conditions?C. How has water quality changed, and how do the changes relate to human activities?Colorado and Ohio were chosen for the pilot study largely because they represent regions with different types of waterquality concerns and programs. The study has been divided into three phases, the objectives of which are: Phase I--Inventory water-quality data-collection programs, including costs, and identify those programs that met a set of broad criteria for producing data that are potentially appropriate for water-quality assessments of regional and national scope. Phase II--Evaluate the quality assurance of field and laboratory procedures used in producing the data from programs that met the broad criteria of Phase I. Phase III--Compile the qualifying data and evaluate the adequacy of this data base for addressing selected water-quality questions of regional and national scope.Water-quality data are collected by a large number of organizations for diverse purposes ranging from meeting statutory requirements to research on water chemistry. Combining these individual data bases is an appealing and potentially cost-effective way to attempt to develop a data base adequate for regional or national water-quality assessments. However, to combine data from diverse sources, field and laboratory procedures used to produce the data need to be equivalent and need to meet specific qualityassurance standards. It is these factors that are the focus of Phase II, which is described in this report. In the first phase of this study, an inventory was made of all public organizations and academic institutions that undertook water-quality data-collection activities in Colorado and Ohio in 1984. Water-quality programs identified in Phase I were tested against a set of broad screening criteria. A total of 44 waterquality programs in Colorado and 29 programs in Ohio passed the Phase-I screen and were examined in Phase II. These programs accounted for an estimated 165,000 analyses in Colorado and 76,300 analyses in Ohio for 20 selected constituents and properties. Although qualifying programs included both surface- and ground-water sampling, they emphasized surface waters and produced few groundwater analyses (3,660 for Colorado and 470 for Ohio). For Phase II, information about field and laboratory qualityassurance practices was provided by each organization and its supporting laboratories through questionnaires. This information was evaluated against a set of specific criteria for field and laboratory practices. The criteria were developed from guidelines published by public agencies and professional organizations such as the American Public Health Association, the U.Sc, Environmental Protection Agency, and the U.S. Geological Survey. Each of the eight criteria that comprise the Phase-II screen fall into one of two major categories--field practices or laboratory practices.

  16. Assess water scarcity integrating water quantity and quality

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zeng, Z.

    2014-12-01

    Water scarcity has become widespread all over the world. Current methods for water scarcity assessment are mainly based on water quantity and seldom consider water quality. Here, we develop an approach for assessing water scarcity considering both water quantity and quality. In this approach, a new water scarcity index is used to describe the severity of water scarcity in the form of a water scarcity meter, which may help to communicate water scarcity to a wider audience. To illustrate the approach, we analyzed the historical trend of water scarcity for Beijing city in China during 1995-2009, as well as the assessment for different river basins in China. The results show that Beijing made a huge progress in mitigating water scarcity, and that from 1999 to 2009 the blue and grey water scarcity index decreased by 59% and 62%, respectively. Despite this progress, we demonstrate that Beijing is still characterized by serious water scarcity due to both water quantity and quality. The water scarcity index remained at a high value of 3.5 with a blue and grey water scarcity index of 1.2 and 2.3 in 2009 (exceeding the thresholds of 0.4 and 1, respectively). As a result of unsustainable water use and pollution, groundwater levels continue to decline, and water quality shows a continuously deteriorating trend. To curb this trend, future water policies should further decrease water withdrawal from local sources (in particular groundwater) within Beijing, and should limit the grey water footprint below the total amount of water resources.

  17. Water Quality Investigations at Lake Merritt in Oakland, California

    NASA Astrophysics Data System (ADS)

    Carter, G.; Casino, C.; Johnson, K.; Huang, J.; Le, A.; Truisi, V. M.; Turner, D.; Yanez, F.; Yu, J. F.; Unigarro, M.; Vue, G.; Garduno, L.; Cuff, K.

    2005-12-01

    Lake Merritt is a saltwater tidal lagoon that forms a portion of a wildlife refuge in downtown Oakland, California. The general area was designated as the nation's first wildlife refuge in 1869, and is currently the home to over 90 species of migrating waterfowl, as well as a variety of aquatic wildlife. Situated within an area composed of compacted marine sediment located near the center of Oakland, Lake Merritt also serves as a major local catchment basin, receiving significant urban runoff from a 4,650 acre local watershed through 60 storm drains and four culverted creeks. Due to factors related to its geographical location, Lake Merritt has suffered from poor water quality at various times throughout its history. In fact, in May of 1999 the US Environmental Protection Agency designated Lake Merritt as a body of water whose beneficial uses are impaired, mainly due to high levels of trash and low levels of dissolved oxygen. As a contribution to continuing efforts to monitor and assess water quality of the Lake, we began a water quality investigation during the Summer of 2005, which included the measurement of dissolved oxygen concentrations of samples collected near its surface at over 85 different locations. These measurements were made using a sensor attached to a PASCO data- logger. The sensor measures the electric current produced by a chemical reaction in its probe, which is composed of a platinum cathode and a silver anode surrounded by an electrolyte solution. Results of these measurements were statistically analyzed, mapped, and then used in assessing the quality of Lake Merritt's water, particularly in relation to supporting aquatic biota. Preliminary analysis of results obtained so far indicates that the highest quality waters in Lake Merritt occur in areas that are closest to a source of San Francisco Bay water, as well as those areas nearby where water circulation is robust. Significantly high levels of dissolved oxygen were measured in an area that has the greatest number and diversity of organisms as indicated through visual observation, which is located where marine waters flow directly into the Lake. In addition, high levels of dissolved oxygen were measured at two sites along an approximately 500 meters stretch of the Lake's eastern shoreline, where swift moving currents were observed. Dissolved oxygen levels were lowest in areas where storm drain runoff waters flow into the Lake, as well as those that include trash-filled, stagnant sections. Overall, our work has generated information that may be used to better understand important factors that affect Lake Merritt's water quality. Such studies should be continued in the future and used to help maintain a healthy ecosystem in and around Lake Merritt.

  18. The Water-Energy-Food Nexus in a Rapidly Developing Resource Sector

    NASA Astrophysics Data System (ADS)

    Allen, D. M.; Kirste, D. M.

    2014-12-01

    Technological advances and access to global markets have changed the rate at which resource exploitation takes place. The environmental impact of the rapid development and distribution of resources such as minerals and hydrocarbons has led to a greater potential for significant stress on water resources both in terms of quality and quantity. How and where those impacts manifest is crucial to determining appropriate risk management strategies. North East British Columbia has an abundance of shale gas reserves that are anticipated to be exploited at a large scale in coming years, primarily for export as liquefied natural gas (LNG). However, there is growing concern that fracking and other activities related to shale gas development pose risks to water quality and quantity in the region. Water lies at the center of the water-energy-food nexus, with an accelerating water demand for fracking and industrial operations as well as for domestic, environmental and agricultural uses. Climate change is also anticipated to alter the hydrologic regime, posing added stress to the water resource. This case study examines the water-energy-food nexus in the context of a region that is impacted by a rapidly developing resource sector, encompassing water demand/supply, climate change, interaction between deep aquifers and shallow aquifers/surface waters, water quality concerns related to fracking, land use disturbance, and community impacts. Due to the rapid rate of development, there are significant knowledge gaps in our understanding of the water resource. Currently agencies are undertaking water resource assessments and establishing monitoring sites. This research aims to assess water security in North East British Columbia in a coordinated fashion through various partnerships. In addition to collecting baseline knowledge and data, the study will evaluate risk and resilience indicators in relation to water security. A risk assessment framework specific to the shale gas development context will be developed to evaluate the various components of risk spatially and temporally. Resilience is currently being assessed through a comprehensive examination of the current regulatory and policy regime.

  19. Microbial water quality communication: public and practitioner insights from British Columbia, Canada.

    PubMed

    Dunn, G; Henrich, N; Holmes, B; Harris, L; Prystajecky, N

    2014-09-01

    This work examines the communication interactions of water suppliers and health authorities with the general public regarding microbial source water quality for recreational and drinking water. We compare current approaches to risk communication observable in British Columbia (BC), Canada, with best practices derived from the communications literature, finding significant gaps between theory and practice. By considering public views and government practices together, we identify key disconnects, leading to the conclusion that at present, neither the public's needs nor public health officials' goals are being met. We find: (1) there is a general lack of awareness and poor understanding by the public of microbial threats to water and the associated health implications; (2) the public often does not know where to find water quality information; (3) public information needs are not identified or met; (4) information sharing by authorities is predominantly one-way and reactive (crisis-oriented); and (5) the effectiveness of communications is not evaluated. There is a need for both improved public understanding of water quality-related risks, and new approaches to ensure information related to water quality reaches audiences. Overall, greater attention should be given to planning and goal setting related to microbial water risk communication.

  20. Laser-induced breakdown spectroscopy application in environmental monitoring of water quality: a review.

    PubMed

    Yu, Xiaodong; Li, Yang; Gu, Xiaofeng; Bao, Jiming; Yang, Huizhong; Sun, Li

    2014-12-01

    Water quality monitoring is a critical part of environmental management and protection, and to be able to qualitatively and quantitatively determine contamination and impurity levels in water is especially important. Compared to the currently available water quality monitoring methods and techniques, laser-induced breakdown spectroscopy (LIBS) has several advantages, including no need for sample pre-preparation, fast and easy operation, and chemical free during the process. Therefore, it is of great importance to understand the fundamentals of aqueous LIBS analysis and effectively apply this technique to environmental monitoring. This article reviews the research conducted on LIBS analysis for liquid samples, and the article content includes LIBS theory, history and applications, quantitative analysis of metallic species in liquids, LIBS signal enhancement methods and data processing, characteristics of plasma generated by laser in water, and the factors affecting accuracy of analysis results. Although there have been many research works focusing on aqueous LIBS analysis, detection limit and stability of this technique still need to be improved to satisfy the requirements of environmental monitoring standard. In addition, determination of nonmetallic species in liquid by LIBS is equally important and needs immediate attention from the community. This comprehensive review will assist the readers to better understand the aqueous LIBS technique and help to identify current research needs for environmental monitoring of water quality.

  1. New Perspectives in Monitoring Drinking Water Microbial Quality

    PubMed Central

    Figueras, Ma José; Borrego, Juan J.

    2010-01-01

    The safety of drinking water is evaluated by the results obtained from faecal indicators during the stipulated controls fixed by the legislation. However, drinking-water related illness outbreaks are still occurring worldwide. The failures that lead to these outbreaks are relatively common and typically involve preceding heavy rain and inadequate disinfection processes. The role that classical faecal indicators have played in the protection of public health is reviewed and the turning points expected for the future explored. The legislation for protecting the quality of drinking water in Europe is under revision, and the planned modifications include an update of current indicators and methods as well as the introduction of Water Safety Plans (WSPs), in line with WHO recommendations. The principles of the WSP approach and the advances signified by the introduction of these preventive measures in the future improvement of dinking water quality are presented. The expected impact that climate change will have in the quality of drinking water is also critically evaluated. PMID:21318002

  2. Pesticides in Drinking Water – The Brazilian Monitoring Program

    PubMed Central

    Barbosa, Auria M. C.; Solano, Marize de L. M.; Umbuzeiro, Gisela de A.

    2015-01-01

    Brazil is the world largest pesticide consumer; therefore, it is important to monitor the levels of these chemicals in the water used by population. The Ministry of Health coordinates the National Drinking Water Quality Surveillance Program (Vigiagua) with the objective to monitor water quality. Water quality data are introduced in the program by state and municipal health secretariats using a database called Sisagua (Information System of Water Quality Monitoring). Brazilian drinking water norm (Ordinance 2914/2011 from Ministry of Health) includes 27 pesticide active ingredients that need to be monitored every 6 months. This number represents <10% of current active ingredients approved for use in the country. In this work, we analyzed data compiled in Sisagua database in a qualitative and quantitative way. From 2007 to 2010, approximately 169,000 pesticide analytical results were prepared and evaluated, although approximately 980,000 would be expected if all municipalities registered their analyses. This shows that only 9–17% of municipalities registered their data in Sisagua. In this dataset, we observed non-compliance with the minimum sampling number required by the norm, lack of information about detection and quantification limits, insufficient standardization in expression of results, and several inconsistencies, leading to low credibility of pesticide data provided by the system. Therefore, it is not possible to evaluate exposure of total Brazilian population to pesticides via drinking water using the current national database system Sisagua. Lessons learned from this study could provide insights into the monitoring and reporting of pesticide residues in drinking water worldwide. PMID:26581345

  3. Clean Water State Revolving Fund (CWSRF): Contaminated Sites

    EPA Pesticide Factsheets

    Communities can use the CWSRF to address the water quality aspects of site assessment and cleanup of brownfields, Superfund sites, and sites of current or former aboveground or underground storage tanks.

  4. Protecting drinking water: water quality testing and PHAST in South Africa.

    PubMed

    Breslin, E D

    2000-01-01

    The paper presents an innovative field-based programme that uses a simple total coliform test and the approach of PHAST (Participatory Hygiene And Sanitation Transformation) to help communities exploring possible water quality problems and actions that can be taken to address them. The Mvula Trust, a South African water and environmental sanitation NGO, has developed the programme. It is currently being tested throughout South Africa. The paper provides two case studies on its implementation in the field, and suggests ways in which the initiative can be improved in the future.

  5. A Web-Based Decision Support System for Assessing Regional Water-Quality Conditions and Management Actions

    USGS Publications Warehouse

    Booth, N.L.; Everman, E.J.; Kuo, I.-L.; Sprague, L.; Murphy, L.

    2011-01-01

    The U.S. Geological Survey National Water Quality Assessment Program has completed a number of water-quality prediction models for nitrogen and phosphorus for the conterminous United States as well as for regional areas of the nation. In addition to estimating water-quality conditions at unmonitored streams, the calibrated SPAtially Referenced Regressions On Watershed attributes (SPARROW) models can be used to produce estimates of yield, flow-weighted concentration, or load of constituents in water under various land-use condition, change, or resource management scenarios. A web-based decision support infrastructure has been developed to provide access to SPARROW simulation results on stream water-quality conditions and to offer sophisticated scenario testing capabilities for research and water-quality planning via a graphical user interface with familiar controls. The SPARROW decision support system (DSS) is delivered through a web browser over an Internet connection, making it widely accessible to the public in a format that allows users to easily display water-quality conditions and to describe, test, and share modeled scenarios of future conditions. SPARROW models currently supported by the DSS are based on the modified digital versions of the 1:500,000-scale River Reach File (RF1) and 1:100,000-scale National Hydrography Dataset (medium-resolution, NHDPlus) stream networks. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  6. MODIFICATIONS OF WASP FOR SIMULATING PERIPHYTON DYNAMICS

    EPA Science Inventory

    Conventional water quality models that are in current use today for the development of TMDLs and waste load allocations usually use dissolved oxygen, nutrient concentrations and algal growth as indicators to water health. In shallow streams and rivers, water health can be contro...

  7. Drinking water systems, hydrology, and childhood gastrointestinal illness in central and northern Wisconsin

    USDA-ARS?s Scientific Manuscript database

    Background: Current United States drinking water regulations create areas with different levels of water quality. Municipalities accessing untreated groundwater and households with unmonitored private wells may be at increased risk for acquiring waterborne disease. Objectives: The study investigat...

  8. BATHING BEACH MONITORING PROTOCOLS/COMMUNICATING SWIMMING ACTIVITY RISK TO THE PUBLIC

    EPA Science Inventory

    Current Environmental Protection Agency (EPA) recommended monitoring practices for bathing beach water quality were suggested in 1968, as a part of the fecal coliform guideline developed by the Federal Water Pollution Control Administration. The guideline stated that five water ...

  9. Comparison of 2008-2009 water years and historical water-quality data, upper Gunnison River Basin, Colorado

    USGS Publications Warehouse

    Solberg, Patricia A.; Moore, Bryan; Blacklock, Ty D.

    2012-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, U.S. Forest Service, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of sites: (1) sites that are considered long term and (2) sites that are considered rotational. Data from the long-term sites assist in defining temporal changes in water quality (how conditions may change over time). The rotational sites assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and address local and short-term concerns. Biannual summaries of the water-quality data from the monitoring network provide a point of reference for stakeholder discussions regarding the location and purpose of water-quality monitoring sites in the upper Gunnison River Basin. This report compares and summarizes the data collected during water years 2008 and 2009 to the historical data available at these sites. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network sites. The remainder of the report is organized around the data collected at individual sites. Data collected during water years 2008 and 2009 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. A seasonal Kendall test for trend analysis is completed when there is sufficient data (typically >5 years) at the station. Data were collected following USGS protocols.

  10. Response of the Rio Grande and shallow ground water in the Mesilla Bolson to irrigation, climate stress, and pumping

    USGS Publications Warehouse

    Walton, J.; Ohlmacher, G.; Utz, D.; Kutianawala, M.

    1999-01-01

    The El Paso-Ciudad Juarez metropolitan area obtains its water from the Rio Grande and intermontane-basin aquifers. Shallow ground water in this region is in close communications with the surface water system. A major problem with both systems is salinity. Upstream usage of the water in the Rio Grande for irrigation and municipalities has led to concentration of soluble salts to the point where the surface water commonly exceeds drinking water standards. Shallow ground water is recharged by surface water (primarily irrigation canals and agricultural fields) and discharges to surface water (agricultural drains) and deeper ground water. The source of water entering the Rio Grande varies seasonally. During the irrigation season, water is released from reservoirs and mixes with the return flow from irrigation drains. During the non-irrigation season (winter), flow is from irrigation drains and river water quality is indicative of shallow ground water. The annual cycle can be ascertained from the inverse correlation between ion concentrations and discharge in the river. Water-quality data indicate that the salinity of shallow ground water increases each year during a drought. Water-management strategies in the region can affect water quality. Increasing the pumping rate of water-supply wells will cause shallow ground water to flow into the deeper aquifers and degrade the water quality. Lining the canals in the irrigation system to stop water leakage will lead to water quality degradation in shallow ground water and, eventually, deep ground water by removing a major source of high quality recharge that currently lowers the salinity of the shallow ground water.

  11. Data Delivery and Mapping Over the Web: National Water-Quality Assessment Data Warehouse

    USGS Publications Warehouse

    Bell, Richard W.; Williamson, Alex K.

    2006-01-01

    The U.S. Geological Survey began its National Water-Quality Assessment (NAWQA) Program in 1991, systematically collecting chemical, biological, and physical water-quality data from study units (basins) across the Nation. In 1999, the NAWQA Program developed a data warehouse to better facilitate national and regional analysis of data from 36 study units started in 1991 and 1994. Data from 15 study units started in 1997 were added to the warehouse in 2001. The warehouse currently contains and links the following data: -- Chemical concentrations in water, sediment, and aquatic-organism tissues and related quality-control data from the USGS National Water Information System (NWIS), -- Biological data for stream-habitat and ecological-community data on fish, algae, and benthic invertebrates, -- Site, well, and basin information associated with thousands of descriptive variables derived from spatial analysis, like land use, soil, and population density, and -- Daily streamflow and temperature information from NWIS for selected sampling sites.

  12. A statistical model for water quality predictions from a river discharge using coastal observations

    NASA Astrophysics Data System (ADS)

    Kim, S.; Terrill, E. J.

    2007-12-01

    Understanding and predicting coastal ocean water quality has benefits for reducing human health risks, protecting the environment, and improving local economies which depend on clean beaches. Continuous observations of coastal physical oceanography increase the understanding of the processes which control the fate and transport of a riverine plume which potentially contains high levels of contaminants from the upstream watershed. A data-driven model of the fate and transport of river plume water from the Tijuana River has been developed using surface current observations provided by a network of HF radar operated as part of a local coastal observatory that has been in place since 2002. The model outputs are compared with water quality sampling of shoreline indicator bacteria, and the skill of an alarm for low water quality is evaluated using the receiver operating characteristic (ROC) curve. In addition, statistical analysis of beach closures in comparison with environmental variables is also discussed.

  13. Microbial Source Tracking

    EPA Science Inventory

    Bacterial indicators of fecal contamination provide the basis for assessing the microbial quality of environmental waters. While the indicator concept has overall helped reduce waterborne outbreaks in recreational waters, the public health value of currently used indicator bacter...

  14. Using Lagrangian Coherent Structures to understand coastal water quality

    NASA Astrophysics Data System (ADS)

    Fiorentino, L. A.; Olascoaga, M. J.; Reniers, A.; Feng, Z.; Beron-Vera, F. J.; MacMahan, J. H.

    2012-09-01

    The accumulation of pollutants near the shoreline can result in low quality coastal water with negative effects on human health. To understand the role of mixing by tidal flows in coastal water quality we study the nearshore Lagrangian circulation. Specifically, we reveal Lagrangian Coherent Structures (LCSs), i.e., distinguished material curves which shape global mixing patterns and thus act as skeletons of the Lagrangian circulation. This is done using the recently developed geodesic theory of transport barriers. Particular focus is placed on Hobie Beach, a recreational subtropical marine beach located in Virginia Key, Miami, Florida. According to studies of water quality, Hobie Beach is characterized by high microbial levels. Possible sources of pollution in Hobie Beach include human bather shedding, dog fecal matter, runoff, and sand efflux at high tides. Consistent with the patterns formed by satellite-tracked drifter trajectories, the LCSs extracted from simulated currents reveal a Lagrangian circulation favoring the retention near the shoreline of pollutants released along the shoreline, which can help explain the low quality water registered at Hobie Beach.

  15. Water quality in the Mobile River Basin, Alabama, Georgia, and Mississippi, and Tennessee, 1999-2001

    USGS Publications Warehouse

    Atkins, J. Brian; Zappia, Humbert; Robinson, James L.; McPherson, Ann K.; Moreland, Richard S.; Harned, Douglas A.; Johnston, Brett F.; Harvill, John S.

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the Mobile River Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Mobile River Basin summarized in this report are discussed in detail in other reports that can be accessed from the Mobile River Basin Web site (http://al.water.usgs.gov/pubs/mobl/mobl.html). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  16. Water quality in the lower Tennessee River Basin, Tennessee, Alabama, Kentucky, Mississippi, and Georgia, 1999-2001

    USGS Publications Warehouse

    Woodside, Michael D.; Hoos, Anne B.; Kingsbury, James A.; Powell, Jeffrey R.; Knight, Rodney R.; Garrett, Jerry W.; Mitchell, Reavis L.; Robinson, John A.

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the Lower Tennessee River Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Lower Tennessee River Basin summarized in this report are discussed in detail in other reports that can be accessed from the Lower Tennessee River Basin Web site (http://tn.water.usgs.gov/lten/lten.html). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  17. Water quality in the Great and Little Miami River Basins, Ohio and Indiana, 1999-2001

    USGS Publications Warehouse

    Rowe, Gary L.; Reutter, David C.; Runkle, Donna L.; Hambrook, Julie A.; Janosy, Stephanie D.; Hwang, Lee H.

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the Great and Little Miami River Basins. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Great and Little Miami River Basins summarized in this report are discussed in detail in other reports that can be accessed from (http://oh.water.usgs.gov/miam/intro.html). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report, in addition to reports in this series from other basins, can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  18. Future challenges to protecting public health from drinking-water contaminants.

    PubMed

    Murphy, Eileen A; Post, Gloria B; Buckley, Brian T; Lippincott, Robert L; Robson, Mark G

    2012-04-01

    Over the past several decades, human health protection for chemical contaminants in drinking water has been accomplished by development of chemical-specific standards. This approach alone is not feasible to address current issues of the occurrence of multiple contaminants in drinking water, some of which have little health effects information, and water scarcity. In this article, we describe the current chemical-specific paradigm for regulating chemicals in drinking water and discuss some potential additional approaches currently being explored to focus more on sustaining quality water for specific purposes. Also discussed are strategies being explored by the federal government to screen more efficiently the toxicity of large numbers of chemicals to prioritize further intensive testing. Water reuse and water treatment are described as sustainable measures for managing water resources for potable uses as well as other uses such as irrigation.

  19. Future Challenges to Protecting Public Health from Drinking-Water Contaminants

    PubMed Central

    Murphy, Eileen A.; Post, Gloria B.; Buckley, Brian T.; Lippincott, Robert L.; Robson, Mark G.

    2014-01-01

    Over the past several decades, human health protection for chemical contaminants in drinking water has been accomplished by development of chemical-specific standards. This approach alone is not feasible to address current issues of the occurrence of multiple contaminants in drinking water, some of which have little health effects information, and water scarcity. In this article, we describe the current chemical-specific paradigm for regulating chemicals in drinking water and discuss some potential additional approaches currently being explored to focus more on sustaining quality water for specific purposes. Also discussed are strategies being explored by the federal government to screen more efficiently the toxicity of large numbers of chemicals to prioritize further intensive testing. Water reuse and water treatment are described as sustainable measures for managing water resources for potable uses as well as other uses such as irrigation. PMID:22224887

  20. Remote Sensing of Water Quality in the Niger River Basin

    NASA Astrophysics Data System (ADS)

    Mueller, C.; Palacios, S. L.; Milesi, C.; Schmidt, C.; Baney, O. N.; Mitchell, Å. R.; Kislik, E.; Palmer-Moloney, L. J.

    2015-12-01

    An overarching goal of the National Geospatial Intelligence Agency (NGA) Anticipatory Analytics- -GEOnarrative program is to establish water linkages with energy, food, and climate and to understand how these linkages relate to national security and stability. Recognizing that geopolitical stability is tied to human health, agricultural productivity, and natural ecosystems' vitality, NGA partnered with NASA Ames Research Center to use satellite remote sensing to assess water quality in West Africa, specifically the Niger River Basin. Researchers from NASA Ames used MODIS and Landsat imagery to apply two water quality indices-- the Floating Algal Index (FAI) and the Turbidity Index (TI)--to large rivers, lakes and reservoirs within the Niger Basin. These indices were selected to evaluate which observations were most suitable for monitoring water quality in a region where coincident in situ measurements are not available. In addition, the FAI and TI indices were derived using data from the Hyperspectral Imagery for the Coastal Ocean (HICO) sensor for Lake Erie in the United States to determine how increased spectral resolution and in-situ measurements would improve the ability to measure the spatio-temporal variations in water quality. Results included the comparison of outputs from sensors with different spectral and spatial resolution characteristics for water quality monitoring. Approaches, such as the GEOnarrative, that incorporate water quality will enable analysts and decision-makers to recognize the current and potentially future impacts of changing water quality on regional security and stability.

  1. An early warning system for groundwater pollution based on the assessment of groundwater pollution risks.

    NASA Astrophysics Data System (ADS)

    Zhang, Weihong.; Zhao, Yongsheng; Hong, Mei; Guo, Xiaodong

    2009-04-01

    Groundwater pollution usually is complex and concealed, remediation of which is difficult, high cost, time-consuming, and ineffective. An early warning system for groundwater pollution is needed that detects groundwater quality problems and gets the information necessary to make sound decisions before massive groundwater quality degradation occurs. Groundwater pollution early warning were performed by considering comprehensively the current groundwater quality, groundwater quality varying trend and groundwater pollution risk . The map of the basic quality of the groundwater was obtained by fuzzy comprehensive evaluation or BP neural network evaluation. Based on multi-annual groundwater monitoring datasets, Water quality state in sometime of the future was forecasted using time-sequenced analyzing methods. Water quality varying trend was analyzed by Spearman's rank correlative coefficient.The relative risk map of groundwater pollution was estimated through a procedure that identifies, cell by cell,the values of three factors, that is inherent vulnerability, load risk of pollution source and contamination hazard. DRASTIC method was used to assess inherent vulnerability of aquifer. Load risk of pollution source was analyzed based on the potential of contamination and pollution degree. Assessment index of load risk of pollution source which involves the variety of pollution source, quantity of contaminants, releasing potential of pollutants, and distance were determined. The load risks of all sources considered by GIS overlay technology. Early warning model of groundwater pollution combined with ComGIS technology organically, the regional groundwater pollution early-warning information system was developed, and applied it into Qiqiha'er groundwater early warning. It can be used to evaluate current water quality, to forecast water quality changing trend, and to analyze space-time influencing range of groundwater quality by natural process and human activities. Keywords: groundwater pollution, early warning, aquifer vulnerability, pollution load, pollution risk, ComGIS

  2. Integrating sentinel watershed-systems into the monitoring and assessment of Minnesota's (USA) waters quality.

    PubMed

    Magner, J A; Brooks, K N

    2008-03-01

    Section 303(d) of the Clean Water Act requires States and Tribes to list waters not meeting water quality standards. A total maximum daily load must be prepared for waters identified as impaired with respect to water quality standards. Historically, the management of pollution in Minnesota has been focused on point-source regulation. Regulatory effort in Minnesota has improved water quality over the last three decades. Non-point source pollution has become the largest driver of conventional 303(d) listings in the 21st century. Conventional pollutants, i.e., organic, sediment and nutrient imbalances can be identified with poor land use management practices. However, the cause and effect relationship can be elusive because of natural watershed-system influences that vary with scale. Elucidation is complex because the current water quality standards in Minnesota were designed to work best with water quality permits to control point sources of pollution. This paper presents a sentinel watershed-systems approach (SWSA) to the monitoring and assessment of Minnesota waterbodies. SWSA integrates physical, chemical, and biological data over space and time using advanced technologies at selected small watersheds across Minnesota to potentially improve understanding of natural and anthropogenic watershed processes and the management of point and non-point sources of pollution. Long-term, state-of-the-art monitoring and assessment is needed to advance and improve water quality standards. Advanced water quality or ecologically-based standards that integrate physical, chemical, and biological numeric criteria offer the potential to better understand, manage, protect, and restore Minnesota's waterbodies.

  3. Post-fire Water Quality Response and Associated Physical Drivers

    NASA Astrophysics Data System (ADS)

    Rust, A.; Saxe, S.; Hogue, T. S.; McCray, J. E.; Rhoades, C.

    2017-12-01

    The frequency and severity of forest fires is increasing across the western US. Wildfires are known to impact water quality in receiving waters; many of which are important sources of water supply. Studies on individual forest fires have shown an increase in total suspended solids, nutrient and metal concentrations and loading in receiving streams. The current research looks at a large number of fires across a broad region (Western United States) to identify typical water quality changes after fire and the physical characteristics that drive those responses. This presentation will overview recent development of an extensive database on post-fire water quality. Across 172 fires, we found that water quality changed significantly in one out of three fires up to five years after the event compared to pre-burn conditions. For basins with higher frequency data, it was evident that water quality changes were significant in the first three years following fire. In both the initial years following fire and five years after fire, concentrations and loading rates of dissolved nutrients such as nitrite, nitrate and orthophosphate and particulate forms of nutrients, total organic nitrogen, total nitrogen, total phosphate, and total phosphorus increase thirty percent of the time. Concentrations of some major dissolved ions and metals decrease, with increased post-fire flows, while total particulate concentrations increased; the flux of both dissolved and particulate forms increase in thirty percent of the fires over five years. Water quality change is not uniform across the studied watersheds. A second goal of this study is to identify physical characteristics of a watershed that drive water quality response. Specifically, we investigate the physical, geochemical, and climatological characteristics of watersheds that control the type, direction, and magnitude of water quality change. Initial results reveal vegetation recovery is a key driver in post-fire water quality response. Ultimately, improved understanding of post-fire response and related drivers will advance potential mitigation and treatment strategies as well as aid in the parametrization of post-fire models of water quality.

  4. Reuse of reclaimed wastewater for golf course irrigation in Tunisia.

    PubMed

    Bahri, A; Basset, C; Oueslati, F; Brissaud, F

    2001-01-01

    In Tunisia, golf courses are irrigated with secondary treated effluent stored in landscape impoundments. The impact of the conveyance and storage steps on the physical-chemical and biological quality of irrigation water was evaluated on three golf courses over two years. It was found that the water quality varies all along the water route, from the wastewater treatment plant up to the irrigation site: nutrient and bacteria contents decreased along the route in the three cases. This variation depends on the wastewater quality, the length of the pipes conveying water, the number of regulation reservoirs and ponds, the water residence time in pipes, reservoirs and ponds, and the operation of the ponds. The bacteriological quality of irrigation water deteriorates during the irrigation period in the three golf courses as the ponds are operated as continuous flow reactors. The results obtained in this study indicate the inability of golf water supplies, as currently managed, to properly sanitize reclaimed wastewater and meet target quality criteria recommended by WHO (1989) for water intended for recreational use. For a safe reuse of reclaimed wastewater for golf course irrigation, changes in the design and operation of the ponds should be planned or additional treatment steps provided.

  5. ENVIRONMENTAL MONITORING FOR PUBLIC ACCESS AND COMMUNITY TRACKING (EMPACT) PROGRAM MICROBIOLOGICAL MONITORING OF RECREATIONAL WATER

    EPA Science Inventory

    Current Environmental Protection Agency (EPA) recommended microbiological monitoring practices for bathing beach water quality were suggested in 1968, as a part of the fecal coliform guideline developed by the Federal Water Pollution Control Administration. The guideline stated ...

  6. Appendix 3 Summary of Field Sampling and Analytical Methods with Bibliography

    EPA Science Inventory

    Conductivity and Specific conductance are measures of the ability of water to conduct an electric current, and are a general measure of stream-water quality. Conductivity is affected by temperature, with warmer water having a greater conductivity. Specific conductance is the te...

  7. Condition Assessment of Drinking Water Transmission and Distribution Systems

    EPA Science Inventory

    Condition assessment of water transmission and distribution mains is the collection of data and information through direct and/or indirect methods, followed by analysis of the data and information, to make a determination of the current and/or future structural, water quality, an...

  8. Ground-water quality in east-central Idaho valleys

    USGS Publications Warehouse

    Parliman, D.J.

    1982-01-01

    From May through November 1978, water quality, geologic, and hydrologic data were collected for 108 wells in the Lemhi, Pahsimeroi, Salman River (Stanley to Salmon), Big Lost River, and Little Lost River valleys in east-central Idaho. Data were assembled to define, on a reconnaissance level, water-quality conditions in major aquifers and to develop an understanding of factors that affected conditions in 1978 and could affect future ground-water quality. Water-quality characteristics determined include specific conductance, pH, water temperature, major dissolved cations, major dissolved anions, and coliform bacteria. Concentrations of hardness, nitrite plus nitrate, coliform bacteria, dissolved solids, sulfate, chloride, fluoride , iron, calcium, magnesium, sodium, potassium or bicarbonate exceed public drinking water regulation limits or were anomalously high in some water samples. Highly mineralized ground water probably is due to the natural composition of the aquifers and not to surface contamination. Concentrations of coliform bacteria that exceed public drinking water limits and anomalously high dissolved nitrite-plus-nitrite concentrations are from 15- to 20-year old irrigation wells in heavily irrigated or more densely populated areas of the valleys. Ground-water quality and quantity in most of the study area are sufficient to meet current (1978) population and economic demands. Ground water in all valleys is characterized by significant concentrations of calcium, magnesium, and bicarbonate plus carbonate ions. Variations in the general trend of ground-water composition (especially in the Lemhi Valley) probably are most directly related to variability in aquifer lithology and proximity of sampling site to source of recharge. (USGS)

  9. Water quality of North Carolina streams

    USGS Publications Warehouse

    Harned, Douglas; Meyer, Dann

    1983-01-01

    Interpretation of water quality data collected by the U.S. Geological Survey and the North Carolina Department of Natural Resources and Community Development, for the Yadkin-Pee Dee River system, has identified water quality variations, characterized the current condition of the river in reference to water quality standards, estimated the degree of pollution caused by man, and evaluated long-term trends in concentrations of major dissolved constituents. Three stations, Yadkin River at Yadkin College (02116500), Rocky River near Norwood (02126000), and Pee Dee River near Rockingham (02129000) have been sampled over different periods of time beginning in 1906. Overall, the ambient water quality of the Yadkin-Pee Dee River system is satisfactory for most water uses. Iron and manganese concentrations are often above desirable levels, but they are not unusually high in comparison to other North Carolina streams. Lead concentrations also periodically rise above the recommended criterion for domestic water use. Mercury concentrations frequently exceed, and pH levels fall below, the recommended criteria for protection of aquatic life. Dissolved oxygen levels, while generally good, are lowest at the Pee Dee near Rockingham, due to the station 's location not far downstream from a lake. Suspended sediment is the most significant water quality problem of the Yadkin-Pee Dee River. The major cation in the river is sodium and the major anions are bicarbonate and carbonate. Eutrophication is currently a problem in the Yadkin-Pee Dee, particularly in High Rock Lake. An estimated nutrient and sediment balance of the system indicates that lakes along the Yadkin-Pee Dee River serve as a sink for sediment, ammonia, and phosphorus. Pollution makes up approximately 59% of the total dissolved solids load of the Yadkin River at Yadkin College, 43% for the Rocky River near Norwood, and 29% for the Pee Dee River near Rockingham. Statistically significant trends show a pattern of increasing concentration of most dissolved constituents over time, with a leveling off and decline in the middle to late 1970's.

  10. Surface-water-quality assessment of the Yakima River basin, Washington; project description

    USGS Publications Warehouse

    McKenzie, S.W.; Rinella, J.F.

    1987-01-01

    In April 1986, the U.S. Geological Survey began the National Water Quality Assessment program to: (1) provide a nationally consistent description of the current status of water quality, (2) define water quality trends that have occurred over recent decades, and (3) relate past and present water quality conditions to relevant natural features, the history of land and water use, and land management and waste management practices. At present (1987), The National Water Quality Assessment program is in a pilot studies phase, in which assessment concepts and approaches are being tested and modified to prepare for possible full implementation of the program. Seven pilot projects (four surface water projects and three groundwater projects) have been started. The Yakima River basin in Washington is one of the pilot surface water project areas. The Yakima River basin drains in area of 6,155 sq mi and contains about 1,900 river mi of perennial streams. Major land use activities include growing and harvesting timber, dryland pasture grazing, intense farming and irrigated agriculture, and urbanization. Water quality issues that result from these land uses include potentially large concentrations of suspended sediment, bacteria, nutrients, pesticides, and trace elements that may affect water used for human consumption, fish propagation and passage, contact recreation, livestock watering, and irrigation. Data will be collected in a nine year cycle. The first three years of the cycle will be a period of concentrated data acquisition and interpretation. For the next six years, sample collection will be done at a much lower level of intensity to document the occurrence of any gross changes in water quality. This nine year cycle would then be repeated. Three types of sampling activities will be used for data acquisition: fixed location station sampling, synoptic sampling, and intensive reach studies. (Lantz-PTT)

  11. CHARACTERIZATION OF ENDEMIC DISEASE: HEALTH EFFECTS ASSOCIATED WITH DIFFERENCES IN SOURCE WATER QUALITY AND TREATMENT

    EPA Science Inventory

    A study in Canada by Payment et al. found that up to 35% of gastrointestinal illness in a community served by surface water was associated with drinking water that met current drinking water standards. A similar follow-up study by the same investigators tended to repeat the resul...

  12. [The assessment of the quality of water from sources of decentralized water supply of Ekaterinburg and surrounding areas].

    PubMed

    Konshina, Lidia G

    2016-01-01

    The availability of high-quality drinking water is currently the one out of the most acute problems in the Russian Federation. There was performed an analysis of the chemical composition of drinking water from sources of decentralized supply of inhabitants of the city of Yekaterinburg and the surrounding areas. Average values of indices of the water quality in the wells for individual use in the district of the city of Yekaterinburg not go beyond the standards, with the exception of manganese content. In some sources there were revealed elevated values of chromatic level, oxidability, hardness, content of iron, nitrates, barium, dry residue, ammonium nitrogen, silicon. Percentage of sources that do not meet hygienic requirements on a number of indices can reach 21-23%.

  13. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer?

    PubMed Central

    Chouler, Jon; Di Lorenzo, Mirella

    2015-01-01

    The provision of safe water and adequate sanitation in developing countries is a must. A range of chemical and biological methods are currently used to ensure the safety of water for consumption. These methods however suffer from high costs, complexity of use and inability to function onsite and in real time. The microbial fuel cell (MFC) technology has great potential for the rapid and simple testing of the quality of water sources. MFCs have the advantages of high simplicity and possibility for onsite and real time monitoring. Depending on the choice of manufacturing materials, this technology can also be highly cost effective. This review covers the state-of-the-art research on MFC sensors for water quality monitoring, and explores enabling factors for their use in developing countries. PMID:26193327

  14. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer?

    PubMed

    Chouler, Jon; Di Lorenzo, Mirella

    2015-07-16

    The provision of safe water and adequate sanitation in developing countries is a must. A range of chemical and biological methods are currently used to ensure the safety of water for consumption. These methods however suffer from high costs, complexity of use and inability to function onsite and in real time. The microbial fuel cell (MFC) technology has great potential for the rapid and simple testing of the quality of water sources. MFCs have the advantages of high simplicity and possibility for onsite and real time monitoring. Depending on the choice of manufacturing materials, this technology can also be highly cost effective. This review covers the state-of-the-art research on MFC sensors for water quality monitoring, and explores enabling factors for their use in developing countries.

  15. Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate Scale Water Quality Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khangaonkar, Tarang; Sackmann, Brandon S.; Long, Wen

    2012-10-01

    The Salish Sea, including Puget Sound, is a large estuarine system bounded by over seven thousand miles of complex shorelines, consists of several subbasins and many large inlets with distinct properties of their own. Pacific Ocean water enters Puget Sound through the Strait of Juan de Fuca at depth over the Admiralty Inlet sill. Ocean water mixed with freshwater discharges from runoff, rivers, and wastewater outfalls exits Puget Sound through the brackish surface outflow layer. Nutrient pollution is considered one of the largest threats to Puget Sound. There is considerable interest in understanding the effect of nutrient loads on themore » water quality and ecological health of Puget Sound in particular and the Salish Sea as a whole. The Washington State Department of Ecology (Ecology) contracted with Pacific Northwest National Laboratory (PNNL) to develop a coupled hydrodynamic and water quality model. The water quality model simulates algae growth, dissolved oxygen, (DO) and nutrient dynamics in Puget Sound to inform potential Puget Sound-wide nutrient management strategies. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or control human impacts to DO levels in the sensitive areas. The project did not include any additional data collection but instead relied on currently available information. This report describes model development effort conducted during the period 2009 to 2012 under a U.S. Environmental Protection Agency (EPA) cooperative agreement with PNNL, Ecology, and the University of Washington awarded under the National Estuary Program« less

  16. Review of Phosphorus Control Measures in the United States and Their Effects on Water Quality

    USGS Publications Warehouse

    Litke, David W.

    1999-01-01

    Historical information on phosphorus loadings to the environment and the effect on water quality are summarized in this report, which was produced as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. Phosphorus is a water-quality constituent of concern because it is often the limiting nutrient responsible for accelerated eutrophication in water bodies. Phosphorus inputs to the environment have increased since 1950 as the use of phosphate fertilizer, manure, and phosphate laundry detergent increased; however, the manufacture of phosphate detergent for household laundry was ended voluntarily in about 1994 after many States had established phosphate detergent bans. Total phosphorus concentrations in raw wastewater effluent contained about 3 milligrams per liter of total phosphorus during the 1940's, increased to about 11 milligrams per liter at the height of phosphate detergent use (1970), and have currently declined to about 5 milligrams per liter. However, in some cases, tertiary wastewater treatment still is needed to effectively improve water quality of streams. Downward trends in phosphorus concentrations since 1970 have been identified in many streams, but median total phosphorus concentrations still exceed the recommended limit of 0.1 milligram per liter across much of the Nation. Data from the NAWQA Program are representative of a variety of phosphorus-control measures, and, therefore, may be used to evaluate the effects of various control strategies. Current areas of concern include: evaluation of the effects of increased manure loadings of phosphorus on soil phosphorus and, subsequently, on ground water and subsurface runoff; determination of point-source and nonpoint-source components of phosphorus loads by geographic modeling and hydrologic separation techniques; and development of methods or indices to evaluate nutrient impairment in streams and rivers to serve as a basis for developing phosphorus criteria or standards.

  17. Assessing the Effects of Water Rights Purchases on Dissolved Oxygen, Stream Temperatures, and Fish Habitat

    NASA Astrophysics Data System (ADS)

    Mouzon, N. R.; Null, S. E.

    2014-12-01

    Human impacts from land and water development have degraded water quality and altered the physical, chemical, and biological integrity of Nevada's Walker River. Reduced instream flows and increased nutrient concentrations affect native fish populations through warm daily stream temperatures and low nightly dissolved oxygen concentrations. Water rights purchases are being considered to maintain instream flows, improve water quality, and enhance habitat for native fish species, such as Lahontan cutthroat trout. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate streamflows, temperatures, and dissolved oxygen concentrations in the Walker River. We simulate thermal and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that water purchases most enhance native trout habitat. Stream temperatures and dissolved oxygen concentrations are proxies for trout habitat. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach currently acts as a water quality barrier for fish passage.

  18. Riparian buffer design guidelines for water quality and wildlife habitat functions on agricultural landscapes in the Intermountain West: Appendix C

    Treesearch

    Susan Buffler

    2008-01-01

    Currently, there is no scientific literature examining appropriate riparian buffer widths for water quality for streams on private agriculturally dominated lands in arid regions of the Intermountain West. The initial step in this research effort was a review of buffer research as documented in the literature in other physiographic regions of the United States. Research...

  19. Environmental Impact Statement Space Shuttle Program, Vandenberg AFB, California. Supplement.

    DTIC Science & Technology

    1983-07-01

    area, will induce significant population growth and aggravate current housing and water availability problems . Six appendices offer more detailed...impacts have been reevaluated in light of recent changes in the p-ogram, research studies in problem areas, and newly- acquired knowledge of the...aggravate short-term problems concerning housing, and the quality and quantity of available water. x 7. PERMITS AND OTHER ENTITLEMENTS Air quality

  20. Quality-assurance results for routine water analysis in US Geological Survey laboratories, water year 1991

    USGS Publications Warehouse

    Maloney, T.J.; Ludtke, A.S.; Krizman, T.L.

    1994-01-01

    The US. Geological Survey operates a quality- assurance program based on the analyses of reference samples for the National Water Quality Laboratory in Arvada, Colorado, and the Quality of Water Service Unit in Ocala, Florida. Reference samples containing selected inorganic, nutrient, and low ionic-strength constituents are prepared and disguised as routine samples. The program goal is to determine precision and bias for as many analytical methods offered by the participating laboratories as possible. The samples typically are submitted at a rate of approximately 5 percent of the annual environmental sample load for each constituent. The samples are distributed to the laboratories throughout the year. Analytical data for these reference samples reflect the quality of environmental sample data produced by the laboratories because the samples are processed in the same manner for all steps from sample login through data release. The results are stored permanently in the National Water Data Storage and Retrieval System. During water year 1991, 86 analytical procedures were evaluated at the National Water Quality Laboratory and 37 analytical procedures were evaluated at the Quality of Water Service Unit. An overall evaluation of the inorganic (major ion and trace metal) constituent data for water year 1991 indicated analytical imprecision in the National Water Quality Laboratory for 5 of 67 analytical procedures: aluminum (whole-water recoverable, atomic emission spectrometric, direct-current plasma); calcium (atomic emission spectrometric, direct); fluoride (ion-exchange chromatographic); iron (whole-water recoverable, atomic absorption spectrometric, direct); and sulfate (ion-exchange chromatographic). The results for 11 of 67 analytical procedures had positive or negative bias during water year 1991. Analytical imprecision was indicated in the determination of two of the five National Water Quality Laboratory nutrient constituents: orthophosphate as phosphorus and phosphorus. A negative or positive bias condition was indicated in three of five nutrient constituents. There was acceptable precision and no indication of bias for the 14 low ionic-strength analytical procedures tested in the National Water Quality Laboratory program and for the 32 inorganic and 5 nutrient analytical procedures tested in the Quality of Water Service Unit during water year 1991.

  1. Water quality of least-impaired lakes in eastern and southern Arkansas

    USGS Publications Warehouse

    Justus, B.

    2010-01-01

    A three-phased study identified one least-impaired (reference) lake for each of four Arkansas lake classifications: three classifications in the Mississippi Alluvial Plain (MAP) ecoregion and a fourth classification in the South Central Plains (SCP) ecoregion. Water quality at three of the least-impaired lakes generally was comparable and also was comparable to water quality from Kansas and Missouri reference lakes and Texas least-impaired lakes. Water quality of one least-impaired lake in the MAP ecoregion was not as good as water quality in other least-impaired lakes in Arkansas or in the three other states: a probable consequence of all lakes in that classification having a designated use as a source of irrigation water. Chemical and physical conditions for all four lake classifications were at times naturally harsh as limnological characteristics changed temporally. As a consequence of allochthonous organic material, oxbow lakes isolated within watersheds comprised of swamps were susceptible to low dissolved oxygen concentrations to the extent that conditions would be limiting to some aquatic biota. Also, pH in lakes in the SCP ecoregion was <6.0, a level exceeding current Arkansas water-quality standards but typical of black water systems. Water quality of the deepest lakes exceeded that of shallow lakes. N/P ratios and trophic state indices may be less effective for assessing water quality for shallow lakes (<2 m) than for deep lakes because there is an increased exposure of sediment (and associated phosphorus) to disturbance and light in the former. ?? 2009 Springer Science+Business Media B.V.

  2. Better Insight Into Water Resources Management With Integrated Hydrodynamic And Water Quality Models

    NASA Astrophysics Data System (ADS)

    Debele, B.; Srinivasan, R.; Parlange, J.

    2004-12-01

    Models have long been used in water resources management to guide decision making and improve understanding of the system. Numerous models of different scales -spatial and temporal - are available. Yet, very few models manage to bridge simulations of hydrological and water quality parameters from both upland watershed and riverine system. Most water quality models, such as QUAL2E and EPD-RIV1 concentrate on the riverine system while CE-QUAL-W2 and WASP models focus on larger waterbodies, such as lakes and reservoirs. On the other hand, the original SWAT model, HSPF and other upland watershed hydrological models simulate agricultural (diffuse) pollution sources with limited number of processes incorporated to handle point source pollutions that emanate from industrial sectors. Such limitations, which are common in most hydrodynamic and water quality models undermine better understanding that otherwise could be uncovered by employing integrated hydrological and water quality models for both upland watershed and riverine system. The SWAT model is a well documented and verified hydrological and water quality model that has been developed to simulate the effects of various management scenarios on the health of the environment in terms of water quantity and quality. Recently, the SWAT model has been extended to include the simulation of hydrodynamic and water quality parameters in the river system. The extended SWAT model (ESWAT) has been further extended to run using diurnally varying (hourly) weather data and produce outputs at hourly timescales. This and other improvements in the ESWAT model have been documented in the current work. Besides, the results from two case studies in Texas will be reported.

  3. Ecological relevance of current water quality assessment unit designations in impaired rivers

    USGS Publications Warehouse

    Layhee, Megan J.; Sepulveda, Adam; Ray, Andrew; Mladenka, Greg; Van Every, Lynn

    2016-01-01

    Managers often nest sections of water bodies together into assessment units (AUs) to monitor and assess water quality criteria. Ideally, AUs represent an extent of waters with similar ecological, watershed, habitat and land-use conditions and no overlapping characteristics with other waters. In the United States, AUs are typically based on political or hydrologic boundaries rather than on ecologically relevant features, so it can be difficult to detect changes in impairment status. Our goals were to evaluate if current AU designation criteria of an impaired water body in southeastern Idaho, USA that, like many U.S. waters, has three-quarters of its mainstem length divided into two AUs. We focused our evaluation in southeastern Idaho's Portneuf River, an impaired river and three-quarters of the river is divided into two AUs. We described biological and environmental conditions at multiple reaches within each AU. We used these data to (1) test if variability at the reach-scale is greater within or among AUs and, (2) to evaluate alternate AU boundaries based on multivariate analyses of reach-scale data. We found that some biological conditions had greater variability within an AU than between AUs. Multivariate analyses identified alternative, 2- and 3-group, AUs that reduced this variability. Our results suggest that the current AU designations in the mainstem Portneuf River contain ecologically distinct sections of river and that the existing AU boundaries should be reconsidered in light of the ecological conditions measured at the reach scale. Variation in biological integrity within designated AUs may complicate water quality and biological assessments, influence management decisions or affect where monitoring or mitigation resources are directed.

  4. Evaluation of Climate Change Impact on Drinking Water Treatment Plant Operation

    EPA Science Inventory

    It is anticipated that global climate change will adversely impact source water quality in many areas of the United States and, therefore, will influence the design and operation of current and future drinking water treatment systems. Some of these impacts may lead to violations ...

  5. The Enterococcus QPCR Method for Recreational Water Quality Testing: Testing Background, Performance and Issues

    EPA Science Inventory

    Currently accepted culture-based monitoring methods for fecal indicator bacteria in surface waters take at least 24 hr to determine if unacceptable levels of fecal pollution have reached our recreational beaches. During this waiting period changing water conditions may result eit...

  6. THE NEED FOR SPEED-RAPID METHODOLOGIES TO DETERMINE BATHING BEACH WATER QUALITY

    EPA Science Inventory

    Current methods for determining fecal contamination of recreational waters rely on the culture of bacterial indicators and require at least 24 hours to determine whether the water is unsafe for use. By the time monitoring results are available, exposures have already occurred. N...

  7. Global Access to Safe Water: Accounting for Water Quality and the Resulting Impact on MDG Progress

    PubMed Central

    Onda, Kyle; LoBuglio, Joe; Bartram, Jamie

    2012-01-01

    Monitoring of progress towards the Millennium Development Goal (MDG) drinking water target relies on classification of water sources as “improved” or “unimproved” as an indicator for water safety. We adjust the current Joint Monitoring Programme (JMP) estimate by accounting for microbial water quality and sanitary risk using the only-nationally representative water quality data currently available, that from the WHO and UNICEF “Rapid Assessment of Drinking Water Quality”. A principal components analysis (PCA) of national environmental and development indicators was used to create models that predicted, for most countries, the proportions of piped and of other-improved water supplies that are faecally contaminated; and of these sources, the proportions that lack basic sanitary protection against contamination. We estimate that 1.8 billion people (28% of the global population) used unsafe water in 2010. The 2010 JMP estimate is that 783 million people (11%) use unimproved sources. Our estimates revise the 1990 baseline from 23% to 37%, and the target from 12% to 18%, resulting in a shortfall of 10% of the global population towards the MDG target in 2010. In contrast, using the indicator “use of an improved source” suggests that the MDG target for drinking-water has already been achieved. We estimate that an additional 1.2 billion (18%) use water from sources or systems with significant sanitary risks. While our estimate is imprecise, the magnitude of the estimate and the health and development implications suggest that greater attention is needed to better understand and manage drinking water safety. PMID:22690170

  8. TRIHALOMETHANE LEVELS AND SEMEN QUALITY

    EPA Science Inventory

    Trihalomethanes (THMs) are common byproducts of chlorinating drinking water. The effects of disinfection byproducts on semen quality have not yet been studied in humans, despite animal studies linking exposure to sperm abnormalities. We are currently analyzing the relationship of...

  9. U.S. Geological Survey Combined Well-Bore Flow and Depth-Dependent Water Sampler

    USGS Publications Warehouse

    Izbicki, John A.; Christensen, Allen H.; Hanson, Randall T.; Martin, Peter; Crawford, Steven M.; Smith, Gregory A.

    1999-01-01

    The U.S. Geological Survey has developed a combined well-bore flow and depth-dependent sample collection tool. It is suitable for use in existing production wells having limited access and clearances as small as 1 inch. The combination of well-bore flow and depth-dependent water-quality data is especially effective in assessing changes in aquifer properties and water quality with depth. These are direct measures of changes in well yield and ground-water quality with depth under actual operating conditions. Combinations of other geophysical tools capable of making these measurements, such as vertical-axis current meters used with wire-line samplers, are commercially available but these tools are large and can not easily enter existing production wells.

  10. The importance of lake-specific characteristics for water quality across the continental United States.

    PubMed

    Read, Emily K; Patil, Vijay P; Oliver, Samantha K; Hetherington, Amy L; Brentrup, Jennifer A; Zwart, Jacob A; Winters, Kirsten M; Corman, Jessica R; Nodine, Emily R; Woolway, R Iestyn; Dugan, Hilary A; Jaimes, Aline; Santoso, Arianto B; Hong, Grace S; Winslow, Luke A; Hanson, Paul C; Weathers, Kathleen C

    2015-06-01

    Lake water quality is affected by local and regional drivers, including lake physical characteristics, hydrology, landscape position, land cover, land use, geology, and climate. Here, we demonstrate the utility of hypothesis testing within the landscape limnology framework using a random forest algorithm on a national-scale, spatially explicit data set, the United States Environmental Protection Agency's 2007 National Lakes Assessment. For 1026 lakes, we tested the relative importance of water quality drivers across spatial scales, the importance of hydrologic connectivity in mediating water quality drivers, and how the importance of both spatial scale and connectivity differ across response variables for five important in-lake water quality metrics (total phosphorus, total nitrogen, dissolved organic carbon, turbidity, and conductivity). By modeling the effect of water quality predictors at different spatial scales, we found that lake-specific characteristics (e.g., depth, sediment area-to-volume ratio) were important for explaining water quality (54-60% variance explained), and that regionalization schemes were much less effective than lake specific metrics (28-39% variance explained). Basin-scale land use and land cover explained between 45-62% of variance, and forest cover and agricultural land uses were among the most important basin-scale predictors. Water quality drivers did not operate independently; in some cases, hydrologic connectivity (the presence of upstream surface water features) mediated the effect of regional-scale drivers. For example, for water quality in lakes with upstream lakes, regional classification schemes were much less effective predictors than lake-specific variables, in contrast to lakes with no upstream lakes or with no surface inflows. At the scale of the continental United States, conductivity was explained by drivers operating at larger spatial scales than for other water quality responses. The current regulatory practice of using regionalization schemes to guide water quality criteria could be improved by consideration of lake-specific characteristics, which were the most important predictors of water quality at the scale of the continental United States. The spatial extent and high quality of contextual data available for this analysis makes this work an unprecedented application of landscape limnology theory to water quality data. Further, the demonstrated importance of lake morphology over other controls on water quality is relevant to both aquatic scientists and managers.

  11. National Water-Quality Assessment Program; the Allegheny-Monongahela River Basin

    USGS Publications Warehouse

    McAuley, Steven D.

    1995-01-01

    In 1991, the U.S. Geological Survey (USGS) began a National Water-Quality Assessment (NAWQA) program. The three major objectives of the NAWQA program are to provide a consistent description of current water-quality conditions for a large part of the Nation's water resources, define long-term trends in water quality, and identify, describe, and explain the major factors that affect water-quality conditions and trends. The program produces water-quality information that is useful to policy makers and managers at the National, State, and local levels.The program will be implemented through 60 separate investigations of river basins and aquifer systems called study units. These study-unit investigations will be conducted at the State and local level and will form the foundation on which national- and regional-level assessments are based. The 60 study units are hydrologic systems that include parts of most major river basins and aquifer systems. The study-unit areas range from 1,000 to more than 60,000 square miles and include about 60 to 70 percent of the Nation's water use and population served by public water supplies. Twenty studyunit investigations were started in 1991, 20 started in 1994, and 20 more are planned to start in 1997. The Allegheny-Monongahela River Basin was selected to begin assessment activities as a NAWQA study unit in 1994. The study team will work from the office of the USGS in Pittsburgh, Pa.

  12. Energy and water quality management systems for water utility's operations: a review.

    PubMed

    Cherchi, Carla; Badruzzaman, Mohammad; Oppenheimer, Joan; Bros, Christopher M; Jacangelo, Joseph G

    2015-04-15

    Holistic management of water and energy resources is critical for water utilities facing increasing energy prices, water supply shortage and stringent regulatory requirements. In the early 1990s, the concept of an integrated Energy and Water Quality Management System (EWQMS) was developed as an operational optimization framework for solving water quality, water supply and energy management problems simultaneously. Approximately twenty water utilities have implemented an EWQMS by interfacing commercial or in-house software optimization programs with existing control systems. For utilities with an installed EWQMS, operating cost savings of 8-15% have been reported due to higher use of cheaper tariff periods and better operating efficiencies, resulting in the reduction in energy consumption of ∼6-9%. This review provides the current state-of-knowledge on EWQMS typical structural features and operational strategies and benefits and drawbacks are analyzed. The review also highlights the challenges encountered during installation and implementation of EWQMS and identifies the knowledge gaps that should motivate new research efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Expert Water Quality Panel Review of Responses to the NASA Request for Information for the International Space Station On-Board Environmental Monitoring System

    NASA Technical Reports Server (NTRS)

    Fishman, Julianna L.; Mudgett, Paul D.; Packham, Nigel J.; Schultz, John R.; Straub, John E., II

    2005-01-01

    On August 9, 2003, NASA, with the cooperative support of the Vehicle Office of the International Space Station Program, the Advanced Human Support Technology Program, and the Johnson Space Center Habitability and Environmental Factors Office released a Request for Information, or RFI, to identify next-generation environmental monitoring systems that have demonstrated ability or the potential to meet defined requirements for monitoring air and water quality onboard the International Space Station. This report summarizes the review and analysis of the proposed solutions submitted to meet the water quality monitoring requirements. Proposals were to improve upon the functionality of the existing Space Station Total Organic Carbon Analyzer (TOCA) and monitor additional contaminants in water samples. The TOCA is responsible for in-flight measurement of total organic carbon, total inorganic carbon, total carbon, pH, and conductivity in the Space Station potable water supplies. The current TOCA requires hazardous reagents to accomplish the carbon analyses. NASA is using the request for information process to investigate new technologies that may improve upon existing capabilities, as well as reduce or eliminate the need for hazardous reagents. Ideally, a replacement for the TOCA would be deployed in conjunction with the delivery of the Node 3 water recovery system currently scheduled for November 2007.

  14. An evaluation of the relative quality of dike pools for benthic macroinvertebrates in the Lower Missouri River, USA

    USGS Publications Warehouse

    Poulton, B.C.; Allert, A.L.

    2012-01-01

    A habitat-based aquatic macroinvertebrate study was initiated in the Lower Missouri River to evaluate relative quality and biological condition of dike pool habitats. Water-quality and sediment-quality parameters and macroinvertebrate assemblage structure were measured from depositional substrates at 18 sites. Sediment porewater was analysed for ammonia, sulphide, pH and oxidation-reduction potential. Whole sediments were analysed for particle-size distribution, organic carbon and contaminants. Field water-quality parameters were measured at subsurface and at the sediment-water interface. Pool area adjacent and downstream from each dike was estimated from aerial photography. Macroinvertebrate biotic condition scores were determined by integrating the following indicator response metrics: % of Ephemeroptera (mayflies), % of Oligochaeta worms, Shannon Diversity Index and total taxa richness. Regression models were developed for predicting macroinvertebrate scores based on individual water-quality and sediment-quality variables and a water/sediment-quality score that integrated all variables. Macroinvertebrate scores generated significant determination coefficients with dike pool area (R2=0.56), oxidation–reduction potential (R2=0.81) and water/sediment-quality score (R2=0.71). Dissolved oxygen saturation, oxidation-reduction potential and total ammonia in sediment porewater were most important in explaining variation in macroinvertebrate scores. The best two-variable regression models included dike pool size + the water/sediment-quality score (R2=0.84) and dike pool size + oxidation-reduction potential (R2=0.93). Results indicate that dike pool size and chemistry of sediments and overlying water can be used to evaluate dike pool quality and identify environmental conditions necessary for optimizing diversity and productivity of important aquatic macroinvertebrates. A combination of these variables could be utilized for measuring the success of habitat enhancement activities currently being implemented in this system.

  15. Water quality mitigation banking : final report, December 2009.

    DOT National Transportation Integrated Search

    2009-12-01

    Current practice in New Jersey for mitigating stormwater impacts caused by transportation infrastructure : projects is established by NJDEP Stormwater Regulations (N.J.A.C. 7:8). These rules outline specific : processes to offset impacts to water qua...

  16. Amoeba-related health risk in drinking water systems: could monitoring of amoebae be a complementary approach to current quality control strategies?

    PubMed

    Codony, Francesc; Pérez, Leonardo Martín; Adrados, Bárbara; Agustí, Gemma; Fittipaldi, Mariana; Morató, Jordi

    2012-01-01

    Culture-based methods for fecal indicator microorganisms are the standard protocol to assess potential health risk from drinking water systems. However, these traditional fecal indicators are inappropriate surrogates for disinfection-resistant fecal pathogens and the indigenous pathogens that grow in drinking water systems. There is now a range of molecular-based methods, such as quantitative PCR, which allow detection of a variety of pathogens and alternative indicators. Hence, in addition to targeting total Escherichia coli (i.e., dead and alive) for the detection of fecal pollution, various amoebae may be suitable to indicate the potential presence of pathogenic amoeba-resisting microorganisms, such as Legionellae. Therefore, monitoring amoeba levels by quantitative PCR could be a useful tool for directly and indirectly evaluating health risk and could also be a complementary approach to current microbial quality control strategies for drinking water systems.

  17. Application of water quality index to evaluate groundwater quality (temporal and spatial variation) of an intensively exploited aquifer (Puebla valley, Mexico).

    PubMed

    Salcedo-Sánchez, Edith R; Garrido Hoyos, Sofía E; Esteller Alberich, Ma Vicenta; Martínez Morales, Manuel

    2016-10-01

    The spatial and temporal variation of water quality in the urban area of the Puebla Valley aquifer was evaluated using historical and present data obtained during this investigation. The current study assessed water quality based on the Water Quality Index developed by the Canadian Council of Ministers of the Environment (CCME-WQI), which provides a mathematical framework to evaluate the quality of water in combination with a set of conditions representing quality criteria, or limits. This index is flexible regarding the type and number of variables used by the evaluation given that the variables of interest are selected according to the characteristics and objectives of development, conservation and compliance with regulations. The CCME-WQI was calculated using several variables that assess the main use of the wells in the urban area that is public supply, according to criteria for human use and consumption established by Mexican law and international standards proposed by the World Health Organization. The assessment of the index shows a gradual deterioration in the quality of the aquifer over time, as the amount of wells with excellent quality have decreased and those with lower index values (poor quality) have increased throughout the urban area of the Puebla Valley aquifer. The parameters affecting groundwater quality are: total dissolved solids, sulfate, calcium, magnesium and total hardness.

  18. Predicting Near-Term Water Quality from Satellite Observations of Watershed Conditions

    NASA Astrophysics Data System (ADS)

    Weiss, W. J.; Wang, L.; Hoffman, K.; West, D.; Mehta, A. V.; Lee, C.

    2017-12-01

    Despite the strong influence of watershed conditions on source water quality, most water utilities and water resource agencies do not currently have the capability to monitor watershed sources of contamination with great temporal or spatial detail. Typically, knowledge of source water quality is limited to periodic grab sampling; automated monitoring of a limited number of parameters at a few select locations; and/or monitoring relevant constituents at a treatment plant intake. While important, such observations are not sufficient to inform proactive watershed or source water management at a monthly or seasonal scale. Satellite remote sensing data on the other hand can provide a snapshot of an entire watershed at regular, sub-monthly intervals, helping analysts characterize watershed conditions and identify trends that could signal changes in source water quality. Accordingly, the authors are investigating correlations between satellite remote sensing observations of watersheds and source water quality, at a variety of spatial and temporal scales and lags. While correlations between remote sensing observations and direct in situ measurements of water quality have been well described in the literature, there are few studies that link remote sensing observations across a watershed with near-term predictions of water quality. In this presentation, the authors will describe results of statistical analyses and discuss how these results are being used to inform development of a desktop decision support tool to support predictive application of remote sensing data. Predictor variables under evaluation include parameters that describe vegetative conditions; parameters that describe climate/weather conditions; and non-remote sensing, in situ measurements. Water quality parameters under investigation include nitrogen, phosphorus, organic carbon, chlorophyll-a, and turbidity.

  19. Trend analysis of a tropical urban river water quality in Malaysia.

    PubMed

    Othman, Faridah; M E, Alaa Eldin; Mohamed, Ibrahim

    2012-12-01

    Rivers play a significant role in providing water resources for human and ecosystem survival and health. Hence, river water quality is an important parameter that must be preserved and monitored. As the state of Selangor and the city of Kuala Lumpur, Malaysia, are undergoing tremendous development, the river is subjected to pollution from point and non-point sources. The water quality of the Klang River basin, one of the most densely populated areas within the region, is significantly degraded due to human activities as well as urbanization. Evaluation of the overall river water quality status is normally represented by a water quality index (WQI), which consists of six parameters, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen and pH. The objectives of this study are to assess the water quality status for this tropical, urban river and to establish the WQI trend. Using monthly WQI data from 1997 to 2007, time series were plotted and trend analysis was performed by employing the first-order autocorrelated trend model on the moving average values for every station. The initial and final values of either the moving average or the trend model were used as the estimates of the initial and final WQI at the stations. It was found that Klang River water quality has shown some improvement between 1997 and 2007. Water quality remains good in the upper stream area, which provides vital water sources for water treatment plants in the Klang valley. Meanwhile, the water quality has also improved in other stations. Results of the current study suggest that the present policy on managing river quality in the Klang River has produced encouraging results; the policy should, however, be further improved alongside more vigorous monitoring of pollution discharge from various point sources such as industrial wastewater, municipal sewers, wet markets, sand mining and landfills, as well as non-point sources such as agricultural or urban runoff and commercial activity.

  20. Data collection and development of a hydrodynamic and temperature model to evaluate causeway modifications at the mouth of the Yakima River

    NASA Astrophysics Data System (ADS)

    Martinez Baquero, G. F.; Furnans, J.; Hudson, C.; Magan, C.

    2012-12-01

    Management decisions on rivers and associated habitats require sound tools to identify major drivers for spatial and temporal variations of temperature and related water quality variables. 3D hydrodynamic and water quality models are key components to abstract flow dynamics in complex river systems as they allow extrapolating available observations to ungaged locations and alternative scenarios. The data collection and model development are intended to support the Mid-Columbia Fisheries Enhancement Group in conjunction with the Benton Conservation District in efforts to understand how seasonal flow patterns in the Yakima and Columbia rivers interact with the Yakima delta geometry to cause the relatively high water temperatures previously observed west of Bateman Island. These high temperatures are suspected of limiting salmonid success in the area, possibly contributing to adjustments in migration patterns and increased predation. The Environmental Fluid Dynamics Code (EFDC) and Water Quality Analysis Simulation Program (WASP) are used to model flow patterns and enable simulations of temperature distributions and water quality parameters at the confluence. Model development is supported by a bathymetric campaign in 2011 to evaluate delta geometry and to construct the EFDC domain, a sonar river survey in 2012 to measure velocity profiles and to enable model calibration, and a continuous collection of temperature and dissolved oxygen records from Level Scout probes at key locations during last year to drive water quality simulations. The current model is able to reproduce main flow features observed at the confluence and is being prepared to integrate previous and current temperature observations. The final model is expected to evaluate scenarios for the removal or alteration of the Bateman Island Causeway. Alterations to the causeway that permit water passage to the south of Bateman Island are likely to dramatically alter the water flow patterns through the Yakima and Columbia River confluence, which in turn will alter water temperature distributions, sediment transport pathways, and salmonid migration routes.

  1. THE ROLE OF STORMWATER BMPS IN MITIGATING THE EFFECTS OF NUTRIENT OVERENRICHMENT IN THE URBAN WATERSHED

    EPA Science Inventory

    Nutrient overenrichment from agricultural and urban point and nonpoint sources, including urban stormwter, is a leading cause of impairment to our nation's rivers, lakes, and coastal waters. For waters that do not currently meet existing water quality standards, The USEPA's TMDL ...

  2. Comparison of streamflow and water-quality data collection techniques for the Saginaw River, Michigan

    USGS Publications Warehouse

    Hoard, C.J.; Holtschlag, D.J.; Duris, J.W.; James, D.A.; Obenauer, D.J.

    2012-01-01

    In 2009, the Michigan Department of Environmental Quality and the U.S. Geological Survey developed a plan to compare the effect of various streamgaging and water-quality collection techniques on streamflow and stream water-quality data for the Saginaw River, Michigan. The Saginaw River is the primary contributor of surface runoff to Saginaw Bay, Lake Huron, draining approximately 70 percent of the Saginaw Bay watershed. The U.S. Environmental Protection Agency has listed the Saginaw Bay system as an "Area of Concern" due to many factors, including excessive sediment and nutrient concentrations in the water. Current efforts to estimate loading of sediment and nutrients to Saginaw Bay utilize water-quality samples collected using a surface-grab technique and flow data that are uncertain during specific conditions. Comparisons of current flow and water-quality sampling techniques to alternative techniques were assessed between April 2009 and September 2009 at two locations in the Saginaw River. Streamflow estimated using acoustic Doppler current profiling technology was compared to a traditional stage-discharge technique. Complex conditions resulting from the influence of Saginaw Bay on the Saginaw River were able to be captured using the acoustic technology, while the traditional stage-discharge technique failed to quantify these effects. Water-quality samples were collected at two locations and on eight different dates, utilizing both surface-grab and depth-integrating multiple-vertical techniques. Sixteen paired samples were collected and analyzed for suspended sediment, turbidity, total phosphorus, total nitrogen, orthophosphate, nitrite, nitrate, and ammonia. Results indicate that concentrations of constituents associated with suspended material, such as suspended sediment, turbidity, and total phosphorus, are underestimated when samples are collected using the surface-grab technique. The median magnitude of the relative percent difference in concentration based on sampling technique was 37 percent for suspended sediment, 26 percent for turbidity, and 9.7 percent for total phosphorus samples collected at both. Acoustic techniques were also used to assist in the determination of the effectiveness of using acoustic-backscatter information for estimating the suspended-sediment concentration of the river water. Backscatter data was collected by use of an acoustic Doppler current profiler, and a Van Dorn manual sampler was simultaneously used to collect discrete water samples at 10 depths (3.5, 7.5, 11, 14, 15.5, 17.5, 19.5, 20.5, 22, and 24.5 ft below the water surface) along two vertical profiles near the center of the Saginaw River near Bay City. The Van Dorn samples were analyzed for suspended-sediment concentrations, and these data were then used to develop a relationship between acoustic-backscatter data. Acoustic-backscatter data was strongly correlated to sediment concentrations and, by using a linear regression, was able to explain 89 percent of the variability. Although this regression technique showed promise for using acoustic backscatter to estimate suspended-sediment concentration, attempts to compare suspended-sediment concentrations to the acoustic signal-to-noise ratio estimates, recorded at the fixed acoustic streamflow-gaging station near Bay City (04157061), resulted in a poor correlation.

  3. CHARACTERIZATION OF ENDEMIC DISEASE: HEALTH EFFECTS ASSOCIATED WITH DIFFERENCES IN SOURCE WATER QUALITY AND TREATMENT PROCESS

    EPA Science Inventory

    A study in Canada by Payment et al. found that up to 35% of gastrointestinal illness in a community served by surface water was associated with drinking water that met current drinking water standards. A similar follow-up study by the same investigators tended to repeat the resul...

  4. Innovative Tools for Water Quality/Quantity Management: New York City's Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Wang, L.; Schaake, J. C.; Day, G. N.; Porter, J.; Sheer, D. P.; Pyke, G.

    2011-12-01

    The New York City Department of Environmental Protection (DEP) manages New York City's water supply, which is comprised of over 20 reservoirs and supplies more than 1 billion gallons of water per day to over 9 million customers. Recently, DEP has initiated design of an Operations Support Tool (OST), a state-of-the-art decision support system to provide computational and predictive support for water supply operations and planning. This presentation describes the technical structure of OST, including the underlying water supply and water quality models, data sources and database management, reservoir inflow forecasts, and the functionalities required to meet the needs of a diverse group of end users. OST is a major upgrade of DEP's current water supply - water quality model, developed to evaluate alternatives for controlling turbidity in NYC's Catskill reservoirs. While the current model relies on historical hydrologic and meteorological data, OST can be driven by forecasted future conditions. It will receive a variety of near-real-time data from a number of sources. OST will support two major types of simulations: long-term, for evaluating policy or infrastructure changes over an extended period of time; and short-term "position analysis" (PA) simulations, consisting of multiple short simulations, all starting from the same initial conditions. Typically, the starting conditions for a PA run will represent those for the current day and traces of forecasted hydrology will drive the model for the duration of the simulation period. The result of these simulations will be a distribution of future system states based on system operating rules and the range of input ensemble streamflow predictions. DEP managers will analyze the output distributions and make operation decisions using risk-based metrics such as probability of refill. Currently, in the developmental stages of OST, forecasts are based on antecedent hydrologic conditions and are statistical in nature. The statistical algorithm is a relatively simple and versatile, but lacks short-term skill critical for water quality and spill management. To improve short-term skill, OST will ultimately operate with meteorologically driven hydrologic forecasts provided by the National Weather Service (NWS). OST functionalities will support a wide range of DEP uses, including short term operational projections, outage planning and emergency management, operating rule development, and water supply planning. A core use of OST will be to inform reservoir management strategies to control and mitigate turbidity events while ensuring water supply reliability. OST will also allow DEP to manage its complex reservoir system to meet multiple objectives, including ecological flows, tailwater fisheries and recreational releases, and peak flow mitigation for downstream communities.

  5. Fundamentals of in Situ Digital Camera Methodology for Water Quality Monitoring of Coast and Ocean

    PubMed Central

    Goddijn-Murphy, Lonneke; Dailloux, Damien; White, Martin; Bowers, Dave

    2009-01-01

    Conventional digital cameras, the Nikon Coolpix885® and the SeaLife ECOshot®, were used as in situ optical instruments for water quality monitoring. Measured response spectra showed that these digital cameras are basically three-band radiometers. The response values in the red, green and blue bands, quantified by RGB values of digital images of the water surface, were comparable to measurements of irradiance levels at red, green and cyan/blue wavelengths of water leaving light. Different systems were deployed to capture upwelling light from below the surface, while eliminating direct surface reflection. Relationships between RGB ratios of water surface images, and water quality parameters were found to be consistent with previous measurements using more traditional narrow-band radiometers. This current paper focuses on the method that was used to acquire digital images, derive RGB values and relate measurements to water quality parameters. Field measurements were obtained in Galway Bay, Ireland, and in the Southern Rockall Trough in the North Atlantic, where both yellow substance and chlorophyll concentrations were successfully assessed using the digital camera method. PMID:22346729

  6. Technical Report, Onondaga Lake, New York, Main Report

    DTIC Science & Technology

    1992-01-01

    growth . Section 3 of this report will expand upon the specific water quality problems. EXISTING CONDITIONS Page 23 Table V - Comparison of Current...This technical report on Ononidaga Lake, New York has compi led existing data to determine which water quality and enviromental enhancements are... bacteria is a problem during storm events causing contravention of the State swimming standards. The source of the problem has been identified as the

  7. Quality control of bottled and vended water in California: A review and comparison to tap water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darby, J.L.; Allen, L.

    1994-04-01

    Current regulations and compliance for quality control of bottled and vended water in California are compared with that of the tap water industry in this research. Over 35% of the bottled water sold in the US is consumed in California where a third of the residents use such water as a primary source of drinking water. California is one of several states that regulates bottled water more rigorously than the federal government. In California, water quality standards for the two industries are comparable except that many of the organic standards for bottled water are applicable only to the source water,more » a concern due to potential organic contamination during processing. Reporting requirements, significantly less stringent for bottled water, allow considerable latitude in assessing risks and make assessment of compliance difficult. Based on available statistics, compliance for the two industries is comparable; the majority of violations posed no health risks. For both industries, small systems comprised the majority of violations whereas large systems had excellent compliance rates.« less

  8. Evaluating the potential of multi-purpose nature based solutions in peri-urban landscapes - a preliminary assessment

    NASA Astrophysics Data System (ADS)

    Geris, Josie; Wilkinson, Mark; Stutter, Marc; Guenther, Daniel; Soulsby, Chris

    2016-04-01

    Many communities across the world face the increasing challenge of balancing water quantity and quality protection and improvement with accommodating new growth and urban development. Urbanisation is typically associated with detrimental changes in water quality, sediment delivery, and effects on water storage and flow pathways (e.g. increases in flooding). Current mitigation solutions are typically based on isolated design strategies used at specific small scale sites and for storm water only. More holistic catchment scale approaches are urgently required to effectively manage the amount of water flows and protect the raw water quality in peri-urban landscapes. This project aims to provide a better understanding of the connectivity between natural and managed flow pathways, storage, and biogeochemical processes in the peri-urban landscape to eventually aid a more integrated water quantity and quality control design. For an actively urbanising catchment in NE Scotland we seek to understand the spatio-temporal character of the natural flow pathways and associated water quality, and how these may be used to support the design of nature based solutions during urbanisation. We present preliminary findings from a dense and multiscale monitoring network that includes hydrometric, tracer (stable water isotopes) and water quality (turbidity (sediment), nitrate, phosphate) data during a range of contrasting hydroclimatological conditions and at different stages of the development of urban infrastructure. These demonstrate a highly variable nature, both temporally and spatially, with water quality dynamics out of sync with storm responses and depending on management practices. This highlights potential difficulties for managing water quantity and quality simultaneously at the catchment scale, and suggests that a treatment train approach may be required. Well-designed nature based solutions that tackle both water quantity and quality issues will require adaptability and a focus on the whole spectrum of the flow regime.

  9. Numerical simulation of hydrodynamic and water quality effects of shoreline changes in Bohai Bay

    NASA Astrophysics Data System (ADS)

    Jia, Han; Shen, Yongming; Su, Meirong; Yu, Chunxue

    2018-02-01

    This study uses the HD and Ecolab modules of MIKE to simulate the hydrodynamic and water quality and predict the influence of shoreline changes in Bohai Bay, China. The study shows that shoreline changes weaken the residual current and generate a counter-clockwise circulation south of Huanghua Port, thereby resulting in weak water exchange capacity and low pollutant-diffusing capacity. Shoreline changes reduce the area of Bohai Bay, resulting in a smaller tidal prism and further weakening the water exchange capacity. This situation is not conducive to the diffusion of pollutants, and therefore may lead to increased water pollution in the bay. Shoreline changes hinder the spread of runoff, weaken the dilution effect of the river on seawater, and block the spread of coastal residual current, thereby resulting in increased salinity near the reclamation area. Shoreline changes lead to an increase in PO4-P concentration and decrease in DIN concentration. The value of N/P near the project decreases, thereby weakening the phosphorus-limited effect.

  10. Continuous water-quality and suspended-sediment transport monitoring in the San Francisco Bay, California, water years 2014–15

    USGS Publications Warehouse

    Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Livsey, Daniel N.

    2018-03-08

    The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay (bay) as part of a multi-agency effort to address management, water supply, and ecological concerns. The San Francisco Bay area is home to millions of people, and the bay teems both with resident and with migratory wildlife, plants, and fish. Freshwater mixes with salt water in the bay, which is subject both to riverine influences (floods, droughts, managed reservoir releases and freshwater diversions) and to marine influences (tides, waves, effects of salt water). To understand this environment, the USGS, along with its partners (see “Acknowledgements”), has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay (fig. 1). Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which controls gravity-driven circulation patterns and stratification in the water column. Turbidity, a measure of light scattered from suspended particles in the water, is used to estimate suspended-sediment concentration (SSC). Suspended sediment affects the bay in multiple ways: attenuation of sunlight in the water column, affecting phytoplankton growth; deposition on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; deposition in ports and shipping channels, which can necessitate dredging; and often, adsorption of contaminants, affecting their distribution and concentrations in the environment. Dissolved oxygen concentration, essential to a healthy ecosystem and a fundamental indicator of water quality, is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay reverse four times a day, and wind direction and intensity typically vary on a daily cycle. Consequently, salinity, water temperature, SSC, and dissolved-oxygen concentration vary spatially and temporally throughout the bay. Therefore, continuous measurements are needed to observe these changes. The purpose of this fact sheet is to provide information about these variables, as well as internet links to access these continuous water-quality data collected by the USGS.

  11. Spatial and temporal analysis of land cover changes and water quality in the Lake Issaqueena watershed, South Carolina.

    PubMed

    Pilgrim, C M; Mikhailova, E A; Post, C J; Hains, J J

    2014-11-01

    Monitoring changes in land cover and the subsequent environmental responses are essential for water quality assessment, natural resource planning, management, and policies. Over the last 75 years, the Lake Issaqueena watershed has experienced a drastic shift in land use. This study was conducted to examine the changes in land cover and the implied changes in land use that have occurred and their environmental, water quality impacts. Aerial photography of the watershed (1951, 1956, 1968, 1977, 1989, 1999, 2005, 2006, and 2009) was analyzed and classified using the geographic information system (GIS) software. Seven land cover classes were defined: evergreen, deciduous, bare ground, pasture/grassland, cultivated, and residential/other development. Water quality data, including sampling depth, water temperature, dissolved oxygen content, fecal coliform levels, inorganic nitrogen concentrations, and turbidity, were obtained from the South Carolina (SC) Department of Health and Environmental Control (SCDHEC) for two stations and analyzed for trends as they relate to land cover change. From 1951 to 2009, the watershed experienced an increase of tree cover and bare ground (+17.4 % evergreen, +62.3 % deciduous, +9.8 % bare ground) and a decrease of pasture/grassland and cultivated land (-42.6 % pasture/grassland and -57.1 % cultivated). From 2005 to 2009, there was an increase of 21.5 % in residential/other development. Sampling depth ranged from 0.1 to 0.3 m. Water temperature fluctuated corresponding to changing air temperatures, and dissolved oxygen content fluctuated as a factor of water temperature. Inorganic nitrogen content was higher from December to April possibly due to application of fertilizers prior to the growing season. Turbidity and fecal coliform bacteria levels remained relatively the same from 1962 to 2005, but a slight decline in pH can be observed at both stations. Prior to 1938, the area consisted of single-crop cotton farms; after 1938, the farms were abandoned, leaving large bare areas with highly eroded soil. Starting in 1938, Clemson reforested almost 30 % of the watershed. Currently, three fourths of the watershed is forestland, with a limited coverage of small farms and residential developments. Monitoring water quality is essential in maintaining adequate freshwater supply. Water quality monitoring focuses mainly on the collection of field data, but current water quality conditions depend on the cumulative impacts of land cover change over time.

  12. Setting action levels for drinking water: are we protecting our health or our economy (or our backs!)?

    PubMed

    Reimann, Clemens; Banks, David

    2004-10-01

    Clean and healthy drinking water is important for life. Drinking water can be drawn from streams, lakes and rivers, directly collected (and stored) from rain, acquired by desalination of ocean water and melting of ice or it can be extracted from groundwater resources. Groundwater may reach the earth's surface in the form of springs or can be extracted via dug or drilled wells; it also contributes significantly to river baseflow. Different water quality issues have to be faced when utilising these different water resources. Some of these are at present largely neglected in water quality regulations. This paper focuses on the inorganic chemical quality of natural groundwater. Possible health effects, the problems of setting meaningful action levels or maximum admissible concentrations (MAC-values) for drinking water, and potential shortcomings in current legislation are discussed. An approach to setting action levels based on transparency, toxicological risk assessment, completeness, and identifiable responsibility is suggested.

  13. Analytical chemistry in water quality monitoring during manned space missions

    NASA Astrophysics Data System (ADS)

    Artemyeva, Anastasia A.

    2016-09-01

    Water quality monitoring during human spaceflights is essential. However, most of the traditional methods require sample collection with a subsequent ground analysis because of the limitations in volume, power, safety and gravity. The space missions are becoming longer-lasting; hence methods suitable for in-flight monitoring are demanded. Since 2009, water quality has been monitored in-flight with colorimetric methods allowing for detection of iodine and ionic silver. Organic compounds in water have been monitored with a second generation total organic carbon analyzer, which provides information on the amount of carbon in water at both the U.S. and Russian segments of the International Space Station since 2008. The disadvantage of this approach is the lack of compound-specific information. The recently developed methods and tools may potentially allow one to obtain in-flight a more detailed information on water quality. Namely, the microanalyzers based on potentiometric measurements were designed for online detection of chloride, potassium, nitrate ions and ammonia. The recent application of the current highly developed air quality monitoring system for water analysis was a logical step because most of the target analytes are the same in air and water. An electro-thermal vaporizer was designed, manufactured and coupled with the air quality control system. This development allowed for liberating the analytes from the aqueous matrix and further compound-specific analysis in the gas phase.

  14. Methods and Sources of Data Used to Develop Selected Water-Quality Indicators for Streams and Ground Water for the 2007 Edition of The State of the Nation's Ecosystems Report with Comparisons to the 2002 Edition

    USGS Publications Warehouse

    Wilson, John T.; Baker, Nancy T.; Moran, Michael J.; Crawford, Charles G.; Nowell, Lisa H.; Toccalino, Patricia L.; Wilber, William G.

    2008-01-01

    The U.S. Geological Survey (USGS) was one of numerous governmental, private, and academic entities that provided input to the report The State of the Nation?s Ecosystems published periodically by the Heinz Center. This report describes the sources of data and methods used by the USGS to develop selected water?quality indicators for the 2007 edition of the Heinz Center report and documents modifications in the data sources and interpretations between the 2002 and 2007 editions of the Heinz Center report. Stream and ground?water quality data collected nationally as part of the USGS National Water-Quality Assessment Program were used to develop the ecosystem indicators for the Heinz Center report, including Core National indicators for the Movement of Nitrogen and Chemical Contamination and for selected ecosystems classified as Farmlands, Forest, Grasslands and Shrublands, Freshwater, and Urban and Suburban. In addition, the USGS provided water?quality and streamflow data collected as part of the National Stream Water Quality Accounting Network and the Federal?State Cooperative Program. The documentation provided herein serves not only as a reference for current and future editions of The State of the Nation?s Ecosystems but also provides critical information for future assessments of changes in contaminant occurrence in streams and ground water of the United States.

  15. Quality of drinking-water at source and point-of-consumption--drinking cup as a high potential recontamination risk: a field study in Bolivia.

    PubMed

    Rufener, Simonne; Mäusezahl, Daniel; Mosler, Hans-Joachim; Weingartner, Rolf

    2010-02-01

    In-house contamination of drinking-water is a persistent problem in developing countries. This study aimed at identifying critical points of contamination and determining the extent of recontamination after water treatment. In total, 81 households were visited, and 347 water samples from their current sources of water, transport vessels, treated water, and drinking vessels were analyzed. The quality of water was assessed using Escherichia coli as an indicator for faecal contamination. The concentration of E. coli increased significantly from the water source [median=0 colony-forming unit (CFU)/100 mL, interquartile range (IQR: 0-13)] to the drinking cup (median=8 CFU/100 mL; IQR: 0-550; n=81, z=-3.7, p<0.001). About two-thirds (34/52) of drinking vessels were contaminated with E. coli. Although boiling and solar disinfection of water (SODIS) improved the quality of drinking-water (median=0 CFU/100 mL; IQR: 0-0.05), recontamination at the point-of-consumption significantly reduced the quality of water in the cups (median=8, IQR: 0-500; n=45, z=-2.4, p=0.015). Home-based interventions in disinfection of water may not guarantee health benefits without complementary hygiene education due to the risk of posttreatment contamination.

  16. URBAN RUNOFF POLLUTION CONTROL - STATE-OF-THE-ART

    EPA Science Inventory

    Combined sewer overflows are major sources of water pollution problems, but even discharges of stormwater alone can seriously affect water quality. Current approaches involve control of overflows, treatment, and combinations of the two. Control may involve maximizing treatment wi...

  17. Nitrate in drinking water and colorectal cancer risk: A nationwide population-based cohort study.

    PubMed

    Schullehner, Jörg; Hansen, Birgitte; Thygesen, Malene; Pedersen, Carsten B; Sigsgaard, Torben

    2018-07-01

    Nitrate in drinking water may increase risk of colorectal cancer due to endogenous transformation into carcinogenic N-nitroso compounds. Epidemiological studies are few and often challenged by their limited ability of estimating long-term exposure on a detailed individual level. We exploited population-based health register data, linked in time and space with longitudinal drinking water quality data, on an individual level to study the association between long-term drinking water nitrate exposure and colorectal cancer (CRC) risk. Individual nitrate exposure was calculated for 2.7 million adults based on drinking water quality analyses at public waterworks and private wells between 1978 and 2011. For the main analyses, 1.7 million individuals with highest exposure assessment quality were included. Follow-up started at age 35. We identified 5,944 incident CRC cases during 23 million person-years at risk. We used Cox proportional hazards models to estimate hazard ratios (HRs) of nitrate exposure on the risk of CRC, colon and rectal cancer. Persons exposed to the highest level of drinking water nitrate had an HR of 1.16 (95% CI: 1.08-1.25) for CRC compared with persons exposed to the lowest level. We found statistically significant increased risks at drinking water levels above 3.87 mg/L, well below the current drinking water standard of 50 mg/L. Our results add to the existing evidence suggesting increased CRC risk at drinking water nitrate concentrations below the current drinking water standard. A discussion on the adequacy of the drinking water standard in regards to chronic effects is warranted. © 2018 UICC.

  18. Differentiating the Spatiotemporal Distribution of Natural and Anthropogenic Processes on River Water-Quality Variation Using a Self-Organizing Map With Factor Analysis.

    PubMed

    Wang, Yeuh-Bin; Liu, Chen-Wuing; Lee, Jin-Jing

    2015-08-01

    To elucidate the historical improvement and advanced measure of river water quality in the Taipei metropolitan area, this study applied the self-organizing map (SOM) technique with factor analysis (FA) to differentiate the spatiotemporal distribution of natural and anthropogenic processes on river water-quality variation spanning two decades. The SOM clustered river water quality into five groups: very low pollution, low pollution, moderate pollution, high pollution, and very high pollution. FA was then used to extract four latent factors that dominated water quality from 1991 to 2011 including three anthropogenic process factors (organic, industrial, and copper pollution) and one natural process factor [suspended solids (SS) pollution]. The SOM revealed that the water quality improved substantially over time. However, the downstream river water quality was still classified as high pollution because of an increase in anthropogenic activity. FA showed the spatiotemporal pattern of each factor score decreasing over time, but the organic pollution factor downstream of the Tamsui River, as well as the SS factor scores in the upstream major tributary (the Dahan Stream), remained within the high pollution level. Therefore, we suggest that public sewage-treatment plants should be upgraded from their current secondary biological processing to advanced treatment processing. The conservation of water and soil must also be reinforced to decrease the SS loading of the Dahan Stream from natural erosion processes in the future.

  19. The Occurrence and Diversity of Waterborne Fungi in African Aquatic Systems: Their Impact on Water Quality and Human Health.

    PubMed

    Magwaza, Nontokozo M; Nxumalo, Edward N; Mamba, Bhekie B; Msagati, Titus A M

    2017-05-20

    Currently, there is a worldwide growing interest in the occurrence and diversity of fungi and their secondary metabolites in aquatic systems, especially concerning their role in water quality and human health. However, this concern is hampered by the scant information that is available in the literature about aquatic fungi and how they affect water quality. There are only few published reports that link certain species of aquatic fungi to human health. The common aquatic fungal species that have been reported so far in African aquatic systems belong to the hyphomycetes kingdom. This paper thus aims to survey the information about the occurrence and factors that control the distribution of different species of fungi in African aquatic systems, as well as their effect on water quality and the possible metabolic pathways that lead to the formation of toxic secondary metabolites that are responsible for the deterioration of water quality. This review will also investigate the analytical and bioanalytical procedures that have been reported for the identification of different species of waterborne fungi and their secondary metabolites.

  20. The Occurrence and Diversity of Waterborne Fungi in African Aquatic Systems: Their Impact on Water Quality and Human Health

    PubMed Central

    Magwaza, Nontokozo M.; Nxumalo, Edward N.; Mamba, Bhekie B.; Msagati, Titus A. M.

    2017-01-01

    Currently, there is a worldwide growing interest in the occurrence and diversity of fungi and their secondary metabolites in aquatic systems, especially concerning their role in water quality and human health. However, this concern is hampered by the scant information that is available in the literature about aquatic fungi and how they affect water quality. There are only few published reports that link certain species of aquatic fungi to human health. The common aquatic fungal species that have been reported so far in African aquatic systems belong to the hyphomycetes kingdom. This paper thus aims to survey the information about the occurrence and factors that control the distribution of different species of fungi in African aquatic systems, as well as their effect on water quality and the possible metabolic pathways that lead to the formation of toxic secondary metabolites that are responsible for the deterioration of water quality. This review will also investigate the analytical and bioanalytical procedures that have been reported for the identification of different species of waterborne fungi and their secondary metabolites. PMID:28531124

  1. Rainwater harvesting in American Samoa: current practices and indicative health risks.

    PubMed

    Kirs, Marek; Moravcik, Philip; Gyawali, Pradip; Hamilton, Kerry; Kisand, Veljo; Gurr, Ian; Shuler, Christopher; Ahmed, Warish

    2017-05-01

    Roof-harvested rainwater (RHRW) is an important alternative source of water that many island communities can use for drinking and other domestic purposes when groundwater and/or surface water sources are contaminated, limited, or simply not available. The aim of this pilot-scale study was to investigate current RHRW practices in American Samoa (AS) and to evaluate and compare the quality of water from common potable water sources including RHRW stored in tanks, untreated stream water, untreated municipal well water, and treated municipal tap water samples. Samples were analyzed using culture-based methods, quantitative polymerase chain reaction (qPCR), and 16S amplicon sequencing-based methods. Based on indicator bacteria (total coliform and Escherichia coli) concentrations, the quality of RHRW was slightly lower than well and chlorinated tap water but exceeded that of untreated stream water. Although no Giardia or Leptospira spp. were detected in any of the RHRW samples, 86% of the samples were positive for Cryptosporidium spp. All stream water samples tested positive for Cryptosporidium spp. Opportunistic pathogens (Pseudomonas aeruginosa and Mycobacterium intracellulare) were also detected in the RHRW samples (71 and 21% positive samples, respectively). Several potentially pathogenic genera of bacteria were also detected in RHRW by amplicon sequencing. Each RHRW system was characterized by distinct microbial communities, 77% of operational taxonomic units (OTUs) were detected only in a single tank, and no OTU was shared by all the tanks. Risk of water-borne illness increased in the following order: chlorinated tap water/well water < RHRW < stream water. Frequent detection of opportunistic pathogens indicates that RHRW should be treated before use. Stakeholder education on RHRW system design options as well as on importance of regular cleaning and proper management techniques could improve the quality of the RHRW in AS.

  2. Water pollution control technology and strategy for river-lake systems: a case study in Gehu Lake and Taige Canal.

    PubMed

    Zhang, Yimin; Zhang, Yongchun; Gao, Yuexiang; Zhang, Houhu; Cao, Jianying; Cai, Jinbang; Kong, Xiangji

    2011-07-01

    The Taoge water system is located in the upstream of Taihu Lake basin and is characterized by its multi-connected rivers and lakes. In this paper, current analyses of hydrology, hydrodynamics and water pollution of Gehu Lake and Taige Canal are presented. Several technologies are proposed for pollution prevention and control, and water environmental protection in the Taihu Lake basin. These included water pollution control integration technology for the water systems of Gehu Lake, Taige Canal and Caoqiao River. Additionally, river-lake water quality and quantity regulation technology, ecological restoration technology for polluted and degraded water bodies, and water environmental integration management and optimization strategies were also examined. The main objectives of these strategies are to: (a) improve environmental quality of relative water bodies, prevent pollutants from entering Gehu Lake and Taige Canal, and ensure that the clean water after the pre-treatment through Gehu Lake is not polluted before entering the Taihu Lake through Taige Canal; (b) stably and efficiently intercept and decrease the pollution load entering the lake through enhancing the river outlet ecological system structure function and water self-purifying capacity, and (c) designate Gehu Lake as a regulation system for water quality and water quantity in the Taoge water system and thus guarantee the improvement of the water quality of the inflow into Taihu Lake.

  3. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions

    PubMed Central

    Allende, Ana; Monaghan, James

    2015-01-01

    There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks. PMID:26151764

  4. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions.

    PubMed

    Allende, Ana; Monaghan, James

    2015-07-03

    There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks.

  5. Introduction to Field Water-Quality Methods for the Collection of Metals - 2007 Project Summary

    USGS Publications Warehouse

    Allen, Monica L.

    2008-01-01

    The U.S. Geological Survey (USGS), Region VI of the U.S. Environmental Protection Agency (USEPA), and the Osage Nation presented three 3-day workshops, in June-August 2007, entitled ?Introduction to Field Water-Quality Methods for the Collection of Metals.? The purpose of the workshops was to provide instruction to tribes within USEPA Region VI on various USGS surface-water measurement methods and water-quality sampling protocols for the collection of surface-water samples for metals analysis. Workshop attendees included members from over 22 tribes and pueblos. USGS instructors came from Oklahoma, New Mexico, and Georgia. Workshops were held in eastern and south-central Oklahoma and New Mexico and covered many topics including presampling preparation, water-quality monitors, and sampling for metals in surface water. Attendees spent one full classroom day learning the field methods used by the USGS Water Resources Discipline and learning about the complexity of obtaining valid water-quality and quality-assurance data. Lectures included (1) a description of metal contamination sources in surface water; (2) introduction on how to select field sites, equipment, and laboratories for sample analysis; (3) collection of sediment in surface water; and (4) utilization of proper protocol and methodology for sampling metals in surface water. Attendees also were provided USGS sampling equipment for use during the field portion of the class so they had actual ?hands-on? experience to take back to their own organizations. The final 2 days of the workshop consisted of field demonstrations of current USGS water-quality sample-collection methods. The hands-on training ensured that attendees were exposed to and experienced proper sampling procedures. Attendees learned integrated-flow techniques during sample collection, field-property documentation, and discharge measurements and calculations. They also used enclosed chambers for sample processing and collected quality-assurance samples to verify their techniques. Benefits of integrated water-quality sample-collection methods are varied. Tribal environmental programs now have the ability to collect data that are comparable across watersheds. The use of consistent sample collection, manipulation, and storage techniques will provide consistent quality data that will enhance the understanding of local water resources. The improved data quality also will help the USEPA better document the condition of the region?s water. Ultimately, these workshops equipped tribes to use uniform sampling methods and to provide consistent quality data that are comparable across the region.

  6. Beyond Flint: National Trends in Drinking Water Quality Violations

    NASA Astrophysics Data System (ADS)

    Allaire, M.; Wu, H.; Lall, U.

    2016-12-01

    Ensuring safe water supply for communities across the U.S. represents an emerging challenge. Aging infrastructure, impaired source water, and strained community finances may increase vulnerability of water systems to quality violations. In the aftermath of Flint, there is a great need to assess the current state of U.S. drinking water quality. How widespread are violations? What are the spatial and temporal patterns in water quality? Which types of communities and systems are most vulnerable? This is the first national assessment of trends in drinking water quality violations across several decades. In 2015, 9% of community water systems violated health-related water quality standards. These non-compliant systems served nearly 23 million people. Thus, the challenge of providing safe drinking water extends beyond Flint and represents a nationwide concern. We use a panel dataset that includes every community water system in the United States from 1981 to 2010 to identify factors that lead to regulatory noncompliance. This study focuses on health-related violations of the Safe Drinking Water Act. Lasso regression informed selection of appropriate covariates, while logistic regressions modeled the probability of noncompliance. We find that compliance is positively associated with private ownership, purchased water supply, and greater household income. Yet, greater concentration of utility ownership and violations in prior years are associated with a higher likelihood of violation. The results suggest that purchased water contracts, which are growing among small utilities, could serve as a way to improve regulatory compliance in the future. However, persistence of violations and ownership concentration deserve attention from policymakers. Already, the EPA has begun to prioritize enforcement of persistent violators. Overall, as the revitalization of U.S. water infrastructure becomes a growing priority area, results of this study are intended to inform investment and policy.

  7. Urban groundwater quality in sub-Saharan Africa: current status and implications for water security and public health

    NASA Astrophysics Data System (ADS)

    Lapworth, D. J.; Nkhuwa, D. C. W.; Okotto-Okotto, J.; Pedley, S.; Stuart, M. E.; Tijani, M. N.; Wright, J.

    2017-06-01

    Groundwater resources are important sources of drinking water in Africa, and they are hugely important in sustaining urban livelihoods and supporting a diverse range of commercial and agricultural activities. Groundwater has an important role in improving health in sub-Saharan Africa (SSA). An estimated 250 million people (40% of the total) live in urban centres across SSA. SSA has experienced a rapid expansion in urban populations since the 1950s, with increased population densities as well as expanding geographical coverage. Estimates suggest that the urban population in SSA will double between 2000 and 2030. The quality status of shallow urban groundwater resources is often very poor due to inadequate waste management and source protection, and poses a significant health risk to users, while deeper borehole sources often provide an important source of good quality drinking water. Given the growth in future demand from this finite resource, as well as potential changes in future climate in this region, a detailed understanding of both water quantity and quality is required to use this resource sustainably. This paper provides a comprehensive assessment of the water quality status, both microbial and chemical, of urban groundwater in SSA across a range of hydrogeological terrains and different groundwater point types. Lower storage basement terrains, which underlie a significant proportion of urban centres in SSA, are particularly vulnerable to contamination. The relationship between mean nitrate concentration and intrinsic aquifer pollution risk is assessed for urban centres across SSA. Current knowledge gaps are identified and future research needs highlighted.

  8. Sustainable cow-calf operations and water quality

    USDA-ARS?s Scientific Manuscript database

    The current high demand for quality protein and fiber production because of increasing world population has resulted in an intensification of agricultural production systems. As animal-based agriculture has evolved to larger production in subtropical regions of United States, the problems associated...

  9. Impact of shale gas development on regional water quality.

    PubMed

    Vidic, R D; Brantley, S L; Vandenbossche, J M; Yoxtheimer, D; Abad, J D

    2013-05-17

    Unconventional natural gas resources offer an opportunity to access a relatively clean fossil fuel that could potentially lead to energy independence for some countries. Horizontal drilling and hydraulic fracturing make the extraction of tightly bound natural gas from shale formations economically feasible. These technologies are not free from environmental risks, however, especially those related to regional water quality, such as gas migration, contaminant transport through induced and natural fractures, wastewater discharge, and accidental spills. We review the current understanding of environmental issues associated with unconventional gas extraction. Improved understanding of the fate and transport of contaminants of concern and increased long-term monitoring and data dissemination will help manage these water-quality risks today and in the future.

  10. Surface-water-quality assessment of the upper Illinois River basin in Illinois, Indiana, and Wisconsin; project description

    USGS Publications Warehouse

    Mades, D.M.

    1987-01-01

    In 1986, the U.S. Geological Survey began a National Water-Quality Assessment program to (1) provide nationally consistent descriptions of the current status of water quality for a large, diverse, and geographically distributed part of the Nation's surface- and ground-water resources; (2) define, where possible, trends in water quality; and (3) identify and describe the relations of both status and trends in water quality to natural factors and the history of land use and land- and waste-management activities. The program is presently in a pilot phase that will test and modify, as necessary, concepts and approaches in preparation for possible full implementation of the program in the future. The upper Illinois River basin is one of four basins selected to test the concepts and approaches of the surface-water-quality element of the national program. The basin drains 10,949 square miles of Illinois, Indiana, and Wisconsin. Three principal tributaries are the Kankakee and Des Plaines Rivers that join to form the Illinois River and the Fox River. Land use is predominantly agricultural; about 75 percent of the basin is cultivated primarily for production of corn and soybeans. About 13 percent of the basin is urban area, most of which is located in the Chicago metropolitan area. The population of the basin is about 7 million. About 6 million people live in the Des Plaines River basin. Many water-quality issues in the upper Illinois River basin are related to sediment, nutrients, potentially toxic inorganic and organic constituents, and to water-management practices. Occurrence of sediment and the chemical constituents in the rivers and lakes within the basin has the potential to adversely affect the water's suitability for aquatic life, recreation, or, through the consumption of fish, human health. The upper Illinois River basin project consists of five major activities. The first activity--analysis of existing information and preparation of a report that describes recent water-quality conditions and trends--is currently underway. The second activity--fixed-station water-quality sampling at eight stations--began in April 1987 and will last at least 3 years. Water-quality data collected at these stations will be used to determine the frequency of occurrence of constituent concentrations, their annual and seasonal loads, and time trends in concentrations for a selected number of constituents. The third activity will be synoptic water-quality studies. Each study will involve sampling many sites at specific flow conditions and for selected water-quality constituents. Information gained from these studies will supplement informa tion gained from fixed-station sampling. A synoptic study of streambed sediments is tentatively planned for the summer of 1987 to describe the occurrence and distribution of trace elements in the basin. The fourth activity will consist of one or more topical subbasin or river-reach studies. The purpose of such studies is to better define certain water-quality conditions in specific areas and gain an understanding of the processes affecting the observed conditions. The fifth activity is the preparation of reports that will describe results from each of the first four activities. Quality assurance and coordination are being provided at both the national and pilot-project levels. A technical quality-assurance plan that addresses all aspects of sample collection, analysis, and reporting is being prepared at the national level. This plan will be appended as needed at the pilot-project level. A National Coordinating Work Group that functions under the auspices of the Interagency Advisory Committee on Water Data and the Advisory Committee on Water Data for Public Use has been established at the national level. A local liaison committee consisting of representatives from Federal, State, and local agencies has been established to enhance communication and to ensure that the scientific information produced by the

  11. Nanomaterial-enabled Rapid Detection of Water Contaminants.

    PubMed

    Mao, Shun; Chang, Jingbo; Zhou, Guihua; Chen, Junhong

    2015-10-28

    Water contaminants, e.g., inorganic chemicals and microorganisms, are critical metrics for water quality monitoring and have significant impacts on human health and plants/organisms living in water. The scope and focus of this review is nanomaterial-based optical, electronic, and electrochemical sensors for rapid detection of water contaminants, e.g., heavy metals, anions, and bacteria. These contaminants are commonly found in different water systems. The importance of water quality monitoring and control demands significant advancement in the detection of contaminants in water because current sensing technologies for water contaminants have limitations. The advantages of nanomaterial-based sensing technologies are highlighted and recent progress on nanomaterial-based sensors for rapid water contaminant detection is discussed. An outlook for future research into this rapidly growing field is also provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Development of realtime, handheld and portable flood distribution and water quality sensor based android smartphone

    NASA Astrophysics Data System (ADS)

    Rachmatika, Ratih; Adriyanto, Feri

    2017-09-01

    Current sensors to monitor water quality are made of manual sensors, which reported to have good performance. However, the major problems, which manual process to get the data. In addition, the data interpretation takes a long time. Due to these problems, a new approach needs to be introduced into the process to prevent a long data acquisition. Therefore, the SIAGA application was proposed. The application of SIAGA is divided into two main applications which are SIBA (Siaga Banjir) and SIAB (Siaga Air Bersih). We using WiFi system which is located at points along the flow of river.. The result can be monitored in the online application based on smartphone which is divided into the river water quality, potential sources of pollution and flood area. Each WiFi point is completed with the instruments which are divided into the sensors that can do the identification of parameters to determine the water quality such as temperature, pH, water level and turbidity. This instrument completed using GPS (Global Positioning System), Full Map menu. The instrument was succesfully monitoredthe flood distribution and water quality in Bengawan Solo river.

  13. Adapting water treatment design and operations to the impacts of global climate change

    NASA Astrophysics Data System (ADS)

    Clark, Robert M.; Li, Zhiwei; Buchberger, Steven G.

    2011-12-01

    It is anticipated that global climate change will adversely impact source water quality in many areas of the United States and will therefore, potentially, impact the design and operation of current and future water treatment systems. The USEPA has initiated an effort called the Water Resources Adaptation Program (WRAP) which is intended to develop tools and techniques that can assess the impact of global climate change on urban drinking water and wastewater infrastructure. A three step approach for assessing climate change impacts on water treatment operation and design is being persude in this effort. The first step is the stochastic characterization of source water quality, the second step is the application of the USEPA Water Treatment Plant model and the third step is the application of cost algorithms to provide a metric that can be used to assess the coat impact of climate change. A model has been validated using data collected from Cincinnati's Richard Miller Water Treatment Plant for the USEPA Information Collection Rule (ICR) database. An analysis of the water treatment processes in response to assumed perturbations in raw water quality identified TOC, pH, and bromide as the three most important parameters affecting performance of the Miller WTP. The Miller Plant was simulated using the EPA WTP model to examine the impact of these parameters on selected regulated water quality parameters. Uncertainty in influent water quality was analyzed to estimate the risk of violating drinking water maximum contaminant levels (MCLs).Water quality changes in the Ohio River were projected for 2050 using Monte Carlo simulation and the WTP model was used to evaluate the effects of water quality changes on design and operation. Results indicate that the existing Miller WTP might not meet Safe Drinking Water Act MCL requirements for certain extreme future conditions. However, it was found that the risk of MCL violations under future conditions could be controlled by enhancing existing WTP design and operation or by process retrofitting and modification.

  14. PROVING SOLUTIONS FOR A BETTER TOMORROW: A PROGRESS REPORT ON U.S. EPA'S DRINKING WATER TREATMENT TECHNOLOGY DEMONSTRATIONS IN ECUADOR, MEXICO AND CHINA (EPA/600/F-98/008)

    EPA Science Inventory

    This publication describes the progress of USEPA's Drinking Water Treatment Demonstration projects currently underway in Ecuador, Mexico and China. Material includes descriptions of problems faced and approaches used to improve water quality.

  15. ATRAZINE ECOLOGICAL EFFECTS ASSESSMENT FOR OPP LEVEL OF CONCERN AND OW WATER QUALITY CRITERION FOR AQUATIC LIFE

    EPA Science Inventory

    Atrazine is a relatively water-soluble and persistent herbicide that can reach concentrations of possible ecological concern for aquatic plants in vulnerable watersheds in regions with high agricultural usage of atrazine. As a consequence, the U.S. EPA Office of Water is current...

  16. Drinking Water Disinfection By-Product Rules and Climate Change Effects - A Glimpse of Current and Future Trends

    EPA Science Inventory

    "Drinking water quality at the consumer's tap is the center piece of U.S. drinking water regulations to protect people's health. Recently promulgated Stage II DBP rules are an example, which requires a system approach in a multi-barrier strategy for compliance and risk managemen...

  17. Development of a relative risk model for drinking water regulation and design recommendations for a peri urban region of Argentina.

    PubMed

    Rodriguez-Alvarez, María Soledad; Weir, Mark H; Pope, Joanna M; Seghezzo, Lucas; Rajal, Verónica B; Salusso, María Mónica; Moraña, Liliana B

    2015-10-01

    Argentina is a developing Latin American nation that has an aim of achieving the United Nations Millennium Development Goals for potable water supplies. Their current regulations however, limit the continued development of improved potable water quality and infrastructure from a microbiological viewpoint. This is since the current regulations are focused solely to pathogenic Eschericia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and fecal indicators. Regions of lower socioeconomic status such as peri-urban areas are particularly at risk due to lessened financial and political ability to influence their environmental quality and infrastructure needs. Therefore, a combined microbiological sampling, analysis and quantitative microbial risk assessment (QMRA) modeling effort were engaged for a peri-urban area of Salta Argentina. Drinking water samples from home taps were analyzed and a QMRA model was developed, results of which were compared against a general 1:10,000 risk level for lack of a current Argentinian standard. This QMRA model was able to demonstrate that the current regulations were being achieved for E. coli but were less than acceptable for P. aeruginosa in some instances. Appropriate health protections are far from acceptable for Giardia for almost all water sources. Untreated water sources were sampled and analyzed then QMRA modeled as well, since a significant number of the community (∼9%) still use them for potable water supplies. For untreated water E. coli risks were near 1:10,000, however, P. aeruginosa and Giardia risks failed to be acceptable in almost all instances. The QMRA model and microbiological analyses demonstrate the need for improved regulatory efforts for the peri-urban area along with improved investment in their water infrastructure. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. MEASUREMENT AND QUANTIFICATION OF SULFATES IN MINING INFLUENCED WATER

    EPA Science Inventory

    Most hard rock (mineral) mine drainages contain metals and sulfates higher than current water quality standards permit for discharge. In treating these wastes with passive systems, scientists and engineers have concentrated on using sulfate-reducing bioreactors (SRBRs) and their ...

  19. Water Utility Management Strategies in Turkey: The current situation and the challenges

    NASA Astrophysics Data System (ADS)

    Alp, E.; Aksoy, M. N.; Koçer, B.

    2013-12-01

    As the effects of climate change becomes more prominent, current challenges related to water and wastewater management is becoming more serious. Providing water that satisfies environmental and safety standards in terms of quantity and quality is needed to maintain human life without compromising the need of future generations. Besides providing safe and affordable water, necessary treatment should be achieved according to several important factors such as receiving body standards, discharge standards, water reuse options. Therefore, management of water becomes more crucial than ever that states have to provide accessibility of safe water with affordable cost to its citizens with the means of effective utility management, including water treatment facilities, wastewater treatment facilities, water supply facilities and water distribution systems. Water utilities encounter with several challenges related to cost, infrastructure, population, legislation, workforce and resource. This study aims to determine the current situation and the necessary strategies to improve utility management in Turkish municipalities in a sustainable manner. US Environment Protection Agency (EPA) has formed a tool on effective utility management that assists utilities to provide a solution for both current and future challenges. In this study, we used EPA's guidelines and developed a survey consists of 60 questions under 10 sub-topics (Product Quality, Employee & Leadership Development, Stakeholder Understanding & Support, Operational Optimization, Infrastructure Stability, Financial Viability, Community Sustainability, Customer Satisfaction, Operational Resiliency, and Water Resource Adequacy). This survey was sent to the managers of 25 metropolitan municipalities in Turkey to assess the current condition of municipalities. After the evaluation of the survey results for each topic, including the importance given by managers, facilities were rated according to their level of achievement. The scores were given for Rate Achievement from 1 to 5 and Rank Importance from 1 to 10 to the survey outcomes for each topic. Then, rating and ranking matrix was constructed according to score ranges. Results show that Product Quality, Stakeholder Understanding & Support, Infrastructure Stability and Customer Satisfaction are the major topics that needs to be improved according to the utility managers in Turkey. According to the outcomes of the study, water losses and unbilled unmetered consumption of water appeared to be the most important issues with the utility management. The utility managers also think there is still room for improvement to satisfy the needs of the users. Even though the rehabilitation of the infrastructure is a costly investment, it can be compensated with the help of the increased revenues as a result of improvement in water loss and unbilled water use. Suggestions given as a result of this study aim to aid decision makers and local authorities to overcome the significant problems faced during management and to achieve a sustainable utility management.

  20. Paraho environmental data. Part I. Process characterization. Par II. Air quality. Part III. Water quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heistand, R.N.; Atwood, R.A.; Richardson, K.L.

    1980-06-01

    From 1973 to 1978, Development Engineering, Inc. (DEI), a subsidiary of Paraho Development Corporation, demostrated the Paraho technology for surface oil shale retorting at Anvil Points, Colorado. A considerable amount of environmentally-related research was also conducted. This body of data represents the most comprehensive environmental data base relating to surface retorting that is currently available. In order to make this information available, the DOE Office of Environment has undertaken to compile, assemble, and publish this environmental data. The compilation has been prepared by DEI. This report includes the process characterization, air quality, and water quality categories.

  1. Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Minton, John M.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2014-01-01

    Real-time environmental monitoring on ISS is necessary to provide data in a timely fashion and to help ensure astronaut health. Current real-time water TOC monitoring provides high-quality trending information, but compound-specific data is needed. The combination of ETV with the AQM showed that compounds of interest could be liberated from water and analyzed in the same manner as air sampling. Calibration of the AQM using water samples allowed for the quantitative analysis of ISS archival samples. Some calibration issues remain, but the excellent accuracy of DMSD indicates that ETV holds promise for as a sample introduction method for water analysis in spaceflight.

  2. U.S. Geological Survey water-resource monitoring activities in support of the Wyoming Landscape Conservation Initiative

    USGS Publications Warehouse

    Soileau, Suzanna; Miller, Kirk

    2013-01-01

    The quality of the Nation’s water resources are vital to the health and well-being of both our communities and the natural landscapes we value. The U.S. Geological Survey investigates the occurrence, quantity, quality, distribution, and movement of surface water and groundwater and provides this information to engineers, scientists, managers, educators, and the general public. This information also supplements current (2013) and historical water data provided by the National Water Information System. The U.S. Geological Survey collects and shares data nationwide, but how those data are used is often site specific; this variety of data assists natural-resource managers in addressing unique, local, and regional challenges.

  3. Water resources of the Southern Hills regional aquifer system, southeastern Louisiana

    USGS Publications Warehouse

    White, Vincent E.

    2017-03-01

    Information concerning the availability, use, and quality of groundwater in the 10 parishes overlying the Southern Hills regional aquifer system of Louisiana (fig. 1) is critical for water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater sources in these parishes is presented. Previously published reports (see References Cited section) and data stored in the U.S. Geological Survey’s National Water Information System (U.S. Geological Survey, 2017) are the primary sources of the information presented here.

  4. Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities

    PubMed Central

    Tan, BoonFei; Ng, Charmaine; Nshimyimana, Jean Pierre; Loh, Lay Leng; Gin, Karina Y.-H.; Thompson, Janelle R.

    2015-01-01

    Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable regions have allowed identification of signature microbial species that serve as bioindicators for sewage contamination in these environments. Beyond amplicon sequencing, metagenomic and metatranscriptomic analyses of microbial communities in fresh water environments reveal the genetic capabilities and interplay of waterborne microorganisms, shedding light on the mechanisms for production and biodegradation of toxins and other contaminants. This review discusses the challenges and benefits of applying NGS-based methods to water quality research and assessment. We will consider the suitability and biases inherent in the application of NGS as a screening tool for assessment of biological risks and discuss the potential and limitations for direct quantitative interpretation of NGS data. Secondly, we will examine case studies from recent literature where NGS based methods have been applied to topics in water quality assessment, including development of bioindicators for sewage pollution and microbial source tracking, characterizing the distribution of toxin and antibiotic resistance genes in water samples, and investigating mechanisms of biodegradation of harmful pollutants that threaten water quality. Finally, we provide a short review of emerging NGS platforms and their potential applications to the next generation of water quality assessment tools. PMID:26441948

  5. Temporal variability and climatology of hydrodynamic, water property and water quality parameters in the West Johor Strait of Singapore.

    PubMed

    Behera, Manasa Ranjan; Chun, Cui; Palani, Sundarambal; Tkalich, Pavel

    2013-12-15

    The study presents a baseline variability and climatology study of measured hydrodynamic, water properties and some water quality parameters of West Johor Strait, Singapore at hourly-to-seasonal scales to uncover their dependency and correlation to one or more drivers. The considered parameters include, but not limited by sea surface elevation, current magnitude and direction, solar radiation and air temperature, water temperature, salinity, chlorophyll-a and turbidity. FFT (Fast Fourier Transform) analysis is carried out for the parameters to delineate relative effect of tidal and weather drivers. The group and individual correlations between the parameters are obtained by principal component analysis (PCA) and cross-correlation (CC) technique, respectively. The CC technique also identifies the dependency and time lag between driving natural forces and dependent water property and water quality parameters. The temporal variability and climatology of the driving forces and the dependent parameters are established at the hourly, daily, fortnightly and seasonal scales. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Recommended advanced techniques for waterborne pathogen detection in developing countries.

    PubMed

    Alhamlan, Fatimah S; Al-Qahtani, Ahmed A; Al-Ahdal, Mohammed N

    2015-02-19

    The effect of human activities on water resources has expanded dramatically during the past few decades, leading to the spread of waterborne microbial pathogens. The total global health impact of human infectious diseases associated with pathogenic microorganisms from land-based wastewater pollution was estimated to be approximately three million disability-adjusted life years (DALY), with an estimated economic loss of nearly 12 billion US dollars per year. Although clean water is essential for healthy living, it is not equally granted to all humans. Indeed, people who live in developing countries are challenged every day by an inadequate supply of clean water. Polluted water can lead to health crises that in turn spread waterborne pathogens. Taking measures to assess the water quality can prevent these potential risks. Thus, a pressing need has emerged in developing countries for comprehensive and accurate assessments of water quality. This review presents current and emerging advanced techniques for assessing water quality that can be adopted by authorities in developing countries.

  7. Social and ecological aspects of the water resources management of the transboundary rivers of Central Asia

    NASA Astrophysics Data System (ADS)

    Normatov, P.

    2014-09-01

    The Zeravshan River is a transboundary river whose water is mainly used for irrigation of agricultural lands of the Republic of Uzbekistan. Sufficiently rich hydropower resources in upstream of the Zeravshan River characterize the Republic of Tajikistan. Continuous monitoring of water resources condition is necessary for planning the development of this area taking into account hydropower production and irrigation needs. Water quality of Zeravshan River is currently one of the main problems in the relationship between the Republics of Uzbekistan and Tajikistan, and it frequently triggers conflict situations between the two countries. In most cases, the problem of water quality of the Zeravshan River is related to river pollution by wastewater of the Anzob Mountain-concentrating Industrial Complex (AMCC) in Tajikistan. In this paper results of research of chemical and bacteriological composition of the Zeravshan River waters are presented. The minimum impact of AMCC on quality of water of the river was experimentally established.

  8. Water quality of Danube Delta systems: ecological status and prediction using machine-learning algorithms.

    PubMed

    Stoica, C; Camejo, J; Banciu, A; Nita-Lazar, M; Paun, I; Cristofor, S; Pacheco, O R; Guevara, M

    2016-01-01

    Environmental issues have a worldwide impact on water bodies, including the Danube Delta, the largest European wetland. The Water Framework Directive (2000/60/EC) implementation operates toward solving environmental issues from European and national level. As a consequence, the water quality and the biocenosis structure was altered, especially the composition of the macro invertebrate community which is closely related to habitat and substrate heterogeneity. This study aims to assess the ecological status of Southern Branch of the Danube Delta, Saint Gheorghe, using benthic fauna and a computational method as an alternative for monitoring the water quality in real time. The analysis of spatial and temporal variability of unicriterial and multicriterial indices were used to assess the current status of aquatic systems. In addition, chemical status was characterized. Coliform bacteria and several chemical parameters were used to feed machine-learning (ML) algorithms to simulate a real-time classification method. Overall, the assessment of the water bodies indicated a moderate ecological status based on the biological quality elements or a good ecological status based on chemical and ML algorithms criteria.

  9. Modeling the Water - Quality Effects of Changes to the Klamath River Upstream of Keno Dam, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Sogutlugil, I. Ertugrul; Rounds, Stewart A.; Deas, Michael L.

    2013-01-01

    The Link River to Keno Dam (Link-Keno) reach of the Klamath River, Oregon, generally has periods of water-quality impairment during summer, including low dissolved oxygen, elevated concentrations of ammonia and algae, and high pH. Efforts are underway to improve water quality in this reach through a Total Maximum Daily Load (TMDL) program and other management and operational actions. To assist in planning, a hydrodynamic and water-quality model was used in this study to provide insight about how various actions could affect water quality in the reach. These model scenarios used a previously developed and calibrated CE-QUAL-W2 model of the Link-Keno reach developed by the U.S. Geological Survey (USGS), Watercourse Engineering Inc., and the Bureau of Reclamation for calendar years 2006-09 (referred to as the "USGS model" in this report). Another model of the same river reach was previously developed by Tetra Tech, Inc. and the Oregon Department of Environmental Quality for years 2000 and 2002 and was used in the TMDL process; that model is referred to as the "TMDL model" in this report. This report includes scenarios that (1) assess the effect of TMDL allocations on water quality, (2) provide insight on certain aspects of the TMDL model, (3) assess various methods to improve water quality in this reach, and (4) examine possible water-quality effects of a future warmer climate. Results presented in this report for the first 5 scenarios supersede or augment those that were previously published (scenarios 1 and 2 in Sullivan and others [2011], 3 through 5 in Sullivan and others [2012]); those previous results are still valid, but the results for those scenarios in this report are more current.

  10. Specific conductance measurements in central and western New York streams - A retrospective characterization

    USGS Publications Warehouse

    Kappel, William M.; Sinclair, Gaylen J.; Reddy, James E.; Eckhardt, David A.; deVries, M. Peter; Phillips, Margaret E.

    2012-01-01

    U.S. Geological Survey (USGS) Data Rescue Program funds were used to recover data from paper records for 139 streamgages across central and western New York State; 6,133 different streamflow measurement forms, collected between 1970-80, contained field water-quality measurements. The water-quality data were entered, reviewed, and uploaded into the USGS National Water Information System. In total, 4,285 unique site visits were added to the database. The new values represent baseline water quality from which to measure change and will lead to a comparison of water-quality change over the last 40 years and into the future. Specific conductance was one of the measured properties and represents a simple way to determine if ambient inorganic water quality has been altered by anthropogenic (road salt runoff, wastewater discharges, or natural gas development) or natural sources. The objective of this report is to describe ambient specific conductance characteristics of surface water across the central and western part of New York. This report presents median specific conductance of stream discharge for the period 1970-80 and a description of the relation between specific conductance and concentrations of total dissolved solids (TDS) retrieved from the USGS National Water Information System (NWIS) database from 1955 to present. The data descriptions provide a baseline of surface-water specific conductance data that can used for comparison to current and future measurements in New York streams.

  11. Soil agroecosystem health: current challenges and future opportunities

    USDA-ARS?s Scientific Manuscript database

    Soil health is a broad concept that emphasizes the ecological importance of soils, including sustained plant and animal productivity, human health, and environmental quality. In the United States, soil degradation and associated water quality problems have been widely documented. Improvement and mai...

  12. In Brief: Improving Mississippi River water quality

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-10-01

    If water quality in the Mississippi River and the northern Gulf of Mexico is to improve, the U.S. Environmental Protection Agency (EPA) needs to take a stronger leadership role in implementing the federal Clean Water Act, according to a 16 October report from the U.S. National Research Council. The report notes that EPA has failed to use its authority to coordinate and oversee activities along the river. In addition, river states need to be more proactive and cooperative in efforts to monitor and improve water quality, and the river should be monitored and evaluated as a single system, the report indicates. Currently, the 10 states along the river conduct separate and widely varying water quality monitoring programs. ``The limited attention being given to monitoring and managing the Mississippi's water quality does not match the river's significant economic, ecological, and cultural importance,'' said committee chair David A. Dzombak, director of the Steinbrenner Institute for Environmental Education and Research at Carnegie Mellon University, Pittsburgh, Pa. The report notes that while measures taken under the Clean Water Act have successfully reduced much point source pollution, nutrient and sediment loads from nonpoint sources continue to be significant problems. For more information, visit the Web site: http://books.nap.edu/catalog.php?record_id=12051.

  13. Interaction and influence of two creeks on Escherichia coli concentrations of nearby beaches: Exploration of predictability and mechanisms

    USGS Publications Warehouse

    Nevers, M.B.; Whitman, R.L.; Frick, W.E.; Ge, Z.

    2007-01-01

    The impact of river outfalls on beach water quality depends on numerous interacting factors. The delivery of contaminants by multiple creeks greatly complicates understanding of the source contributions, especially when pollution might originate up- or down-coast of beaches. We studied two beaches along Lake Michigan that are located between two creek outfalls to determine the hydrometeorologic factors influencing near-shore microbiologic water quality and the relative impact of the creeks. The creeks continuously delivered water with high concentrations of Escherichia coli to Lake Michigan, and the direction of transport of these bacteria was affected by current direction. Current direction reversals were associated with elevated E. coli concentrations at Central Avenue beach. Rainfall, barometric pressure, wave height, wave period, and creek specific conductance were significantly related to E. coli concentration at the beaches and were the parameters used in predictive models that best described E. coli variation at the two beaches. Multiple inputs to numerous beaches complicates the analysis and understanding of the relative relationship of sources but affords opportunities for showing how these complex creek inputs might interact to yield collective or individual effects on beach water quality.

  14. An Evaluation of the NIDS (registered trademark) ACE (trademark) Test

    DTIC Science & Technology

    2014-06-30

    included chemicals commonly used for drinking water disinfection (chlorine and chloramine), byproducts of cyanobacteria blooms (geosmin and 2...duration field toxicity test for Army drinking water . One component of the ESB the ACE Test) is an enzymatic assay designed to detect neurotoxicants...adverse health effects is the presence of toxic industrial chemicals (TICs) in drinking water . The current field water test kit – the water quality

  15. Evidence on the Effectiveness of Water, Sanitation, and Hygiene (WASH) Interventions on Health Outcomes in Humanitarian Crises: A Systematic Review.

    PubMed

    Ramesh, Anita; Blanchet, Karl; Ensink, Jeroen H J; Roberts, Bayard

    2015-01-01

    Water, sanitation, and hygiene (WASH) interventions are amongst the most crucial in humanitarian crises, although the impact of the different WASH interventions on health outcomes remains unclear. To examine the quantity and quality of evidence on WASH interventions on health outcomes in humanitarian crises, as well as evaluate current evidence on their effectiveness against health outcomes in these contexts. A systematic literature review was conducted of primary and grey quantitative literature on WASH interventions measured against health outcomes in humanitarian crises occurring from 1980-2014. Populations of interest were those in resident in humanitarian settings, with a focus on acute crisis and early recovery stages of humanitarian crises in low and middle-income countries. Interventions of interest were WASH-related, while outcomes of interest were health-related. Study quality was assessed via STROBE/CONSORT criteria. Results were analyzed descriptively, and PRISMA reporting was followed. Of 3963 studies initially retrieved, only 6 published studies measured a statistically significant change in health outcome as a result of a WASH intervention. All 6 studies employed point-of-use (POU) water quality interventions, with 50% using safe water storage (SWS) and 35% using household water treatment (HWT). All 6 studies used self-reported diarrhea outcomes, 2 studies also reported laboratory confirmed outcomes, and 2 studies reported health treatment outcomes (e.g. clinical admissions). 1 study measured WASH intervention success in relation to both health and water quality outcomes; 1 study recorded uptake (use of soap) as well as health outcomes. 2 studies were unblinded randomized-controlled trials, while 4 were uncontrolled longitudinal studies. 2 studies were graded as providing high quality evidence; 3 studies provided moderate and 1 study low quality evidence. The current evidence base on the impact of WASH interventions on health outcomes in humanitarian crises is extremely limited, and numerous methodological limitations limit the ability to determine associative, let alone causal, relationships.

  16. Evidence on the Effectiveness of Water, Sanitation, and Hygiene (WASH) Interventions on Health Outcomes in Humanitarian Crises: A Systematic Review

    PubMed Central

    Ramesh, Anita; Blanchet, Karl; Ensink, Jeroen H. J.; Roberts, Bayard

    2015-01-01

    Background Water, sanitation, and hygiene (WASH) interventions are amongst the most crucial in humanitarian crises, although the impact of the different WASH interventions on health outcomes remains unclear. Aim To examine the quantity and quality of evidence on WASH interventions on health outcomes in humanitarian crises, as well as evaluate current evidence on their effectiveness against health outcomes in these contexts. Methods A systematic literature review was conducted of primary and grey quantitative literature on WASH interventions measured against health outcomes in humanitarian crises occurring from 1980–2014. Populations of interest were those in resident in humanitarian settings, with a focus on acute crisis and early recovery stages of humanitarian crises in low and middle-income countries. Interventions of interest were WASH-related, while outcomes of interest were health-related. Study quality was assessed via STROBE/CONSORT criteria. Results were analyzed descriptively, and PRISMA reporting was followed. Results Of 3963 studies initially retrieved, only 6 published studies measured a statistically significant change in health outcome as a result of a WASH intervention. All 6 studies employed point-of-use (POU) water quality interventions, with 50% using safe water storage (SWS) and 35% using household water treatment (HWT). All 6 studies used self-reported diarrhea outcomes, 2 studies also reported laboratory confirmed outcomes, and 2 studies reported health treatment outcomes (e.g. clinical admissions). 1 study measured WASH intervention success in relation to both health and water quality outcomes; 1 study recorded uptake (use of soap) as well as health outcomes. 2 studies were unblinded randomized-controlled trials, while 4 were uncontrolled longitudinal studies. 2 studies were graded as providing high quality evidence; 3 studies provided moderate and 1 study low quality evidence. Conclusion The current evidence base on the impact of WASH interventions on health outcomes in humanitarian crises is extremely limited, and numerous methodological limitations limit the ability to determine associative, let alone causal, relationships. PMID:26398228

  17. Review of water disinfection techniques

    NASA Technical Reports Server (NTRS)

    Colombo, Gerald V.; Sauer, Richard L.

    1987-01-01

    Throughout the history of manned space flight the supply of potable water to the astronauts has presented unique problems. Of particular concern has been the microbiological quality of the potable water. This has required the development of both preflight water system servicing procedures to disinfect the systems and inflight disinfectant addition and monitoring devices to ensure continuing microbiological control. The disinfectants successfully used to date have been aqueous chlorine or iodine. Because of special system limitations the use of iodine has been the most successful for inflight use and promises to be the agent most likely to be used in the future. Future spacecraft potable, hygiene, and experiment water systems will utilize recycled water. This will present special problems for water quality control. NASA is currently conducting research and development to solve these problems.

  18. [100 years of drinking water regulation. Retrospective review, current situation and prospects].

    PubMed

    Rakhmanin, Yu A; Krasovsky, G N; Egorova, N A; Mikhailova, R I

    2014-01-01

    There is considered the history of the development of legislative requirements to the regulation of the quality of drinking water in different countries and international organizations during the period from 1912 to the present time. In terms of comparative analysis there is analyzed the current state of regulatory frameworks of the Russian Federation, WHO, EU, Finland, the UK, Singapore, Australia, Japan, China, Nigeria, the United States and Canada in the field of providing favorable conditions of population drinking water use. There has been noted the significant progress in standardization of the content of the biogenic elements and chemical pollution of drinking water in the absence of uniform requirements to the composition and properties of drinking water globally, that is bound to the need to take into account the national peculiarities of drinking water supply within the separate countries. As promising directions for improving regulation of drinking water quality there are noted: the development of new standards for prioritized water pollution, periodic review ofstandards after appearance of the new scientific data on the biological action of substances, the use of the concept of risk, the harmonization of the normative values and the assessment of the possibility of introduction into the practice the one more criterion of profitableness of population water use--the bioenergetic state of the water.

  19. A New Approach to Look at the Electrical Conductivity of Streamflow: Decomposing a Bulk Signal to Recover Individual Solute Concentrations at High-Frequency

    NASA Astrophysics Data System (ADS)

    Benettin, P.; Van Breukelen, B. M.

    2017-12-01

    The ability to evaluate stream hydrochemistry is often constrained by the capacity to sample streamwater at an adequate frequency. While technology is no longer a limiting factor, economic and management efforts can still be a barrier to high-resolution water quality instrumentation. We propose a new framework to investigate the electrical conductivity (EC) of streamwater, which can be measured continuously through inexpensive sensors. We show that EC embeds information on ion content which can be isolated to retrieve solute concentrations at high resolution. The approach can already be applied to a number of datasets worldwide where water quality campaigns are conducted, provided continuous EC measurements can be collected. The essence of the approach is the decomposition of the EC signal into its "harmonics", i.e. the specific contributions of the major ions which conduct current in water. The ion contribution is used to explore water quality patterns and to develop algorithms that reconstruct solute concentrations during periods where solute measurements are not available. The approach is validated on a hydrochemical dataset from Plynlimon, Wales. Results show that the decomposition of EC is feasible and for at least two major elements the methodology provided improved estimates of high-frequency solute dynamics. Our results support the installation of EC probes to complement water quality campaigns and suggest that the potential of EC measurements in rivers is currently far from being fully exploited.

  20. A web tool for STORET/WQX water quality data retrieval and Best Management Practice scenario suggestion.

    PubMed

    Park, Youn Shik; Engel, Bernie A; Kim, Jonggun; Theller, Larry; Chaubey, Indrajeet; Merwade, Venkatesh; Lim, Kyoung Jae

    2015-03-01

    Total Maximum Daily Load is a water quality standard to regulate water quality of streams, rivers and lakes. A wide range of approaches are used currently to develop TMDLs for impaired streams and rivers. Flow and load duration curves (FDC and LDC) have been used in many states to evaluate the relationship between flow and pollutant loading along with other models and approaches. A web-based LDC Tool was developed to facilitate development of FDC and LDC as well as to support other hydrologic analyses. In this study, the FDC and LDC tool was enhanced to allow collection of water quality data via the web and to assist in establishing cost-effective Best Management Practice (BMP) implementations. The enhanced web-based tool provides use of water quality data not only from the US Geological Survey but also from the Water Quality Portal for the U.S. via web access. Moreover, the web-based tool identifies required pollutant reductions to meet standard loads and suggests a BMP scenario based on ability of BMPs to reduce pollutant loads, BMP establishment and maintenance costs. In the study, flow and water quality data were collected via web access to develop LDC and to identify the required reduction. The suggested BMP scenario from the web-based tool was evaluated using the EPA Spreadsheet Tool for the Estimation of Pollutant Load model to attain the required pollutant reduction at least cost. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. EMERGING CONTAMINANTS: WHAT ARE THE CURRENT HOT ENVIRONMENTAL POLLUTANTS AND WHAT IS NEXT?

    EPA Science Inventory

    Much has been achieved in the way of environmental protection over the last 30 years. Laws have been passed that have improved the quality of our rivers and streams, the quality of the air we breathe, and the quality of the water we drink. However, as we learn more, new concern...

  2. Water-resources investigations in Pennsylvania; programs and activities of the U.S. Geological Survey, 1993

    USGS Publications Warehouse

    McLanahan, L. O.

    1993-01-01

    Current activities of the Pennsylvania District of the USGS are described and include information on current projects, such as project objectives, approach, progress and plans, project location, cooperators, period of project, and project chief. Basic-data programs for surface water, ground water, and quality of water also are described. Also included is information on the basic mission and programs of the USGS; program funding and cooperation for fiscal year 1993; the USGS water- data program, National Water-Data Exchange, and National Water-Data Storage and Retrieval System; and Pennsylvania data-collection programs and hydrologic investigations. List of publications of the Pennsylvania District and maps published by the USGS, as well as information on how to obtain them, are included.

  3. 40 CFR 264.18 - Location standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...) The impact of such concentrations on the current or potential uses of and water quality standards established for the affected surface waters; and (D) The impact of hazardous constituents on the sediments of...

  4. NATIONAL EPIDEMIOLOGICAL AND ENVIRONMENTAL ASSESSMENT OF RECREATIONAL WATER STUDY

    EPA Science Inventory

    Evidence from various sources around the world indicate that there is a relationship between gastroenteritis in swimmers and the quality of the bathing water as measured with bacterial indicators of fecal contamination. Current EPA guidelines recommend the use of cultural method...

  5. Biological conditions in streams of Johnson County, Kansas, and nearby Missouri, 2003 and 2004

    USGS Publications Warehouse

    Poulton, Barry C.; Rasmussen, Teresa J.; Lee, Casey J.

    2007-01-01

    Johnson County is one of the fastest growing and most populated counties in Kansas. Urban development affects streams by altering stream hydrology, geomorphology, water chemistry, and habitat, which then can lead to adverse effects on fish and macroinvertebrate communities. In addition, increasing sources of contaminants in urbanizing streams results in public-health concerns associated with exposure to and consumption of contaminated water. Biological assessments, or surveys of organisms living in aquatic environments, are crucial components of water-quality programs because they provide an indication of how well water bodies support aquatic life. This fact sheet describes current biological conditions of Johnson County streams and characterizes stream biology relative to urban development. Biological conditions were evaluated by collecting macroinvertebrate samples from 15 stream sites in Johnson County, Kansas, in 2003 and 2004 (fig. 1). Data from seven additional sites, collected as part of a separate study with similar objectives in Kansas and Missouri (Wilkison and others, 2005), were evaluated to provide a more comprehensive assessment of watersheds that cross State boundaries. Land-use and water- and streambed-sediment-quality data also were used to evaluate factors that may affect macroinvertebrate communities. Metrics are indices used to measure, or evaluate, macroinvertebrate response to various factors such as human disturbance. Multimetric scores, which integrated 10 different metrics that measure various aspects of macroinvertebrate communities, including organism diversity, composition, tolerance, and feeding characteristics, were used to evaluate and compare biological health of Johnson County streams. This information is useful to city and county officials for defining current biological conditions, evaluating conditions relative to State biological criteria, evaluating effects of urbanization, developing effective water-quality management plans, and documenting changes in biological conditions and water quality.

  6. [Modern problems of maintenance of hygienic safety of drinking water consumption at the regional level].

    PubMed

    Tulakin, A V; Tsyplakova, G V; Ampleeva, G P; Kozyreva, O N; Pivneva, O S; Trukhina, G M

    Problems of hygienic reliability of the drinking water use in regions of the Russian Federation are observed in the article. The optimization of the water use was shown must be based on the bearing in mind of regional peculiarities of the shaping of water quality of groundwater and surface sources of the water use, taking into account of the effectiveness of regional water protection programs, programs for water treatment, coordination of the activity of economic entities and oversight bodies in the management of water quality on the basis of socio-hygienic monitoring. Regional problems requiring hygienic justification and accounting, include such issues as complex hydrological, hydrogeological, climatic and geographical conditions, pronouncement of the severity of anthropogenic pollution of sources of water supply, natural conditions of the shaping of water quality, efficiency of the water treatment. There is need in the improvement of the problems of the water quality monitoring, including with the use of computer technology, which allows to realize regional hygienic monitoring and spatial-temporal analysis of the water quality, to model the water quality management, to predict conditions of the water use by population in regions taking into account peculiarities of the current health situation. In the article there is shown the practicability of the so-called complex concept of multiple barriers suggesting the combined use of chemical oxidation and physical methods of the preparation of drinking water. It is required the further development of legislation for the protection of water bodies from pollution with the bigging up the status of sanitary protection zones; timely revision of the regulatory framework, establishing sanitary-epidemiological requirements to potable water and drinking water supply. The problem of the provision of the population with safe drinking water requires complex solution within the framework of the implementation of target programs adopted at the Federal and regional levels.

  7. The 1975 Ride Quality Symposium

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation is presented of papers reported at the 1975 Ride Quality Symposium held in Williamsburg, Virginia, August 11-12, 1975. The symposium, jointly sponsored by NASA and the United States Department of Transportation, was held to provide a forum for determining the current state of the art relative to the technology base of ride quality information applicable to current and proposed transportation systems. Emphasis focused on passenger reactions to ride environment and on implications of these reactions to the design and operation of air, land, and water transportation systems acceptable to the traveling public. Papers are grouped in the following five categories: needs and uses for ride quality technology, vehicle environments and dynamics, investigative approaches and testing procedures, experimental ride quality studies, and ride quality modeling and criteria.

  8. Surface-water, water-quality, and ground-water assessment of the Municipio of Carolina, Puerto Rico, 1997-99

    USGS Publications Warehouse

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Carolina, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resources data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated for one continuous-record gaging station, based on graphical curve-fitting techniques and log-Pearson Type III frequency analysis. Estimates of low-flow characteristics for seven partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics were computed for the one continuous-record gaging station and were estimated for the partial-record stations using the relation curves developed from the low-flow study. Stream low-flow statistics document the general hydrology under current land and water use. Low-flow statistics may substantially change as a result of streamflow diversions for public supply, and an increase in ground-water development, waste-water discharges, and flood-control measures; the current analysis provides baseline information to evaluate these impacts and develop water budgets. A sanitary quality survey of streams utilized 29 sampling stations to evaluate the sanitary quality of about 87 miles of stream channels. River and stream samples were collected on two occasions during base-flow conditions and were analyzed for fecal coliform and fecal streptococcus. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Carolina may have fecal coliform concentrations above the water-quality goal established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include: illegal discharge of sewage to storm-water drains, malfunctioning sanitary sewer ejectors, clogged and leaking sewage pipes, septic tank leakage, unfenced livestock, and runoff from livestock pens. Long-term fecal coliform data at two sampling stations, Quebrada Blasina in Carolina and the Rio Grande de Loiza, downstream from the town of Trujillo Alto, indicate that the sanitary quality of Quebrada Blasina is and has generally been poor for more than a decade. The sanitary quality of the Rio Grande de Loiza has generally been in compliance with the water-quality goal standard fecal coliform concentrations established in July 1990 by the Puerto Rico Environmental Quality Board. Geologic, topographic, soil, hydrogeologic, and streamflow data were used to divide the municipio of Carolina into five hydrogeologic terranes. This integrated database was then used to evaluate the ground-water potential of each hydrogeologic terrane. Analysis suggests that areas with slopes greater than 15 degrees have relatively low ground-water development potential. Fractures may be locally important in enhancing the water-bearing properties in the hydrogeologic terranes containing igneous rocks. Potentiometric-surface elevations recorded in piezometers installed in the coastal area during this study were used to define ground-water flow directions in the hydrogeologic terranes composed of coastal plain clastic and limestone units. The resultant potentiometric map indicates that the coastal plain aquifer and streams in the lowland parts of the municipio of Carolina are hydraulically connected. The potentiometric map also indicates that ground-water discharge to the Rio Grande de Loiza, downstream from highway PR-3, has been enhanced by dredging of the streambed for

  9. Global Monitoring of Water Supply and Sanitation: History, Methods and Future Challenges

    PubMed Central

    Bartram, Jamie; Brocklehurst, Clarissa; Fisher, Michael B.; Luyendijk, Rolf; Hossain, Rifat; Wardlaw, Tessa; Gordon, Bruce

    2014-01-01

    International monitoring of drinking water and sanitation shapes awareness of countries’ needs and informs policy, implementation and research efforts to extend and improve services. The Millennium Development Goals established global targets for drinking water and sanitation access; progress towards these targets, facilitated by international monitoring, has contributed to reducing the global disease burden and increasing quality of life. The experiences of the MDG period generated important lessons about the strengths and limitations of current approaches to defining and monitoring access to drinking water and sanitation. The methods by which the Joint Monitoring Programme (JMP) of WHO and UNICEF tracks access and progress are based on analysis of data from household surveys and linear regression modelling of these results over time. These methods provide nationally-representative and internationally-comparable insights into the drinking water and sanitation facilities used by populations worldwide, but also have substantial limitations: current methods do not address water quality, equity of access, or extra-household services. Improved statistical methods are needed to better model temporal trends. This article describes and critically reviews JMP methods in detail for the first time. It also explores the impact of, and future directions for, international monitoring of drinking water and sanitation. PMID:25116635

  10. Projected impact of climate change and chemical emissions on the water quality of the European rivers Rhine and Meuse: A drinking water perspective.

    PubMed

    Sjerps, Rosa M A; Ter Laak, Thomas L; Zwolsman, Gertjan J J G

    2017-12-01

    Low river discharges of the rivers Rhine and Meuse are expected to occur more often and more prolonged in a changing climate. During these dry periods the dilution of point sources such as sewage effluents is reduced leading to a decline in chemical water quality. This study projects chemical water quality of the rivers Rhine and Meuse in the year 2050, based on projections of chemical emissions and two climate scenarios: moderate and fast climate change. It focuses on specific compounds known to be relevant to drinking water production, i.e. four pharmaceuticals, a herbicide and its metabolite and an artificial sweetener. Hydrological variability, climate change, and increased emission show a significant influence on the water quality in the Rhine and Meuse. The combined effect of changing future emissions of these compounds and reduced dilution due to climate change has leaded to increasing (peak) concentrations in the river water by a factor of two to four. Current water treatment efficiencies in the Netherlands are not sufficient to reduce these projected concentrations in drinking water produced from surface water below precautionary water target values. If future emissions are not sufficiently reduced or treatment efficiencies are not improved, these compounds will increasingly be found in drinking water, albeit at levels which pose no threat to human health. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Bibliography, indices, and data sources of water-related studies, upper Colorado River basin, Colorado and Utah, 1872-1995

    USGS Publications Warehouse

    Bauch, N.J.; Apodaca, L.E.

    1995-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program, current water-quality conditions in the Upper Colorado River Basin in Colorado and Utah are being assessed. This report is an initial effort to identify and compile information on water-related studies previously conducted in the basin and consists of a bibliography, coauthor and subject indices, and sources of available water-related data. Computerized literature searches of scientific data bases were carried out to identify past water-related studies in the basin, and government agencies and private organizations were contacted regarding their knowledge or possession of water-related publications and data. Categories of information in the bibliography include: aquatic biology, climate, energy development, geology, land use, limnology, runoff, salinity, surface- and ground-water hydrology, water chemistry, water quality and quantity, and water use and management. The approximately 1,400 indexed references date from 1872 through February 1995 and include books, journal articles, maps, and reports. In many instances, an abstract has been provided for a given reference. Sources of water-related data in the basin are included in a table.

  12. SOLID PHASE EXTRACTION AND HIGH PERFORMANCE LIQUID CHROMATOGRAPHY WITH PHOTODIODE ARRAY DETECTION OF CHEMICAL INDICATORS OF HUMAN FECAL CONTAMINATION IN WATER

    EPA Science Inventory

    Faster and more sensitive analysis of water that is contaminated by human fecal matter is very important for health. The current microbiological methods to assess water quality do not meet this need. Alternate non-microbial human fecal indicators have been proposed by various r...

  13. Influence of white plastic and water replacement rates on pomegranate orchard phenology, fruit yield and quality

    USDA-ARS?s Scientific Manuscript database

    Currently, 98% of domestic commercial pomegranate fruit (Punica granatum L.) are produced in California on over 13,000 ha. In 2013, a pomegranate orchard, established in 2010 with a density of 558 trees/ha, was irrigated at water replacement rates of 35, 50 and 100% based on rainfall, tree water r...

  14. Effect of different water management strategies on water and contaminant fluxes in Doncaster, United Kingdom.

    PubMed

    Rueedi, J; Cronin, A A; Moon, B; Wolf, L; Hoetzl, H

    2005-01-01

    In Europe, large volumes of public water supply come from urban aquifers and so efficient urban water management and decision tools are essential to maintain quality of life both in terms of health, personal freedom and environment. In the United Kingdom, this issue gained increased importance with the last year's low volumes of groundwater replenishment that resulted in increased water shortages all over the country. An urban water volume and quality model (UVQ) was applied to a suburb of Doncaster (United Kingdom) to assess the current water supply system and to compare it with new potential scenarios of water management. The initial results show considerable changes in both water and solute fluxes for some scenarios and rather limited changes for others. Changing impermeable roads and paved areas to permeable areas, for example, would lead to higher infiltration rates that may be welcome from a water resources viewpoint but less so from a water quality point of view due to high concentrations of heavy metals. The biggest impact on water quality and quantity leaving the system through sewer, storm water and infiltration system was clearly obtained by re-using grey water from kitchen, bathroom and laundry for irrigation and toilet flush. The testing of this strategy led to lower volumes and higher concentrations of sewerage, a considerable decrease in water consumption and an increase in groundwater recharge. The scenarios were tested neither in terms of costs nor social acceptance for either water supplier or user.

  15. Water in exoplanets.

    PubMed

    Tinetti, Giovanna; Tennyson, Jonathan; Griffith, Caitlin A; Waldmann, Ingo

    2012-06-13

    Exoplanets--planets orbiting around stars other than our own Sun--appear to be common. Significant research effort is now focused on the observation and characterization of exoplanet atmospheres. Species such as water vapour, methane, carbon monoxide and carbon dioxide have been observed in a handful of hot, giant, gaseous planets, but cooler, smaller planets such as Gliese 1214b are now analysable with current telescopes. Water is the key chemical dictating habitability. The current observations of water in exoplanets from both space and the ground are reviewed. Controversies surrounding the interpretation of these observations are discussed. Detailed consideration of available radiative transfer models and linelists are used to analyse these differences in interpretation. Models suggest that there is a clear need for data on the pressure broadening of water transitions by H(2) at high temperatures. The reported detections of water appear to be robust, although final confirmation will have to await the better quality observational data provided by currently planned dedicated space missions.

  16. Water Quality on the Prairie Band Potawatomi Reservation, Northeastern Kansas, June 1996 through August 2006

    USGS Publications Warehouse

    Schmidt, Heather C. Ross; Mehl, Heidi E.; Pope, Larry M.

    2007-01-01

    This report describes surface- and ground-water-quality data collected on the Prairie Band Potawatomi Reservation in northeastern Kansas from November 2003 through August 2006 (hereinafter referred to as the 'current study period'). Data from this study period are compared to results from June 1996 through August 2003, which are published in previous reports as part of a multiyear cooperative study with the Prairie Band Potawatomi Nation. Surface and ground water are valuable resources to the Prairie Band Potawatomi Nation as tribal members currently (2007) use area streams to fulfill subsistence hunting and fishing needs and because ground water potentially could support expanding commercial enterprise and development. Surface-water-quality samples collected from November 2003 through August 2006 were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, fecal-indicator bacteria, suspended-sediment concentration, and total suspended solids. Ground-water samples were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, and fecal-indicator bacteria. Chemical oxygen demand and volatile organic compounds were analyzed in all three samples from one monitoring well located near a construction and demolition landfill on the reservation, and in one sample from another well in the Soldier Creek drainage basin. Previous reports published as a part of this ongoing study identified total phosphorus, triazine herbicides, and fecal coliform bacteria as exceeding their respective water-quality criteria in surface water on the reservation. Previous ground-water assessments identified occasional sample concentrations of dissolved solids, sodium, sulfate, boron, iron, and manganese as exceeding their respective water-quality criteria. Fifty-six percent of the 55 surface-water samples collected during the current study period and analyzed for total phosphorus exceeded the goal of 0.1 mg/L (milligram per liter) established by the U.S. Environmental Protection Agency (USEPA) to limit cultural eutrophication in flowing water. Concentrations of dissolved solids frequently exceeded the USEPA Secondary Drinking-Water Regulation (SDWR) of 500 mg/L in samples from two sites. Concentrations of sodium exceeded the Drinking-Water Advisory of 20 mg/L set by USEPA in almost 50 percent of the surface-water samples. All four samples analyzed for atrazine concentrations showed some concentration of the pesticide, but none exceeded the Maximum Contaminant Level (MCL) established for drinking water by USEPA of 3.0 ?g/L (micrograms per liter) as an annual average. A triazine herbicide screen was used on 55 surface-water samples, and triazine compounds were frequently detected. Triazine herbicides and their degradates are listed on the USEPA Contaminant Candidate List. In 41 percent of surface-water samples, densities of Escherichia coli (E. coli) bacteria exceeded the primary contact, single-sample maximum in public-access bodies of water (1,198 colonies per 100 milliliters of water for samples collected between April 1 and October 31) set by the Kansas Department of Health and Environment (KDHE). Nitrite plus nitrate concentrations in all three water samples from 1 of 10 monitoring wells exceeded the MCL of 10 mg/L established by USEPA for drinking water. Arsenic concentrations in all three samples from one well exceeded the proposed MCL of 10 ?g/L established by USEPA for drinking water. Boron also exceeded the drinking-water advisory in three samples from one well, and iron concentrations were higher than the SDWR in water from four wells. There was some detection of pesticides in ground-water samples from three of the wells, and one detection of the volatile organic compound diethyl ether in one well. Concentrations of dissolved solids exceeded the SDWR in 20 percent of ground-water samples collected during the current study period, and concentration

  17. Valuing the commons: An international study on the recreational benefits of the Baltic Sea.

    PubMed

    Czajkowski, Mikołaj; Ahtiainen, Heini; Artell, Janne; Budziński, Wiktor; Hasler, Berit; Hasselström, Linus; Meyerhoff, Jürgen; Nõmmann, Tea; Semeniene, Daiva; Söderqvist, Tore; Tuhkanen, Heidi; Lankia, Tuija; Vanags, Alf; Zandersen, Marianne; Żylicz, Tomasz; Hanley, Nick

    2015-06-01

    The Baltic Sea provides benefits to all of the nine nations along its coastline, with some 85 million people living within the catchment area. Achieving improvements in water quality requires international cooperation. The likelihood of effective cooperation is known to depend on the distribution across countries of the benefits and costs of actions needed to improve water quality. In this paper, we estimate the benefits associated with recreational use of the Baltic Sea in current environmental conditions using a travel cost approach, based on data from a large, standardized survey of households in each of the 9 Baltic Sea states. Both the probability of engaging in recreation (participation) and the number of visits people make are modeled. A large variation in the number of trips and the extent of participation is found, along with large differences in current annual economic benefits from Baltic Sea recreation. The total annual recreation benefits are close to 15 billion EUR. Under a water quality improvement scenario, the proportional increases in benefits range from 7 to 18% of the current annual benefits across countries. Depending on how the costs of actions are distributed, this could imply difficulties in achieving more international cooperation to achieve such improvements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Statistical approaches used to assess and redesign surface water-quality-monitoring networks.

    PubMed

    Khalil, B; Ouarda, T B M J

    2009-11-01

    An up-to-date review of the statistical approaches utilized for the assessment and redesign of surface water quality monitoring (WQM) networks is presented. The main technical aspects of network design are covered in four sections, addressing monitoring objectives, water quality variables, sampling frequency and spatial distribution of sampling locations. This paper discusses various monitoring objectives and related procedures used for the assessment and redesign of long-term surface WQM networks. The appropriateness of each approach for the design, contraction or expansion of monitoring networks is also discussed. For each statistical approach, its advantages and disadvantages are examined from a network design perspective. Possible methods to overcome disadvantages and deficiencies in the statistical approaches that are currently in use are recommended.

  19. Impact of cover crops on soil nitrate, crop yield and quality

    USDA-ARS?s Scientific Manuscript database

    There are multiple benefits of incorporating cover crops into current production systems including decreasing erosion, improving water infiltration, increasing soil organic matter and biological activity but in water limited areas caution should be utilized. A field study was established in the fal...

  20. Water Energy Simulation Toolset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Thuy; Jeffers, Robert

    The Water-Energy Simulation Toolset (WEST) is an interactive simulation model that helps visualize impacts of different stakeholders on water quantity and quality of a watershed. The case study is applied for the Snake River Basin with the fictional name Cutthroat River Basin. There are four groups of stakeholders of interest: hydropower, agriculture, flood control, and environmental protection. Currently, the quality component depicts nitrogen-nitrate contaminant. Users can easily interact with the model by changing certain inputs (climate change, fertilizer inputs, etc.) to observe the change over the entire system. Users can also change certain parameters to test their management policy.

  1. New York Harbor water quality survey, 1994. Executive summary. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosnan, T.M.; O`Shea, M.L.

    1995-10-24

    This summary presents the results of the 1994 survey, followed by a synopsis of recent changes to pollutant loads from NYC facilities. In general, conventional water quality, as indicated by coliform bacterica and DO levels, continues to improve in most areas of NY Harbor. However, violations of the `never less than` DO standards, although improved, are still occasionally recorded at 50-75% of all stations in summer. Therefore, loadings of nutrients and organic carbon, and changes in water column stratification and flushing rate, remain a concern, as does the appropriateness of the current `never the less` DO standards.

  2. New York Harbor water quality survey, 1994. (Includes appendices). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosnan, T.M.; O`Shea, M.L.

    1995-11-15

    This summary presents the results of the 1994 survey, followed by a synopsis of recent changes to pollutant loads from NYC facilities. In general, conventional water quality, as indicated by coliform bacterica and DO levels, continues to improve in most areas of NY Harbor. However, violations of the `never less than` DO standards, although improved, are still occasionally recorded at 50-75% of all stations in summer. Therefore, loadings of nutrients and organic carbon, and changes in water column stratification and flushing rate, remain a concern, as does the appropriateness of the current `never the less` DO standards.

  3. Shallow Water Optical Water Quality Buoy

    NASA Technical Reports Server (NTRS)

    Bostater, Charles

    1998-01-01

    This NASA grant was funded as a result of an unsolicited proposal submission to Kennedy Space Center. The proposal proposed the development and testing of a shallow water optical water quality buoy. The buoy is meant to work in shallow aquatic systems (ponds, rivers, lagoons, and semi-enclosed water areas where strong wind wave action is not a major environmental During the project period of three years, a demonstration of the buoy was conducted. The last demonstration during the project period was held in November, 1996 when the buoy was demonstrated as being totally operational with no tethered communications line. During the last year of the project the buoy was made to be solar operated by large gel cell batteries. Fund limitations did not permit the batteries in metal enclosures as hoped for higher wind conditions, however the system used to date has worked continuously for in- situ operation of over 18 months continuous deployment. The system needs to have maintenance and somewhat continuous operational attention since various components have limited lifetime ages. For example, within the last six months the onboard computer has had to be repaired as it did approximately 6 months after deployment. The spectrograph had to be repaired and costs for repairs was covered by KB Science since no ftmds were available for this purpose after the grant expired. Most recently the computer web page server failed and it is currently being repaired by KB Science. In addition, the cell phone operation is currently being ftmded by Dr. Bostater in order to maintain the system's operation. The above points need to be made to allow NASA to understand that like any sophisticated measuring system in a lab or in the field, necessary funding and maintenance is needed to insure the system's operational state and to obtain quality factor. The proposal stated that the project was based upon the integration of a proprietary and confidential sensor and probe design that was developed by KB Science and Engineering and is currently patented by KB Science. The buoy's purpose was to collected hyperspectral optical signatures for analysis and resulting estimation of water quality parameters such as chlorophyll-a, seston and dissolved organic matter (DOC). The ultimate goal of the project was to develop a buoy that would integrate a probe to measure upwelling light from a source and thus relate this backscattered light to water quality parameters.

  4. Assessing Drinking Water Quality and Water Safety Management in Sub-Saharan Africa Using Regulated Monitoring Data.

    PubMed

    Kumpel, Emily; Peletz, Rachel; Bonham, Mateyo; Khush, Ranjiv

    2016-10-18

    Universal access to safe drinking water is prioritized in the post-2015 Sustainable Development Goals. Collecting reliable and actionable water quality information in low-resource settings, however, is challenging, and little is known about the correspondence between water quality data collected by local monitoring agencies and global frameworks for water safety. Using 42 926 microbial water quality test results from 32 surveillance agencies and water suppliers in seven sub-Saharan African countries, we determined the degree to which water sources were monitored, how water quality varied by source type, and institutional responses to results. Sixty-four percent of the water samples were collected from piped supplies, although the majority of Africans rely on nonpiped sources. Piped supplies had the lowest levels of fecal indicator bacteria (FIB) compared to any other source type: only 4% of samples of water piped to plots and 2% of samples from water piped to public taps/standpipes were positive for FIB (n = 14 948 and n = 12 278, respectively). Among other types of improved sources, samples from harvested rainwater and boreholes were less often positive for FIB (22%, n = 167 and 31%, n = 3329, respectively) than protected springs or protected dug wells (39%, n = 472 and 65%, n = 505). When data from different settings were aggregated, the FIB levels in different source types broadly reflected the source-type water safety framework used by the Joint Monitoring Programme. However, the insufficient testing of nonpiped sources relative to their use indicates important gaps in current assessments. Our results emphasize the importance of local data collection for water safety management and measurement of progress toward universal safe drinking water access.

  5. [Scientific substantiation of perfection of sanitary bacteriological monitoring in drinking water use].

    PubMed

    Rakhmanin, Iu A; Zhuravlev, P V; Aleshnia, V V; Panasovets, O P; Artemova, T Z; Zagaĭnova, A V; Gipp, E K

    2014-01-01

    Criterion of the epidemic safety of drinking water is the absence of pathogenic and potentially pathogenic microorganisms. Currently, water quality control is performed in terms of the index of total coliform bacteria (TCB). TCB index oriented to the labile lactose sign has not sufficient relevance in the determination of the degree of the epidemic danger in the water use in relation to Salmonella and potentially pathogenic microorganisms. The frequency of detection of GCB in standard quality of drinking water as well as the application of the methodology for the assessment of the microbial risk of the occurrence of bacterial intestinal infections with the use of integral index--GCB, provide the most reliable prediction of risk in the occurrence of water-caused intestinal infections and more objectively reflect the epidemiological importance of drinking water in their distribution among the population. Proceeding from the data obtained, it is advisable to carry out the quality control of drinking water with the use of the broader indicator index GCB- detected from basic signs of the Enterobacteriaceae family--glucose fermentation and oxidase test and oxidase test.

  6. An Integrated Risk Management Model for Source Water Protection Areas

    PubMed Central

    Chiueh, Pei-Te; Shang, Wei-Ting; Lo, Shang-Lien

    2012-01-01

    Watersheds are recognized as the most effective management unit for the protection of water resources. For surface water supplies that use water from upstream watersheds, evaluating threats to water quality and implementing a watershed management plan are crucial for the maintenance of drinking water safe for humans. The aim of this article is to establish a risk assessment model that provides basic information for identifying critical pollutants and areas at high risk for degraded water quality. In this study, a quantitative risk model that uses hazard quotients for each water quality parameter was combined with a qualitative risk model that uses the relative risk level of potential pollution events in order to characterize the current condition and potential risk of watersheds providing drinking water. In a case study of Taipei Source Water Area in northern Taiwan, total coliforms and total phosphorus were the top two pollutants of concern. Intensive tea-growing and recreational activities around the riparian zone may contribute the greatest pollution to the watershed. Our risk assessment tool may be enhanced by developing, recording, and updating information on pollution sources in the water supply watersheds. Moreover, management authorities could use the resultant information to create watershed risk management plans. PMID:23202770

  7. Water resource use and management by the United States forest products industry.

    PubMed

    Wiegand, P S; Flinders, C A; Ice, G G; Malmberg, B J; Fisher, R P

    2009-01-01

    The connections between forest products operations and water resources in the United States is considered and, where possible, quantified. Manufacture of wood, pulp, and paper products and the influences of forest management and forest products manufacture on water quality are discussed. Most fresh water in the US originates in forested areas. Responsible harvesting strategies, best management practices, and forest re-growth combine to minimize or eliminate changes in water availability and degradation of water quality due to harvesting. Relative to alternative land uses and large-scale disturbance events, forested areas produce the highest quality of fresh water. Water inputs for the manufacture of forest products total about 5.8 billion m(3) per year, an amount equal about 0.4% of the surface and groundwater yield from timberland. Approximately 88% of water used in manufacturing is treated and returned directly to surface waters, about 11% is converted to water vapor and released during the manufacturing process, and 1% is imparted to products or solid residuals. Extensive study and continued monitoring of treated effluents suggest few or no concerns regarding the compatibility of current effluents with healthy aquatic systems.

  8. Recent Advances in Point-of-Access Water Quality Monitoring

    NASA Astrophysics Data System (ADS)

    Korostynska, O.; Arshak, K.; Velusamy, V.; Arshak, A.; Vaseashta, Ashok

    Clean water is one of our most valuable natural resources. In addition to providing safe drinking water it assures functional ecosystems that support fisheries and recreation. Human population growth and its associated increased demands on water pose risks to maintaining acceptable water quality. It is vital to assess source waters and the aquatic systems that receive inputs from industrial waste and sewage treatment plants, storm water systems, and runoff from urban and agricultural lands. Rapid and confident assessments of aquatic resources form the basis for sound environmental management. Current methods engaged in tracing the presence of various bacteria in water employ bulky laboratory equipment and are time consuming. Thus, real-time water quality monitoring is essential for National and International Health and Safety. Environmental water monitoring includes measurements of physical characteristics (e.g. pH, temperature, conductivity), chemical parameters (e.g. oxygen, alkalinity, nitrogen and phosphorus compounds), and abundance of certain biological taxa. Monitoring could also include assays of biological activity such as alkaline phosphatase, tests for toxins such as microcystins and direct measurements of pollutants such as heavy metals or hydrocarbons. Real time detection can significantly reduce the level of damage and also the cost to remedy the problem. This paper presents overview of state-of-the-art methods and devices used for point-of-access water quality monitoring and suggest further developments in this area.

  9. Principles and Practices for Quality Assurance and Quality Control

    USGS Publications Warehouse

    Jones, Berwyn E.

    1999-01-01

    Quality assurance and quality control are vital parts of highway runoff water-quality monitoring projects. To be effective, project quality assurance must address all aspects of the project, including project management responsibilities and resources, data quality objectives, sampling and analysis plans, data-collection protocols, data quality-control plans, data-assessment procedures and requirements, and project outputs. Quality control ensures that the data quality objectives are achieved as planned. The historical development and current state of the art of quality assurance and quality control concepts described in this report can be applied to evaluation of data from prior projects.

  10. Quality of Nevada's aquifers and their susceptibility to contamination, 1990-2004

    USGS Publications Warehouse

    Lopes, Thomas J.

    2006-01-01

    EXECUTIVE SUMMARY: In 1999, the U.S. Environmental Protection Agency introduced a rule to protect the quality of ground water in areas other than source-water protection areas. These other sensitive ground-water areas (OSGWA) are areas that are not currently but could eventually be used as a source of drinking water. To help determine whether a well is in an OSGWA, the Nevada Division of Environmental Protection needs statewide information on the susceptibility and vulnerability of Nevada's aquifer systems to contamination. This report presents an evaluation of the quality of ground water and susceptibility of Nevada's aquifer systems to anthropogenic contamination. Chemical tracers and statistical methods were used to assess the susceptibility of aquifer systems in Nevada. Chemical tracers included nitrate, pesticides, volatile organic compounds (VOCs), chlorofluorocarbons (CFCs), dissolved gases, and isotopes of hydrogen and oxygen. Ground-water samples were collected from 133 wells during August 2002 through October 2003. Logistic regression was done to estimate the probability of detecting nitrate above concentrations typically found in undeveloped areas. Nitrate is one of the most common anthropogenic contaminants that degrades ground-water quality, is commonly measured and is persistent, except in reducing conditions. These characteristics make nitrate a good indicator of aquifer susceptibility. Water-quality data for 5,528 wells were compiled into a database. The area around each well was characterized using information on explanatory variables that could be related to nitrate concentrations. Data also were used to characterize the quality of ground water in Nevada, including dissolved solids, nitrate, pesticide, and VOC concentrations.

  11. International water and steam quality standards for thermal power station drum-type and waste heat recovery boilers with the treatment of boiler water with phosphates and NaOH

    NASA Astrophysics Data System (ADS)

    Petrova, T. I.; Orlov, K. A.; Dooley, R. B.

    2017-01-01

    One of the ways for improving the operational reliability and economy of thermal power station equipment, including combined-cycle equipment, is to decrease the rates of the corrosion of constructional materials and the formation of scales in the water-steam circuit. These processes can be reduced to a minimum via the use of water with a minimum content of admixtures and the correction treatment of a heat-transfer fluid. The International Association for the Properties of Water and Steam (IAPWS), which unites specialists from every country of the world, has developed water and steam quality standards for power station equipment of different types on the basis of theoretical studies and long-term experience in the operation of power plants in 21 countries. Different water chemistry regimes are currently used at conventional and combined-cycle thermal power stations. This paper describes the conditions for the implementation of water chemistry regimes with the use of sodium salts of phosphoric acid and NaOH for the quality correction of boiler water. Water and steam quality standards and some recommendations for their maintenance under different operational conditions are given for each of the considered water chemistry regimes. The standards are designed for the water-steam circuit of conventional and combined-cycle thermal power stations. It is pointed out that the quality control of a heat-transfer fluid must be especially careful at combined-cycle thermal power stations with frequent startups and shutdowns.

  12. Seasonal assessment and apportionment of surface water pollution using multivariate statistical methods: Sinos River, southern Brazil.

    PubMed

    Alves, Darlan Daniel; Riegel, Roberta Plangg; de Quevedo, Daniela Müller; Osório, Daniela Montanari Migliavacca; da Costa, Gustavo Marques; do Nascimento, Carlos Augusto; Telöken, Franko

    2018-06-08

    Assessment of surface water quality is an issue of currently high importance, especially in polluted rivers which provide water for treatment and distribution as drinking water, as is the case of the Sinos River, southern Brazil. Multivariate statistical techniques allow a better understanding of the seasonal variations in water quality, as well as the source identification and source apportionment of water pollution. In this study, the multivariate statistical techniques of cluster analysis (CA), principal component analysis (PCA), and positive matrix factorization (PMF) were used, along with the Kruskal-Wallis test and Spearman's correlation analysis in order to interpret a water quality data set resulting from a monitoring program conducted over a period of almost two years (May 2013 to April 2015). The water samples were collected from the raw water inlet of the municipal water treatment plant (WTP) operated by the Water and Sewage Services of Novo Hamburgo (COMUSA). CA allowed the data to be grouped into three periods (autumn and summer (AUT-SUM); winter (WIN); spring (SPR)). Through the PCA, it was possible to identify that the most important parameters in contribution to water quality variations are total coliforms (TCOLI) in SUM-AUT, water level (WL), water temperature (WT), and electrical conductivity (EC) in WIN and color (COLOR) and turbidity (TURB) in SPR. PMF was applied to the complete data set and enabled the source apportionment water pollution through three factors, which are related to anthropogenic sources, such as the discharge of domestic sewage (mostly represented by Escherichia coli (ECOLI)), industrial wastewaters, and agriculture runoff. The results provided by this study demonstrate the contribution provided by the use of integrated statistical techniques in the interpretation and understanding of large data sets of water quality, showing also that this approach can be used as an efficient methodology to optimize indicators for water quality assessment.

  13. What was the groundwater quality before mining in a mineralized region? Lessons from the Questa Project

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2008-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department and supported by Molycorp, Inc (currently Chevron Minerals), has completed a 5-year investigation (2001-2006) to determine the pre-mining ground-water quality at Molycorp's Questa molybdenum mine in northern New Mexico. Current mine-site ground waters are often contaminated with mine-waste leachates and no data exists on premining ground-water quality so that pre-mining conditions must be inferred. Ground-water quality undisturbed by mining is often worse than New Mexico standards and data are needed to help establish closure requirements. The key to determining pre-mining conditions was to study the hydrogeochemistry of a proximal natural analog site, the Straight Creek catchment. Main rock types exposed to weathering include a Tertiary andesite and the Tertiary Amalia tuff (rhyolitic composition), both hydrothermally altered to various degrees. Two types of ground water are common in mineralized areas, acidic ground waters in alluvial debris fans with pH 3-4 and bedrock ground waters with pH 6-8. Siderite, ferrihydrite, rhodochrosite, amorphous to microcrystalline Al(OH)3, calcite, gypsum, barite, and amorphous silica mineral solubilities control concentrations of Fe(II), Fe(III), Mn(II), Al, Ca, Ba, and SiO2, depending on pH and solution composition. Concentrations at low pH are governed by element abundance and mineral weathering rates. Concentrations of Zn and Cd range from detection up to about 10 and 0.05 mg/L, respectively, and are derived primarily from sphalerite dissolution. Concentrations of Ni and Co range from detection up to 1 and 0.4 mg/L, respectively, and are derived primarily from pyrite dissolution. Concentrations of Ca and SO4 are derived from secondary gypsum dissolution and weathering of calcite and pyrite. Metal:sulfate concentration ratios are relatively constant for acidic waters, suggesting consistent weathering rates, independent of catchment. These trends, combined with lithology, mineralogy, and mineral solubility controls, provide useful constraints on pre-mining ground-water quality for the mine site where the lithology is known.

  14. Application of Pesticide Phytoremediation in Irrigated Rice Fields System Using Eceng Gondok (Eichhornia crassipes) Plants

    NASA Astrophysics Data System (ADS)

    Febriani, Ika Kartika; Hadiyanto

    2018-02-01

    The problem of environmental pollution especially urban water pollution becomes major issue in Indonesia. The cause of water pollution is not only from industrial factory waste disposal but also other causes which become pollution factor. One cause of water pollution is the existence of agricultural activities with the use of the amount of pesticides that exceed the threshold. As regulated in Government Regulation No. 82/2001 on Water Quality Management and Water Pollution Control, it is necessary to manage water quality and control water pollution wisely by taking into account the interests of current and future generations as well as the ecological balance. To overcome the problem of water pollution due to agricultural activities, it is necessary to conduct research on phytoremediation technique by utilizing eceng gondok plant. It is excepted that using this phytoremediation technique can reduce the problem of water pollution due to the use of pesticides on agricultural activities.

  15. Systems Modeling to Improve River, Riparian, and Wetland Habitat Quality and Area

    NASA Astrophysics Data System (ADS)

    Alafifi, A.

    2016-12-01

    The suitability of watershed habitat to support the livelihood of its biota primarily depends on managing flow. Ecological restoration requires finding opportunities to reallocate available water in a watershed to increase ecological benefits and maintain other beneficial uses. We present the Watershed Area of Suitable Habitat (WASH) systems model that recommends reservoir releases, streamflows, and water allocations throughout a watershed to maximize the ecosystem habitat quality. WASH embeds and aggregates area-weighted metrics for aquatic, floodplain, and wetland habitat components as an ecosystem objective to maximize, while maintaining water deliveries for domestic and agricultural uses, mass balance, and available budget for restoration actions. The metrics add spatial and temporal functionality and area coverage to traditional habitat quality indexes and can accommodate multiple species of concern. We apply the WASH model to the Utah portion of the Bear River watershed which includes 8 demand sites, 5 reservoirs and 37 nodes between the Utah-Idaho state line and the Great Salt Lake. We recommend water allocations to improve current conservation efforts and show tradeoffs between human and ecosystem uses of water. WASH results are displayed on an open-source web mapping application that allows stakeholders to access, visualize, and interact with the model data and results and compare current and model-recommended operations. Results show that the Bear River is largely developed and appropriated for human water uses. However, increasing reservoirs winter and early spring releases and minimizing late spring spill volumes can significantly improve habitat quality without harming agricultural or urban water users. The spatial and temporal reallocation of spring spills to environmental uses creates additional 70 thousand acres of suitable habitat in the watershed without harming human users. WASH also quantifies the potential environmental gains and losses from conserving water and from the impact of climate change on head flows and thus helps planning for the future of our water resources and ecosystem.

  16. Geospatial Modeling of Watershed Quality as an Indicator for Environmental Health

    NASA Astrophysics Data System (ADS)

    Archer, R.

    2016-12-01

    The impact of urbanization of rural Tennessee counties on environmental quality and human health and wellbeing has not been well studied, especially in the context of water quality. Between 2015 and 2025, Williamson County, TN is projected to see the strongest rate of population growth in the region, expanding by 33.7 percent. Water quality directly affects the condition of soils, vegetation, and other life forms that depend on water for survival, and therefore is a valid indicator of environmental health. Current reliable data is available on less than half (47%) of waterways in Tennessee. GIS is applied to model the impact of urbanization on rural communities within the Mill Creek watershed in Williamson County, Tennessee. Water quality measurements are integrated with data identifying urbanization and other land development influences assessed over a previous decades in order to identify influences of environmental change impacts on the watershed. The study examines the threat of urbanization to soils, vegetation and other related natural resources as well as the distance of farm areas, pasture grazing, cattle access and manure runoff, construction and landscaping to collection systems leading into the watershed. Combining spatial analysis with water quality interpretation helped to identify and display potential causes and sources of Mill Creek Watershed pollution as well as vulnerable locations susceptible to risk of declining environmental health.

  17. Continuous Water Quality Monitoring in the Sacramento-San Joaquin Delta to support Ecosystem Science

    NASA Astrophysics Data System (ADS)

    Downing, B. D.; Bergamaschi, B. A.; Pellerin, B. A.; Saraceno, J.; Sauer, M.; Kraus, T. E.; Burau, J. R.; Fujii, R.

    2013-12-01

    Characterizing habitat quality and nutrient availability to food webs is an essential step for understanding and predicting the success of pelagic organisms in the Sacramento-San Joaquin Delta (Delta). The difficulty is that water quality and nutrient supply changes continuously as tidal and wind-driven currents move new water parcels to and from comparatively static geomorphic settings. Understanding interactions between nutrient cycling, suspended sediment, and plankton dynamics with flow and tidal range relative to position in the estuary is critical to predicting and managing bottom up effects on aquatic habitat in the Delta. Historically, quantifying concentrations and loads in the Delta has relied on water quality data collected at monthly intervals. Current in situ optical sensors for nutrients, dissolved organic matter (DOM) and algal pigments (chlorophyll-A, phycocyanin) allow for real-time, high-frequency measurements on time scales of seconds, and extending up to years. Such data is essential for characterizing changes in water quality over short and long term temporal scales as well as over broader spatial scales. High frequency water quality data have been collected at key stations in the Delta since 2012. Sensors that continuously measure nitrate, DOM, algal pigments and turbidity have been co-located at pre-existing Delta flow monitoring stations. Data from the stations are telemetered to USGS data servers and are designed to run autonomously with a monthly service interval, where sensors are cleaned and checked against calibration standards. The autonomous system is verified against discrete samples taken monthly and intensively over periodic ebb to flood tidal cycles. Here we present examples of how coupled optical and acoustic data from the sensor network to improve our understanding of nutrient and DOM dynamics and fluxes. The data offer robust quantitative estimates of concentrations and constituent fluxes needed to investigate biogeochemical processes in tidal reaches of the Delta. The data is available in real time on the web and has proven invaluable for anticipating interactions between nutrient supply and the Delta landscape, and is useful for continued research in aspects of pelagic habitat quality, algal productivity, and food web dynamics.

  18. Potentials and problems of sustainable irrigation with water high in salts

    NASA Astrophysics Data System (ADS)

    Ben-Gal, Alon

    2015-04-01

    Water scarcity and need to expand agricultural productivity have led to ever growing utilization of poor quality water for irrigation of crops. Almost in all cases, marginal or alternative water sources for irrigation contain relatively high concentrations of dissolved salts. When salts are present, irrigation water management, especially in the dry regions where water requirements are highest, must consider leaching in addition to crop evapotranspiration requirements. Leaching requirements for agronomic success are calculable and functions of climate, soil, and very critically, of crop sensitivity and the actual salinity of the irrigation water. The more sensitive the crop and more saline the water, the higher the agronomic cost and the greater the quantitative need for leaching. Israel is a forerunner in large-scale utilization of poor quality water for irrigation and can be used as a case study looking at long term repercussions of policy alternatively encouraging irrigation with recycled water or brackish groundwater. In cases studied in desert conditions of Israel, as much of half of the water applied to crops including bell peppers in greenhouses and date palms is actually used to leach salts from the root zone. The excess water used to leach salts and maintain agronomic and economic success when irrigating with water containing salts can become an environmental hazard, especially in dry areas where natural drainage is non-existent. The leachate often contains not only salts but also agrochemicals including nutrients, and natural contaminants can be picked up and transported as well. This leachate passes beyond the root zone and eventually reaches ground or surface water resources. This, together with evidence of ongoing increases in sodium content of fresh produce and increased SAR levels of soils, suggest that the current policy and practice in Israel of utilization of high amounts of low quality irrigation water is inherently non- sustainable. Current trends and technologies allowing economically feasible desalination at large scales present a sustainable alternative where salts are removed from water prior to irrigation.

  19. Predicting non-stationary algal dynamics following changes in hydrometeorological conditions using data assimilation techniques

    NASA Astrophysics Data System (ADS)

    Kim, S.; Seo, D. J.

    2017-12-01

    When water temperature (TW) increases due to changes in hydrometeorological conditions, the overall ecological conditions change in the aquatic system. The changes can be harmful to human health and potentially fatal to fish habitat. Therefore, it is important to assess the impacts of thermal disturbances on in-stream processes of water quality variables and be able to predict effectiveness of possible actions that may be taken for water quality protection. For skillful prediction of in-stream water quality processes, it is necessary for the watershed water quality models to be able to reflect such changes. Most of the currently available models, however, assume static parameters for the biophysiochemical processes and hence are not able to capture nonstationaries seen in water quality observations. In this work, we assess the performance of the Hydrological Simulation Program-Fortran (HSPF) in predicting algal dynamics following TW increase. The study area is located in the Republic of Korea where waterway change due to weir construction and drought concurrently occurred around 2012. In this work we use data assimilation (DA) techniques to update model parameters as well as the initial condition of selected state variables for in-stream processes relevant to algal growth. For assessment of model performance and characterization of temporal variability, various goodness-of-fit measures and wavelet analysis are used.

  20. Water-quality data for Navajo National Monument, northeastern Arizona--2001-02

    USGS Publications Warehouse

    Thomas, Blakemore E.

    2003-01-01

    Water-quality data are provided for six sites in Navajo National Monument in northeastern Arizona. These data describe the current water quality and provide baseline water-quality information for monitoring future trends. Water samples were collected from six sites near three ancient Indian ruins during September 2001 to August 2002. Two springs and one well near Betatakin Ruin, one spring is near Keet Seel Ruin, and one spring and one stream are near Inspection House Ruin. Water from all the sites is from the N aquifer, a regional sandstone aquifer that is the source of drinking water for most members of the Navajo Nation and Hopi Tribe in northeastern Arizona. Concentrations of dissolved solids, major ions, trace elements, and uranium were low at the six sites. Dissolved-solids concentration ranged from 94 to 221 milligrams per liter. Concentrations of dissolved nitrate (as nitrogen) were generally low (less than 0.05 to 0.92 milligrams per liter) and were within the range of concentrations at other N-aquifer sites within 20 miles of the study area. Water samples from Inscription House Spring, Navajo Creek Tributary (near Inscription House Ruin), and Keet Seel Ruin Spring contained indicators of human or animal wastes--fecal coliform and Escherichia coli bacteria.

  1. Impacts of nutrients and pesticides from small- and large-scale agriculture on the water quality of Lake Ziway, Ethiopia.

    PubMed

    Teklu, Berhan M; Hailu, Amare; Wiegant, Daniel A; Scholten, Bernice S; Van den Brink, Paul J

    2018-05-01

    The area around Lake Ziway in Ethiopia is going through a major agricultural transformation with both small-scale farmers and large horticultural companies using pesticides and fertilisers at an increased rate. To be able to understand how this influences the water quality of Lake Ziway, water quality data was gathered to study the dynamics of pesticide concentrations and physicochemical parameters for the years from 2009 to 2015. Results indicate that for some physicochemical parameters, including pH, potassium and iron, over 50 % of the values were above the maximum permissible limit of the Ethiopian standard for drinking water. The fungicide spiroxamine poses a high chronic risk when the water is used for drinking water, while the estimated intake of diazinon was approximately 50 % of the acceptable daily intake. Higher-tier risk assessment indicated that the fungicide spiroxamine poses a high acute risk to aquatic organisms, while possible acute risks were indicated for the insecticides deltamethrin and endosulfan. Longer-term monitoring needs to be established to show the water quality changes across time and space, and the current study can be used as a baseline measurement for further research in the area as well as an example for other surface water systems in Ethiopia and Africa.

  2. A LANDSCAPE ANALYSIS OF NEW YORK CITY'S WATER SUPPLY (1973-1998)

    EPA Science Inventory

    Currently the city of New York is trying to save taxpayers the cost of a billion dollar filtration system by protecting water quality through implementing a long-range watershed protection program. The goals of this study are 1) improvements in environmental risk assessment and ...

  3. RAPID METHODS FOR MEASURING INDICATOR BACTERIA IN BATHING BEACH WATERS

    EPA Science Inventory

    The current methods for measuring the quality of recreational waters were developed in the 1970's and were recommended to the States by EPA in 1986. These methods detect and quantify Escherichia coli and enterococci, two bacteria that are consistently associated with fecal wast...

  4. Nowcasting and Forecasting Concentrations of Biological Contaminants at Beaches: A Feasibility and Case Study

    EPA Science Inventory

    Public concern over microbial contamination of recreational waters has increased in recent years. A common approach to evaluating beach water quality has been to use the persistence model which assumes that day-old monitoring results provide accurate estimates of current concentr...

  5. Evaluating Water Supply and Water Quality Management Options for Las Vegas Valley

    NASA Astrophysics Data System (ADS)

    Ahmad, S.

    2007-05-01

    The ever increasing population in Las Vegas is generating huge demand for water supply on one hand and need for infrastructure to collect and treat the wastewater on the other hand. Current plans to address water demand include importing water from Muddy and Virgin Rivers and northern counties, desalination of seawater with trade- payoff in California, water banking in Arizona and California, and more intense water conservation efforts in the Las Vegas Valley (LVV). Water and wastewater in the LVV are intrinsically related because treated wastewater effluent is returned back to Lake Mead, the drinking water source for the Valley, to get a return credit thereby augmenting Nevada's water allocation from the Colorado River. The return of treated wastewater however, is a major contributor of nutrients and other yet unregulated pollutants to Lake Mead. Parameters that influence the quantity of water include growth of permanent and transient population (i.e., tourists), indoor and outdoor water use, wastewater generation, wastewater reuse, water conservation, and return flow credits. The water quality of Lake Mead and the Colorado River is affected by the level of treatment of wastewater, urban runoff, groundwater seepage, and a few industrial inputs. We developed an integrated simulation model, using system dynamics modeling approach, to account for both water quantity and quality in the LVV. The model captures the interrelationships among many variables that influence both, water quantity and water quality. The model provides a valuable tool for understanding past, present and future pathways of water and its constituents in the LVV. The model is calibrated and validated using the available data on water quantity (flows at water and wastewater treatment facilities and return water credit flow rates) and water quality parameters (TDS and phosphorus concentrations). We used the model to explore important questions: a)What would be the effect of the water transported from the northern counties on the water supply and water quality of Lake Mead? b)What would be the impact of increased reuse of wastewater on return credits? c)What would be the effect of treating runoff water on the load of nutrients to Lake Mead?

  6. Method for Examination and Documentation of Basic Information and Metadata from Published Reports Relevant to the Study of Stormwater Runoff Quality

    USGS Publications Warehouse

    Dionne, Shannon G.; Granato, Gregory E.; Tana, Cameron K.

    1999-01-01

    A readily accessible archive of information that is valid, current, and technically defensible is needed to make informed highway-planning, design, and management decisions. The National Highway Runoff Water-Quality Data and Methodology Synthesis (NDAMS) is a cataloging and assessment of the documentation of information relevant to highway-runoff water quality available in published reports. The report review process is based on the NDAMS review sheet, which was designed by the USGS with input from the FHWA, State transportation agencies, and the regulatory community. The report-review process is designed to determine the technical merit of the existing literature in terms of current requirements for data documentation, data quality, quality assurance and quality control (QA/QC), and technical issues that may affect the use of historical data. To facilitate the review process, the NDAMS review sheet is divided into 12 sections: (1) administrative review information, (2) investigation and report information, (3) temporal information, (4) location information (5) water-quality-monitoring information, (6) sample-handling methods, (7) constituent information, (8) sampling focus and matrix, (9) flow monitoring methods, (10) field QA/QC, (11) laboratory, and (12) uncertainty/error analysis. This report describes the NDAMS report reviews and metadata documentation methods and provides an overview of the approach and of the quality-assurance and quality-control program used to implement the review process. Detailed information, including a glossary of relevant terms, a copy of the report-review sheets, and reportreview instructions are completely documented in a series of three appendixes included with this report. Therefore the reviews are repeatable and the methods can be used by transportation research organizations to catalog new reports as they are published.

  7. Response of currents and water quality to changes in dam operations in Hoover Reservoir, Columbus, Ohio, August 24–28, 2015

    USGS Publications Warehouse

    Vonins, Branden L.; Jackson, P. Ryan

    2017-05-25

    Hoover Reservoir, an important drinking water supply for the City of Columbus, Ohio, has been the source of a series of taste and odor problems in treated drinking water during the past few years. These taste and odor problems were caused by the compounds geosmin and 2-methylisoborneol, which are thought to have been related to cyanobacteria blooms. In an effort to reduce the phosphorus available for cyanobacteria blooms at fall turnover, the City of Columbus began experimenting with the dam’s selective withdrawal system to remove excess phosphorus in the hypolimnion, which is released from bottom sediments during summer anoxic conditions.The U.S. Geological Survey completed two synoptic survey campaigns to assess distributions of water quality and water velocity in the lower part of Hoover Reservoir to provide information on the changes to reservoir dynamics caused by changing dam operations. One campaign (campaign 1) was done while water was being withdrawn from the reservoir through the dam’s middle gate and the other (campaign 2) while water was being withdrawn through the dam’s lower gate. Velocities were measured using an acoustic Doppler current profiler, and water-quality parameters were measured using an autonomous underwater vehicle equipped with water-quality sensors. Along with the water-quality and water-velocity data, meteorological, inflow and outflow discharges, and independent water-quality data were compiled to monitor changes in other parameters that affect reservoir behavior. Monthly nutrient data, collected by the City of Columbus, were also analyzed for trends in concentration during periods of expected stratification.Based on the results of the two campaigns, when compared to withdrawing water through the middle gate, withdrawing water through the lower gate seemed to increase shear-driven mixing across the thermocline, which resulted in an increase in the depth of the epilimnion throughout the lower part of Hoover Reservoir. The observations from this study, if repeatable and driven primarily by changes in gate operations, can inform nutrient management strategies for Hoover Reservoir. Increased mixing across the thermocline may potentially supply nutrients from the hypolimnion to algae in the epilimnion. Although operation of the lower gate has the potential to export nutrients from the hypolimnion (where the concentrations of nutrients have typically been higher during summer months) through two mechanisms (direct withdrawal and mixing into the epilimnion), supply of nutrients to the epilimnion through enhanced mixing could lead to a short-term increase in algal populations. Therefore, further study is recommended to (1) test the repeatability of the results of gate changes on water-quality distributions and circulation patterns in lower Hoover Reservoir, (2) identify the immediate effect of gate changes on nutrient concentrations in the water column, and (3) identify the best management practices to reduce the nutrient storage in the hypolimnion of Hoover Reservoir without increasing the potential for nutrient transport to the highly productive epilimnion.

  8. A Hydrothermal Study of Wachusett Reservoir with Considerations of Water Quality Management

    DTIC Science & Technology

    1989-05-01

    of Water Quality Management Techniques 108 1 5.1 Current operational management techniques 108 5.2 Copper toxicity and considerations for algicide ...sulfate (CuSO 4) is applied to the epilimnion of the reservoir. The method of treatment consists of dragging burlap sacks of the algicide crystal through...Figure 5.2 shows the application rate for the Fall of 1987 amounting to over 20 tons of algicide applied for the fall period. In addition to a sampling

  9. Science center capabilities to monitor and investigate Michigan’s water resources, 2016

    USGS Publications Warehouse

    Giesen, Julia A.; Givens, Carrie E.

    2016-09-06

    Michigan faces many challenges related to water resources, including flooding, drought, water-quality degradation and impairment, varying water availability, watershed-management issues, stormwater management, aquatic-ecosystem impairment, and invasive species. Michigan’s water resources include approximately 36,000 miles of streams, over 11,000 inland lakes, 3,000 miles of shoreline along the Great Lakes (MDEQ, 2016), and groundwater aquifers throughout the State.The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as tribes and universities, to provide scientific information used to manage the water resources of Michigan. To effectively assess water resources, the USGS uses standardized methods to operate streamgages, water-quality stations, and groundwater stations. The USGS also monitors water quality in lakes and reservoirs, makes periodic measurements along rivers and streams, and maintains all monitoring data in a national, quality-assured, hydrologic database.The USGS in Michigan investigates the occurrence, distribution, quantity, movement, and chemical and biological quality of surface water and groundwater statewide. Water-resource monitoring and scientific investigations are conducted statewide by USGS hydrologists, hydrologic technicians, biologists, and microbiologists who have expertise in data collection as well as various scientific specialties. A support staff consisting of computer-operations and administrative personnel provides the USGS the functionality to move science forward. Funding for USGS activities in Michigan comes from local and State agencies, other Federal agencies, direct Federal appropriations, and through the USGS Cooperative Matching Funds, which allows the USGS to partially match funding provided by local and State partners.This fact sheet provides an overview of the USGS current (2016) capabilities to monitor and study Michigan’s vast water resources. More information regarding projects by the Michigan Water Science Center (MI WSC) is available at http://mi.water.usgs.gov/.

  10. 76 FR 18138 - Endangered and Threatened Wildlife and Plants; 90-Day Finding on a Petition To List the Spring...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... Eastern Highland Rim. Currently about 40 percent of the public water supply for the City of Huntsville is... 2007, the species was believed extirpated from Pryor Springs due to impaired water quality and quantity... pygmy sunfish is clear and colorless to slightly stained spring water, spring runs, and associated...

  11. Inactive supply wells as conduits for flow and contaminant migration: conditions of occurrence and suggestions for management

    NASA Astrophysics Data System (ADS)

    Gailey, Robert M.

    2017-11-01

    Water supply wells can act as conduits for vertical flow and contaminant migration between water-bearing strata under common hydrogeologic and well construction conditions. While recognized by some for decades, there is little published data on the magnitude of flows and extent of resulting water quality impacts. Consequently, the issue may not be acknowledged widely enough and the need for better management persists. This is especially true for unconsolidated alluvial groundwater basins that are hydrologically stressed by agricultural activities. Theoretical and practical considerations indicate that significant water volumes can migrate vertically through wells. The flow is often downward, with shallow groundwater, usually poorer in quality, migrating through conduit wells to degrade deeper water quality. Field data from locations in California, USA, are presented in combination with modeling results to illustrate both the prevalence of conditions conducive to intraborehole flow and the resulting impacts to water quality. Suggestions for management of planned wells include better enforcement of current regulations and more detailed consideration of hydrogeologic conditions during design and installation. A potentially greater management challenge is presented by the large number of existing wells. Monitoring for evidence of conduit flow and solute transport in areas of high well density is recommended to identify wells that pose greater risks to water quality. Conduit wells that are discovered may be addressed through approaches that include structural modification and changes in operations.

  12. Hydrologic and water quality sensitivity to climate and land ...

    EPA Pesticide Factsheets

    This page describes a current EPA ORD project. No project report or other download is available at this time. Please see the section Next Steps below for a timeline of anticipated products of this work. Background: Projected changes in climate during the next century could cause or contribute to increased flooding, drought, water quality degradation, and ecosystem impairment. The effects of climate change in different watersheds will vary due to regional differences in climate change, physiographic setting, and interaction with land-use, pollutant sources, and water management in different locations. EPA is conducting watershed modeling to develop hydrologic and water quality change scenarios for 20 relatively large U.S. watersheds. Watershed modeling will be conducted using the Hydrologic Simulation Program-FORTRAN (HSPF) and Soil Water Assessment Tool (SWAT) watershed models. Study areas range from about 10,000-15,000 square miles in size, and will cover nearly every ecoregion in the United States and a range of hydro-climatic conditions. A range of hydrologic and water quality endpoints will be determined for each watershed simulation. Endpoints will be selected to inform upon a range of stream flow, water quality, aquatic ecosystem, and EPA program management goals and targets. Model simulations will be conducted to evaluate a range of projected future (2040-2070) changes in climate and land-use. Simulations will include baseline conditions,

  13. Potential influence of sugarcane cultivation on estuarine water quality of Louisiana's gulf coast.

    PubMed

    Southwick, Lloyd M; Grigg, Brandon C; Kornecki, Ted S; Fouss, James L

    2002-07-17

    Sugarcane is cultivated on some 170000 ha of land in south central and southwestern Louisiana. This acreage drains into bayous and rivers that empty into Louisiana's coastal bays and estuaries. For a number of years the state's Department of Agriculture and Forestry and Department of Environmental Quality have collected water quality data from this sugarcane area. Study of these data shows that approximately one in five detections of atrazine is above the maximum contaminant level (MCL) for drinking water. Currently there is no U.S. atrazine standard for protection of aquatic life. February and October detections of this herbicide are probably due to sugarcane cultivation. Nitrate levels have remained below the MCL for drinking water, but nitrate and phosphorus concentrations may pose a potential for eutrophication problems. The contribution of sugarcane production to the nutrient status of Louisiana's coastal water bodies is difficult to assess because there are other sources of nutrients in the area and native soil phosphorus levels are high. Cultural practices such as subsurface drains, open drainage ditches, and postharvest residue management have potential through enhancement of soil infiltration for decreasing sugarcane's contribution to water quality problems in southern and coastal Louisiana. A new field project is being installed at the Louisiana State University Agricultural Experiment Station's Sugarcane Research Station at St. Gabriel to assess the water quality benefits of these practices with respect to sugarcane cultivation.

  14. Effect of hot water dips on the quality of fresh-cut ´Ryan Sun´ peaches

    USDA-ARS?s Scientific Manuscript database

    Fresh-cut products are an important developing food product category, and as a response of current lifestyles they are becoming increasingly popular due to their convenience, nutritious and fresh-like quality; however, fresh-cut produce has limited shelf life because preparation involves physically ...

  15. Predictive models for Escherichia coli concentrations at inland lake beaches and relationship of model variables to pathogen detection

    EPA Science Inventory

    Methods are needed improve the timeliness and accuracy of recreational water‐quality assessments. Traditional culture methods require 18–24 h to obtain results and may not reflect current conditions. Predictive models, based on environmental and water quality variables, have been...

  16. Velocity, water-quality, and bathymetric surveys of the Grays Landing and Maxwell Navigation Pools, and Selected Tributaries to the Monongahela River, Pennsylvania, 2010–11

    USGS Publications Warehouse

    Hoffman, Scott A.; Roland, Mark A.; Schalk, Luther F.; Fulton, John W.

    2013-01-01

    The U.S. Geological Survey (USGS) conducted velocity, water-quality, and bathymetric surveys from spring 2010 to summer 2011 in the Grays Landing and Maxwell navigation pools of the Monongahela River, Pennsylvania, and selected tributaries in response to elevated levels of total dissolved solids (TDS) recorded in early September 2009. Velocity data were collected using an Acoustic Doppler Current Profiler. Water-quality surveys included the in-situ collection of specific-conductance, water-temperature, and turbidity data using a water-quality sonde. Additionally, discrete water samples were collected and analyzed for TDS, chloride, and sulfate. Bathymetric data were collected using an echo sounder, and the shoreline was delineated using a laser range finder and electronic compass. The data were geo-referenced using a differential global positioning system and navigational software. Horizontal (x, y) coordinates were referenced to the North American Datum of 1983. Depth (z) elevations were referenced to the North American Vertical Datum of 1988. The data are provided in electronic format (appendix 1) and may be downloaded and can be used in a geographic information system for cartographic display and data analysis.

  17. Model documentation for relations between continuous real-time and discrete water-quality constituents in Indian Creek, Johnson County, Kansas, June 2004 through May 2013

    USGS Publications Warehouse

    Stone, Mandy L.; Graham, Jennifer L.

    2014-01-01

    Johnson County is the fastest growing county in Kansas, with a population of about 560,000 people in 2012. Urban growth and development can have substantial effects on water quality, and streams in Johnson County are affected by nonpoint-source pollutants from stormwater runoff and point-source discharges such as municipal wastewater effluent. Understanding of current (2014) water-quality conditions and the effects of urbanization is critical for the protection and remediation of aquatic resources in Johnson County, Kansas and downstream reaches located elsewhere. The Indian Creek Basin is 194 square kilometers and includes parts of Johnson County, Kansas and Jackson County, Missouri. Approximately 86 percent of the Indian Creek Basin is located in Johnson County, Kansas. The U.S. Geological Survey, in cooperation with Johnson County Wastewater, operated a series of six continuous real-time water-quality monitoring stations in the Indian Creek Basin during June 2011 through May 2013; one of these sites has been operating since February 2004. Five monitoring sites were located on Indian Creek and one site was located on Tomahawk Creek. The purpose of this report is to document regression models that establish relations between continuously measured water-quality properties and discretely collected water-quality constituents. Continuously measured water-quality properties include streamflow, specific conductance, pH, water temperature, dissolved oxygen, turbidity, and nitrate. Discrete water-quality samples were collected during June 2011 through May 2013 at five new sites and June 2004 through May 2013 at a long-term site and analyzed for sediment, nutrients, bacteria, and other water-quality constituents. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physical properties to estimate concentrations of those constituents of interest that are not easily measured in real time because of limitations in sensor technology and fiscal constraints. Regression models for 28 water-quality constituents were developed and documented. The water-quality information in this report is important to Johnson County Wastewater because it allows the concentrations of many potential pollutants of interest, including nutrients and sediment, to be estimated in real time and characterized during conditions and time scales that would not be possible otherwise.

  18. Modeling Hydrodynamics and Heat Transport in Upper Klamath Lake, Oregon, and Implications for Water Quality

    USGS Publications Warehouse

    Wood, Tamara M.; Cheng, Ralph T.; Gartner, Jeffrey W.; Hoilman, Gene R.; Lindenberg, Mary K.; Wellman, Roy E.

    2008-01-01

    The three-dimensional numerical model UnTRIM was used to model hydrodynamics and heat transport in Upper Klamath Lake, Oregon, between mid-June and mid-September in 2005 and between mid-May and mid-October in 2006. Data from as many as six meteorological stations were used to generate a spatially interpolated wind field to use as a forcing function. Solar radiation, air temperature, and relative humidity data all were available at one or more sites. In general, because the available data for all inflows and outflows did not adequately close the water budget as calculated from lake elevation and stage-capacity information, a residual inflow or outflow was used to assure closure of the water budget. Data used for calibration in 2005 included lake elevation at 3 water-level gages around the lake, water currents at 5 Acoustic Doppler Current Profiler (ADCP) sites, and temperature at 16 water-quality monitoring locations. The calibrated model accurately simulated the fluctuations of the surface of the lake caused by daily wind patterns. The use of a spatially variable surface wind interpolated from two sites on the lake and four sites on the shoreline generally resulted in more accurate simulation of the currents than the use of a spatially invariant surface wind as observed at only one site on the lake. The simulation of currents was most accurate at the deepest site (ADCP1, where the velocities were highest) using a spatially variable surface wind; the mean error (ME) and root mean square error (RMSE) for the depth-averaged speed over a 37-day simulation from July 26 to August 31, 2005, were 0.50 centimeter per second (cm/s) and 3.08 cm/s, respectively. Simulated currents at the remaining sites were less accurate and, in general, underestimated the measured currents. The maximum errors in simulated currents were at a site near the southern end of the trench at the mouth of Howard Bay (ADCP7), where the ME and RMSE in the depth-averaged speed were 3.02 and 4.38 cm/s, respectively. The range in ME of the temperature simulations over the same period was ?0.94 to 0.73 degrees Celsius (?C), and the RMSE ranged from 0.43 to 1.12?C. The model adequately simulated periods of stratification in the deep trench when complete mixing did not occur for several days at a time. The model was validated using boundary conditions and forcing functions from 2006 without changing any calibration parameters. A spatially variable wind was used. Data for the model validation periods in 2006 included lake elevation at 4 gages around the lake, currents collected at 2 ADCP sites, and temperature collected at 21 water-quality monitoring locations. Errors generally were larger than in 2005. ME and RMSE in the simulated velocity at ADCP1 were 2.30 cm/s and 3.88 cm/s, respectively, for the same 37-day simulation over which errors were computed for 2005. The ME in temperature over the same period ranged from ?0.56 to 1.5?C and the RMSE ranged from 0.41 to 1.86?C. Numerical experiments with conservative tracers were used to demonstrate the prevailing clockwise circulation patterns in the lake, and to show the influence of water from the deep trench located along the western shoreline of the lake on fish habitat in the northern part of the lake. Because water exiting the trench is split into two pathways, the numerical experiments indicate that bottom water from the trench has a stronger influence on water quality in the northern part of the lake, and surface water from the trench has a stronger influence on the southern part of the lake. This may be part of the explanation for why episodes of low dissolved oxygen tend to be more severe in the northern than in the southern part of the lake.

  19. Impact of Various Biofuel Feedstock Production Scenarios on Water Quality in the Upper Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Wu, M.; Demissie, Y.; Yan, E.

    2010-12-01

    The impact of increased biofuel feedstock production on regional water quality was examined. This study focused on the Upper Mississippi River Basin, from which a majority of U.S. biofuel is currently produced. The production of biofuel from both conventional feedstock and cellulosic feedstock will potentially increase in the near future. Historically, this water basin generates the largest nitrogen loading to the waterway in the United States and is often cited as a main contributor to the anoxic zone in the Gulf of Mexico. To obtain a quantitative and spatial estimate of nutrient burdens at the river basin, a SWAT (Soil and Water Assessment Tool) model application was developed. The model was equipped with an updated nutrient cycle feature and modified model parameters to represent current crop and perennial grass yield as a result of advancements in breeding and biotechnology. Various biofuel feedstock production scenarios were developed to assess the potential environmental implications of increased biofuel production through corn, agriculture residue, and perennial cellulosic feedstock (such as Switchgrass). Major factors were analyzed, including land use changes, feedstock types, fertilizer inputs, soil property, and yield. This tool can be used to identify specific regional factors affecting water quality and examine options to meet the requirement for environmental sustainability, thereby mitigating undesirable environmental consequences while strengthening energy security.

  20. Performance Study of Ceramic Filter Module in Recirculated Aquaculture System (RAS)

    NASA Astrophysics Data System (ADS)

    Ng, L. Y.; Ng, C. Y.

    2017-06-01

    The growth of world population has led to significant increase in seafood demand over the world. Aquaculture has been widely accepted by many countries to increase the seafood production owing to the decline of natural seafood resources. The aquaculture productivity, however, is directly linked to the pond water quality. In this study, attempts were made to employ ceramic micro-filter to improve the pond water quality through filtration processes. There were two batches of filtration processes, short term (1 hour) and long term (48 hours). Significant improvements on real pond water quality were recorded through the short term microfiltration process, which reduced turbidity (96%), total suspended solids (TSS) (80%), biochemical oxygen demand (BOD) (72%), chemical oxygen demand (COD) (55%), ammonia (60%), nitrate (96%) and phosphorus (83%). The long term filtration process also showed high efficiency in the removal of solid particle and organic matters. The results showed that all of the parameters were successfully reduced to acceptable ranges (turbidity<80 NTU, TSS<400 mg/L, BOD<5 mg/L, COD<70 mg/L, phosphate<3 mg/L and ammonia<0.05 mg/L) for fish culturing activity. Based on current study, there was a drastic increase in nitrate content after 24 hours due to the nitrification process by regenerated bacteria in the filtered pond water. Current study showed that the microfiltration using ceramic micro-filter has high potential to be used in recirculating aquaculture system throughout the aquaculture activities in order to maintain the pond water quality, thus, increase the survival rate of cultured species.

  1. Cloud-enabled microscopy and droplet microfluidic platform for specific detection of Escherichia coli in water.

    PubMed

    Golberg, Alexander; Linshiz, Gregory; Kravets, Ilia; Stawski, Nina; Hillson, Nathan J; Yarmush, Martin L; Marks, Robert S; Konry, Tania

    2014-01-01

    We report an all-in-one platform - ScanDrop - for the rapid and specific capture, detection, and identification of bacteria in drinking water. The ScanDrop platform integrates droplet microfluidics, a portable imaging system, and cloud-based control software and data storage. The cloud-based control software and data storage enables robotic image acquisition, remote image processing, and rapid data sharing. These features form a "cloud" network for water quality monitoring. We have demonstrated the capability of ScanDrop to perform water quality monitoring via the detection of an indicator coliform bacterium, Escherichia coli, in drinking water contaminated with feces. Magnetic beads conjugated with antibodies to E. coli antigen were used to selectively capture and isolate specific bacteria from water samples. The bead-captured bacteria were co-encapsulated in pico-liter droplets with fluorescently-labeled anti-E. coli antibodies, and imaged with an automated custom designed fluorescence microscope. The entire water quality diagnostic process required 8 hours from sample collection to online-accessible results compared with 2-4 days for other currently available standard detection methods.

  2. Cloud-Enabled Microscopy and Droplet Microfluidic Platform for Specific Detection of Escherichia coli in Water

    PubMed Central

    Kravets, Ilia; Stawski, Nina; Hillson, Nathan J.; Yarmush, Martin L.; Marks, Robert S.; Konry, Tania

    2014-01-01

    We report an all-in-one platform – ScanDrop – for the rapid and specific capture, detection, and identification of bacteria in drinking water. The ScanDrop platform integrates droplet microfluidics, a portable imaging system, and cloud-based control software and data storage. The cloud-based control software and data storage enables robotic image acquisition, remote image processing, and rapid data sharing. These features form a “cloud” network for water quality monitoring. We have demonstrated the capability of ScanDrop to perform water quality monitoring via the detection of an indicator coliform bacterium, Escherichia coli, in drinking water contaminated with feces. Magnetic beads conjugated with antibodies to E. coli antigen were used to selectively capture and isolate specific bacteria from water samples. The bead-captured bacteria were co-encapsulated in pico-liter droplets with fluorescently-labeled anti-E. coli antibodies, and imaged with an automated custom designed fluorescence microscope. The entire water quality diagnostic process required 8 hours from sample collection to online-accessible results compared with 2–4 days for other currently available standard detection methods. PMID:24475107

  3. Effects of backpacker use, pack stock trail use, and pack stock grazing on water-quality indicators, including nutrients, E. coli, hormones, and pharmaceuticals, in Yosemite National Park, USA

    USGS Publications Warehouse

    Forrester, Harrison; Clow, David W.; Roche, James W.; Heyvaert, Alan C.; Battaglin, William A.

    2017-01-01

    We investigated how visitor-use affects water quality in wilderness in Yosemite National Park. During the summers of 2012–2014, we collected and analyzed surface-water samples for water-quality indicators, including fecal indicator bacteria Escherichia coli, nutrients (nitrogen, phosphorus, carbon), suspended sediment concentration, pharmaceuticals, and hormones. Samples were collected upstream and downstream from different types of visitor use at weekly to biweekly intervals and during summer storms. We conducted a park-wide synoptic sampling campaign during summer 2014, and sampled upstream and downstream from meadows to evaluate the mitigating effect of meadows on water quality. At pack stock stream crossings, Escherichia coli concentrations were greater downstream from crossings than upstream (median downstream increase in Escherichia coli of three colony forming units 100 mL−1), with the greatest increases occurring during storms (median downstream increase in Escherichia coli of 32 CFU 100 mL−1). At backpacker use sites, hormones, and pharmaceuticals (e.g., insect repellent) were detected at downstream sites, and Escherichia coli concentrations were greater at downstream sites (median downstream increase in Escherichia coli of 1 CFU 100 mL−1). Differences in water quality downstream vs. upstream from meadows grazed by pack stock were not detectable for most water-quality indicators, however, Escherichia coli concentrations decreased downstream, suggesting entrapment and die-off of fecal indicator bacteria in meadows. Our results indicate that under current-use levels pack stock trail use and backpacker use are associated with detectable, but relatively minor, effects on water quality, which are most pronounced during storms.

  4. National Water-Quality Assessment Program--Southern High Plains, Texas and New Mexico

    USGS Publications Warehouse

    Woodward, Dennis G.; Diniz, Cecilia G.

    1994-01-01

    BACKGROUND In 1991, the U.S. Geological Survey (USGS) began a National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status of, and trends in, the quality of a large, representative part of the Nation's surface- and ground-water resources and to identify the major natural and human factors that affect the quality of these resources. In addressing these goals, the program will produce a wealth of water-quality information that will be useful to policy makers and managers at the National, State, and local levels. The NAWQA program emphasis is on regional water-quality problems. The program will not diminish the need for smaller studies and monitoring designed and currently being conducted by Federal, State, and local agencies to meet their individual needs. The NAWQA program, however, will provide a large-scale framework for conducting many of these activities and an understanding about National and regional water-quality conditions that cannot be acquired from individual, small-scale programs and studies. Studies of 60 hydrologic systems that include parts of most major river basins and aquifer systems (study-unit investigations) are the building blocks of the National assessment. The 60 study units range in size from 1,000 mi 2 (square miles) to more than 60,000 mi 2 and represent 60 to 70 percent of the Nation's water use and population served by public water supplies. Twenty study-unit investigations were started in 1991, 20 additional are starting in 1994, and 20 more are planned to start in 1997. The Southern High Plains study unit was selected as one of 20 study units to begin assessment activities in 1994. This study will be run from the New Mexico District office of the USGS in Albuquerque, New Mexico.

  5. Effects of Backpacker Use, Pack Stock Trail Use, and Pack Stock Grazing on Water-Quality Indicators, Including Nutrients, E. coli, Hormones, and Pharmaceuticals, in Yosemite National Park, USA

    NASA Astrophysics Data System (ADS)

    Forrester, Harrison; Clow, David; Roche, James; Heyvaert, Alan; Battaglin, William

    2017-09-01

    We investigated how visitor-use affects water quality in wilderness in Yosemite National Park. During the summers of 2012-2014, we collected and analyzed surface-water samples for water-quality indicators, including fecal indicator bacteria Escherichia coli, nutrients (nitrogen, phosphorus, carbon), suspended sediment concentration, pharmaceuticals, and hormones. Samples were collected upstream and downstream from different types of visitor use at weekly to biweekly intervals and during summer storms. We conducted a park-wide synoptic sampling campaign during summer 2014, and sampled upstream and downstream from meadows to evaluate the mitigating effect of meadows on water quality. At pack stock stream crossings, Escherichia coli concentrations were greater downstream from crossings than upstream (median downstream increase in Escherichia coli of three colony forming units 100 mL-1), with the greatest increases occurring during storms (median downstream increase in Escherichia coli of 32 CFU 100 mL-1). At backpacker use sites, hormones, and pharmaceuticals (e.g., insect repellent) were detected at downstream sites, and Escherichia coli concentrations were greater at downstream sites (median downstream increase in Escherichia coli of 1 CFU 100 mL-1). Differences in water quality downstream vs. upstream from meadows grazed by pack stock were not detectable for most water-quality indicators, however, Escherichia coli concentrations decreased downstream, suggesting entrapment and die-off of fecal indicator bacteria in meadows. Our results indicate that under current-use levels pack stock trail use and backpacker use are associated with detectable, but relatively minor, effects on water quality, which are most pronounced during storms.

  6. Use Of The Operational Air Quality Monitor (AQM) For In-Flight Water Testing Project

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel

    2014-01-01

    A primary requirement for manned spaceflight is Environmental Health which ensures air and water contaminants, acoustic profiles, microbial flora, and radiation exposures within the cabin are maintained to levels needed for crew health and for vehicle system functionality. The reliance on ground analyses of returned samples is a limitation in the current environmental monitoring strategy that will prevent future Exploration missions beyond low-Earth orbit. This proposal attempts to address this shortcoming by advancing in-flight analyses of water and air. Ground analysis of in-flight, air and water samples typically employ vapor-phase analysis by gas chromatography-mass spectrometry (GC-MS) to identify and quantify organic compounds present in the samples. We envision the use of newly-developed direct ionization approaches as the most viable avenue leading towards an integrated analytical platform for the monitoring of water, air, and, potentially bio-samples in the cabin environment. Development of an in-flight instrument capable of analyzing air and water samples would be the logical next step to meeting the environmental monitoring needs of Exploration missions. Currently, the Air Quality Monitor (AQM) on-board ISS provides this specific information for a number of target compounds in the air. However, there is a significant subset of common target compounds between air and water. Naturally, the following question arises, "Can the AQM be used for both air and water quality monitoring?" Previous directorate-level IR&D funding led to the development of a water sample introduction method for mass spectrometry using electrothermal vaporization (ETV). This project will focus on the integration of the ETV with a ground-based AQM. The capabilities of this integrated platform will be evaluated using a subset of toxicologically important compounds.

  7. Oceanography for Divers: Waves, Tides, and Currents. Diver Education Series.

    ERIC Educational Resources Information Center

    Somers, Lee H.

    To dive safely, it is suggested that the diver have a working knowledge of waves, tides, currents, and water quality. Lack of understanding and respect for ocean currents and surf can be of serious consequence to the diver. This paper on the diving environment is designed to provide the diver with a general understanding of the physical…

  8. Influence of alkalinity, hardness and dissolved solids on drinking water taste: A case study of consumer satisfaction.

    PubMed

    Lou, Jie-Chung; Lee, Wei-Li; Han, Jia-Yun

    2007-01-01

    Two surveys of consumer satisfaction with drinking water conducted by Taiwan Water Supply Corp. are presented in this study. The study results show that although a lot of money was invested to modify traditional treatment processes, over 60% of local residents still avoided drinking tap water. Over half of the respondents felt that sample TT (from the traditional treatment process) was not a good drinking water, whether in the first or second survey, whereas almost 60% of respondents felt that samples PA, PB, CCL and CT (from advanced treatment processes) were good to drink. For all drinking water samples, respondent satisfaction with a sample primarily depended on it having no unpleasant flavors. Taiwan Environmental Protection Administration plans to revise the drinking water quality standards for TH and TDS in the near future. The new standards require a lower TH concentration (from currently 400mg/L (as CaCO(3)) to 150mg/L (as CaCO(3))), and a lower TDS maximum admissible concentration from the current guideline of 600 to 250mg/L. Therefore, this study also evaluated the impacts on drinking water tastes caused by variations in TH and TDS concentrations, and assessed the need to issue more strict drinking water quality standards for TH and TDS. The research results showed that most respondents could not tell the difference in water taste among water samples with different TDS, TH and alkalinity. Furthermore, hardness was found to be inversely associated with cardiovascular diseases and cancers, and complying with more strict standards would lead most water facilities to invest billions of dollars to upgrade their treatment processes. Consequently, in terms of drinking water tastes alone, this study suggested that Taiwan Environmental Protection Administration should conduct more thorough reviews of the scientific literature that provides the rationale for setting standards and reconsider if it is necessary to revise drinking water quality standards for TH and TDS.

  9. Surface-Water Conditions in Georgia, Water Year 2005

    USGS Publications Warehouse

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link to the National Water Inventory System Web (NWISWeb) Interface.

  10. Characterizing a December 2005 density current event in the Chicago River, Chicago, Illinois

    USGS Publications Warehouse

    Garcia, C.M.; Jackson, P.R.; Oberg, K.A.; Johnson, K.K.; Garcia, M.H.

    2007-01-01

    During the winter months, the Chicago River in Chicago, Illinois is subject to bi-directional flows, and density currents are thought to be responsible for these flow variations. This paper presents detailed field measurements using three acoustic Doppler current profiler instruments and simultaneous water-quality measurements made during December 2005. Observations indicate that the formation of density currents within the Chicago River and density differences are mostly due to salinity differences between the North Branch and the main stem of the Chicago River, whereas temperature difference does not appreciably affect the creation of density currents. Sources of higher water temperature, conductivity, and salinity values should be addressed in future studies. ?? 2007 ASCE.

  11. Water resources of Soledad, Poway, and Moosa basins, San Diego County, California

    USGS Publications Warehouse

    Evenson, K.D.

    1989-01-01

    Reclaimed water is being considered as as supplemental water supply in the Soledad, Poway, and Moosa basins, San Diego County. This report describes the geology, soils, hydrology, and cultural factors in each of the basins as they relate to use of reclaimed water. Imported water is currently the major water-supply source in the basins. Groundwater supplies are used to a limited extent for both agricultural and domestic needs. Surface water flows are intermittent and, therefore, have not been developed for use in the basins. All three of the basins have the potential for use of reclaimed water, but only the Moosa basin is currently implementing a plan for such use. Concentrations of dissolved solids, chloride, and sulfate in both ground and surface water commonly exceed local basin objectives. As of 1985, plans for use of reclaimed water are oriented toward improving the quality of the groundwater. (USGS)

  12. Water-Quality Data Collected from Vallecito Reservoir, Its Inflows and Outflow, Southwestern Colorado, 1999-2002

    USGS Publications Warehouse

    Ranalli, Anthony J.

    2008-01-01

    The Pine River Watershed Stakeholders Group was created in December 1997 to allow local participation in addressing water-quality issues in Los Pi?os River watershed, including Vallecito Reservoir in southwestern Colorado. One water-quality issue identified by the stakeholder group is to increase the understanding of the current water quality of Vallecito Reservoir, its two major inflows, and its outflow. The U.S. Geological Survey (USGS), in cooperation with volunteers from the Pine River Watershed Stakeholders Group and the U.S. Environmental Protection Agency (USEPA), U.S. Bureau of Reclamation (BOR), Colorado Department of Public Health and Environment (CDPHE), Pine River Irrigation District, Southern Ute Tribe, San Juan Basin Health Department, and San Juan Resource Conservation and Development, collected water-quality samples from Vallecito Reservoir, its two major inflows, and its outflow between August 1999 and November 2002 at about monthly intervals from April through November. The water-quality samples were analyzed for total and dissolved metals (aluminum, arsenic, cadmium, copper, chromium, iron, lead, manganese, mercury, nickel, silver, and zinc), dissolved major ions (calcium, magnesium, sodium, potassium, chloride, bicarbonate, and sulfate), dissolved silica, dissolved organic carbon (DOC), ultraviolet (UV) absorbance at 254 and 280 nanometers, nutrients (total organic nitrogen, dissolved organic nitrogen, dissolved ammonia, dissolved nitrate, total phosphorus, dissolved phosphorus, and orthophosphate), chlorophyll-a (reservoir only), and suspended sediment (inlets to the reservoir only). Measurements of field properties (pH, specific conductance, water temperature, and dissolved oxygen) were also made at each sampling site each time a water-quality sample was collected. This report documents (1) sampling sites and times of sample collection, (2) sample-collection methods, (3) laboratory analytical methods, and (4) responsibilities of each agency/group involved in the project. The report also provides the environmental and quality-control data collected during the project and provides an interpretation of the quality-control data (field blanks and field duplicates) to assess the quality of the environmental data. This report provides a baseline data set against which future changes in water quality can be assessed.

  13. WATER QUALITY AND THE REPLACEMENT AND REPAIR OF DRINKING WATER INFRASTRUCTURE: THE WASHINGTON, DC CASE STUDY

    EPA Science Inventory

    A major challenge for society in the 21st century will be replacement, design and optimal management of urban infrastructure. It is estimated that the current world wide demand for infrastructure investment is approximately three trillion US dollars annually. Many developing coun...

  14. Multisite evaluation of APEX for water quality: 1. Best professional judgement parameterization

    USDA-ARS?s Scientific Manuscript database

    The Agricultural and Policy Environmental Extender (APEX) model is capable of estimating edge-of-field water, nutrient, and sediment transport and is used to assess the environmental impacts of management practices. The current practice is to fully calibrate the model for each site simulation, a tas...

  15. Contaminant transport pathways between urban sewer networks and water supply wells

    USDA-ARS?s Scientific Manuscript database

    Water supply wells and sanitary sewers are critical components of urban infrastructure, but sewer leakage threatens the quality of groundwater in sewered areas. Previous work by our group has documented the presence of human enteric viruses in deep public supply wells. Our current research uses such...

  16. Two year measurement of nitrous oxide emission from high frequency surface and subsurface drip irrigations in pomegranate orchard

    USDA-ARS?s Scientific Manuscript database

    Building resiliency in California agriculture means utilizing adaptive farming practices that will produce better yields while overcoming the State’s current challenges, such as diminishing water supply and deteriorating water quality. In addition, California agriculture also needs to take proactive...

  17. Gore Creek watershed, Colorado : assessment of historical and current water quantity, water quality, and aquatic ecology, 1968-98

    USGS Publications Warehouse

    Wynn, Kirby H.; Bauch, Nancy J.; Driver, Nancy E.

    2001-01-01

    The historical and current (1998) water-quantity, water-quality, and aquatic-ecology conditions in the Gore Creek watershed are described as part of a study by the U.S. Geological Survey, done in cooperation with the Town of Vail, the Eagle River Water and Sanitation District, and the Upper Eagle Regional Water Authority. Interpretation of the available water-quantity, water-quality, and aquatic-ecology data collected by various agencies since 1968 showed that background geology and land use in the watershed influence the water quality and stream biota. Surface-water nutrient concentrations generally increased as water moved downstream through the Town of Vail, but concentrations at the mouth of Gore Creek were typical when compared with national data for urban/undeveloped sites. Nitrate concentrations in Gore Creek were highest just downstream from a wastewater-treatment plant discharge, but concentrations decreased at sites farther downstream because of dilution and nitrogen uptake by algae. Recent total phosphorus concentrations were somewhat elevated when compared to the U.S. Environmental Protection Agency recommended level of 0.10 milligram per liter for control of eutrophication in flowing water. However, total phosphorus concentrations at the mouth of Gore Creek were relatively low when compared to a national study of phosphorus in urban land-use areas. Historically, suspended sediment associated with construction of Interstate 70 in the early 1970's has been of primary concern; however, recent data indicate that streambed aggradation of sediment originating from Interstate 70 traction sanding currently is a greater concern. About 4,000 tons of coarse sand and fine gravel is washed into Black Gore Creek each year following application of traction materials to Interstate 70 during adverse winter driving conditions. Suspended-sediment concentrations were low in Black Gore Creek; however, bedload-transport rates of as much as 4 tons per day have been measured. Water samples were collected during spring and fall of 1997 from five alluvial monitoring wells located throughout the Town of Vail. Nutrient concentrations generally were low in the alluvial monitoring wells. Specific-conductance values ranged from 265 to 557 microsiemens per centimeter at 25 degrees Celsius. Concentrations of radon in monitoring-well samples exceeded the 300-picocuries-per-liter U.S. Environmental Protection Agency proposed maximum contaminant level (which has been suspended pending further review). Low levels of bacteria and methylene blue active substances indicate there is little or no wastewater contamination of shallow ground water in the vicinity of the monitoring wells and one of the municipal water-supply wells. Ground-water ages in the alluvial aquifer ranged from about 2 to about 50 years old. These ages indicate that changes in land-management practices may not have an effect on ground-water quality for many years. Differences in macroinvertebrate-community structure were found among sites in Gore Creek by evaluating changes in relative abundance, total abundance, and dominant functional feeding groups of the major macroinvertebrate groups. Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies), and Coleoptera (beetles) exhibited relatively low tolerance to water-quality degradation when compared with Diptera (midges) and non-insects (sludge worms). More than 80 percent of the macroinvertebrate community at sites located farthest upstream was composed of mayflies, stoneflies, and caddisflies, indicating favorable water-quality and habitat conditions. The relative percentages of midges and sludge worms greatly increased in the downstream reaches of Gore Creek, which drain relatively larger areas of urban and recreation land uses, indicating the occurrence of nutrient and organic enrichment in Gore Creek. The macroinvertebrate community in Black Gore Creek indicated adverse effects from sediment deposition. Macroinve

  18. A conceptual framework for effectively anticipating water-quality changes resulting from changes in agricultural activities

    USGS Publications Warehouse

    Capel, Paul D.; Wolock, David M.; Coupe, Richard H.; Roth, Jason L.

    2018-01-10

    Agricultural activities can affect water quality and the health of aquatic ecosystems; many water-quality issues originate with the movement of water, agricultural chemicals, and eroded soil from agricultural areas to streams and groundwater. Most agricultural activities are designed to sustain or increase crop production, while some are designed to protect soil and water resources. Numerous soil- and water-protection practices are designed to reduce the volume and velocity of runoff and increase infiltration. This report presents a conceptual framework that combines generalized concepts on the movement of water, the environmental behavior of chemicals and eroded soil, and the designed functions of various agricultural activities, as they relate to hydrology, to create attainable expectations for the protection of—with the goal of improving—water quality through changes in an agricultural activity.The framework presented uses two types of decision trees to guide decision making toward attainable expectations regarding the effectiveness of changing agricultural activities to protect and improve water quality in streams. One decision tree organizes decision making by considering the hydrologic setting and chemical behaviors, largely at the field scale. This decision tree can help determine which agricultural activities could effectively protect and improve water quality in a stream from the movement of chemicals, or sediment, from a field. The second decision tree is a chemical fate accounting tree. This decision tree helps set attainable expectations for the permanent removal of sediment, elements, and organic chemicals—such as herbicides and insecticides—through trapping or conservation tillage practices. Collectively, this conceptual framework consolidates diverse hydrologic settings, chemicals, and agricultural activities into a single, broad context that can be used to set attainable expectations for agricultural activities. This framework also enables better decision making for future agricultural activities as a means to reduce current, and prevent new, water-quality issues.

  19. Introduction to the U.S. Geological Survey National Water-Quality Assessment (NAWQA) of ground-water quality trends and comparison to other national programs

    USGS Publications Warehouse

    Rosen, Michael R.; Lapham, W.W.

    2008-01-01

    Assessment of temporal trends in national ground-water quality networks are rarely published in scientific journals. This is partly due to the fact that long-term data from these types of networks are uncommon and because many national monitoring networks are not driven by hypotheses that can be easily incorporated into scientific research. The U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) since 1991 has to date (2006) concentrated on occurrence of contaminants because sufficient data for trend analysis is only just becoming available. This paper introduces the first set of trend assessments from NAWQA and provides an assessment of the success of the program. On a national scale, nitrate concentrations in ground water have generally increased from 1988 to 2004, but trends in pesticide concentrations are less apparent. Regionally, the studies showed high nitrate concentrations and frequent pesticide detections are linked to agricultural use of fertilizers and pesticides. Most of these areas showed increases in nitrate concentration within the last decade, and these increases are associated with oxic-geochemical conditions and well-drained soils. The current NAWQA plan for collecting data to define trends needs to be constantly reevaluated to determine if the approach fulfills the expected outcome. To assist this evaluation, a comparison of NAWQA to other national ground-water quality programs was undertaken. The design and spatial extent of each national program depend on many factors, including current and long-term budgets, purpose of the program, size of the country, and diversity of aquifer types. Comparison of NAWQA to nine other national programs shows a great diversity in program designs, but indicates that different approaches can achieve similar and equally important goals. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  20. National trends in drinking water quality violations.

    PubMed

    Allaire, Maura; Wu, Haowei; Lall, Upmanu

    2018-02-27

    Ensuring safe water supply for communities across the United States is a growing challenge in the face of aging infrastructure, impaired source water, and strained community finances. In the aftermath of the Flint lead crisis, there is an urgent need to assess the current state of US drinking water. However, no nationwide assessment has yet been conducted on trends in drinking water quality violations across several decades. Efforts to reduce violations are of national concern given that, in 2015, nearly 21 million people relied on community water systems that violated health-based quality standards. In this paper, we evaluate spatial and temporal patterns in health-related violations of the Safe Drinking Water Act using a panel dataset of 17,900 community water systems over the period 1982-2015. We also identify vulnerability factors of communities and water systems through probit regression. Increasing time trends and violation hot spots are detected in several states, particularly in the Southwest region. Repeat violations are prevalent in locations of violation hot spots, indicating that water systems in these regions struggle with recurring issues. In terms of vulnerability factors, we find that violation incidence in rural areas is substantially higher than in urbanized areas. Meanwhile, private ownership and purchased water source are associated with compliance. These findings indicate the types of underperforming systems that might benefit from assistance in achieving consistent compliance. We discuss why certain violations might be clustered in some regions and strategies for improving national drinking water quality.

  1. Determining the Economic Feasibility of Using Produced Water for Agriculture in Colorado Through Life Cycle Cost Analyses

    NASA Astrophysics Data System (ADS)

    Dolan, F.; Blaine, A. C.; Hogue, T. S.

    2016-12-01

    To combat the need for new sources of water in Colorado, the current research looks to produced water as a potential source. Produced water, the water produced alongside oil and gas in a well, is currently viewed as a high-volume waste product; however, this water can potentially be used to irrigate food or non-food crops after treatment. Kern County in California has been using produced water for this purpose for over 20 years and a town in Colorado has followed suit. Our research seeks to determine how Wellington, CO overcame economic, legal, social, and technological barriers in order to put produced water to beneficial use. Life cycle cost analyses of produced water in three counties in Colorado are conducted to determine the economic feasibility of using produced water for irrigation on a broad scale. The current study is chosen based on the quality and quantity of the region's produced water as well as the need for new sources of water within the county. The results of this research will help in the transition between viewing produced water as a waste product and using it as a tool to help secure Colorado's water future.

  2. The chemical quality of self-supplied domestic well water in the United States

    USGS Publications Warehouse

    Focazio, M.J.; Tipton, D.; Dunkle, Shapiro S.; Geiger, L.H.

    2006-01-01

    Existing water quality data collected from domestic wells were summarized to develop the first national-scale retrospective of self-supplied drinking water sources. The contaminants evaluated represent a range of inorganic and organic compounds, and although the data set was not originally designed to be a statistical representation of national occurrence, it encompasses large parts of the United States including at least some wells sampled in every state and Puerto Rico. Inorganic contaminants were detected in many of the wells, and concentrations exceeded the U.S. EPA maximum contaminant levels (MCLs; federal drinking water standards used to regulate public drinking water quality) more often than organic contaminants. Of the inorganic constituents evaluated, arsenic concentrations exceeded the MCL (10 ??g/L) in ???11% of the 7580 wells evaluated, nitrate exceeded the MCL (10 mg/L) in ???8% of the 3465 wells evaluated, uranium-238 exceeded the MCL (30 ??g/L) in ???4% of the wells, and radon-222 exceeded 300 and 4000 pCi/L (potential drinking water standards currently under review by the U.S. EPA) in ???75% and 9% of the wells, respectively. The MCLs for total mercury and fluoride were each exceeded in <1% of the wells evaluated. The MCL was exceeded in <1% of all wells for all anthropogenically derived organic contaminants evaluated and was not exceeded for many contaminants. In addition, 10 contaminants evaluated do not currently have an MCL. Atrazine, however, was detected in 24% of the wells evaluated and was the most frequently detected organic contaminant of the 28 organic contaminants evaluated in this study. Simazine and metolachlor each were detected in ???9% of all wells and tied for second in frequency of detection for organic contaminants. The third and fourth most frequently detected organic contaminants were methyl tert-butyl ether (MTBE) (6%) and chloroform (5%), respectively. Because the water quality of domestic wells is not federally regulated or nationally monitored, this study provides a unique, previously nonexistent, perspective on the quality of the self-supplied drinking water resources used by ???45 million Americans in the United States. Copyright ?? 2006 The Author(s).

  3. Classroom Activities about Water and Climate Change

    NASA Astrophysics Data System (ADS)

    Rodriguez, M.

    2012-04-01

    The purpose of this activity is to demonstrate practical work and experiments in the classroom, with students on Water: Water is the most neccesary Earth's resource, although it is decreasing because many human activities are changing its quality and its availability. The activity is designed in order to recreate experiments, simulations, and determine the aspects of the problematic environment currently plaguing our planet, especially those related to water and climate change. The selected activities have to be easy to make, and easy to understand. Each activity will be illustrated, explained and described using pictures and short texts, so teachers could replay them in their classroom. 1. Simulation of the Ocean Water Currents Convection to understand the heat distribution in our planet. 2. Ocean Water Stratification According to Water Salinity. We can understand the behaviour of water when we mix water from different densities 3. Melting of the Arctic and Antarctic Polar Caps. In this experiment, we can see the consequences of changing environment and climate conditions as it pertains to ice and our polar ice caps. We want to show the different behaviours of continental and floating ice and to evaluate the consequences of their melting. 4. Detecting water pollution. Here, we can analyse some water patterns and get to know the existence or absence of pollutants in the water, as well as learning how to determine its pH level, hardness, nitrogen composition, bacteria content and more. 5. Creating a home treatment. We show the necessity to preserve the water quality through a suitable treatment.

  4. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    NASA Astrophysics Data System (ADS)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real-time measurements document variability in water quality throughout the 2-8 hour supply period. Our results show that piped water is not always safe water, but that safe water can be achieved in an intermittent supply under certain physical and operational conditions. Intermittent piped water supply is an important constraint on access to safe water in towns and cities in low-income countries, and strategies that improve these existing systems can help urban residents gain access to safe water. References van den Berg, C., and Danilenko, A. (2010). "The IBNET Water Supply and Sanitation Performance Blue Book: The International Benchmarking Network for Water and Sanitation Utilities Databook." World Bank Washington, DC.

  5. Thermally-enhanced oil recovery method and apparatus

    DOEpatents

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  6. Temporal and spatial changes of water quality and management strategies of Dianchi Lake in southwest China

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Zeng, W. H.; Wang, S. R.; Ni, Z. K.

    2013-12-01

    Temporal and spatial changes to the water quality of Dianchi Lake in Southwest China were investigated using monthly monitoring data from 2005 to 2012. Based on the analysis of total phosphorus (TP), total nitrogen (TN), and chlorophyll a (Chl a) concentrations, it was determined that, in Caohai Lake, the annual concentrations of these variables ranged from 0.19-1.46, 6.11-16.79, 0.06-0.14 mg L-1, respectively. In addition, the annual concentrations of TP, TN and Chl a in Waihai Lake ranged between 0.13-0.20, 1.82-3.01, 0.04-0.09 mg L-1, respectively. Cluster Analysis (CA) classified the 10 monitoring sites into two groups (group A and group B) based on similarities of water quality characteristics. Our data revealed that the current status of water quality within Caohai Lake was much worse than that of Waihai Lake. Water quality was seriously degraded during the economic boom near the period of the "Eleventh Five-Year Plan" (2005-2010), and gradually improved from 2010 to 2012 because of the "standard emission directive to industry". The main factors that influenced the spatial and temporal changes to water quality were natural factors including lake evolution and regional characteristic as well as human factors such as pollution load into the lake and management strategies that were already adopted. Some activities and regulations were implemented to enhance the lake environment by controlling wastewater emissions and establishing regulations to protect the lakes in the Yunnan Province. However, problems with institutional fragmentation (horizontal and vertical), simple treatment methods, low-intensity investment in pollution control, and lack of meaningful endogenous pollution control strategies were still present in the lake management strategy. To solve these problems, suitable control measures are needed, especially considering the current old-age status of Dianchi Lake. The fundamental improvement of the water quality within Caohai Lake was dependent on the measures taken in the upper reaches of the Caohai Watershed, including further recovery of submerged plants, resource utilization by floating plants and the reinforcement of sediment disposal. Management strategies for endogenous pollution in Waihai Lake were mainly dependent on restocking algae-eating fish and the ecological restoration of macrophytes. In this way, the swamping trend and the ageing process that is occurring in Dianchi Lake can be stunted.

  7. Factors affecting Escherichia coli concentrations at Lake Erie public bathing beaches

    USGS Publications Warehouse

    Francy, Donna S.; Darner, Robert A.

    1998-01-01

    The environmental and water-quality factors that affect concentrations of Escherichia coli (E. coli) in water and sediment were investigated at three public bathing beachesEdgewater Park, Villa Angela, and Sims Parkin the Cleveland, Ohio metropolitan area. This study was done to aid in the determination of safe recreational use and to help water- resource managers assess more quickly and accurately the degradation of recreational water quality. Water and lake-bottom sediments were collected and ancillary environmental data were compiled for 41 days from May through September 1997. Water samples were analyzed for E. coli concentrations, suspended sediment concentrations, and turbidity. Lake- bottom sediment samples from the beach area were analyzed for E. coli concentrations and percent dry weight. Concentrations of E. coli were higher and more variable at Sims Park than at Villa Angela or Edgewater Park; concentrations were lowest at Edgewater Park. Time-series plots showed that short-term storage (less than one week) of E. coli in lake-bottom sediments may have occurred, although no evidence for long-term storage was found during the sampling period. E. coli concentrations in water were found to increase with increasing wave height, but the resuspension of E. coli from lake-bottom sediments by wave action could not be adequately assessed; higherwave heights were often associated with the discharge of sewage containing E. coli during or after a rainfall and wastewater-treatment plant overflow. Multiple linear regression (MLR) was used to develop models to predict recreational water quality at the in water. The related variables included turbidity, antecedent rainfall, antecedent weighted rainfall, volumes of wastewater-treatment plant overflows and metered outfalls (composed of storm-water runoff and combined-sewer overflows), a resuspension index, and wave heights. For the beaches in this study, wind speed, wind direction, water temperature, and the prswimmers were not included in the model because they were shown to be statistically unrelated to E. coli concentrations. From the several models developed, one model was chosen that accounted for 58 percent of the variability in E. coli concentrations. The chosen MLR model contained weighted categorical rainfall, beach-specific turbidity, wave height, and terms to correct for the different magnitudes of E. coli concentrations among the three beaches. For 1997, the MLR model predicted the recreational water quality as well as, and in some cases better than, antecedent E. coli concentrations (the current method). The MLR model improved the sensitivity of the prediction and the percentage of correct predictions over the current method; however, the MLR model predictions still erred to a similar degree as the current method with regard to false negatives. A false negative would allow swimming when, in fact, the bathing water standard was exceeded. More work needs to be done to validate the MLR model with data collected during other recreational seasons, especially during a season with a greater frequency and intensity of summer rains. Studies could focus on adding to the MLR model other environmental and water-quality variables that improve the predictive ability of the model. These variables might include concentrations of E. coli in deeper sediments outside the bathing area, the direction of lake currents, site-specific-rainfall amounts, time-of-day information on overflows and metered outfalls, concentrations of E. coli in treated wastewater-treatment plant effluents, and occurrences of sewage-line breaks. Rapid biological or chemical methods for determination of recreational water quality could also be used as variables in model refinements. Possible methods include the use of experimental rapid assay methods for determination of E. coli concentrations or other fecal indicators and the use of chemical tracers for fecal contamination, such as coprostanol (a degradation

  8. Climate change and water security with a focus on the Arctic.

    PubMed

    Evengard, Birgitta; Berner, Jim; Brubaker, Michael; Mulvad, Gert; Revich, Boris

    2011-01-01

    Water is of fundamental importance for human life; access to water of good quality is of vital concern for mankind. Currently however, the situation is under severe pressure due to several stressors that have a clear impact on access to water. In the Arctic, climate change is having an impact on water availability by melting glaciers, decreasing seasonal rates of precipitation, increasing evapotranspiration, and drying lakes and rivers existing in permafrost grounds. Water quality is also being impacted as manmade pollutants stored in the environment are released, lowland areas are flooded with salty ocean water during storms, turbidity from permafrost-driven thaw and erosion is increased, and the growth or emergence of natural pollutants are increased. By 2030 it is estimated that the world will need to produce 50% more food and energy which means a continuous increase in demand for water. Decisionmakers will have to very clearly include life quality aspects of future generations in the work as impact of ongoing changes will be noticeable, in many cases, in the future. This article will focus on effects of climate-change on water security with an Arctic perspective giving some examples from different countries how arising problems are being addressed.

  9. Current and future water issues in the Oldman River Basin of Alberta, Canada.

    PubMed

    Byrne, J; Kienzle, S; Johnson, D; Duke, G; Gannon, V; Selinger, B; Thomas, J

    2006-01-01

    Long-term trends in alpine and prairie snow pack accumulation and melt are affecting streamflow within the Oldman River Basin in southern Alberta, Canada. Unchecked rural and urban development also has contributed to changes in water quality, including enhanced microbial populations and increased waterborne pathogen occurrence. In this study we look at changing environment within the Oldman River Basin and its impact on water quality and quantity. The cumulative effects include a decline in net water supplies, and declining quality resulting in increased risk of disease. Our data indicates that decreases in the rate of flow of water can result in sedimentation of bacterial contaminants within the water column. Water for ecosystems, urban consumption, recreation and distribution through irrigation is often drawn from waterholding facilities such as dams and weirs, and concern must be expressed over the potential for contaminate build-up and disproportionate potential of these structures to pose a risk to human and animal health. With disruption of natural flow rates for water resulting from environmental change such as global warming and/or human intervention, increased attention needs to be paid to use of best management practices to protect source water supplies.

  10. Climate change and water security with a focus on the Arctic

    PubMed Central

    Evengard, Birgitta; Berner, Jim; Brubaker, Michael; Mulvad, Gert; Revich, Boris

    2011-01-01

    Water is of fundamental importance for human life; access to water of good quality is of vital concern for mankind. Currently however, the situation is under severe pressure due to several stressors that have a clear impact on access to water. In the Arctic, climate change is having an impact on water availability by melting glaciers, decreasing seasonal rates of precipitation, increasing evapotranspiration, and drying lakes and rivers existing in permafrost grounds. Water quality is also being impacted as manmade pollutants stored in the environment are released, lowland areas are flooded with salty ocean water during storms, turbidity from permafrost-driven thaw and erosion is increased, and the growth or emergence of natural pollutants are increased. By 2030 it is estimated that the world will need to produce 50% more food and energy which means a continuous increase in demand for water. Decisionmakers will have to very clearly include life quality aspects of future generations in the work as impact of ongoing changes will be noticeable, in many cases, in the future. This article will focus on effects of climate-change on water security with an Arctic perspective giving some examples from different countries how arising problems are being addressed. PMID:22043217

  11. Framework for a ground-water quality monitoring and assessment program for California

    USGS Publications Warehouse

    Belitz, Kenneth; Dubrovsky, Neil M.; Burow, Karen; Jurgens, Bryant C.; John, Tyler

    2003-01-01

    The State of California uses more ground water than any other State in the Nation. With a population of over 30 million people, an agricultural economy based on intensive irrigation, large urban industrial areas, and naturally elevated concentrations of some trace elements, there is a wide range of contaminant sources that have the potential to contaminate ground water and limit its beneficial uses. In response to the many-and different-potential sources of ground-water contamination, the State of California has evolved an extensive set of rules and programs to protect ground-water quality, and agencies to implement the rules and programs. These programs have in common a focus on compliance with regulations governing chemical use and (or) ground-water quality. Although appropriate for, and successful at, their specific missions, these programs do not at present provide a comprehensive view of ground-water quality in the State of California. In October 2001, The California Assembly passed a bill, AB 599, establishing the Ground-Water- Quality Monitoring Act of 2001.' The goal of AB 599 is to improve Statewide comprehensive ground-water monitoring and increase availability of information about ground-water quality to the public. AB 599 requires the State Water Resources Control Board (SWRCB), in collaboration with an interagency task force (ITF) and a public advisory committee (PAC), to develop a plan for a comprehensive ground-water monitoring program. AB 599 specifies that the comprehensive program should be capable of assessing each ground-water basin in the State through direct and other statistically reliable sampling approaches, and that the program should integrate existing monitoring programs and design new program elements, as necessary. AB 599 also stresses the importance of prioritizing ground-water basins that provide drinking water. The United States Geological Survey (USGS), in cooperation with the SWRCB, and in coordination with the ITF and PAC, has developed a framework for a comprehensive ground-water-quality monitoring and assessment program for California. The proposed framework relies extensively on previous work conducted by the USGS through its National Water-Quality Assessment (NAWQA) program. In particular, the NAWQA program defines three types of ground-water assessment: (1) status, the assessment of the current quality of the ground-water resource; (2) trends, the detection of changes in water quality, and (3) understanding, assessing the human and natural factors that affect ground-water quality. A Statewide, comprehensive ground-water quality-monitoring and assessment program is most efficiently accomplished by applying uniform and consistent study-design and data-collection protocols to the entire State. At the same time, a comprehensive program should be relevant at a variety of scales, and therefore needs to retain flexibility to address regional and local issues. Consequently, many of the program components include a predominant element that will be consistently applied in all basins, and a secondary element that may be applied in specific basins where local conditions warrant attention.

  12. Water quality of selected springs and public-supply wells, Pine Ridge Indian Reservation, South Dakota, 1992-97

    USGS Publications Warehouse

    Heakin, Allen J.

    2000-01-01

    This report presents results of a water-quality study for the Pine Ridge Indian Reservation, South Dakota. The study was a cooperative effort between the U.S. Geological Survey and the Water Resources Department of the Oglala Sioux Tribe. Discharge and water-quality data were collected during 1992-97 for 14 contact springs located in the northwestern part of the Reservation. Data were collected to evaluate potential alternative sources of water supply for the village of Red Shirt, which currently obtains water of marginal quality from a well completed in the Inyan Kara aquifer. During 1995-97, water-quality data also were collected for 44 public-supply wells that serve about one-half of the Reservation's population. Quality-assurance sampling was used to evaluate the precision and accuracy of environmental samples. Ten of the springs sampled contact the White River Group, and four contact the Pierre Shale. Springs contacting the White River Group range from calcium bicarbonate to sodium bicarbonate water types. Two springs contacting the Pierre Shale have water types similar to this; however, sulfate is the dominant anion for the other two springs. In general, springs contacting the White River Group are shown to have better potential as alternative sources of water supply for the village of Red Shirt than springs contacting the Pierre Shale. Nine of the springs with better water quality were sampled repeatedly; however, only minor variability in water quality was identified. Six of these nine springs, of which five contact the White River Group, probably have the best potential for use as water supplies. Discharge from any of these six springs probably would provide adequate water supply for Red Shirt during most periods, based on a limited number of discharge measurements collected. Concentrations of lead exceeded the U.S. Environmental Protection Agency (USEPA) action level of 15 ?g/L for three of these six springs. Five of these six springs also had arsenic concentrations that exceeded 10 ?g/L, which could be problematic if the current maximum contaminant level (MCL) is lowered. Blending of water from one or more springs with water from the existing Inyan Kara well may be an option to address concerns regarding both quantity and quality of existing and potential sources. All nine springs that were sampled for indicator bacteria had positive detections on one or more occasions during presumptive tests. Although USEPA standards for bacteria apply only to public-water supplies, local residents using spring water for domestic purposes need to be aware of the potential health risks associated with consuming untreated water. One spring contacting the White River Group and two springs contacting the Pierre Shale exceeded 15 pCi/L for gross alpha; these values do not necessarily constitute exceedances of the MCL, which excludes radioactivity contributed by uranium and radon. Additional sampling using different analysis techniques would be needed to conclusively determine if any samples exceeded this MCL. Nine springs were sampled for selected pesticides and tritium. The pesticides atrazine, carbaryl, and 2,4-D were not detected in any of the samples. The nine springs were analyzed for tritium in order to generally assess the age of the water and to determine if concentrations exceeded the MCL established for gross beta-particle activity. Tritium results indicated two springs are composed primarily of water recharged prior to atmospheric testing of nuclear bombs and two other springs have a relatively large percentage of test-era water. The remaining five springs had tritium values that indicated some percentage of test-era water; however, additional sampling would be needed to determine whether water is predominantly pre- or post-bomb age. Of the 44 public-supply wells sampled, 42 are completed in the Arikaree aquifer, one is completed in an alluvial aquifer, and one is completed in the Inyan Kara aquifer. Water

  13. Water quality of a coastal Louisiana swamp and how dredging is undermining restoration efforts

    NASA Astrophysics Data System (ADS)

    Lane, Robert R.; Huang, Haosheng; Day, John W.; Justic, Dubravko; DeLaune, Ronald D.

    2015-01-01

    The Bayou Boeuf Basin (BBB), a sub-basin of the Barataria Basin estuary in coastal Louisiana, consists of forested and floating wetlands receiving drainage from surrounding agricultural fields and urban watersheds. We characterized surface water quality in the BBB, and determined through hydrologic modeling if a series of levee breaks along major drainage channels would significantly improve water quality by allowing flow into surrounding wetlands. Surface water monitoring found surrounding sugarcane farm fields to be major sources of nutrient and sediment loading. Hydrological modeling indicated that levee breaks would increase N reduction from the current 21.4% to only 29.2%, which is much lower than the anticipated 90-100% removal rate. This was due to several factors, one them being dredging of main drainage channels to such a degree that water levels do not rise much above the surrounding wetland elevation even during severe storms, so only a very small fraction of the stormwater carried in the channel is exposed to wetlands. These unexpected results provide insight into an undoubtedly pervasive problem in human dominated wetland systems; that of decreased flooding during storm events due to channel deepening by dredging activities. Additional water quality management practices should be implemented at the farm field level, prior to water entering major drainage canals.

  14. Assessment of the Impacts of Climate Change on Stream Discharge and Water Quality in an Arid, Urbanized Watershed

    NASA Astrophysics Data System (ADS)

    Ranatunga, T.; Tong, S.; Yang, J.

    2011-12-01

    Hydrologic and water quality models can provide a general framework to conceptualize and investigate the relationships between climate and water resources. Under a hot and dry climate, highly urbanized watersheds are more vulnerable to changes in climate, such as excess heat and drought. In this study, a comprehensive watershed model, Hydrological Simulation Program FORTRAN (HSPF), is used to assess the impacts of future climate change on the stream discharge and water quality in Las Vegas Wash in Nevada, the only surface water body that drains from the Las Vegas Valley (an area with rapid population growth and urbanization) to Lake Mead. In this presentation, the process of model building, calibration and validation, the generation of climate change scenarios, and the assessment of future climate change effects on stream hydrology and quality are demonstrated. The hydrologic and water quality model is developed based on the data from current national databases and existing major land use categories of the watershed. The model is calibrated for stream discharge, nutrients (nitrogen and phosphorus) and sediment yield. The climate change scenarios are derived from the outputs of the Global Climate Models (GCM) and Regional Climate Models (RCM) simulations, and from the recent assessment reports from the Intergovernmental Panel on Climate Change (IPCC). The Climate Assessment Tool from US EPA's BASINS is used to assess the effects of likely future climate scenarios on the water quantity and quality in Las Vegas Wash. Also the presentation discusses the consequences of these hydrologic changes, including the deficit supplies of clean water during peak seasons of water demand, increased eutrophication potentials, wetland deterioration, and impacts on wild life habitats.

  15. Feasibility Study of Contamination Remediation at Naval Weapons Station, Concord, California. Volume 1. Remedial Action Alternatives.

    DTIC Science & Technology

    1988-09-01

    laboratory contaminants. The surface water sampling program was augmented by clam bioaccumulation 0 studies. In these studies, clams were placed in...water and clam bioaccumulation data indicate that several of the metals found in the contaminated surface soils are also ele- vated in the surface...waters and are potentially bioavailable to aquatic organ- isms and may currently impair water quality in these areas. However, clam bioaccumulation data

  16. Study of water recovery and solid waste processing for aerospace and domestic applications. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    Guarneri, C. A.; Reed, A.; Renman, R. E.

    1972-01-01

    The manner in which current and advanced technology can be applied to develop practical solutions to existing and emerging water supply and waste disposal problems is evaluated. An overview of water resource factors as they affect new community planning, and requirements imposed on residential waste treatment systems are presented. The results of equipment surveys contain information describing: commercially available devices and appliances designed to conserve water; devices and techniques for monitoring water quality and controlling back contamination; and advanced water and waste processing equipment. System concepts are developed and compared on the basis of current and projected costs. Economic evaluations are based on community populations of from 2,000 to 250,000. The most promising system concept is defined in sufficient depth to initiate detailed design.

  17. An exploration of multilevel modeling for estimating access to drinking-water and sanitation.

    PubMed

    Wolf, Jennyfer; Bonjour, Sophie; Prüss-Ustün, Annette

    2013-03-01

    Monitoring progress towards the targets for access to safe drinking-water and sanitation under the Millennium Development Goals (MDG) requires reliable estimates and indicators. We analyzed trends and reviewed current indicators used for those targets. We developed continuous time series for 1990 to 2015 for access to improved drinking-water sources and improved sanitation facilities by country using multilevel modeling (MLM). We show that MLM is a reliable and transparent tool with many advantages over alternative approaches to estimate access to facilities. Using current indicators, the MDG target for water would be met, but the target for sanitation missed considerably. The number of people without access to such services is still increasing in certain regions. Striking differences persist between urban and rural areas. Consideration of water quality and different classification of shared sanitation facilities would, however, alter estimates considerably. To achieve improved monitoring we propose: (1) considering the use of MLM as an alternative for estimating access to safe drinking-water and sanitation; (2) completing regular assessments of water quality and supporting the development of national regulatory frameworks as part of capacity development; (3) evaluating health impacts of shared sanitation; (4) using a more equitable presentation of countries' performances in providing improved services.

  18. Droughts in Georgia

    USGS Publications Warehouse

    Barber, Nancy L.; Stamey, Timothy C.

    2000-01-01

    Droughts do not have the immediate effects of floods, but sustained droughts can cause economic stress throughout the State. The word 'drought' has various meanings, depending on a person's perspective. To a farmer, a drought is a period of moisture deficiency that affects the crops under cultivation - even two weeks without rainfall can stress many crops during certain periods of the growing cycle. To a meteorologist, a drought is a prolonged period when precipitation is less than normal. To a water manager, a drought is a deficiency in water supply that affects water availability and water quality. To a hydrologist, a drought is an extended period of decreased precipitation and streamflow. Droughts in Georgia have severely affected municipal and industrial water supplies, agriculture, stream water quality, recreation at major reservoirs, hydropower generation, navigation, and forest resources. In Georgia, droughts have been documented at U.S. Geological Survey (USGS) streamflow gaging stations since the 1890's. From 1910 to 1940, about 20 streamflow gaging stations were in operation. Since the early 1950's through the late 1980's, about 100 streamflow gaging stations were in operation. Currently (2000), the USGS streamflow gaging network consists of more than 135 continuous-recording gages. Ground-water levels are currently monitored at 165 wells equipped with continuous recorders.

  19. Environmental Quality and the U.S. Power Sector: Air Quality, Land Use and Environmental Justice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massetti, Emanuele; Brown, Marilyn Ann; Lapsa, Melissa Voss

    This baseline report summarizes key environmental quality issues associated with electricity generation, transmission, distribution, and end use in the United States. Its scope includes non-greenhouse gas air pollution (i.e., sulfur dioxide, nitrogen oxides, particulate matter and hazardous air pollutants), land use, water pollution, ecological impacts, human health, and environmental justice. The discussion characterizes both current impacts and recent trends, as well as assessments of key drivers of change. For example, the air emissions section includes a quantitative decomposition analysis of the drivers of change in sulfur dioxide emissions reductions from coal-fired power plants. The report is divided into four topicalmore » sections: air emissions, land use and ecology, water quality, and environmental justice.« less

  20. Application of Hyperspectral Remote Sensing Techniques to Evaluate Water Quality in Turbid Coastal Waters of South Carolina.

    NASA Astrophysics Data System (ADS)

    Ali, K. A.; Ryan, K.

    2014-12-01

    Coastal and inland waters represent a diverse set of resources that support natural habitat and provide valuable ecosystem services to the human population. Conventional techniques to monitor water quality using in situ sensors and laboratory analysis of water samples can be very time- and cost-intensive. Alternatively, remote sensing techniques offer better spatial coverage and temporal resolution to accurately characterize the dynamic and unique water quality parameters. Existing remote sensing ocean color products, such as the water quality proxy chlorophyll-a, are based on ocean derived bio-optical models that are primarily calibrated in Case 1 type waters. These traditional models fail to work when applied in turbid (Case 2 type), coastal waters due to spectral interference from other associated color producing agents such as colored dissolved organic matter and suspended sediments. In this work, we introduce a novel technique for the predictive modeling of chlorophyll-a using a multivariate-based approach applied to in situ hyperspectral radiometric data collected from the coastal waters of Long Bay, South Carolina. This method uses a partial least-squares regression model to identify prominent wavelengths that are more sensitive to chlorophyll-a relative to other associated color-producing agents. The new model was able to explain 80% of the observed chlorophyll-a variability in Long Bay with RMSE = 2.03 μg/L. This approach capitalizes on the spectral advantage gained from current and future hyperspectral sensors, thus providing a more robust predicting model. This enhanced mode of water quality monitoring in marine environments will provide insight to point-sources and problem areas that may contribute to a decline in water quality. The utility of this tool is in its versatility to a diverse set of coastal waters and its use by coastal and fisheries managers with regard to recreation, regulation, economic and public health purposes.

  1. Extreme Precipitation, Public Health Emergencies, and Safe Drinking Water in the USA.

    PubMed

    Exum, Natalie G; Betanzo, Elin; Schwab, Kellogg J; Chen, Thomas Y J; Guikema, Seth; Harvey, David E

    2018-06-01

    This review examines the effectiveness of drinking water regulations to inform public health during extreme precipitation events. This paper estimates the vulnerability of specific populations to flooding in their public water system, reviews the literature linking precipitation to waterborne outbreaks, examines the role that Safe Drinking Water Act and Public Notification (PN) Rule have in public health emergencies, and reviews the effectiveness of the PN Rule during the 2017 Hurricane Maria in Puerto Rico. Public water systems in large metropolitan areas have substantial portions of their customer base at risk for a waterborne outbreak during a flooding event. The PN Rule are ambiguous for who is responsible for declaring a "waterborne emergency" following a natural disaster like Hurricane Maria. Revisions to the current PN Rule that mandate public notification and water quality sampling during extreme precipitation events are necessary to ensure the public is aware of their drinking water quality following these events.

  2. Nanomaterials and Water Purification: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Savage, Nora; Diallo, Mamadou S.

    2005-10-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving water quality could be resolved or greatly ameliorated using nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes and nanoparticle enhanced filtration among other products and processes resulting from the development of nanotechnology. Innovations in the development of novel technologies to desalinate water are among the most exciting and promising. Additionally, nanotechnology-derived products that reduce the concentrations of toxic compounds to sub-ppb levels can assist in the attainment of water quality standards and health advisories. This article gives an overview of the use of nanomaterials in water purification. We highlight recent advances on the development of novel nanoscale materials and processes for treatment of surface water, groundwater and industrial wastewater contaminated by toxic metal ions, radionuclides, organic and inorganic solutes, bacteria and viruses. In addition, we discuss some challenges associated with the development of cost effective and environmentally acceptable functional nanomaterials for water purification.

  3. An insight into the drinking-water access in the health institutions at the Saharawi refugee camps in Tindouf (Algeria) after 40years of conflict.

    PubMed

    Vivar, M; Pichel, N; Fuentes, M; Martínez, F

    2016-04-15

    Drinking water access in the Saharawi refugee camps located in the Algerian desert is a challenge that is still an on-going problem after 40years of conflict. This work presents an analysis of the situation with emphasis on the water supply in health institutions (quantity and quality) including both sanitary inspections and a comprehensive water quality study. Results from sanitary inspections show that only half of the water supply installations at the hospitals are in adequate conditions and the rest present high risk of microbiological contamination. Water access in small medical community centres on the other hand present issues related to the non-availability of food-grade water tanks for the institutions (70%), the use of small 10l containers as the main water supply (40%), poor maintenance (60% under antihygienic conditions and 30% with damaged covers), and insufficient chlorine levels that prevent microbiological contamination. Regarding water quality analyses, raw water supply in Smara, El Aiun and Awserd camps present high conductivity and high levels of fluoride, chloride, nitrate and sulphate, but dropping to normal levels within the drinking-water standards after water treatment via reverse osmosis plants. But for the case of El Aiun and Awserd, the reverse osmosis plant only provides treated water to the population each 20days, so the population receives raw water directly and health risks should be evaluated. Finally, Dakhla water supply is the best in terms of physico-chemical parameters quality, currently providing safe drinking water after a chlorination stage. In summary, drinking water access has improved dramatically in the last years due to the efforts of local and international authorities but several issues remain to be solved: access to treated water for all the population, improved water quality controls (especially in Dakhla), expansion of distribution networks, and adequate storage systems and maintenance. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Land use in, and water quality of, the Pea Hill Arm of Lake Gaston, Virginia and North Carolina, 1988-90

    USGS Publications Warehouse

    Woodside, Michael D.

    1994-01-01

    The City of Virginia Beach currently (1994) supplies water to about 400,000 people in southeastern Virginia. The city plans to withdraw water from the Pea Hill Arm of Lake Gaston to meet projected water needs of the population to the year 2030. The purpose of this report is to (1) describe the temporal and spatial distribution of selected water-quality constituents, (2) document current (1989) land use and land cover in the Pea Hill Arm drainage basin, and (3) discuss relations, if any, between the quality of water in the inlets within the Pea Hill Arm and land uses. The report focuses on water-quality problems in the basin, including changes in concentrations of major ions, nutrients, and algae associated with urban development adjacent to water bodies.The Pea Hill Arm was classified as mesotrophic on the basis of the range of concentrations of total phosphorus (0.001 to 0.61 milligrams per liter); the range of concentrations of total organic-plus-ammonia nitrogen (0.2 to 1.4 milligrams per liter); and the range of concentrations of chlorophyll a (1.4 to 56 micrograms per liter). These water-quality data were collected at 3 feet below the water surface during water years 1989-90.Thermal stratification in Pea Hill Arm generally began in April and ended in September. Water below a depth of about 25 feet generally became anoxic by June. Destratification generally began in late September and was completed by November. Lake Gaston followed the same general stratification and destratification pattern as Pea Hill Arm, except Lake Gaston was partially destratified during the summer when large amounts of water were released from John H. Kerr Reservoir and Lake Gaston Dams. During water year 1988, streamflows were 33 percent below the long-term mean-annual streamflows at one of the major streams to Lake Gaston. Low streamflows contributed to elevated specific conductances and concentrations of sodium, calcium, magnesium, and alkalinity from October 1988 to February 1989 at sampling stations in the Pea Hill Arm and Lake Gaston.About 75 percent of the land use in the Pea Hill Arm is forest land. The remaining 25 percent of the Pea Hill Arm drainage basin is 8 percent pasture/open land, 8 percent open water, 6 percent residential land, and 3 percent cropland. No statistical relations are present between water-quality constituents measured and developed land uses within 11 basins in the Pea Hill Arm Basin, except during periods of stormwater runoff. During a stormwater-runoff event, there was a relation between total nitrite plus nitrate and land use (Kendall's tau correlation coefficient of 0.69). The relation between the developed land use and total nitrite plus nitrate can also be related to the increased ground-water inputs during high base-flow periods.Spatial differences in water-quality constituents as determined by Wilcoxon (matched-pairs) signed-rank tests and cluster analyses were longitudinal and primarily grouped into riverine, transition, and lacustrine zones. These zones were grouped on the basis of flow characteristics and nutrient concentrations.

  5. RECENT DEVELOPMENTS IN HYDROLOGIC INSTRUMENTATION.

    USGS Publications Warehouse

    Latkovich, Vito J.

    1985-01-01

    The availability of space-age materials and implementation of state-of-the-art electronics is making possible the recent developments of hydrologic instrumentation. Material developments include: Synthetic-fiber sounding and tag lines; fiberglass wading rod; polymer (plastic) sheaves, pulleys and sampler components; and polymer (plastic) bucket wheels for current meters. These materials are very cost effective and efficient. Electromechanical and electronic developments and applications include: adaptable data acquisition system; downhole sampler for hazardous substances; current-meter digitizer; hydraulic power/drive system for discharge measurements and water-quality sampling; non-contact water-level sensors; minimum data recorder; acoustic velocity meters, and automated current meter discharge-measurement system.

  6. Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USA.

    PubMed

    He, Li-Ming Lee; He, Zhen-Li

    2008-05-01

    Beach advisories are issued to the public in California when the concentration of fecal indicator bacteria (FIB), including total coliform, fecal coliform (or Escherichia coli), and Enterococcus, exceed their recreational water health standards, or when the amount of a rainfall event is above the pre-determined threshold. However, it is not fully understood about how and to what degree stormwater runoff or baseflow exerts impacts on beach water quality. Furthermore, current laboratory methods used to determine the FIB levels take 18-96 h, which is too slow to keep pace with changes in FIB levels in water. Thus, a beach may not be posted when it is contaminated, and may be posted under advisory when bacterial levels have already decreased to within water quality standards. The study was designed to address the above critical issues. There were large temporal and spatial variations in FIB concentrations along two popular State Beaches in San Diego, CA, USA. The rainstorm-induced runoff from the watersheds exerts significant impacts on the marine recreational water quality of the beaches adjacent to lagoons during the first 24-48 h after a rain event. The large volume of stormwater runoff discharging to beaches caused high FIB concentrations in beach water not only at the lagoon outlet channel and the mixing zone, but also at the locations 90 m away from the channel northward or southward along the shoreline. The geomorphology of beach shoreline, distance from the outlet channel, wind strength, wind direction, tide height, wave height, rainfall, time lapse after a rainstorm, or channel flow rate played a role in affecting the distribution of FIB concentrations in beach water. Despite the great temporal and spatial variability of FIB concentrations along a shoreline, the artificial neural network-based models developed in this study are capable of successfully predicting FIB concentrations at different beaches, different locations, and different times under baseflow or rainstorm conditions. The models are based on readily measurable variables including temperature, conductivity, pH, turbidity, channel water flow, rainfall, and/or time lapse after a rainstorm. The established models will help fill the current gap between beach posting and actual water quality and make more meaningful and effective decisions on beach closures and advisories.

  7. Subtask 1.18 - A Decision Tool for Watershed-Based Effluent Trading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xixi Wang; Bethany A. Kurz; Marc D. Kurz

    2006-11-30

    Handling produced water in an economical and environmentally sound manner is vital to coalbed methane (CBM) development, which is expected to increase up to 60% in the next 10-15 years as the demand for natural gas increases. Current produced water-handling methods (e.g., shallow reinjection and infiltration impoundments) are too costly when implemented on a well-by-well basis. A watershed-based effluent credit trading approach may be a means of managing produced water at reduced cost while meeting or surpassing water quality regulations. This market-based approach allows for improved water quality management by enabling industrial, agricultural, and municipal discharge facilities to meet watermore » quality permit requirements by purchasing pollutant reduction credits from other entities within the same watershed. An evaluation of this concept was conducted for the Powder River Basin (PRB) of Montana and Wyoming by the Energy & Environmental Research Center (EERC). To conduct this assessment, the EERC collected and evaluated existing water quality information and developed the appropriate tools needed to assess the environmental and economic feasibility of specific trading scenarios. The accomplishments of this study include (1) an exploration of the available PRB water quantity and quality data using advanced statistical techniques, (2) development of an integrated water quality model that predicts the impacts of CBM produced water on stream salinity and sodicity, (3) development of an economic model that estimates costs and benefits from implementing potential trading options, (4) evaluation of hypothetical trading scenarios between select watersheds of the PRB, and (5) communication of the project concept and results to key state and federal agencies, industry representatives, and stakeholders of the PRB. The preliminary results of a basinwide assessment indicate that up to $684 million could be saved basinwide without compromising water quality as a result of implementing a watershed-based credit-trading approach.« less

  8. Past, present, and future of water data delivery from the U.S. Geological Survey

    USGS Publications Warehouse

    Hirsch, Robert M.; Fisher, Gary T.

    2014-01-01

    We present an overview of national water databases managed by the U.S. Geological Survey, including surface-water, groundwater, water-quality, and water-use data. These are readily accessible to users through web interfaces and data services. Multiple perspectives of data are provided, including search and retrieval of real-time data and historical data, on-demand current conditions and alert services, data compilations, spatial representations, analytical products, and availability of data across multiple agencies.

  9. Evolution of regulatory targets for drinking water quality.

    PubMed

    Sinclair, Martha; O'Toole, Joanne; Gibney, Katherine; Leder, Karin

    2015-06-01

    The last century has been marked by major advances in the understanding of microbial disease risks from water supplies and significant changes in expectations of drinking water safety. The focus of drinking water quality regulation has moved progressively from simple prevention of detectable waterborne outbreaks towards adoption of health-based targets that aim to reduce infection and disease to a level well below detection limits at the community level. This review outlines the changes in understanding of community disease and waterborne risks that prompted development of these targets, and also describes their underlying assumptions and current context. Issues regarding the appropriateness of selected target values, and how continuing changes in knowledge and practice may influence their evolution, are also discussed.

  10. Fraser River watershed, Colorado : assessment of available water-quantity and water-quality data through water year 1997

    USGS Publications Warehouse

    Apodaca, Lori Estelle; Bails, Jeffrey B.

    1999-01-01

    The water-quantity and water-quality data for the Fraser River watershed through water year 1997 were compiled for ground-water and surface-water sites. In order to assess the water-quality data, the data were related to land use/land cover in the watershed. Data from 81 water-quantity and water-quality sites, which consisted of 9 ground-water sites and 72 surface-water sites, were available for analysis. However, the data were limited and frequently contained only one or two water-quality analyses per site.The Fraser River flows about 28 miles from its headwaters at the Continental Divide to the confluence with the Colorado River. Ground-water resources in the watershed are used for residential and municipal drinking-water supplies. Surface water is available for use, but water diversions in the upper parts of the watershed reduce the flow in the river. Land use/land cover in the watershed is predominantly forested land, but increasing urban development has the potential to affect the quantity and quality of the water resources.Analysis of the limited ground-water data in the watershed indicates that changes in the land use/land cover affect the shallow ground-water quality. Water-quality data from eight shallow monitoring wells in the alluvial aquifer show that iron and manganese concentrations exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level. Radon concentrations from these monitoring wells exceeded the U.S. Environmental Protection Agency proposed maximum contaminant level. The proposed radon contaminant level is currently being revised. The presence of volatile organic compounds at two monitoring wells in the watershed indicates that land use affects the shallow ground water. In addition, bacteria detected in three samples are at concentrations that would be a concern for public health if the water was to be used as a drinking supply. Methylene blue active substances were detected in the ground water at some sites and are a possible indication of contamination from wastewater. Age of the alluvial ground water ranged from 10 to 30 years; therefore, results of land-management practices to improve water quality may not be apparent for many years.Surface-water-quality data for the Fraser River watershed are sparse. The surface-water-quality data show that elevated concentrations of selected constituents generally are related to specific land uses in the watershed. For one sample (about 2 percent; 1 of 53), dissolved manganese concentration exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level. Two samples from two surface-water sites in the watershed exceeded the un-ionized ammonia chronic criterion. Spatial distribution of nutrient species (ammonia, nitrite, nitrate, and total phosphorus) shows that elevated concentrations occur primarily downstream from urban areas. Sites with five or more years of record were analyzed for temporal trends in concentration of nutrient species. Downward trends were identified for ammonia and nitrite for three surface-water sites. For nitrate, no trends were observed at two sites and a downward trend was observed at one site. Total phosphorus showed no trend for the site near the mouth of the Fraser River. Downward trends in the nutrient species may reflect changes in the wastewater-treatment facilities in the watershed. Bacteria sampling completed in the watershed indicates that more bacteria are present in the water near urban settings.The limited ground-water and surface-water data for the Fraser River watershed provide a general assessment of the quantity and quality of these resources. Concentrations of most water-quality constituents generally are less than ground- and surface-water-quality standards, but the presence of bacteria, some volatile organic compounds, methylene blue active substances, and increased nutrients in the water may indicate that land use is affecting the water quality..

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    BENNETT,D.B.; PAQUETTE,D.E.; KLAUS,K.

    The BNL water supply system meets all water quality standards and has sufficient pumping and storage capacity to meet current and anticipated future operational demands. Because BNL's water supply is drawn from the shallow Upper Glacial aquifer, BNL's source water is susceptible to contamination. The quality of the water supply is being protected through (1) a comprehensive program of engineered and operational controls of existing aquifer contamination and potential sources of new contamination, (2) groundwater monitoring, and (3) potable water treatment. The BNL Source Water Assessment found that the source water for BNL's Western Well Field (comprised of Supply Wellsmore » 4, 6, and 7) has relatively few threats of contamination and identified potential sources are already being carefully managed. The source water for BNL's Eastern Well Field (comprised of Supply Wells 10, 11, and 12) has a moderate number of threats to water quality, primarily from several existing volatile organic compound and tritium plumes. The g-2 Tritium Plume and portions of the Operable Unit III VOC plume fall within the delineated source water area for the Eastern Well Field. In addition, portions of the much slower migrating strontium-90 plumes associated with the Brookhaven Graphite Research Reactor, Waste Concentration Facility and Building 650 lie within the Eastern source water area. However, the rate of travel in the aquifer for strontium-90 is about one-twentieth of that for tritium and volatile organic compounds. The Laboratory has been carefully monitoring plume migration, and has made adjustments to water supply operations. Although a number of BNL's water supply wells were impacted by VOC contamination in the late 1980s, recent routine analysis of water samples from BNL's supply wells indicate that no drinking water standards have been reached or exceeded. The high quality of the water supply strongly indicates that the operational and engineered controls implemented over the past ten years have effectively protected the quality of the water supply.« less

  12. Surface-water, water-quality, and ground-water assessment of the Municipio of Comerio, Puerto Rico, 1997-99

    USGS Publications Warehouse

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Comerio, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System, and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resource data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated at one continuous-record gaging station based on graphical curve-fitting techniques and log-Pearson Type III frequency curves. Estimates of low-flow characteristics for 13 partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics for the continuous- and partial-record stations were estimated using the relation curves developed for the low-flow study. Stream low-flow statistics document the general hydrology under current land- and water-use conditions. A sanitary quality survey of streams utilized 24 sampling stations to evaluate about 84 miles of stream channels with drainage to or within the municipio of Comerio. River and stream samples for fecal coliform and fecal streptococcus analyses were collected on two occasions at base-flow conditions to evaluate the sanitary quality of streams. Bacteriological analyses indicate that about 27 miles of stream reaches within the municipio of Comerio may have fecal coliform bacteria concentrations above the water-quality goal established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include illegal discharge of sewage to storm-water drains, malfunction of sanitary sewer ejectors, clogged and leaking sewage pipes, septic tank leakage, unfenced livestock, runoff from livestock pens, and seepage from pits containing animal wastes. Long-term fecal coliform data at two sampling stations on the Rio de la Plata indicate that since 1984, the geometric mean of five consecutive samples commonly has been at or below 2,000 colonies per 100 milliliters (established as the sanitary quality goal in Puerto Rico for Class SD type waters). At the sampling station upstream of Comerio, the geometric mean concentration has been near 500 colonies per 100 milliliters; downstream of the town of Comerio, the geometric mean concentration has been near 2,000 colonies per 100 milliliters concentration. The data at these stations also indicate that fecal coliform concentrations increase commonly above 2,000 colonies per 100 milliliters during storm-runoff events, ranging from 1,000 to 100,000 colonies per 100 milliliters at both stations. Geologic, topographic, soil, hydrogeologic, and streamflow data were used to divide the municipio of Comerio into five hydrogeologic terranes. The integrated database was then used to evaluate the ground-water development potential of each hydrogeologic terrane. Analysis suggests that areas with slopes greater than 15 degrees have relatively low ground-water development potential. Fractures may be important locally in enhancing the water-bearing properties in the hydrogeologic terranes containing igneous rocks. The integrated hydrogeologic approach used in this study can serve as an important tool for regulatory agencies of Puerto Rico and the municipio of Comerio to evaluate the ground-water resource development potential, examine ground- and surface-water interaction, and determine the effect of land-use practices on ground-water quantity and quality. Stream low-flow statistics document the general hydrology under current land and water uses. Low-flow characteristics may substantially change as a re

  13. Lessons learned from implementing a wet laboratory molecular training workshop for beach water quality monitoring.

    PubMed

    Verhougstraete, Marc Paul; Brothers, Sydney; Litaker, Wayne; Blackwood, A Denene; Noble, Rachel

    2015-01-01

    Rapid molecular testing methods are poised to replace many of the conventional, culture-based tests currently used in fields such as water quality and food science. Rapid qPCR methods have the benefit of being faster than conventional methods and provide a means to more accurately protect public health. However, many scientists and technicians in water and food quality microbiology laboratories have limited experience using these molecular tests. To ensure that practitioners can use and implement qPCR techniques successfully, we developed a week long workshop to provide hands-on training and exposure to rapid molecular methods for water quality management. This workshop trained academic professors, government employees, private industry representatives, and graduate students in rapid qPCR methods for monitoring recreational water quality. Attendees were immersed in these new methods with hands-on laboratory sessions, lectures, and one-on-one training. Upon completion, the attendees gained sufficient knowledge and practice to teach and share these new molecular techniques with colleagues at their respective laboratories. Key findings from this workshop demonstrated: 1) participants with no prior experience could be effectively trained to conduct highly repeatable qPCR analysis in one week; 2) participants with different desirable outcomes required exposure to a range of different platforms and sample processing approaches; and 3) the collaborative interaction amongst newly trained practitioners, workshop leaders, and members of the water quality community helped foster a cohesive cohort of individuals which can advocate powerful cohort for proper implementation of molecular methods.

  14. Lessons Learned from Implementing a Wet Laboratory Molecular Training Workshop for Beach Water Quality Monitoring

    PubMed Central

    Verhougstraete, Marc Paul; Brothers, Sydney; Litaker, Wayne; Blackwood, A. Denene; Noble, Rachel

    2015-01-01

    Rapid molecular testing methods are poised to replace many of the conventional, culture-based tests currently used in fields such as water quality and food science. Rapid qPCR methods have the benefit of being faster than conventional methods and provide a means to more accurately protect public health. However, many scientists and technicians in water and food quality microbiology laboratories have limited experience using these molecular tests. To ensure that practitioners can use and implement qPCR techniques successfully, we developed a week long workshop to provide hands-on training and exposure to rapid molecular methods for water quality management. This workshop trained academic professors, government employees, private industry representatives, and graduate students in rapid qPCR methods for monitoring recreational water quality. Attendees were immersed in these new methods with hands-on laboratory sessions, lectures, and one-on-one training. Upon completion, the attendees gained sufficient knowledge and practice to teach and share these new molecular techniques with colleagues at their respective laboratories. Key findings from this workshop demonstrated: 1) participants with no prior experience could be effectively trained to conduct highly repeatable qPCR analysis in one week; 2) participants with different desirable outcomes required exposure to a range of different platforms and sample processing approaches; and 3) the collaborative interaction amongst newly trained practitioners, workshop leaders, and members of the water quality community helped foster a cohesive cohort of individuals which can advocate powerful cohort for proper implementation of molecular methods. PMID:25822486

  15. A model study of the coupled water quality and hydrodynamics in YuQiao Reservoir of Haihe River Basin, People's Republic of China

    NASA Astrophysics Data System (ADS)

    Liu, X.; Liu, J.; Peng, W.; Wang, Y.

    2007-05-01

    In recent years, eutrophication has become one of the most serious of global water pollution problems, especially in reservoirs, which is menacing the security of domestic water supplies. As the unique drinking water source of Tianjin within the Haihe River basin of Hebei Province, China, YuQiao Reservoir has been polluted and its eutrophic state is serious. To make clear the physical and chemical relationship between transport and transformation of the polluted water, a model package was developed to compute the hydrodynamic field and mass transport processes including total nitrogen (TN) and total phosphorus (TP) for YuQiao Reservoir. The hydrodynamic model was driven by observed winds and daily measured flow data to simulate the seasonal water cycle of the reservoir. The mass transport and transformation processes of TN and TP was based on the unsteady diffusion equations, driven by observed meteorological forcings and external loadings, with the fluxes through the bottom of the reservoir, plant (algal) photosynthesis, and respiration as internal sources and sinks. The solution of these equations uses the finite volume method and alternating direction implicit (ADI) scheme. The model was calibrated and verified by using the data observed from YuQiao Reservoir in two different years. The results showed that in YuQiao Reservoir, the wind-driven current is an important style of lake current, while the water quality is decreasing from east to west because of the external polluted loadings. There was good agreement between the simulated and measured values. Advection is the main process driving the water quality impacts from the inflow river, and diffusion and biochemical processes dominate in center of the reservoir. So it is necessary to build a pre-pond to reduce the external loadings into the reservoir.

  16. 17th Environmental Quality Index: Troubling Times with Toxics.

    ERIC Educational Resources Information Center

    National Wildlife, 1986

    1986-01-01

    Presents a subjective analysis of the status of United States' natural resources, reviewing 1985's key environmental events, problems, and successes. Reports current conditions and/or dilemmas concerning wildlife, air, water, energy, forests, and soils. Provides both a public rating of the quality of life and a priority ranking of environmental…

  17. Freshwater mussel population status and habitat quality in the Clinch River, Virginia and Tennessee, USA: a featured collection

    USGS Publications Warehouse

    Zipper, Carl E.; Beaty, Braven; Johnson, Gregory C.; Jones, Jess W.; Krstolic, Jennifer Lynn; Ostby, Brett J.K.; Wolfe, William J.; Donovan, Patricia

    2014-01-01

    The Clinch River of southwestern Virginia and northeastern Tennessee is arguably the most important river for freshwater mussel conservation in the United States. This featured collection presents investigations of mussel population status and habitat quality in the Clinch River. Analyses of historic water- and sediment-quality data suggest that water column ammonia and water column and sediment metals, including Cu and Zn, may have contributed historically to declining densities and extirpations of mussels in the river's Virginia sections. These studies also reveal increasing temporal trends for dissolved solids concentrations throughout much of the river's extent. Current mussel abundance patterns do not correspond spatially with physical habitat quality, but they do correspond with specific conductance, dissolved major ions, and water column metals, suggesting these and/or associated constituents as factors contributing to mussel declines. Mussels are sensitive to metals. Native mussels and hatchery-raised mussels held in cages in situ accumulated metals in their body tissues in river sections where mussels are declining. Organic compound and bed-sediment contaminant analyses did not reveal spatial correspondences with mussel status metrics, although potentially toxic levels were found. Collectively, these studies identify major ions and metals as water- and sediment-quality concerns for mussel conservation in the Clinch River.

  18. Evaluating Water Quality in a Suburban Environment

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.; Garza, N.

    2008-12-01

    A water quality analysis and modeling study is currently being conducted on the Martinez Creek, a small catchment within Cibolo watershed, a sub-basin of the San Antonio River, Texas. Several other major creeks, such as Salatrillo, Escondido, and Woman Hollering merge with Martinez Creek. Land use and land cover analysis shows that the major portion of the watershed is dominated by residential development with average impervious cover percentage of approximately 40% along with a some of agricultural areas and brushlands. This catchment is characterized by the presence of three small wastewater treatment plants. Previous site visits and sampling of water quality indicate the presence of algae and fecal coliform bacteria at levels well above state standards at several locations in the catchment throughout the year. Due to the presence of livestock, residential development and wastewater treatment plants, a comprehensive understanding of water quality is important to evaluate the sources and find means to control pollution. As part of the study, a spatial and temporal water quality analyses of conventional parameters as well as emerging contaminants, such as veterinary pharmaceuticals and microbial pathogens is being conducted to identify critical locations and sources. Additionally, the Hydrologic Simulation Program FORTRAN (HSPF) will be used to identify best management practices that can be incorporated given the projected growth and development and feasibility.

  19. Effects of highway construction on stream water quality and macroinvertebrate condition in a mid-atlantic highlands watershed, USA.

    PubMed

    Chen, Yushun; Viadero, Roger C; Wei, Xinchao; Fortney, Ronald; Hedrick, Lara B; Welsh, Stuart A; Anderson, James T; Lin, Lian-Shin

    2009-01-01

    Refining best management practices (BMPs) for future highway construction depends on a comprehensive understanding of environmental impacts from current construction methods. Based on a before-after-control impact (BACI) experimental design, long-term stream monitoring (1997-2006) was conducted at upstream (as control, n = 3) and downstream (as impact, n = 6) sites in the Lost River watershed of the Mid-Atlantic Highlands region, West Virginia. Monitoring data were analyzed to assess impacts of during and after highway construction on 15 water quality parameters and macroinvertebrate condition using the West Virginia stream condition index (WVSCI). Principal components analysis (PCA) identified regional primary water quality variances, and paired t tests and time series analysis detected seven highway construction-impacted water quality parameters which were mainly associated with the second principal component. In particular, impacts on turbidity, total suspended solids, and total iron during construction, impacts on chloride and sulfate during and after construction, and impacts on acidity and nitrate after construction were observed at the downstream sites. The construction had statistically significant impacts on macroinvertebrate index scores (i.e., WVSCI) after construction, but did not change the overall good biological condition. Implementing BMPs that address those construction-impacted water quality parameters can be an effective mitigation strategy for future highway construction in this highlands region.

  20. [Research of input water ratio's impact on the quality of effluent water from hydrolysis reactor].

    PubMed

    Liang, Kang-Qiang; Xiong, Ya; Qi, Mao-Rong; Lin, Xiu-Jun; Zhu, Min; Song, Ying-Hao

    2012-11-01

    Based on high SS/BOD and low C/N ratio of waste water of municipal wastewater treatment plant, the structure of currently existing hydrolysis reactor was reformed to improve the influent quality. In order to strengthen the sludge hydrolysis and improve effluent water quality, two layers water distributors were set up so that the sludge hydrolysis zone was formed between the two layers distribution. For the purpose of the hydrolysis reactor not only plays the role of the primary sedimentation tank but also improves the effluent water biodegradability, input water ratios of the upper and lower water distributor in the experiment were changed to get the best input water ratio to guide the large-scale application of this sort hydrolysis reactor. Results show, four kinds of input water ratio have varying degrees COD and SS removal efficiency, however, input water ratio for 1 : 1 can substantially increase SCOD/COD ratio and VFA concentration of effluent water compared with the other three input water ratios. To improve the effluent biodegradability, input water ratio for 1 : 1 was chosen for the best input water ratio. That was the ratio of flow of upper distributor was 50%, and the ratio of the lower one was 50%, at this case it can reduce the processing burden of COD and SS for follow-up treatment, but also improve the biodegradability of the effluent.

  1. The impact of changing climate on surface and ground water quality in southeast of Ireland

    NASA Astrophysics Data System (ADS)

    Tribak, Kamal

    2015-04-01

    In the current changing climate globally, Ireland have been experiencing a yearly recurrent extreme heavy rainfall events in the last decade, with damaging visible effects socially, economically and on the environment. Ireland intensive agriculture production is a major treat to the aquatic environment, Nitrogen and phosphorus losses to the water courses are major causes to eutrophication. The European Water Frame Directive (WFD 2000/60/EC) and Nitrates Directive (91/676/EEC) sets a number of measures to better protect and improve water status. Five years of high temporal resolution river water quality data measurement from two contrasting catchment in the southeast of Ireland were correlated with rain fall and nutrients losses to the ground and surface water, additional to the integrated Southeast River District Basin ground and surface water quality to establish spatiotemporal connection to the agriculture activities, the first well-drained soil catchment had high coefficient correlation with rain fall with higher losses to groundwater, on the other hand higher nutrients losses to surface water were higher with less influence from groundwater recharge of N and P transfer, the poorly clay base soil contributed to higher increased losses to surface water during excessive rain fall. Agriculture activities, hydrology, geology and human interaction can interact according to their site specific setting and the effects will fluctuate dependent on the conditions influencing the impact on water quality, there is a requirement to better distinguish those effects together and identify areas and land uses control and nutrients management to improve the water quality, stakeholders co-operation along with effective polices, long term monitoring, nutrients pathways management and better understanding of the environmental factors interaction on national, regional and catchment scale to enable planning policies and enforcement measures to be more focused on areas of high risk than others.

  2. Human enteroviruses in oysters and their overlying waters.

    PubMed Central

    Goyal, S M; Gerba, C P; Melnick, J L

    1979-01-01

    The presence of enteroviruses in oysters and oyster-harvesting waters of the Texas Gulf coast was monitored over a period of 10 months. Viruses were detected in water and oyster samples obtained from areas both open and closed to shellfish harvesting. Viruses were detected periodically in waters that met current bacteriological standards for shellfish harvesting. No significant statistical relationship was demonstrated between virus concentration in oysters and the bacteriological and physiochemical quality of water and shellfish. Viruses in water were, however, moderately correlated with total coliforms in water and oysters and with fecal coliforms in oysters. Total coliforms in water were realted to total coliforms in sediment were related only to total coliforms in sediment. Among the physiochemical characteristics of water, turbidity was related statistically to the organic matter content of water and to fecal coliforms in water. There was a marked effect of rainfall on the bacteriological quality of water. Of a total of 44 water samples, 26 yielded virus in concentrations from 4 to 167 plaque-forming units per 100-gallon (ca. 378.5-liter) sample. Of a total of 40 pools of 10 to 12 oysters each, virus was found in 14 pools at a concentration of 6 to 224 plaque-forming units per 100 g of oyster meat. On five occasions, virus was found in water samples when no virus could be detected in oysters harvested from the same sites. This study indicates that current bacteriological standards for determining the safety of shellfish and shellfish-growing waters do no reflect the occurrence of enteroviruses. PMID:222210

  3. Human enteroviruses in oysters and their overlying waters.

    PubMed

    Goyal, S M; Gerba, C P; Melnick, J L

    1979-03-01

    The presence of enteroviruses in oysters and oyster-harvesting waters of the Texas Gulf coast was monitored over a period of 10 months. Viruses were detected in water and oyster samples obtained from areas both open and closed to shellfish harvesting. Viruses were detected periodically in waters that met current bacteriological standards for shellfish harvesting. No significant statistical relationship was demonstrated between virus concentration in oysters and the bacteriological and physiochemical quality of water and shellfish. Viruses in water were, however, moderately correlated with total coliforms in water and oysters and with fecal coliforms in oysters. Total coliforms in water were realted to total coliforms in sediment were related only to total coliforms in sediment. Among the physiochemical characteristics of water, turbidity was related statistically to the organic matter content of water and to fecal coliforms in water. There was a marked effect of rainfall on the bacteriological quality of water. Of a total of 44 water samples, 26 yielded virus in concentrations from 4 to 167 plaque-forming units per 100-gallon (ca. 378.5-liter) sample. Of a total of 40 pools of 10 to 12 oysters each, virus was found in 14 pools at a concentration of 6 to 224 plaque-forming units per 100 g of oyster meat. On five occasions, virus was found in water samples when no virus could be detected in oysters harvested from the same sites. This study indicates that current bacteriological standards for determining the safety of shellfish and shellfish-growing waters do no reflect the occurrence of enteroviruses.

  4. Quality of groundwater resources in Afghanistan.

    PubMed

    Hayat, Ehsanullah; Baba, Alper

    2017-07-01

    Water is the main source of energy production and economy in Afghanistan where agriculture accounts for more than 50% of the country's gross domestic product (GDP). Access to safe drinking water is still a problem in the country, which has caused different health issues and even child mortality especially in rural areas. Groundwater is the main source of drinking water in the country. However, little knowledge is available about the quality of groundwater throughout the entire country, and its quality has not been investigated extensively yet like in other countries in the world. While most people think that consuming groundwater is a reliable and safe source of drinking water for health, the United Nations (UN) agencies report various kinds of waterborne diseases and even child mortalities due to drinking water quality in the country. In this article, significant geogenic and anthropogenic factors that play a vital role in groundwater contamination of the country are identified and explained. Different geogenic contaminations such as arsenic, fluoride, sulfate, and boron occur in several areas of Afghanistan that have a direct effect on human health. The water quality mapping for Afghanistan is completed for half of the country, which shows that groundwater is plagued by high levels of fluoride and arsenic in some areas. The water quality mapping of the other half of the country cannot be completed due to security concerns currently. Also, there are different kinds of waterborne diseases such as diarrhea, cholera, and dysentery that can be seen in different parts of the country because of anthropogenic activities which continuously deteriorate groundwater.

  5. Water quality assessment in terms of water quality index (WQI): case study of the Kolong River, Assam, India

    NASA Astrophysics Data System (ADS)

    Bora, Minakshi; Goswami, Dulal C.

    2017-10-01

    The Kolong River of Nagaon district, Assam has been facing serious degradation leading to its current moribund condition due to a drastic human intervention in the form of an embankment put across it near its take-off point from the Brahmaputra River in the year 1964. The blockage of the river flow was adopted as a flood control measure to protect its riparian areas, especially the Nagaon town, from flood hazard. The river, once a blooming distributary of the mighty Brahmaputra, had high navigability and rich riparian biodiversity with a well established agriculturally productive watershed. However, the present status of Kolong River is highly wretched as a consequence of the post-dam effects thus leaving it as stagnant pools of polluted water with negligible socio-economic and ecological value. The Central Pollution Control Board, in one of its report has placed the Kolong River among 275 most polluted rivers of India. Thus, this study is conducted to analyze the seasonal water quality status of the Kolong River in terms of water quality index (WQI). The WQI scores shows very poor to unsuitable quality of water samples in almost all the seven sampling sites along the Kolong River. The water quality is found to be most deteriorated during monsoon season with an average WQI value of 122.47 as compared to pre-monsoon and post-monsoon season having average WQI value of 85.73 and 80.75, respectively. Out of the seven sampling sites, Hatimura site (S1) and Nagaon Town site (S4) are observed to be the most polluted sites.

  6. Time-integrated passive sampling as a complement to conventional point-in-time sampling for investigating drinking-water quality, McKenzie River Basin, Oregon, 2007 and 2010-11

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Alvarez, David A.

    2014-01-01

    The Eugene Water & Electric Board (EWEB) supplies drinking water to approximately 200,000 people in Eugene, Oregon. The sole source of this water is the McKenzie River, which has consistently excellent water quality relative to established drinking-water standards. To ensure that this quality is maintained as land use in the source basin changes and water demands increase, EWEB has developed a proactive management strategy that includes a combination of conventional point-in-time discrete water sampling and time‑integrated passive sampling with a combination of chemical analyses and bioassays to explore water quality and identify where vulnerabilities may lie. In this report, we present the results from six passive‑sampling deployments at six sites in the basin, including the intake and outflow from the EWEB drinking‑water treatment plant (DWTP). This is the first known use of passive samplers to investigate both the source and finished water of a municipal DWTP. Results indicate that low concentrations of several polycyclic aromatic hydrocarbons and organohalogen compounds are consistently present in source waters, and that many of these compounds are also present in finished drinking water. The nature and patterns of compounds detected suggest that land-surface runoff and atmospheric deposition act as ongoing sources of polycyclic aromatic hydrocarbons, some currently used pesticides, and several legacy organochlorine pesticides. Comparison of results from point-in-time and time-integrated sampling indicate that these two methods are complementary and, when used together, provide a clearer understanding of contaminant sources than either method alone.

  7. Sanitary quality of surface water during base-flow conditions in the Municipality of Caguas, Puerto Rico, 2014–15: A comparison with results from a similar 1997–99 study

    USGS Publications Warehouse

    Rodríguez-Martínez, Jesús; Guzmán-Ríos, Senén

    2017-06-26

    A study was conducted in 2014–15 by the U.S. Geological Survey (USGS), in cooperation with the Municipality of Caguas, to determine if changes in the stream sanitary quality during base-flow conditions have occurred since 1997–99, when a similar study was completed by the USGS. Water samples were collected for the current study during two synoptic surveys in 2014 and 2015. Water samples were analyzed for fecal and total coliform bacteria, nitrate plus nitrite as nitrogen, nitrogen and oxygen isotopes of nitrate, and human health and pharmaceutical products. Water sampling occurred at 39 stream locations used during the 1997–99 study by the USGS and at 11 additional sites. A total of 151 stream miles were classified on the basis of fecal and total coliform bacteria results.The overall spatial pattern of the sanitary quality of surface water during 2014–15 is similar to the pattern observed in 1997–99 in relation to the standards adopted by the Puerto Rico Environmental Quality Board in 1990. Surface water at most of the water-sampling sites exceeded the current standard for fecal coliform of 200 colonies per 100 milliliters adopted by the Puerto Rico Environmental Quality Board in 2010. The poorest sanitary quality was within the urban area of the Municipality of Caguas, particularly in urban stream reaches of Río Caguitas and in rural and suburban reaches bordered by houses in high density that either have inadequate septic tanks or discharge domestic wastewater directly into the stream channels. The best sanitary quality occurred in areas having little or no human development, such as in the wards of San Salvador and Beatriz to the south and southwest of Caguas, respectively. The concentration of nitrate plus nitrite as nitrogen ranged from 0.02 to 9.0 milligrams per liter, and did not exceed the U.S. Environmental Protection Agency drinking-water standard for nitrate as nitrogen of 10 milligrams per liter. The composition of nitrogen and oxygen isotopes of nitrate indicates that the origin of nitrate in the streams is most likely animal and human waste. A baseline was established for the concentrations of selected human health and pharmaceutical products at stations in some of the streams within the Municipality of Caguas. Thirty-eight human health and pharmaceutical products were present at or above the measurement detection level.

  8. PASSIVE SAMPLING OF GROUND WATER MONITORING WELLS WITHOUT PURGING MULTILEVEL WELL CHEMISTRY AND TRACER DISAPPEARANCE

    EPA Science Inventory

    It is essential that the sampling techniques utilized in groundwater monitoring provide data that accurately depicts the water quality of the sampled aquifer in the vicinity of the well. Due to the large amount of monitoring activity currently underway in the U.S.A. it is also im...

  9. Sugar yield and composition of tubers from Jerusalem Artichoke (Helianthus tuberosus) irrigated with saline waters

    USDA-ARS?s Scientific Manuscript database

    Currently, major biofuel crops are also food crops that demand fertile soils and good-quality water. Jerusalem artichoke (Helianthus tuberosus, Asteraceae) produces high tonnage of tubers that are rich in sugars, mainly in the form of inulin. In this study, plants of the cultivar “White Fuseau” grow...

  10. Longshore water-current velocity and the potential for transport of contaminants—A pilot study in Lake Erie from Walnut Creek to Presque Isle State Park beaches, Erie, Pennsylvania, June and August 2015

    USGS Publications Warehouse

    Hittle, Elizabeth A.

    2017-04-20

    Bacteria-driven restrictions and (or) advisories on swimming at beaches in Presque Isle State Park (PISP), Erie, Pennsylvania, can occur during the summer months. One of the suspected sources of bacteria is sediment. A terrestrial sediment source to the west of PISP is Walnut Creek, which discharges to Lake Erie about 8.5 kilometers southwest of PISP Beach 1. On June 24, June 25, August 18, and August 19, 2015, synoptic surveys were conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Sea Grant, in Lake Erie between Walnut Creek and PISP Beach 1 to characterize the water-current velocity and direction to determine whether sediment from Walnut Creek could be affecting the PISP beaches. Water-quality data (temperature, specific conductance, and turbidity) were collected in conjunction with the synoptic surveys in June. Water-quality data (Escherichia coli [E. coli] bacteria, temperature, and turbidity) were collected about a meter from the shore (nearshore) on June 24, August 19, and after a precipitation event on August 11, 2015. Additionally, suspended sediment was collected nearshore on June 24 and August 11, 2015. Samples collected near Walnut Creek during all three bacterial sampling events contained higher counts than other samples. Counts steadily decreased from west to east, then increased about 1–2 kilometers from PISP Beach 1; however, this study was not focused on examining other potential sources of bacteria.The Velocity Mapping Toolbox (VMT) was used to process the water-current synoptic surveys, and the results were visualized within ArcMap. For the survey accomplished on June 24, 2015, potential paths a particle could take between Walnut Creek and PSIP Beach 1 if conditions remained steady over a number of hours were visualized. However, the water-current velocity and direction were variable from one day to the other, indicating this was likely an unrealistic assumption for the study area. This analysis was not accomplished for the other surveys due to unsteady lake conditions encountered on June 25 and August 18, and reduced quality of the survey on August 19.

  11. Water quality of streams draining abandoned and reclaimed mined lands in the Kantishna Hills area, Denali National Park and Preserve, Alaska, 2008–11

    USGS Publications Warehouse

    Brabets, Timothy P.; Ourso, Robert T.

    2013-01-01

    The Kantishna Hills are an area of low elevation mountains in the northwest part of Denali National Park and Preserve, Alaska. Streams draining the Kantishna Hills are clearwater streams that support several species of fish and are derived from rain, snowmelt, and subsurface aquifers. However, the water quality of many of these streams has been degraded by mining. Past mining practices generated acid mine drainage and excessive sediment loads that affected water quality and aquatic habitat. Because recovery through natural processes is limited owing to a short growing season, several reclamation projects have been implemented on several streams in the Kantishna Hills region. To assess the current water quality of streams in the Kantishna Hills area and to determine if reclamation efforts have improved water quality, a cooperative study between the U.S. Geological Survey and the National Park Service was undertaken during 2008-11. High levels of turbidity, an indicator of high concentrations of suspended sediment, were documented in water-quality data collected in the mid-1980s when mining was active. Mining ceased in 1985 and water-quality data collected during this study indicate that levels of turbidity have declined significantly. Turbidity levels generally were less than 2 Formazin Nephelometric Units and suspended sediment concentrations generally were less than 1 milligram per liter during the current study. Daily turbidity data at Rock Creek, an unmined stream, and at Caribou Creek, a mined stream, documented nearly identical patterns of turbidity in 2009, indicating that reclamation as well as natural revegetation in mined streams has improved water quality. Specific conductance and concentrations of dissolved solids and major ions were highest from streams that had been mined. Most of these streams flow into Moose Creek, which functions as an integrator stream, and dilutes the specific conductance and ion concentrations. Calcium and magnesium are the dominant cations, and bicarbonate and sulfate are the dominant anions. Water samples indicate that the water from Rock Creek, Moose Creek, Slate Creek, and Eldorado Creek is a calcium bicarbonate-type water. The remaining sites are a calcium sulfate type water. U.S. Environmental Protection Agency guidelines for arsenic and antimony in drinking water were exceeded in water at Slate Creek and Eureka Creek. Concentrations of arsenic, cadmium, chromium, copper, lead, nickel, and zinc in streambed sediments at many sites exceed sediment quality guideline thresholds that could be toxic to aquatic life. However, assessment of these concentrations, along with the level of organic carbon detected in the sediment, indicate that only concentrations of arsenic and chromium may be toxic to aquatic life at many sites. In 2008 and 2009, 104 macroinvertebrate taxa and 164 algae taxa were identified from samples collected from seven sites. Of the macroinvertebrates, 86 percent were insects and most of the algae consisted of diatoms. Based on the National Community Index, Rock Creek, a reference site, and Caribou Creek, and a mined stream that had undergone some reclamation, exhibited the best overall stream conditions; whereas Slate Creek and Friday Creek, two small streams that were mined extensively, exhibited the worst stream conditions. A non-metric multi-dimensional scaling analysis of the macroinvertebrate and algae data showed a distinct grouping between the 2008 and 2009 samples, likely because of differences between a wet, cool summer in 2008 and a dry, warm summer in 2009.

  12. Status of groundwater quality in the San Fernando--San Gabriel study unit, 2005--California GAMA Priority Basin Project

    USGS Publications Warehouse

    Land, Michael; Kulongoski, Justin T.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the approximately 460-square-mile San Fernando--San Gabriel (FG) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study area is in Los Angeles County and includes Tertiary-Quaternary sedimentary basins situated within the Transverse Ranges of southern California. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA FG study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer systems (hereinafter referred to as primary aquifers) throughout California. The assessment is based on water-quality and ancillary data collected in 2005 by the USGS from 35 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifers were defined by the depth interval of the wells listed in the CDPH database for the FG study unit. The quality of groundwater in primary aquifers may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifers of the FG study unit, not the treated drinking water delivered to consumers by water purveyors.

  13. Reclaimed water as an alternative source of water for the city of Bulawayo, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Taigbenu, Akpofure E.; Ncube, Mthokozisi

    Perennial water problems, precipitated by increased water demand in Bulawayo, the second largest city in Zimbabwe, has prompted the consideration of a wide array of strategies from demand management and water conservation measures to exploitation of alternative water sources. One of such strategies in the latter category includes recycling of blue water for both potable and non-potable purposes. This paper examines the existing reclaimed water system with a view at revamping the existing infrastructure to maximise reclaimed water use for purposes that are amenable to water of lower quality. It is a generally accepted practice to avoid the use of water of high quality for purposes that can tolerate a lower grade, unless it is in excess in amount [ Okun, D.A., 1973. Planning for water reuse. Journal of AWWA 65(10)]. The reclaimed water is assessed in terms of its quality and quantity vis-à-vis possible uses. Perceptions and expectations of both current and identified prospective consumers are examined and discussed, in addition to the feasibility of accommodating these identified prospective consumers in an expanded network. Apart from enhancement of the existing infrastructure, the paper highlights the need for social marketing and education in order to realise the optimum benefits of this alternative water source. The cost implications of implementing the proposed project are evaluated, including suggestions on suitable tariff structure and an allocation distribution that achieves equity.

  14. Valuing the non-market benefits of estuarine ecosystem services in a river basin context: Testing sensitivity to scope and scale

    NASA Astrophysics Data System (ADS)

    Pinto, R.; Brouwer, R.; Patrício, J.; Abreu, P.; Marta-Pedroso, C.; Baeta, A.; Franco, J. N.; Domingos, T.; Marques, J. C.

    2016-02-01

    A large scale contingent valuation survey is conducted among residents in one of the largest river basins in Portugal to estimate the non-market benefits of the ecosystem services associated with implementation of the European Water Framework Directive (WFD). Statistical tests of public willingness to pay's sensitivity to scope and scale are carried out. Decreasing marginal willingness to pay (WTP) is found when asking respondents to value two water quality improvement scenarios (within sample comparison), from current moderate water quality conditions to good and subsequently excellent ecological status. However, insensitivity to scale is found when asking half of the respondents to value water quality improvements in the estuary only and the other half in the whole basin (between sample comparison). Although respondents living outside the river basin value water quality improvements significantly less than respondents inside the basin, no spatial heterogeneity can be detected within the basin between upstream and downstream residents. This finding has important implications for spatial aggregation procedures across the population of beneficiaries living in the river basin to estimate its total economic value based on public WTP for the implementation of the WFD.

  15. Integrated solutions for urban runoff pollution control in Brazilian metropolitan regions.

    PubMed

    Morihama, A C D; Amaro, C; Tominaga, E N S; Yazaki, L F O L; Pereira, M C S; Porto, M F A; Mukai, P; Lucci, R M

    2012-01-01

    One of the most important causes for poor water quality in urban rivers in Brazil is the low collection efficiency of the sewer system due to unforeseen interconnections with the stormwater drainage system. Since the beginning of the 20th century, Brazilian cities have adopted separate systems for sanitary sewers and stormwater runoff. Gradually these two systems became interconnected. A major challenge faced today by water managers in Brazil is to find efficient and low cost solutions to deal with this mixed system. The current situation poses an important threat to the improvement of the water quality in urban rivers and lakes. This article presents an evaluation of the water quality parameters and the diffuse pollution loads during rain events in the Pinheiros River, a tributary of the Tietê River in São Paulo. It also presents different types of integrated solutions for reducing the pollution impact of combined systems, based on the European experience in urban water management. An evaluation of their performance and a comparison with the separate system used in most Brazilian cities is also presented. The study is based on an extensive water quality monitoring program that was developed for a special investigation in the Pinheiros River and lasted 2.5 years. Samples were collected on a daily basis and water quality variables were analyzed on a daily, weekly or monthly basis. Two hundred water quality variables were monitored at 53 sampling points. During rain events, additional monitoring was carried out using an automated sampler. Pinheiros River is one of the most important rivers in the São Paulo Metropolitan Region and it is also a heavily polluted one.

  16. Lake trout spawning habitat in the Great Lakes - a review of current knowledge

    USGS Publications Warehouse

    Marsden, J. Ellen; Casselman, John M.; Edsall, Thomas A.; Elliott, Robert F.; Fitzsimons, John D.; Horns, William H.; Manny, Bruce A.; McAughey, Scott C.; Sly, Peter G.; Swanson, Bruce L.

    1995-01-01

    We review existing information on lake trout spawning habitat, which might indicate whether habitat is now a limiting factor in lake trout reproductive success. Lake trout spawning habitat quality is defined by the presence or absence of olfactory cues for homing, reef location with respect to the shoreline, water depth, proximity to nursery areas, reef size, contour, substrate size and shape, depth of interstitial spaces, water temperature at spawning time, water quality in interstitial spaces, and the presence of egg and fry predators. Data on factors which attracted native spawners to spawning reefs are lacking, due to the absence of historic data on egg deposition. No direct evidence of egg deposition has been collected from sites deeper than 18 m. Interstitial space and, therefore, substrate size and shape, appear to be critical for both site selection by adults and protection of eggs and fry. Water quality is clearly important for egg incubation, but the critical parameters which define water quality have not yet been well determined in the field. Exposure to wave energy, dictated in part by reef location, may maintain high water quality but may also damage or dislodge eggs. The importance of olfactory cues, water temperature, and proximity to nursery habitat to spawning trout is unclear. Limited data suggest that egg and fry predators, particularly exotic species, may critically affect fry production and survival. Although availability of physical spawning habitat is probably not limiting lake trout reproduction, changes in water quality and species composition may negatively affect early life stages. This review of habitat factors that affect early life stages of lake trout suggests several priorities for research and management.

  17. Impacts of Small-Scale Industrialized Swine Farming on Local Soil, Water and Crop Qualities in a Hilly Red Soil Region of Subtropical China

    PubMed Central

    Zhang, Di; Wang, Xingxiang; Zhou, Zhigao

    2017-01-01

    Industrialized small-scale pig farming has been rapidly developed in developing regions such as China and Southeast Asia, but the environmental problems accompanying pig farming have not been fully recognized. This study investigated 168 small-scale pig farms and 29 example pig farms in Yujiang County of China to examine current and potential impacts of pig wastes on soil, water and crop qualities in the hilly red soil region, China. The results indicated that the small-scale pig farms produced considerable annual yields of wastes, with medians of 216, 333 and 773 ton yr−1 per pig farm for manure, urine and washing wastewater, respectively, which has had significant impact on surface water quality. Taking NH4+-N, total nitrogen (TN) or total phosphorus (TP) as a criterion to judge water quality, the proportions of Class III and below Class III waters in the local surface waters were 66.2%, 78.7% and 72.5%. The well water (shallow groundwater) quality near these pig farms met the water quality standards by a wide margin. The annual output of pollutants from pig farms was the most important factor correlated with the nutrients and heavy metals in soils, and the relationship can be described by a linear equation. The impact on croplands was marked by the excessive accumulation of available phosphorus and heavy metals such as Cu and Zn. For crop safety, the over-limit ratio of Zn in vegetable samples reached 60%, other heavy metals in vegetable and rice samples tested met the food safety standard at present. PMID:29211053

  18. Impacts of Small-Scale Industrialized Swine Farming on Local Soil, Water and Crop Qualities in a Hilly Red Soil Region of Subtropical China.

    PubMed

    Zhang, Di; Wang, Xingxiang; Zhou, Zhigao

    2017-12-06

    Industrialized small-scale pig farming has been rapidly developed in developing regions such as China and Southeast Asia, but the environmental problems accompanying pig farming have not been fully recognized. This study investigated 168 small-scale pig farms and 29 example pig farms in Yujiang County of China to examine current and potential impacts of pig wastes on soil, water and crop qualities in the hilly red soil region, China. The results indicated that the small-scale pig farms produced considerable annual yields of wastes, with medians of 216, 333 and 773 ton yr -1 per pig farm for manure, urine and washing wastewater, respectively, which has had significant impact on surface water quality. Taking NH₄⁺-N, total nitrogen (TN) or total phosphorus (TP) as a criterion to judge water quality, the proportions of Class III and below Class III waters in the local surface waters were 66.2%, 78.7% and 72.5%. The well water (shallow groundwater) quality near these pig farms met the water quality standards by a wide margin. The annual output of pollutants from pig farms was the most important factor correlated with the nutrients and heavy metals in soils, and the relationship can be described by a linear equation. The impact on croplands was marked by the excessive accumulation of available phosphorus and heavy metals such as Cu and Zn. For crop safety, the over-limit ratio of Zn in vegetable samples reached 60%, other heavy metals in vegetable and rice samples tested met the food safety standard at present.

  19. An Approach to Industrial Stormwater Benchmarks: Establishing and Using Site-Specific Threshold Criteria at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, C G; Mathews, S

    2006-09-07

    Current regulatory schemes use generic or industrial sector specific benchmarks to evaluate the quality of industrial stormwater discharges. While benchmarks can be a useful tool for facility stormwater managers in evaluating the quality stormwater runoff, benchmarks typically do not take into account site-specific conditions, such as: soil chemistry, atmospheric deposition, seasonal changes in water source, and upstream land use. Failing to account for these factors may lead to unnecessary costs to trace a source of natural variation, or potentially missing a significant local water quality problem. Site-specific water quality thresholds, established upon the statistical evaluation of historic data take intomore » account these factors, are a better tool for the direct evaluation of runoff quality, and a more cost-effective trigger to investigate anomalous results. Lawrence Livermore National Laboratory (LLNL), a federal facility, established stormwater monitoring programs to comply with the requirements of the industrial stormwater permit and Department of Energy orders, which require the evaluation of the impact of effluent discharges on the environment. LLNL recognized the need to create a tool to evaluate and manage stormwater quality that would allow analysts to identify trends in stormwater quality and recognize anomalous results so that trace-back and corrective actions could be initiated. LLNL created the site-specific water quality threshold tool to better understand the nature of the stormwater influent and effluent, to establish a technical basis for determining when facility operations might be impacting the quality of stormwater discharges, and to provide ''action levels'' to initiate follow-up to analytical results. The threshold criteria were based on a statistical analysis of the historic stormwater monitoring data and a review of relevant water quality objectives.« less

  20. Predicting nonpoint stormwater runoff quality from land use

    PubMed Central

    2018-01-01

    Evaluating the impact of urban development on natural ecosystem processes has become an increasingly complex task for planners, environmental scientists, and engineers. As the built environment continues to grow, unregulated nonpoint pollutants from increased human activity and large-scale development severely stress urban streams and lakes resulting in their currently impaired or degraded state. In response, integrated water quality management programs have been adopted to address these unregulated nonpoint pollutants by utilizing best management practices (BMPs) that treat runoff as close to the source as possible. Knowing where to install effective BMPs is no trivial task, considering budget constraints and the spatially extensive nature of nonpoint stormwater runoff. Accordingly, this paper presents an initial, straightforward and cost-effective methodology to identify critical nonpoint pollutant source watersheds through correlation of water quality with land use. Through an illustrative application to metropolitan Denver, Colorado, it is shown how this method can be used to aid stormwater professionals to evaluate and specify retrofit locations in need of water quality treatment features reduce, capture and treat stormwater runoff prior to entering receiving waters. PMID:29742172

  1. Impact assessment of treated wastewater on water quality of the receiver using the Wilcoxon test

    NASA Astrophysics Data System (ADS)

    Ofman, Piotr; Puchlik, Monika; Simson, Grzegorz; Krasowska, Małgorzata; Struk-Sokołowska, Joanna

    2017-11-01

    Wastewater treatment is a process which aims to reduce the concentration of pollutants in wastewater to the level allowed by current regulations. This is to protect the receivers which typically are rivers, streams, lakes. Examination of the quality of treated wastewater allows for quick elimination of possible negative effects, and the study of water receiver prevents from excessive contamination. The paper presents the results of selected physical and chemical parameters of treated wastewater from the largest on the region in north-eastern Poland city of Bialystok municipal wastewater treatment and Biała River, the receiver. The samples for research were taken 3-4 a month in 2015 from two points: before and after discharge. The impact of the wastewater treatment plant on the quality of the receiver waters was studied by using non-parametric Wilcoxon test. This test determined whether the analyzed indicators varied significantly depending on different sampling points of the river, above and below place of discharge of treated wastewater. These results prove that the treated wastewater does not affect the water quality in the Biała River.

  2. Predicting nonpoint stormwater runoff quality from land use.

    PubMed

    Zivkovich, Brik R; Mays, David C

    2018-01-01

    Evaluating the impact of urban development on natural ecosystem processes has become an increasingly complex task for planners, environmental scientists, and engineers. As the built environment continues to grow, unregulated nonpoint pollutants from increased human activity and large-scale development severely stress urban streams and lakes resulting in their currently impaired or degraded state. In response, integrated water quality management programs have been adopted to address these unregulated nonpoint pollutants by utilizing best management practices (BMPs) that treat runoff as close to the source as possible. Knowing where to install effective BMPs is no trivial task, considering budget constraints and the spatially extensive nature of nonpoint stormwater runoff. Accordingly, this paper presents an initial, straightforward and cost-effective methodology to identify critical nonpoint pollutant source watersheds through correlation of water quality with land use. Through an illustrative application to metropolitan Denver, Colorado, it is shown how this method can be used to aid stormwater professionals to evaluate and specify retrofit locations in need of water quality treatment features reduce, capture and treat stormwater runoff prior to entering receiving waters.

  3. The compartment bag test (CBT) for enumerating fecal indicator bacteria: Basis for design and interpretation of results.

    PubMed

    Gronewold, Andrew D; Sobsey, Mark D; McMahan, Lanakila

    2017-06-01

    For the past several years, the compartment bag test (CBT) has been employed in water quality monitoring and public health protection around the world. To date, however, the statistical basis for the design and recommended procedures for enumerating fecal indicator bacteria (FIB) concentrations from CBT results have not been formally documented. Here, we provide that documentation following protocols for communicating the evolution of similar water quality testing procedures. We begin with an overview of the statistical theory behind the CBT, followed by a description of how that theory was applied to determine an optimal CBT design. We then provide recommendations for interpreting CBT results, including procedures for estimating quantiles of the FIB concentration probability distribution, and the confidence of compliance with recognized water quality guidelines. We synthesize these values in custom user-oriented 'look-up' tables similar to those developed for other FIB water quality testing methods. Modified versions of our tables are currently distributed commercially as part of the CBT testing kit. Published by Elsevier B.V.

  4. Water Quality and Hydrology of Whitefish (Bardon) Lake, Douglas County, Wisconsin, With Special Emphasis on Responses of an Oligotrophic Seepage Lake to Changes in Phosphorus Loading and Water Level

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.; Juckem, Paul F.

    2009-01-01

    Whitefish Lake, which is officially named Bardon Lake, is an oligotrophic, soft-water seepage lake in northwestern Wisconsin, and classified by the Wisconsin Department of Natural Resources as an Outstanding Resource Water. Ongoing monitoring of the lake demonstrated that its water quality began to degrade (increased phosphorus and chlorophyll a concentrations) around 2002 following a period of high water level. To provide a better understanding of what caused the degradation in water quality, and provide information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. The goals of the study were to describe the past and present water quality of the lake, quantify water and phosphorus budgets for the lake, simulate the potential effects of changes in phosphorus inputs on the lake's water quality, analyze changes in the water level in the lake since 1900, and relate the importance of changes in climate and changes in anthropogenic (human-induced) factors in the watershed to the water quality of the lake. Since 1998, total phosphorus concentrations increased from near the 0.005-milligrams per liter (mg/L) detection limit to about 0.010 mg/L in 2006, and then decreased slightly in 2007-08. During this time, chlorophyll a concentrations and Secchi depths remained relatively stable at about 1.5 micrograms per liter (ug/L) and 26 feet, respectively. Whitefish Lake is typically classified as oligotrophic. Because the productivity in Whitefish Lake is limited by phosphorus, phosphorus budgets were constructed for the lake. Because it was believed that much of its phosphorus comes from the atmosphere, phosphorus deposition was measured in this study. Phosphorus input from the atmosphere was greater than computed based on previously reported wetfall phosphorus concentrations. The concentrations and deposition rates can be used to estimate atmospheric loading in future lake studies. The average annual load of phosphorus to the lake was 232 pounds: 56 percent from precipitation, 27 percent from groundwater, and 16 percent from septic systems. During a series of dry years (low water levels) and wet years (high water levels), the inputs of water and phosphorus ranged by only 10-13 percent. Results from the Canfield and Bachmann eutrophication model and Carlson trophic-state-index equations demonstrated that the lake directly responds to changes in external phosphorus loading, with percent change in chlorophyll a being similar to the percent change in loading and the change in total phosphorus and Secchi depth being slightly smaller. Therefore, changes in phosphorus loading should affect the water quality of the lake. Specific scenarios that simulated the effects of anthropogenic (human-induced) and climatic (water level) changes demonstrated that: surface-water inflow (runoff) based on current development has little effect on pelagic water quality, changes in the inputs from septic systems and development in the watershed could have a large effect on water quality, and decreases in water and phosphorus loading during periods of low water level had little effect on water quality. Sustained high water levels, resulting from several wet years with relatively high water and phosphorus input, however, could cause a small degradation in water quality. Although high water levels may be associated with a degradation in water quality, it appears that anthropogenic changes in the watershed may be more important in affecting the future water quality of the lake. Fluctuations in water levels since 1998 are representative of what has occurred since 1900, with fluctuations of about 3 feet occurring about every 15 years. Based on total phosphorus concentrations inferred from sediment core analysis, there has been little long-term change in water quality and there has been a slight deterioration in water quality following most periods of high water levels. There

  5. Modeling and Management of Increased Urban Stormwater Runoff Using InfoSWMM Sustain in the Berkeley Neighborhood of Denver, Colorado

    NASA Astrophysics Data System (ADS)

    Panos, C.; Hogue, T. S.; McCray, J. E.

    2016-12-01

    Few urban studies have evaluated the hydrologic impacts of redevelopment - for example, a rapid conversion from single to multi-family homes - known as infill, or re-urbanization. Redevelopment provides unique stormwater challenges as private property owners in many cities are not mandated to undertake stormwater retrofits leading to an overall increase in stormwater quantity and decrease in quality. This research utilizes a version of the EPA's Storm Water Management Model (SWMM), InfoSWMM Sustain, to model and analyze the impacts of impervious cover change due to redevelopment on stormwater quantity and quality in Denver, Colorado, with a focus on the Berkeley Neighborhood, where the percent imperviousness is expected to increase significantly from a current value of 53% by 2025. We utilize flow data from multiple pressure transducers installed directly within the storm sewer network as well as water quality data from storm and low flow sampling to initially calibrate InfoSWMM Sustain using September 2015 through September 2016 storm data. Model scenarios include current land cover conditions as well as future imperviousness predictions from redevelopment. The Urban Drainage and Flood Control District's Colorado Urban Hydrograph Procedure (CUHP) model is also implemented and used for calibration and comparison to the InfoSWMM stormwater model. Model simulations predicting an average annual stormwater runoff for the basin will be used to inform stormwater capture for the Berkeley Neighborhood on the downstream Willis Case Golf Course, where treatment trains are being designed to provide irrigation water (a 250 ac-ft per year demand) and improved water quality for discharge to the nearby receiving waters of Clear Creek. Ultimately, study results will better inform regional stormwater capture requirements when transitioning from single to multi-family units by providing a quantitative basis for treatment and regulation priorities.

  6. Post-fire Water Quality in the Western United States: Understanding and Predicting Short and Long-term Response

    NASA Astrophysics Data System (ADS)

    Hogue, T. S.; Rust, A.

    2016-12-01

    Fire frequency is increasing across mid-elevation forests, especially in the Northern Rockies, Sierra Nevada, southern Cascades, as well as the coastal ranges in California and southern Oregon. Numerous studies have noted increased discharge, floods and debris flows after wildfire. More recent work also shows increased water yield during dry seasons for up to ten years post-fire. However, few studies have evaluated long-term water quality response in fire-impacted watersheds. The current presentation will overview recent development of an extensive database on post-fire water quality response across the western U.S. A range of water quality parameters were gathered from 271 burned watersheds through local, state and federal agencies. Short and long-term response was evaluated for watersheds with at least 5 years of pre-fire data. Over 30 watersheds showed significant increases in NO3-, NO2-, NH3, and total nitrogen loading in the initial five years after fire and remained elevated ten years after fire. The burn severity influenced the degree of nitrogen response, where more severely burned watersheds showed higher nitrogen loading than less severely burned watersheds. Dissolved and total phosphorous showed significant increases in 32 watersheds for the first five years after fire. Dissolved ions such as calcium, magnesium, and chloride were also exported from over 32 watersheds, primarily during the first five years after fire, with the majority of impacted watersheds returning to pre-fire water quality conditions after ten years. Ongoing work includes evaluating key determinants that drive short and long-term response and developing predictive models for post-fire water quality. Watersheds impacted by wildfire are known to pose significant risks for downstream communities. Understanding short and long-term water quality change that can impact regional water supplies is critical for establishing potential treatment priorities and alternative source planning.

  7. Comparison of solid-phase and pore-water approaches for assessing the quality of marine and estuarine sediments

    USGS Publications Warehouse

    Carr, Robert Scott; Chapman, Duane C.

    1992-01-01

    As part of our continuing evaluation of the pore-water approach for assessing sediment quality, we made a series of side-by-side comparisons between the standard 10-day amphipod whole sediment test with the corophiid Grandidierella japonica and a suite of tests using pore water extracted from the same sediments. the pore-water tests evaluated were the sea urchin (Arbacia punctulata) sperm cell test and morphological development assay, the life-cycle test with the polychaete Dinophilus gyrociliatus, and acute exposures of red drum (Sciaenops ocellatus) embryo-larval stages. Sediment and surface microlayer samples were collected from contaminated sites. Whole-sediment, pore-water, and surface microlayer toxicity tests were performed. Pore-water toxicity tests were considerably more sensitive than the whole-sediment amphipod test, which is currently the most sensitive toxicity test now recommended for determining the acceptability of dredged material for open ocean disposal.

  8. Hydrodynamic modelling of the influence of stormwater and combined sewer overflows on receiving water quality: Benzo(a)pyrene and copper risks to recreational water.

    PubMed

    Björklund, Karin; Bondelind, Mia; Karlsson, Anna; Karlsson, Dick; Sokolova, Ekaterina

    2018-02-01

    The risk from chemical substances in surface waters is often increased during wet weather, due to surface runoff, combined sewer overflows (CSOs) and erosion of contaminated land. There are strong incentives to improve the quality of surface waters affected by human activities, not only from ecotoxicity and ecosystem health perspectives, but also for drinking water and recreational purposes. The aim of this study is to investigate the influence of urban stormwater discharges and CSOs on receiving water in the context of chemical health risks and recreational water quality. Transport of copper (Cu) and benzo[a]pyrene (BaP) in the Göta River (Sweden) was simulated using a hydrodynamic model. Within the 16 km modelled section, 35 CSO and 16 urban stormwater point discharges, as well as the effluent from a major wastewater treatment plant, were included. Pollutant concentrations in the river were simulated for two rain events and investigated at 13 suggested bathing sites. The simulations indicate that water quality guideline values for Cu are exceeded at several sites, and that stormwater discharges generally give rise to higher Cu and BaP concentrations than CSOs. Due to the location of point discharges and the river current inhibiting lateral mixing, the north shore of the river is better suited for bathing. Peak concentrations have a short duration; increased concentrations of the pollutants may however be present for several days after a rain event. Monitoring of river water quality indicates that simulated Cu and BaP concentrations are in the same order of magnitude as measured concentrations. It is concluded that hydrodynamic modelling is a useful tool for identifying suitable bathing sites in urban surface waters and areas of concern where mitigation measures should be implemented to improve water quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Ground-water quality in Geauga County, Ohio; review of previous studies, status in 1999, and comparison of 1986 and 1999 data

    USGS Publications Warehouse

    Jagucki, Martha L.; Darner, Robert A.

    2001-01-01

    Most residents in Geauga County, Ohio, rely on ground water as their primary source of drinking water. With population growing at a steady rate, the possibility that human activity will affect ground-water quality becomes considerable. This report presents the results of a study by the U.S. Geological Survey (USGS), in cooperation with the Geauga County Planning Commission and Board of County Commissioners, to provide a brief synopsis of work previously done within the county, to assess the present (1999) ground-water quality, and to determine any changes in ground-water quality between 1986 and 1999. Previous studies of ground-water quality in the county have consistently reported that manganese and iron concentrations in ground water in Geauga County often exceed the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL). Road salt and, less commonly, oil-field brines and volatile organic compounds (VOCs) have been found in ground water at isolated locations. Nitrate has not been detected above the USEPA Maximum Contaminant Level (MCL) of 10 milligrams per liter as N; however, nitrate has been found in some locations at levels that may indicate the effects of fertilizer application or effluent from septic systems. Between June 7 and July 1, 1999, USGS personnel collected a total of 31 water-quality samples from wells completed in glacial deposits, the Pottsville Formation, the Cuyahoga Group, and the Berea Sandstone. All samples were analyzed for VOCs, sulfide, dissolved organic carbon, major ions, trace elements, alkalinity, total coliforms, and Escherichia coli bacteria. Fourteen of the samples also were analyzed for tritium. Water-quality data were used to determine (1) suitability of water for drinking, (2) age of ground water, (3) stratigraphic variation in water quality, (4) controls on water quality, and (5) temporal variation in water quality. Water from 16 of the 31 samples exceeded the Geauga County General Health District?s standard of 0 colonies of total coliform bacteria per 100 milliliters of water. Esthetically based SMCLs were exceeded in the indicated number of wells for pH (8), sulfate (1), dissolved solids (3), iron (19), and manganese (18). Hydrogen sulfide was detected at or above the detection limit of 0.01 milligram per liter in 17 of the 31 water samples. A range of water types was found among and within the four principal stratigraphic units. The waters can be categorized in three groups based on predominant anion type: bicarbonate-type waters, chloride-type waters, and sulfate-type waters. Chloride-to-bromide ratio analyses indicate that water from 8 of the 31 wells is in some way affected by human activity. Five other samples were in a chloride-to-bromide ratio range that could indicate possible effects of human activity. Ground-water-quality data from the current study were compared to data collected in 1986. Statistical analyses of data from the 16 wells that were sampled in both years did not indicate any significant changes that could be attributed to human activity.

  10. Water resources of Iberia Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2017-02-24

    IntroductionInformation concerning the availability, use, and quality of water in Iberia Parish, Louisiana, is critical for proper water-resource management. This fact sheet summarizes the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish for water managers, parish residents, and others to assist in stewardship of this vital resource. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System are the primary sources of the information presented here.In 2010, about 31.24 million gallons per day (Mgal/d) of water were withdrawn in Iberia Parish, Louisiana, including about 23.13 Mgal/d from groundwater sources and 8.11 Mgal/d from surface-water sources. Withdrawals for public supply and industrial use each accounted for about 32 percent of the total water withdrawn. Other water-use categories included rural domestic, livestock, rice irrigation, general irrigation, and aquaculture. Water-use data collected at 5-year intervals from 1960 to 2010 indicated that water withdrawals in Iberia Parish peaked at about 58.57 Mgal/d in 1975.

  11. The role of headwater streams in downstream water quality

    USGS Publications Warehouse

    Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B.

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters. ?? 2007 American Water Resources Association.

  12. Quality-assurance plan for water-resources activities of the U.S. Geological Survey in Idaho

    USGS Publications Warehouse

    Packard, F.A.

    1996-01-01

    To ensure continued confidence in its products, the Water Resources Division of the U.S. Geological Survey implemented a policy that all its scientific work be performed in accordance with a centrally managed quality-assurance program. This report establishes and documents a formal policy for current (1995) quality assurance within the Idaho District of the U.S. Geological Survey. Quality assurance is formalized by describing district organization and operational responsibilities, documenting the district quality-assurance policies, and describing district functions. The districts conducts its work through offices in Boise, Idaho Falls, Twin Falls, Sandpoint, and at the Idaho National Engineering Laboratory. Data-collection programs and interpretive studies are conducted by two operating units, and operational and technical assistance is provided by three support units: (1) Administrative Services advisors provide guidance on various personnel issues and budget functions, (2) computer and reports advisors provide guidance in their fields, and (3) discipline specialists provide technical advice and assistance to the district and to chiefs of various projects. The district's quality-assurance plan is based on an overall policy that provides a framework for defining the precision and accuracy of collected data. The plan is supported by a series of quality-assurance policy statements that describe responsibilities for specific operations in the district's program. The operations are program planning; project planning; project implementation; review and remediation; data collection; equipment calibration and maintenance; data processing and storage; data analysis, synthesis, and interpretation; report preparation and processing; and training. Activities of the district are systematically conducted under a hierarchy of supervision an management that is designed to ensure conformance with Water Resources Division goals quality assurance. The district quality-assurance plan does not describe detailed technical activities that are commonly termed "quality-control procedures." Instead, it focuses on current policies, operations, and responsibilities that are implemented at the management level. Contents of the plan will be reviewed annually and updated as programs and operations change.

  13. Effects of boron nutrition and water stress on nitrogen fixation, seed d15N and d13C daynamics, and seed composition in soybean cultivars differing in maturities

    USDA-ARS?s Scientific Manuscript database

    Water stress is a major abiotic stress factor, resulting in a major yield loss and poor seed quality. Little information is available on the effects of B nutrition on seed composition under water stress. Therefore, the objective of the current research was to investigate the effects of foliar B nutr...

  14. The Role of Headwater Streams in Downstream Water Quality1

    PubMed Central

    Alexander, Richard B; Boyer, Elizabeth W; Smith, Richard A; Schwarz, Gregory E; Moore, Richard B

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters. PMID:22457565

  15. Research gaps related to forest management and stream sediment in the United States.

    PubMed

    Anderson, Christopher J; Lockaby, B Graeme

    2011-02-01

    Water quality from forested landscapes tends to be very high but can deteriorate during and after silvicultural activities. Practices such as forest harvesting, site preparation, road construction/use, and stream crossings have been shown to contribute sediment, nutrients, and other pollutants to adjacent streams. Although advances in forest management accompanied with Best Management Practices (BMPs) have been very effective at reducing water quality impacts from forest operations, projected increases in demand for forest products may result in unintended environmental degradation. Through a review of the pertinent literature, we identified several research gaps related to water yield, aquatic habitat, sediment source and delivery, and BMP effectiveness that should be addressed for streams in the United States to better understand and address the environmental ramifications of current and future levels of timber production. We explored the current understanding of these topics based on relevant literature and the possible implications of increased demand for forest products in the United States.

  16. Review on water quality sensors

    NASA Astrophysics Data System (ADS)

    Kruse, Peter

    2018-05-01

    Terrestrial life may be carbon-based, but most of its mass is made up of water. Access to clean water is essential to all aspects of maintaining life. Mainly due to human activity, the strain on the water resources of our planet has increased substantially, requiring action in water management and purification. Water quality sensors are needed in order to quantify the problem and verify the success of remedial actions. This review summarizes the most common chemical water quality parameters, and current developments in sensor technology available to monitor them. Particular emphasis is on technologies that lend themselves to reagent-free, low-maintenance, autonomous and continuous monitoring. Chemiresistors and other electrical sensors are discussed in particular detail, while mechanical, optical and electrochemical sensors also find mentioning. The focus here is on the physics of chemical signal transduction in sensor elements that are in direct contact with the analyte. All other sensing methods, and all other elements of sampling, sample pre-treatment as well as the collection, transmission and analysis of the data are not discussed here. Instead, the goal is to highlight the progress and remaining challenges in the development of sensor materials and designs for an audience of physicists and materials scientists.

  17. Implementing the NPDES program: An update on the WET ...

    EPA Pesticide Factsheets

    The U.S. EPA has utilized the Clean Water Act - National Pollutant Discharge Elimination System permitting program to protect waters of the U.S for over 40 years. NPDES permit effluent limitations serve as the primary mechanism for controlling discharges of pollutants to receiving waters. When developing effluent limitations for an NPDES permit, a permit writer must consider limits based on both the technology available to control the pollutants (i.e., technology-based effluent limits) and limits that are protective of the water quality standards of the receiving water (i.e., water quality-based effluent limits). WET testing is one of the water quality-based effluent limitation mechanisms available to permit writers that is useful in determining how the additive, synergistic and compounding effects of toxic effluents effect streams. This presentation will provide an overview of the current EPA NPDES permit program direction for increasing the efficacy of NPDES permits program administered by the U.S. EPA and States. The training implementation plan is expected to provide permit writers with a clearer understanding of WET requirements as established via the U.S. EPA WET test manuals, NPDES permitting regulatory authorities, and the WET science which has been long established. not applicable

  18. ERTS-1 Virgin Islands experiment 589: Determine boundaries of ERTS and aircraft data within which useful water quality information can be obtained. [water pollution in St. Thomas harbor, Virgin Islands

    NASA Technical Reports Server (NTRS)

    Coulbourn, W. C.; Egan, W. G.; Olsen, D. A. (Principal Investigator); Heaslip, G. B.

    1973-01-01

    The author has identified the following significant results. The boundaries of application of ERTS-1 and aircraft data are established for St. Thomas harbor within which useful water quality information can be obtained. In situ physical, chemical, and biological water quality and benthic data were collected. Moored current meters were employed. Optical measurements of solar irradiance, color test panel radiance and water absorption were taken. Procedures for correlating in situ optical, biological, and chemical data with underflight aircraft I2S data and ERTS-1 MSS scanner data are presented. Comparison of bulk and precision CCT computer printout data for this application is made, and a simple method for geometrically locating bulk data individual pixels based on land-water interface is described. ERTS spacecraft data and I2S aircraft imagery are correlated with optical in situ measurements of the harbor water, with the aircraft green photographic and ERTS-1 MSS-4 bands being the most useful. The biological pigments correlate inversely with the optical data for inshore areas and directly further seaward. Automated computer data processing facilitated analysis.

  19. An evaluation of the readability of drinking water quality reports: a national assessment.

    PubMed

    Roy, Siddhartha; Phetxumphou, Katherine; Dietrich, Andrea M; Estabrooks, Paul A; You, Wen; Davy, Brenda M

    2015-09-01

    The United States Environmental Protection Agency mandates that community water systems (or water utilities) provide annual consumer confidence reports (CCRs)--water quality reports--to their consumers. These reports encapsulate information regarding sources of water, detected contaminants, regulatory compliance, and educational material. These reports have excellent potential for providing the public with accurate information on the safety of tap water, but there is a lack of research on the degree to which the information can be understood by a large proportion of the population. This study evaluated the readability of a nationally representative sample of 30 CCRs, released between 2011 and 2013. Readability (or 'comprehension difficulty') was evaluated using Flesch-Kincaid readability tests. The analysis revealed that CCRs were written at the 11th-14th grade level, which is well above the recommended 6th-7th grade level for public health communications. The CCR readability ease was found to be equivalent to that of the Harvard Law Review journal. These findings expose a wide chasm that exists between current water quality reports and their effectiveness toward being understandable to US residents. Suggestions for reorienting language and scientific information in CCRs to be easily comprehensible to the public are offered.

  20. 40 CFR 264.18 - Location standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) The impact of such concentrations on the current or potential uses of and water quality standards... cave is prohibited, except for the Department of Energy Waste Isolation Pilot Project in New Mexico...

  1. Statistical Approaches to Interpretation of Local, Regional, and National Highway-Runoff and Urban-Stormwater Data

    USGS Publications Warehouse

    Tasker, Gary D.; Granato, Gregory E.

    2000-01-01

    Decision makers need viable methods for the interpretation of local, regional, and national-highway runoff and urban-stormwater data including flows, concentrations and loads of chemical constituents and sediment, potential effects on receiving waters, and the potential effectiveness of various best management practices (BMPs). Valid (useful for intended purposes), current, and technically defensible stormwater-runoff models are needed to interpret data collected in field studies, to support existing highway and urban-runoffplanning processes, to meet National Pollutant Discharge Elimination System (NPDES) requirements, and to provide methods for computation of Total Maximum Daily Loads (TMDLs) systematically and economically. Historically, conceptual, simulation, empirical, and statistical models of varying levels of detail, complexity, and uncertainty have been used to meet various data-quality objectives in the decision-making processes necessary for the planning, design, construction, and maintenance of highways and for other land-use applications. Water-quality simulation models attempt a detailed representation of the physical processes and mechanisms at a given site. Empirical and statistical regional water-quality assessment models provide a more general picture of water quality or changes in water quality over a region. All these modeling techniques share one common aspect-their predictive ability is poor without suitable site-specific data for calibration. To properly apply the correct model, one must understand the classification of variables, the unique characteristics of water-resources data, and the concept of population structure and analysis. Classifying variables being used to analyze data may determine which statistical methods are appropriate for data analysis. An understanding of the characteristics of water-resources data is necessary to evaluate the applicability of different statistical methods, to interpret the results of these techniques, and to use tools and techniques that account for the unique nature of water-resources data sets. Populations of data on stormwater-runoff quantity and quality are often best modeled as logarithmic transformations. Therefore, these factors need to be considered to form valid, current, and technically defensible stormwater-runoff models. Regression analysis is an accepted method for interpretation of water-resources data and for prediction of current or future conditions at sites that fit the input data model. Regression analysis is designed to provide an estimate of the average response of a system as it relates to variation in one or more known variables. To produce valid models, however, regression analysis should include visual analysis of scatterplots, an examination of the regression equation, evaluation of the method design assumptions, and regression diagnostics. A number of statistical techniques are described in the text and in the appendixes to provide information necessary to interpret data by use of appropriate methods. Uncertainty is an important part of any decisionmaking process. In order to deal with uncertainty problems, the analyst needs to know the severity of the statistical uncertainty of the methods used to predict water quality. Statistical models need to be based on information that is meaningful, representative, complete, precise, accurate, and comparable to be deemed valid, up to date, and technically supportable. To assess uncertainty in the analytical tools, the modeling methods, and the underlying data set, all of these components need be documented and communicated in an accessible format within project publications.

  2. The situation of sanitary systems in rural areas in the Miyun catchment, China.

    PubMed

    Kröger, C; Xu, A; Duan, S; Zhang, B; Eckstädt, H; Meissner, R

    2012-01-01

    The Miyun Reservoir provides most of Beijing's drinking water. Despite its importance, the Miyun reservoir suffers from decreasing water quality caused by uncontrolled wastewater discharges, inadequate land use and over fertilization, which increase the pressure on soil and water resources. The major pollutants are nitrogen and phosphorus which emanate to some extent from untreated sewage. So far there is little data about the existing wastewater quantity and quality in rural settlements in northern China. This study was conducted in typical villages situated along upstream rivers in the catchment of the Miyun Reservoir. The main objective was to determine the current situation and efficiency of the wastewater treatment system in rural settlements.

  3. Summary of oceanographic and water-quality measurements in Barnegat Bay, New Jersey, 2014–15

    USGS Publications Warehouse

    Suttles, Steven E.; Ganju, Neil K.; Montgomery, Ellyn T.; Dickhudt, Patrick J.; Borden, Jonathan; Brosnahan, Sandra M.; Martini, Marinna A.

    2016-09-26

    Scientists and technical support staff from the U.S. Geological Survey measured suspended-sediment concentrations, currents, pressure, and water temperature in two tidal creeks, Reedy Creek and Dinner Creek, in Barnegat Bay, New Jersey, from August 11, 2014, to July 10, 2015 as part of the Estuarine Physical Response to Storms project (GS2–2D). The oceanographic and water-quality data quantify suspended-sediment transport in Reedy Creek and Dinner Creek, which are part of a tidal marsh wetland complex in the Edwin B. Forsythe National Wildlife Refuge. All deployed instruments were removed between January 7, 2015, and April 14, 2015, to avoid damage by ice.

  4. Water resources of Concordia Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.

    2017-02-24

    IntroductionInformation concerning the availability, use, and quality of water in Concordia Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System are the primary sources of the information presented here.In 2010, over 50 million gallons per day (Mgal/d) of water were withdrawn in Concordia Parish, including about 28.7 Mgal/d from groundwater sources and 22.3 Mgal/d from surface-water sources. Withdrawals for agricultural use, composed of livestock, rice irrigation, general irrigation, and aquaculture accounted for about 77 percent (39.2 Mgal/d) of the total water withdrawn. Other categories of use included public supply, power generation, and rural domestic. Water-use data collected at 5-year intervals from 1960 to 2010 indicated that water withdrawals peaked in 2010.

  5. Quality requirements for reclaimed/recycled water

    NASA Technical Reports Server (NTRS)

    Janik, Daniel S.; Sauer, Richard L.; Pierson, Duane L.; Thorstenson, Yvonne R.

    1987-01-01

    Water used during current and previous space missions has been either carried or made aloft. Future human space endeavors will require some form of water reclamation and recycling. There is little experience in the U.S. space program with this technology. Water reclamation and recycling constitute engineering challenges of the broadest nature that will require an intensive research and development effort if this technology is to mature in time for practical use on the proposed U.S. Space Station. In order for this to happen, reclaimed/recycled water specifications will need to be devised to guide engineering development. Present NASA Potable Water Specifications are not applicable to reclaimed or recycled water. Adequate specifications for ensuring the quality of the reclaimed or recycled potable water system is reviewed, limitations of present water specifications are examined, world experience with potable water reclamation/recycling systems and systems analogs is reviewed, and an approach to developing pertinent biomedical water specifications for spacecraft is presented. Space Station water specifications should be designed to ensure the health of all likely spacecraft inhabitants including man, animals, and plants.

  6. Field Observations of Hydrodynamics, Sediment Transport, and Water and Sediment Quality in the Hudson-Raritan Estuary

    NASA Astrophysics Data System (ADS)

    Bruno, M. S.; Glenn, S.; Chant, R.; Rankin, K.; Korfiatis, G.; Dimou, N.; Creed, E.; Fullerton, B.; Pence, A.; Burke, P.; Haldeman, C.; Hires, R.; Hunter, E.

    2002-12-01

    The New York-New Jersey Harbor estuary system is of enormous ecological and economic importance to the region. The presence of toxic chemicals in the water and sediments results in reduced water quality, fisheries restrictions/advisories, and general adverse impacts to the estuarine ecosystem. The Port of New York and New Jersey is central to the economy of the region. However, in recent years, problems associated with the management of contaminated dredged material, including high costs and the lack of suitable disposal/use alternatives, have threatened to impact the volume of shipping in the Harbor. Sources of contaminants include atmospheric deposition, municipal and industrial wastewater treatment facilities, combined sewer and stormwater outfalls, and rainfall-induced runoff (non-point sources). In addition, Harbor sediments can act as a continuing source as they are re-suspended and moved throughout the system by both natural and man-made means. As part of the New Jersey Toxics Reduction Workplan, Stevens Institute of Technology and Rutgers University are conducting hydrodynamic, sediment transport, and water and suspended sediment quality measurements in Newark Bay, the Arthur Kill and the Kill van Kull. The goals of the project include: (1) collection of high resolution (event-driven and long-term) hydrodynamic, sediment transport and water and suspended sediment quality measurements for use in the assessment of the dominant physics of the system and in the development of a combined hydrodynamic-sediment transport-water/sediment quality model for the region. (2) identification of those tributaries to NY-NJ Harbor that are significant sources of the chemicals of concern, and evaluation of the importance of non-point sources and existing contaminated bottom sediments as sources of the chemicals of concern. (3) identification of point discharges that represent significant sources of the chemicals of concern. Observations were obtained over a two-year period, during 21 tributary flow "events", each having an approximate duration of 1 week. The measurement program included 3 fixed mooring stations and 5 shipboard locations. Each mooring consisted of an acoustic Doppler current profiler; a high-resolution pressure sensor; an OBS; a CTD; and a laser-based scatterometer. The ship-board measurements included vertical current profiles using a towed acoustic Doppler current profiler; CTD measurements; OBS measurements; suspended sediment concentration and particle size spectrum using a laser-based scatterometer; and chemical characterization of water and suspended sediment samples. The water and sediment quality measurements were obtained using a specially designed Trace Organics Platform Sampler. This sampler allowed for the measurement of low-level concentrations of PCBs (108 congeners), dioxins/furans, Pesticides, PAHs and metals (Hg, Cd, Pb). Preliminary analysis of the data has improved our understanding of the circulation and sediment transport patterns in this region of the estuary, including the influence of extreme tributary flow events, local winds, and anthropogenic effects such as port structures, vessels, and the navigation channels, and has identified the most highly contaminated reaches of the tributaries.

  7. Source-Water Protection and Water-Quality Investigations in the Cambridge, Massachusetts, Drinking-Water Supply System

    USGS Publications Warehouse

    Waldron, Marcus C.; Norton, Chip; MacDonald, Timothy W.D.

    1998-01-01

    Introduction The Cambridge Water Department (CWD) supplies about 15 million gallons of water each day to more than 95,000 customers in the City of Cambridge, Massachusetts. Most of this water is obtained from a system of reservoirs located in Cambridge and in parts of five other suburban-Boston communities. The drainage basin that contributes water to these reservoirs includes several potential sources of drinking-water contaminants, including major highways, secondary roads, areas of commercial and industrial development, and suburban residential tracts. The CWD is implementing a comprehensive Source-Water Protection Plan to ensure that the highest quality water is delivered to the treatment plant. A key element of this plan is a program that combines systematic monitoring of the drainage basin with detailed investigations of the effects of nonpoint-source contaminants, such as highway-deicing chemicals, nutrients, oxygen-demanding organic compounds, bacteria, and trace metals arising from stormwater runoff. The U.S. Geological Survey (USGS) is working with the CWD and the Massachusetts Highway Department (MassHighway) to develop a better understanding of the sources, transport, and fate of many of these contaminants. This Fact Sheet describes source-water protection and water-quality investigations currently underway in the Cambridge drinking-water supply system. The investigations are designed to complement a national effort by the USGS to provide water suppliers and regulatory agencies with information on the vulnerability of water supplies and the movement and fate of source-water contaminants.

  8. Evaluating the impact of ambient benzene vapor concentrations on product water from Condensation Water From Air technology.

    PubMed

    Kinder, Katherine M; Gellasch, Christopher A; Dusenbury, James S; Timmes, Thomas C; Hughes, Thomas M

    2017-07-15

    Globally, drinking water resources are diminishing in both quantity and quality. This situation has renewed interest in Condensation Water From Air (CWFA) technology, which utilizes water vapor in the air to produce water for both potable and non-potable purposes. However, there are currently insufficient data available to determine the relationship between air contaminants and the rate at which they are transferred from the air into CWFA untreated product water. This study implemented a novel experimental method utilizing an environmental test chamber to evaluate how air quality and temperature affects CWFA untreated product water quality in order to collect data that will inform the type of water treatment required to protect human health. This study found that temperature and benzene air concentration affected the untreated product water from a CWFA system. Benzene vapor concentrations representing a polluted outdoor environment resulted in benzene product water concentrations between 15% and 23% of the USEPA drinking water limit of 5μg/l. In contrast, product water benzene concentrations representing an indoor industrial environment were between 1.4 and 2.4 times higher than the drinking water limit. Lower condenser coil temperatures were correlated with an increased concentration of benzene in the product water. Environmental health professionals and engineers can integrate the results of this assessment to predict benzene concentrations in the product water and take appropriate health protective measures. Published by Elsevier B.V.

  9. Low-flow water-quality characterization of the Gore Creek watershed, upper Colorado River basin, Colorado, August 1996

    USGS Publications Warehouse

    Wynn, Kirby H.; Spahr, Norman E.

    1998-01-01

    The Upper Colorado River Basin (UCOL) is one of 59 National Water-Quality Assessment (NAWQA) study units designed to assess the status and trends of the Nation?s water quality (Leahy and others, 1990). The UCOL study unit began operation in 1994, and surface-water-quality data collection at a network of 14 sites began in October 1995 (Apodaca and others, 1996; Spahr and others, 1996). Gore Creek, which flows through Vail, Colorado, originates in pristine alpine headwaters and is designated a gold-medal trout fishery. The creek drains an area of about 102 square miles and is a tributary to the Eagle River. Gore Creek at the mouth near Minturn (site 13 in fig. 1) is one of the 14 sites in the UCOL network. This site was selected to evaluate water quality resulting from urban development and recreational land use. The Gore Creek watershed has undergone rapid land-use changes since the 1960?s as the Vail area shifted from traditional mountain ranchlands to a four-season resort community. Residential, recreational, commercial, and transportation development continues near Gore Creek and its tributaries to support the increasing permanent and tourist population of the area. Interstate 70 runs through the watershed from Vail Pass near site 14, along the eastern side of Black Gore Creek, and along the northern side of the main stem of Gore Creek to the mouth of the watershed (fig. 1). A major local concern is how increasing urbanization/recreation affects the water quality, gold-medal trout fishery, and aesthetic values of Gore Creek. An evaluation of the spatial characteristics of water quality in the watershed upstream from site 13 at the mouth of Gore Creek (fig. 1) can provide local water and land managers with information necessary to establish water policy and make land-use planning decisions to maintain or improve water quality. Historical data collected at the mouth of Gore Creek provide information about water quality resulting from land use, but a synoptic sampling is needed to determine the distribution and sources of water-quality constituents at one point in time. In August 1996, a low-flow synoptic sampling for analyses of water-quality properties and constituents at sites in the Gore Creek watershed was done by the U.S. Geological Survey, in cooperation with the Town of Vail, Eagle River Water and Sanitation District, Upper Eagle River Water Authority, and Northwest Colorado Council of Governments, to evaluate the water quality of Gore Creek. The August low-flow period can be important from water-quality and stream ecology perspectives. There is less water available to dilute any contaminants entering the streams, and stream temperatures are highest during August. Physical habitat for aquatic plants and animals is smaller than during most other times of the year. To address these more extreme water-quality and ecological conditions, the synoptic sampling was conducted during the summer low-flow period. Specific objectives of this sampling included: 1. Establish a current data set representing the spatial characteristics of low-flow water-quality conditions in the Gore Creek watershed, and 2. Develop some understanding of land-use and water-quality relations in the watershed. This fact sheet presents hydrologic background information and an analysis of general water-quality properties and constituents, trace elements, and nutrients collected in water samples during low-flow synoptic sampling of the Gore Creek watershed. The U.S. Geological Survey also is conducting a study of the algae and macroinvertebrate communities and physical habitat of streams in the Gore Creek watershed during low flow. This study is designed to provide information about land-use and stream ecology relations in the watershed.

  10. National water summary 1986; Hydrologic events and ground-water quality

    USGS Publications Warehouse

    Moody, David W.; Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.

    1988-01-01

    Ground water is one of the most important natural resources of the United States and degradation of its quality could have a major effect on the welfare of the Nation. Currently (1985), ground water is the source of drinking water for 53 percent of the Nation's population and for more than 97 percent of its rural population. It is the source of about 40 percent of the Nation's public water supply, 33 percent of water for irrigation, and 17 percent of freshwater for selfsupplied industries.Ground water also is the source of about 40 percent of the average annual streamflow in the United States, although during long periods of little or no precipitation, ground-water discharges provide nearly all of the base streamflow. This hydraulic connection between aquifers and streams implies that if a persistent pollutant gets into an aquifer, it eventually could discharge into a stream.Information presented in the 1986 National Water Summary clearly shows that the United States has very large amounts of potable ground water available for use. Although naturally occurring constituents, such as nitrate, and human-induced substances, such as synthetic organic chemicals, frequently are detected in ground water, their concentrations usually do not exceed existing Federal or State standards or guidelines for maximum concentrations in drinking water.Troublesome contamination of ground water falls into two basic categories related to the source or sources of the contamination. Locally, high concentrations of a variety of toxic metals, organic chemicals, and petroleum products have been detected in ground water associated with point sources such as wastedisposal sites, storage-tank leaks, and hazardous chemical spills. These types of local problems commonly occur in densely populated urban areas and industrialized areas. Larger, multicounty areas also have been identified where contamination frequently is found in shallow wells. These areas generally are associated with broad-scale, or nonpoint, sources of contamination such as agricultural activities or highdensity domestic waste disposal (septic systems) in urban centers. At present, only a very small percentage of the total volume of potable ground water in the United States is contaminated from both point and nonpoint sources; however, available data, especially data about the occurrence of synthetic organic and toxic substances, generally are inadequate to determine the full extent of ground-water contamination in the Nation's aquifers or to define trends in groundwater quality. Most information about the occurrence of these substances has come from the study of individual sites or areas where contamination had already been detected or suspected.Management and protection of ground water present a major challenge to the Nation. Current and projected costs of detection and cleanup of existing ground-water contamination are staggering and, even so, complete removal of pollutants from ground water in the vicinity of some waste sites might not be technically feasible. At all levels of government, the task of protecting the resource for its most beneficial uses is difficult and controversial.Despite increasing awareness that some of the Nation's ground water is contaminated with a variety of toxic metals, synthetic organic chemicals, radionuclides, pesticides, and other contaminants that might present a long-term risk to human health, public policy towards ground-water protection is still in the formative stages. Despite increasing efforts devoted to ground-water protection by State and Federal regulatory and resource-management agencies, the extent of ground-water contamination is likely to appear to increase over the next few years because more agencies will be searching for evidence of contamination, and they will be using increasingly sensitive analytical procedures. Increased technology and expanded monitoring activities probably will detect the effects of past contamination and land uses on water quality. The significant time lag between a waterquality change in one part of an aquifer system and the effects of that change at a downgradient site, such as a well, results from the generally slow movement of ground water. This lag between cause and observed effect needs to be considered in evaluating the effectiveness of current and future ground-water policies and remedial measures.Conclusive answers to questions about the location, extent, and severity of ground-water contamination, and about trends in ground-water quality, must await further collection and analysis of data from the Nation's aquifers. Generalizations, however, can be made, and the 1986 National Water Summary, which describes the natural quality of ground-water resources in each State and the major contamination problems that have been identified as of 1986, provides a national perspective of the ground-water-quality situation.The 1986 National Water Summary follows the format of previous volumes. It contains three parts, and the contents of each of these parts are highlighted below.

  11. Statistical analysis of stream water-quality data and sampling network design near Oklahoma City, central Oklahoma, 1977-1999

    USGS Publications Warehouse

    Brigham, Mark E.; Payne, Gregory A.; Andrews, William J.; Abbott, Marvin M.

    2002-01-01

    The sampling network was evaluated with respect to areal coverage, sampling frequency, and analytical schedules. Areal coverage could be expanded to include one additional watershed that is not part of the current network. A new sampling site on the North Canadian River might be useful because of expanding urbanization west of the city, but sampling at some other sites could be discontinued or reduced based on comparisons of data between the sites. Additional real-time or periodic monitoring for dissolved oxygen may be useful to prevent anoxic conditions in pools behind new low-water dams. The sampling schedules, both monthly and quarterly, are adequate to evaluate trends, but additional sampling during flow extremes may be needed to quantify loads and evaluate water-quality during flow extremes. Emerging water-quality issues may require sampling for volatile organic compounds, sulfide, total phosphorus, chlorophyll-a, Esherichia coli, and enterococci, as well as use of more sensitive laboratory analytical methods for determination of cadmium, mercury, lead, and silver.

  12. Water-Sediment Controversy in Setting Environmental Standards for Selenium

    Treesearch

    Steven J. Hamilton; A. Dennis Lemly

    1999-01-01

    A substantial amount of laboratory and field research on selenium effects to biota has been accomplished since the national water quality criterion was published for selenium in 1987. Many articles have documented adverse effects on biota at concentrations below the current chronic criterion of 5 µg/L. This commentary will present information to support a national...

  13. Solar Energy in China: Development Trends for Solar Water Heaters and Photovoltaics in the Urban Environment

    ERIC Educational Resources Information Center

    Wallace, William; Wang, Zhongying

    2006-01-01

    China is the world's largest market for solar water heating systems, installing 13 million square meters of new systems in 2004, mostly in large cities. Municipal authorities, however, are sensitive to quality and visual impact issues created by this technology deployment. Therefore, there is currently a trend toward developing building integrated…

  14. Water quality effects of switchgrass intercropping on pine forest in Coastal North Carolina.

    Treesearch

    Augustine Muwamba; Devendra Amatya; George M Chescheir; Jamie Nettles; Timothy Appelboom; Herbert Ssegane; Ernest Tollner; Mohamed Youssef; Francois Birgand; R. Wayne Skaggs; Shiying Tian

    2017-01-01

    Interplanting a cellulosic bioenergy crop (switchgrass, Panicum virgatum L.) between loblolly pine (Pinus taeda L.) rows could potentially provide a sustainable source of bio-feedstock without competing for land currently in food production. The objectives of this study were to: (1) quantify the concentrations and loads of drainage water nitrogen (N) and phosphorus (...

  15. Analysis of ground-water data for selected wells near Holloman Air Force Base, New Mexico, 1950-95

    USGS Publications Warehouse

    Huff, G.F.

    1996-01-01

    Ground-water-level, ground-water-withdrawal, and ground- water-quality data were evaluated for trends. Holloman Air Force Base is located in the west-central part of Otero County, New Mexico. Ground-water-data analyses include assembly and inspection of U.S. Geological Survey and Holloman Air Force Base data, including ground-water-level data for public-supply and observation wells and withdrawal and water-quality data for public-supply wells in the area. Well Douglas 4 shows a statistically significant decreasing trend in water levels for 1972-86 and a statistically significant increasing trend in water levels for 1986-90. Water levels in wells San Andres 5 and San Andres 6 show statistically significant decreasing trends for 1972-93 and 1981-89, respectively. A mixture of statistically significant increasing trends, statistically significant decreasing trends, and lack of statistically significant trends over periods ranging from the early 1970's to the early 1990's are indicated for the Boles wells and wells near the Boles wells. Well Boles 5 shows a statistically significant increasing trend in water levels for 1981-90. Well Boles 5 and well 17S.09E.25.343 show no statistically significant trends in water levels for 1990-93 and 1988-93, respectively. For 1986-93, well Frenchy 1 shows a statistically significant decreasing trend in water levels. Ground-water withdrawal from the San Andres and Douglas wells regularly exceeded estimated ground-water recharge from San Andres Canyon for 1963-87. For 1951-57 and 1960-86, ground-water withdrawal from the Boles wells regularly exceeded total estimated ground-water recharge from Mule, Arrow, and Lead Canyons. Ground-water withdrawal from the San Andres and Douglas wells and from the Boles wells nearly equaled estimated ground- water recharge for 1989-93 and 1986-93, respectively. For 1987- 93, ground-water withdrawal from the Escondido well regularly exceeded estimated ground-water recharge from Escondido Canyon, and ground-water withdrawal from the Frenchy wells regularly exceeded total estimated ground-water recharge from Dog and Deadman Canyons. Water-quality samples were collected from selected Douglas, San Andres, and Boles public-supply wells from December 1994 to February 1995. Concentrations of dissolved nitrate show the most consistent increases between current and historical data. Current concentrations of dissolved nitrate are greater than historical concentrations in 7 of 10 wells.

  16. Quality assurance plan for discharge measurements using broadband acoustic Doppler current profilers

    USGS Publications Warehouse

    Lipscomb, S.W.

    1995-01-01

    The recent introduction of the Acoustic Doppler Current Profiler (ADCP) as an instrument for measuring velocities and discharge in the riverine and estuarine environment promises to revolutionize the way these data are collected by the U.S. Geological Survey. The ADCP and associated software, however, compose a complex system and should be used only by qualifies personnel. Standard procedures should be rigorously followed to ensure that the quality of data collected is commensurate with the standards set by the Water Resources Division for all its varied activities in hydrologic investigations.

  17. The water masses and volumetry of the southern Agulhas Current region

    NASA Astrophysics Data System (ADS)

    Valentine, H. R.; Lutjeharms, J. R. E.; Brundrit, G. B.

    1993-06-01

    It has been suggested that the southern termination of the Agulhas Current plays a crucial role in the global circulation of thermocline water and thus in global climate. Due to a lack of modern hydrographic observations in this region, no detailed description of water masses or a fine-scale volumetric census for this geographic area had been carried out. Such an analysis of a collection of recent high-quality hydrographic measurements shows that the warm, saline, surface water of Agulhas Current origin contributes very little to the overall volume of the upper 1500 m of the water column in the area. Occasional equatorward leakages from south of the Subtropical Convergence are represented by a range of low-salinity outliers, but they represent <1% of the total volume. The distribution of water volume in temperature/salinity space for the Agulhas Retroflection is less diverse that that of the world ocean as a whole, 25% of the total volume of the region being contained in only 21 fine-scale temperature/salinity classes. North Atlantic Deep Water is the dominant water mass, accounting for 40% of the total volume. Deep Water in general accounts for 60% of the total volume.

  18. Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles.

    PubMed

    Kozbial, Andrew; Trouba, Charlie; Liu, Haitao; Li, Lei

    2017-01-31

    Elucidating the intrinsic water wettability of the graphitic surface has increasingly attracted research interests, triggered by the recent finding that the well-established hydrophobicity of graphitic surfaces actually results from airborne hydrocarbon contamination. Currently, static water contact angle (WCA) is often used to characterize the intrinsic water wettability of graphitic surfaces. In the current paper, we show that because of the existence of defects, static WCA does not necessarily characterize the intrinsic water wettability. Freshly exfoliated graphite of varying qualities, characterized using atomic force microscopy and Raman spectroscopy, was studied using static, advancing, and receding WCA measurements. The results showed that graphite of different qualities (i.e., defect density) always has a similar advancing WCA, but it could have very different static and receding WCAs. This finding indicates that defects play an important role in contact angle measurements, and the static contact angle does not always represent the intrinsic water wettability of pristine graphite. On the basis of the experimental results, a qualitative model is proposed to explain the effect of defects on static, advancing, and receding contact angles. The model suggests that the advancing WCA reflects the intrinsic water wettability of pristine (defect-free) graphite. Our results showed that the advancing WCA for pristine graphite is 68.6°, which indicates that graphitic carbon is intrinsically mildly hydrophilic.

  19. A Spatial and Temporal Assessment of Non-Point Groundwater Pollution Sources, Tutuila Island, American Samoa

    NASA Astrophysics Data System (ADS)

    Shuler, C. K.; El-Kadi, A. I.; Dulaiova, H.; Glenn, C. R.; Fackrell, J.

    2015-12-01

    The quality of municipal groundwater supplies on Tutuila, the main island in American Samoa, is currently in question. A high vulnerability for contamination from surface activities has been recognized, and there exists a strong need to clearly identify anthropogenic sources of pollution and quantify their influence on the aquifer. This study examines spatial relationships and time series measurements of nutrients and other tracers to identify predominant pollution sources and determine the water quality impacts of the island's diverse land uses. Elevated groundwater nitrate concentrations are correlated with areas of human development, however, the mixture of residential and agricultural land use in this unique village based agrarian setting makes specific source identification difficult using traditional geospatial analysis. Spatial variation in anthropogenic impact was assessed by linking NO3- concentrations and δ15N(NO3) from an extensive groundwater survey to land-use types within well capture zones and groundwater flow-paths developed with MODFLOW, a numerical groundwater model. Land use types were obtained from high-resolution GIS data and compared to water quality results with multiple-regression analysis to quantify the impact that different land uses have on water quality. In addition, historical water quality data and new analyses of δD and δ18O in precipitation, groundwater, and mountain-front recharge waters were used to constrain the sources and mechanisms of contamination. Our analyses indicate that groundwater nutrient levels on Tutuila are controlled primarily by residential, not agricultural activity. Also a lack of temporal variation suggests that episodic pollution events are limited to individual water sources as opposed to the entire aquifer. These results are not only valuable for water quality management on Tutuila, but also provide insight into the sustainability of groundwater supplies on other islands with similar hydrogeology and land use history.

  20. Data on microbiological quality assessment of rural drinking water supplies in Tiran County, Isfahan province, Iran.

    PubMed

    Jafari, Khadijeh; Mohammadi, Ali Akbar; Heidari, Zahra; Asghari, Farzaneh Baghal; Radfard, Majid; Yousefi, Mahmood; Shams, Mahmoud

    2018-06-01

    A lack of access to safe drinking water can lead to adverse health effects such as infection, disease, and undesirable aesthetic problems. The current study focused on the investigation of groundwater quality in Tiran's villages (Isfahan province, Iran). To determine essential microbiological quality, water samples were collected from 46 randomly-selected water wells during a one-year period. The parameters of pH and chlorine were measured on-site. Turbidity was measured at 420 nm using a DR5000 spectrophotometer. Microbiological tests including general thermoforms, Escherichia coli , and thermophiles were carried out according to the National Iranian Standard Method 3759. Data showed that 1.8% of the villages under study had contaminated water resources. The turbidity values for 94.5% of the resources were within recommended limits (<5NTU). In 20.6% of the samples, the residual free chlorine was in the range of 0 to 0.2 mg/L, 8.79% of samples had values greater than the recommended limits, and18.5% had no free residual chlorine.

Top