Code of Federal Regulations, 2011 CFR
2011-04-01
... work? (a) Benefits are available only while the effects of a work-related condition continue... current physical limitations, whether the work is available within the employee's demonstrated commuting...
Code of Federal Regulations, 2010 CFR
2010-04-01
... work? (a) Benefits are available only while the effects of a work-related condition continue... current physical limitations, whether the work is available within the employee's demonstrated commuting...
[Work quota setting and man-hour productivity estimation in pathologists].
Svistunov, V V; Makarov, S V; Makarova, A E
The paper considers the development and current state of the regulation of work quota setting and remuneration in pathologists. Reasoning from the current staff standards for morbid anatomy departments (units), the authors present a method to calculate the load of pathologists. The essence of the proposed method is demonstrated using a specific example.
Automated fiber placement: Evolution and current demonstrations
NASA Technical Reports Server (NTRS)
Grant, Carroll G.; Benson, Vernon M.
1993-01-01
The automated fiber placement process has been in development at Hercules since 1980. Fiber placement is being developed specifically for aircraft and other high performance structural applications. Several major milestones have been achieved during process development. These milestones are discussed in this paper. The automated fiber placement process is currently being demonstrated on the NASA ACT program. All demonstration projects to date have focused on fiber placement of transport aircraft fuselage structures. Hercules has worked closely with Boeing and Douglas on these demonstration projects. This paper gives a description of demonstration projects and results achieved.
Overworked Individuals or Overworked Families? Explaining Trends in Work, Leisure, and Family Time.
ERIC Educational Resources Information Center
Jacobs, Jerry A.; Gerson, Kathleen
2001-01-01
Data from the 1970 and 1997 Current Population Survey demonstrate that, more than changes in working hours, the shift from male-breadwinner to dual-earner and single-parent households has increased concern for family-work balance. Research should focus on combined work schedules of family members rather than changes in individual work patterns.…
Control of Interference during Working Memory Updating
ERIC Educational Resources Information Center
Szmalec, Arnaud; Verbruggen, Frederick; Vandierendonck, Andre; Kemps, Eva
2011-01-01
The current study examined the nature of the processes underlying working memory updating. In 4 experiments using the n-back paradigm, the authors demonstrate that continuous updating of items in working memory prevents strong binding of those items to their contexts in working memory, and hence leads to an increased susceptibility to proactive…
ERIC Educational Resources Information Center
Ayrinhac, Simon
2014-01-01
We present in this work a demonstration of the maze-solving problem with electricity. Electric current flowing in a maze as a printed circuit produces Joule heating and the right way is instantaneously revealed with infrared thermal imaging. The basic properties of electric current can be discussed in this context, with this challenging question:…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Amanda S.; Brosha, Eric
This is a progress report for the demonstration of a prototype hydrogen sensor and electronics package. There are five tasks associated with this, and four have been completed as of August 2016: Station Demonstration and Site Recommendation, Order Sensor Equipment, Build Sensors, and Install Sensors. The final task to be completed is Sensor Demonstration and Data Analysis, and expected completion date is January 26, 2017. This progress report details each of the tasks and goes into detail about what is currently being worked on, along with the budget and planned work for July 27, 2016 to January 26, 2017.
Portland cement based fast-setting concrete demonstration, district 07, Los Angeles County
DOT National Transportation Integrated Search
2001-09-01
The California Department of Transportation currently uses fast-setting concrete to accommodate short working windows. The current special provision for fast-setting concrete requires that the concrete reach a flexural strength of 2.8 MPa (400 psi) b...
Dual Arm Work Platform teleoperated robotics system. Innovative technology summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The US Department of Energy (DOE) and the Federal Energy Technology Center (FETC) has developed a Large Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial Deactivation and Decommissioning (D and D) technologies in comparison with current baseline technologies. The Dual Arm Work Platform (DAWP) demonstration focused on the use of the DAWP to segment and dismantle the CP-5 reactor tank and surrounding bio-shield components (including the graphite block reflector, lead and boral sheeting) and performing some minor tasks best suited for themore » use of teleoperated robotics that were not evaluated in this demonstration. The DAWP system is not a commercially available product at this time. The CP-5 implementation was its first D and D application. The demonstration of the DAWP was to determine the areas on which improvements must be made to make this technology commercially viable. The results of the demonstration are included in this greenbook. It is the intention of the developers to incorporate lessons learned at this demonstration and current technological advancements in robotics into the next generation of the DAWP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Gutierrez, Sulmer, E-mail: sulmer.a.fernandez.gutierrez@intel.com; Browning, Jim; Lin, Ming-Chieh
Phase-control of a magnetron is studied via simulation using a combination of a continuous current source and a modulated current source. The addressable, modulated current source is turned ON and OFF at the magnetron operating frequency in order to control the electron injection and the spoke phase. Prior simulation work using a 2D model of a Rising Sun magnetron showed that the use of 100% modulated current controlled the magnetron phase and allowed for dynamic phase control. In this work, the minimum fraction of modulated current source needed to achieve a phase control is studied. The current fractions (modulated versusmore » continuous) were varied from 10% modulated current to 100% modulated current to study the effects on phase control. Dynamic phase-control, stability, and start up time of the device were studied for all these cases showing that with 10% modulated current and 90% continuous current, a phase shift of 180° can be achieved demonstrating dynamic phase control.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, A.N.; Cole, E.I. Jr.; Dodd, B.A.
This invited paper describes recently reported work on the application of magnetic force microscopy (MFM) to image currents in IC conductors [1]. A computer model for MFM imaging of IC currents and experimental results demonstrating the ability to determine current direction and magnitude with a resolution of {approximately} 1 mA dc and {approximately} 1 {mu}A ac are presented. The physics of MFM signal generation and applications to current imaging and measurement are described.
ERIC Educational Resources Information Center
Gunter, Helen M.
2012-01-01
Reading current accounts of higher education demonstrates the flux and damage of rapid neoliberal changes to the type and conduct of academic work. Opening the Times Higher Education magazine on the 28 April 2011 shows articles about cuts in staffing and undergraduate provision in England, concerns about the quality of for-profit higher education…
Test of bootstrap current models using high- β p EAST-demonstration plasmas on DIII-D
Ren, Qilong; Lao, Lang L.; Garofalo, Andrea M.; ...
2015-01-12
Magnetic measurements together with kinetic profile and motional Stark effect measurements are used in full kinetic equilibrium reconstructions to test the Sauter and NEO bootstrap current models in a DIII-D high-more » $${{\\beta}_{\\text{p}}}$$ EAST-demonstration experiment. This aims at developing on DIII-D a high bootstrap current scenario to be extended on EAST for a demonstration of true steady-state at high performance and uses EAST-similar operational conditions: plasma shape, plasma current, toroidal magnetic field, total heating power and current ramp-up rate. It is found that the large edge bootstrap current in these high-$${{\\beta}_{\\text{p}}}$$ plasmas allows the use of magnetic measurements to clearly distinguish the two bootstrap current models. In these high collisionality and high-$${{\\beta}_{\\text{p}}}$$ plasmas, the Sauter model overpredicts the peak of the edge current density by about 30%, while the first-principle kinetic NEO model is in close agreement with the edge current density of the reconstructed equilibrium. Furthermore, these results are consistent with recent work showing that the Sauter model largely overestimates the edge bootstrap current at high collisionality.« less
Anode current density distribution in a cusped field thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Huan, E-mail: wuhuan58@qq.com; Liu, Hui, E-mail: hlying@gmail.com; Meng, Yingchao
2015-12-15
The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.
Integrated-optic current sensors with a multimode interference waveguide device.
Kim, Sung-Moon; Chu, Woo-Sung; Kim, Sang-Guk; Oh, Min-Cheol
2016-04-04
Optical current sensors based on polarization-rotated reflection interferometry are demonstrated using polymeric integrated optics and various functional optical waveguide devices. Interferometric sensors normally require bias feedback control for maintaining the operating point, which increases the cost. In order to resolve this constraint of feedback control, a multimode interference (MMI) waveguide device is integrated onto the current-sensor optical chip in this work. From the multiple outputs of the MMI, a 90° phase-shifted transfer function is obtained. Using passive quadrature demodulation, we demonstrate that the sensor could maintain the output signal regardless of the drift in the operating bias-point.
ERIC Educational Resources Information Center
Ng, Thomas W. H.; Butts, Marcus M.; Vandenberg, Robert J.; DeJoy, David M.; Wilson, Mark G.
2006-01-01
In the current career climate characterized by change and turbulence, employees may demonstrate limited organizational commitment to their employers. Rousseau (1998) suggests that two key ways to elicit loyalty from employees today are to reinforce perceptions of organizational membership and demonstrate organizational care and support for…
Working Memory in Children: A Time-Constrained Functioning Similar to Adults
ERIC Educational Resources Information Center
Portrat, Sophie; Camos, Valerie; Barrouillet, Pierre
2009-01-01
Within the time-based resource-sharing (TBRS) model, we tested a new conception of the relationships between processing and storage in which the core mechanisms of working memory (WM) are time constrained. However, our previous studies were restricted to adults. The current study aimed at demonstrating that these mechanisms are present and…
Overworked? An Observation of the Relationship between Student Employment and Academic Performance
ERIC Educational Resources Information Center
Logan, Jennifer; Hughes, Traci; Logan, Brian
2016-01-01
Current observations from the National Center for Education Statistics demonstrate the dramatic increase in college student employment over the past few decades. Not only are more students employed than in previous decades, students are working more hours. This could lead to declines in academic performance as hours worked increase, resulting in…
Designing and Developing a Work Experience Component for a Vocational Education Curriculum.
ERIC Educational Resources Information Center
Santos, Otto, Jr.; Olinzock, Anthony
A work experience component for vocational educator teacher education based on demonstrated competence is proposed. Its basis is research concerning vocational education; sociometric conditions and needs; analyses of the past, present, and future of vocational education; and the current state of the art relative to curriculum systems. This…
Large angle magnetic suspension test fixture
NASA Technical Reports Server (NTRS)
Britcher, Colin P. (Principal Investigator); Huang, Jen-Kuang (Principal Investigator)
1996-01-01
Good progress is being made in several major areas. These include eddy current modelling and analysis, design optimization methods, wind tunnel Magnetic Suspension and Balance Systems (MSBS), payload pointing and vibration isolation systems, and system identification. In addition, another successful International Symposium has been completed, with the Proceedings being printed at the time of writing. These activities continue current work under this Grant and extend previous work on magnetic suspension systems and devices in the Guidance and Control Branch and will permit the demonstration of several new developments in the field of magnetic suspension technology.
ERIC Educational Resources Information Center
Fryer, Luke K.
2017-01-01
Many of our current higher education (HE) learning strategy models intersect at important points. At the same time, these theories also often demonstrate important unique perspectives on student learning within HE. Currently, research with one learning strategy model rarely leads to developments in others, as each group of researchers works in…
ERIC Educational Resources Information Center
Wade, Joshua; Weitlauf, Amy; Broderick, Neill; Swanson, Amy; Zhang, Lian; Bian, Dayi; Sarkar, Medha; Warren, Zachary; Sarkar, Nilanjan
2017-01-01
Individuals with Autism Spectrum Disorder (ASD), compared to typically-developed peers, may demonstrate behaviors that are counter to safe driving. The current work examines the use of a novel simulator in two separate studies. Study 1 demonstrates statistically significant performance differences between individuals with (N = 7) and without ASD…
ERIC Educational Resources Information Center
1967
AFTER FIVE YEARS OF FEDERALLY-SUPPORTED CURRICULUM RESEARCH IN ENGLISH, 14 STUDY CENTERS AND FIVE DEMONSTRATION CENTERS ARE NOW MAKING THE RESULTS OF THEIR WORK AVAILABLE TO THE PUBLIC. THIS PAMPHLET LISTS TITLES OF REPORTS AND INSTRUCTIONAL MATERIALS PREPARED BY THE FOLLOWING CENTERS--(1) CARNEGIE-MELLON UNIVERSITY, (2) TEACHERS COLLEGE, COLUMBIA…
ERIC Educational Resources Information Center
Sykes, Christopher; Dean, Bonnie Amelia
2013-01-01
In the Work-Integrated Learning (WIL) curriculum, reflection on workplace activities is widely used to support student learning. Recent critiques have demonstrated the limitations of current approaches to support students' reflective learning of workplace practices. By employing a practice-based approach, we seek to refocus WIL reflection on…
Mitigation of PID in commercial PV modules using current interruption method
NASA Astrophysics Data System (ADS)
Bora, Birinchi; Oh, Jaewon; Tatapudi, Sai; Sastry, Oruganty S.; Kumar, Rajesh; Prasad, Basudev; Tamizhmani, Govindasamy
2017-08-01
Potential-induced degradation (PID) is known to have a very severe effect on the reliability of PV modules. PID is caused due to the leakage of current from the cell circuit to the grounded frame under humid conditions of high voltage photovoltaic (PV) systems. There are multiple paths for the current leakage. The most dominant leakage path is from the cell to the frame through encapsulant, glass bulk and glass surface. This dominant path can be prevented by interrupting the electrical conductivity at the glass surface. In our previous works related to this topic, we demonstrated the effectiveness of glass surface conductivity interruption technique using one-cell PV coupons. In this work, we demonstrate the effectiveness of this technique using a full size commercial module susceptible to PID. The interruption of surface conductivity of the commercial module was achieved by attaching a narrow, thin flexible glass strips, from Corning, called Willow Glass on the glass surface along the inner edges of the frame. The flexible glass strip was attached to the module glass surface by heating the glass strip with an ionomer adhesive underneath using a handheld heat gun. The PID stress test was performed at 60°C and 85% RH for 96 hours at -600 V. Pre- and post-PID characterizations including I-V and electroluminescence were carried out to determine the performance loss and affected cell areas. This work demonstrates that the PID issue can be effectively addressed by using this current interruption technique. An important benefit of this approach is that this interruption technique can be applied after manufacturing the modules and after installing the modules in the field as well.
Current-induced changes of migration energy barriers in graphene and carbon nanotubes
NASA Astrophysics Data System (ADS)
Obodo, J. T.; Rungger, I.; Sanvito, S.; Schwingenschlögl, U.
2016-05-01
An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative.An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR00534A
[Effort-reward imbalance at work and depression: current research evidence].
Siegrist, J
2013-01-01
In view of highly prevalent stressful conditions in modern working life, in particular increasing work pressure and job insecurity, it is of interest to know whether specific constellations of an adverse psychosocial work environment increase the risk of depressive disorder among employed people. This contribution gives a short overview of current research evidence based on an internationally established work stress model of effort-reward imbalance. Taken together, results from seven prospective epidemiological investigations demonstrate a two-fold elevated relative risk of incident depressive disorder over a mean observation period of 2.7 years among exposed versus non-exposed employees. Additional findings from experimental and quasi-experimental studies point to robust associations of effort-reward imbalance at work with proinflammatory cytokines and markers of reduced immune competence. These latter markers may indicate potential psychobiological pathways. In conclusion, incorporating this new knowledge into medical treatment and preventive efforts seems well justified.
McCorkell, Gillian; Brown, Geraldine; Michaelides, Bernie; Coates, Vivien
2015-03-01
The project aims to assess current specialist practice in relation to the new and ever-changing healthcare climate and explore some of the issues that specialist nurses encounter. The current financial recession is driving a range of economic policy changes and consequently service provision, in particular the work and impact of nurses working in a specialist role, being examined. This has resulted in many specialist nurses feeling very vulnerable. A cross sectional survey was completed by nurses working in specialist roles (n = 96) in a large health and social care setting in the United Kingdom. A response rate of 62% was achieved: 44% provide nurse led clinics and 42% are nurse prescribers. The mean length of time qualified as a registered nurse was 27 years. Less than a third felt that the current computer system for activity recording reflected their current workload and 65% needed administrative support. This study demonstrates the insufficient resources available to specialist nurses resulting in inappropriate but necessary, use of time and restricted opportunities for learning and development. © 2013 John Wiley & Sons Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-04
... sustaining all-hazards emergency management capabilities. The EMPG Work Plan narrative must demonstrate how proposed projects address gaps, deficiencies, and capabilities in current programs and the ability to...
Swenson, Kristine
2013-01-01
Silas Weir Mitchell's novel, When All the Woods are Green (1894), acknowledges the medical use of mindblindness (agnosia) but also casts it as a developmental disorder, bringing it provocatively close to how current neuropsychologist, Simon Baron-Cohen and his followers use the term in relation to autism. This chapter traces the mindblindess metaphor in the works of Mitchell and Baron-Cohen to show how mindblindness informs the larger paradigms by which they theorize the brain. This analysis suggests that Baron-Cohen, and thus much current thinking about autism spectrum conditions, is influenced by Victorian-era cultural assumptions and neurosexism, a connection that calls for scrutiny of Baron-Cohen's current models of the brain and theories of autism. This chapter also demonstrates the extent to which Mitchell used fiction and advocated writing as neuroaesthetic tools and thus bridged in his work cognitive science and aesthetics--a connection that current scholars of neuroaesthetics are now theorizing. © 2013 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Brand, Michael W.; Weiss, Eugenia L.
2015-01-01
This article illustrates the types of situations that U.S. uniformed social workers have experienced in combat deployments to Iraq and Afghanistan with the purpose of preparing current and future social workers to effectively serve military and veteran clients in either military or civilian settings. Vignettes demonstrate the application of the…
Response: Hermeneutics and Accountable Practice--Lessons from the History of Social Work
ERIC Educational Resources Information Center
Lorenz, Walter
2012-01-01
Central to this article are two concerns: It seeks to demonstrate that social work theories and methods always need to be evaluated with reference to the social policy context in which they operate and in which they might assume unintended functions. It further proposes that the dominance of a positivist epistemology in the current surge for…
Optimal lattice-structured materials
Messner, Mark C.
2016-07-09
This paper describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describingmore » the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.« less
Transient experimental demonstration of an elliptical thermal camouflage device.
He, Xiao; Yang, Tianzhi; Zhang, Xingwei; Wu, Linzhi; He, Xiao Qiao
2017-11-30
The camouflage phenomenon (invisibility or illusion) of thermodynamics has attracted great attentions and many experimental demonstrations have been achieved by virtue of simplified approaches or the scattering cancellation. However, all of the experiments conducted are limited in the invisibility of spheres or two-dimensional (2D) cylinders. An ellipsoid camouflage device with a homogenous and isotropic shell is firstly reported based on the idea of the neutral inclusion and a 2D elliptical thermal camouflage device is realized by a thin-layer cloak of homogeneous isotropic material firstly. The robustness of this scheme is validated in both 2D and 3D configurations. The current work may provide a new avenue to the control of the thermal signatures and we believe this work will broaden the current research and pave a new path to the control of the path of the heat transfer.
Work-hour restrictions and orthopaedic resident education: a systematic review.
Mauser, Nathan S; Michelson, James D; Gissel, Hannah; Henderson, Corey; Mauffrey, Cyril
2016-05-01
The ACGME (US) and The European Working Time Directive (UK) placed work-hour restrictions on medical trainees with the goal of improved patient safety. However, there has been concern over a potential decrease in medical education. Orthopaedic training is the focus of this study. We examined previously published subjective and objective data regarding education and work-hour restrictions and developed the questions: Do specific perceptions emerge within the subjective studies examined? Are there objective differences in educational measures before and after work-hour restrictions? Is there a difference between the subjective and objective data? A systematic review was conducted via MedLine, regarding orthopaedic studies in the USA and UK, with reference to work-hour restrictions and education. Subjective survey studies demonstrate that residents and attending physicians have a negative response to work-hour restrictions because of the perceived impact on their overall education and operating room experience. Conversely, limited objective studies demonstrated no change in operative volume before or after implementation of restrictions. This review highlights the need for more objective studies on the educational implications of work-hour restrictions. Studies to date have not demonstrated a measurable difference based on case logs or training scores. Opinion-based surveys demonstrate an overall negative perception by both residents and attending physicians, on the impact of work-hour restrictions on orthopaedic education. Current published data is limited and stronger evidence-based data are needed before definitive conclusions can be reached.
Cavity Mediated Manipulation of Distant Spin Currents Using a Cavity-Magnon-Polariton.
Bai, Lihui; Harder, Michael; Hyde, Paul; Zhang, Zhaohui; Hu, Can-Ming; Chen, Y P; Xiao, John Q
2017-05-26
Using electrical detection of a strongly coupled spin-photon system comprised of a microwave cavity mode and two magnetic samples, we demonstrate the long distance manipulation of spin currents. This distant control is not limited by the spin diffusion length, instead depending on the interplay between the local and global properties of the coupled system, enabling systematic spin current control over large distance scales (several centimeters in this work). This flexibility opens the door to improved spin current generation and manipulation for cavity spintronic devices.
Quantum rings in magnetic fields and spin current generation.
Cini, Michele; Bellucci, Stefano
2014-04-09
We propose three different mechanisms for pumping spin-polarized currents in a ballistic circuit using a time-dependent magnetic field acting on an asymmetrically connected quantum ring at half filling. The first mechanism works thanks to a rotating magnetic field and produces an alternating current with a partial spin polarization. The second mechanism works by rotating the ring in a constant field; like the former case, it produces an alternating charge current, but the spin current is dc. Both methods do not require a spin-orbit interaction to achieve the polarized current, but the rotating ring could be used to measure the spin-orbit interaction in the ring using characteristic oscillations. On the other hand, the last mechanism that we propose depends on the spin-orbit interaction in an essential way, and requires a time-dependent magnetic field in the plane of the ring. This arrangement can be designed to pump a purely spin current. The absence of a charge current is demonstrated analytically. Moreover, a simple formula for the current is derived and compared with the numerical results.
DOPC liposomes doped with octadecylferulate
USDA-ARS?s Scientific Manuscript database
Octadecyl ferulate, found in limit quantities in plants, is a natural phenolic derivative with the potential as a cosmeceautical, nutriceutical, and/or pharmaceutical ingredient because of its lipophilic and antioxidant properties. The current work demonstrates our ability to chemically synthesize a...
Biological basis for space-variant sensor design I: parameters of monkey and human spatial vision
NASA Astrophysics Data System (ADS)
Rojer, Alan S.; Schwartz, Eric L.
1991-02-01
Biological sensor design has long provided inspiration for sensor design in machine vision. However relatively little attention has been paid to the actual design parameters provided by biological systems as opposed to the general nature of biological vision architectures. In the present paper we will provide a review of current knowledge of primate spatial vision design parameters and will present recent experimental and modeling work from our lab which demonstrates that a numerical conformal mapping which is a refinement of our previous complex logarithmic model provides the best current summary of this feature of the primate visual system. In this paper we will review recent work from our laboratory which has characterized some of the spatial architectures of the primate visual system. In particular we will review experimental and modeling studies which indicate that: . The global spatial architecture of primate visual cortex is well summarized by a numerical conformal mapping whose simplest analytic approximation is the complex logarithm function . The columnar sub-structure of primate visual cortex can be well summarized by a model based on a band-pass filtered white noise. We will also refer to ongoing work in our lab which demonstrates that: . The joint columnar/map structure of primate visual cortex can be modeled and summarized in terms of a new algorithm the ''''proto-column'''' algorithm. This work provides a reference-point for current engineering approaches to novel architectures for
High Resolution Radar for NASA and Space Situational Awareness for Observation and Monitoring
NASA Astrophysics Data System (ADS)
Geldzahler, B.; D'Addario, L.; Ott, M.; Birr, R.; Woods, G.; Miller, M.
2014-09-01
NASA has embarked on a series of demonstrations that will enable the implementation of a high power, high resolution X/Ka-band radar system using a phased array of widely spaced 12m antennas to better track and characterize near Earth objects and orbital debris. This radar system also has applications for cost effective space situational awareness. Ka band can provide 5cm ranging resolution, and, with arrays in the western United States and Australia used in an astrometric mode, ? 10 cm resolution at GEO. Here we report the results of a successful X-band demonstration of coherent uplink arraying with real time compensation for atmospheric phase fluctuations at the Kennedy Space Center (KSC) using a system simplified from work previously undertaken. The X-band system is a prelude to the Ka-band work currently underway. The target satellites were components of the DSCS and WGS systems. KSC was chosen for the demonstration site because [a] of reduced implementation costs, [b] there is a lot of water vapor in the air (not Ka-band friendly), and [c] some of the test satellites have low elevations thereby adding more attenuation and turbulence to the demonstration. When Ka-band coherent uplink arraying is demonstrated to work at KSC, it will work and can be deployed anywhere.
Working memory training to improve speech perception in noise across languages
Ingvalson, Erin M.; Dhar, Sumitrajit; Wong, Patrick C. M.; Liu, Hanjun
2015-01-01
Working memory capacity has been linked to performance on many higher cognitive tasks, including the ability to perceive speech in noise. Current efforts to train working memory have demonstrated that working memory performance can be improved, suggesting that working memory training may lead to improved speech perception in noise. A further advantage of working memory training to improve speech perception in noise is that working memory training materials are often simple, such as letters or digits, making them easily translatable across languages. The current effort tested the hypothesis that working memory training would be associated with improved speech perception in noise and that materials would easily translate across languages. Native Mandarin Chinese and native English speakers completed ten days of reversed digit span training. Reading span and speech perception in noise both significantly improved following training, whereas untrained controls showed no gains. These data suggest that working memory training may be used to improve listeners' speech perception in noise and that the materials may be quickly adapted to a wide variety of listeners. PMID:26093435
Working memory training to improve speech perception in noise across languages.
Ingvalson, Erin M; Dhar, Sumitrajit; Wong, Patrick C M; Liu, Hanjun
2015-06-01
Working memory capacity has been linked to performance on many higher cognitive tasks, including the ability to perceive speech in noise. Current efforts to train working memory have demonstrated that working memory performance can be improved, suggesting that working memory training may lead to improved speech perception in noise. A further advantage of working memory training to improve speech perception in noise is that working memory training materials are often simple, such as letters or digits, making them easily translatable across languages. The current effort tested the hypothesis that working memory training would be associated with improved speech perception in noise and that materials would easily translate across languages. Native Mandarin Chinese and native English speakers completed ten days of reversed digit span training. Reading span and speech perception in noise both significantly improved following training, whereas untrained controls showed no gains. These data suggest that working memory training may be used to improve listeners' speech perception in noise and that the materials may be quickly adapted to a wide variety of listeners.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler Gray; Jeremy Diez; Jeffrey Wishart
2013-07-01
The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration inmore » an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.« less
Design of an advanced bundle divertor for the Demonstration Tokamak Hybrid Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, T.F.; Lee, A.Y.; Ruck, G.W.
1979-01-25
The conclusion of this work is that a bundle divertor, using an improved method of designing the magnetic field configuration, is feasible for the Demonstration Tokamak Hybrid Reactor (DTHR) investigated by Westinghouse. The most significant achievement of this design is the reduction in current density (1 kA/cm/sup 2/) in the divertor coils in comparison to the overall averaged current densities per tesla of field to be nulled for DITE (25 kA/cm/sup 2/) and for ISX-B/sup 2/ (11 kA/cm/sup 2/). Therefore, superconducting magnets can be built into the tight space available with a sound mechanical structure.
Phase-locked, high power, mid-infrared quantum cascade laser arrays
NASA Astrophysics Data System (ADS)
Zhou, W.; Slivken, S.; Razeghi, M.
2018-04-01
We demonstrate phase-locked, high power quantum cascade laser arrays, which are combined using a monolithic, tree array multimode interferometer, with emission wavelengths around 4.8 μm. A maximum output power of 15 W was achieved from an eight-element laser array, which has only a slightly higher threshold current density and a similar slope efficiency compared to a Fabry-Perot laser of the same length. Calculated multimode interferometer splitting loss is on the order of 0.27 dB for the in-phase supermode. In-phase supermode operation with nearly ideal behavior is demonstrated over the working current range of the array.
Demonstrating the Viability and Affordability of Nuclear Surface Power Systems
NASA Technical Reports Server (NTRS)
Vandyke, Melissa K.
2006-01-01
A set of tasks have been identified to help demonstrate the viability, performance, and affordability of surface fission systems. Completion of these tasks will move surface fission systems closer to reality by demonstrating affordability and performance potential. Tasks include fabrication and test of a 19-pin section of a Surface Power Unit Demonstrator (SPUD); design, fabrication, and utilization of thermal simulators optimized for surface fission' applications; design, fabrication, and utilization of GPHS module thermal simulators; design, fabrication, and test of a fission surface power system shield; and work related to potential fission surface power fuel/clad systems. Work on the SPUD will feed directly into joint NASA MSFC/NASA GRC fabrication and test of a surface power plant Engineering Development Unit (EDU). The goal of the EDU will be to perform highly realistic thermal, structural, and electrical testing on an integrated fission surface power system. Fission thermal simulator work will help enable high fidelity non-nuclear testing of pumped NaK surface fission power systems. Radioisotope thermal simulator work will help enable design and development of higher power radioisotope systems (power ultimately limited by Pu-238 availability). Shield work is designed to assess the potential of using a water neutron shield on the surface of the moon. Fuels work is geared toward assessing the current potential of using fuels that have already flown in space.
Proposed biomimetic molecular sensor array for astrobiology applications
NASA Astrophysics Data System (ADS)
Cullen, D. C.; Grant, W. D.; Piletsky, S.; Sims, M. R.
2001-08-01
A key objective of future astrobiology lander missions, e.g. to Mars and Europa, is the detection of biomarkers - molecules whose presence indicates the existence of either current or extinct life. To address limitations of current analytical methods for biomarker detection, we describe the methodology of a new project for demonstration of a robust molecular-recognition sensor array for astrobiology biomarkers. The sensor array will be realised by assembling components that have been demonstrated individually in previous or current research projects. The major components are (1) robust artificial molecular receptors comprised of molecular imprinted polymer (MIP) recognition systems and (2) a sensor array comprised of both optical and electrochemical sensor elements. These components will be integrated together using ink-jet printing technology coupled with in situ photo-polymerisation of MIPs. For demonstration, four model biomarkers are chosen as targets and represent various classes of potential biomarkers. Objectives of the proposed work include (1) demonstration of practical proof-of-concept, (2) identify areas for further development and (3) provide performance and design data for follow-up projects leading to astrobiology missions.
Towards an Artificial Space Object Taxonomy
2013-09-01
demonstrate how to implement this taxonomy in Figaro, an open source probabilistic programming language. 2. INTRODUCTION Currently, US Space Command...Taxonomy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...demonstrate how to implement this taxonomy in Figaro, an open source probabilistic programming language. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF
2014 Overview of NASA GRC Electrochemical Power and Energy Storage Technology
NASA Technical Reports Server (NTRS)
Reid, Concha M.
2014-01-01
Overview presentation to the IAPG Chemical Working Group meeting, discussing current electrochemical power and energy storage R and D at NASA GRC including missions, demonstrations, and reserch projects. Activities such as ISS Lithium-Ion Battery Replacements, the Advanced Exploration Systems Modular Power Systems project, Enabling Electric Aviation with Ultra-High Energy Litium Metal Batteries, Advanced Space Power Systems project, and SBIR STTR work, will be discussed.
Preparing Urban School Leaders: What Works?
ERIC Educational Resources Information Center
Huang, Tiedan; Beachum, Floyd D.; White, George P.; Kaimal, Girija; FitzGerald, Anne Marie; Reed, Peter
2012-01-01
Extant research, though limited in quantity, increasingly demonstrates the critical connection between quality preparation experience, candidates' leadership capacity, and their subsequent instructional and transformation leadership practices. Using mixed methods, this study builds on the current knowledge base and aims to further verify the link…
Teacher Leadership and Behaviour Management.
ERIC Educational Resources Information Center
Rogers, Bill, Ed.
These 10 papers address current approaches to teacher leadership and behavior management. Each paper demonstrates a commitment to support classroom teachers with practical action research in such areas as discipline and behavior management, effective teaching, teacher leadership, working with students who show behavioral-emotional disorders, and…
Restoring Opportunity for Dropouts: Reasons & Results.
ERIC Educational Resources Information Center
Crist, Kerry
1991-01-01
The 70001 Training & Employment Institute is currently designing a new dropout prevention program for public schools, the Work, Achievement, and Values in Education (WAVE) project. WAVE exercises will be competency based, helping demonstrate concrete learning gains and emphasizing experiential learning activities and sensitivity to local…
Lunar exploration rover program developments
NASA Technical Reports Server (NTRS)
Klarer, P. R.
1994-01-01
The Robotic All Terrain Lunar Exploration Rover (RATLER) design concept began at Sandia National Laboratories in late 1991 with a series of small, proof-of-principle, working scale models. The models proved the viability of the concept for high mobility through mechanical simplicity, and eventually received internal funding at Sandia National Laboratories for full scale, proof-of-concept prototype development. Whereas the proof-of-principle models demonstrated the mechanical design's capabilities for mobility, the full scale proof-of-concept design currently under development is intended to support field operations for experiments in telerobotics, autonomous robotic operations, telerobotic field geology, and advanced man-machine interface concepts. The development program's current status is described, including an outline of the program's work over the past year, recent accomplishments, and plans for follow-on development work.
Orlov, Natasza D; O'Daly, Owen; Tracy, Derek K; Daniju, Yusuf; Hodsoll, John; Valdearenas, Lorena; Rothwell, John; Shergill, Sukhi S
2017-09-01
Individuals with schizophrenia typically suffer a range of cognitive deficits, including prominent deficits in working memory and executive function. These difficulties are strongly predictive of functional outcomes, but there is a paucity of effective therapeutic interventions targeting these deficits. Transcranial direct current stimulation is a novel neuromodulatory technique with emerging evidence of potential pro-cognitive effects; however, there is limited understanding of its mechanism. This was a double-blind randomized sham controlled pilot study of transcranial direct current stimulation on a working memory (n-back) and executive function (Stroop) task in 28 individuals with schizophrenia using functional magnetic resonance imaging. Study participants received 30 min of real or sham transcranial direct current stimulation applied to the left frontal cortex. The 'real' and 'sham' groups did not differ in online working memory task performance, but the transcranial direct current stimulation group demonstrated significant improvement in performance at 24 h post-transcranial direct current stimulation. Transcranial direct current stimulation was associated with increased activation in the medial frontal cortex beneath the anode; showing a positive correlation with consolidated working memory performance 24 h post-stimulation. There was reduced activation in the left cerebellum in the transcranial direct current stimulation group, with no change in the middle frontal gyrus or parietal cortices. Improved performance on the executive function task was associated with reduced activity in the anterior cingulate cortex. Transcranial direct current stimulation modulated functional activation in local task-related regions, and in more distal nodes in the network. Transcranial direct current stimulation offers a potential novel approach to altering frontal cortical activity and exerting pro-cognitive effects in schizophrenia. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Ellis, Matthew O. A.; Stamenova, Maria; Sanvito, Stefano
2017-12-01
There exists a significant challenge in developing efficient magnetic tunnel junctions with low write currents for nonvolatile memory devices. With the aim of analyzing potential materials for efficient current-operated magnetic junctions, we have developed a multi-scale methodology combining ab initio calculations of spin-transfer torque with large-scale time-dependent simulations using atomistic spin dynamics. In this work we introduce our multiscale approach, including a discussion on a number of possible schemes for mapping the ab initio spin torques into the spin dynamics. We demonstrate this methodology on a prototype Co/MgO/Co/Cu tunnel junction showing that the spin torques are primarily acting at the interface between the Co free layer and MgO. Using spin dynamics we then calculate the reversal switching times for the free layer and the critical voltages and currents required for such switching. Our work provides an efficient, accurate, and versatile framework for designing novel current-operated magnetic devices, where all the materials details are taken into account.
Problem decomposition by mutual information and force-based clustering
NASA Astrophysics Data System (ADS)
Otero, Richard Edward
The scale of engineering problems has sharply increased over the last twenty years. Larger coupled systems, increasing complexity, and limited resources create a need for methods that automatically decompose problems into manageable sub-problems by discovering and leveraging problem structure. The ability to learn the coupling (inter-dependence) structure and reorganize the original problem could lead to large reductions in the time to analyze complex problems. Such decomposition methods could also provide engineering insight on the fundamental physics driving problem solution. This work forwards the current state of the art in engineering decomposition through the application of techniques originally developed within computer science and information theory. The work describes the current state of automatic problem decomposition in engineering and utilizes several promising ideas to advance the state of the practice. Mutual information is a novel metric for data dependence and works on both continuous and discrete data. Mutual information can measure both the linear and non-linear dependence between variables without the limitations of linear dependence measured through covariance. Mutual information is also able to handle data that does not have derivative information, unlike other metrics that require it. The value of mutual information to engineering design work is demonstrated on a planetary entry problem. This study utilizes a novel tool developed in this work for planetary entry system synthesis. A graphical method, force-based clustering, is used to discover related sub-graph structure as a function of problem structure and links ranked by their mutual information. This method does not require the stochastic use of neural networks and could be used with any link ranking method currently utilized in the field. Application of this method is demonstrated on a large, coupled low-thrust trajectory problem. Mutual information also serves as the basis for an alternative global optimizer, called MIMIC, which is unrelated to Genetic Algorithms. Advancement to the current practice demonstrates the use of MIMIC as a global method that explicitly models problem structure with mutual information, providing an alternate method for globally searching multi-modal domains. By leveraging discovered problem inter- dependencies, MIMIC may be appropriate for highly coupled problems or those with large function evaluation cost. This work introduces a useful addition to the MIMIC algorithm that enables its use on continuous input variables. By leveraging automatic decision tree generation methods from Machine Learning and a set of randomly generated test problems, decision trees for which method to apply are also created, quantifying decomposition performance over a large region of the design space.
Visible Light-Assisted High-Performance Mid-Infrared Photodetectors Based on Single InAs Nanowire.
Fang, Hehai; Hu, Weida; Wang, Peng; Guo, Nan; Luo, Wenjin; Zheng, Dingshan; Gong, Fan; Luo, Man; Tian, Hongzheng; Zhang, Xutao; Luo, Chen; Wu, Xing; Chen, Pingping; Liao, Lei; Pan, Anlian; Chen, Xiaoshuang; Lu, Wei
2016-10-12
One-dimensional InAs nanowires (NWs) have been widely researched in recent years. Features of high mobility and narrow bandgap reveal its great potential of optoelectronic applications. However, most reported work about InAs NW-based photodetectors is limited to the visible waveband. Although some work shows certain response for near-infrared light, the problems of large dark current and small light on/off ratio are unsolved, thus significantly restricting the detectivity. Here in this work, a novel "visible light-assisted dark-current suppressing method" is proposed for the first time to reduce the dark current and enhance the infrared photodetection of single InAs NW photodetectors. This method effectively increases the barrier height of the metal-semiconductor contact, thus significantly making the device a metal-semiconductor-metal (MSM) photodiode. These MSM photodiodes demonstrate broadband detection from less than 1 μm to more than 3 μm and a fast response of tens of microseconds. A high detectivity of ∼10 12 Jones has been achieved for the wavelength of 2000 nm at a low bias voltage of 0.1 V with corresponding responsivity of as much as 40 A/W. Even for the incident wavelength of 3113 nm, a detectivity of ∼10 10 Jones and a responsivity of 0.6 A/W have been obtained. Our work has achieved an extended detection waveband for single InAs NW photodetector from visible and near-infrared to mid-infrared. The excellent performance for infrared detection demonstrated the great potential of narrow bandgap NWs for future infrared optoelectronic applications.
Modelling the transient behaviour of pulsed current tungsten-inert-gas weldpools
NASA Astrophysics Data System (ADS)
Wu, C. S.; Zheng, W.; Wu, L.
1999-01-01
A three-dimensional model is established to simulate the pulsed current tungsten-inert-gas (TIG) welding process. The goal is to analyse the cyclic variation of fluid flow and heat transfer in weldpools under periodic arc heat input. To this end, an algorithm, which is capable of handling the transience, nonlinearity, multiphase and strong coupling encountered in this work, is developed. The numerical simulations demonstrate the transient behaviour of weldpools under pulsed current. Experimental data are compared with numerical results to show the effectiveness of the developed model.
Estimating Ocean Currents from Automatic Identification System Based Ship Drift Measurements
NASA Astrophysics Data System (ADS)
Jakub, Thomas D.
Ship drift is a technique that has been used over the last century and a half to estimate ocean currents. Several of the shortcomings of the ship drift technique include obtaining the data from multiple ships, the time delay in getting those ship positions to a data center for processing and the limited resolution based on the amount of time between position measurements. These shortcomings can be overcome through the use of the Automatic Identification System (AIS). AIS enables more precise ocean current estimates, the option of finer resolution and more timely estimates. In this work, a demonstration of the use of AIS to compute ocean currents is performed. A corresponding error and sensitivity analysis is performed to help identify under which conditions errors will be smaller. A case study in San Francisco Bay with constant AIS message updates was compared against high frequency radar and demonstrated ocean current magnitude residuals of 19 cm/s for ship tracks in a high signal to noise environment. These ship tracks were only minutes long compared to the normally 12 to 24 hour ship tracks. The Gulf of Mexico case study demonstrated the ability to estimate ocean currents over longer baselines and identified the dependency of the estimates on the accuracy of time measurements. Ultimately, AIS measurements when combined with ship drift can provide another method of estimating ocean currents, particularly when other measurements techniques are not available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Q. Q., E-mail: yangqq@ipp.ac.cn; Zhong, F. C., E-mail: gsxu@ipp.ac.cn, E-mail: fczhong@dhu.edu.cn; Jia, M. N.
2015-06-15
The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation lengthmore » of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.« less
Collaborative Protection and Control Schemes for Shipboard Electrical Systems
2007-03-26
VSCs ) for fault current limiting and interruption. Revisions needed on the VSCs to perform these functions have been identified, and feasibility of this...disturbances very fast - less than 3-4 ms [3]. Next section summarizes the details of the agent based protection scheme that uses the VSC as the...fault currents. In our previous work [2, 3], it has been demonstrated that this new functionally for VSC can be achieved by proper selection of
Autonomous space processor for orbital debris
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar; Campbell, David; Brockman, Jeff P.; Carter, Bruce; Donelson, Leslie; John, Lawrence E.; Marine, Micky C.; Rodina, Dan D.
1989-01-01
This work continues to develop advanced designs toward the ultimate goal of a GETAWAY SPECIAL to demonstrate economical removal of orbital debris utilizing local resources in orbit. The fundamental technical feasibility was demonstrated last year through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design and a subscale model. During this reporting period, several improvements are made in the solar cutter, such as auto track capabilities, better quality reflectors and a more versatile framework. The major advance has been in the design, fabrication and working demonstration of a ROBOTIC ARM that has several degrees of freedom. The functions were specifically tailored for the orbital debris handling. These advances are discussed here. Also a small fraction of the resources were allocated towards research in flame augmentation in SCRAMJETS for the NASP. Here, the fundamental advance was the attainment of Mach numbers up to 0.6 in the flame zone and a vastly improved injection system; the current work is expected to achieve supersonic combustion in the laboratory and an advanced monitoring system.
Layton, Kelvin J; Gallichan, Daniel; Testud, Frederik; Cocosco, Chris A; Welz, Anna M; Barmet, Christoph; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim
2013-09-01
It has recently been demonstrated that nonlinear encoding fields result in a spatially varying resolution. This work develops an automated procedure to design single-shot trajectories that create a local resolution improvement in a region of interest. The technique is based on the design of optimized local k-space trajectories and can be applied to arbitrary hardware configurations that employ any number of linear and nonlinear encoding fields. The trajectories designed in this work are tested with the currently available hardware setup consisting of three standard linear gradients and two quadrupolar encoding fields generated from a custom-built gradient insert. A field camera is used to measure the actual encoding trajectories up to third-order terms, enabling accurate reconstructions of these demanding single-shot trajectories, although the eddy current and concomitant field terms of the gradient insert have not been completely characterized. The local resolution improvement is demonstrated in phantom and in vivo experiments. Copyright © 2012 Wiley Periodicals, Inc.
Morphological effects on sensitivity of heterogeneous energetic materials
NASA Astrophysics Data System (ADS)
Roy, Sidhartha; Rai, Nirmal; Sen, Oishik; Udaykumar, H. S.
2017-06-01
The mesoscale physical response under shock loading in heterogeneous energetics is inherently linked to the microstructural characteristics. The current work demonstrates the connection between the microstructural features of porous energetic material and its sensitivity. A unified levelset based framework is developed to characterize the microstructures of a given sample. Several morphological metrics describing the mesoscale geometry of the materials are extracted using the current tool including anisotropy, tortuosity, surface to volume, nearest neighbors, size and curvature distributions. The relevant metrics among the ones extracted are identified and correlated to the mesoscale response of the energetic materials under shock loading. Two classes of problems are considered here: (a) field of idealized voids embedded in the HMX material and (b) real samples of pressed HMX. The effects of stochasticity associated with void arrangements on the sensitivity of the energetic material samples are shown. In summary, this work demonstrates the relationship between the mesoscale morphology and shock response of heterogeneous energetic materials using a levelset based framework.
Recent Work in Hybrid Radiation Transport Methods with Applications to Commercial Nuclear Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulesza, Joel A.
This talk will begin with an overview of hybrid radiation transport methods followed by a discussion of the author’s work to advance current capabilities. The talk will then describe applications for these methods in commercial nuclear power reactor analyses and techniques for experimental validation. When discussing these analytical and experimental activities, the importance of technical standards such as those created and maintained by ASTM International will be demonstrated.
Graded recombination layers for multijunction photovoltaics.
Koleilat, Ghada I; Wang, Xihua; Sargent, Edward H
2012-06-13
Multijunction devices consist of a stack of semiconductor junctions having bandgaps tuned across a broad spectrum. In solar cells this concept is used to increase the efficiency of photovoltaic harvesting, while light emitters and detectors use it to achieve multicolor and spectrally tunable behavior. In series-connected current-matched multijunction devices, the recombination layers must allow the hole current from one cell to recombine, with high efficiency and low voltage loss, with the electron current from the next cell. We recently reported a tandem solar cell in which the recombination layer was implemented using a progression of n-type oxides whose doping densities and work functions serve to connect, with negligible resistive loss at solar current densities, the constituent cells. Here we present the generalized conditions for design of efficient graded recombination layer solar devices. We report the number of interlayers and the requirements on work function and doping of each interlayer, to bridge an work function difference as high as 1.6 eV. We also find solutions that minimize the doping required of the interlayers in order to minimize optical absorption due to free carriers in the graded recombination layer (GRL). We demonstrate a family of new GRL designs experimentally and highlight the benefits of the progression of dopings and work functions in the interlayers.
Night work and the reproductive health of women: an integrated literature review.
Chau, Yu Moon; West, Sandra; Mapedzahama, Virginia
2014-01-01
The aim of this review was to synthesize current evidence on the effects of night work on the major stages of women's reproductive health, specifically the menstrual cycle, fertility, pregnancy, and menopause. Current understanding suggests that night work (work that causes disruption of a worker's circadian [day/night] rhythms) adversely affects workers' health and well-being. A complex relationship exists between circadian rhythms and reproductive hormones, and this may potentially increase the vulnerability of women to the detrimental effect of night work, including during menopause. A systematic search was conducted (March-May 2011) via CINAHL, MEDLINE, Sociological Abstracts, and Business Source Premier for primary research studies written in English using the key words "shift-work" and "female/women." Findings of identified articles were themed to pregnancy, fertility, aspects of menstrual cycles, and menopause. Twenty articles were identified, (13 articles concerning pregnancy, 3 addressing fertility, and 4 addressing aspects of the menstrual cycle) but no studies addressing menopause were located. All identified articles demonstrated problematic approaches to the determination of night-work exposure. Evidence of the impact of night work on female reproductive health as presented in the current literature is inconclusive. Moreover, available evidence needs to be interpreted with caution, given the various limitations and inconsistencies among the studies in the measurement of night-work exposure and shift-work patterns. Studies that focus specifically on night work are needed to facilitate an understanding of the impact of circadian disruption on the reproductive health of women undertaking night work. © 2013 by the American College of Nurse-Midwives.
The interaction of pulsed eddy current with metal surface crack for various coils
NASA Astrophysics Data System (ADS)
Yang, Hung-Chi; Tai, Cheng-Chi
2002-05-01
We study the interaction of pulsed eddy current (PEC) with metal surface cracks using various coils that have different geometric sizes. In the previous work, we have showed that the PEC technique can be used to inspect electrical-discharge-machined (EDM) notches with depth from 0.5 mm to 9 mm. The results showed that the relationship between PEC signals and crack depth is obvious. In this work, we further try a series of coils with different radii, heights, turns and shapes. We will discuss the effects of these coil parameters on the PEC signal. Some other critical problems of PEC measurements such as signal drift that caused by heating effect of coil currents will be studied. We also show more experiments on fatigue cracks to demonstrate the capability of PEC technique for cracks inspection.
High voltage and current, gate assisted, turn-off thyristor development
NASA Technical Reports Server (NTRS)
Nowalk, T. P.; Brewster, J. B.; Kao, Y. C.
1972-01-01
An improved high speed power switch with unique turn-off capability was developed. This gate assisted turn-off thyristor (GATT) was rated 1000 volts and 100 amperes with turn-off times of 2 microseconds. Fifty units were delivered for evaluation. In addition, test circuits designed to relate to the series inverter application were built and demonstrated. In the course of this work it was determined that the basic device design is adequate to meet the static characteristics and dynamic turn-off specification. It was further determined that the turn-on specification is critically dependent on the gate drive circuit due to the distributive nature of the cathode-gate geometry. Future work should emphasize design modifications which reduce the gate current required for fast turn-on, thereby opening the way to higher power (current) devices.
Overlap junctions for high coherence superconducting qubits
NASA Astrophysics Data System (ADS)
Wu, X.; Long, J. L.; Ku, H. S.; Lake, R. E.; Bal, M.; Pappas, D. P.
2017-07-01
Fabrication of sub-micron Josephson junctions is demonstrated using standard processing techniques for high-coherence, superconducting qubits. These junctions are made in two separate lithography steps with normal-angle evaporation. Most significantly, this work demonstrates that it is possible to achieve high coherence with junctions formed on aluminum surfaces cleaned in situ by Ar plasma before junction oxidation. This method eliminates the angle-dependent shadow masks typically used for small junctions. Therefore, this is conducive to the implementation of typical methods for improving margins and yield using conventional CMOS processing. The current method uses electron-beam lithography and an additive process to define the top and bottom electrodes. Extension of this work to optical lithography and subtractive processes is discussed.
Writing with Light: Jacob Riis's Ambivalent Exposures
ERIC Educational Resources Information Center
Carter, Christopher
2008-01-01
The current interest in multimodal rhetoric was anticipated by Jacob Riis's social documentary texts and presentations during the late nineteenth and early twentieth centuries. In contrast with the socialist urban critiques presented by Friedrich Engels, Riis's work demonstrated profound ambivalence toward the city's poor. While calling for reform…
Child Health Inequality: Framing a Social Work Response
ERIC Educational Resources Information Center
Hernandez, Virginia Rondero; Montana, Salvador; Clarke, Kris
2010-01-01
Numerous studies acknowledge that the well-being of our nation hinges on the health of its people. There is specific concern about children because they represent the future. Ignoring children's health needs can compromise their educational preparedness, occupational pursuits, productivity, and longevity. Current science demonstrates that…
Virtual cathode formations in nested-well configurations
NASA Astrophysics Data System (ADS)
Stephens, K. F.; Ordonez, C. A.; Peterkin, R. E.
1999-12-01
Complete transmission of an electron beam through a cavity is not possible if the current exceeds the space-charge limited current. The formation of a virtual cathode reflects some of the beam electrons and reduces the current transmitted through the cavity. Transients in the injected current have been shown to lower the transmitted current below the value predicted by the electrostatic Child-Langmuir law. The present work considers the propagation of an electron beam through a nested-well configuration. Electrostatic particle-in-cell simulations are used to demonstrate that ions can be trapped in the electric potential depression of an electron beam. Furthermore, the trapped ions can prevent the formation of a virtual cathode for beam currents exceeding the space-charge limit.
Towards a nonperturbative calculation of weak Hamiltonian Wilson coefficients
Bruno, Mattia; Lehner, Christoph; Soni, Amarjit
2018-04-20
Here, we propose a method to compute the Wilson coefficients of the weak effective Hamiltonian to all orders in the strong coupling constant using Lattice QCD simulations. We perform our calculations adopting an unphysically light weak boson mass of around 2 GeV. We demonstrate that systematic errors for the Wilson coefficients C 1 and C 2, related to the current-current four-quark operators, can be controlled and present a path towards precise determinations in subsequent works.
Towards a nonperturbative calculation of weak Hamiltonian Wilson coefficients
NASA Astrophysics Data System (ADS)
Bruno, Mattia; Lehner, Christoph; Soni, Amarjit; Rbc; Ukqcd Collaborations
2018-04-01
We propose a method to compute the Wilson coefficients of the weak effective Hamiltonian to all orders in the strong coupling constant using Lattice QCD simulations. We perform our calculations adopting an unphysically light weak boson mass of around 2 GeV. We demonstrate that systematic errors for the Wilson coefficients C1 and C2 , related to the current-current four-quark operators, can be controlled and present a path towards precise determinations in subsequent works.
Towards a nonperturbative calculation of weak Hamiltonian Wilson coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, Mattia; Lehner, Christoph; Soni, Amarjit
Here, we propose a method to compute the Wilson coefficients of the weak effective Hamiltonian to all orders in the strong coupling constant using Lattice QCD simulations. We perform our calculations adopting an unphysically light weak boson mass of around 2 GeV. We demonstrate that systematic errors for the Wilson coefficients C 1 and C 2, related to the current-current four-quark operators, can be controlled and present a path towards precise determinations in subsequent works.
Photocurrent generation by direct electron transfer using photosynthetic reaction centres
NASA Astrophysics Data System (ADS)
Mahmoudzadeh, A.; Saer, R.; Jun, D.; Mirvakili, S. M.; Takshi, A.; Iranpour, B.; Ouellet, E.; Lagally, E. T.; Madden, J. D. W.; Beatty, J. T.
2011-09-01
Photosynthetic reaction centres (RCs) convert light into separated charges with nearly perfect quantum efficiency, and have been used to generate photocurrent. Previous work has shown that electron tunnelling rates between redox centres in proteins depend exponentially on the tunnelling distance. In this work the RC from Rhodobacter sphaeroides was genetically modified with the aim of achieving the shortest tunnelling distances yet demonstrated between the RC's electron-accepting P site and underlying graphite and gold electrodes, and between the electron donor Q site and graphite electrodes. Opposite charges are carried to counter electrodes using mobile mediators, as in dye-sensitised solar cells. Native RCs are bound to graphite surfaces through N-(1-pyrene)iodoacetamide. Although the linker's length is only 4 Å, the electron transfer pathway between the Q electron donor site on the RC and the electrode surface is still too large for current to be significant. A mutant version with the electron acceptor P side close to the graphite surface produced currents of 15 nA cm-2 upon illumination. Direct binding of RCs to a gold surface is shown, resulting in currents of 5 nA cm-2. In both cases the current was unaffected by mediator concentration but increased with illumination, suggesting that direct electron transfer was achieved. The engineering of an RC to achieve direct electron transfer will help with long term efforts to demonstrate RC-based photovoltaic devices.
Hester, Robert; Garavan, Hugh
2005-03-01
In a series of three experiments, increasing working memory (WM) load was demonstrated to reduce the executive control of attention, measured via task-switching and inhibitory control paradigms. Uniquely, our paradigms allowed comparison of the ability to exert executive control when the stimulus was either part of the currently rehearsed memory set or an unrelated distractor item. The results demonstrated a content-specific effect-insofar as switching attention away from, or exerting inhibitory control over, items currently held in WM was especially difficult-compounded by increasing WM load. This finding supports the attentional control theory that active maintenance of competing task goals is critical to executive function and WM capacity; however, it also suggests that the increased salience provided to the contents of WM through active rehearsal exerts a content-specific influence on attentional control. These findings are discussed in relation to cue-induced ruminations, where active rehearsal of evocative information (e.g., negative thoughts in depression or drug-related thoughts in addiction) in WM typically results from environmental cuing. The present study has demonstrated that when information currently maintained in WM is reencountered, it is harder to exert executive control over it. The difficulty with suppressing the processing of these stimuli presumably reinforces the maintenance of these items in WM, due to the greater level of attention they are afforded, and may help to explain how the cue-induced craving/rumination cycle is perpetuated.
Control of interference during working memory updating.
Szmalec, Arnaud; Verbruggen, Frederick; Vandierendonck, André; Kemps, Eva
2011-02-01
The current study examined the nature of the processes underlying working memory updating. In 4 experiments using the n-back paradigm, the authors demonstrate that continuous updating of items in working memory prevents strong binding of those items to their contexts in working memory, and hence leads to an increased susceptibility to proactive interference. Results of Experiments 1 and 2 show that this interference reflects a competition between a process that reveals the degree of familiarity of an item and a context-sensitive recollection process that depends on the strength of bindings in working memory. Experiment 3 further clarifies the origins of interference during updating by demonstrating that even items that are semantically related to the updated working memory contents but that have not been maintained in working memory before cause proactive interference. Finally, the results of Experiment 4 indicate that the occurrence of interference leads to top-down behavioral adjustments that prioritize recollection over familiarity assessment. The implications of these findings for the construct validity of the n-back task, for the control processes involved in working memory updating, and for the concept of executive control more generally are discussed. (c) 2010 APA, all rights reserved.
The Effect of a Brief Training in Motivational Interviewing on Trainee Skill Development
ERIC Educational Resources Information Center
Young, Tabitha L.; Hagedorn, W. Bryce
2012-01-01
Motivational interviewing (MI) is an empirically based practice that provides counselors with methods for working with resistant and ambivalent clients. Whereas previous research has demonstrated the effectiveness of training current clinicians in this evidenced-based practice, no research has investigated the efficacy of teaching MI to…
Cognitive Strategies for Mentally Handicapped Clients.
ERIC Educational Resources Information Center
Hiebert, Bryan; Malcolm, Doreen
There is a need when working with mentally handicapped people to develop interventions that can be used within a self-control framework. One intervention that has demonstrated success in a self-control context with normally intelligent people is Cognitive Stress Inoculation Training (CSIT). In CSIT clients are taught to recognize current self-talk…
Load Theory of Selective Attention and Cognitive Control
ERIC Educational Resources Information Center
Lavie, Nilli; Hirst, Aleksandra; de Fockert, Jan W.; Viding, Essi
2004-01-01
A load theory of attention in which distractor rejection depends on the level and type of load involved in current processing was tested. A series of experiments demonstrates that whereas high perceptual load reduces distractor interference, working memory load or dual-task coordination load increases distractor interference. These findings…
Nomi, Jason S; Bolt, Taylor S; Ezie, C E Chiemeka; Uddin, Lucina Q; Heller, Aaron S
2017-05-31
Variability of neuronal responses is thought to underlie flexible and optimal brain function. Because previous work investigating BOLD signal variability has been conducted within task-based fMRI contexts on adults and older individuals, very little is currently known regarding regional changes in spontaneous BOLD signal variability in the human brain across the lifespan. The current study used resting-state fMRI data from a large sample of male and female human participants covering a wide age range (6-85 years) across two different fMRI acquisition parameters (TR = 0.645 and 1.4 s). Variability in brain regions including a key node of the salience network (anterior insula) increased linearly across the lifespan across datasets. In contrast, variability in most other large-scale networks decreased linearly over the lifespan. These results demonstrate unique lifespan trajectories of BOLD variability related to specific regions of the brain and add to a growing literature demonstrating the importance of identifying normative trajectories of functional brain maturation. SIGNIFICANCE STATEMENT Although brain signal variability has traditionally been considered a source of unwanted noise, recent work demonstrates that variability in brain signals during task performance is related to brain maturation in old age as well as individual differences in behavioral performance. The current results demonstrate that intrinsic fluctuations in resting-state variability exhibit unique maturation trajectories in specific brain regions and systems, particularly those supporting salience detection. These results have implications for investigations of brain development and aging, as well as interpretations of brain function underlying behavioral changes across the lifespan. Copyright © 2017 the authors 0270-6474/17/375539-10$15.00/0.
Next Generation H- Ion Sources for the SNS
NASA Astrophysics Data System (ADS)
Welton, R. F.; Stockli, M. P.; Murray, S. N.; Crisp, D.; Carmichael, J.; Goulding, R. H.; Han, B.; Tarvainen, O.; Pennisi, T.; Santana, M.
2009-03-01
The U.S. Spallation Neutron Source (SNS) is the leading accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to insure meeting operational requirements as well as providing for future facility beam power upgrades, a multifaceted H- ion source development program is ongoing. This work discusses several aspects of this program, specifically the design and first beam measurements of an RF-driven, external antenna H- ion source based on an A1N ceramic plasma chamber, elemental and chromate Cs-systems, and plasma ignition gun. Unanalyzed beam currents of up to ˜100 mA (60 Hz, 1 ms) have been observed and sustained currents >60 mA (60 Hz, 1 ms) have been demonstrated on the test stand. Accelerated beam currents of ˜40 mA have also been demonstrated into the SNS front end. Data are also presented describing the first H- beam extraction experiments from a helicon plasma generator based on the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine design.
A two wave cross-lagged study of work-role conflict, work-family conflict and emotional exhaustion.
Jensen, Maria Therese
2016-12-01
By using a two-wave panel design, the present study aimed to study causal, reversed, and reciprocal relations among work-role conflict, work-family conflict, and emotional exhaustion. The Conservation of Resources theory was applied as a theoretical framework. The study was conducted in a large Norwegian oil and gas company (n = 1703). The results demonstrated positive cross-lagged effects of work-role conflict and work-family conflict on emotional exhaustion. In addition, emotional exhaustion predicted work-family conflict over time, and work-family conflict predicted work-role conflict over time, indicating the presence of reciprocal effects. The current study adds new knowledge to the positioning of work-family conflict in relation to perceived conflict in the workplace and emotional exhaustion. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Mageshkumar, K.; Kuppan, P.; Arivazhagan, N.
2017-11-01
The present research work investigates the metallurgical and mechanical properties of weld joint fabricated by alloy 617 by pulsed current gas tungsten arc welding (PCGTAW) technique. Welding was done by ERNiCrCoMo-1 filler wire. Optical and Scanning Electron Microscope (SEM) revealed the fine equiaxed dendritic in the fusion zone. Electron Dispersive Spectroscopy (EDS) demonstrates the presence of Mo-rich secondary phases in the grain boundary regions. Tensile test shows improved mechanical properties compared to the continuous current mode. Bend test didn’t indicate the presence of defects in the weldments.
Focusing on attention: the effects of working memory capacity and load on selective attention.
Ahmed, Lubna; de Fockert, Jan W
2012-01-01
Working memory (WM) is imperative for effective selective attention. Distractibility is greater under conditions of high (vs. low) concurrent working memory load (WML), and in individuals with low (vs. high) working memory capacity (WMC). In the current experiments, we recorded the flanker task performance of individuals with high and low WMC during low and high WML, to investigate the combined effect of WML and WMC on selective attention. In Experiment 1, distractibility from a distractor at a fixed distance from the target was greater when either WML was high or WMC was low, but surprisingly smaller when both WML was high and WMC low. Thus we observed an inverted-U relationship between reductions in WM resources and distractibility. In Experiment 2, we mapped the distribution of spatial attention as a function of WMC and WML, by recording distractibility across several target-to-distractor distances. The pattern of distractor effects across the target-to-distractor distances demonstrated that the distribution of the attentional window becomes dispersed as WM resources are limited. The attentional window was more spread out under high compared to low WML, and for low compared to high WMC individuals, and even more so when the two factors co-occurred (i.e., under high WML in low WMC individuals). The inverted-U pattern of distractibility effects in Experiment 1, replicated in Experiment 2, can thus be explained by differences in the spread of the attentional window as a function of WM resource availability. The current findings show that limitations in WM resources, due to either WML or individual differences in WMC, affect the spatial distribution of attention. The difference in attentional constraining between high and low WMC individuals demonstrated in the current experiments helps characterise the nature of previously established associations between WMC and controlled attention.
The development and initial validation of the Decent Work Scale.
Duffy, Ryan D; Allan, Blake A; England, Jessica W; Blustein, David L; Autin, Kelsey L; Douglass, Richard P; Ferreira, Joaquim; Santos, Eduardo J R
2017-03-01
Decent work is positioned as the centerpiece of the recently developed Psychology of Working Theory (PWT; Duffy, Blustein, Diemer, & Autin, 2016). However, to date, no instrument exists which assesses all 5 components of decent work from a psychological perspective. In the current study, we developed the Decent Work Scale (DWS) and demonstrated several aspects of validity with 2 samples of working adults. In Study 1 (N = 275), a large pool of items were developed and exploratory factor analysis was conducted resulting in a final 15-item scale with 5 factors/subscales corresponding to the 5 components of decent work: (a) physically and interpersonally safe working conditions, (b) access to health care, (c) adequate compensation, (d) hours that allow for free time and rest, and (e) organizational values that complement family and social values. In Study 2 (N = 589), confirmatory factor analysis demonstrated that a 5-factor, bifactor model offered the strongest and most parsimonious fit to the data. Configural, metric, and scalar invariance models were tested demonstrating that the structure of the instrument did not differ across gender, income, social class, and majority/minority racial/ethnic groups. Finally, the overall scale score and 5 subscale scores correlated in the expected directions with similar constructs supporting convergent and discriminant evidence of validity, and subscale scores evidenced predictive validity in the prediction of job satisfaction, work meaning, and withdrawal intentions. The development of this scale provides a useful tool for researchers and practitioners seeking to assess the attainment of decent work among employed adults. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Development of an automated ammunition processing system for battlefield use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speaks, D.M.; Chesser, J.B.; Lloyd, P.D.
1995-03-01
The Future Armored Resupply Vehicle (FARV) will be the companion ammunition resupply vehicle to the Advanced Field Artillery System (AFAS). These systems are currently being investigated by the US Army for future acquisition. The FARV will sustain the AFAS with ammunition and fuel and will significantly increase capabilities over current resupply vehicles. Currently ammunition is transferred to field artillery almost entirely by hand. The level of automation to be included into the FARV is still under consideration. At the request of the US Army`s Project Manager, AFAS/FARV, Oak Ridge National Laboratory (ORNL) identified and evaluated various concepts for the automatedmore » upload, processing, storage, and delivery equipment for the FARV. ORNL, working with the sponsor, established basic requirements and assumptions for concept development and the methodology for concept selection. A preliminary concept has been selected, and the associated critical technologies have been identified. ORNL has provided technology demonstrations of many of these critical technologies. A technology demonstrator which incorporates all individual components into a total process demonstration is planned for late FY 1995.« less
NASA Astrophysics Data System (ADS)
Molaei Imen Abadi, Rouzbeh; Sedigh Ziabari, Seyed Ali
2016-11-01
In this paper, a first qualitative study on the performance characteristics of dual-work function gate junctionless TFET (DWG-JLTFET) on the basis of energy band profile modulation is investigated. A dual-work function gate technique is used in a JLTFET in order to create a downward band bending on the source side similar to PNPN structure. Compared with the single-work function gate junctionless TFET (SWG-JLTFET), the numerical simulation results demonstrated that the DWG-JLTFET simultaneously optimizes the ON-state current, the OFF-state leakage current, and the threshold voltage and also improves average subthreshold slope. It is illustrated that if appropriate work functions are selected for the gate materials on the source side and the drain side, the JLTFET exhibits a considerably improved performance. Furthermore, the optimization design of the tunnel gate length ( L Tun) for the proposed DWG-JLTFET is studied. All the simulations are done in Silvaco TCAD for a channel length of 20 nm using the nonlocal band-to-band tunneling (BTBT) model.
Tabletop Molecular Communication: Text Messages through Chemical Signals
Farsad, Nariman; Guo, Weisi; Eckford, Andrew W.
2013-01-01
In this work, we describe the first modular, and programmable platform capable of transmitting a text message using chemical signalling – a method also known as molecular communication. This form of communication is attractive for applications where conventional wireless systems perform poorly, from nanotechnology to urban health monitoring. Using examples, we demonstrate the use of our platform as a testbed for molecular communication, and illustrate the features of these communication systems using experiments. By providing a simple and inexpensive means of performing experiments, our system fills an important gap in the molecular communication literature, where much current work is done in simulation with simplified system models. A key finding in this paper is that these systems are often nonlinear in practice, whereas current simulations and analysis often assume that the system is linear. However, as we show in this work, despite the nonlinearity, reliable communication is still possible. Furthermore, this work motivates future studies on more realistic modelling, analysis, and design of theoretical models and algorithms for these systems. PMID:24367571
Belopolsky, Artem V; Theeuwes, Jan
2009-10-01
The present study systematically examined the role of attention in maintenance of spatial representations in working memory as proposed by the attention-based rehearsal hypothesis [Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology--Human Perception and Performance, 24(3), 780-790]. Three main issues were examined. First, Experiments 1-3 demonstrated that inhibition and not facilitation of visual processing is often observed at the memorized location during the retention interval. This inhibition was caused by keeping a location in memory and not by the exogenous nature of the memory cue. Second, Experiment 4 showed that inhibition of the memorized location does not lead to any significant impairment in memory accuracy. Finally, Experiment 5 connected current results to the previous findings and demonstrated facilitation of processing at the memorized location. Importantly, facilitation of processing did not lead to more accurate memory performance. The present results challenge the functional role of attention in maintenance of spatial working memory representations.
Progress Report for the Joint Services Electronics Program
1988-06-30
31, 1988. The current JSEP contract that began on October 1, 1986. contains 22 work units (Unit 3 of the new contract was withdrawn and Unit 6 S, has...Professor Bang-Sup Song has joined the VLSI Circuits Group. Although none of these young faculty is currently receiving direct support from the JSEP...deposition. (2) We have in’,.estgated the use of lc\\%-energy primary and secondary accelerated-ion doping during MBE * grov tn to demonstrate increa-es in
Nowrouzi, Behdin; Rukholm, Ellen; Lariviere, Michel; Carter, Lorraine; Koren, Irene; Mian, Oxana; Giddens, Emilia
2016-03-10
The purpose of the study was to examine factors related to the retention of registered nurses in northeastern Ontario, Canada. A cross-sectional survey of registered nurses working in northeastern Ontario, Canada was conducted. Logistic regression analyses were used to consider intent to stay in current employment in relation to the following: 1) demographic factors, and 2) occupation and career satisfaction factors. A total of 459 (29.8% response rate) questionnaires were completed. The adjusted odds logistic regression analysis of RNs who intended to remain in their current position for the next five years, demonstrated that respondents in the 46 to 56 age group (OR: 2.65; 95% CI: 1.50 to 4.69), the importance of staff development in the organization (OR: 3.04; 95% CI: 1.13 to 8.13) northeastern Ontario lifestyle (OR: 2.61; 95% CI: 1.55 to 4.40), working in nursing for 14 to 22.5 years (OR: 2.55; 95% CI: 1.10 to 5.93), and working between 0 to 1 hour of overtime per week (OR: 1.20; 95% CI: 1.20 to 4.64) were significant factors in staying in their current position for the next five years. This study shows that a further understanding of the work environment could assist with developing retention for rural nurses. Furthermore, employers may use such information to ameliorate the working conditions of nurses, while researchers may use such evidence to develop interventions that are applicable to improving the working conditions of nurses.
Working memory capacity in social anxiety disorder: Revisiting prior conclusions.
Waechter, Stephanie; Moscovitch, David A; Vidovic, Vanja; Bielak, Tatiana; Rowa, Karen; McCabe, Randi E
2018-04-01
In one of the few studies examining working memory processes in social anxiety disorder (SAD), Amir and Bomyea (2011) recruited participants with and without SAD to complete a working memory span task with neutral and social threat words. Those with SAD showed better working memory performance for social threat words compared to neutral words, suggesting an enhancement in processing efficiency for socially threatening information in SAD. The current study sought to replicate and extend these findings. In this study, 25 participants with a principal diagnosis of SAD, 24 anxious control (AC) participants with anxiety disorders other than SAD, and 27 healthy control (HC) participants with no anxiety disorder completed a working memory task with social threat, general threat, and neutral stimuli. The groups in the current study demonstrated similar working memory performance within each of the word type conditions, thus failing to replicate the principal findings of Amir and Bomyea (2011). Post hoc analyses revealed a significant association between higher levels of anxiety symptomatology and poorer overall WM performance. These results inform our understanding of working memory in the anxiety disorders and support the importance of replication in psychological research. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Anomalous current in diffusive ferromagnetic Josephson junctions
NASA Astrophysics Data System (ADS)
Silaev, M. A.; Tokatly, I. V.; Bergeret, F. S.
2017-05-01
We demonstrate that in diffusive superconductor/ferromagnet/superconductor (S/F/S) junctions a finite, anomalous Josephson current can flow even at zero phase difference between the S electrodes. The conditions for the observation of this effect are noncoplanar magnetization distribution and a broken magnetization inversion symmetry of the superconducting current. The latter symmetry is intrinsic for the widely used quasiclassical approximation and prevented previous works based on this approximation from obtaining the Josephson anomalous current. We show that this symmetry can be removed by introducing spin-dependent boundary conditions for the quasiclassical equations at the superconducting/ferromagnet interfaces in diffusive systems. Using this recipe, we consider generic multilayer magnetic systems and determine the ideal experimental conditions in order to maximize the anomalous current.
NASA Astrophysics Data System (ADS)
Pastore, G.; Gruyer, D.; Ottanelli, P.; Le Neindre, N.; Pasquali, G.; Alba, R.; Barlini, S.; Bini, M.; Bonnet, E.; Borderie, B.; Bougault, R.; Bruno, M.; Casini, G.; Chbihi, A.; Dell'Aquila, D.; Dueñas, J. A.; Fabris, D.; Francalanza, L.; Frankland, J. D.; Gramegna, F.; Henri, M.; Kordyasz, A.; Kozik, T.; Lombardo, I.; Lopez, O.; Morelli, L.; Olmi, A.; Pârlog, M.; Piantelli, S.; Poggi, G.; Santonocito, D.; Stefanini, A. A.; Valdré, S.; Verde, G.; Vient, E.; Vigilante, M.; FAZIA Collaboration
2017-07-01
The FAZIA apparatus exploits Pulse Shape Analysis (PSA) to identify nuclear fragments stopped in the first layer of a Silicon-Silicon-CsI(Tl) detector telescope. In this work, for the first time, we show that the isotopes of fragments having atomic number as high as Z∼20 can be identified. Such a remarkable result has been obtained thanks to a careful construction of the Si detectors and to the use of low noise and high performance digitizing electronics. Moreover, optimized PSA algorithms are needed. This work deals with the choice of the best algorithm for PSA of current signals. A smoothing spline algorithm is demonstrated to give optimal results without requiring too much computational resources.
The Development of a Factorizable Multigrid Algorithm for Subsonic and Transonic Flow
NASA Technical Reports Server (NTRS)
Roberts, Thomas W.
2001-01-01
The factorizable discretization of Sidilkover for the compressible Euler equations previously demonstrated for channel flows has been extended to external flows.The dissipation of the original scheme has been modified to maintain stability for moderately stretched grids. The discrete equations are solved by symmetric collective Gauss-Seidel relaxation and FAS multigrid. Unlike the earlier work ordering the grid vertices in the flow direction has been found to be unnecessary. Solutions for essential incompressible flow (Mach 0.01) and supercritical flows have obtained for a Karman-Trefftz airfoil with it conformally mapped grid,as well as a NACA 0012 on an algebraically generated grid. The current work demonstrates nearly 0(n) convergence for subsonic and slightly transonic flows.
Current-induced changes of migration energy barriers in graphene and carbon nanotubes.
Obodo, J T; Rungger, I; Sanvito, S; Schwingenschlögl, U
2016-05-21
An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative.
Novitskaya, Y A; Dravolina, O A; Zvartau, E E; Danysz, W; Bespalov, A Y
2010-09-01
Glutamate, the main excitatory neurotransmitter in the mammalian CNS, acts via ionotropic and metabotropic receptors. Results from in vitro studies demonstrating tight interactions between ionotropic NMDA receptors and subtype 5 metabotropic glutamate receptors (mGlu5) have shown that blockade of mGlu5 receptors increases the behavioral effects of NMDA receptor antagonists. The aim of the present work was to study the actions of the highly selective mGlu5 receptor antagonist MTEP alone and in combination with MK-801, a blocker of the NMDA receptor-associated ion channel, on performance of a delayed selection task (a test of working memory) in rats. MK-801 (0.1 mg/kg) induced a specific impairment to working memory, with proactive interference (degradation of the ability to remember current information because of the effects of previously learned material). Administration of MTEP (5.0 mg/kg) combined with both solvent and with MK-801 had no significant effects, demonstrating the small or nonexistent involvement of mGlu5 receptors in the mechanisms of working memory.
Continuous development of current sheets near and away from magnetic nulls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sanjay; Bhattacharyya, R.
2016-04-15
The presented computations compare the strength of current sheets which develop near and away from the magnetic nulls. To ensure the spontaneous generation of current sheets, the computations are performed congruently with Parker's magnetostatic theorem. The simulations evince current sheets near two dimensional and three dimensional magnetic nulls as well as away from them. An important finding of this work is in the demonstration of comparative scaling of peak current density with numerical resolution, for these different types of current sheets. The results document current sheets near two dimensional magnetic nulls to have larger strength while exhibiting a stronger scalingmore » than the current sheets close to three dimensional magnetic nulls or away from any magnetic null. The comparative scaling points to a scenario where the magnetic topology near a developing current sheet is important for energetics of the subsequent reconnection.« less
Test-Retest Reliability of a Survey to Measure Transport-Related Physical Activity in Adults
ERIC Educational Resources Information Center
Badland, Hannah; Schofield, Grant
2006-01-01
The present research details test-retest reliability of a newly developed, telephone-administered TPA survey for adults. This instrument examines barriers, perceptions, and current travel behaviors to place of work/study and local convenience shops. Demonstrated test-retest reliability of the Active Friendly Environments-Transport-Related Physical…
ERIC Educational Resources Information Center
Liao, Hui; Chuang, Aichia; Joshi, Aparna
2008-01-01
The current research extends three research areas in relational demography: considering deep-level dissimilarity in theory building, assessing dissimilarity perceptions directly in theory testing, and examining the antecedents of dissimilarity perceptions. The results, based on two field studies using diverse samples, demonstrate the effects of…
Whoosh Bottle Safety, Again: What about What Is inside?
ERIC Educational Resources Information Center
Gregory, Robert B.; Lauber, Matthew
2012-01-01
Studies regarding the whoosh bottle combustion experiment have largely focused on the detonation hazard of the demonstration, particularly with regards to fuel and container choice. Previous work has suggested that the fuel should be 2-propanol owing to its relatively cool flame characteristics. The current study has found that the combustion of…
Evaluator and Program Manager Perceptions of Evaluation Capacity and Evaluation Practice
ERIC Educational Resources Information Center
Fierro, Leslie A.; Christie, Christina A.
2017-01-01
The evaluation community has demonstrated an increased emphasis and interest in evaluation capacity building in recent years. A need currently exists to better understand how to measure evaluation capacity and its potential outcomes. In this study, we distributed an online questionnaire to managers and evaluation points of contact working in…
Early Numeracy Intervention: Does Quantity Discrimination Really Work?
ERIC Educational Resources Information Center
Hansmann, Paul
2013-01-01
Scope and Method of Study: The current study demonstrates that a taped problem intervention is an effective tool for increasing the early numeracy skill of QD. A taped problems intervention was used with two variations of the quantity discrimination measure (triangle and traditional). A 3x2 doubly multivariate multivariate analysis of variance was…
Student Moderators in Asynchronous Online Discussion: A Question of Questions
ERIC Educational Resources Information Center
Zingaro, Daniel
2012-01-01
Much current research exalts the benefits of having students facilitate weekly discussions in asynchronous online courses. This study seeks to add to what is known about student moderation through an analysis of the types of questions students use to spur each discussion. Prior experimental work has demonstrated that the types of questions posed…
1977-10-01
This is an artist's concept of an X-33 Advanced Technology Demonstrator, a subscale protoptye launch vehicle being developed by NASA Lockheed Martin Skunk Works. (Vehicle configuration current as of 10/97) The X-33 is a subscale prototype of a Reusable Launch Vehicle (RLV) Lockheed Martin has labeled "Venture Star TM." The X-33 program was cancelled in 2001.
"Amazing Planet--Action-Packed Science"
ERIC Educational Resources Information Center
Devon, Elizabeth; Kennett, Peter; King, Chris
2013-01-01
This description features a set of lively demonstrations and observations, including some group work, that illustrate features of Earth science such as the Earth's rotation, ocean currents, the formation and erosion of rocks, earthquakes and volcanoes. All were shown in a one-hour presentation to teachers and can readily be used in schools,…
Monolithic millimeter-wave diode array beam controllers: Theory and experiment
NASA Technical Reports Server (NTRS)
Sjogren, L. B.; Liu, H.-X. L.; Wang, F.; Liu, T.; Wu, W.; Qin, X.-H.; Chung, E.; Domier, C. W.; Luhmann, N. C., Jr.; Maserjian, J.
1992-01-01
In the current work, multi-function beam control arrays have been fabricated and have successfully demonstrated amplitude control of transmitted beams in the W and D bands (75-170 GHz). While these arrays are designed to provide beam control under DC bias operation, new designs for high-speed electronic and optical control are under development. These arrays will fill a need for high-speed watt-level beam switches in pulsed reflectometer systems under development for magnetic fusion plasma diagnostics. A second experimental accomplishment of the current work is the demonstration in the 100-170 GHz (D band) frequency range of a new technique for the measurement of the transmission phase as well as amplitude. Transmission data can serve as a means to extract ('de-embed') the grid parameters; phase information provides more complete data to assist in this process. Additional functions of the array beam controller yet to be tested include electronically controlled steering and focusing of a reflected beam. These have application in the areas of millimeter-wave electronic scanning radar and reflectometry, respectively.
NASA Astrophysics Data System (ADS)
Dauphin, Alexandre; Tran, Duc-Thanh; Lewenstein, Maciej; Goldman, Nathan
2017-06-01
Topological band structures can be designed by subjecting lattice systems to time-periodic modulations, as was proposed for irradiated graphene, and recently demonstrated in two-dimensional (2D) ultracold gases and photonic crystals. However, changing the topological nature of Floquet Bloch bands from trivial to non-trivial, by progressively launching the time-modulation, is necessarily accompanied with gap-closing processes: this has important consequences for the loading of particles into a target Floquet band with non-trivial topology, and hence, on the subsequent measurements. In this work, we analyse how such loading sequences can be optimized in view of probing the topology of 2D Floquet bands through transport measurements. In particular, we demonstrate the robustness of center-of-mass responses, as compared to current responses, which present important irregularities due to an interplay between the micro-motion of the drive and inter-band interference effects. The results presented in this work illustrate how probing the center-of-mass displacement of atomic clouds offers a reliable method to detect the topology of Floquet bands, after realistic loading sequences.
Thoracolumbar spinal ligaments exhibit negative and transverse pre-strain.
Robertson, Daniel J; Von Forell, Gregory A; Alsup, Jeremy; Bowden, Anton E
2013-07-01
The present work represents the first reported bi-axial spinal ligament pre-strain data for the thoracic and lumbar spine. Ligament pre-strain (in-situ strain) is known to significantly alter joint biomechanics. However, there is currently a lack of comprehensive data with regards to spinal ligament pre-strain. The current work determined the pre-strain of 71 spinal ligaments (30 anterior longitudinal ligaments, 27 supraspinous ligaments and 14 interspinous ligaments). The interspinous ligament and the anterior longitudinal ligament exhibited bi-axial pre-strain distributions, demonstrating they are not uniaxial structures. The supraspinous ligament frequently exhibited large amounts of negative pre-strain or laxity suggesting it makes no mechanical contribution to spinal stability near the neutral posture. Upon implementing multi-axial pre-strain results into a finite element model of the lumbar spine, large differences in spinal biomechanics were observed. These results demonstrate the necessity of accounting for ligament pre-strain in biomechanical models. In addition, the authors present a unique experimental method for obtaining ligament pre-strain that presents a number of advantages when compared to standard techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.
Individual differences in simultaneous color constancy are related to working memory.
Allen, Elizabeth C; Beilock, Sian L; Shevell, Steven K
2012-02-01
Few studies have investigated the possible role of higher-level cognitive mechanisms in color constancy. Following up on previous work with successive color constancy [J. Exper. Psychol. Learn. Mem. Cogn. 37, 1014 (2011)], the current study examined the relation between simultaneous color constancy and working memory-the ability to maintain a desired representation while suppressing irrelevant information. Higher working memory was associated with poorer simultaneous color constancy of a chromatically complex stimulus. Ways in which the executive attention mechanism of working memory may account for this are discussed. This finding supports a role for higher-level cognitive mechanisms in color constancy and is the first to demonstrate a relation between simultaneous color constancy and a complex cognitive ability. © 2012 Optical Society of America
Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits.
Liu, Yuanda; Ang, Kah-Wee
2017-07-25
Two-dimensional (2D) inverters are a fundamental building block for flexible logic circuits which have previously been realized by heterogeneously wiring transistors with two discrete channel materials. Here, we demonstrate a monolithically integrated complementary inverter made using a homogeneous black phosphorus (BP) nanosheet on flexible substrates. The digital logic inverter circuit is demonstrated via effective threshold voltage tuning within a single BP material, which offers both electron and hole dominated conducting channels with nearly symmetric pinch-off and current saturation. Controllable electron concentration is achieved by accurately modulating the aluminum (Al) donor doping, which realizes BP n-FET with a room-temperature on/off ratio >10 3 . Simultaneously, work function engineering is employed to obtain a low Schottky barrier contact electrode that facilities hole injection, thus enhancing the current density of the BP p-FET by 9.4 times. The flexible inverter circuit shows a clear digital logic voltage inversion operation along with a larger-than-unity direct current voltage gain, while exhibits alternating current dynamic signal switching at a record high frequency up to 100 kHz and remarkable electrical stability upon mechanical bending with a radii as small as 4 mm. Our study demonstrates a practical monolithic integration strategy for achieving functional logic circuits on one material platform, paving the way for future high-density flexible electronic applications.
NASA Astrophysics Data System (ADS)
Yoshida, Yasunori; Wada, Hikaru; Izumi, Konami; Tokito, Shizuo
2017-05-01
In this work, we demonstrate that highly conductive metal interconnects can be fabricated on the surface of three-dimensional objects using “omnidirectional ink jet” (OIJ) printing technology. OIJ printing technology makes it possible to perform ink jet printing in all directions by combining the motion of a 6-axis vertically articulated robot with precise positioning and a thermal drying process, which allows for the printing of stacked layers. By using OIJ technology, we were the first to successfully fabricate printed interconnect layers having a very low electrical resistance of 12 mΩ over a 10 mm length. Moreover, the results of the high-current test demonstrated that the printed interconnects can withstand high-current-flow of 5 A for 30 min or more.
NASA Astrophysics Data System (ADS)
Giltner, L. John
1994-02-01
The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected system power = 100 kilowatts; discharge time = 30 seconds; discharge current density = 1.75 amps/sq in.; system weight = 86 lbs (9.7 WH/lb); and system volume = 1071 cu. in. (.78 WH/cu. in.). EPI is currently working on a development program to produce a bipolar silver-zinc battery design for NASA. The potential application would be to power electromechanical actuators for space launch vehicles.
NASA Technical Reports Server (NTRS)
Giltner, L. John
1994-01-01
The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected system power = 100 kilowatts; discharge time = 30 seconds; discharge current density = 1.75 amps/sq in.; system weight = 86 lbs (9.7 WH/lb); and system volume = 1071 cu. in. (.78 WH/cu. in.). EPI is currently working on a development program to produce a bipolar silver-zinc battery design for NASA. The potential application would be to power electromechanical actuators for space launch vehicles.
NASA Astrophysics Data System (ADS)
Lin, Chih-Lung; Chou, Kuan-Wen; Chang, Fu-Chieh; Hung, Chia-Che
2011-10-01
This work demonstrates the feasibility of a novel pixel circuit by using three a-Si:H TFTs. The proposed circuit can stabilize the OLED current and provide an additional driving current to ameliorate the brightness degradation of the AMOLED. Measurement results indicate that the current degradation of the proposed circuit, caused by V TH variations, is less than 5% over more than 50,000 s at 60 °C, whereas that of a conventional 2T1C pixel circuit is larger than 34%. Furthermore, to ameliorate the decrease in luminance owing to the OLED degradation, the OLED current can be increased by 10% by analyzing the current degradation and modulating the detected voltage appropriately.
Workplace road safety risk management: An investigation into Australian practices.
Warmerdam, Amanda; Newnam, Sharon; Sheppard, Dianne; Griffin, Mark; Stevenson, Mark
2017-01-01
In Australia, more than 30% of the traffic volume can be attributed to work-related vehicles. Although work-related driver safety has been given increasing attention in the scientific literature, it is uncertain how well this knowledge has been translated into practice in industry. It is also unclear how current practice in industry can inform scientific knowledge. The aim of the research was to use a benchmarking tool developed by the National Road Safety Partnership Program to assess industry maturity in relation to risk management practices. A total of 83 managers from a range of small, medium and large organisations were recruited through the Victorian Work Authority. Semi-structured interviews aimed at eliciting information on current organisational practices, as well as policy and procedures around work-related driving were conducted and the data mapped onto the benchmarking tool. Overall, the results demonstrated varying levels of maturity of risk management practices across organisations, highlighting the need to build accountability within organisations, improve communication practices, improve journey management, reduce vehicle-related risk, improve driver competency through an effective workplace road safety management program and review organisational incident and infringement management. The findings of the study have important implications for industry and highlight the need to review current risk management practices. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawool-Sullivan, Mohini; Bounds, John Alan; Brumby, Steven P.
2012-04-30
This is the final report of the project titled, 'Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes,' PMIS project number LA10-HUMANID-PD03. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). It summarizes work performed over the FY10 time period. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). Human analysts begin analyzing a spectrum based on features in the spectrum - lines and shapes that aremore » present in a given spectrum. The proposed work was to carry out a feasibility study that will pick out all gamma ray peaks and other features such as Compton edges, bremsstrahlung, presence/absence of shielding and presence of neutrons and escape peaks. Ultimately success of this feasibility study will allow us to collectively explain identified features and form a realistic scenario that produced a given spectrum in the future. We wanted to develop and demonstrate machine learning algorithms that will qualitatively enhance the automated identification capabilities of portable radiological sensors that are currently being used in the field.« less
Disentangling multimodal processes in social categorization.
Slepian, Michael L
2015-03-01
The current work examines the role of sensorimotor processes (manipulating whether visual exposure to hard and soft stimuli encourage sensorimotor simulation) and metaphor processes (assessing whether participants have understanding of a pertinent metaphor: "hard" Republicans and "soft" Democrats) in social categorization. Using new methodology to disassociate these multimodal processes (i.e., semantic, metaphoric, and sensorimotoric), the current work demonstrates that both sensorimotor and metaphor processes, combined, are needed to find an effect upon conceptual processing, providing evidence in support of the combined importance of these two theorized components. When participants comprehended the metaphor of hard Republicans and soft Democrats, and when encouraged to simulate sensorimotor experiences of hard and soft stimuli, those stimuli influenced categorization of faces as Republican and Democrat. Copyright © 2014 Elsevier B.V. All rights reserved.
Application of Ampere’s law to a non-infinite wire and to a moving charge
NASA Astrophysics Data System (ADS)
Aledealat, K.; Duston, C. L.
2018-07-01
In this work we demonstrate how to apply Ampere’s law to a non-infinite wire that is a part of a complete circuit with a steady current. We show that this can be done by considering the magnetic field from the whole circuit, without having to directly introduce the displacement current. This example can be used to isolate and clarify students’ confusion about the application of Ampere’s law to a short wire. The second part of this work focuses on the application of Ampere’s law to a non-relativistic moving charge. It exposes the students to the Dirac delta function in a physical example and guides them to finding the magnetic field of a moving charge in a reasonable way.
NASA Technical Reports Server (NTRS)
Anderson, John R.; Wilbur, Paul J.
1989-01-01
The potential usefulness of the constrained sheath optics concept as a means of controlling the divergence of low energy, high current density ion beams is examined numerically and experimentally. Numerical results demonstrate that some control of the divergence of typical ion beamlets can be achieved at perveance levels of interest by contouring the surface of the constrained sheath properly. Experimental results demonstrate that a sheath can be constrained by a wire mesh attached to the screen plate of the ion optics system. The numerically predicted beamlet divergence characteristics are shown to depart from those measured experimentally, and additional numerical analysis is used to demonstrate that this departure is probably due to distortions of the sheath caused by the fact that it attempts to conform to the individual wires that make up the sheath constraining mesh. The concept is considered potentially useful in controlling the divergence of ion beamlets in applications where low divergence, low energy, high current density beamlets are being sought, but more work is required to demonstrate this for net beam ion energies as low as 5 eV.
The Effect of Visual Perceptual Load on Auditory Awareness in Autism Spectrum Disorder
ERIC Educational Resources Information Center
Tillmann, Julian; Olguin, Andrea; Tuomainen, Jyrki; Swettenham, John
2015-01-01
Recent work on visual selective attention has shown that individuals with Autism Spectrum Disorder (ASD) demonstrate an increased perceptual capacity. The current study examined whether increasing visual perceptual load also has less of an effect on auditory awareness in children with ASD. Participants performed either a high- or low load version…
ERIC Educational Resources Information Center
Poza-Lujan, Jose-Luis; Calafate, Carlos T.; Posadas-Yagüe, Juan-Luis; Cano, Juan-Carlos
2016-01-01
Current opinion on undergraduate studies has led to a reformulation of teaching methodologies to base them not just on learning, but also on skills and competencies. In this approach, the teaching/learning process should accomplish both knowledge assimilation and skill development. Previous works demonstrated that a strategy that uses continuous…
ERIC Educational Resources Information Center
Tompkins, Tanya L.; Witt, Jody; Abraibesh, Nadia
2009-01-01
The current study sought to evaluate the suicide prevention gatekeeper training program QPR (Question, Persuade, and Refer) among school personnel using a non-equivalent control group design. Substantial gains were demonstrated from pre- to post-test for attitudes, knowledge, and beliefs regarding suicide and suicide prevention. Exploratory…
Women at Work: The Myth of Equal Opportunity.
ERIC Educational Resources Information Center
Piercy, Day; Krieter, Nancy
The advances women have made in the past decade have created the myth that women have achieved equal opportunity in the job market. In reality, the opposite is true. The current economic status of women demonstrates the need for strict enforcement of equal opportunity laws. Department of Labor data indicate that the wage gap between men and women…
Legal Regulation of Measures in Support of Talented Students in the Russian Federation
ERIC Educational Resources Information Center
Jankiewicz, S.
2018-01-01
The identification and support of talented students is one of the priorities of educational policy in the Russian Federation. There is currently a wide range of regulatory legal acts aimed at organizing work and support for students who have demonstrated outstanding ability. This article considers both direct support for talented students such as…
Blogs as a Representation of Student Experiences in a Service Learning Course
ERIC Educational Resources Information Center
Gerstenblatt, Paula
2014-01-01
Research on service learning has demonstrated positive outcomes in several areas of student learning; however, there is a scarcity of research examining the lived experiences of students. This study consisted of seventeen students from two cohorts enrolled in a service learning class working in a rural town. The current study suggests the…
ERIC Educational Resources Information Center
Onyura, Betty; Ng, Stella L.; Baker, Lindsay R.; Lieff, Susan; Millar, Barbara-Ann; Mori, Brenda
2017-01-01
Demonstrating the impact of faculty development, is an increasingly mandated and ever elusive goal. Questions have been raised about the adequacy of current approaches. Here, we integrate realist and theory-driven evaluation approaches, to evaluate an intensive longitudinal program. Our aim is to elucidate how faculty development can work to…
ERIC Educational Resources Information Center
Hubert, Blandine; Guimard, Philippe; Florin, Agnès; Tracy, Alexis
2015-01-01
Research Findings: Several recent studies carried out in the United States and abroad (i.e., Asia and Europe) have demonstrated that the ability of young children to regulate their behavior (including inhibitory control, working memory, attentional control) significantly predicts their academic achievement. The current study examined the…
Do Newly Formed Word Representations Encode Non-Criterial Information?
ERIC Educational Resources Information Center
Curtin, Suzanne
2011-01-01
Lexical stress is useful for a number of language learning tasks. In particular, it helps infants segment the speech stream and identify phonetic contrasts. Recent work has demonstrated that infants aged 1 ; 0 can learn two novel words differing only in their stress pattern. In the current study, we ask whether infants aged 1 ; 0 store stress…
Validation Report for the EO-1 Lightweight Flexible Solar Array Experiment
NASA Technical Reports Server (NTRS)
Carpenter, Bernie; Lyons, John; Day, John (Technical Monitor)
2001-01-01
The controlled deployment of the Lightweight Flexible Solar Array (LFSA) experiment using the shape memory alloy release and deployment system has been demonstrated. Work remains to be done in increasing the efficiency of Copper Indium Diselinide (CIS) terminations to the flexible harness that carries current from the array to the I-V measurement electronics.
2014-10-01
histology, and microCT analysis. In the current phase of work he will receive more specialized ` training and orientation to microCT analysis...fibrous connective tissue. • Performed histology on goat autogenous bone graft which demonstrated that the quantity and quality of cancellous bone graft
Flores-Flores, E; Torres-Hurtado, S A; Páez, R; Ruiz, U; Beltrán-Pérez, G; Neale, S L; Ramirez-San-Juan, J C; Ramos-García, R
2015-10-01
In this work we demonstrate optical trapping and manipulation of microparticles suspended in water due to laser-induced convection currents. Convection currents are generated due to laser light absorption in an hydrogenated amorphous silicon (a:Si-H) thin film. The particles are dragged towards the beam's center by the convection currents (Stokes drag force) allowing trapping with powers as low as 0.8 mW. However, for powers >3 mW trapped particles form a ring around the beam due to two competing forces: Stokes drag and thermo-photophoretic forces. Additionally, we show that dynamic beam shaping can be used to trap and manipulate multiple particles by photophotophoresis without the need of lithographically created resistive heaters.
Flores-Flores, E.; Torres-Hurtado, S. A.; Páez, R.; Ruiz, U.; Beltrán-Pérez, G.; Neale, S. L.; Ramirez-San-Juan, J. C.; Ramos-García, R.
2015-01-01
In this work we demonstrate optical trapping and manipulation of microparticles suspended in water due to laser-induced convection currents. Convection currents are generated due to laser light absorption in an hydrogenated amorphous silicon (a:Si-H) thin film. The particles are dragged towards the beam's center by the convection currents (Stokes drag force) allowing trapping with powers as low as 0.8 mW. However, for powers >3 mW trapped particles form a ring around the beam due to two competing forces: Stokes drag and thermo-photophoretic forces. Additionally, we show that dynamic beam shaping can be used to trap and manipulate multiple particles by photophotophoresis without the need of lithographically created resistive heaters. PMID:26504655
Silicon Carbide Diodes Performance Characterization at High Temperatures
NASA Technical Reports Server (NTRS)
Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry
2004-01-01
NASA Glenn Research center's Electrical Systems Development branch is working to demonstrate and test the advantages of Silicon Carbide (SiC) devices in actual power electronics applications. The first step in this pursuit is to obtain commercially available SiC Schottky diodes and to individually test them under both static and dynamic conditions, and then compare them with current state of the art silicon Schottky and ultra fast p-n diodes of similar voltage and current ratings. This presentation covers the results of electrical tests performed at NASA Glenn. Steady state forward and reverse current-volt (I-V) curves were generated for each device to compare performance and to measure their forward voltage drop at rated current, as well as the reverse leakage current at rated voltage. In addition, the devices were individually connected as freewheeling diodes in a Buck (step down) DC to DC converter to test their reverse recovery characteristics and compare their transient performance in a typical converter application. Both static and transient characterization tests were performed at temperatures ranging from 25 C to 300 C, in order to test and demonstrate the advantages of SiC over Silicon at high temperatures.
Current-based detection of nonlocal spin transport in graphene for spin-based logic applications
NASA Astrophysics Data System (ADS)
Wen, Hua; Zhu, Tiancong; Luo, Yunqiu Kelly; Amamou, Walid; Kawakami, Roland K.
2014-05-01
Graphene has been proposed for novel spintronic devices due to its robust and efficient spin transport properties at room temperature. Some of the most promising proposals require current-based readout for integration purposes, but the current-based detection of spin accumulation has not yet been developed. In this work, we demonstrate current-based detection of spin transport in graphene using a modified nonlocal geometry. By adding a variable shunt resistor in parallel to the nonlocal voltmeter, we are able to systematically cross over from the conventional voltage-based detection to current-based detection. As the shunt resistor is reduced, the output current from the spin accumulation increases as the shunt resistance drops below a characteristic value R*. We analyze this behavior using a one-dimensional drift-diffusion model, which accounts well for the observed behavior. These results provide the experimental and theoretical foundation for current-based detection of nonlocal spin transport.
Using electric current to surpass the microstructure breakup limit
Qin, Rongshan
2017-01-01
The elongated droplets and grains can break up into smaller ones. This process is driven by the interfacial free energy minimization, which gives rise to a breakup limit. We demonstrated in this work that the breakup limit can be overpassed drastically by using electric current to interfere. Electric current free energy is dependent on the microstructure configuration. The breakup causes the electric current free energy to reduce in some cases. This compensates the increment of interfacial free energy during breaking up and enables the processing to achieve finer microstructure. With engineering practical electric current parameters, our calculation revealed a significant increment of the obtainable number of particles, showing electric current a powerful microstructure refinement technology. The calculation is validated by our experiments on the breakup of Fe3C-plates in Fe matrix. Furthermore, there is a parameter range that electric current can drive spherical particles to split into smaller ones. PMID:28120919
Effects of confinement and electron transport on magnetic switching in single Co nanoparticles
Jiang, W.; Birk, F. T.; Davidović, D.
2013-01-01
This work reports the first study of current-driven magnetization noise in a single, nanometerscale, ferromagnetic (Co) particle, attached to normal metal leads by high-resistance tunneling junctions. As the tunnel current increases at low temperature, the magnetic switching field decreases, its probability distribution widens, while the temperature of the environment remains nearly constant. These observations demonstrate nonequilibrium magnetization noise. A classical model of the noise is provided, where the spin-orbit interaction plays a central role in driving magnetic tunneling transitions. PMID:23383370
Going Deep...Putting the Undergound Dimension to Use
Laughton, Chris
2017-12-09
Underground construction can offer durable and environmentally-sound solutions to many of societies more pressing needs. The talk will identify some common uses for underground space and discuss current construction techniques used to mine in soils and rock. Examples of successful underground construction projects will demonstrate the advantages that the underground site can offer. In addition, insight will be provided into the nature of the risks run when working with a construction material (the ground) that cannot be made to order, nor precisely defined by the investigative processes currently at our disposal.
Theoretical proposal for determining angular momentum compensation in ferrimagnets
NASA Astrophysics Data System (ADS)
Zhu, Zhifeng; Fong, Xuanyao; Liang, Gengchiau
2018-05-01
This work demonstrates that the magnetization and angular momentum compensation temperatures (TMC and TAMC) in ferrimagnets can be unambiguously determined by performing two sets of temperature-dependent current switching, with the symmetry reversals at TMC and TAMC, respectively. A theoretical model based on the modified Landau-Lifshitz-Bloch equation is developed to systematically study the spin torque effect under different temperatures, and numerical simulations are performed to corroborate our proposal. Furthermore, we demonstrate that the recently reported linear relation between TAMC and TMC can be explained using the Curie-Weiss theory.
Experimental preparation and verification of quantum money
NASA Astrophysics Data System (ADS)
Guan, Jian-Yu; Arrazola, Juan Miguel; Amiri, Ryan; Zhang, Weijun; Li, Hao; You, Lixing; Wang, Zhen; Zhang, Qiang; Pan, Jian-Wei
2018-03-01
A quantum money scheme enables a trusted bank to provide untrusted users with verifiable quantum banknotes that cannot be forged. In this work, we report a proof-of-principle experimental demonstration of the preparation and verification of unforgeable quantum banknotes. We employ a security analysis that takes experimental imperfections fully into account. We measure a total of 3.6 ×106 states in one verification round, limiting the forging probability to 10-7 based on the security analysis. Our results demonstrate the feasibility of preparing and verifying quantum banknotes using currently available experimental techniques.
The UAS control segment architecture: an overview
NASA Astrophysics Data System (ADS)
Gregory, Douglas A.; Batavia, Parag; Coats, Mark; Allport, Chris; Jennings, Ann; Ernst, Richard
2013-05-01
The Under Secretary of Defense (Acquisition, Technology and Logistics) directed the Services in 2009 to jointly develop and demonstrate a common architecture for command and control of Department of Defense (DoD) Unmanned Aircraft Systems (UAS) Groups 2 through 5. The UAS Control Segment (UCS) Architecture is an architecture framework for specifying and designing the softwareintensive capabilities of current and emerging UCS systems in the DoD inventory. The UCS Architecture is based on Service Oriented Architecture (SOA) principles that will be adopted by each of the Services as a common basis for acquiring, integrating, and extending the capabilities of the UAS Control Segment. The UAS Task Force established the UCS Working Group to develop and support the UCS Architecture. The Working Group currently has over three hundred members, and is open to qualified representatives from DoD-approved defense contractors, academia, and the Government. The UCS Architecture is currently at Release 2.2, with Release 3.0 planned for July 2013. This paper discusses the current and planned elements of the UCS Architecture, and related activities of the UCS Community of Interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fertig, Fabian, E-mail: fabian.fertig@ise.fraunhofer.de; Greulich, Johannes; Rein, Stefan
Spatially resolved determination of solar cell parameters is beneficial for loss analysis and optimization of conversion efficiency. One key parameter that has been challenging to access by an imaging technique on solar cell level is short-circuit current density. This work discusses the robustness of a recently suggested approach to determine short-circuit current density spatially resolved based on a series of lock-in thermography images and options for a simplified image acquisition procedure. For an accurate result, one or two emissivity-corrected illuminated lock-in thermography images and one dark lock-in thermography image have to be recorded. The dark lock-in thermography image can bemore » omitted if local shunts are negligible. Furthermore, it is shown that omitting the correction of lock-in thermography images for local emissivity variations only leads to minor distortions for standard silicon solar cells. Hence, adequate acquisition of one image only is sufficient to generate a meaningful map of short-circuit current density. Beyond that, this work illustrates the underlying physics of the recently proposed method and demonstrates its robustness concerning varying excitation conditions and locally increased series resistance. Experimentally gained short-circuit current density images are validated for monochromatic illumination in comparison to the reference method of light-beam induced current.« less
Limitations for current production in Geobacter sulfurreducens biofilms.
Bonanni, P Sebastian; Bradley, Dan F; Schrott, Germán D; Busalmen, Juan Pablo
2013-04-01
Devices that exploit electricity produced by electroactive bacteria such as Geobacter sulfurreducens have not yet been demonstrated beyond the laboratory scale. The current densities are far from the maximum that the bacteria can produce because fundamental properties such as the mechanism of extracellular electron transport and factors limiting cell respiration remain unclear. In this work, a strategy for the investigation of electroactive biofilms is presented. Numerical modeling of the response of G. sulfurreducens biofilms cultured on a rotating disk electrode has allowed for the discrimination of different limiting steps in the process of current production within a biofilm. The model outputs reveal that extracellular electron transport limits the respiration rate of the cells furthest from the electrode to the extent that cell division is not possible. The mathematical model also demonstrates that recent findings such as the existence of a redox gradient in actively respiring biofilms can be explained by an electron hopping mechanism but not when considering metallic-like conductivities. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The assessment of language and the emergence from disorders of consciousness.
Pundole, Amy; Crawford, Sarah
2017-04-06
In order to demonstrate emergence from a disorder of consciousness (DoC) an individual is currently required to demonstrate functional object use of two objects, or functional communication defined as accurately answering six yes/no questions on two consecutive occasions (Giacino et al., 2002 ). In practice, experienced speech and language therapists (SLTs) working with this group often focus on facilitating object use or employ other language tasks, since achieving a 100% accurate yes/no response can be difficult for patients following an extensive brain injury due to language and/or cognitive impairments. There is an increasing awareness of this issue in the literature and in practice and there is discussion about reviewing the current definition of emergence. This paper outlines the traditional definition of emergence and recent updates, discusses some of the problems and implications associated with current assessment, highlights the importance of getting it right, explores potential other ways to determine emergence, and suggests further areas for research.
Elimination of resistive losses in large-area LEDs by new diffusion-driven devices
NASA Astrophysics Data System (ADS)
Kivisaari, Pyry; Kim, Iurii; Suihkonen, Sami; Oksanen, Jani
2017-02-01
High-power operation of conventional GaN-based light-emitting diodes (LEDs) is severely limited by current crowding, which increases the bias voltage of the LED, concentrates light emission close to the p-type contact edge, and aggravates the efficiency droop. Fabricating LEDs on thick n-GaN substrates alleviates current crowding but requires the use of expensive bulk GaN substrates and fairly large n-contacts, which take away a large part of the active region (AR). In this work, we demonstrate through comparative simulations how the recently introduced diffusion-driven charge transport (DDCT) concept can be used to realize lateral heterojunction (LHJ) structures, which eliminate most of the lateral current crowding. Specifically in this work, we analyze how using a single-side graded AR can both facilitate electron and hole diffusion in DDCT and increase the effective AR thickness. Our simulations show that the increased effective AR thickness allows a substantial reduction in the efficiency droop at large currents, and that unlike conventional 2D LEDs, the LHJ structure shows practically no added efficiency loss or differential resistance due to current crowding. Furthermore, as both electrons and holes enter the AR from the same side without any notable potential barriers in the LHJ structure, the LHJ structure shows an additional wall-plug efficiency gain over the conventional structures under comparison. This injection from the same side is expected to be even more interesting in multiple quantum well structures, where carriers typically need to surpass several potential barriers in conventional LEDs before recombining. In addition to simulations, we also demonstrate selective-area growth of a finger structure suitable for operation as an LHJ device with 2µm distance between n- and p-GaN regions.
Asfaw, A. T.; Sigillito, A. J.; Tyryshkin, A. M.; ...
2017-07-17
In this work, we demonstrate the use of frequency-tunable superconducting NbTiN coplanar waveguide microresonators for multi-frequency pulsed electron spin resonance (ESR) experiments. By applying a bias current to the center pin, the resonance frequency (~7.6 GHz) can be continuously tuned by as much as 95 MHz in 270 ns without a change in the quality factor of 3000 at 2 K. We demonstrate the ESR performance of our resonators by measuring donor spin ensembles in silicon and show that adiabatic pulses can be used to overcome magnetic field inhomogeneities and microwave power limitations due to the applied bias current. Wemore » take advantage of the rapid tunability of these resonators to manipulate both phosphorus and arsenic spins in a single pulse sequence, demonstrating pulsed double electron-electron resonance. Our NbTiN resonator design is useful for multi-frequency pulsed ESR and should also have applications in experiments where spin ensembles are used as quantum memories.« less
NASA Astrophysics Data System (ADS)
Asfaw, A. T.; Sigillito, A. J.; Tyryshkin, A. M.; Schenkel, T.; Lyon, S. A.
2017-07-01
In this work, we demonstrate the use of frequency-tunable superconducting NbTiN coplanar waveguide microresonators for multi-frequency pulsed electron spin resonance (ESR) experiments. By applying a bias current to the center pin, the resonance frequency (˜7.6 GHz) can be continuously tuned by as much as 95 MHz in 270 ns without a change in the quality factor of 3000 at 2 K. We demonstrate the ESR performance of our resonators by measuring donor spin ensembles in silicon and show that adiabatic pulses can be used to overcome magnetic field inhomogeneities and microwave power limitations due to the applied bias current. We take advantage of the rapid tunability of these resonators to manipulate both phosphorus and arsenic spins in a single pulse sequence, demonstrating pulsed double electron-electron resonance. Our NbTiN resonator design is useful for multi-frequency pulsed ESR and should also have applications in experiments where spin ensembles are used as quantum memories.
Smart Floor with Integrated Triboelectric Nanogenerator As Energy Harvester and Motion Sensor.
He, Chuan; Zhu, Weijun; Chen, Baodong; Xu, Liang; Jiang, Tao; Han, Chang Bao; Gu, Guang Qin; Li, Dichen; Wang, Zhong Lin
2017-08-09
A smart floor is demonstrated by integrating a square-frame triboelectric nanogenerator (SF-TENG) into a standard wood floor. The smart floor has two working modes based on two pairs of triboelectric materials: one is purposely chosen polytetrafluoroethylene films and aluminum (Al) balls, and the other is the floor itself and the objects that can be triboelectrically charged, such as basketball, shoe soles, and Scotch tape, etc. Utilizing the Al balls enclosed inside shallow boxes, the smart floor is capable of harvesting vibrational energy and, hence, provides a nonintrusive way to detect sudden falls in elderly people. In addition, when the basketball is bounced repeatedly on the floor, the average output voltage and current are 364 ± 43 V and 9 ± 1 μA, respectively, and 87 serially connected light-emitting diodes can be lit up simultaneously. Furthermore, the friction between the triboelectrically chargeable objects and the floor can also induce an alternating current output in the external circuit without the vibration of the Al balls. Normal human footsteps on the floor produce a voltage of 238 ± 17 V and a current of 2.4 ± 0.3 μA. Therefore, this work presents a smart floor with built-in SF-TENG without compromising the flexibility and stability of the standard wood floor and also demonstrates a way to harvest ambient energy solely by using conventional triboelectric materials in our daily life.
Emission current from a single micropoint of explosive emission cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024; Sun, Jun
Explosive emission cathodes (EECs) are widely used due to their large current. There has been much research on the explosive electron emission mechanism demonstrating that a current density of 10{sup 8}–10{sup 9 }A/cm{sup 2} is necessary for a micropoint to explode in several nanoseconds and the micropoint size is in micron-scale according to the observation of the cathode surface. This paper, however, makes an effort to research the current density and the micropoint size in another way which considers the space charge screening effect. Our model demonstrates that the relativistic effect is insignificant for the micropoint emission due to the smallmore » size of the micropoint and uncovers that the micron-scale size is an intrinsic demand for the micropoint to reach a space charge limited current density of 10{sup 8}–10{sup 9 }A/cm{sup 2}. Meanwhile, our analysis shows that as the voltage increases, the micropoint emission will turn from a field limited state to a space charge limited state, which makes the steady-state micropoint current density independent of the cathode work function and much less dependent on the electric field and the field enhancement factor than that predicted by the Fowler-Nordheim formula.« less
Campbell, Susan L.; Hablitz, John J.; Olsen, Michelle L.
2014-01-01
Cortical dysplasia is associated with intractable epilepsy and developmental delay in young children. Recent work with the rat freeze-induced focal cortical dysplasia (FCD) model has demonstrated that hyperexcitability in the dysplastic cortex is due in part to higher levels of extracellular glutamate. Astrocyte glutamate transporters play a pivotal role in cortical maintaining extracellular glutamate concentrations. Here we examined the function of astrocytic glutamate transporters in a FCD model in rats. Neocortical freeze lesions were made in postnatal day (PN) 1 rat pups and whole cell electrophysiological recordings and biochemical studies were performed at PN 21–28. Synaptically evoked glutamate transporter currents in astrocytes showed a near 10-fold reduction in amplitude compared to sham operated controls. Astrocyte glutamate transporter currents from lesioned animals were also significantly reduced when challenged exogenously applied glutamate. Reduced astrocytic glutamate transport clearance contributed to increased NMDA receptor-mediated current decay kinetics in lesioned animals. The electrophysiological profile of astrocytes in the lesion group was also markedly changed compared to sham operated animals. Control astrocytes demonstrate large-amplitude linear leak currents in response to voltage-steps whereas astrocytes in lesioned animals demonstrated significantly smaller voltage-activated inward and outward currents. Significant decreases in astrocyte resting membrane potential and increases in input resistance were observed in lesioned animals. However, Western blotting, immunohistochemistry and quantitative PCR demonstrated no differences in the expression of the astrocytic glutamate transporter GLT-1 in lesioned animals relative to controls. These data suggest that, in the absence of changes in protein or mRNA expression levels, functional changes in astrocytic glutamate transporters contribute to neuronal hyperexcitability in the FCD model. PMID:25565960
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Alyssa Y.; Baruch, Moshe; Ajo-Franklin, Caroline M.
Current technologies are lacking in the area of deployable, in situ monitoring of complex chemicals in environmental applications. Microorganisms metabolize various chemical compounds and can be engineered to be analyte-specific making them naturally suited for robust chemical sensing. But, current electrochemical microbial biosensors use large and expensive electrochemistry equipment not suitable for on-site, real-time environmental analysis. We demonstrate a miniaturized, autonomous bioelectronic sensing system (BESSY) suitable for deployment for instantaneous and continuous sensing applications. We developed a 2x2 cm footprint, low power, two-channel, three-electrode electrochemical potentiostat which wirelessly transmits data for on-site microbial sensing. Furthermore, we designed a new waymore » of fabricating self-contained, submersible, miniaturized reactors (m-reactors) to encapsulate the bacteria, working, and counter electrodes. We have validated the BESSY’s ability to specifically detect a chemical amongst environmental perturbations using differential current measurements. This work paves the way for in situ microbial sensing outside of a controlled laboratory environment.« less
NASA Astrophysics Data System (ADS)
Margaris, I.; Paltoglou, V.; Flytzanis, N.
2018-05-01
In this work we present a method of representing terms in the current-phase-relation of a ballistic Josephson junction by combinations of diagrams, used in previous work to represent an equivalent of the matching condition determinant of the junction. This is accomplished by the expansion of the logarithm of this determinant in Taylor series and keeping track of surviving terms, i.e. terms that do not annihilate each other. The types of the surviving terms are represented by connected graphs, whose points represent diagrammatic terms of the determinant expansion. Then the theory is applied to obtain approximations of the current-phase relation of relatively thick ballistic ferromagnetic Josephson junctions with non-collinear magnetizations. This demonstrates the versatility of the method in developing approximations schemes and providing physical insight into the nature of contributions to the supercurrent from the available particle excitations in the junction. We also discuss the strong second harmonic contribution to the supercurrent in junctions with three mutually orthogonal magnetization vectors and a weak intermediate ferromagnet.
Zhou, Alyssa Y.; Baruch, Moshe; Ajo-Franklin, Caroline M.; ...
2017-09-15
Current technologies are lacking in the area of deployable, in situ monitoring of complex chemicals in environmental applications. Microorganisms metabolize various chemical compounds and can be engineered to be analyte-specific making them naturally suited for robust chemical sensing. But, current electrochemical microbial biosensors use large and expensive electrochemistry equipment not suitable for on-site, real-time environmental analysis. We demonstrate a miniaturized, autonomous bioelectronic sensing system (BESSY) suitable for deployment for instantaneous and continuous sensing applications. We developed a 2x2 cm footprint, low power, two-channel, three-electrode electrochemical potentiostat which wirelessly transmits data for on-site microbial sensing. Furthermore, we designed a new waymore » of fabricating self-contained, submersible, miniaturized reactors (m-reactors) to encapsulate the bacteria, working, and counter electrodes. We have validated the BESSY’s ability to specifically detect a chemical amongst environmental perturbations using differential current measurements. This work paves the way for in situ microbial sensing outside of a controlled laboratory environment.« less
Magnetohydrodynamic Propulsion for the Classroom
NASA Astrophysics Data System (ADS)
Font, Gabriel I.; Dudley, Scott C.
2004-10-01
The cinema industry can sometimes prove to be an ally when searching for material with which to motivate students to learn physics. Consider, for example, the electromagnetic force on a current in the presence of a magnetic field. This phenomenon is at the heart of magnetohydrodynamic (MHD) propulsion systems. A submarine employing this type of propulsion was immortalized in the movie Hunt for Red October. While mentioning this to students certainly gets their attention, it often elicits comments that it is only fiction and not physically possible. Imagine their surprise when a working system is demonstrated! It is neither difficult nor expensive to construct a working system that can be demonstrated in the front of a classroom.2 In addition, all aspects of the engineering hurdles that must be surmounted and myths concerning this "silent propulsion" system are borne out in a simple apparatus. This paper details how to construct an inexpensive MHD propulsion boat that can be demonstrated for students in the classroom.
Schmidt, James R
2013-01-01
The present work introduces a computational model, the Parallel Episodic Processing (PEP) model, which demonstrates that contingency learning achieved via simple storage and retrieval of episodic memories can explain the item-specific proportion congruency effect in the colour-word Stroop paradigm. The current work also presents a new experimental procedure to more directly dissociate contingency biases from conflict adaptation (i.e., proportion congruency). This was done with three different types of incongruent words that allow a comparison of: (a) high versus low contingency while keeping proportion congruency constant, and (b) high versus low proportion congruency while keeping contingency constant. Results demonstrated a significant contingency effect, but no effect of proportion congruence. It was further shown that the proportion congruency associated with the colour does not matter, either. Thus, the results quite directly demonstrate that ISPC effects are not due to conflict adaptation, but instead to contingency learning biases. Copyright © 2012 Elsevier B.V. All rights reserved.
Formation of magnetic discontinuities through viscous relaxation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sanjay; Bhattacharyya, R.; Smolarkiewicz, P. K.
2014-05-15
According to Parker's magnetostatic theorem, tangential discontinuities in magnetic field, or current sheets (CSs), are generally unavoidable in an equilibrium magnetofluid with infinite electrical conductivity and complex magnetic topology. These CSs are due to a failure of a magnetic field in achieving force-balance everywhere and preserving its topology while remaining in a spatially continuous state. A recent work [Kumar, Bhattacharyya, and Smolarkiewicz, Phys. Plasmas 20, 112903 (2013)] demonstrated this CS formation utilizing numerical simulations in terms of the vector magnetic field. The magnetohydrodynamic simulations presented here complement the above work by demonstrating CS formation by employing a novel approach ofmore » describing the magnetofluid evolution in terms of magnetic flux surfaces instead of the vector magnetic field. The magnetic flux surfaces being the possible sites on which CSs develop, this approach provides a direct visualization of the CS formation, helpful in understanding the governing dynamics. The simulations confirm development of tangential discontinuities through a favorable contortion of magnetic flux surfaces, as the magnetofluid undergoes a topology-preserving viscous relaxation from an initial non-equilibrium state with twisted magnetic field. A crucial finding of this work is in its demonstration of CS formation at spatial locations away from the magnetic nulls.« less
Ultrasound to video registration using a bi-plane transrectal probe with photoacoustic markers
NASA Astrophysics Data System (ADS)
Cheng, Alexis; Kang, Hyun Jae; Zhang, Haichong K.; Taylor, Russell H.; Boctor, Emad M.
2016-03-01
Modern surgical scenarios typically provide surgeons with additional information through fusion of video and other imaging modalities. To provide this information, the tools and devices used in surgery must be registered together with interventional guidance equipment and surgical navigation systems. In this work, we focus explicitly on registering ultrasound with a stereo camera system using photoacoustic markers. Previous work has shown that photoacoustic markers can be used in this registration task to achieve target registration errors lower than the current available systems. Photoacoustic markers are defined as a set of non-collinear laser spots projected onto some surface. They can be simultaneously visualized by a stereo camera system and an ultrasound transducer because of the photoacoustic effect. In more recent work, the three-dimensional ultrasound volume was replaced by images from a single ultrasound image pose from a convex array transducer. The feasibility of this approach was demonstrated, but the accuracy was lacking due to the physical limitations of the convex array transducer. In this work, we propose the use of a bi-plane transrectal ultrasound transducer. The main advantage of using this type of transducer is that the ultrasound elements are no longer restricted to a single plane. While this development would be limited to prostate applications, liver and kidney applications are also feasible if a suitable transducer is built. This work is demonstrated in two experiments, one without photoacoustic sources and one with. The resulting target registration error for these experiments were 1.07mm±0.35mm and 1.27mm+/-0.47mm respectively, both of which are better than current available navigation systems.
Gender trends in dental practice patterns. A review of current U.S. literature.
Dolan, T A
1991-01-01
This paper reviews three recent reports of national gender trends in dental practice patterns. Although the three independent cross-sectional studies were conducted at different points in time, used different sampling strategies, and used similar but independent survey instruments, findings were consistent across studies. In summary: Women dentists are less likely to be married and have fewer children. Women are more likely to assume child rearing and household responsibilities. Women are less likely to be practice owners. Women worked slightly fewer hours per week and weeks per year, and were more likely to take a leave of absence for illness or child rearing. However, women dentists demonstrate a far greater professional work commitment than was previously reported in the literature. Women earn significantly less income from the practice of dentistry, even after controlling for age, practice ownership, hours worked per week, and other personal characteristics. The most current "Gender Wage Gap" estimates range from 57.7% for specialists to 75.4% for general practitioners (8). delta.
Piezo-Electrochemical Energy Harvesting with Lithium-Intercalating Carbon Fibers.
Jacques, Eric; Lindbergh, Göran; Zenkert, Dan; Leijonmarck, Simon; Kjell, Maria Hellqvist
2015-07-01
The mechanical and electrochemical properties are coupled through a piezo-electrochemical effect in Li-intercalated carbon fibers. It is demonstrated that this piezo-electrochemical effect makes it possible to harvest electrical energy from mechanical work. Continuous polyacrylonitrile-based carbon fibers that can work both as electrodes for Li-ion batteries and structural reinforcement for composites materials are used in this study. Applying a tensile force to carbon fiber bundles used as Li-intercalating electrodes results in a response of the electrode potential of a few millivolts which allows, at low current densities, lithiation at higher electrode potential than delithiation. More electrical energy is thereby released from the cell at discharge than provided at charge, harvesting energy from the mechanical work of the applied force. The measured harvested specific electrical power is in the order of 1 μW/g for current densities in the order of 1 mA/g, but this has a potential of being increased significantly.
A unified framework for mesh refinement in random and physical space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jing; Stinis, Panos
In recent work we have shown how an accurate reduced model can be utilized to perform mesh renement in random space. That work relied on the explicit knowledge of an accurate reduced model which is used to monitor the transfer of activity from the large to the small scales of the solution. Since this is not always available, we present in the current work a framework which shares the merits and basic idea of the previous approach but does not require an explicit knowledge of a reduced model. Moreover, the current framework can be applied for renement in both randommore » and physical space. In this manuscript we focus on the application to random space mesh renement. We study examples of increasing difficulty (from ordinary to partial differential equations) which demonstrate the effciency and versatility of our approach. We also provide some results from the application of the new framework to physical space mesh refinement.« less
Current-Sensitive Path Planning for an Underactuated Free-Floating Ocean Sensorweb
NASA Technical Reports Server (NTRS)
Dahl, Kristen P.; Thompson, David R.; McLaren, David; Chao, Yi; Chien, Steve
2011-01-01
This work investigates multi-agent path planning in strong, dynamic currents using thousands of highly under-actuated vehicles. We address the specific task of path planning for a global network of ocean-observing floats. These submersibles are typified by the Argo global network consisting of over 3000 sensor platforms. They can control their buoyancy to float at depth for data collection or rise to the surface for satellite communications. Currently, floats drift at a constant depth regardless of the local currents. However, accurate current forecasts have become available which present the possibility of intentionally controlling floats' motion by dynamically commanding them to linger at different depths. This project explores the use of these current predictions to direct float networks to some desired final formation or position. It presents multiple algorithms for such path optimization and demonstrates their advantage over the standard approach of constant-depth drifting.
Mapping Base Modifications in DNA by Transverse-Current Sequencing
NASA Astrophysics Data System (ADS)
Alvarez, Jose R.; Skachkov, Dmitry; Massey, Steven E.; Kalitsov, Alan; Velev, Julian P.
2018-02-01
Sequencing DNA modifications and lesions, such as methylation of cytosine and oxidation of guanine, is even more important and challenging than sequencing the genome itself. The traditional methods for detecting DNA modifications are either insensitive to these modifications or require additional processing steps to identify a particular type of modification. Transverse-current sequencing in nanopores can potentially identify the canonical bases and base modifications in the same run. In this work, we demonstrate that the most common DNA epigenetic modifications and lesions can be detected with any predefined accuracy based on their tunneling current signature. Our results are based on simulations of the nanopore tunneling current through DNA molecules, calculated using nonequilibrium electron-transport methodology within an effective multiorbital model derived from first-principles calculations, followed by a base-calling algorithm accounting for neighbor current-current correlations. This methodology can be integrated with existing experimental techniques to improve base-calling fidelity.
First-Principles-Driven Model-Based Optimal Control of the Current Profile in NSTX-U
NASA Astrophysics Data System (ADS)
Ilhan, Zeki; Barton, Justin; Wehner, William; Schuster, Eugenio; Gates, David; Gerhardt, Stefan; Kolemen, Egemen; Menard, Jonathan
2014-10-01
Regulation in time of the toroidal current profile is one of the main challenges toward the realization of the next-step operational goals for NSTX-U. A nonlinear, control-oriented, physics-based model describing the temporal evolution of the current profile is obtained by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. In this work, the proposed model is embedded into the control design process to synthesize a time-variant, linear-quadratic-integral, optimal controller capable of regulating the safety factor profile around a desired target profile while rejecting disturbances. Neutral beam injectors and the total plasma current are used as actuators to shape the current profile. The effectiveness of the proposed controller in regulating the safety factor profile in NSTX-U is demonstrated via closed-loop predictive simulations carried out in PTRANSP. Supported by PPPL.
Separation of Evans and Hiro currents in VDE of tokamak plasma
NASA Astrophysics Data System (ADS)
Galkin, Sergei A.; Svidzinski, V. A.; Zakharov, L. E.
2014-10-01
Progress on the Disruption Simulation Code (DSC-3D) development and benchmarking will be presented. The DSC-3D is one-fluid nonlinear time-dependent MHD code, which utilizes fully 3D toroidal geometry for the first wall, pure vacuum and plasma itself, with adaptation to the moving plasma boundary and accurate resolution of the plasma surface current. Suppression of fast magnetosonic scale by the plasma inertia neglecting will be demonstrated. Due to code adaptive nature, self-consistent plasma surface current modeling during non-linear dynamics of the Vertical Displacement Event (VDE) is accurately provided. Separation of the plasma surface current on Evans and Hiro currents during simulation of fully developed VDE, then the plasma touches in-vessel tiles, will be discussed. Work is supported by the US DOE SBIR Grant # DE-SC0004487.
NASA Astrophysics Data System (ADS)
Poli, Francesca M.; Kessel, Charles E.
2013-05-01
Plasmas with internal transport barriers (ITBs) are a potential and attractive route to steady-state operation in ITER. These plasmas exhibit radially localized regions of improved confinement with steep pressure gradients in the plasma core, which drive large bootstrap current and generate hollow current profiles and negative magnetic shear. This work examines the formation and sustainment of ITBs in ITER with electron cyclotron heating and current drive. The time-dependent transport simulations indicate that, with a trade-off of the power delivered to the equatorial and to the upper launcher, the sustainment of steady-state ITBs can be demonstrated in ITER with the baseline heating configuration.
Skyrmion-based multi-channel racetrack
NASA Astrophysics Data System (ADS)
Song, Chengkun; Jin, Chendong; Wang, Jinshuai; Xia, Haiyan; Wang, Jianbo; Liu, Qingfang
2017-11-01
Magnetic skyrmions are promising for the application of racetrack memories, logic gates, and other nano-devices, owing to their topologically protected stability, small size, and low driving current. In this work, we propose a skyrmion-based multi-channel racetrack memory where the skyrmion moves in the selected channel by applying voltage-controlled magnetic anisotropy gates. It is demonstrated numerically that a current-dependent skyrmion Hall effect can be restrained by the additional potential of the voltage-controlled region, and the skyrmion velocity and moving channel in the racetrack can be operated by tuning the voltage-controlled magnetic anisotropy, gate position, and current density. Our results offer a potential application of racetrack memory based on skyrmions.
ERIC Educational Resources Information Center
McManis, Mark H.; McManis, Lilla Dale
2016-01-01
The use of touch-based technologies by young children to improve academic skills has seen growth outpacing empirical evidence of its effectiveness. Due to the educational challenges low-income children face, the stakes for providing instructional technology with demonstrated efficacy are high. The current work presents an empirical study of the…
ERIC Educational Resources Information Center
Goddard, Roger D.; Skrla, Linda; Salloum, Serena J.
2017-01-01
Previous research demonstrates that collective efficacy positively predicts students' academic achievement (e.g., Bandura, 1993; Goddard et al., 2000). However, unaddressed by the current literature is whether collective efficacy also works to reduce inequity by closing achievement gaps. To learn about the operation of collective efficacy, we…
ERIC Educational Resources Information Center
Stephenson, John; Malloch, Margaret; Cairns, Len
2006-01-01
This article contributes to current debates about professional doctorates from a lifelong learning perspective, focusing on those who choose to undertake a doctoral programme in mid- or late career and their responses to the challenge of demonstrating their "doctorateness" as evidenced in their previous and continuing professional work.…
ERIC Educational Resources Information Center
Zient, Jeffrey D.
2012-01-01
Since taking office, the President has emphasized the need to use evidence and rigorous evaluation in budget, management, and policy decisions to make government work effectively. This need has only grown in the current fiscal environment. Agencies should demonstrate the use of evidence throughout their Fiscal Year (FY) 2014 budget submissions.…
Kim, Jeehwan; Abou-Kandil, Ahmed; Fogel, Keith; Hovel, Harold; Sadana, Devendra K
2010-12-28
Addition of carbon into p-type "window" layers in hydrogenated amorphous silicon (a-Si:H) solar cells enhances short circuit currents and open circuit voltages by a great deal. However, a-Si:H solar cells with high carbon-doped "window" layers exhibit poor fill factors due to a Schottky barrier-like impedance at the interface between a-SiC:H windows and transparent conducting oxides (TCO), although they show maximized short circuit currents and open circuit voltages. The impedance is caused by an increasing mismatch between the work function of TCO and that of p-type a-SiC:H. Applying ultrathin high-work-function metals at the interface between the two materials results in an effective lowering of the work function mismatch and a consequent ohmic behavior. If the metal layer is sufficiently thin, then it forms nanodots rather than a continuous layer which provides light-scattering effect. We demonstrate 31% efficiency enhancement by using high-work-function materials for engineering the work function at the key interfaces to raise fill factors as well as photocurrents. The use of metallic interface layers in this work is a clear contrast to previous work where attempts were made to enhance the photocurrent using plasmonic metal nanodots on the solar cell surface.
Jones, Kevin T.; Gözenman, Filiz; Berryhill, Marian E.
2014-01-01
Working memory (WM) capacity falls along a spectrum with some people demonstrating higher and others lower WM capacity. Efforts to improve WM include applying transcranial direct current stimulation (tDCS), in which small amounts of current modulate the activity of underlying neurons and enhance cognitive function. However, not everyone benefits equally from a given tDCS protocol. Recent findings revealed tDCS-related WM benefits for individuals with higher working memory (WM) capacity. Here, we test two hypotheses regarding those with low WM capacity to see if they too would benefit under more optimal conditions. We tested whether supplying a WM strategy (Experiment 1) or providing greater extrinsic motivation through incentives (Experiment 2) would restore tDCS benefit to the low WM capacity group. We also employed functional near infrared spectroscopy to monitor tDCS-induced changes in neural activity. Experiment 1 demonstrated that supplying a WM strategy improved the high WM capacity participants’ accuracy and the amount of oxygenated blood levels following anodal tDCS, but it did not restore tDCS-linked WM benefits to the low WM capacity group. Experiment 2 demonstrated that financial motivation enhanced performance in both low and high WM capacity groups, especially after anodal tDCS. Here, only the low WM capacity participants showed a generalized increase in oxygenated blood flow across both low and high motivation conditions. These results indicate that ensuring that participants’ incentives are high may expand cognitive benefits associated with tDCS. This finding is relevant for translational work using tDCS in clinical populations, in which motivation can be a concern. PMID:25462798
Focusing on Attention: The Effects of Working Memory Capacity and Load on Selective Attention
Ahmed, Lubna; de Fockert, Jan W.
2012-01-01
Background Working memory (WM) is imperative for effective selective attention. Distractibility is greater under conditions of high (vs. low) concurrent working memory load (WML), and in individuals with low (vs. high) working memory capacity (WMC). In the current experiments, we recorded the flanker task performance of individuals with high and low WMC during low and high WML, to investigate the combined effect of WML and WMC on selective attention. Methodology/Principal Findings In Experiment 1, distractibility from a distractor at a fixed distance from the target was greater when either WML was high or WMC was low, but surprisingly smaller when both WML was high and WMC low. Thus we observed an inverted-U relationship between reductions in WM resources and distractibility. In Experiment 2, we mapped the distribution of spatial attention as a function of WMC and WML, by recording distractibility across several target-to-distractor distances. The pattern of distractor effects across the target-to-distractor distances demonstrated that the distribution of the attentional window becomes dispersed as WM resources are limited. The attentional window was more spread out under high compared to low WML, and for low compared to high WMC individuals, and even more so when the two factors co-occurred (i.e., under high WML in low WMC individuals). The inverted-U pattern of distractibility effects in Experiment 1, replicated in Experiment 2, can thus be explained by differences in the spread of the attentional window as a function of WM resource availability. Conclusions/Significance The current findings show that limitations in WM resources, due to either WML or individual differences in WMC, affect the spatial distribution of attention. The difference in attentional constraining between high and low WMC individuals demonstrated in the current experiments helps characterise the nature of previously established associations between WMC and controlled attention. PMID:22952636
Montgomery, Erwin B.; He, Huang
2016-01-01
The efficacy of Deep Brain Stimulation (DBS) for an expanding array of neurological and psychiatric disorders demonstrates directly that DBS affects the basic electroneurophysiological mechanisms of the brain. The increasing array of active electrode configurations, stimulation currents, pulse widths, frequencies, and pulse patterns provides valuable tools to probe electroneurophysiological mechanisms. The extension of basic electroneurophysiological and anatomical concepts using sophisticated computational modeling and simulation has provided relatively straightforward explanations of all the DBS parameters except frequency. This article summarizes current thought about frequency and relevant observations. Current methodological and conceptual errors are critically examined in the hope that future work will not replicate these errors. One possible alternative theory is presented to provide a contrast to many current theories. DBS, conceptually, is a noisy discrete oscillator interacting with the basal ganglia–thalamic–cortical system of multiple re-entrant, discrete oscillators. Implications for positive and negative resonance, stochastic resonance and coherence, noisy synchronization, and holographic memory (related to movement generation) are presented. The time course of DBS neuronal responses demonstrates evolution of the DBS response consistent with the dynamics of re-entrant mechanisms. Finally, computational modeling demonstrates identical dynamics as seen by neuronal activities recorded from human and nonhuman primates, illustrating the differences of discrete from continuous harmonic oscillators and the power of conceptualizing the nervous system as composed on interacting discrete nonlinear oscillators. PMID:27548234
NASA Astrophysics Data System (ADS)
Teplukhina, A. A.; Sauter, O.; Felici, F.; Merle, A.; Kim, D.; the TCV Team; the ASDEX Upgrade Team; the EUROfusion MST1 Team
2017-12-01
The present work demonstrates the capabilities of the transport code RAPTOR as a fast and reliable simulator of plasma profiles for the entire plasma discharge, i.e. from ramp-up to ramp-down. This code focuses, at this stage, on the simulation of electron temperature and poloidal flux profiles using prescribed equilibrium and some kinetic profiles. In this work we extend the RAPTOR transport model to include a time-varying plasma equilibrium geometry and verify the changes via comparison with ATSRA code simulations. In addition a new ad hoc transport model based on constant gradients and suitable for simulations of L-H and H-L mode transitions has been incorporated into the RAPTOR code and validated with rapid simulations of the time evolution of the safety factor and the electron temperature over the entire AUG and TCV discharges. An optimization procedure for the plasma termination phase has also been developed during this work. We define the goal of the optimization as ramping down the plasma current as fast as possible while avoiding any disruptions caused by reaching physical or technical limits. Our numerical study of this problem shows that a fast decrease of plasma elongation during current ramp-down can help in reducing plasma internal inductance. An early transition from H- to L-mode allows us to reduce the drop in poloidal beta, which is also important for plasma MHD stability and control. This work shows how these complex nonlinear interactions can be optimized automatically using relevant cost functions and constraints. Preliminary experimental results for TCV are demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Sijie; Gillin, W. P., E-mail: w.gillin@qmul.ac.uk; Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS
The change in current through an organic light emitting diode (OLED) when it is placed in a magnetic field has been dubbed organic magnetoresistance and provides a means to understand the spin interactions that are occurring in working devices. Whilst there are a wide range of interactions that have been proposed to be the cause of the measured effects, there is still a need to identify their individual roles and in particular how they respond to an applied magnetic field. In this work, we investigate the effect of changing the balance of electron and hole injection in a simple aluminiummore » tris(8-hydroxyqinoline) based OLED and demonstrate that the triplet polaron interaction appears to be much stronger for electrons than for holes in this material.« less
Overview of ARPA low-cost ceramic composites (LC{sup 3}) program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adler, P.N.
1996-12-31
Grumman is currently leading an approximate $10M ARPA cost-shared program aimed at developing low-cost fabrication methodology for manufacturing ceramic matrix composite (CMC) structural components. One of the program goals is to demonstrate the effectiveness of an advanced materials partnership. A vertically integrated collaboration now exists that combines the talents of three large private sector organizations, two smaller private sector organizations, three universities, and three federal government laboratories. Work in progress involves preceramic polymer (Blackglas{trademark}) CMC materials technology, RTM and pyrolysis process modeling & simulation, and utilization of low-cost approaches for fabricating a CMC demonstration engine seal component. This paper reviewsmore » the program organization, functioning, and some of the highlights of the technical work, which is of interest to the DoD as well as the commercial sector.« less
Current-driven thermo-magnetic switching in magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Kravets, A. F.; Polishchuk, D. M.; Pashchenko, V. A.; Tovstolytkin, A. I.; Korenivski, V.
2017-12-01
We investigate switching of magnetic tunnel junctions (MTJs) driven by the thermal effect of the transport current through the junctions. The switching occurs in a specially designed composite free layer, which acts as one of the MTJ electrodes, and is due to a current-driven ferro-to-paramagnetic Curie transition with the associated exchange decoupling within the free layer leading to magnetic reversal. We simulate the current and heat propagation through the device and show how heat focusing can be used to improve the power efficiency. The Curie-switch MTJ demonstrated in this work has the advantage of being highly tunable in terms of its operating temperature range, conveniently to or just above room temperature, which can be of technological significance and competitive with the known switching methods using spin-transfer torques.
Up-conversion of MMW radiation to visual band using glow discharge detector and silicon detector
NASA Astrophysics Data System (ADS)
Aharon Akram, Avihai; Rozban, Daniel; Abramovich, Amir; Yitzhaky, Yitzhak; Kopeika, Natan S.
2016-10-01
In this work we describe and demonstrate a method for up-conversion of millimeter wave (MMW) radiation to the visual band using a very inexpensive miniature Glow Discharge Detector (GDD), and a silicon detector (photodetector). Here we present 100 GHz up-conversion images based on measuring the visual light emitting from the GDD rather than its electrical current. The results showed better response time of 480 ns and better sensitivity compared to the electronic detection that was performed in our previous work. In this work we performed MMW imaging based on this method using a GDD lamp, and a photodetector to measure GDD light emission.
DNA/RNA transverse current sequencing: intrinsic structural noise from neighboring bases
Alvarez, Jose R.; Skachkov, Dmitry; Massey, Steven E.; Kalitsov, Alan; Velev, Julian P.
2015-01-01
Nanopore DNA sequencing via transverse current has emerged as a promising candidate for third-generation sequencing technology. It produces long read lengths which could alleviate problems with assembly errors inherent in current technologies. However, the high error rates of nanopore sequencing have to be addressed. A very important source of the error is the intrinsic noise in the current arising from carrier dispersion along the chain of the molecule, i.e., from the influence of neighboring bases. In this work we perform calculations of the transverse current within an effective multi-orbital tight-binding model derived from first-principles calculations of the DNA/RNA molecules, to study the effect of this structural noise on the error rates in DNA/RNA sequencing via transverse current in nanopores. We demonstrate that a statistical technique, utilizing not only the currents through the nucleotides but also the correlations in the currents, can in principle reduce the error rate below any desired precision. PMID:26150827
Natural Crack Sizing Based on Eddy Current Image and Electromagnetic Field Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endo, H.; Uchimoto, T.; Takagi, T.
2006-03-06
An eddy current testing (ECT) system with multi-coil type probes is applied to size up cracks fabricated on austenite stainless plates. We have developed muti-channel ECT system to produce data as digital images. The probes consist of transmit-receive type sensors as elements to classify crack directions, working as two scan direction modes simultaneously. Template matching applied to the ECT images determines regions of interest in sizing up cracks. Finite element based inversion sizes up the crack depth from the measured ECT signal. The present paper demonstrates this approach for fatigue crack and stress corrosion cracking.
Gas Dynamic Spray Technology Demonstration
NASA Technical Reports Server (NTRS)
Burford, Pattie Lewis
2011-01-01
Zinc primer systems are currently used across NASA and AFSPC for corrosion protection of steel. AFSPC and NASA have approved the use of Thermal Spray Coatings (TSCs) as an environmentally preferable alternative. TSCs are approved in NASA-STD-5008 and AFSPC and KSC is currently looking for additional applications in which TSC can be used. Gas Dynamic Spray (GDS, also known as Cold Spray) is being evaluated as a means of repairing TSCs and for areas such as corners and edges where TSCs do not work as well. Other applications could include spot repair/maintenance of steel on structures, facilities, and ground support equipment.
McCormick-Huhn, John M; Chen, Hui; Wyble, Bradley P; Dennis, Nancy A
2018-02-01
Previous work has shown mixed evidence regarding age-related deficits for binding in working memory. The current study used the newly developed attribute amnesia effect (H. Chen & Wyble, 2015a) to test the associative-deficit hypothesis during working memory and to probe whether hyper-binding extends to include binding of de-selected information. In studies of attribute amnesia, participants use target attributes (e.g., identity, color) to demonstrate near ceiling levels of reporting of a second target attribute (e.g., location) across a series of trials (H. Chen & Wyble, 2015a, 2016). Yet, despite having just processed the target-defining attribute, they have difficulty reporting it on a surprise trial. This effect provides several predictions for associative binding in aging. The associative-deficit hypothesis predicts age-related decline on the surprise trial, whereas an extension of hyper-binding predicts age-related increase in performance in older adults. In Experiment 1, when working memory load was low, older adults demonstrated attribute amnesia equal to that found in younger adults. When load increased in Experiment 2, older adults again demonstrated attribute amnesia as well as an age deficit for reporting target attributes. In lieu of spontaneous binding, results suggest that expectancy plays a critical role in older adults' propensity to encode and bind target attributes in working memory. Results further suggest that expectancy alone is not enough for older adults to form bound representations when task demands are high. Taken together results revealed a boundary condition of hyper-binding and further provided conditional support for the associative-deficit hypothesis in working memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Quiescent H-mode plasmas with strong edge rotation in the cocurrent direction.
Burrell, K H; Osborne, T H; Snyder, P B; West, W P; Fenstermacher, M E; Groebner, R J; Gohil, P; Leonard, A W; Solomon, W M
2009-04-17
For the first time in any tokamak, quiescent H-mode (QH-mode) plasmas have been created with strong edge rotation in the direction of the plasma current. This confirms the theoretical prediction that the QH mode should exist with either sign of the edge rotation provided the magnitude of the shear in the edge rotation is sufficiently large and demonstrates that counterinjection and counteredge rotation are not essential for the QH mode. Accordingly, the present work demonstrates a substantial broadening of the QH-mode operating space and represents a significant confirmation of the theory.
A Standard of Knowledge for the Professional Practice of Toxicology.
Hulla, Janis E; Kinter, Lewis B; Kelman, Bruce
2015-08-01
Employers, courts, and the general public judge the credibility of professionals based on credentials such as academic degrees, publications, memberships in professional organizations, board certifications, and professional registrations. However, the relevance and merit of these credentials can be difficult to determine objectively. Board certification can be a reliable indicator of proficiency if the certifying organization demonstrates, through regularly scheduled independent review, that its processes meet established standards and when a certificate holder is required to periodically demonstrate command of a body of knowledge that is essential to current professional practice. We report herein a current Standard of Knowledge in general toxicology compiled from the experience and opinions of 889 certified practicing professional toxicologists. An examination is the most commonly used instrument for testing a certification candidate's command of the body of knowledge. However, an examination-based certification is only creditable when the body of knowledge, to which a certification examination tests, is representative of the current knowledge, skills, and capabilities needed to effectively practice at the professional level. Thus, that body of knowledge must be the current "Standard of Knowledge" for the profession, compiled in a transparent fashion from current practitioners of the profession. This work was conducted toward ensuring the scientific integrity of the products produced by professional toxicologists.
Characterization of Hollow Cathode Performance and Thermal Behavior
NASA Technical Reports Server (NTRS)
Polk, James E.; Goebel, Dan M.; Watkins, Ron; Jameson, Kristina; Yoneshige, Lance; Przybylowski, JoHanna; Cho, Lauren
2006-01-01
Hollow cathodes are one of the main life-limiting components in ion engines and Hall thrusters. Although state-of-the-art hollow cathodes have demonstrated up to 30,352 hours of operation in ground tests with careful handling, future missions are likely to require longer life, more margin and greater resistance to reactive contaminant gases. Three alternate hollow cathode technologies that exploit different emitter materials or geometries to address some of the limitations of state-of-the-art cathodes are being investigated. Performance measurements of impregnated tungsten-iridium dispenser cathodes at discharge currents of 4 to 15 A demonstrated that they have the same operating range and ion production efficiency as conventional tungsten dispenser cathodes. Temperature measurements indicated that tungsten-iridium cathodes also operate at the same emitter temperatures. They did not exhibit the expected reduction in work function at the current densities tested. Hollow cathodes with lanthanum hexaboride emitters operated over a wide current range, but suffered from lower ion production efficiency at currents below about 12.4 A because of higher insert heating requirements. Differences in operating voltages and ion production rates are explained with a simple model of the effect of cathode parameters on discharge behavior.
The effect of working gas pressure on the switching rate of a kivotron
NASA Astrophysics Data System (ADS)
Bokhan, P. A.; Gugin, P. P.; Zakrevsky, D. E.; Lavrukhin, M. A.
2016-05-01
The switching rate in gas-discharge devices (kivotrons) based on an "open" discharge with counterpropagating electron beams is studied experimentally. Structures with a total cathode area of 2 cm2 were used. A monotonic reduction in the switching time with an increase in the working gas pressure and in the voltage amplitude at the time of breakdown is demonstrated. The minimum switching time is ~240 ps at a voltage of 17 kV. The maximum current rise rate, which is limited by the discharge circuit inductance, is 3 × 1012 A/s.
NASA Technical Reports Server (NTRS)
Windley, P.
1992-01-01
We present a state property called congruence and show how it can be used to demonstrate commutivity of instructions in a modern load-store architecture. Our analysis is particularly important in pipelined microprocessors where instructions are frequently reordered to avoid costly delays in execution caused by hazards. Our work has significant implications to safety and security critical applications since reordering can easily change the meaning and an instruction sequence and current techniques are largely ad hoc. Our work is done in a mechanical theorem prover and results in a set of trustworthy rules for instruction reordering. The mechanization makes it practical to analyze the entire instruction set.
Expendable launch vehicle propulsion
NASA Technical Reports Server (NTRS)
Fuller, Paul N.
1991-01-01
The current status is reviewed of the U.S. Expendable Launch Vehicle (ELV) fleet, the international competition, and the propulsion technology of both domestic and foreign ELVs. The ELV propulsion technology areas where research, development, and demonstration are most needed are identified. These propulsion technology recommendations are based on the work performed by the Commercial Space Transportation Advisory Committee (COMSTAC), an industry panel established by the Dept. of Transportation.
A historical note on false traumatic memories.
Rosen, Gerald M; Sageman, Marc; Loftus, Elizabeth
2004-01-01
Unhampered by current ethical standards and human subject committees, H. Bernheim (1889) created a false memory of a horrific traumatic event. Bernheim also demonstrated his subject's willingness to discuss the implanted memory with a representative of the law. Bernheim's work represents the first documented case of an implanted false traumatic memory, with direct relevance to contemporary debates. Copyright 2003 Wiley Periodicals, Inc. J Clin Psychol.
2012-02-03
materials such as strained layer superlattice and HgCdTe . ___ ;,·~--·- 15. SUBJECT TERMS infrared , IR, detector , unipolar barrier, nBn 16. SECURITY...current and noise in infrared detectors . Unipolar barriers can be made in either of two types: hole-blocking or electron-blocking barriers. Our work has...SUPPLEMENTARY NOTES ---- - - .. 14. ABSTRACT A new type of infrared detector is designed and experimentally demonstrated, which uses "unipolar barriers
Control of the recombination time in photoconductive detectors
NASA Astrophysics Data System (ADS)
Pacheco, M. T. T.; Ghizoni, C. C.; Scolari, S. L.
1980-07-01
The current generated at a photoconductive cell depends upon the density of states of the electromagnetic field in the semiconductor film. This density of states is a function of the film geometry and dielectric properties. In this work we demonstrate that, for highly scattering substrate surfaces, which implies in a low density of states, the signal to noise ratio is better than that for smooth surfaces.
Launch Vehicle Demonstrator Using Shuttle Assets
NASA Technical Reports Server (NTRS)
Threet, Grady E., Jr.; Creech, Dennis M.; Philips, Alan D.; Water, Eric D.
2011-01-01
The Marshall Space Flight Center Advanced Concepts Office (ACO) has the leading role for NASA s preliminary conceptual launch vehicle design and performance analysis. Over the past several years the ACO Earth-to-Orbit Team has evaluated thousands of launch vehicle concept variations for a multitude of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). NASA plans to continue human space exploration and space station utilization. Launch vehicles used for heavy lift cargo and crew will be needed. One of the current leading concepts for future heavy lift capability is an inline one and a half stage concept using solid rocket boosters (SRB) and based on current Shuttle technology and elements. Potentially, the quickest and most cost-effective path towards an operational vehicle of this configuration is to make use of a demonstrator vehicle fabricated from existing shuttle assets and relying upon the existing STS launch infrastructure. Such a demonstrator would yield valuable proof-of-concept data and would provide a working test platform allowing for validated systems integration. Using shuttle hardware such as existing RS-25D engines and partial MPS, propellant tanks derived from the External Tank (ET) design and tooling, and four-segment SRB s could reduce the associated upfront development costs and schedule when compared to a concept that would rely on new propulsion technology and engine designs. There are potentially several other additional benefits to this demonstrator concept. Since a concept of this type would be based on man-rated flight proven hardware components, this demonstrator has the potential to evolve into the first iteration of heavy lift crew or cargo and serve as a baseline for block upgrades. This vehicle could also serve as a demonstration and test platform for the Orion Program. Critical spacecraft systems, re-entry and recovery systems, and launch abort systems of Orion could also be demonstrated in early test flights of the launch vehicle demo. Furthermore, an early demonstrator of this type would provide a stop-gap for retaining critical human capital and infrastructure while affording the current emerging generation of young engineers opportunity to work with and capture lessons learned from existing STS program offices and personnel, who were integral in the design and development of the Space Shuttle before these resources are no longer available. The objective of this study is to define candidate launch vehicle demonstration concepts that are based on Space Shuttle assets and determine their performance capabilities and how these demonstration vehicles could evolve to a heavy lift capability to low earth orbit.
Psychosis, agnosia, and confabulation: an alternative two-factor account.
Turner, Mark A
2014-01-01
Theories of delusions which rely on a combination of abnormal experience and defective belief evaluation and/ or cognitive bias are the subject of an emerging consensus. This paper challenges the validity of these theories and constructs a two factor alternative. The paper starts by identifying the difficulty the current theories have explaining the complex delusions of schizophrenia and then, by considering, first, the aetiology of somatopsychotic symptoms, and second, the literature on the relationship between confabulation and allopsychotic symptoms, demonstrates that the natural solution is to retain the experiential factor whilst replacing the second factor with confabulation. The paper is then able to demonstrate that the resultant two-factory theory can clarify recent work on the aetiological role of autonoetic agnosia and on the relationships between confabulation, delusion, and thought disorder. The theory supersedes currently available theories in terms of its simplicity, fruitfulness, scope and conservatism and represents an advance in the search for unified theory of psychosis.
Increased fracture depth range in controlled spalling of (100)-oriented germanium via electroplating
Crouse, Dustin; Simon, John; Schulte, Kevin L.; ...
2018-01-31
Controlled spalling in (100)-oriented germanium using a nickel stressor layer shows promise for semiconductor device exfoliation and kerfless wafering. Demonstrated spall depths of 7-60 um using DC sputtering to deposit the stressor layer are appropriate for the latter application but spall depths < 5 um may be required to minimize waste for device applications. This work investigates the effect of tuning both electroplating current density and electrolyte chemistry on the residual stress in the nickel and on the achievable spall depth range for the Ni/Ge system as a lower-cost, higher-throughput alternative to sputtering. By tuning current density and electrolyte phosphorousmore » concentration, it is shown that electroplating can successfully span the same range of spalled thicknesses as has previously been demonstrated by sputtering and can reach sufficiently high stresses to enter a regime of thickness (<7 um) appropriate to minimize substrate consumption for device applications.« less
Mariappan, Leo; He, Bin
2013-01-01
Magneto acoustic tomography with magnetic induction (MAT-MI) is a technique proposed to reconstruct the conductivity distribution in biological tissue at ultrasound imaging resolution. A magnetic pulse is used to generate eddy currents in the object, which in the presence of a static magnetic field induces Lorentz force based acoustic waves in the medium. This time resolved acoustic waves are collected with ultrasound transducers and, in the present work, these are used to reconstruct the current source which gives rise to the MAT-MI acoustic signal using vector imaging point spread functions. The reconstructed source is then used to estimate the conductivity distribution of the object. Computer simulations and phantom experiments are performed to demonstrate conductivity reconstruction through vector source imaging in a circular scanning geometry with a limited bandwidth finite size piston transducer. The results demonstrate that the MAT-MI approach is capable of conductivity reconstruction in a physical setting. PMID:23322761
Design of an ammonia two-phase Prototype Thermal Bus for Space Station
NASA Technical Reports Server (NTRS)
Brown, Richard F.; Gustafson, Eric; Parish, Richard
1987-01-01
The feasibility of two-phase heat transport systems for use on Space Station was demonstrated by testing the Thermal Bus Technology Demonstrator (TBTD) as part of the Integrated Two-Phase System Test in NASA-JSC's Thermal Test Bed. Under contract to NASA-JSC, Grumman is currently developing the successor to the TBTD, the Prototype Thermal Bus System (TBS). The TBS design, which uses ammonia as the working fluid, is intended to achieve a higher fidelity level than the TBTD by incorporating both improvements based on TBTD testing and realistic design margins, and by addressing Space Station issues such as redundancy and maintenance. The TBS is currently being fabricated, with testing scheduled for late 1987/early 1988. This paper describes the TBS design which features fully redundant plumbing loops, five evaporators designed to represent different heat acquisition interfaces, 14 condensers which mate with either space radiators or facility heat exchangers, and several modular components.
Increased fracture depth range in controlled spalling of (100)-oriented germanium via electroplating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crouse, Dustin; Simon, John; Schulte, Kevin L.
Controlled spalling in (100)-oriented germanium using a nickel stressor layer shows promise for semiconductor device exfoliation and kerfless wafering. Demonstrated spall depths of 7-60 um using DC sputtering to deposit the stressor layer are appropriate for the latter application but spall depths < 5 um may be required to minimize waste for device applications. This work investigates the effect of tuning both electroplating current density and electrolyte chemistry on the residual stress in the nickel and on the achievable spall depth range for the Ni/Ge system as a lower-cost, higher-throughput alternative to sputtering. By tuning current density and electrolyte phosphorousmore » concentration, it is shown that electroplating can successfully span the same range of spalled thicknesses as has previously been demonstrated by sputtering and can reach sufficiently high stresses to enter a regime of thickness (<7 um) appropriate to minimize substrate consumption for device applications.« less
Thuault, Sébastien J.; Malleret, Gaël; Constantinople, Christine M.; Nicholls, Russell; Chen, Irene; Zhu, Judy; Panteleyev, Andrey; Vronskaya, Svetlana; Nolan, Matthew F.; Bruno, Randy
2013-01-01
In many cortical neurons, HCN1 channels are the major contributors to Ih, the hyperpolarization-activated current, which regulates the intrinsic properties of neurons and shapes their integration of synaptic inputs, paces rhythmic activity, and regulates synaptic plasticity. Here, we examine the physiological role of Ih in deep layer pyramidal neurons in mouse prefrontal cortex (PFC), focusing on persistent activity, a form of sustained firing thought to be important for the behavioral function of the PFC during working memory tasks. We find that HCN1 contributes to the intrinsic persistent firing that is induced by a brief depolarizing current stimulus in the presence of muscarinic agonists. Deletion of HCN1 or acute pharmacological blockade of Ih decreases the fraction of neurons capable of generating persistent firing. The reduction in persistent firing is caused by the membrane hyperpolarization that results from the deletion of HCN1 or Ih blockade, rather than a specific role of the hyperpolarization-activated current in generating persistent activity. In vivo recordings show that deletion of HCN1 has no effect on up states, periods of enhanced synaptic network activity. Parallel behavioral studies demonstrate that HCN1 contributes to the PFC-dependent resolution of proactive interference during working memory. These results thus provide genetic evidence demonstrating the importance of HCN1 to intrinsic persistent firing and the behavioral output of the PFC. The causal role of intrinsic persistent firing in PFC-mediated behavior remains an open question. PMID:23966682
Current Modulation of a Heterojunction Structure by an Ultra-Thin Graphene Base Electrode.
Alvarado Chavarin, Carlos; Strobel, Carsten; Kitzmann, Julia; Di Bartolomeo, Antonio; Lukosius, Mindaugas; Albert, Matthias; Bartha, Johann Wolfgang; Wenger, Christian
2018-02-27
Graphene has been proposed as the current controlling element of vertical transport in heterojunction transistors, as it could potentially achieve high operation frequencies due to its metallic character and 2D nature. Simulations of graphene acting as a thermionic barrier between the transport of two semiconductor layers have shown cut-off frequencies larger than 1 THz. Furthermore, the use of n-doped amorphous silicon, (n)-a-Si:H, as the semiconductor for this approach could enable flexible electronics with high cutoff frequencies. In this work, we fabricated a vertical structure on a rigid substrate where graphene is embedded between two differently doped (n)-a-Si:H layers deposited by very high frequency (140 MHz) plasma-enhanced chemical vapor deposition. The operation of this heterojunction structure is investigated by the two diode-like interfaces by means of temperature dependent current-voltage characterization, followed by the electrical characterization in a three-terminal configuration. We demonstrate that the vertical current between the (n)-a-Si:H layers is successfully controlled by the ultra-thin graphene base voltage. While current saturation is yet to be achieved, a transconductance of ~230 μ S was obtained, demonstrating a moderate modulation of the collector-emitter current by the ultra-thin graphene base voltage. These results show promising progress towards the application of graphene base heterojunction transistors.
Adult social roles and alcohol use among American Indians.
Greene, Kaylin M; Eitle, Tamela McNulty; Eitle, David
2014-09-01
American Indians are disproportionately burdened by alcohol-related problems. Yet, research exploring predictors of alcohol use among American Indians has been limited by cross-sectional designs and reservation-based samples. Guided by a life course developmental perspective, the current study used a subsample of American Indians (n=927) from the National Longitudinal Study of Adolescent Health (Add Health) to explore alcohol use (current drinking, usual number of drinks, and binge drinking) among this population. We examined whether adult social roles (i.e., cohabitation, marriage, parenthood, college enrollment, and full-time work) were linked to the rise and fall of alcohol use. Multi-level models demonstrated that adult social roles were linked to alcohol use at the within- and between-person levels. Becoming a parent was linked to a lower likelihood of being a current drinker, fewer alcoholic drinks, and less frequent binge drinking. Transitioning to full-time work was associated with a higher likelihood of being a current drinker and more frequent binge drinking. Results point to the importance of exploring within-group trajectories of alcohol use and highlight the protective and risky nature of adult social roles among American Indians. Copyright © 2014 Elsevier Ltd. All rights reserved.
Creation of current filaments in the solar corona
NASA Technical Reports Server (NTRS)
Mikic, Z.; Schnack, D. D.; Van Hoven, G.
1989-01-01
It has been suggested that the solar corona is heated by the dissipation of electric currents. The low value of the resistivity requires the magnetic field to have structure at very small length scales if this mechanism is to work. In this paper it is demonstrated that the coronal magnetic field acquires small-scale structure through the braiding produced by smooth, randomly phased, photospheric flows. The current density develops a filamentary structure and grows exponentially in time. Nonlinear processes in the ideal magnetohydrodynamic equations produce a cascade effect, in which the structure introduced by the flow at large length scales is transferred to smaller scales. If this process continues down to the resistive dissipation length scale, it would provide an effective mechanism for coronal heating.
Study of problem of waste chemical current sources in Russia and in European countries
NASA Astrophysics Data System (ADS)
Zilenina, V. G.; Ulanova, O. V.; Dornack, C.
2017-10-01
This article gives a comparative analysis of handling waste chemical current sources in Russia and in the European countries, presents the effective international documents (Directives, acts) and national legislative acts (state standards, building codes, governmental decrees, etc.), demonstrates the mechanisms for disposal and recycling of waste in the European Union countries. Along with the data of the research works, conducted in other countries during many yearsб it presents the experimental data on leaching out heavy metals from chemical current sources by municipal solid waste landfill filtrate, depending on the morphological composition of domestic waste in the city of Irkutsk. An important point described in the article, is assessment and prediction of negative impact produced on the environment.
Broughton, David P; Waker, Anthony J
2017-05-01
Neutron dosimetry in reactor fields is currently mainly conducted with unwieldy flux monitors. Tissue Equivalent Proportional Counters (TEPCs) have been shown to have the potential to improve the accuracy of neutron dosimetry in these fields, and Multi-Element Tissue Equivalent Proportional Counters (METEPCs) could reduce the size of instrumentation required to do so. Complexity of current METEPC designs has inhibited their use beyond research. This work proposes a novel hemispherical counter with a wireless anode ball in place of the traditional anode wire as a possible solution for simplifying manufacturing. The hemispherical METEPC element was analyzed as a single TEPC to first demonstrate the potential of this new design by evaluating its performance relative to the reference spherical TEPC design and a single element from a cylindrical METEPC. Energy deposition simulations were conducted using the Monte Carlo code PHITS for both monoenergetic 2.5 MeV neutrons and the neutron energy spectrum of Cf-D2O moderated. In these neutron fields, the hemispherical counter appears to be a good alternative to the reference spherical geometry, performing slightly better than the cylindrical counter, which tends to underrespond to H*(10) for the lower neutron energies of the Cf-D2O moderated field. These computational results are promising, and if follow-up experimental work demonstrates the hemispherical counter works as anticipated, it will be ready to be incorporated into an METEPC design.
High sensitivity pH sensing on the BEOL of industrial FDSOI transistors
NASA Astrophysics Data System (ADS)
Rahhal, Lama; Ayele, Getenet Tesega; Monfray, Stéphane; Cloarec, Jean-Pierre; Fornacciari, Benjamin; Pardoux, Eric; Chevalier, Celine; Ecoffey, Serge; Drouin, Dominique; Morin, Pierre; Garnier, Philippe; Boeuf, Frederic; Souifi, Abdelkader
2017-08-01
In this work we demonstrate the use of Fully Depleted Silicon On Insulator (FDSOI) transistors as pH sensors with a 23 nm silicon nitride sensing layer built in the Back-End-Of-Line (BEOL). The back end process to deposit the sensing layer and fabricate the electrical structures needed for testing is detailed. A series of tests employing different pH buffer solutions has been performed on transistors of different geometries, controlled via the back gate. The main findings show a shift of the drain current (ID) as a function of the back gate voltage (VB) when different pH buffer solutions are probed in the range of pH 6 to pH 8. This shift is observed at VB voltages swept from 0 V to 3 V, demonstrating the sensor operation at low voltage. A high sensitivity of up to 250 mV/pH unit (more than 4-fold larger than Nernstian response) is observed on FDSOI MOS transistors of 0.06 μm gate length and 0.08 μm gate width. She is currently working as a Postdoctoral researcher at Institut des nanotechnologies de Lyon in collaboration with STMicroelectronics and Université de Sherbrook (Canada) working on ;Integration of ultra-low-power gas and pH sensors with advanced technologies;. Her research interest includes selection, machining, optimisation and electrical characterisation of the sensitive layer for a low power consumption gas sensor based on advanced MOS transistors.
New Insights into the Instability of Discharge Products in Na-O2 Batteries.
Landa-Medrano, Imanol; Pinedo, Ricardo; Bi, Xuanxuan; Ruiz de Larramendi, Idoia; Lezama, Luis; Janek, Jürgen; Amine, Khalil; Lu, Jun; Rojo, Teófilo
2016-08-10
Sodium-oxygen batteries currently stimulate extensive research due to their high theoretical energy density and improved operational stability when compared to lithium-oxygen batteries. Cell stability, however, needs to be demonstrated also under resting conditions before future implementation of these batteries. In this work we analyze the effect of resting periods on the stability of the sodium superoxide (NaO2) discharge product. The instability of NaO2 in the cell environment is demonstrated leading to the evolution of oxygen during the resting period and the decrease of the cell efficiency. In addition, migration of the superoxide anion (O2(-)) in the electrolyte is observed and demonstrated to be an important factor affecting Coulombic efficiency.
New Insights into the Instability of Discharge Products in Na–O 2 Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landa-Medrano, Imanol; Pinedo, Ricardo; Bi, Xuanxuan
2016-08-10
Sodium–oxygen batteries currently stimulate extensive research due to their high theoretical energy density and improved operational stability when compared to lithium–oxygen batteries. Cell stability, however, needs to be demonstrated also under resting conditions before future implementation of these batteries. In this work we analyze the effect of resting periods on the stability of the sodium superoxide (NaO 2) discharge product. The instability of NaO 2 in the cell environment is demonstrated leading to the evolution of oxygen during the resting period and the decrease of the cell efficiency. In addition, migration of the superoxide anion (O2–) in the electrolyte ismore » observed and demonstrated to be an important factor affecting Coulombic efficiency.« less
Ally, Brandon A.
2012-01-01
Difficulty recognizing previously encountered stimuli is one of the earliest signs of incipient Alzheimer’s disease (AD). Work over the last 10 years has focused on how patients with AD and those in the prodromal stage of amnestic mild cognitive impairment (aMCI) make recognition decisions for visual and verbal stimuli. Interestingly, both groups of patients demonstrate markedly better memory for pictures over words, to a degree that is significantly greater in magnitude than their healthy older counterparts. Understanding this phenomenon not only helps to conceptualize how memory breaks down in AD, but also potentially provides the basis for future interventions. The current review will critically examine recent recognition memory work using pictures and words in the context of the dual-process theory of recognition and current hypotheses of cognitive breakdown in the course of very early AD. PMID:22927024
Islamophobia pre- and post-September 11th, 2001.
Sheridan, Lorraine P
2006-03-01
Although much academic research has addressed racism, religious discrimination has been largely ignored. The current study investigates levels of self-reported racial and religious discrimination in a sample of 222 British Muslims. Respondents indicate that following September 11th, 2001, levels of implicit or indirect discrimination rose by 82.6% and experiences of overt discrimination by 76.3%. Thus, the current work demonstrates that major world events may affect not only stereotypes of minority groups but also prejudice toward minorities. Results suggest that religious affiliation may be a more meaningful predictor of prejudice than race or ethnicity. General Health Questionnaire scores indicate that 35.6% of participants likely suffered mental health problems, with significant associations between problem-indicative scores and reports of experiencing a specific abusive incident of September 11th-related abuse by respondents. The dearth of empirical work pertaining to religious discrimination and its effects is a cause for concern.
Current Lewis Turbomachinery Research: Building on our Legacy of Excellence
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.
1997-01-01
This Wu Chang-Hua lecture is concerned with the development of analysis and computational capability for turbomachinery flows which is based on detailed flow field physics. A brief review of the work of Professor Wu is presented as well as a summary of the current NASA aeropropulsion programs. Two major areas of research are described in order to determine our predictive capabilities using modern day computational tools evolved from the work of Professor Wu. In one of these areas, namely transonic rotor flow, it is demonstrated that a high level of accuracy is obtainable provided sufficient geometric detail is simulated. In the second case, namely turbine heat transfer, our capability is lacking for rotating blade rows and experimental correlations will provide needed information in the near term. It is believed that continuing progress will allow us to realize the full computational potential and its impact on design time and cost.
Probing local work function of electron emitting Si-nanofacets
NASA Astrophysics Data System (ADS)
Basu, Tanmoy; Som, Tapobrata
2017-10-01
Large area, Si-nanofacets are synthesized by obliquely incident low energy Ar+-ion-beam bombardment at room temperature (RT). The field emission properties of such nanofacets are studied based on current-voltage measurements and the Fowler-Nordheim equation. Low turn-on field with relatively high current density is obtained due to the shape and an overall rough morphology. We demonstrate a tunable field emission property from the silicon nanofacets by varying the ion exposure time. Atomic force microscopy (AFM) in conjunction with Kelvin probe force microscopy (KPFM) measurements provide the information on the aspect ratio and confirms the presence of native oxide layer near the apexes of the facets, respectively. The inhomogeneous oxidation leads to an increase in the local work function at the apexes of the facets, restricting the electron emission from the same. Due to its room temperature fabrication, the present method is of great significance to the low-cost vacuum field emission devices fabrication.
Rollins, Angela L.
2015-01-01
The current study seeks to understand the concept of recovery from the perspectives of consumers and staff living and working in a supportive housing model designed to serve those with co-occurring disorder. Interview and focus group data were collected from consumers and staff from four housing programs. Data analyzed using an approach that combined case study and grounded theory methodologies demonstrate that: consumers’ and staff members’ views of recovery were highly compatible and resistant to abstinence-based definitions of recovery; recovery is personal; stability is a foundation for recovery; recovery is a process; and the recovery process is not linear. These themes are more consistent with mental health-focused conceptions of recovery than those traditionally used within the substance abuse field, and they help demonstrate how recovery can be influenced by the organization of services in which consumers are embedded. PMID:26388709
Friedman, Sam; O’Brien, Dave; Laurison, Daniel
2016-01-01
There is currently widespread concern that access to, and success within, the British acting profession is increasingly dominated by those from privileged class origins. This article seeks to empirically interrogate this claim using data on actors from the Great British Class Survey (N = 404) and 47 qualitative interviews. First, survey data demonstrate that actors from working-class origins are significantly underrepresented within the profession. Second, they indicate that even when those from working-class origins do enter the profession they do not have access to the same economic, cultural and social capital as those from privileged backgrounds. Third, and most significantly, qualitative interviews reveal how these capitals shape the way actors can respond to shared occupational challenges. In particular we demonstrate the profound occupational advantages afforded to actors who can draw upon familial economic resources, legitimate embodied markers of class origin (such as Received Pronunciation) and a favourable typecasting. PMID:28989198
Depression Care Management: Can Employers Purchase Improved Outcomes?
Rost, Kathryn; Marshall, Donna; Shearer, Benjamin; Dietrich, Allen J.
2011-01-01
Fourteen vendors are currently selling depression care management products to US employers after randomized trials demonstrate improved work outcomes. The research team interviewed 10 (71.4%) of these vendors to compare their products to four key components of interventions demonstrated to improve work outcomes. Five of 10 depression products incorporate all four key components, three of which are sold by health maintenance organizations (HMOs); however, HMOs did not deliver these components at the recommended intensity and/or duration. Only one product delivered by a disease management company delivered all four components of care at the recommended intensity and duration. This “voltage drop,” which we anticipate will increase with product implementation, suggests that every delivery system should carefully evaluate the design of its depression product before implementation for its capacity to deliver evidence-based care, repeating these evaluations as new evidence emerges. PMID:21738872
Heating and current drive requirements towards steady state operation in ITER
NASA Astrophysics Data System (ADS)
Poli, Francesca; Kessel, Charles; Bonoli, Paul; Batchelor, Donald; Harvey, Bob
2013-10-01
Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) to reach adequate fusion gain at typical currents of 9 MA. Scenarios are established as relaxed flattop states with time-dependent transport simulations with TSC. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of external sources that maintain weakly reversed shear profiles and ρ (qmin >= 0 . 5 are the focus of this work. Simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of ITBs could be demonstrated with the baseline configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current (6.2MA) are below the target. Upgrades of the heating and current drive system, like the use of Lower Hybrid current drive, could overcome these limitations. With 30MW of coupled LH in the flattop and operating at the Greenwald density, plasmas can sustain ~ 9 MA and achieve Q ~ 4 . Work supported by the US Department of Energy under DE-AC02-CH0911466.
Verwilst, Peter; Kim, Hye-Ri; Seo, Jinho; Sohn, Nak-Won; Cha, Seung-Yun; Kim, Yeongmin; Maeng, Sungho; Shin, Jung-Won; Kwak, Jong Hwan; Kang, Chulhun; Kim, Jong Seung
2017-09-27
The elucidation of the cause of Alzheimer's disease remains one of the greatest questions in neurodegenerative research. The lack of highly reliable low-cost sensors to study the structural changes in key proteins during the progression of the disease is a contributing factor to this lack of insight. In the current work, we describe the rational design and synthesis of two fluorescent BODIPY-based probes, named Tau 1 and Tau 2. The probes were evaluated on the molecular surface formed by a fibril of the PHF6 ( 306 VQIVYK 311 ) tau fragment using molecular docking studies to provide a potential molecular model to rationalize the selectivity of the new probes as compared to a homologous Aβ-selective probe. The probes were synthesized in a few steps from commercially available starting products and could thus prove to be highly cost-effective. We demonstrated the excellent photophysical properties of the dyes, such as a large Stokes shift and emission in the near-infrared window of the electromagnetic spectrum. The probes demonstrated a high selectivity for self-assembled microtubule-associated protein tau (Tau protein), in both solution and cell-based experiments. Moreover, the administration to an acute murine model of tauopathy clearly revealed the staining of self-assembled hyperphosphorylated tau protein in pathologically relevant hippocampal brain regions. Tau 1 demonstrated efficient blood-brain barrier penetrability and demonstrated a clear selectivity for tau tangles over Aβ plaques, as well as the capacity for in vivo imaging in a transgenic mouse model. The current work could open up avenues for the cost-effective monitoring of the tau protein aggregation state in animal models as well as tissue staining. Furthermore, these fluorophores could serve as the basis for the development of clinically relevant sensors, for example based on PET imaging.
Work problems due to low back pain: what do GPs do? A questionnaire survey.
Coole, Carol; Watson, Paul J; Drummond, Avril
2010-02-01
Low back pain can affect work ability and remains a main cause of sickness absence. In the UK the GP is usually the first contact for patients seeking health care. The UK government intends that the GP will continue to be responsible for sickness certification and work advice. This role requires a considerable level of understanding of work rehabilitation, and effective communication between GPs, patients, employers and therapists. The aim of this study was to identify GPs' current practice in managing patients whose ability to work is affected by low back pain, and their perception of the support services required. A postal questionnaire of 441 GPs in the South Nottinghamshire area of the UK was carried out. Areas covered included referral patterns, sickness certification, and communication with therapists and employers. There was a 54.6% response rate. The majority of GPs (76.8%) reported that they did not take overall responsibility for managing the work problems of patients arising from low back pain. Few 'mainly agreed' that they initiated communication with employers (2.5%) and/or therapists (10.4%) regarding their patients' work. The results of this study demonstrate that most GPs do not readily engage in vocational rehabilitation and do not initiate contact with employers or other health care practitioners regarding patients' work problems. Thus the current government expectation that GPs are able to successfully manage this role may be unrealistic; considerable training and a change in the GPs' perception of their role will be required.
Zhao, Jun Hui; Thomson, Douglas J; Pilapil, Matt; Pillai, Rajesh G; Rahman, G M Aminur; Freund, Michael S
2010-04-02
Dynamic resistive memory devices based on a conjugated polymer composite (PPy(0)DBS(-)Li(+) (PPy: polypyrrole; DBS(-): dodecylbenzenesulfonate)), with field-driven ion migration, have been demonstrated. In this work the dynamics of these systems has been investigated and it has been concluded that increasing the applied field can dramatically increase the rate at which information can be 'written' into these devices. A conductance model using space charge limited current coupled with an electric field induced ion reconfiguration has been successfully utilized to interpret the experimentally observed transient conducting behaviors. The memory devices use the rising and falling transient current states for the storage of digital states. The magnitude of these transient currents is controlled by the magnitude and width of the write/read pulse. For the 500 nm length devices used in this work an increase in 'write' potential from 2.5 to 5.5 V decreased the time required to create a transient conductance state that can be converted into the digital signal by 50 times. This work suggests that the scaling of these devices will be favorable and that 'write' times for the conjugated polymer composite memory devices will decrease rapidly as ion driving fields increase with decreasing device size.
Apostoli, P; Sala, Emma
2009-01-01
in some sequences of the film "Modern Times" Chaplin is clearly involved in activities at high risk for work-related musculo-skeletal disorders of the upper extremities (UEWMSDs), but evidence and perception of any complaint are not evident. To evaluate the extent of the biomechanical risk using current risk assessment methods and discuss the possible reasons for lack of complaints. we made an analysis using six of the current methods for ergonomic risk assessment (State of Washington, check list OCRA, HAL by ACGIH, RULA Strain Index, OREGE). All the methods applied demonstrated high-to-very high levels of biomechanical risk for the upper extremities, with evident psychic effects but without apparent musculo-skeletal disorders. The discrepancy between evident psychological disorders ad apparent absence of UEWMSDs are discussed as being due to either: an artistic choice by Charlie Chaplin who focused on the aspects thought to be more immediately and easily comic; the short duration of the physical load exertion; or because of a different perception of muscular work and fatigue that was also typical until the 1970's and 1980's, which also confirmed the principles and practices of our preventive and medical disciplines at that time.
Low-energy ion irradiation in HiPIMS to enable anatase TiO2 selective growth
NASA Astrophysics Data System (ADS)
Cemin, Felipe; Tsukamoto, Makoto; Keraudy, Julien; Antunes, Vinícius Gabriel; Helmersson, Ulf; Alvarez, Fernando; Minea, Tiberiu; Lundin, Daniel
2018-06-01
High power impulse magnetron sputtering (HiPIMS) has already demonstrated great potential for synthesizing the high-energy crystalline phase of titanium dioxide (rutile TiO2) due to large quantities of highly energetic ions present in the discharge. In this work, it is shown that the metastable anatase phase can also be obtained by HiPIMS. The required deposition conditions have been identified by systematically studying the phase formation, microstructure and chemical composition as a function of mode of target operation as well as of substrate temperature, working pressure, and peak current density. It is found that films deposited in the metal and transition modes are predominantly amorphous and contain substoichiometric TiO x compounds, while in compound mode they are well-crystallized and present only O2‑ ions bound to Ti4+, i.e. pure TiO2. Anatase TiO2 films are obtained for working pressures between 1 and 2 Pa, a peak current density of ~1 A cm‑2 and deposition temperatures lower than 300 °C. Rutile is favored at lower pressures (<1 Pa) and higher peak current densities (>2 A cm‑2), while amorphous films are obtained at higher pressures (5 Pa). Microstructural characterization of selected films is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demkin, V. P.; Melnichuk, S. V.; Demkin, O. V.
The optical and electrophysical characteristics of the nonequilibrium low-temperature plasma formed by a low-current nonsteady-state plasmatron are experimentally investigated in the present work. It is demonstrated that experimental data on the optical diagnostics of the plasma jet can provide a basis for the construction of a self-consistent physical and mathematical plasma model and for the creation of plasma sources with controllable electrophysical parameters intended for the generation of the required concentration of active particles. Results of spectroscopic diagnostics of plasma of the low-current nonsteady-state plasmatron confirm that the given source is efficient for the generation of charged particles and short-wavelengthmore » radiation—important plasma components for biomedical problems of an increase in the efficiency of treatment of biological tissues by charged particles. Measurement of the spatial distribution of the plasma jet potential by the probe method has demonstrated that a negative space charge is formed in the plasma jet possibly due to the formation of electronegative oxygen ions.« less
Current-controlled curvature of coated micromirrors
NASA Astrophysics Data System (ADS)
Liu, Wei; Talghader, Joseph J.
2003-06-01
Precise control of micromirror curvature is critical in many optical microsystems. Micromirrors with current-controlled curvature are demonstrated. The working principle is that resistive heating changes the temperature of the micromirrors and thermal expansion induces a controlled curvature whose magnitude is determined by coating design. For example, for wide focal-length tuning, the radius of curvature of a gold-coated mirror was tuned from 2.5 to 8.2 mm over a current-induced temperature range from 22° to 72 °C. For fine focal-length tuning, the radius of curvature of a dielectric-coated (SiO2/Y2O3 λ/4 pairs) mirror was tuned from -0.68 to -0.64 mm over a current-induced temperature range from 22 to 84 °C. These results should be readily extendable to mirror flattening or real-time adaptive shape control.
New Kids on the Block: RNA-Based Influenza Virus Vaccines.
Scorza, Francesco Berlanda; Pardi, Norbert
2018-04-01
RNA-based immunization strategies have emerged as promising alternatives to conventional vaccine approaches. A substantial body of published work demonstrates that RNA vaccines can elicit potent, protective immune responses against various pathogens. Consonant with its huge impact on public health, influenza virus is one of the best studied targets of RNA vaccine research. Currently licensed influenza vaccines show variable levels of protection against seasonal influenza virus strains but are inadequate against drifted and pandemic viruses. In recent years, several types of RNA vaccines demonstrated efficacy against influenza virus infections in preclinical models. Additionally, comparative studies demonstrated the superiority of some RNA vaccines over the currently used inactivated influenza virus vaccines in animal models. Based on these promising preclinical results, clinical trials have been initiated and should provide valuable information about the translatability of the impressive preclinical data to humans. This review briefly describes RNA-based vaccination strategies, summarizes published preclinical and clinical data, highlights the roadblocks that need to be overcome for clinical applications, discusses the landscape of industrial development, and shares the authors' personal perspectives about the future of RNA-based influenza virus vaccines.
MacLeod, Sheona
2009-07-01
As the requirements for the revalidation of general practitioners (GPs) unfold, there is an increasing emphasis on demonstrating effective continued medical education (CME) based on identified learning needs. This qualitative study aimed to promote understanding of how GPs currently approach their learning. The behaviour of one group of GPs was studied to explore how they assessed and met individual learning needs. The GPs studied showed a pragmatic approach, valuing learning that gave them practical advice and instant access to information for patient-specific problems. The main driver for the GPs' learning was discomfort during their daily work if a possible lack of knowledge or skills was perceived. However, some learning benchmarked current good practice or ensured continued expertise. Learning purely for interest was also described. The GPs in this study all demonstrated a commitment to personal learning, although they were not yet thinking about demonstrating the effectiveness of this for revalidation. The GPs prioritised their learning needs and were beginning to use some objective assessment methods to do this and the GP appraisal process was found to have a mainly positive effect on learning.
The Role of Empirical Research in Bioethics
Kon, Alexander A.
2010-01-01
There has long been tension between bioethicists whose work focuses on classical philosophical inquiry and those who perform empirical studies on bioethical issues. While many have argued that empirical research merely illuminates current practices and cannot inform normative ethics, others assert that research-based work has significant implications for refining our ethical norms. In this essay, I present a novel construct for classifying empirical research in bioethics into four hierarchical categories: Lay of the Land, Ideal Versus Reality, Improving Care, and Changing Ethical Norms. Through explaining these four categories and providing examples of publications in each stratum, I define how empirical research informs normative ethics. I conclude by demonstrating how philosophical inquiry and empirical research can work cooperatively to further normative ethics. PMID:19998120
The role of empirical research in bioethics.
Kon, Alexander A
2009-01-01
There has long been tension between bioethicists whose work focuses on classical philosophical inquiry and those who perform empirical studies on bioethical issues. While many have argued that empirical research merely illuminates current practices and cannot inform normative ethics, others assert that research-based work has significant implications for refining our ethical norms. In this essay, I present a novel construct for classifying empirical research in bioethics into four hierarchical categories: Lay of the Land, Ideal Versus Reality, Improving Care, and Changing Ethical Norms. Through explaining these four categories and providing examples of publications in each stratum, I define how empirical research informs normative ethics. I conclude by demonstrating how philosophical inquiry and empirical research can work cooperatively to further normative ethics.
NASA Astrophysics Data System (ADS)
Chan, Hoi Lam
This work systematically investigates two of the most promising synthesis methods for producing nanostructured (NS) materials: surface mechanical attrition treatment (SMAT) and the electrodeposition (ED) process, and obtains the proper conditions for fabricating NS materials in bulk form and studies the properties of these materials. SMAT is one of the recently developed processes to form nano-crystallized surface layer and refine grains in the subsurface layers, by actuating a number of spherical projectiles to impact the sample surface. In this work, the detailed measurement of ball impinging velocity is presented, and the resulted strain-rate and strains are theoretically modeled. Consequently the relation between plastic strain history and the observed microstructures is established. The SMAT process with different numbers of balls is explored to manifest that an optimum number of balls exists for the highest efficiency. ED process is widely used in producing NS materials these days. In this work, the relationships among non-metallic substrates, current type, current densities, microstructure and crystallographic textures, and mechanical properties is presented in order to demonstrate the influences of the deposition parameters in obtaining nano-grains and nano-twins microstructures. This work also examines the availability of obtaining bulk NS materials with desirable ductility in production-scale conditions through understanding these relationships. In the last part of the study, the effect of SMAT on the electrodeposits is studied. Tensile properties, microstructures and textures of the SMATed electrodeposits have been examined. The results demonstrate that the NS matrix obtained by the ED process with sufficient thickness retains desirable ductility after employing SMAT technology, and the SMAT process further enhances the strength of the electrodeposits.
On-board fault management for autonomous spacecraft
NASA Technical Reports Server (NTRS)
Fesq, Lorraine M.; Stephan, Amy; Doyle, Susan C.; Martin, Eric; Sellers, Suzanne
1991-01-01
The dynamic nature of the Cargo Transfer Vehicle's (CTV) mission and the high level of autonomy required mandate a complete fault management system capable of operating under uncertain conditions. Such a fault management system must take into account the current mission phase and the environment (including the target vehicle), as well as the CTV's state of health. This level of capability is beyond the scope of current on-board fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems that can meet the needs of spacecraft that have long-range autonomy requirements. We have implemented a model-based approach to fault detection and isolation that does not require explicit characterization of failures prior to launch. It is thus able to detect failures that were not considered in the failure and effects analysis. We have applied this technique to several different subsystems and tested our approach against both simulations and an electrical power system hardware testbed. We present findings from simulation and hardware tests which demonstrate the ability of our model-based system to detect and isolate failures, and describe our work in porting the Ada version of this system to a flight-qualified processor. We also discuss current research aimed at expanding our system to monitor the entire spacecraft.
Jankowiak, S; Backé, E; Liebers, F; Schulz, A; Hegewald, J; Garthus-Niegel, S; Nübling, M; Blankenberg, S; Pfeiffer, N; Lackner, K J; Beutel, M; Blettner, M; Münzel, T; Wild, P S; Seidler, A; Letzel, S; Latza, U
2016-11-01
The study examines the association between exposure to current and cumulative night shift work and subclinical parameters of atherosclerosis. Participants of a population-based cohort study (the Gutenberg Health Study, N = 15,010) aged 35-64 years were examined at baseline (2007-2012). Investigations included measurements of arterial stiffness, vascular function [reactive hyperaemia (RH) index], and intima media thickness (IMT). Also, a complete job history (including up to 15 periods), occupational exposures, a variety of lifestyle, and dispositional variables were enquired. Night shift work was performed by 1071 out of 8065 currently employed individuals. The strongest association after adjustment for age, sex, job complexity level, being a manager, overtime work, and noise appeared for more than 660 night shifts within the last 10 years and a significantly increased arterial stiffness of 0.33 m/s. This reflects a 4 % flow velocity increase for individuals with more than 660 night shifts compared to non-night workers. Regarding the entire professional life, night shift workers showed a significantly decreased vascular function by -0.054 RH index points by using the same adjustment. IMT values did not differ statistically from non-night workers. Lifestyle and dispositional factors showed an influence on all used subclinical atherosclerosis parameters. The cross-sectional results demonstrate an association between night work and detrimental changes in the atherosclerotic process. The association is more pronounced with more years in night shift and is partly explained by lifestyle and dispositional factors. Longitudinal analyses are necessary to confirm the results.
de Gregorio, Cesar; Estevez, Roberto; Cisneros, Rafael; Paranjpe, Avina; Cohenca, Nestor
2010-07-01
The removal of vital and necrotic pulp tissue, microorganisms, and their toxins is essential for endodontic success. However, the complex anatomy of the root canal system has limited our ability to debride it completely. Hence the purpose of this study was to evaluate the effect of currently used irrigation and activation systems on the penetration of sodium hypochlorite into simulated lateral canals and to working length in a closed system. One hundred single-rooted teeth were used in this study. A total of 600 simulated lateral canals were created, 6 in each tooth, with 2 lateral canals at 2, 4.5, and 6 mm of working length. To resemble the clinical situation, a closed system was created by coating each root with soft modeling wax. Roots were then randomly assigned to 4 experimental groups: group 1 (n = 20), Endoactivator (sonic activation); group 2 (n = 20), passive ultrasonic (PUI) activation; group 3 (n = 20), F file; group 4 (n = 20), apical negative pressure (ANP) irrigation; and control group 5 (n = 20), positive pressure irrigation. The samples were evaluated by direct observation of the images recorded under the dental operating microscope. The results demonstrated that the ANP irrigation group was superior at reaching working length, and PUI was the most effective at lateral canal penetration. The ANP irrigation system demonstrated limited activation of the irrigant into lateral canals but reached the working length significantly more than the other groups tested. In contrast, PUI group demonstrated significantly more penetration of irrigant into lateral canals but not up to the working length. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Estimated prevalence of exposure to occupational carcinogens in Australia (2011-2012).
Carey, Renee N; Driscoll, Timothy R; Peters, Susan; Glass, Deborah C; Reid, Alison; Benke, Geza; Fritschi, Lin
2014-01-01
Although past studies of workplace exposures have contributed greatly to our understanding of carcinogens, significant knowledge gaps still exist with regard to the actual extent of exposure among current workers, with no routinely collected population-based data being available in most countries. This study, the Australian Work Exposures Study (AWES), aimed to investigate the current prevalence of occupational exposure to carcinogens. A random sample of men and women aged between 18 and 65, who were currently in paid employment, were invited to participate in a telephone interview collecting information about their current job and various demographic factors. Interviews were conducted using a web-based application (OccIDEAS). OccIDEAS uses the expert exposure method in which participants are asked about their job tasks and predefined algorithms are used to automatically assign exposures. Responses were obtained from 5023 eligible Australian residents, resulting in an overall response rate of 53%. 1879 respondents (37.6%) were assessed as being exposed to at least one occupational carcinogen in their current job. Extrapolation of these figures to the Australian working population suggested 3.6 million (40.3%) current workers could be exposed to carcinogens in their workplace. Exposure prevalence was highest among farmers, drivers, miners and transport workers, as well as men and those residing in regional areas. This study demonstrates a practical, web-based approach to collecting population information on occupational exposure to carcinogens and documents the high prevalence of current exposure to occupational carcinogens in the general population.
EUV near normal incidence collector development at SAGEM
NASA Astrophysics Data System (ADS)
Mercier Ythier, R.; Bozec, X.; Geyl, R.; Rinchet, A.; Hecquet, Christophe; Ravet-Krill, Marie-Françoise; Delmotte, Franck; Sassolas, Benoît; Flaminio, Raffaele; Mackowski, Jean-Marie; Michel, Christophe; Montorio, Jean-Luc; Morgado, Nazario; Pinard, Laurent; Roméo, Elodie
2008-03-01
Through its participation to European programs, SAGEM has worked on the design and manufacturing of normal incidence collectors for EUV sources. By opposition to grazing incidence, normal incidence collectors are expected to collect more light with a simpler and cheaper design. Designs are presented for the two current types of existing sources: Discharge Produced Plasma (DPP) and Laser Produced Plasma (LPP). Collection efficiency is calculated in both cases. It is shown that these collectors can achieve about 10 % efficiency for DPP sources and 40 % for LPP sources. SAGEM works on the collectors manufacturability are also presented, including polishing, coating and cooling. The feasibility of polishing has been demonstrated with a roughness better than 2 angstroms obtained on several materials (glass, silicon, Silicon Carbide, metals...). SAGEM is currently working with the Institut d'Optique and the Laboratoire des Materiaux Avancés on the design and the process of EUV coatings for large mirrors. Lastly, SAGEM has studied the design and feasibility of an efficient thermal control, based on a liquid cooling through slim channels machined close to the optical surface.
The Flash-Preview Moving Window Paradigm: Unpacking Visual Expertise One Glimpse at a Time
ERIC Educational Resources Information Center
Litchfield, Damien; Donovan, Tim
2017-01-01
How we make sense of what we see and where best to look is shaped by our experience, our current task goals and how we first perceive our environment. An established way of demonstrating these factors work together is to study how eye movement patterns change as a function of expertise and to observe how experts can solve complex tasks after only…
Tube thoracostomy; chest tube implantation and follow up
Kuhajda, Ivan; Zarogoulidis, Konstantinos; Kougioumtzi, Ioanna; Huang, Haidong; Li, Qiang; Dryllis, Georgios; Kioumis, Ioannis; Pitsiou, Georgia; Machairiotis, Nikolaos; Katsikogiannis, Nikolaos; Papaiwannou, Antonis; Lampaki, Sofia; Papaiwannou, Antonis; Zaric, Bojan; Branislav, Perin; Porpodis, Konstantinos
2014-01-01
Pneumothorax is an urgent medical situation that requires urgent treatment. We can divide this entity based on the etiology to primary and secondary. Chest tube implantation can be performed either in the upper chest wall or lower. Both thoracic surgeons and pulmonary physicians can place a chest tube with minimal invasive techniques. In our current work, we will demonstrate chest tube implantation to locations, methodology and tools. PMID:25337405
Data handling for the modular observatory
NASA Technical Reports Server (NTRS)
Taber, J. E.
1975-01-01
The current paper summarizes work undertaken at TRW for the EOS satellite and related missions, and it presents conclusions that lead to a flexible and low-cost overall system implementation. It shows how the usual communication and data handling functions must be altered to meet the modularization ground rules, and it demonstrates the modularization that is possible in the handling of wideband payload data both on board and on the ground.
Sensitive Infrared Photodetectors: Optimized Electron Kinetics for Room-Temperature Operation
2010-12-20
QD levels; (iii) High photoconductive gain and responsivity; (iv) Low generation-recombination noise due to the long photoelectron lifetime. The...etc. [1-6]. For example, quantum-well infrared photodetectors ( QWIPs ) is currently a well-established technology, which is widely employed in...various imaging devices working at liquid nitrogen temperatures and below [7,8]. At 77K, modern QWIPs operating around λ = 10 μm demonstrate the
SCALE TSUNAMI Analysis of Critical Experiments for Validation of 233U Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Don; Rearden, Bradley T
2009-01-01
Oak Ridge National Laboratory (ORNL) staff used the SCALE TSUNAMI tools to provide a demonstration evaluation of critical experiments considered for use in validation of current and anticipated operations involving {sup 233}U at the Radiochemical Development Facility (RDF). This work was reported in ORNL/TM-2008/196 issued in January 2009. This paper presents the analysis of two representative safety analysis models provided by RDF staff.
NASA Technical Reports Server (NTRS)
Easton, John W.; Struk, Peter M.
2012-01-01
The Component Repair Experiment-1 (CRE-1) examines the capability for astronauts to perform electronics repair tasks in space. The goal is to determine the current capabilities and limits for the crew, and to make recommendations to improve and expand the range of work that astronauts may perform. CRE-1 provided two-layer, functional circuit boards and replacement components, a small tool kit, written and video training materials, and 1 hr of hands on training for the crew slated to perform the experiment approximately 7 months prior to the mission. Astronauts Michael Fincke and Sandra Magnus performed the work aboard the International Space Station (ISS) in February and March 2009. The astronauts were able to remove and replace components successfully, demonstrating the feasibility of performing component-level electronics repairs within a spacecraft. Several unsuccessful tasks demonstrated areas in need of improvement. These include improved and longer training prior to a mission, an improved soldering iron with a higher operating temperature and steady power source, video training and practice boards for refresher work or practice before a repair, and improved and varied hand tools and containment system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Khalik, Hany S.; Zhang, Qiong
2014-05-20
The development of hybrid Monte-Carlo-Deterministic (MC-DT) approaches, taking place over the past few decades, have primarily focused on shielding and detection applications where the analysis requires a small number of responses, i.e. at the detector locations(s). This work further develops a recently introduced global variance reduction approach, denoted by the SUBSPACE approach is designed to allow the use of MC simulation, currently limited to benchmarking calculations, for routine engineering calculations. By way of demonstration, the SUBSPACE approach is applied to assembly level calculations used to generate the few-group homogenized cross-sections. These models are typically expensive and need to be executedmore » in the order of 10 3 - 10 5 times to properly characterize the few-group cross-sections for downstream core-wide calculations. Applicability to k-eigenvalue core-wide models is also demonstrated in this work. Given the favorable results obtained in this work, we believe the applicability of the MC method for reactor analysis calculations could be realized in the near future.« less
Warping an atlas derived from serial histology to 5 high-resolution MRIs.
Tullo, Stephanie; Devenyi, Gabriel A; Patel, Raihaan; Park, Min Tae M; Collins, D Louis; Chakravarty, M Mallar
2018-06-19
Previous work from our group demonstrated the use of multiple input atlases to a modified multi-atlas framework (MAGeT-Brain) to improve subject-based segmentation accuracy. Currently, segmentation of the striatum, globus pallidus and thalamus are generated from a single high-resolution and -contrast MRI atlas derived from annotated serial histological sections. Here, we warp this atlas to five high-resolution MRI templates to create five de novo atlases. The overall goal of this work is to use these newly warped atlases as input to MAGeT-Brain in an effort to consolidate and improve the workflow presented in previous manuscripts from our group, allowing for simultaneous multi-structure segmentation. The work presented details the methodology used for the creation of the atlases using a technique previously proposed, where atlas labels are modified to mimic the intensity and contrast profile of MRI to facilitate atlas-to-template nonlinear transformation estimation. Dice's Kappa metric was used to demonstrate high quality registration and segmentation accuracy of the atlases. The final atlases are available at https://github.com/CobraLab/atlases/tree/master/5-atlas-subcortical.
Hayward, M D; Crimmins, E M; Wray, L A
1994-09-01
This study probes the utility of older men's labor force participation rates (LFPRs) as indicators of the work-to-retirement transition. Specific attention is directed at how shifts in the retirement life cycle are related to LFPRs. Based on Current Population Survey data for the 1970s, a life table modeling approach showed that LFPRs are relatively weak indicators of the work-to-retirement transition. This was demonstrated by the relative stability in older men's age profiles of LFPRs despite significant changes in the timing and "organization" of the work-to-retirement transition. The 1970s evidenced a contraction of the main career and the expansion of both post-retirement work activity and retirement, yet none of these changes substantially altered the age profiles of older men's labor force participation rates.
Junior doctors' working hours: perspectives on the reforms.
Wilkinson, Carol
2008-06-01
The European Working Time Directive for junior doctors came into force in Britain in August 2004. The reforms themselves have been a long time in development and implementation since the inception and debates regarding the New Deal, to the current formations under health and safety legislation. This study, undertaken within a hospital trust setting in England, provides an insight into the perspectives of doctors, nurses and human resources managers in relation to the European Working Time Directive. Critical consideration is given to the impact of the reforms upon the National Health Service and more specifically to daily working relationships at the point of implementation. The results demonstrate some ambivalence towards the reforms because of the major shift in culture for the professions per se, but also for the future of health-care delivery where there are considerable tensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, Timothy D.; Babauta, Jerome T.; Davenport, Emily K.
We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: (i) showing that serially increasing NaCl concentration up to 200mM increased current linearly up to a total of þ273% vs. 0mM NaCl under advective conditions; (ii) growing the biofilm with a starting concentration of 200mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and (iii) showing that un-colonized surface area remained even after steadystate current was reached. After accounting for iR effects, we confirmedmore » that the excess surface area existed despite a non-zero overpotential. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant.« less
NASA Astrophysics Data System (ADS)
Giacometti, José A.
2018-05-01
This work describes an enhanced corona triode with constant current adapted to characterize the electrical properties of thin dielectric films used in organic electronic devices. A metallic grid with a high ionic transparency is employed to charge thin films (100 s of nm thick) with a large enough charging current. The determination of the surface potential is based on the grid voltage measurement, but using a more sophisticated procedure than the previous corona triode. Controlling the charging current to zero, which is the open-circuit condition, the potential decay can be measured without using a vibrating grid. In addition, the electric capacitance and the characteristic curves of current versus the stationary surface potential can also be determined. To demonstrate the use of the constant current corona triode, we have characterized poly(methyl methacrylate) thin films with films with thicknesses in the range from 300 to 500 nm, frequently used as gate dielectric in organic field-effect transistors.
Electrical current mediated interconversion between graphene oxide to reduced grapene oxide
NASA Astrophysics Data System (ADS)
Teoh, H. F.; Tao, Y.; Tok, E. S.; Ho, G. W.; Sow, C. H.
2011-04-01
In this work, we demonstrate that graphene oxide (GO) can be reversibly converted to reduced-graphene-oxide (rGO) through the use of electric current. Strong electric field could cause ionization of water molecules in air to generate H+ ions at cathode, causing GO to be reduced. When the bias is reversed, the same electrode becomes positive and OH- ions are produced. According to Le Chatelier Principle, it then favors the reverse reaction, converting rGO back to GO, GO+2H++2e-=>rGO+H2O. X-ray spectroscopy and Raman spectroscopy were carried to verify the conversion reversibility in the reversed process.
Experimental testing of scattering polarization models
NASA Astrophysics Data System (ADS)
Li, Wenxian; Casini, Roberto; Tomczyk, Steven; Landi Degl'Innocenti, Egidio; Marsell, Brandan
2018-06-01
We realized a laboratory experiment to study the polarization of the Na I doublet at 589.3 nm, in the presence of a magnetic field. The purpose of the experiment is to test the theory of scattering polarization for illumination conditions typical of astrophysical plasmas. This work was stimulated by solar observations of the Na I doublet that have proven particularly challenging to reproduce with current models of polarized line formation, even casting doubts on our very understanding of the physics of scattering polarization on the Sun. The experiment has confirmed the fundamental correctness of the current theory, and demonstrated that the "enigmatic'' polarization of those observations is exclusively of solar origin.
NASA Astrophysics Data System (ADS)
Su, Yuanjie; Xie, Guangzhong; Xie, Fabiao; Xie, Tao; Zhang, Qiuping; Zhang, Hulin; Du, Hongfei; Du, Xiaosong; Jiang, Yadong
2016-06-01
A single-electrode-based segmented triboelectric nanogenerator (S-TENG) was developed. By utilizing the wind-induced vibration of a fluorinated ethylene propylene (FEP) film between two copper electrodes, the S-TENG delivers an open-circuit voltage up to 36 V and a short-circuit current of 11.8 μA, which can simultaneously light up 20 LEDs and charge capacitors. Moreover, the S-TENG holds linearity between output current and flow rate, revealing its feasibility as a self-powered wind speed sensor. This work demonstrates potential applications of S-TENG in wind energy harvester, self-powered gas sensor, high altitude air navigation.
A Hybrid Nonlinear Control Scheme for Active Magnetic Bearings
NASA Technical Reports Server (NTRS)
Xia, F.; Albritton, N. G.; Hung, J. Y.; Nelms, R. M.
1996-01-01
A nonlinear control scheme for active magnetic bearings is presented in this work. Magnet winding currents are chosen as control inputs for the electromechanical dynamics, which are linearized using feedback linearization. Then, the desired magnet currents are enforced by sliding mode control design of the electromagnetic dynamics. The overall control scheme is described by a multiple loop block diagram; the approach also falls in the class of nonlinear controls that are collectively known as the 'integrator backstepping' method. Control system hardware and new switching power electronics for implementing the controller are described. Various experiments and simulation results are presented to demonstrate the concepts' potentials.
Electron beam induced deposition of silicon nanostructures from a liquid phase precursor.
Liu, Yin; Chen, Xin; Noh, Kyong Wook; Dillon, Shen J
2012-09-28
This work demonstrates electron beam induced deposition of silicon from a SiCl(4) liquid precursor in a transmission electron microscope and a scanning electron microscope. Silicon nanodots of tunable size are reproducibly grown in controlled geometries. The volume of these features increases linearly with deposition time. The results indicate that secondary electrons generated at the substrate surface serve as the primary source of silicon reduction. However, at high current densities the influence of the primary electrons is observed to retard growth. The results demonstrate a new approach to fabricating silicon nanostructures and provide fundamental insights into the mechanism for liquid phase electron beam induced deposition.
Griffin, Benjamin G; Arbabi, Amir; Peun Tan, Meng; Kasten, Ansas M; Choquette, Kent D; Goddard, Lynford L
2013-06-01
Previously reported simulations have suggested that depositing thin layers of metal over the surface of a single-mode, etched air hole photonic crystal (PhC) vertical-cavity surface-emitting laser (VCSEL) could potentially improve the laser's side-mode suppression ratio by introducing additional losses to the higher-order modes. This work demonstrates the concept by presenting the results of a 30 nm thin film of Cr deposited on the surface of an implant-confined PhC VCSEL. Both experimental measurements and simulation results are in agreement showing that the single-mode operation is improved at the same injection current ratio relative to threshold.
Electron beam induced deposition of silicon nanostructures from a liquid phase precursor
NASA Astrophysics Data System (ADS)
Liu, Yin; Chen, Xin; Noh, Kyong Wook; Dillon, Shen J.
2012-09-01
This work demonstrates electron beam induced deposition of silicon from a SiCl4 liquid precursor in a transmission electron microscope and a scanning electron microscope. Silicon nanodots of tunable size are reproducibly grown in controlled geometries. The volume of these features increases linearly with deposition time. The results indicate that secondary electrons generated at the substrate surface serve as the primary source of silicon reduction. However, at high current densities the influence of the primary electrons is observed to retard growth. The results demonstrate a new approach to fabricating silicon nanostructures and provide fundamental insights into the mechanism for liquid phase electron beam induced deposition.
Solid Polymer Electrolyte Fuel Cell Technology Program
NASA Technical Reports Server (NTRS)
1980-01-01
Work is reported on phase 5 of the Solid Polymer Electrolyte (SPE) Fuel Cell Technology Development program. The SPE fuel cell life and performance was established at temperatures, pressures, and current densities significantly higher than those previously demonstrated in sub-scale hardware. Operation of single-cell Buildup No. 1 to establish life capabilities of the full-scale hardware was continued. A multi-cell full-scale unit (Buildup No. 2) was designed, fabricated, and test evaluated laying the groundwork for the construction of a reactor stack. A reactor stack was then designed, fabricated, and successfully test-evaluated to demonstrate the readiness of SPE fuel cell technology for future space applications.
Efficient non-hydrostatic modelling of 3D wave-induced currents using a subgrid approach
NASA Astrophysics Data System (ADS)
Rijnsdorp, Dirk P.; Smit, Pieter B.; Zijlema, Marcel; Reniers, Ad J. H. M.
2017-08-01
Wave-induced currents are an ubiquitous feature in coastal waters that can spread material over the surf zone and the inner shelf. These currents are typically under resolved in non-hydrostatic wave-flow models due to computational constraints. Specifically, the low vertical resolutions adequate to describe the wave dynamics - and required to feasibly compute at the scales of a field site - are too coarse to account for the relevant details of the three-dimensional (3D) flow field. To describe the relevant dynamics of both wave and currents, while retaining a model framework that can be applied at field scales, we propose a two grid approach to solve the governing equations. With this approach, the vertical accelerations and non-hydrostatic pressures are resolved on a relatively coarse vertical grid (which is sufficient to accurately resolve the wave dynamics), whereas the horizontal velocities and turbulent stresses are resolved on a much finer subgrid (of which the resolution is dictated by the vertical scale of the mean flows). This approach ensures that the discrete pressure Poisson equation - the solution of which dominates the computational effort - is evaluated on the coarse grid scale, thereby greatly improving efficiency, while providing a fine vertical resolution to resolve the vertical variation of the mean flow. This work presents the general methodology, and discusses the numerical implementation in the SWASH wave-flow model. Model predictions are compared with observations of three flume experiments to demonstrate that the subgrid approach captures both the nearshore evolution of the waves, and the wave-induced flows like the undertow profile and longshore current. The accuracy of the subgrid predictions is comparable to fully resolved 3D simulations - but at much reduced computational costs. The findings of this work thereby demonstrate that the subgrid approach has the potential to make 3D non-hydrostatic simulations feasible at the scale of a realistic coastal region.
Engineering photonic and plasmonic light emission enhancement
NASA Astrophysics Data System (ADS)
Lawrence, Nathaniel
Semiconductor photonic devices are a rapidly maturing technology which currently occupy multi-billion dollar markets in the areas of LED lighting and optical data communication. LEDs currently demonstrate the highest luminous efficiency of any light source for general lighting. Long-haul optical data communication currently forms the backbone of the global communication network. Proper design of light management is required for photonic devices, which can increase the overall efficiency or add new device functionality. In this thesis, novel methods for the control of light propagation and confinement are developed for the use in integrated photonic devices. The first part of this work focuses on the engineering of field confinement within deep subwavelength plasmonic resonators for the enhancement of light-matter interaction. In this section, plasmonic ring nanocavities are shown to form gap plasmon modes confined to the dielectric region between two metal layers. The scattering properties, near-field enhancement and photonic density of states of nanocavity devices are studied using analytic theory and 3D finite difference time domain simulations. Plasmonic ring nanocavities are fabricated and characterized using photoluminescence intensity and decay rate measurements. A 25 times increase in the radiative decay rate of Er:Si02 is demonstrated in nanocavities where light is confined to volumes as small as 0.01( ln )3. The potential to achieve lasing, due to the enhancement of stimulated emission rate in ring nanocavities, is studied as a route to Si-compatible plasmon-enhanced nanolasers. The second part of this work focuses on the manipulation of light generated in planar semiconductor devices using arrays of dielectric nanopillars. In particular, aperiodic arrays of nanopillars are engineered for omnidirectional light extraction enhancement. Arrays of Er:SiNx, nanopillars are fabricated and a ten times increase in light extraction is experimentally demonstrated, while simultaneously controlling far-field radiation patterns in ways not possible with periodic arrays. Additionally, analytical scalar diffraction theory is used to study light propagation from Vogel spiral arrays and demonstrate generation of OAM. Using phase shifting interferometry, the presence of OAM is experimentally verified. The use of Vogel spirals presents a new method for the generation of OAM with applications for secure optical communications.
Low-Cost Bio-Based Carbon Fibers for High Temperature Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Ryan Michael; Naskar, Amit
GrafTech International Holdings Inc. (GTI), under Award No. DE-EE0005779, worked with Oak Ridge National Laboratory (ORNL) under CRADA No. NFE-15-05807 to develop lignin-based carbon fiber (LBCF) technology and to demonstrate LBCF performance in high-temperature products and applications. This work was unique and different from other reported LBCF work in that this study was application-focused and scalability-focused. Accordingly, the executed work was based on meeting criteria based on technology development, cost, and application suitability. High-temperature carbon fiber based insulation is used in energy intensive industries, such as metal heat treating and ceramic and semiconductor material production. Insulation plays a critical rolemore » in achieving high thermal and process efficiency, which is directly related to energy usage, cost, and product competitiveness. Current high temperature insulation is made with petroleum based carbon fibers, and one goal of this protect was to develop and demonstrate an alternative lignin (biomass) based carbon fiber that would achieve lower cost, CO2 emissions, and energy consumption and result in insulation that met or exceeded the thermal efficiency of current commercial insulation. In addition, other products were targeted to be evaluated with LBCF. As the project was designed to proceed in stages, the initial focus of this work was to demonstrate lab-scale LBCF from at least 4 different lignin precursor feedstock sources that could meet the estimated production cost of $5.00/pound and have ash level of less than 500 ppm in the carbonized insulation-grade fiber. Accordingly, a preliminary cost model was developed based on publicly available information. The team demonstrated that 4 lignin samples met the cost criteria. In addition, the ash level for the 4 carbonized lignin samples was below 500 ppm. Processing as-received lignin to produce a high purity lignin fiber was a significant accomplishment in that most industrial lignin, prior to purification, had greater than 4X the ash level needed for this project, and prior to this work there was not a clear path of how to achieve the purity target. The lab scale development of LBCF was performed with a specific functional application in mind, specifically for high temperature rigid insulation. GTI is a consumer of foreign-sourced pitch and rayon based carbon fibers for use in its high temperature insulation products, and the motivation was that LBCF had potential to decrease costs and increase product competitiveness in the marketplace through lowered raw material costs, lowered energy costs, and decreased environmental footprint. At the end of this project, the Technology Readiness Level (TRL) remained at 5 for LBCF in high temperature insulation.« less
Lp-Norm Regularization in Volumetric Imaging of Cardiac Current Sources
Rahimi, Azar; Xu, Jingjia; Wang, Linwei
2013-01-01
Advances in computer vision have substantially improved our ability to analyze the structure and mechanics of the heart. In comparison, our ability to observe and analyze cardiac electrical activities is much limited. The progress to computationally reconstruct cardiac current sources from noninvasive voltage data sensed on the body surface has been hindered by the ill-posedness and the lack of a unique solution of the reconstruction problem. Common L2- and L1-norm regularizations tend to produce a solution that is either too diffused or too scattered to reflect the complex spatial structure of current source distribution in the heart. In this work, we propose a general regularization with Lp-norm (1 < p < 2) constraint to bridge the gap and balance between an overly smeared and overly focal solution in cardiac source reconstruction. In a set of phantom experiments, we demonstrate the superiority of the proposed Lp-norm method over its L1 and L2 counterparts in imaging cardiac current sources with increasing extents. Through computer-simulated and real-data experiments, we further demonstrate the feasibility of the proposed method in imaging the complex structure of excitation wavefront, as well as current sources distributed along the postinfarction scar border. This ability to preserve the spatial structure of source distribution is important for revealing the potential disruption to the normal heart excitation. PMID:24348735
Series resistance compensation for whole-cell patch-clamp studies using a membrane state estimator
Sherman, AJ; Shrier, A; Cooper, E
1999-01-01
Whole-cell patch-clamp techniques are widely used to measure membrane currents from isolated cells. While suitable for a broad range of ionic currents, the series resistance (R(s)) of the recording pipette limits the bandwidth of the whole-cell configuration, making it difficult to measure rapid ionic currents. To increase bandwidth, it is necessary to compensate for R(s). Most methods of R(s) compensation become unstable at high bandwidth, making them hard to use. We describe a novel method of R(s) compensation that overcomes the stability limitations of standard designs. This method uses a state estimator, implemented with analog computation, to compute the membrane potential, V(m), which is then used in a feedback loop to implement a voltage clamp; we refer to this as state estimator R(s) compensation. To demonstrate the utility of this approach, we built an amplifier incorporating state estimator R(s) compensation. In benchtop tests, our amplifier showed significantly higher bandwidths and improved stability when compared with a commercially available amplifier. We demonstrated that state estimator R(s) compensation works well in practice by recording voltage-gated Na(+) currents under voltage-clamp conditions from dissociated neonatal rat sympathetic neurons. We conclude that state estimator R(s) compensation should make it easier to measure large rapid ionic currents with whole-cell patch-clamp techniques. PMID:10545359
Observation of linear I-V curves on vertical GaAs nanowires with atomic force microscope
NASA Astrophysics Data System (ADS)
Geydt, P.; Alekseev, P. A.; Dunaevskiy, M.; Lähderanta, E.; Haggrén, T.; Kakko, J.-P.; Lipsanen, H.
2015-12-01
In this work we demonstrate the possibility of studying the current-voltage characteristics for single vertically standing semiconductor nanowires on standard AFM equipped by current measuring module in PeakForce Tapping mode. On the basis of research of eight different samples of p-doped GaAs nanowires grown on different GaAs substrates, peculiar electrical effects were revealed. It was found how covering of substrate surface by SiOx layer increases the current, as well as phosphorous passivation of the grown nanowires. Elimination of the Schottky barrier between golden cap and the top parts of nanowires was observed. It was additionally studied that charge accumulation on the shell of single nanowires affects its resistivity and causes the hysteresis loops on I-V curves.
Ion current as a precise measure of the loading rate of a magneto-optical trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, W.; Bailey, K.; Lu, Z. -T.
2014-01-01
We have demonstrated that the ion current resulting from collisions between metastable krypton atoms in a magneto-optical trap can be used to precisely measure the trap loading rate. We measured both the ion current of the abundant isotope Kr-83 (isotopic abundance = 11%) and the single-atom counting rate of the rare isotope Kr-85 (isotopic abundance similar to 1 x 10(-11)), and found the two quantities to be proportional at a precision level of 0.9%. This work results in a significant improvement in using the magneto-optical trap as an analytical tool for noble-gas isotope ratio measurements, and will benefit both atomicmore » physics studies and applications in the earth sciences. (C) 2014 Optical Society of America« less
Control of free-flying space robot manipulator systems
NASA Technical Reports Server (NTRS)
Cannon, Robert H., Jr.
1989-01-01
Control techniques for self-contained, autonomous free-flying space robots are being tested and developed. Free-flying space robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require astronaut extra-vehicular activity (EVA). Use of robots will provide economic savings as well as improved astronaut safety by reducing and in many cases, eliminating the need for human EVA. The focus of the work is to develop and carry out a set of research projects using laboratory models of satellite robots. These devices use air-cushion-vehicle (ACV) technology to simulate in two dimensions the drag-free, zero-g conditions of space. Current work is divided into six major projects or research areas. Fixed-base cooperative manipulation work represents our initial entry into multiple arm cooperation and high-level control with a sophisticated user interface. The floating-base cooperative manipulation project strives to transfer some of the technologies developed in the fixed-base work onto a floating base. The global control and navigation experiment seeks to demonstrate simultaneous control of the robot manipulators and the robot base position so that tasks can be accomplished while the base is undergoing a controlled motion. The multiple-vehicle cooperation project's goal is to demonstrate multiple free-floating robots working in teams to carry out tasks too difficult or complex for a single robot to perform. The Location Enhancement Arm Push-off (LEAP) activity's goal is to provide a viable alternative to expendable gas thrusters for vehicle propulsion wherein the robot uses its manipulators to throw itself from place to place. Because the successful execution of the LEAP technique requires an accurate model of the robot and payload mass properties, it was deemed an attractive testbed for adaptive control technology.
Current Fragmentation and Particle Acceleration in Solar Flares
NASA Astrophysics Data System (ADS)
Cargill, P. J.; Vlahos, L.; Baumann, G.; Drake, J. F.; Nordlund, Å.
2012-11-01
Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a "standard flare model" is ill-conceived when the entire distribution of flare energies is considered.
Comparing men's and women's experiences of work after cancer: a photovoice study.
Morrison, T L; Thomas, R L
2015-10-01
Work is an important quality of life indicator for many cancer survivors. There is, however, a lack of appropriate support to help survivors with work integration. As a result, many survivors are forced to independently navigate their return to work, experiencing unnecessary pitfalls in the process. As a preliminary step toward addressing this current gap in survivorship support, we explored the work integration experiences of 20 cancer survivors, 10 women and 10 men. Photovoice methods were combined with two individual interviews per participant. Participant-produced photographs and interview transcripts were analyzed to identify key themes. Both commonalities and gender-differentiated motivations underlying work integration emerged. Female and male participants both demonstrated and discussed differentiated manners of coping. Men expressed a propensity for productivity and active engagements over talking used predominantly by women. Appreciation of men's proclivity for productivity and activity suggests that a gender-tailored approach to rehabilitation may enhance male survivors' participation and the utility of rehabilitation efforts.
Convection currents enhancement of the spring constant in optical tweezers
NASA Astrophysics Data System (ADS)
Zenteno-Hernández, J. A.; Gómez-Vieyra, A.; Torres-Hurtado, S. A.; Ramirez-San-Juan, J. C.; Ramos-García, R.
2016-09-01
In this work we demonstrate the increasing of the trap stiffness (spring constant) constant of an optical trap of particles suspended in water by laser-induced convection currents. These currents are the result of thermal gradients created by a light absorption in a thin layer of hydrogenated amorphous silicon (a:Si-H) deposited at the bottom of cell. Since convection currents (and therefore drag forces) are symmetric around the beam focus particles trapped by the beam are further contained. Around the focus the drag force is directed upwards and partially compensated by radiation pressure depending on the laser power increasing the stiffness of the optical trapping increases significatively so a particle trapped could dragged (by moving the translation stage leaving the beam fixed) at velocities as high as 90μm/s without escaping the trap, whereas with no a:Si-H film, the particle escapes from the trap at lower velocities (30μm/s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pervikov, A. V.
The work is focused on revealing the mechanism of structure and phase transformations in the metal wires under heating with a high-density current pulse (the electric explosion of wires, EEWs). It has been demonstrated on the example of brass and zinc wires that the transition of a current pulse with the density of j ≈ 3.3 × 10{sup 7} A/cm{sup 2} results in homogeneous heating of the crystalline structure of the metal/alloy. It has been determined that under heating with a pulse of high-density current pulse, the electric resistance of the liquid phases of zinc and brass decreases as the temperature increases. The results obtainedmore » allow for a conclusion that the presence of the particles of the condensed phase in the expanding products of EEW is the result of overheating instabilities in the liquid metal.« less
NASA Astrophysics Data System (ADS)
Ye, Lin; Majoros, M.; Campbell, A. M.; Coombs, T.; Harrison, S.; Sargent, P.; Haslett, M.; Husband, M.
2007-04-01
A laboratory scale desktop test system including a cryogenic system, an AC pulse generation system and a real time data acquisition program in LabView/DAQmx, has been developed to evaluate the quench properties of MgB2 wires as an element in a superconducting fault current limiter under pulse overcurrents at 25 K in self-field conditions. The MgB2 samples started from a superconducting state and demonstrated good current limiting properties characterized by a fast transition to the normal state during the first half of the cycle and a continuously limiting effect in the subsequent cycles without burnouts. The experimental and numerical simulation results on the quench behaviour indicate the feasibility of using MgB2 for future superconducting fault current limiter (SFCL) applications. This work is supported by Rolls-Royce Plc and the UK Department of Trade & Industry (DTI).
NASA Astrophysics Data System (ADS)
Keatley, Paul Steven; Redjai Sani, Sohrab; Hrkac, Gino; Majid Mohseni, Seyed; Dürrenfeld, Philipp; Åkerman, Johan; Hicken, Robert James
2017-04-01
Nano-contact spin-torque vortex oscillators (STVOs) are anticipated to find application as nanoscale sources of microwave emission in future technological applications. Presently the output power and phase stability of individual STVOs are not competitive with existing oscillator technologies. Synchronisation of multiple nano-contact STVOs via magnetisation dynamics has been proposed to enhance the microwave emission. The control of device-to-device variations, such as mode splitting of the microwave emission, is essential if multiple STVOs are to be successfully synchronised. In this work a combination of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM) was used to demonstrate how mode splitting in the microwave emission of STVOs was related to the magnetisation dynamics that are generated. The free-running STVO response to a DC current only was used to identify devices and bias magnetic field configurations for which single and multiple modes of microwave emission were observed. Stroboscopic Kerr images were acquired by injecting a small amplitude RF current to phase lock the free-running STVO response. The images showed that the magnetisation dynamics of a multimode device with moderate splitting could be controlled by the injected RF current so that they exhibit similar spatial character to that of a single mode. Significant splitting was found to result from a complicated equilibrium magnetic state that was observed in Kerr images as irregular spatial characteristics of the magnetisation dynamics. Such dynamics were observed far from the nano-contact and so their presence cannot be detected in electrical measurements. This work demonstrates that TRSKM is a powerful tool for the direct observation of the magnetisation dynamics generated by STVOs that exhibit complicated microwave emission. Characterisation of such dynamics outside the nano-contact perimeter permits a deeper insight into the requirements for optimal phase-locking of multiple STVOs that share common magnetic layers. , which features invited work from the best early-career researchers working within the scope of J. Phys. D. This project is part of the Journal of Physics series' 50th anniversary celebrations in 2017. Paul Keatley was selected by the Editorial Board of J. Phys. D as an Emerging Leader.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skalyga, V.; Sidorov, A.; Lobachevsky State University of Nizhny Novgorod
2015-09-07
In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental resultsmore » show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.« less
In vivo demonstration of surgical task assistance using miniature robots.
Hawks, Jeff A; Kunowski, Jacob; Platt, Stephen R
2012-10-01
Laparoscopy is beneficial to patients as measured by less painful recovery and an earlier return to functional health compared to conventional open surgery. However, laparoscopy requires the manipulation of long, slender tools from outside the patient's body. As a result, laparoscopy generally benefits only patients undergoing relatively simple procedures. An innovative approach to laparoscopy uses miniature in vivo robots that fit entirely inside the abdominal cavity. Our previous work demonstrated that a mobile, wireless robot platform can be successfully operated inside the abdominal cavity with different payloads (biopsy, camera, and physiological sensors). We hope that these robots are a step toward reducing the invasiveness of laparoscopy. The current study presents design details and results of laboratory and in vivo demonstrations of several new payload designs (clamping, cautery, and liquid delivery). Laboratory and in vivo cooperation demonstrations between multiple robots are also presented.
Advanced tow placement of composite fuselage structure
NASA Technical Reports Server (NTRS)
Anderson, Robert L.; Grant, Carroll G.
1992-01-01
The Hercules NASA ACT program was established to demonstrate and validate the low cost potential of the automated tow placement process for fabrication of aircraft primary structures. The program is currently being conducted as a cooperative program in collaboration with the Boeing ATCAS Program. The Hercules advanced tow placement process has been in development since 1982 and was developed specifically for composite aircraft structures. The second generation machine, now in operation at Hercules, is a production-ready machine that uses a low cost prepreg tow material form to produce structures with laminate properties equivalent to prepreg tape layup. Current program activities are focused on demonstration of the automated tow placement process for fabrication of subsonic transport aircraft fuselage crown quadrants. We are working with Boeing Commercial Aircraft and Douglas Aircraft during this phase of the program. The Douglas demonstration panels has co-cured skin/stringers, and the Boeing demonstration panel is an intricately bonded part with co-cured skin/stringers and co-bonded frames. Other aircraft structures that were evaluated for the automated tow placement process include engine nacelle components, fuselage pressure bulkheads, and fuselage tail cones. Because of the cylindrical shape of these structures, multiple parts can be fabricated on one two placement tool, thus reducing the cost per pound of the finished part.
Kausaite-Minkstimiene, Asta; Simanaityte, Ruta; Ramanaviciene, Almira; Glumbokaite, Laura; Ramanavicius, Arunas
2017-08-15
A reagent-less amperometric glucose biosensor operating in not-stirred sample solution was developed. A working electrode of the designed biosensor was based on a graphite rod (GR) electrode, which was modified with 1,10-phenanthroline-5,6-dione (PD) and glucose oxidase (GOx). The PD and the GOx were layer-by-layer adsorbed on the GR electrode surface with subsequent drying followed by chemical cross-linking of the adsorbed GOx with glutaraldehyde (GA). Optimal preparation conditions of the working electrode (GR/PD/GOx) were achieved with 12.6μg and 0.24mg loading amount of PD and GOx, respectively and 25min lasting cross-linking of the GOx with GA. A current response to glucose of the GR/PD/GOx electrode was measured at +200mV potential vs Ag/AgCl reference electrode. Maximum current response was registered when the pH of the buffer solution was 6.0. The registered current response to glucose was linear in the concentration range of 0.1-76mmolL -1 (R 2 =0.9985) and a detection limit was 0.025mmolL -1 . The GR/PD/GOx electrode demonstrated good reproducibility and repeatability with the relative standard deviation of 6.2% and 1.8% (at 4.0mmolL -1 of glucose), respectively, high anti-interference ability to uric and ascorbic acids. It was highly selective to glucose and demonstrated good accuracy in the analysis of human serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao Yang; Luo, Gang; Jiang, Fangming
2010-05-01
Current computational models for proton exchange membrane fuel cells (PEMFCs) include a large number of parameters such as boundary conditions, material properties, and numerous parameters used in sub-models for membrane transport, two-phase flow and electrochemistry. In order to successfully use a computational PEMFC model in design and optimization, it is important to identify critical parameters under a wide variety of operating conditions, such as relative humidity, current load, temperature, etc. Moreover, when experimental data is available in the form of polarization curves or local distribution of current and reactant/product species (e.g., O2, H2O concentrations), critical parameters can be estimated inmore » order to enable the model to better fit the data. Sensitivity analysis and parameter estimation are typically performed using manual adjustment of parameters, which is also common in parameter studies. We present work to demonstrate a systematic approach based on using a widely available toolkit developed at Sandia called DAKOTA that supports many kinds of design studies, such as sensitivity analysis as well as optimization and uncertainty quantification. In the present work, we couple a multidimensional PEMFC model (which is being developed, tested and later validated in a joint effort by a team from Penn State Univ. and Sandia National Laboratories) with DAKOTA through the mapping of model parameters to system responses. Using this interface, we demonstrate the efficiency of performing simple parameter studies as well as identifying critical parameters using sensitivity analysis. Finally, we show examples of optimization and parameter estimation using the automated capability in DAKOTA.« less
Jarvis, Sam; Danza, Rosanna; Moriarty, Philip
2012-01-01
Summary Background: Noncontact atomic force microscopy (NC-AFM) now regularly produces atomic-resolution images on a wide range of surfaces, and has demonstrated the capability for atomic manipulation solely using chemical forces. Nonetheless, the role of the tip apex in both imaging and manipulation remains poorly understood and is an active area of research both experimentally and theoretically. Recent work employing specially functionalised tips has provided additional impetus to elucidating the role of the tip apex in the observed contrast. Results: We present an analysis of the influence of the tip apex during imaging of the Si(100) substrate in ultra-high vacuum (UHV) at 5 K using a qPlus sensor for noncontact atomic force microscopy (NC-AFM). Data demonstrating stable imaging with a range of tip apexes, each with a characteristic imaging signature, have been acquired. By imaging at close to zero applied bias we eliminate the influence of tunnel current on the force between tip and surface, and also the tunnel-current-induced excitation of silicon dimers, which is a key issue in scanning probe studies of Si(100). Conclusion: A wide range of novel imaging mechanisms are demonstrated on the Si(100) surface, which can only be explained by variations in the precise structural configuration at the apex of the tip. Such images provide a valuable resource for theoreticians working on the development of realistic tip structures for NC-AFM simulations. Force spectroscopy measurements show that the tip termination critically affects both the short-range force and dissipated energy. PMID:22428093
NASA Astrophysics Data System (ADS)
Zhu, Feng; Macdonald, Niall; Skommer, Joanna; Wlodkowic, Donald
2015-06-01
Current microfabrication methods are often restricted to two-dimensional (2D) or two and a half dimensional (2.5D) structures. Those fabrication issues can be potentially addressed by emerging additive manufacturing technologies. Despite rapid growth of additive manufacturing technologies in tissue engineering, microfluidics has seen relatively little developments with regards to adopting 3D printing for rapid fabrication of complex chip-based devices. This has been due to two major factors: lack of sufficient resolution of current rapid-prototyping methods (usually >100 μm ) and optical transparency of polymers to allow in vitro imaging of specimens. We postulate that adopting innovative fabrication processes can provide effective solutions for prototyping and manufacturing of chip-based devices with high-aspect ratios (i.e. above ration of 20:1). This work provides a comprehensive investigation of commercially available additive manufacturing technologies as an alternative for rapid prototyping of complex monolithic Lab-on-a-Chip devices for biological applications. We explored both multi-jet modelling (MJM) and several stereolithography (SLA) processes with five different 3D printing resins. Compared with other rapid prototyping technologies such as PDMS soft lithography and infrared laser micromachining, we demonstrated that selected SLA technologies had superior resolution and feature quality. We also for the first time optimised the post-processing protocols and demonstrated polymer features under scanning electronic microscope (SEM). Finally we demonstrate that selected SLA polymers have optical properties enabling high-resolution biological imaging. A caution should be, however, exercised as more work is needed to develop fully bio-compatible and non-toxic polymer chemistries.
2004-03-01
and current work is that most developers see unstructured language input as a useful complement to a Socratic tutoring approach. The general...demonstrating the possibility of Socratic tactical tutoring, led us , during the second half of our Phase II effort, away from unrestricted natural language ... language use . This often leads to faster, more useful processing, that is robust in the face of real-world input (ungrammatical, misspelled, or
Correlated resistive/capacitive state variability in solid TiO2 based memory devices
NASA Astrophysics Data System (ADS)
Li, Qingjiang; Salaoru, Iulia; Khiat, Ali; Xu, Hui; Prodromakis, Themistoklis
2017-05-01
In this work, we experimentally demonstrated the correlated resistive/capacitive switching and state variability in practical TiO2 based memory devices. Based on filamentary functional mechanism, we argue that the impedance state variability stems from the randomly distributed defects inside the oxide bulk. Finally, our assumption was verified via a current percolation circuit model, by taking into account of random defects distribution and coexistence of memristor and memcapacitor.
NASA Technical Reports Server (NTRS)
Iannicca, Dennis C.; McKim, James H.; Stewart, David H.; Thadhani, Suresh K.; Young, Daniel P.
2015-01-01
NASA Glenn Research Center, in cooperation with Rockwell Collins, is working to develop a prototype Control and Non-Payload Communications (CNPC) radio platform as part of NASA Integrated Systems Research Program's (ISRP) Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) project. A primary focus of the project is to work with the FAA and industry standards bodies to build and demonstrate a safe, secure, and efficient CNPC architecture that can be used by industry to evaluate the feasibility of deploying a system using these technologies in an operational capacity. GRC has been working in conjunction with these groups to assess threats, identify security requirements, and to develop a system of standards-based security controls that can be applied to the current GRC prototype CNPC architecture as a demonstration platform. The security controls were integrated into a lab test bed mock-up of the Mobile IPv6 architecture currently being used for NASA flight testing, and a series of network tests were conducted to evaluate the security overhead of the controls compared to the baseline CNPC link without any security. The aim of testing was to evaluate the performance impact of the additional security control overhead when added to the Mobile IPv6 architecture in various modes of operation. The statistics collected included packet captures at points along the path to gauge packet size as the sample data traversed the CNPC network, round trip latency, jitter, and throughput. The effort involved a series of tests of the baseline link, a link with Robust Header Compression (ROHC) and without security controls, a link with security controls and without ROHC, and finally a link with both ROHC and security controls enabled. The effort demonstrated that ROHC is both desirable and necessary to offset the additional expected overhead of applying security controls to the CNPC link.
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Gasser, Gerald; Hargrove, William; Smoot, James; Kuper, Philip D.
2014-01-01
The on-line near real time (NRT) ForWarn system is currently deployed to monitor regional forest disturbances within the conterminous United States (CONUS), using daily MODIS Aqua and Terra NDVI data to derive monitoring products. The Healthy Forest Restoration Act of 2003 mandated such a system. Work on ForWarn began in 2006 with development and validation of retrospective MODIS NDVI-based forest monitoring products. Subsequently, NRT forest disturbance monitoring products were demonstrated, leading to the actual system deployment in 2010. ForWarn provides new CONUS forest disturbance monitoring products every 8 days, using USGS eMODIS data for current NDVI. ForWarn currently does not cover Alaska, which includes extensive forest lands at risk to multiple biotic and abiotic threats. This poster discusses a case study using Alaska eMODIS Terra data to derive ForWarn like forest change products during the 2010 growing season. The eMODIS system provides current MODIS Terra NDVI products for Alaska. Resulting forest change products were assessed with ground, aerial, and Landsat reference data. When cloud and snow free, these preliminary products appeared to capture regional forest disturbances from insect defoliation and fires; however, more work is needed to mitigate cloud and snow contamination, including integration of eMODIS Aqua data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heberlein, L.T.; Dias, G.V.; Levitt, K.N.
1989-11-01
The study of security in computer networks is a rapidly growing area of interest because of the proliferation of networks and the paucity of security measures in most current networks. Since most networks consist of a collection of inter-connected local area networks (LANs), this paper concentrates on the security-related issues in a single broadcast LAN such as Ethernet. Specifically, we formalize various possible network attacks and outline methods of detecting them. Our basic strategy is to develop profiles of usage of network resources and then compare current usage patterns with the historical profile to determine possible security violations. Thus, ourmore » work is similar to the host-based intrusion-detection systems such as SRI's IDES. Different from such systems, however, is our use of a hierarchical model to refine the focus of the intrusion-detection mechanism. We also report on the development of our experimental LAN monitor currently under implementation. Several network attacks have been simulated and results on how the monitor has been able to detect these attacks are also analyzed. Initial results demonstrate that many network attacks are detectable with our monitor, although it can surely be defeated. Current work is focusing on the integration of network monitoring with host-based techniques. 20 refs., 2 figs.« less
In-Situ Transfer Standard and Coincident-View Intercomparisons for Sensor Cross-Calibration
NASA Technical Reports Server (NTRS)
Thome, Kurt; McCorkel, Joel; Czapla-Myers, Jeff
2013-01-01
There exist numerous methods for accomplishing on-orbit calibration. Methods include the reflectance-based approach relying on measurements of surface and atmospheric properties at the time of a sensor overpass as well as invariant scene approaches relying on knowledge of the temporal characteristics of the site. The current work examines typical cross-calibration methods and discusses the expected uncertainties of the methods. Data from the Advanced Land Imager (ALI), Advanced Spaceborne Thermal Emission and Reflection and Radiometer (ASTER), Enhanced Thematic Mapper Plus (ETM+), Moderate Resolution Imaging Spectroradiometer (MODIS), and Thematic Mapper (TM) are used to demonstrate the limits of relative sensor-to-sensor calibration as applied to current sensors while Landsat-5 TM and Landsat-7 ETM+ are used to evaluate the limits of in situ site characterizations for SI-traceable cross calibration. The current work examines the difficulties in trending of results from cross-calibration approaches taking into account sampling issues, site-to-site variability, and accuracy of the method. Special attention is given to the differences caused in the cross-comparison of sensors in radiance space as opposed to reflectance space. The results show that cross calibrations with absolute uncertainties lesser than 1.5 percent (1 sigma) are currently achievable even for sensors without coincident views.
Light Water Reactor Sustainability Program Status Report on the Grizzly Code Enhancements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novascone, Stephen R.; Spencer, Benjamin W.; Hales, Jason D.
2013-09-01
This report summarizes work conducted during fiscal year 2013 to work toward developing a full capability to evaluate fracture contour J-integrals to the Grizzly code. This is a progress report on ongoing work. During the next fiscal year, this capability will be completed, and Grizzly will be capable of evaluating these contour integrals for 3D geometry, including the effects of thermal stress and large deformation. A usable, limited capability has been developed, which is capable of evaluating these integrals on 2D geometry, without considering the effects of material nonlinearity, thermal stress or large deformation. This report presents an overview ofmore » the approach used, along with a demonstration of the current capability in Grizzly, including a comparison with an analytical solution.« less
Modelling and Display of the Ultraviolet Sky
NASA Astrophysics Data System (ADS)
Daniels, J.; Henry, R.; Murthy, J.; Allen, M.; McGlynn, T. A.; Scollick, K.
1994-12-01
A computer program is currently under development to model in 3D - one dimension of which is wavelength - all the known and major speculated sources of ultraviolet (900 A - 3100 A ) radiation over the celestial sphere. The software is being written in Fortran 77 and IDL and currently operates under IRIX (the operating system of the Silicon Graphics Iris Machine); all output models are in FITS format. Models along with display software will become available to the astronomical community. The Ultraviolet Sky Model currently includes the Zodiacal Light, Point Sources of Emission, and the Diffuse Galactic Light. The Ultraviolet Sky Model is currently displayed using SkyView: a package under development at NASA/ GSFC, which allows users to retrieve and display publically available all-sky astronomical survey data (covering many wavebands) over the Internet. We present a demonstration of the SkyView display of the Ultraviolet Model. The modelling is a five year development project: the work illustrated here represents product output at the end of year one. Future work includes enhancements to the current models and incorporation of the following models: Galactic Molecular Hydrogen Fluorescence; Galactic Highly Ionized Atomic Line Emission; Integrated Extragalactic Light; and speculated sources in the intergalactic medium such as Ionized Plasma and radiation from Non-Baryonic Particle Decay. We also present a poster which summarizes the components of the Ultraviolet Sky Model and outlines a further package that will be used to display the Ultraviolet Model. This work is supported by United States Air Force Contract F19628-93-K-0004. Dr J. Daniels is supported with a post-doctoral Fellowship from the Leverhulme Foundation, London, United Kingdom. We are also grateful for the encouragement of Dr Stephen Price (Phillips Laboratory, Hanscomb Air Force Base, MA)
The political and economic context of home care work in California.
Delp, Linda; Muntaner, Carles
2010-01-01
California's primarily female, ethnically diverse home care workforce is at the intersection of the public and private spheres of work and at the front line of recurring policy and budget debates targeting government-funded long-term care services. The convening of a Home Care Research Working Group in 2001 has led to collaborative action research initiatives and advocacy for policies to improve working conditions and home care services. The study reported here demonstrates that: 1) current long-term care policy is inadequate to ameliorate home care stressors such as physical and emotional demands, schedule conflicts, financial strain, and job insecurity; 2) workers' experience of home care differs by gender and by race or ethnic group; and 3) a union that actively engages workers is a viable avenue to provide individual support and empowerment as well as collective advocacy for home care services, critical in an era of attacks against health and social service programs.
Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures.
Jin, Chenhao; Kim, Jonghwan; Utama, M Iqbal Bakti; Regan, Emma C; Kleemann, Hans; Cai, Hui; Shen, Yuxia; Shinner, Matthew James; Sengupta, Arjun; Watanabe, Kenji; Taniguchi, Takashi; Tongay, Sefaattin; Zettl, Alex; Wang, Feng
2018-05-25
Transition metal dichalcogenide (TMDC) materials are promising for spintronic and valleytronic applications because valley-polarized excitations can be generated and manipulated with circularly polarized photons and the valley and spin degrees of freedom are locked by strong spin-orbital interactions. In this study we demonstrate efficient generation of a pure and locked spin-valley diffusion current in tungsten disulfide (WS 2 )-tungsten diselenide (WSe 2 ) heterostructures without any driving electric field. We imaged the propagation of valley current in real time and space by pump-probe spectroscopy. The valley current in the heterostructures can live for more than 20 microseconds and propagate over 20 micrometers; both the lifetime and the diffusion length can be controlled through electrostatic gating. The high-efficiency and electric-field-free generation of a locked spin-valley current in TMDC heterostructures holds promise for applications in spin and valley devices. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Reverse Current Characteristics of InP Gunn Diodes for W-Band Waveguide Applications.
Kim, Hyun-Seok; Heo, Jun-Woo; Chol, Seok-Gyu; Ko, Dong-Sik; Rhee, Jin-Koo
2015-07-01
InP is considered as the most promising material for millimeter-wave laser-diode applications owing to its superior noise performance and wide operating frequency range of 75-110 GHz. In this study, we demonstrate the fabrication of InP Gunn diodes with a current-limiting structure using rapid thermal annealing to modulate the potential height formed between an n-type InP active layer and a cathode contact. We also explore the reverse current characteristics of the InP Gunn diodes. Experimental results indicate a maximum anode current and an oscillation frequency of 200 mA and 93.53 GHz, respectively. The current-voltage characteristics are modeled by considering the Schottky and ohmic contacts, work function variations, negative differential resistance (NDR), and tunneling effect. Although no direct indication of the NDR is observed, the simulation results match the measured data well. The modeling results show that the NDR effect is always present but is masked because of electron emission across the shallow Schottky barrier.
Graphite|LiFePO4 lithium-ion battery working at the heat engine coolant temperature
NASA Astrophysics Data System (ADS)
Lewandowski, Andrzej; Kurc, Beata; Swiderska-Mocek, Agnieszka; Kusa, Natalia
2014-11-01
Electrochemical properties of the graphite anode and the LiFePO4 cathode, working together with the 1 M LiPF6 in TMS (sulpholane) at 90 °C have been studied. The general aim of the investigation was to demonstrate a potential application for a Li-ion cell working in the cooling system of a car heat engine (90 °C). Electrodes were characterized with the use of electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) as well as galvanostatic charging/discharging tests. SEM images of both electrodes after charging/discharging processes were covered with a film (electrochemical SEI formation). The charge transfer resistance at 90 °C, Rct, of the C6Li|Li+ anode and the LiFePO4 cathode was 24 Ω and 110 Ω, respectively. Reversible capacity of the LiC6 anode after 10-20 cycles, at a low current rate was close to the theoretical value of 370 mAh g-1 however an increasing current rate decreased to ca. 200 mAh g-1 (for 1C). The reversibility of the process was close to 95%. The capacity of the LiFePO4 cathode was ca. 150 mAh g-1, almost independent of the current rate and close to the theoretical value of 170 mAh g-1.
Rule-Based Category Learning in Children: The Role of Age and Executive Functioning
Rabi, Rahel; Minda, John Paul
2014-01-01
Rule-based category learning was examined in 4–11 year-olds and adults. Participants were asked to learn a set of novel perceptual categories in a classification learning task. Categorization performance improved with age, with younger children showing the strongest rule-based deficit relative to older children and adults. Model-based analyses provided insight regarding the type of strategy being used to solve the categorization task, demonstrating that the use of the task appropriate strategy increased with age. When children and adults who identified the correct categorization rule were compared, the performance deficit was no longer evident. Executive functions were also measured. While both working memory and inhibitory control were related to rule-based categorization and improved with age, working memory specifically was found to marginally mediate the age-related improvements in categorization. When analyses focused only on the sample of children, results showed that working memory ability and inhibitory control were associated with categorization performance and strategy use. The current findings track changes in categorization performance across childhood, demonstrating at which points performance begins to mature and resemble that of adults. Additionally, findings highlight the potential role that working memory and inhibitory control may play in rule-based category learning. PMID:24489658
Lee, Andrew; Pike, James; Edwards, Michael R; Petrillo, Jennifer; Waller, John; Jones, Eddie
2017-06-01
Dimethyl fumarate (DMF) is a novel oral therapy used for the treatment of relapse-remitting multiple sclerosis (RRMS). In two 2-year pivotal Phase 3 trials in patients with RRMS, DMF significantly reduced disease activity based on both clinical and magnetic resonance imaging (MRI) findings and demonstrated an acceptable safety profile. However, there is currently a lack of comparative data which explore the relationship between work productivity and health-related quality of life (HRQoL) outcomes in RRMS and how these differ among RRMS therapies, including DMF. We explored this relationship through patient-reported data from the EuroQol Five-Dimensions (EQ-5D) tool, Work Productivity and Activity Impairment Questionnaire (WPAI), and the Hamburg Quality of Life Questionnaire in Multiple Sclerosis (HAQUAMS) using the Adelphi MS DSP® dataset. Our data demonstrated that patients receiving DMF experienced better outcomes, relative to patients receiving beta (β)interferons or glatiramer acetate, in all WPAI subscales [overall; average treatment effect (ATE) -13.92, 95% confidence interval (CI) -18.87 to -7.08; p < 0.001], EQ-5D (ATE +0.075, 95% Cl 0.014-0.136; p = 0.016) and HAQUAMS [ATE -0.45, 95% Cl -0.61 to -0.29; p < 0.001]. The EQ-5D and HAQUAMS were used with WPAI to determine the relationship between HRQoL outcomes and work productivity. Multiple linear regression analyses were performed, adjusting for age, sex, body mass index, ethnicity and number of comorbid conditions. These data demonstrate that therapy with DMF was associated with increased work productivity and HRQoL for patients with RRMS and that these outcomes were consistently improved compared to outcomes with interferon and glatiramer acetate therapies.
Application and Removal of Strippable Coatings via Remote Platform - 13133
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoffner, P.; Lagos, L.; Maggio, S.
2013-07-01
Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and technology demonstrations of selected technologies and working with technology vendors to optimize the design of their current technologies to accomplish dangerous and demanding tasks during D and D operations.more » To meet one identified technology gap challenge for a technology to remotely apply strippable coatings, fixatives and decontamination gels, FIU identified and performed an initial demonstration of an innovative remote fixative sprayer platform from International Climbing Machines (ICM). The selected technology was demonstrated spraying fixative products at the hot cell mockup facility at the Applied Research Center at FIU in November 2008 under cold (non-radioactive) conditions. The remotely controlled platform was remotely operated and entered the facility and sprayed a fixative onto horizontal and vertical surfaces. Based on the initial FIU demonstration and the specific technical requirements identified at the DOE facilities, a follow-up demonstration was expanded to include strippable coatings and a decontamination gel, which was demonstrated in June 2010 at the ICM facility in Ithaca, NY. This second technology evaluation documented the ability of the remote system to spray the selected products on vertical stainless steel and concrete surfaces to a height of 3 meters (10 feet) and to achieve sufficient coverage and product thickness to promote the ability to peel/remove the strippable coatings and decontamination gel. The next challenge was to determine if a remote platform could be used to remove the strippable coatings and decontamination gels. In 2012, FIU worked with the technology provider, ICM, to conduct feasibility and trade studies to identify the requirements for the remote removal of strippable coatings or decontamination gels using the existing remote controlled platform. (authors)« less
Heitz, Richard P; Schall, Jeffrey D
2013-10-19
The stochastic accumulation framework provides a mechanistic, quantitative account of perceptual decision-making and how task performance changes with experimental manipulations. Importantly, it provides an elegant account of the speed-accuracy trade-off (SAT), which has long been the litmus test for decision models, and also mimics the activity of single neurons in several key respects. Recently, we developed a paradigm whereby macaque monkeys trade speed for accuracy on cue during visual search task. Single-unit activity in frontal eye field (FEF) was not homomorphic with the architecture of models, demonstrating that stochastic accumulators are an incomplete description of neural activity under SAT. This paper summarizes and extends this work, further demonstrating that the SAT leads to extensive, widespread changes in brain activity never before predicted. We will begin by reviewing our recently published work that establishes how spiking activity in FEF accomplishes SAT. Next, we provide two important extensions of this work. First, we report a new chronometric analysis suggesting that increases in perceptual gain with speed stress are evident in FEF synaptic input, implicating afferent sensory-processing sources. Second, we report a new analysis demonstrating selective influence of SAT on frequency coupling between FEF neurons and local field potentials. None of these observations correspond to the mechanics of current accumulator models.
Q-switched dual-wavelength pumped 3.5-μm erbium-doped mid-Infrared fiber laser
NASA Astrophysics Data System (ADS)
Bawden, Nathaniel; Matsukuma, Hiraku; Henderson-Sapir, Ori; Klantsataya, Elizaveta; Tokita, Shigeki; Ottaway, David J.
2018-02-01
Short pulse operation of fiber lasers operating at wavelengths up 3 micron have been reported in recent years. At longer wavelengths, fiber lasers have only been demonstrated with a continuous operation mode. Short pulse operation in the mid-IR is necessary for utilizing such lasers in laser radars and for medical applications. Our previous numerical work suggested that Q-switching is possible on the 3.5 μm transition in erbium-doped ZBLAN in a similar manner to work demonstrated on the 2.8 μm transition in erbium. In this work we report on initial experimental results of a Q-switched, dualwavelength pumped fiber laser operating on the 3.5 μm transition in erbium-doped ZBLAN glass fibers. Using a hybrid fiber and open resonator configuration utilizing an acousto-optic modulator we demonstrated stable single pulse Q-switching while operating at repetition rates of 20 kHz and up to 120 kHz. The laser achieved a peak power of 8 W with pulse energy of 7 μJ while operating at 25 kHz. Long pulse widths on the order of 1 μs were obtained. The low peak power and long pulses are likely the result of both low gain of the transition and additional losses in the resonator which are currently being investigated. Our latest results will be presented.
Obradović, Jelena; Portilla, Ximena A; Tirado-Strayer, Nicole; Siyal, Saima; Rasheed, Muneera A; Yousafzai, Aisha K
2017-03-01
The current study focuses on maternal cognitive capacities as determinants of parenting in a highly disadvantaged global context, where children's experiences at home are often the 1st and only opportunity for learning and intellectual growth. In a large sample of 1,291 biological mothers of preschool-aged children in rural Pakistan, we examined the unique association of maternal working memory skills (independent of related cognitive capacities) with cognitively stimulating parenting behaviors. Path analysis revealed that directly assessed working memory, short-term memory, and verbal intelligence independently predicted greater levels of observed maternal scaffolding behaviors. Mothers from poorer families demonstrated lower levels of working memory, short-term memory, and verbal intelligence. However, mothers' participation in an early childhood parenting intervention that ended 2 years prior to this study contributed to greater levels of working memory skills and verbal intelligence. Further, all 3 domains of maternal cognitive capacity mediated the effect of family economic resources on maternal scaffolding, and verbal intelligence also mediated the effect of early parenting intervention exposure on maternal scaffolding. The study demonstrates the unique relevance of maternal working memory for scaffolding behaviors that required continuously monitoring the child's engagement, providing assistance, and minimizing external distractions. These results highlight the importance of directly targeting maternal cognitive capacities in poor women with little or no formal education, using a 2-generation intervention approach that includes activities known to promote parental executive functioning and literacy. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Impact of extended duty hours on medical trainees
Weiss, Pnina; Kryger, Meir; Knauert, Melissa
2018-01-01
Many studies on resident physicians have demonstrated that extended work hours are associated with a negative impact on well-being, education, and patient care. However, the relationship between the work schedule and the degree of impairment remains unclear. In recent years, because of concerns for patient safety, national minimum standards for duty hours have been instituted (2003) and revised (2011). These changes were based on studies of the effects of sleep deprivation on human performance and specifically on the effect of extended shifts on resident performance. These requirements necessitated significant restructuring of resident schedules. Concerns were raised that these changes have impaired continuity of care, resident education and supervision, and patient safety. We review the studies on the effect of extended work hours on resident well-being, education, and patient care as well as those assessing the effect of work hour restrictions. Although many studies support the adverse effects of extended shifts, there are some conflicting results due to factors such as heterogeneity of protocols, schedules, subjects, and environments. Assessment of the effect of work hour restrictions has been even more difficult. Recent data demonstrating that work hour limitations have not been associated with improvement in patient outcomes or resident education and well-being have been interpreted as support for lifting restrictions in some specialties. However, these studies have significant limitations and should be interpreted with caution. Until future research clarifies duty hours that optimize patient outcomes, resident education, and well-being, it is recommended that current regulations be followed. PMID:29073389
Electron counting and a large family of two-dimensional semiconductors
NASA Astrophysics Data System (ADS)
Miao, Maosheng; Botana, Jorge; Zurek, Eva; Liu, Jingyao; Yang, Wen
Two-dimensional semiconductors (2DSC) are currently the focus of many studies, thanks to their novel and superior transport properties that may greatly influence future electronic devices. The potential applications of 2DSCs range from low-dimensional electronics, topological insulators and vallytronics all the way to novel photolysis. However, compared with the conventional semiconductors that are comprised of main group elements and cover a large range of band gaps and lattice constants, the choice of 2D materials is very limited. In this work, we propose and demonstrate a large family of 2DSCs, all adopting the same structure and consisting of only main group elements. Using advanced density functional calculations, we demonstrate the attainability of these materials, and show that they cover a large range of lattice constants, band gaps and band edge states, making them good candidate materials for heterojunctions. This family of two dimensional materials may be instrumental in the fabrication of 2DSC devices that may rival the currently employed 3D semiconductors.
Piezoelectric-nanowire-enabled power source for driving wireless microelectronics.
Xu, Sheng; Hansen, Benjamin J; Wang, Zhong Lin
2010-10-19
Harvesting energy from irregular/random mechanical actions in variable and uncontrollable environments is an effective approach for powering wireless mobile electronics to meet a wide range of applications in our daily life. Piezoelectric nanowires are robust and can be stimulated by tiny physical motions/disturbances over a range of frequencies. Here, we demonstrate the first chemical epitaxial growth of PbZr(x)Ti(1-x)O(3) (PZT) nanowire arrays at 230 °C and their application as high-output energy converters. The nanogenerators fabricated using a single array of PZT nanowires produce a peak output voltage of ~0.7 V, current density of 4 μA cm(-2) and an average power density of 2.8 mW cm(-3). The alternating current output of the nanogenerator is rectified, and the harvested energy is stored and later used to light up a commercial laser diode. This work demonstrates the feasibility of using nanogenerators for powering mobile and even personal microelectronics.
Photothermal heating in metal-embedded microtools for material transport
NASA Astrophysics Data System (ADS)
Villangca, Mark; Palima, Darwin; Bañas, Andrew; Glückstad, Jesper
2016-03-01
Material transport is an important mechanism in microfluidics and drug delivery. The methods and solutions found in literature involve passively diffusing structures, microneedles and chemically fueled structures. In this work, we make use of optically actuated microtools with embedded metal layer as heating element for controlled loading and release. The new microtools take advantage of the photothermal-induced convection current to load and unload cargo. We also discuss some challenges encountered in realizing a self-contained polymerized microtool. Microfluidic mixing, fluid flow control and convection currents have been demonstrated both experimentally and numerically for static metal thin films or passively floating nanoparticles. Here we show an integration of aforementioned functionalities in an optically fabricated and actuated microtool. As proof of concept, we demonstrate loading and unloading of beads. This can be extended to controlled transport and release of genetic material, bio-molecules, fluorescent dyes. We envisioned these microtools to be an important addition to the portfolio of structure-mediated contemporary biophotonics.
Leung, Christy Y.Y.; Miller, Alison L.; Lumeng, Julie C.; Kaciroti, Niko A.; Rosenblum, Katherine L.
2015-01-01
Identifying maternal characteristics in relation to child feeding is important for addressing the current childhood obesity epidemic. The present study examines whether maternal representations of their children are associated with feeding beliefs and practices. Maternal representations refer to mothers' affective and cognitive perspectives regarding their children and their subjective experiences of their relationships with their children. This key maternal characteristic has not been examined in association with maternal feeding. Thus the purpose of the current study was to examine whether maternal representations of their children, reflected by Working Model of the Child Interview typologies (Balanced, Disengaged, or Distorted), were associated with maternal feeding beliefs (Authority, Confidence, and Investment) and practices (Pressure to Eat, Restriction, and Monitoring) among low-income mothers of young children, with maternal education examined as a covariate. Results showed that Balanced mothers were most likely to demonstrate high authority, Distorted mothers were least likely to demonstrate confidence, and Disengaged mothers were least likely to demonstrate investment in child feeding. Moreover, Balanced mothers were least likely to pressure their children to eat. Findings are discussed with regard to implications for the study of childhood obesity and for applied preventions. PMID:26145277
Source reduction of VOC and hazardous organic emissions from wood furniture coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, E.W.; McCrillis, R.C.
1996-12-31
Under US EPA sponsorship, AeroVironment, Inc. and Adhesives Coating Co. are teaming up to develop and demonstrate a wood furniture coating system containing no volatile organic compounds (VOCs) and no hazardous air pollutants (HAPs), making it less hazardous to use, and emitting no detectable VOCs and HAPs during curing, therefore contributing significantly to emission reduction. Earlier work on a new topcoat showed excellent performance characteristics in terms of adhesion, gloss value, dry time, hardness, organic solvents content, and chemical/stain resistance. The VOC contents of both the clear topcoat and the white pigmented topcoat were less than 10 g/L, the detectionmore » list of the test method (EPA Method 24). This coating`s performance and properties compared favorably with those of other low-VOC waterborne coatings. Currently, low-/no-VOC stain and sealer wood coatings are being developed so that a complete low-/no-VOC wood coating system will be available for public use. The compatibility of coating components (a stain and sealer) to go with the topcoat is currently being evaluated. The complete system will be demonstrated at several furniture plants. A marketing plan of the developed products is part of this demonstration project.« less
Long-term work disability and absenteeism in anxiety and depressive disorders.
Hendriks, Sanne M; Spijker, Jan; Licht, Carmilla M M; Hardeveld, Florian; de Graaf, Ron; Batelaan, Neeltje M; Penninx, Brenda W J H; Beekman, Aartjan T F
2015-06-01
This longitudinal study aims to compare long-term work disability and absenteeism between anxiety and depressive disorders focusing on the effects of different course trajectories (remission, recurrence and chronic course) and specific symptom dimensions (anxiety arousal, avoidance behaviour and depressive mood). We included healthy controls, subjects with a history of - and current anxiety and/or depressive disorders with a paid job (n=1632). The Composite International Diagnostic Interview was used to diagnose anxiety and depressive disorders and to assess course trajectories at baseline, over 2 and 4 years. The World Health Organization Disability Assessment Schedule II and the Health and Labour Questionnaire Short Form were used to measure work disability and absenteeism. Symptom dimensions were measured using the Beck Anxiety Inventory, the Fear Questionnaire and the Inventory for Depressive Symptomatology. A history of - and current anxiety and/or depressive disorders were associated with increasing work disability and absenteeism over 4 years, compared to healthy controls. Long-term work disability and absenteeism were most prominent in comorbid anxiety-depressive disorder, followed by depressive disorders, and lowest in anxiety disorders. A chronic course, anxiety arousal and depressive mood were strong predictors for long-term work disability while baseline psychiatric status, a chronic course and depressive mood were strong predictors for long-term work absenteeism. Results cannot be generalized to other anxiety disorders, such as obsessive compulsive disorder, posttraumatic stress disorder and specific phobias. Self-reported measures of work disability and absenteeism were used. Our results demonstrate that depressive syndromes and symptoms have more impact on future work disability and absenteeism than anxiety, implying that prevention of depression is of major importance. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Yufeng; Zhang, Zhi; Ren, Yuqin; Ran, Wei; Chen, Xinqi; Wu, Jinsong; Gao, Faming
2015-07-01
In this work, a polyaniline coated hierarchical porous carbon (HPC) composite (PANI@HPC) is developed using a vapor deposition polymerization technique. The as synthesized composite is applied as the supercapacitor electrode material, and presents a high specific capacitance of 531 F g-1 at current density of 0.5 A g-1 and superior cycling stability of 96.1% (after 10,000 charge-discharge cycles at current density of 10 A g-1). This can be attributed to the maximized synergistic effect of PANI and HPC. Furthermore, an aqueous symmetric supercapacitor device based on PANI@HPC is fabricated, demonstrating a high specific energy of 17.3 Wh kg-1.
Current injection and transport in polyfluorene
NASA Astrophysics Data System (ADS)
Yang, Chieh-Kai; Yang, Chia-Ming; Liao, Hua-Hsien; Horng, Sheng-Fu; Meng, Hsin-Fei
2007-08-01
A comprehensive numerical model is established for the electrical processes in a sandwich organic semiconductor device with high carrier injection barrier. The charge injection at the anode interface with 0.8eV energy barrier is dominated by the hopping among the gap states of the semiconductor caused by disorders. The Ohmic behavior at low voltage is demonstrated to be not due to the background doping but the filaments formed by conductive clusters. In bipolar devices with low work function cathode it is shown that near the anode the electron traps significantly enhance hole injection through Fowler-Nordheim tunneling, resulting in rapid increases of the hole carrier and current in comparison with the hole-only devices.
Algorithms for the prediction of retinopathy of prematurity based on postnatal weight gain.
Binenbaum, Gil
2013-06-01
Current ROP screening guidelines represent a simple risk model with two dichotomized factors, birth weight and gestational age at birth. Pioneering work has shown that tracking postnatal weight gain, a surrogate for low insulin-like growth factor 1, may capture the influence of many other ROP risk factors and improve risk prediction. Models including weight gain, such as WINROP, ROPScore, and CHOP ROP, have demonstrated accurate ROP risk assessment and a potentially large reduction in ROP examinations, compared to current guidelines. However, there is a need for larger studies, and generalizability is limited in countries with developing neonatal care systems. Copyright © 2013 Elsevier Inc. All rights reserved.
Locational Marginal Pricing in the Campus Power System at the Power Distribution Level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Jun; Gu, Yi; Zhang, Yingchen
2016-11-14
In the development of smart grid at distribution level, the realization of real-time nodal pricing is one of the key challenges. The research work in this paper implements and studies the methodology of locational marginal pricing at distribution level based on a real-world distribution power system. The pricing mechanism utilizes optimal power flow to calculate the corresponding distributional nodal prices. Both Direct Current Optimal Power Flow and Alternate Current Optimal Power Flow are utilized to calculate and analyze the nodal prices. The University of Denver campus power grid is used as the power distribution system test bed to demonstrate themore » pricing methodology.« less
Thermal potentiation of chemotherapy by magnetic nanoparticles
Torres-Lugo, Madeline; Rinaldi, Carlos
2014-01-01
Clinical studies have demonstrated the effectiveness of hyperthermia as an adjuvant for chemotherapy and radiotherapy. However, significant clinical challenges have been encountered, such as a broader spectrum of toxicity, lack of patient tolerance, temperature control and significant invasiveness. Hyperthermia induced by magnetic nanoparticles in high-frequency oscillating magnetic fields, commonly termed magnetic fluid hyperthermia, is a promising form of heat delivery in which thermal energy is supplied at the nanoscale to the tumor. This review discusses the mechanisms of heat dissipation of iron oxide-based magnetic nanoparticles, current methods and challenges to deliver heat in the clinic, and the current work related to the use of magnetic nanoparticles for the thermal-chemopotentiation of therapeutic drugs. PMID:24074390
Excitation of helicons by current antennas
NASA Astrophysics Data System (ADS)
Gospodchikov, E. D.; Timofeev, A. V.
2017-06-01
Depending on the angle θ between the wave vector and the magnetic field, helicons are conventionally divided into two branches: proper helicons (H mode), propagating at small θ, and Trivelpiece-Gould waves (TG mode), propagating at large θ. The latter are close to potential waves and have a significant electric component along the external magnetic field. It is believed that it is these waves that provide electron heating in helicon discharges. There is also commonly believed that current antennas, widely used to ignite helicon discharges, excite essentially nonpotential H modes, which then transform into TG modes due to plasma inhomogeneity. In this work, it is demonstrated that electromagnetic energy can also be efficiently introduced in plasma by means of TG modes.
Scaling laws for AC gas breakdown and implications for universality
NASA Astrophysics Data System (ADS)
Loveless, Amanda M.; Garner, Allen L.
2017-10-01
The reduced dependence on secondary electron emission and electrode surface properties makes radiofrequency (RF) and microwave (MW) plasmas advantageous over direct current (DC) plasmas for various applications, such as microthrusters. Theoretical models relating molecular constants to alternating current (AC) breakdown often fail due to incomplete understanding of both the constants and the mechanisms involved. This work derives simple analytic expressions for RF and MW breakdown, demonstrating the transition between these regimes at their high and low frequency limits, respectively. We further show that the limiting expressions for DC, RF, and MW breakdown voltage all have the same universal scaling dependence on pressure and gap distance at high pressure, agreeing with experiment.
Vollmer, Anna-Lisa; Mühlig, Manuel; Steil, Jochen J; Pitsch, Karola; Fritsch, Jannik; Rohlfing, Katharina J; Wrede, Britta
2014-01-01
Robot learning by imitation requires the detection of a tutor's action demonstration and its relevant parts. Current approaches implicitly assume a unidirectional transfer of knowledge from tutor to learner. The presented work challenges this predominant assumption based on an extensive user study with an autonomously interacting robot. We show that by providing feedback, a robot learner influences the human tutor's movement demonstrations in the process of action learning. We argue that the robot's feedback strongly shapes how tutors signal what is relevant to an action and thus advocate a paradigm shift in robot action learning research toward truly interactive systems learning in and benefiting from interaction.
How virtue ethics informs medical professionalism.
McCammon, Susan D; Brody, Howard
2012-12-01
We argue that a turn toward virtue ethics as a way of understanding medical professionalism represents both a valuable corrective and a missed opportunity. We look at three ways in which a closer appeal to virtue ethics could help address current problems or issues in professionalism education-first, balancing professionalism training with demands for professional virtues as a prerequisite; second, preventing demands for the demonstrable achievement of competencies from working against ideal professionalism education as lifelong learning; and third, avoiding temptations to dismiss moral distress as a mere "hidden curriculum" problem. As a further demonstration of how best to approach a lifelong practice of medical virtue, we will examine altruism as a mean between the extremes of self-sacrifice and selfishness.
Vollmer, Anna-Lisa; Mühlig, Manuel; Steil, Jochen J.; Pitsch, Karola; Fritsch, Jannik; Rohlfing, Katharina J.; Wrede, Britta
2014-01-01
Robot learning by imitation requires the detection of a tutor's action demonstration and its relevant parts. Current approaches implicitly assume a unidirectional transfer of knowledge from tutor to learner. The presented work challenges this predominant assumption based on an extensive user study with an autonomously interacting robot. We show that by providing feedback, a robot learner influences the human tutor's movement demonstrations in the process of action learning. We argue that the robot's feedback strongly shapes how tutors signal what is relevant to an action and thus advocate a paradigm shift in robot action learning research toward truly interactive systems learning in and benefiting from interaction. PMID:24646510
Lunar and Planetary Science XXXV: Education Programs Demonstrations
NASA Technical Reports Server (NTRS)
2004-01-01
Reports from the session on Education Programs Demonstration include:Hands-On Activities for Exploring the Solar System in K-14; Formal Education and Informal Settings;Making Earth and Space Science and Exploration Accessible; New Thematic Solar System Exploration Products for Scientists and Educators Engaging Students of All Ages with Research-related Activities: Using the Levers of Museum Reach and Media Attention to Current Events; Astronomy Village: Use of Planetary Images in Educational Multimedia; ACUMEN: Astronomy Classes Unleashed: Meaningful Experiences for Neophytes; Unusual Guidebook to Terrestrial Field Work Studies: Microenvironmental Studies by Landers on Planetary Surfaces (New Atlas in the Series of the Solar System Notebooks on E tv s University, Hungary); and The NASA ADS: Searching, Linking and More.
Krukowska, Jolanta; Dudkiewicz, Iwona; Balcerzak, Ewa; Linek, Przemysław; Kulma, Dariusz; Miller, Elibieta
2014-01-01
Back pain most often affects people whose work is related to the load while performing activities related to lifting and in addition to the method and type of work performed, as well as office workers. The aim of the study is to evaluate the efficacy of combination therapy of ultrasound and TENS in the analgesic effect in patients with disorders of the lumbar spine. The study group consisted of 115 patients aged from 24 to 65 years (mean 45.22 +/- 10.38 years) with pain complaints in the lumbar degenerative against overload and, as a result of long-term work involved in taking a forced static position or sitting. Twice (before and after treatment) pain intensity was assessed using of the modified questionnaire of indicators according to Laitinen and scale VAS and physical fitness bythe Oswestry questionnaire (ODI--Oswestry Disability Index). It has been demonstrated greater analgesic efficacy of combination therapy than the monotherapy, which had a characterizing effect on the improvement of mobility of patients according to the Oswestry questionnaire. Afterthe completion of the combination therapy was observed the highly statistical higher than in the monotherapy groups, reducing the intensity and frequency of pain, increase physical activity and reduce quantities medications you are taking. Combination antiretroviral the action of ultrasound and currentsTENS has a more effective analgesic effect and improve the efficiency of patients with pain in the lumbar spine than monotherapy with ultrasound or TENS currents. Enables faster recovery professional and social activity and a reduction in sickness absence at work.
Working Memory Delay Activity Predicts Individual Differences in Cognitive Abilities
Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K.
2015-01-01
A great deal of prior research has examined the relation between estimates of working memory and cognitive abilities. Yet, the neural mechanisms that account for these relations are still not very well understood. The current study explored whether individual differences in working memory delay activity would be a significant predictor of cognitive abilities. A large number of participants performed multiple measures of capacity, attention control, long-term memory, working memory span, and fluid intelligence, and latent variable analyses were used to examine the data. During two working memory change detection tasks, we acquired EEG data and examined the contra-lateral delay activity. The results demonstrated that the contralateral delay activity was significantly related to cognitive abilities, and importantly these relations were because of individual differences in both capacity and attention control. These results suggest that individual differences in working memory delay activity predict individual differences in a broad range of cognitive abilities, and this is because of both differences in the number of items that can be maintained and the ability to control access to working memory. PMID:25436671
Working memory delay activity predicts individual differences in cognitive abilities.
Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K
2015-05-01
A great deal of prior research has examined the relation between estimates of working memory and cognitive abilities. Yet, the neural mechanisms that account for these relations are still not very well understood. The current study explored whether individual differences in working memory delay activity would be a significant predictor of cognitive abilities. A large number of participants performed multiple measures of capacity, attention control, long-term memory, working memory span, and fluid intelligence, and latent variable analyses were used to examine the data. During two working memory change detection tasks, we acquired EEG data and examined the contralateral delay activity. The results demonstrated that the contralateral delay activity was significantly related to cognitive abilities, and importantly these relations were because of individual differences in both capacity and attention control. These results suggest that individual differences in working memory delay activity predict individual differences in a broad range of cognitive abilities, and this is because of both differences in the number of items that can be maintained and the ability to control access to working memory.
System for Anomaly and Failure Detection (SAFD) system development
NASA Technical Reports Server (NTRS)
Oreilly, D.
1992-01-01
This task specified developing the hardware and software necessary to implement the System for Anomaly and Failure Detection (SAFD) algorithm, developed under Technology Test Bed (TTB) Task 21, on the TTB engine stand. This effort involved building two units; one unit to be installed in the Block II Space Shuttle Main Engine (SSME) Hardware Simulation Lab (HSL) at Marshall Space Flight Center (MSFC), and one unit to be installed at the TTB engine stand. Rocketdyne personnel from the HSL performed the task. The SAFD algorithm was developed as an improvement over the current redline system used in the Space Shuttle Main Engine Controller (SSMEC). Simulation tests and execution against previous hot fire tests demonstrated that the SAFD algorithm can detect engine failure as much as tens of seconds before the redline system recognized the failure. Although the current algorithm only operates during steady state conditions (engine not throttling), work is underway to expand the algorithm to work during transient condition.
Wide operating window spin-torque majority gate towards large-scale integration of logic circuits
NASA Astrophysics Data System (ADS)
Vaysset, Adrien; Zografos, Odysseas; Manfrini, Mauricio; Mocuta, Dan; Radu, Iuliana P.
2018-05-01
Spin Torque Majority Gate (STMG) is a logic concept that inherits the non-volatility and the compact size of MRAM devices. In the original STMG design, the operating range was restricted to very small size and anisotropy, due to the exchange-driven character of domain expansion. Here, we propose an improved STMG concept where the domain wall is driven with current. Thus, input switching and domain wall propagation are decoupled, leading to higher energy efficiency and allowing greater technological optimization. To ensure majority operation, pinning sites are introduced. We observe through micromagnetic simulations that the new structure works for all input combinations, regardless of the initial state. Contrary to the original concept, the working condition is only given by threshold and depinning currents. Moreover, cascading is now possible over long distances and fan-out is demonstrated. Therefore, this improved STMG concept is ready to build complete Boolean circuits in absence of external magnetic fields.
The role of biotic forces in driving macroevolution: beyond the Red Queen
Voje, Kjetil L.; Holen, Øistein H.; Liow, Lee Hsiang; Stenseth, Nils Chr.
2015-01-01
A multitude of hypotheses claim that abiotic factors are the main drivers of macroevolutionary change. By contrast, Van Valen's Red Queen hypothesis is often put forward as the sole representative of the view that biotic forcing is the main evolutionary driver. This imbalance of hypotheses does not reflect our current knowledge: theoretical work demonstrates the plausibility of biotically driven long-term evolution, whereas empirical work suggests a central role for biotic forcing in macroevolution. We call for a more pluralistic view of how biotic forces may drive long-term evolution that is compatible with both phenotypic stasis in the fossil record and with non-constant extinction rates. Promising avenues of research include contrasting predictions from relevant theories within ecology and macroevolution, as well as embracing both abiotic and biotic proxies while modelling long-term evolutionary data. By fitting models describing hypotheses of biotically driven macroevolution to data, we could dissect their predictions and transcend beyond pattern description, possibly narrowing the divide between our current understanding of micro- and macroevolution. PMID:25948685
Effects of space-radiation damage and temperature on CCD noise for the Lyman FUSE mission
NASA Astrophysics Data System (ADS)
Murowinski, Richard G.; Gao, Linzhuang; Deen, Mohamed J.
1993-09-01
Charge coupled device (CCD) imaging arrays are becoming more frequently used in space vehicles and equipment, especially space-based astronomical telescopes. It is important to understand the effects of radiation on a CCD so that its performance degradation during mission lifetime can be predicted, and so that methods to prevent unacceptable performance degradation can be found. Much recent work by various groups has focused on the problems surrounding the loss of charge transfer efficiency and the increase in dark current and dark current spikes in CCDs. The use of a CCD as the fine error sensor in the Lyman Far Ultraviolet Spectroscopic Explorer (FUSE) is limited by its noise performance. In this work we attempt to understand some of the factors surrounding the noise degradation due to radiation in a space environment. Later, we demonstrate how low frequency noise can be used as a characterization tool for studying proton radiation damage in CCDs.
Topological-insulator-based terahertz modulator
Wang, X. B.; Cheng, L.; Wu, Y.; ...
2017-10-18
Three dimensional topological insulators, as a new phase of quantum matters, are characterized by an insulating gap in the bulk and a metallic state on the surface. Particularly, most of the topological insulators have narrow band gaps, and hence have promising applications in the area of terahertz optoelectronics. In this work, we experimentally demonstrate an electronically-tunable terahertz intensity modulator based on Bi 1:5Sb 0:5Te 1:8Se 1:2 single crystal, one of the most insulating topological insulators. A relative frequency-independent modulation depth of ~62% over a wide frequency range from 0.3 to 1.4 THz has been achieved at room temperature, by applyingmore » a bias current of 100 mA. The modulation in the low current regime can be further enhanced at low temperature. We propose that the extraordinarily large modulation is a consequence of thermally-activated carrier absorption in the semiconducting bulk states. Our work provides a new application of topological insulators for terahertz technology.« less
Topological-insulator-based terahertz modulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X. B.; Cheng, L.; Wu, Y.
Three dimensional topological insulators, as a new phase of quantum matters, are characterized by an insulating gap in the bulk and a metallic state on the surface. Particularly, most of the topological insulators have narrow band gaps, and hence have promising applications in the area of terahertz optoelectronics. In this work, we experimentally demonstrate an electronically-tunable terahertz intensity modulator based on Bi 1:5Sb 0:5Te 1:8Se 1:2 single crystal, one of the most insulating topological insulators. A relative frequency-independent modulation depth of ~62% over a wide frequency range from 0.3 to 1.4 THz has been achieved at room temperature, by applyingmore » a bias current of 100 mA. The modulation in the low current regime can be further enhanced at low temperature. We propose that the extraordinarily large modulation is a consequence of thermally-activated carrier absorption in the semiconducting bulk states. Our work provides a new application of topological insulators for terahertz technology.« less
Using Model-Based Reasoning for Autonomous Instrument Operation - Lessons Learned From IMAGE/LENA
NASA Technical Reports Server (NTRS)
Johnson, Michael A.; Rilee, Michael L.; Truszkowski, Walt; Bailin, Sidney C.
2001-01-01
Model-based reasoning has been applied as an autonomous control strategy on the Low Energy Neutral Atom (LENA) instrument currently flying on board the Imager for Magnetosphere-to-Aurora Global Exploration (IMAGE) spacecraft. Explicit models of instrument subsystem responses have been constructed and are used to dynamically adapt the instrument to the spacecraft's environment. These functions are cast as part of a Virtual Principal Investigator (VPI) that autonomously monitors and controls the instrument. In the VPI's current implementation, LENA's command uplink volume has been decreased significantly from its previous volume; typically, no uplinks are required for operations. This work demonstrates that a model-based approach can be used to enhance science instrument effectiveness. The components of LENA are common in space science instrumentation, and lessons learned by modeling this system may be applied to other instruments. Future work involves the extension of these methods to cover more aspects of LENA operation and the generalization to other space science instrumentation.
Pensel, Patricia E; Castro, Silvina; Allemandi, Daniel; Bruni, Sergio Sánchez; Palma, Santiago D; Elissondo, María Celina
2014-06-16
Cystic echinococcosis is a chronic, complex, and still neglected disease. Although albendazole has demonstrated efficacy, only about one-third of patients experience complete remission or cure and 30-50% of treated patients develop some evidence of a therapeutic response. Different strategies have been developed in order to improve the albendazole water solubility and dissolution rate. The aim of the current work was to investigate the chemoprophylactic and clinical efficacy of an albendazole:poloxamer 188 solid dispersion formulation on mice infected with Echinococcus granulosus metacestodes. Albendazole formulated as solid dispersion had greater chemoprophylactic and clinical efficacy than albendazole alone. The improved in therapeutic efficacy could be a consequence of the increase in the systemic availability of albendazole sulfoxide. The work reported here demonstrates that in vivo treatment with albendazole:poloxamer 188 impairs the development of the hydatid cysts. This new pharmacotechnically based strategy could be a suitable alternative for treating cystic echinococcosis in humans. Copyright © 2014 Elsevier B.V. All rights reserved.
Tugwell, Peter; Boers, Maarten; D'Agostino, Maria-Antonietta; Beaton, Dorcas; Boonen, Annelies; Bingham, Clifton O; Choy, Ernest; Conaghan, Philip G; Dougados, Maxime; Duarte, Catia; Furst, Daniel E; Guillemin, Francis; Gossec, Laure; Heiberg, Turid; van der Heijde, Désirée M; Hewlett, Sarah; Kirwan, John R; Kvien, Tore K; Landewé, Robert B; Mease, Philip J; Østergaard, Mikkel; Simon, Lee; Singh, Jasvinder A; Strand, Vibeke; Wells, George
2014-05-01
The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter requires that criteria be met to demonstrate that the outcome instrument meets the criteria for content, face, and construct validity. Discussion groups critically reviewed a variety of ways in which case studies of current OMERACT Working Groups complied with the Truth component of the Filter and what issues remained to be resolved. The case studies showed that there is broad agreement on criteria for meeting the Truth criteria through demonstration of content, face, and construct validity; however, several issues were identified that the Filter Working Group will need to address. These issues will require resolution to reach consensus on how Truth will be assessed for the proposed Filter 2.0 framework, for instruments to be endorsed by OMERACT.
Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation
NASA Technical Reports Server (NTRS)
Willey, Ronald J.
1993-01-01
Five kinetic models are compared for their ability to predict recombination coefficients for oxygen and nitrogen atoms over high-temperature reusable surface insulation (HRSI). Four of the models are derived using Rideal-Eley or Langmuir-Hinshelwood catalytic mechanisms to describe the reaction sequence. The fifth model is an empirical expression that offers certain features unattainable through mechanistic description. The results showed that a four-parameter model, with temperature as the only variable, works best with data currently available. The model describes recombination coefficients for oxygen and nitrogen atoms for temperatures from 300 to 1800 K. Kinetic models, with atom concentrations, demonstrate the influence of atom concentration on recombination coefficients. These models can be used for the prediction of heating rates due to catalytic recombination during re-entry or aerobraking maneuvers. The work further demonstrates a requirement for more recombination experiments in the temperature ranges of 300-1000 K, and 1500-1850 K, with deliberate concentration variation to verify model requirements.
2017-01-01
In this work, the use of fused deposition modeling (FDM) in a (bio)analytical/lab-on-a-chip research laboratory is described. First, the specifications of this 3D printing method that are important for the fabrication of (micro)devices were characterized for a benchtop FDM 3D printer. These include resolution, surface roughness, leakage, transparency, material deformation, and the possibilities for integration of other materials. Next, the autofluorescence, solvent compatibility, and biocompatibility of 12 representative FDM materials were tested and evaluated. Finally, we demonstrate the feasibility of FDM in a number of important applications. In particular, we consider the fabrication of fluidic channels, masters for polymer replication, and tools for the production of paper microfluidic devices. This work thus provides a guideline for (i) the use of FDM technology by addressing its possibilities and current limitations, (ii) material selection for FDM, based on solvent compatibility and biocompatibility, and (iii) application of FDM technology to (bio)analytical research by demonstrating a broad range of illustrative examples. PMID:28628294
Using Flanagan's phase vocoder to improve cochlear implant performance
NASA Astrophysics Data System (ADS)
Zeng, Fan-Gang
2004-10-01
The cochlear implant has restored partial hearing to more than 100
Animal social learning: associations and adaptations.
Reader, Simon M
2016-01-01
Social learning, learning from others, is a powerful process known to impact the success and survival of humans and non-human animals alike. Yet we understand little about the neurocognitive and other processes that underpin social learning. Social learning has often been assumed to involve specialized, derived cognitive processes that evolve and develop independently from other processes. However, this assumption is increasingly questioned, and evidence from a variety of organisms demonstrates that current, recent, and early life experience all predict the reliance on social information and thus can potentially explain variation in social learning as a result of experiential effects rather than evolved differences. General associative learning processes, rather than adaptive specializations, may underpin much social learning, as well as social learning strategies. Uncovering these distinctions is important to a variety of fields, for example by widening current views of the possible breadth and adaptive flexibility of social learning. Nonetheless, just like adaptationist evolutionary explanations, associationist explanations for social learning cannot be assumed, and empirical work is required to uncover the mechanisms involved and their impact on the efficacy of social learning. This work is being done, but more is needed. Current evidence suggests that much social learning may be based on 'ordinary' processes but with extraordinary consequences.
Tunable φ Josephson junction ratchet.
Menditto, R; Sickinger, H; Weides, M; Kohlstedt, H; Koelle, D; Kleiner, R; Goldobin, E
2016-10-01
We demonstrate experimentally the operation of a deterministic Josephson ratchet with tunable asymmetry. The ratchet is based on a φ Josephson junction with a ferromagnetic barrier operating in the underdamped regime. The system is probed also under the action of an additional dc current, which acts as a counterforce trying to stop the ratchet. Under these conditions the ratchet works against the counterforce, thus producing a nonzero output power. Finally, we estimate the efficiency of the φ Josephson junction ratchet.
Ignition of PBXW-115 Due to Electrostatic Discharge
1991-05-01
observations, a model describing the shock ignition of a solid explosive has been developed. This work was funded by the Office Of Naval Technology...analytical model , which is discussed in Chapter 6, has demonstrated that if ESD induces a thermal explosion in an arc channel, then the reaction can be...voltage electrode to measure the current change, dI/dt, through the sample. The dI/dt data were used to Epon 815 Resin, Miller Stephenson Chemical Co
Advanced Modulation and Coding Technology Conference
NASA Technical Reports Server (NTRS)
1992-01-01
The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions.
Carnide, Nancy; Hogg-Johnson, Sheilah; Côté, Pierre; Irvin, Emma; Van Eerd, Dwayne; Koehoorn, Mieke; Furlan, Andrea D
2017-07-01
Musculoskeletal disorders (MSDs) are a common source of work disability. Opioid prescribing for MSDs has been on the rise, despite a lack of data on effectiveness. The objective of this study was to conduct a systematic review to determine whether early receipt of opioids is associated with future work outcomes among workers with MSDs compared with other analgesics, no analgesics, or placebo. MEDLINE, EMBASE, CINAHL, and CENTRAL were searched from inception to 2014 and reference lists were scanned. Studies were included if opioids were prescribed within 12 weeks of MSD onset. Eligible outcomes included absenteeism, work status, receiving disability payments, and functional status. Two reviewers independently reviewed articles for relevance, risk of bias, and data extraction using standardized forms. Data synthesis using best evidence synthesis methods was planned. Five historical cohort studies met the inclusion criteria, all including workers filing wage compensation claims. Four studies demonstrated a significant association between early opioids and prolonged work disability. One study found a shorter time between prescriptions to be associated with shorter work disability. However, all studies were found to be at a high risk of bias and a best evidence synthesis could not be conducted. The main limitations identified were with exposure measurement and control of confounding. Current literature suggests that opioids provided within the first 12 weeks of onset of an MSD are associated with prolonged work disability. However, the conclusions of these studies need testing in a high-quality study that addresses the methodological shortcomings identified in the current review.
An Investigation of Executive Functioning in Pediatric Anxiety.
Murphy, Yolanda E; Luke, Anna; Brennan, Elle; Francazio, Sarah; Christopher, Isabella; Flessner, Christopher A
2018-01-01
Although science's understanding (e.g., etiology, maintaining factors, etc.) of pediatric anxiety and related problems has grown substantially over recent years, several aspects to anxiety in youths remain elusive, particularly with relation to executive functioning. To this end, the current study sought to examine several facets to executive functioning (i.e., cognitive flexibility, inhibition, planning, working memory) within a transdiagnostic sample of youths exhibiting varying degrees of anxiety symptoms. One hundred six youths completed a comprehensive battery, including several self-report measures (e.g., Multidimensional Anxiety Scale for Children [MASC] or MASC-2) and an automated neurocognitive battery of several executive functioning tasks (Intradimensional/Extradimensional [IDED], Stop Signal [SST], Spatial Span [SSP], Stockings of Cambridge [SOC] tasks). Regression analyses indicated that youths exhibiting marked anxiety symptoms demonstrated increased planning time and probability of inhibition compared with youths with minimal or no anxiety symptoms. Youths with marked anxiety symptoms similarly demonstrated better cognitive flexibility (i.e., set shifting) compared with youths with minimal anxiety. In addition, analyses indicated a trend such that youths exhibiting marked anxiety symptoms demonstrated poorer working memory compared with youths with no anxiety symptoms. Group classification did not predict remaining outcomes. Limitations and future areas of research are discussed.
Cross-situational statistical word learning in young children.
Suanda, Sumarga H; Mugwanya, Nassali; Namy, Laura L
2014-10-01
Recent empirical work has highlighted the potential role of cross-situational statistical word learning in children's early vocabulary development. In the current study, we tested 5- to 7-year-old children's cross-situational learning by presenting children with a series of ambiguous naming events containing multiple words and multiple referents. Children rapidly learned word-to-object mappings by attending to the co-occurrence regularities across these ambiguous naming events. The current study begins to address the mechanisms underlying children's learning by demonstrating that the diversity of learning contexts affects performance. The implications of the current findings for the role of cross-situational word learning at different points in development are discussed along with the methodological implications of employing school-aged children to test hypotheses regarding the mechanisms supporting early word learning. Copyright © 2014 Elsevier Inc. All rights reserved.
Joint T1 and brain fiber log-demons registration using currents to model geometry.
Siless, Viviana; Glaunès, Joan; Guevara, Pamela; Mangin, Jean-François; Poupon, Cyril; Le Bihan, Denis; Thirion, Bertrand; Fillard, Pierre
2012-01-01
We present an extension of the diffeomorphic Geometric Demons algorithm which combines the iconic registration with geometric constraints. Our algorithm works in the log-domain space, so that one can efficiently compute the deformation field of the geometry. We represent the shape of objects of interest in the space of currents which is sensitive to both location and geometric structure of objects. Currents provides a distance between geometric structures that can be defined without specifying explicit point-to-point correspondences. We demonstrate this framework by registering simultaneously T1 images and 65 fiber bundles consistently extracted in 12 subjects and compare it against non-linear T1, tensor, and multi-modal T1 + Fractional Anisotropy (FA) registration algorithms. Results show the superiority of the Log-domain Geometric Demons over their purely iconic counterparts.
Nagel, James R.
2017-12-22
In this paper, a complete mathematical formalism is introduced to describe the excitation of electrical eddy currents due to a time-varying magnetic field. The process works by applying a quasistatic approximation to Ampere's law and then segregating the magnetic field into impressed and induced terms. The result is a nonhomogeneous vector Helmholtz equation that can be analytically solved for many practical geometries. Four demonstration cases are then solved under a constant excitation field over all space—an infinite slab in one dimension, a longitudinal cylinder in two dimensions, a transverse cylinder in two dimensions, and a sphere in three dimensions. Numericalmore » simulations are also performed in parallel with analytic computations, all of which verify the accuracy of the derived expressions.« less
Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cubukcu, Murat; Boulle, Olivier; Drouard, Marc
2014-01-27
We report on the current-induced magnetization switching of a three-terminal perpendicular magnetic tunnel junction by spin-orbit torque and its read-out using the tunnelling magnetoresistance (TMR) effect. The device is composed of a perpendicular Ta/FeCoB/MgO/FeCoB stack on top of a Ta current line. The magnetization of the bottom FeCoB layer can be switched reproducibly by the injection of current pulses with density 5 × 10{sup 11} A/m{sup 2} in the Ta layer in the presence of an in-plane bias magnetic field, leading to the full-scale change of the TMR signal. Our work demonstrates the proof of concept of a perpendicular spin-orbit torque magnetic memorymore » cell.« less
NASA Astrophysics Data System (ADS)
Seema; Chauhan, Sudakar Singh
2018-05-01
In this paper, we demonstrate the double gate vertical tunnel field-effect transistor using homo/hetero dielectric buried oxide (HDB) to obtain the optimized device characteristics. In this concern, the existence of double gate, HDB and electrode work-function engineering enhances DC performance and Analog/RF performance. The use of electrostatic doping helps to achieve higher on-current owing to occurrence of higher tunneling generation rate of charge carriers at the source/epitaxial interface. Further, lightly doped drain region and high- k dielectric below channel and drain region are responsible to suppress the ambipolar current. Simulated results clarifies that proposed device have achieved the tremendous performance in terms of driving current capability, steeper subthreshold slope (SS), drain induced barrier lowering (DIBL), hot carrier effects (HCEs) and high frequency parameters for better device reliability.
Thermal diode utilizing asymmetric contacts to heat baths.
Komatsu, Teruhisa S; Ito, Nobuyasu
2010-01-01
We propose a simple thermal diode passively acting as a rectifier of heat current. The key design of the diode is the size asymmetry of the areas in contact with two distinct heat baths. The heat-conducting medium is liquid, inside of which gaslike regions are induced depending on the applied conditions. Simulating nanoscale systems of this diode, the rectification of heat current is demonstrated. If the packing density of the medium and the working regime of temperature are properly chosen, the heat current is effectively cut off when the heat bath with narrow contact is hotter, but it flows normally under opposite temperature conditions. In the former case, the gaslike region is induced in the system and it acts as a thermal insulator because it covers the entire narrow area of contact with the bath.
NASA Astrophysics Data System (ADS)
Lu, Congxiang; Liu, Wen-wen; Pan, Hui; Tay, Beng Kang; Wang, Xingli; Liang, Kun; Wei, Xuezhe
2018-05-01
In this work, a three dimensional (3D) interconnected carbon network consisting of ultrathin graphite (UG) and carbon nanotubes (CNTs) on Ni foam is fabricated and employed as a novel type of substrate for mesoporous NiCo2O4 nano-needles. The successfully synthesized NiCo2O4 nano-needles/CNTs/UG on Ni foam has many advantages including facile electrolyte access and direct conducting pathways towards current collectors, which enable it to be a promising electrode material in battery-like electrochemical energy storage. Encouragingly, a high capacity of 135.1 mAh/g at the current density of 1 A/g, superior rate performance and also stable cycling for 1200 cycles at the current density of 5 A/g have been demonstrated in this novel material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagel, James R.
In this paper, a complete mathematical formalism is introduced to describe the excitation of electrical eddy currents due to a time-varying magnetic field. The process works by applying a quasistatic approximation to Ampere's law and then segregating the magnetic field into impressed and induced terms. The result is a nonhomogeneous vector Helmholtz equation that can be analytically solved for many practical geometries. Four demonstration cases are then solved under a constant excitation field over all space—an infinite slab in one dimension, a longitudinal cylinder in two dimensions, a transverse cylinder in two dimensions, and a sphere in three dimensions. Numericalmore » simulations are also performed in parallel with analytic computations, all of which verify the accuracy of the derived expressions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Kai; Wang, Xi; Zhang, Peng
2015-05-28
This work investigates the effect of surface fields on the dynamic resistance of a planar HgCdTe mid-wavelength infrared photodiode from both theoretical and experimental aspects, considering a gated n-on-p diode with the surface potential of its p-region modulated. Theoretical models of the surface leakage current are developed, where the surface tunnelling current in the case of accumulation is expressed by modifying the formulation of bulk tunnelling currents, and the surface channel current for strong inversion is simulated with a transmission line method. Experimental data from the fabricated devices show a flat-band voltage of V{sub FB}=−5.7 V by capacitance-voltage measurement, and thenmore » the physical parameters for bulk properties are determined from the resistance-voltage characteristics of the diode working at a flat-band gate voltage. With proper values of the modeling parameters such as surface trap density and channel electron mobility, the theoretical R{sub 0}A product and corresponding dark current calculated from the proposed model as functions of the gate voltage V{sub g} demonstrate good consistency with the measured values. The R{sub 0}A product remarkably degenerates when V{sub g} is far below or above V{sub FB} because of the surface tunnelling current or channel current, respectively; and it attains the maximum value of 5.7×10{sup 7} Ω · cm{sup 2} around the transition between surface depletion and weak inversion when V{sub g}≈−4 V, which might result from reduced generation-recombination current.« less
Initial Multidisciplinary Design and Analysis Framework
NASA Technical Reports Server (NTRS)
Ozoroski, L. P.; Geiselhart, K. A.; Padula, S. L.; Li, W.; Olson, E. D.; Campbell, R. L.; Shields, E. W.; Berton, J. J.; Gray, J. S.; Jones, S. M.;
2010-01-01
Within the Supersonics (SUP) Project of the Fundamental Aeronautics Program (FAP), an initial multidisciplinary design & analysis framework has been developed. A set of low- and intermediate-fidelity discipline design and analysis codes were integrated within a multidisciplinary design and analysis framework and demonstrated on two challenging test cases. The first test case demonstrates an initial capability to design for low boom and performance. The second test case demonstrates rapid assessment of a well-characterized design. The current system has been shown to greatly increase the design and analysis speed and capability, and many future areas for development were identified. This work has established a state-of-the-art capability for immediate use by supersonic concept designers and systems analysts at NASA, while also providing a strong base to build upon for future releases as more multifidelity capabilities are developed and integrated.
Vehicle Engineering Development Activities at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Fisher, Mark F.; Champion, Robert H., Jr.
1999-01-01
New initiatives in the Space Transportation Directorate at the Marshall Space Flight Center include an emphasis on Vehicle Engineering to enhance the strong commitment to the Directorate's projects in the development of flight hardware and flight demonstrators for the advancement of space transportation technology. This emphasis can be seen in the activities of a newly formed organization in the Transportation Directorate, The Vehicle Subsystems Engineering Group. The functions and type of activities that this group works on are described. The current projects of this group are outlined including a brief description of the status and type of work that the group is performing. A summary section is included to describe future activities.
Large area organic light emitting diodes with multilayered graphene anodes
NASA Astrophysics Data System (ADS)
Moon, Jaehyun; Hwang, Joohyun; Choi, Hong Kyw; Kim, Taek Yong; Choi, Sung-Yool; Joo, Chul Woong; Han, Jun-Han; Shin, Jin-Wook; Lee, Bong Joon; Cho, Doo-Hee; Huh, Jin Woo; Park, Seung Koo; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik
2012-09-01
In this work, we demonstrate fully uniform blue fluorescence graphene anode OLEDs, which have an emission area of 10×7 mm2. Catalytically grown multilayered graphene films have been used as the anode material. In order to compensate the current drop, which is due to the graphene's electrical resistance, we have furnished metal bus lines on the support. Processing and optical issues involved in graphene anode OLED fabrications are presented. The fabricated OLEDs with graphene anode showed comparable performances to that of ITO anode OLEDs. Our works shows that metal bus furnished graphene anode can be extended into large area OLED lighting applications in which flexibility and transparency is required.
Strategies for a Creative Future with Computer Science, Quality Design and Communicability
NASA Astrophysics Data System (ADS)
Cipolla Ficarra, Francisco V.; Villarreal, Maria
In the current work is presented the importance of the two-way triad between computer science, design and communicability. It is demonstrated how the principles of quality of software engineering are not universal since they are disappearing inside university training. Besides, a short analysis of the term "creativity" males apparent the existence of plagiarism as a human factor that damages the future of communicability applied to the on-line and off-line contents of the open software. A set of measures and guidelines are presented so that the triad works again correctly in the next years to foster the qualitative design of the interactive systems on-line and/or off-line.
NASA Astrophysics Data System (ADS)
Straub, Jeremy
2017-06-01
Prior work by Zeltmann, et al. has demonstrated the impact of small defects and other irregularities on the structural integrity of 3D printed objects. It posited that such defects could be introduced intentionally. The current work looks at the impact of changing the fill level on object structural integrity. It considers whether the existence of an appropriate level of fill can be determined through visible light imagery-based assessment of a 3D printed object. A technique for assessing the quality and sufficiency of quantity of 3D printed fill material is presented. It is assessed experimentally and results are presented and analyzed.
Intuitive Physics: Current Research and Controversies.
Kubricht, James R; Holyoak, Keith J; Lu, Hongjing
2017-10-01
Early research in the field of intuitive physics provided extensive evidence that humans succumb to common misconceptions and biases when predicting, judging, and explaining activity in the physical world. Recent work has demonstrated that, across a diverse range of situations, some biases can be explained by the application of normative physical principles to noisy perceptual inputs. However, it remains unclear how knowledge of physical principles is learned, represented, and applied to novel situations. In this review we discuss theoretical advances from heuristic models to knowledge-based, probabilistic simulation models, as well as recent deep-learning models. We also consider how recent work may be reconciled with earlier findings that favored heuristic models. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauro, R.; Leach, S.
This paper summarizes current and planned activities in the areas of hydrogen production and use, near-term venture opportunities, and codes and standards. The rationale for these efforts is to assess industry interest and engage in activities that move hydrogen technologies down the path to commercialization. Some of the work presented in this document is a condensed, preliminary version of reports being prepared under the DOE/NREL contract. In addition, the NHA work funded by Westinghouse Savannah River Corporation (WSRC) to explore the opportunities and industry interest in a Hydrogen Research Center is briefly described. Finally, the planned support of and industrymore » input to the Hydrogen Technical Advisory Panel (HTAP) on hydrogen demonstration projects is discussed.« less
Ryder, Andrew G; Sunohara, Momoka; Kirmayer, Laurence J
2015-01-01
The aim of this review is twofold: to review recent literature on personality disorders, published in 2013 and the first half of 2014; and to use recent theoretical work to argue for a contextually grounded approach to culture and personality disorder. Recent large-sample studies suggest that U.S. ethnoracial groups differ in personality disorder diagnostic rates, but also that minority groups are less likely to receive treatment for personality disorder. Most of these studies do not test explanations for these differences. However, two studies demonstrate that socioeconomic status partly explains group differences between African-Americans and European Americans. Several new studies test the psychometric properties of instruments relevant to personality disorder research in various non-Western samples. Ongoing theoretical work advocates much more attention to cultural context. Recent investigations of hikikomori, a Japanese social isolation syndrome with similarities to some aspects of personality disorder, are used to demonstrate approaches to contextually grounded personality disorder research. Studies of personality disorder must understand patients in sociocultural context considering the dynamic interactions between personality traits, developmental histories of adversity and current social context. Research examining these interactions can guide contextually grounded clinical work with patients with personality disorder.
Overview of HIT-SI Results and Plans
NASA Astrophysics Data System (ADS)
Ennis, D. A.; Akcay, C.; Hansen, C. J.; Hicks, N. K.; Hossack, A. C.; Jarboe, T. R.; Marklin, G. J.; Nelson, B. A.; Victor, B. S.
2011-10-01
Experiments in the Helicity Injected Torus-Steady Inductive (HIT-SI) device have achieved record spheromak current amplification during operations in deuterium plasmas. HIT-SI investigates steady inductive helicity injection with the aim of forming and sustaining a high-beta equilibrium in a spheromak geometry using two semi-toroidal injectors. Recent operations in deuterium plasmas have produced toroidal plasma currents greater than 50 kA, with current amplifications (Itor / Iinj) > 3 , and poloidal flux amplifications (ψpol /ψinj) > 10 . High performance deuterium discharges are achieved by initially conditioning the plasma-facing alumina surface of the HIT-SI confinement volume with helium plasmas. During subsequent deuterium operation the alumina surface strongly pumps deuterium, thereby limiting the density in the confinement volume. Additional measurements during high current deuterium discharges demonstrate reduced current and electron density fluctuations, impurity O III ion temperatures up to 50 eV and a toroidal current persistence for 0.6 ms after the injectors are shut off. Progress and plans for the HIT-SI3 configuration, with three injectors mounted on the same side of the confinement volume, will also be presented. Work supported by USDoE and ARRA.
Excess surface area in bioelectrochemical systems causes ion transport limitations.
Harrington, Timothy D; Babauta, Jerome T; Davenport, Emily K; Renslow, Ryan S; Beyenal, Haluk
2015-05-01
We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: (i) showing that serially increasing NaCl concentration up to 200 mM increased current linearly up to a total of +273% vs. 0 mM NaCl under advective conditions; (ii) growing the biofilm with a starting concentration of 200 mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and (iii) showing that un-colonized surface area remained even after steady-state current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant. © 2014 Wiley Periodicals, Inc.
A Standard of Knowledge for the Professional Practice of Toxicology
Kinter, Lewis B.; Kelman, Bruce
2015-01-01
Background Employers, courts, and the general public judge the credibility of professionals based on credentials such as academic degrees, publications, memberships in professional organizations, board certifications, and professional registrations. However, the relevance and merit of these credentials can be difficult to determine objectively. Board certification can be a reliable indicator of proficiency if the certifying organization demonstrates, through regularly scheduled independent review, that its processes meet established standards and when a certificate holder is required to periodically demonstrate command of a body of knowledge that is essential to current professional practice. Objective We report herein a current Standard of Knowledge in general toxicology compiled from the experience and opinions of 889 certified practicing professional toxicologists. Discussion An examination is the most commonly used instrument for testing a certification candidate’s command of the body of knowledge. However, an examination-based certification is only creditable when the body of knowledge, to which a certification examination tests, is representative of the current knowledge, skills, and capabilities needed to effectively practice at the professional level. Thus, that body of knowledge must be the current “Standard of Knowledge” for the profession, compiled in a transparent fashion from current practitioners of the profession. Conclusion This work was conducted toward ensuring the scientific integrity of the products produced by professional toxicologists. Citation Hulla JE, Kinter LB, Kelman B. 2015. A Standard of Knowledge for the professional practice of toxicology. Environ Health Perspect 123:743–748; http://dx.doi.org/10.1289/ehp.1408643 PMID:25782181
NASA Astrophysics Data System (ADS)
Glesener, G. B.; Vican, L.
2015-12-01
Physical analog models and demonstrations can be effective educational tools for helping instructors teach abstract concepts in the Earth, planetary, and space sciences. Reducing the learning challenges for students using physical analog models and demonstrations, however, can often increase instructors' workload and budget because the cost and time needed to produce and maintain such curriculum materials is substantial. First, this presentation describes a working model for the Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC) to support instructors' use of physical analog models and demonstrations in the science classroom. The working model is based on a combination of instructional resource models developed by the Association of College & Research Libraries and by the Physics Instructional Resource Association. The MEDL-CMC aims to make the curriculum materials available for all science courses and outreach programs within the institution where the MEDL-CMC resides. The sustainability and value of the MEDL-CMC comes from its ability to provide and maintain a variety of physical analog models and demonstrations in a wide range of science disciplines. Second, the presentation then reports on the development, progress, and future of the MEDL-CMC at the University of California Los Angeles (UCLA). Development of the UCLA MEDL-CMC was funded by a grant from UCLA's Office of Instructional Development and is supported by the Department of Earth, Planetary, and Space Sciences. Other UCLA science departments have recently shown interest in the UCLA MEDL-CMC services, and therefore, preparations are currently underway to increase our capacity for providing interdepartmental service. The presentation concludes with recommendations and suggestions for other institutions that wish to start their own MEDL-CMC in order to increase educational effectiveness and decrease instructor workload. We welcome an interuniversity collaboration to further develop the MEDL-CMC model.
Weight bias in work settings - a qualitative review.
Giel, Katrin Elisabeth; Thiel, Ansgar; Teufel, Martin; Mayer, Jochen; Zipfel, Stephan
2010-02-01
Studies have repeatedly demonstrated the influence of physical appearance on behavior and treatment of individuals in work settings. A high proportion of obese individuals in the USA have reported perceived discrimination in the work place due to their body weight. The present review examines the specific kind, context and extent of a weight bias in work settings. We performed a literature search in the scientific databases PubMed and PsychINFO to identify studies which have investigated aspects of a potential weight bias in the occupational context. There is evidence from self-report data, surveys, and laboratory research for a weight bias in five aspects of work life. Evidence shows that obesity is a general barrier to employment, certain professions and professional success. Obese individuals are at higher risk of encountering stereotypes concerning their work-related qualities and for general unequal treatment in the work place. Current evidence reveals a weight bias in several areas in the work place. The ecological validity of results is limited due to the predominant reliance on laboratory studies with student samples. Field studies are needed to examine weight-based discrimination in actual work environments as well as to uncover underlying mechanisms. Copyright 2010 S. Karger AG, Basel.
Microchip amplifier for in vitro, in vivo, and automated whole cell patch-clamp recording
Kolb, Ilya; Kodandaramaiah, Suhasa B.; Chubykin, Alexander A.; Yang, Aimei; Bear, Mark F.; Boyden, Edward S.; Forest, Craig R.
2014-01-01
Patch clamping is a gold-standard electrophysiology technique that has the temporal resolution and signal-to-noise ratio capable of reporting single ion channel currents, as well as electrical activity of excitable single cells. Despite its usefulness and decades of development, the amplifiers required for patch clamping are expensive and bulky. This has limited the scalability and throughput of patch clamping for single-ion channel and single-cell analyses. In this work, we have developed a custom patch-clamp amplifier microchip that can be fabricated using standard commercial silicon processes capable of performing both voltage- and current-clamp measurements. A key innovation is the use of nonlinear feedback elements in the voltage-clamp amplifier circuit to convert measured currents into logarithmically encoded voltages, thereby eliminating the need for large high-valued resistors, a factor that has limited previous attempts at integration. Benchtop characterization of the chip shows low levels of current noise [1.1 pA root mean square (rms) over 5 kHz] during voltage-clamp measurements and low levels of voltage noise (8.2 μV rms over 10 kHz) during current-clamp measurements. We demonstrate the ability of the chip to perform both current- and voltage-clamp measurement in vitro in HEK293FT cells and cultured neurons. We also demonstrate its ability to perform in vivo recordings as part of a robotic patch-clamping system. The performance of the patch-clamp amplifier microchip compares favorably with much larger commercial instrumentation, enabling benchtop commoditization, miniaturization, and scalable patch-clamp instrumentation. PMID:25429119
Asynchronous Messaging and Data Transfer in a Spacecraft: An Implementation
NASA Technical Reports Server (NTRS)
Moholt, Joseph M.
2005-01-01
Data transfer and messaging is an important part of a spacecraft. Creating a standard protocol for messaging that can be used for a variety of applications is an extremely beneficial project at the Jet Propulsion Laboratory (JPL). The Asynchronous Messaging Service (AMS) is a protocol outlining how subsystems initialize and conduct communication between each other. There are currently two implementations of AMS in the works. At JPL, my task is to get a working implementation of AMS onto vxWorks as a proof of concept. An Autocoder, a program used to convert visually created state chart diagrams to C++, has also been created to accomplish a part of the implementation. I was assigned to make the program portable on any Unix type environment. Lastly, I was to develop a program to demonstrate messaging between two FireWire cards running vxworks.
Discriminatively learning for representing local image features with quadruplet model
NASA Astrophysics Data System (ADS)
Zhang, Da-long; Zhao, Lei; Xu, Duan-qing; Lu, Dong-ming
2017-11-01
Traditional hand-crafted features for representing local image patches are evolving into current data-driven and learning-based image feature, but learning a robust and discriminative descriptor which is capable of controlling various patch-level computer vision tasks is still an open problem. In this work, we propose a novel deep convolutional neural network (CNN) to learn local feature descriptors. We utilize the quadruplets with positive and negative training samples, together with a constraint to restrict the intra-class variance, to learn good discriminative CNN representations. Compared with previous works, our model reduces the overlap in feature space between corresponding and non-corresponding patch pairs, and mitigates margin varying problem caused by commonly used triplet loss. We demonstrate that our method achieves better embedding result than some latest works, like PN-Net and TN-TG, on benchmark dataset.
Observation of quantum oscillation of work function in ultrathin-metal/semiconductor junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takhar, Kuldeep; Meer, Mudassar; Khachariya, Dolar
2015-09-15
Quantization in energy level due to confinement is generally observed for semiconductors. This property is used for various quantum devices, and it helps to improve the characteristics of conventional devices. Here, the authors have demonstrated the quantum size effects in ultrathin metal (Ni) layers sandwiched between two large band-gap materials. The metal work function is found to oscillate as a function of its thickness. The thermionic emission current bears the signature of the oscillating work function, which has a linear relationship with barrier heights. This methodology allows direct observation of quantum oscillations in metals at room temperature using a Schottkymore » diode and electrical measurements using source-measure-units. The observed phenomena can provide additional mechanism to tune the barrier height of metal/semiconductor junctions, which are used for various electronic devices.« less
Kong, Y K; Lee, S J; Lee, K S; Kim, G R; Kim, D M
2015-10-01
Researchers have been using various ergonomic tools to study occupational musculoskeletal diseases in industrial contexts. However, in agricultural work, where the work environment is poorer and the socio-psychological stress is high due to the high labor intensities of the industry, current research efforts have been scarce, and the number of available tools is small. In our preliminary studies, which focused on a limited number of body parts and other working elements, we developed separate evaluation tools for the upper and lower extremities. The current study was conducted to develop a whole-body ergonomic assessment tool for agricultural work that integrates the existing assessment tools for lower and upper extremities developed in the preliminary studies and to verify the relevance of the integrated assessment tool. To verify the relevance of the Agricultural Whole-Body Assessment (AWBA) tool, we selected 50 different postures that occur frequently in agricultural work. Our results showed that the AWBA-determined risk levels were similar to the subjective risk levels determined by experts. In addition, as the risk level increased, the average risk level increased to a similar extent. Moreover, the differences in risk levels between the AWBA and expert assessments were mostly smaller than the differences in risk levels between other assessment tools and the expert assessments in this study. In conclusion, the AWBA tool developed in this study was demonstrated to be appropriate for use as a tool for assessing various postures commonly assumed in agricultural work. Moreover, we believe that our verification of the assessment tools will contribute to the enhancement of the quality of activities designed to prevent and control work-related musculoskeletal diseases in other industries.
Using the living laboratory framework as a basis for understanding next-generation analyst work
NASA Astrophysics Data System (ADS)
McNeese, Michael D.; Mancuso, Vincent; McNeese, Nathan; Endsley, Tristan; Forster, Pete
2013-05-01
The preparation of next generation analyst work requires alternative levels of understanding and new methodological departures from the way current work transpires. Current work practices typically do not provide a comprehensive approach that emphasizes the role of and interplay between (a) cognition, (b) emergent activities in a shared situated context, and (c) collaborative teamwork. In turn, effective and efficient problem solving fails to take place, and practice is often composed of piecemeal, techno-centric tools that isolate analysts by providing rigid, limited levels of understanding of situation awareness. This coupled with the fact that many analyst activities are classified produces a challenging situation for researching such phenomena and designing and evaluating systems to support analyst cognition and teamwork. Through our work with cyber, image, and intelligence analysts we have realized that there is more required of researchers to study human-centered designs to provide for analyst's needs in a timely fashion. This paper identifies and describes how The Living Laboratory Framework can be utilized as a means to develop a comprehensive, human-centric, and problem-focused approach to next generation analyst work, design, and training. We explain how the framework is utilized for specific cases in various applied settings (e.g., crisis management analysis, image analysis, and cyber analysis) to demonstrate its value and power in addressing an area of utmost importance to our national security. Attributes of analyst work settings are delineated to suggest potential design affordances that could help improve cognitive activities and awareness. Finally, the paper puts forth a research agenda for the use of the framework for future work that will move the analyst profession in a viable manner to address the concerns identified.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Das, Gautom Kumar; Vijayaragavan, Vimalan; Xu, Qing Chi; Padmanabhan, Parasuraman; Bhakoo, Kishore K.; Tamil Selvan, Subramanian; Tan, Timothy Thatt Yang
2014-10-01
The current work reports a type of ``smart'' lanthanide-based theranostic nanoprobe, NaDyF4:Yb3+/NaGdF4:Yb3+,Er3+, which is able to circumvent the up-converting poisoning effect of Dy3+ ions to give efficient near infrared (980 nm) triggered up-conversion fluorescence, and offers not only excellent dark T2-weighted MR contrast but also tunable bright and T1-weighted MR contrast properties. Due to the efficient up-converted energy transfer from the nanocrystals to chlorin e6 (Ce6) photosensitizers loaded onto the nanocrystals, cytotoxic singlet oxygen was generated and photodynamic therapy was demonstrated. Therefore, the current multifunctional nanocrystals could be potentially useful in various image-guided diagnoses where bright or dark MRI contrast could be selectively tuned to optimize image quality, but also as an efficient and more penetrative near-infrared activated photodynamic therapy agent.The current work reports a type of ``smart'' lanthanide-based theranostic nanoprobe, NaDyF4:Yb3+/NaGdF4:Yb3+,Er3+, which is able to circumvent the up-converting poisoning effect of Dy3+ ions to give efficient near infrared (980 nm) triggered up-conversion fluorescence, and offers not only excellent dark T2-weighted MR contrast but also tunable bright and T1-weighted MR contrast properties. Due to the efficient up-converted energy transfer from the nanocrystals to chlorin e6 (Ce6) photosensitizers loaded onto the nanocrystals, cytotoxic singlet oxygen was generated and photodynamic therapy was demonstrated. Therefore, the current multifunctional nanocrystals could be potentially useful in various image-guided diagnoses where bright or dark MRI contrast could be selectively tuned to optimize image quality, but also as an efficient and more penetrative near-infrared activated photodynamic therapy agent. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01717j
Zafar, Sufi; D'Emic, Christopher; Jagtiani, Ashish; Kratschmer, Ernst; Miao, Xin; Zhu, Yu; Mo, Renee; Sosa, Norma; Hamann, Hendrik F; Shahidi, Ghavam; Riel, Heike
2018-06-22
Silicon nanowire field effect transistor (FET) sensors have demonstrated their ability for rapid and label free detection of proteins, nucleotide sequences, and viruses at ultralow concentrations with the potential to be a transformative diagnostic technology. Their nanoscale size gives them their unique ultralow detection ability but also makes their fabrication challenging with large sensor to sensor variations, thus limiting their commercial applications. In this work, a combined approach of nanofabrication, device simulation, materials and electrical characterization is applied towards identifying and improving fabrication steps that induce sensor to sensor variations. An enhanced complementary metal-oxide-semiconductor (CMOS) compatible process for fabricating silicon nanowire FET sensors is demonstrated. Nanowire (30 nm width) FETs with aqueous solution as gates are shown to have the Nernst limit sub-threshold swing SS = 60 mV/decade with ~1.7% variations, whereas literature values for SS are ≥ 80 mV/decade with larger (>10 times) variations. Also, their threshold voltage variations are significantly (~3 times) reduced, compared to literature values. Furthermore, these improved FETs have significantly reduced drain current hysteresis (~0.6 mV) and enhanced on-current to off-current ratios (~10 6 ). These improvements resulted in nanowire FET sensors with lowest (~3%) reported sensor to sensor variations, compared to literature studies. Also, these improved nanowire sensors have the highest reported sensitivity and enhanced signal to noise ratio with the lowest reported defect density of 1x10 18 eV -1 cm -3 in comparison to literature data. In summary, this work brings the nanowire sensor technology a step closer to commercial products for early diagnosis and monitoring of diseases.
Parasitic momentum flux in the tokamak core
NASA Astrophysics Data System (ADS)
Stoltzfus-Dueck, T.
2017-10-01
Tokamak plasmas rotate spontaneously without applied torque. This intrinsic rotation is important for future low-torque devices such as ITER, since rotation stabilizes certain instabilities. In the mid-radius `gradient region,' which reaches from the sawtooth inversion radius out to the pedestal top, intrinsic rotation profiles may be either flat or hollow, and can transition suddenly between these two states, an unexplained phenomenon referred to as rotation reversal. Theoretical efforts to explain the mid-radius rotation shear have largely focused on quasilinear models, in which the phase relationships of some selected instability result in a nondiffusive momentum flux (``residual stress''). In contrast, the present work demonstrates the existence of a robust, fully nonlinear symmetry-breaking momentum flux that follows from the free-energy flow in phase space and does not depend on any assumed linear eigenmode structure. The physical origin is an often-neglected portion of the radial ExB drift, which is shown to drive a symmetry-breaking outward flux of co-current momentum whenever free energy is transferred from the electrostatic potential to ion parallel flows. The fully nonlinear derivation relies only on conservation properties and symmetry, thus retaining the important contribution of damped modes. The resulting rotation peaking is counter-current and scales as temperature over plasma current. As first demonstrated by Landau, this free-energy transfer (thus also the corresponding residual stress) becomes inactive when frequencies are much higher than the ion transit frequency, which allows sudden transitions between hollow and flat profiles. Simple estimates suggest that this mechanism may be consistent with experimental observations. This work was funded in part by the Max-Planck/Princeton Center for Plasma Physics and in part by the U.S. Dept. of Energy, Office of Science, Contract No. DE-AC02-09CH11466.
Meliala, Andreasta; Hort, Krishna; Trisnantoro, Laksono
2013-04-01
As in many countries, the geographic distribution of the health workforce in Indonesia is unequal, with a concentration in urban and more developed areas, and a scarcity in rural and remote areas. There is less information on the distribution of specialist doctors, yet inequalities in their distribution could compromise efforts to achieve universal coverage by 2014. This paper uses data from 2007 and 2008 to describe the geographic distribution of specialist doctors in Indonesia, and to examine two key factors that influence the distribution and are targets of current policies: sources of income for specialist doctors, and specialist doctor engagement in private practice. The data demonstrates large differences in the ratio of specialist doctors to population among the provinces of Indonesia, with higher ratios on the provinces of the islands of Java, and much lower ratios on the more remote provinces in eastern Indonesia. Between 65% and 80% of specialist doctors' income derives from private practice in non-state hospitals or private clinics. Despite regulations limiting practice locations to three, most specialists studied in a provincial capital city were working in more than three locations, with some working in up to 7 locations, and spending only a few hours per week in their government hospital practice. Our study demonstrates that the current regulatory policies and financial incentives have not been effective in addressing the maldistribution of specialist doctors in a context of a growing private sector and predominance of doctors' income from private sources. A broader and more integrated policy approach, including more innovative service delivery strategies for rural and remote areas, is recommended. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Canfield, Stephen
1999-01-01
This work will demonstrate the integration of sensor and system dynamic data and their appropriate models using an optimal filter to create a robust, adaptable, easily reconfigurable state (motion) estimation system. This state estimation system will clearly show the application of fundamental modeling and filtering techniques. These techniques are presented at a general, first principles level, that can easily be adapted to specific applications. An example of such an application is demonstrated through the development of an integrated GPS/INS navigation system. This system acquires both global position data and inertial body data, to provide optimal estimates of current position and attitude states. The optimal states are estimated using a Kalman filter. The state estimation system will include appropriate error models for the measurement hardware. The results of this work will lead to the development of a "black-box" state estimation system that supplies current motion information (position and attitude states) that can be used to carry out guidance and control strategies. This black-box state estimation system is developed independent of the vehicle dynamics and therefore is directly applicable to a variety of vehicles. Issues in system modeling and application of Kalman filtering techniques are investigated and presented. These issues include linearized models of equations of state, models of the measurement sensors, and appropriate application and parameter setting (tuning) of the Kalman filter. The general model and subsequent algorithm is developed in Matlab for numerical testing. The results of this system are demonstrated through application to data from the X-33 Michael's 9A8 mission and are presented in plots and simple animations.
Role of the lower hybrid spectrum in the current drive modeling for DEMO scenarios
NASA Astrophysics Data System (ADS)
Cardinali, A.; Castaldo, C.; Cesario, R.; Santini, F.; Amicucci, L.; Ceccuzzi, S.; Galli, A.; Mirizzi, F.; Napoli, F.; Panaccione, L.; Schettini, G.; Tuccillo, A. A.
2017-07-01
The active control of the radial current density profile is one of the major issues of thermonuclear fusion energy research based on magnetic confinement. The lower hybrid current drive could in principle be used as an efficient tool. However, previous understanding considered the electron temperature envisaged in a reactor at the plasma periphery too large to allow penetration of the coupled radio frequency (RF) power due to strong Landau damping. In this work, we present new numerical results based on quasilinear theory, showing that the injection of power spectra with different {n}// widths of the main lobe produce an RF-driven current density profile spanning most of the outer radial half of the plasma ({n}// is the refractive index in a parallel direction to the confinement magnetic field). Plasma kinetic profiles envisaged for the DEMO reactor are used as references. We demonstrate the robustness of the modeling results concerning the key role of the spectral width in determining the lower hybrid-driven current density profile. Scans of plasma parameters are extensively carried out with the aim of excluding the possibility that any artefact of the utilised numerical modeling would produce any novelty. We neglect here the parasitic effect of spectral broadening produced by linear scattering due to plasma density fluctuations, which mainly occurs for low magnetic field devices. This effect will be analyzed in other work that completes the report on the present breakthrough.
Low–Cost Bio-Based Carbon Fiber for High-Temperature Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naskar, Amit K.; Akato, Kokouvi M.; Tran, Chau D.
GrafTech International Holdings Inc. (GTI), worked with Oak Ridge National Laboratory (ORNL) under CRADA No. NFE-15-05807 to develop lignin-based carbon fiber (LBCF) technology and to demonstrate LBCF performance in high-temperature products and applications. This work was unique and different from other reported LBCF work in that this study was application-focused and scalability-focused. Accordingly, the executed work was based on meeting criteria based on technology development, cost, and application suitability. The focus of this work was to demonstrate lab-scale LBCF from at least 4 different precursor feedstock sources that could meet the estimated production cost of $5.00/pound and have ash levelmore » of less than 500 ppm in the carbonized insulation-grade fiber. Accordingly, a preliminary cost model was developed based on publicly available information. The team demonstrated that 4 lignin samples met the cost criteria, as highlighted in Table 1. In addition, the ash level for the 4 carbonized lignin samples were below 500 ppm. Processing asreceived lignin to produce a high purity lignin fiber was a significant accomplishment in that most industrial lignin, prior to purification, had greater than 4X the ash level needed for this project, and prior to this work there was not a clear path of how to achieve the purity target. The lab scale development of LBCF was performed with a specific functional application in mind, specifically for high temperature rigid insulation. GTI is currently a consumer of foreignsourced pitch and rayon based carbon fibers for use in its high temperature insulation products, and the motivation was that LBCF had potential to decrease costs and increase product competitiveness in the marketplace through lowered raw material costs, lowered energy costs, and decreased environmental footprint. At the end of this project, the Technology Readiness Level (TRL) remained at 5 for LBCF in high temperature insulation.« less
NASA Astrophysics Data System (ADS)
Freer, J. E.; Bloomfield, J. P.; Johnes, P. J.; MacLeod, C.; Reaney, S.
2010-12-01
There are many challenges in developing effective and integrated catchment management solutions for hydrology and water quality issues. Such solutions should ideally build on current scientific evidence to inform policy makers and regulators and additionally allow stakeholders to take ownership of local and/or national issues, in effect bringing together ‘communities of practice’. A strategy being piloted in the UK as the Pilot Virtual Observatory (pVO), funded by NERC, is to demonstrate the use of cyber-infrastructure and cloud computing resources to investigate better methods of linking data and models and to demonstrate scenario analysis for research, policy and operational needs. The research will provide new ways the scientific and stakeholder communities come together to exploit current environmental information, knowledge and experience in an open framework. This poster presents the project scope and methodologies for the pVO work dealing with national modelling of hydrology and macro-nutrient biogeochemistry. We evaluate the strategies needed to robustly benchmark our current predictive capability of these resources through ensemble modelling. We explore the use of catchment similarity concepts to understand if national monitoring programs can inform us about the behaviour of catchments. We discuss the challenges to applying these strategies in an open access and integrated framework and finally we consider the future for such virtual observatory platforms for improving the way we iteratively improve our understanding of catchment science.
NASA Astrophysics Data System (ADS)
Wu, M. Q.; Pan, C. K.; Chan, V. S.; Li, G. Q.; Garofalo, A. M.; Jian, X.; Liu, L.; Ren, Q. L.; Chen, J. L.; Gao, X.; Gong, X. Z.; Ding, S. Y.; Qian, J. P.; Cfetr Physics Team
2018-04-01
Time-dependent integrated modeling of DIII-D ITER-like and high bootstrap current plasma ramp-up discharges has been performed with the equilibrium code EFIT, and the transport codes TGYRO and ONETWO. Electron and ion temperature profiles are simulated by TGYRO with the TGLF (SAT0 or VX model) turbulent and NEO neoclassical transport models. The VX model is a new empirical extension of the TGLF turbulent model [Jian et al., Nucl. Fusion 58, 016011 (2018)], which captures the physics of multi-scale interaction between low-k and high-k turbulence from nonlinear gyro-kinetic simulation. This model is demonstrated to accurately model low Ip discharges from the EAST tokamak. Time evolution of the plasma current density profile is simulated by ONETWO with the experimental current ramp-up rate. The general trend of the predicted evolution of the current density profile is consistent with that obtained from the equilibrium reconstruction with Motional Stark effect constraints. The predicted evolution of βN , li , and βP also agrees well with the experiments. For the ITER-like cases, the predicted electron and ion temperature profiles using TGLF_Sat0 agree closely with the experimental measured profiles, and are demonstrably better than other proposed transport models. For the high bootstrap current case, the predicted electron and ion temperature profiles perform better in the VX model. It is found that the SAT0 model works well at high IP (>0.76 MA) while the VX model covers a wider range of plasma current ( IP > 0.6 MA). The results reported in this paper suggest that the developed integrated modeling could be a candidate for ITER and CFETR ramp-up engineering design modeling.
Building bridges: engaging medical residents in quality improvement and medical leadership.
Voogt, Judith J; van Rensen, Elizabeth L J; van der Schaaf, Marieke F; Noordegraaf, Mirko; Schneider, Margriet Me
2016-12-01
To develop an educational intervention that targets residents' beliefs and attitudes to quality Improvement (QI) and leadership in order to demonstrate proactive behaviour. Theory-driven, mixed methods study including document analysis, interviews, observations and open-ended questionnaires. Six Dutch teaching hospitals. Using expertise from medicine, psychology, organizational and educational sciences we developed a situated learning programme named Ponder and IMProve (PIMP). The acronym PIMP reflects the original upbeat name in Dutch, Verwonder & Verbeter. It has a modern, positive meaning that relates to improving your current circumstances. In quarterly 1-h sessions residents are challenged to identify daily workplace frustrations and translate them into small-scale QI activities. Organizational awareness, beliefs and attitudes to QI and organizational responsibilities, resident behaviour, barriers and facilitators to successful learning and the programme's potential impact on the organization. Overall, 19 PIMP meetings were held over a period of 3 years. Residents defined 119 PIMP goals, resolved 37 projects and are currently working on another 39 projects. Interviews show that PIMP sessions make residents more aware of the organizational aspects of their daily work. Moreover, residents feel empowered to take up the role of change agent. Facilitators for success include a positive cost-benefit trade-off, a valuable group process and a safe learning environment. This article demonstrates the added value of multidisciplinary theory-driven research for the design, development and evaluation of educational programmes. Residents can be encouraged to develop organizational awareness and reshape their daily frustrations in QI work. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Shogan, Benjamin D.; An, Gary C.; Schardey, Hans M.; Matthews, Jeffrey B.; Umanskiy, Konstantin; Fleshman, James W.; Hoeppner, Jens; Fry, Donald E.; Garcia-Granereo, Eduardo; Jeekel, Hans; van Goor, Harry; Dellinger, E. Patchen; Konda, Vani; Gilbert, Jack A.; Auner, Gregory W.
2014-01-01
Abstract Objective: The first international summit on anastomotic leak was held in Chicago in October, 2012 to assess current knowledge in the field and develop novel lines of inquiry. The following report is a summary of the proceedings with commentaries and future prospects for clinical trials and laboratory investigations. Background: Anastomotic leakage remains a devastating problem for the patient, and a continuing challenge to the surgeon operating on high-risk areas of the gastrointestinal tract such as the esophagus and rectum. Despite the traditional wisdom that anastomotic leak is because of technique, evidence to support this is weak-to-non-existent. Outcome data continue to demonstrate that expert high-volume surgeons working in high-volume centers continue to experience anastomotic leaks and that surgeons cannot predict reliably which patients will leak. Methods: A one and one-half day summit was held and a small working group assembled to review current practices, opinions, scientific evidence, and potential paths forward to understand and decrease the incidence of anastomotic leak. Results: Results of a survey of the opinions of the group demonstrated that the majority of participants believe that anastomotic leak is a complicated biologic problem whose pathogenesis remains ill-defined. The group opined that anastomotic leak is underreported clinically, it is not because of technique except when there is gross inattention to it, and that results from animal models are mostly irrelevant to the human condition. Conclusions: A fresh and unbiased examination of the causes and strategies for prevention of anastomotic leak needs to be addressed by a continuous working group of surgeons, basic scientists, and clinical trialists to realize a real and significant reduction in its incidence and morbidity. Such a path forward is discussed. PMID:25215465
Impey, Danielle; Baddeley, Ashley; Nelson, Renee; Labelle, Alain; Knott, Verner
2017-11-01
Cognitive impairment has been proposed to be the core feature of schizophrenia (Sz). Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which can improve cognitive function in healthy participants and in psychiatric patients with cognitive deficits. tDCS has been shown to improve cognition and hallucination symptoms in Sz, a disorder also associated with marked sensory processing deficits. Recent findings in healthy controls demonstrate that anodal tDCS increases auditory deviance detection, as measured by the brain-based event-related potential, mismatch negativity (MMN), which is a putative biomarker of Sz that has been proposed as a target for treatment of Sz cognition. This pilot study conducted a randomized, double-blind assessment of the effects of pre- and post-tDCS on MMN-indexed auditory discrimination in 12 Sz patients, moderated by auditory hallucination (AH) presence, as well as working memory performance. Assessments were conducted in three sessions involving temporal and frontal lobe anodal stimulation (to transiently excite local brain activity), and one control session involving 'sham' stimulation (meaning with the device turned off, i.e., no stimulation). Results demonstrated a trend for pitch MMN amplitude to increase with anodal temporal tDCS, which was significant in a subgroup of Sz individuals with AHs. Anodal frontal tDCS significantly increased WM performance on the 2-back task, which was found to positively correlate with MMN-tDCS effects. The findings contribute to our understanding of tDCS effects for sensory processing deficits and working memory performance in Sz and may have implications for psychiatric disorders with sensory deficits.
Hiro and Evans currents in Vertical Disruption Event
NASA Astrophysics Data System (ADS)
Zakharov, Leonid; Xujing Li Team; Sergei Galkin Team
2014-10-01
The notion of Tokamak Magneto-Hydrodynamics (TMHD), which explicitly reflects the anisotropy of a high temperature tokamak plasma is introduced. The set of TMHD equations is formulated for simulations of macroscopic plasma dynamics and disruptions in tokamaks. Free from the Courant restriction on the time step, this set of equations is appropriate for high performance plasmas and does not require any extension of the MHD plasma model. At the same time, TMHD requires the use of magnetic field aligned numerical grids. The TMHD model was used for creation of theory of the Wall Touching Kink and Vertical Modes (WTKM and WTVM), prediction of Hiro and Evans currents, design of an innovative diagnostics for Hiro current measurements, installed on EAST device. While Hiro currents have explained the toroidal asymmetry in the plasma current measurements in JET disruptions, the Evans currents explain the tile current measurements in tokamaks. The recently developed Vertical Disruption Code (VDE) have demonstrated 5 regimes of VDE and confirmed the generation of both Hiro and Evans currents. The results challenge the 24 years long misinterpretation of the tile currents in tokamaks as ``halo'' currents, which were a product of misuse of equilibrium reconstruction for VDE. This work is supported by US DoE Contract No. DE-AC02-09-CH1146.
Fong, Ted Chun-tat; Ng, Siu-man
2012-09-01
Work engagement is a positive work-related state of fulfillment characterized by vigor, dedication, and absorption. Previous studies have operationalized the construct through development of the Utrecht Work Engagement Scale. Apart from the original three-factor 17-item version of the instrument (UWES-17), there exists a nine-item shortened revised version (UWES-9). The current study explored the psychometric properties of the Chinese version of the Utrecht Work Engagement Scale in terms of factorial validity, scale reliability, descriptive statistics, and construct validity. A cross-sectional questionnaire survey was conducted in 2009 among 992 workers from over 30 elderly service units in Hong Kong. Confirmatory factor analyses revealed a better fit for the three-factor model of the UWES-9 than the UWES-17 and the one-factor model of the UWES-9. The three factors showed acceptable internal consistency and strong correlations with factors in the original versions. Engagement was negatively associated with perceived stress and burnout while positively with age and holistic care climate. The UWES-9 demonstrates adequate psychometric properties, supporting its use in future research in the Chinese context.
Results of the 2014-2015 Canadian Society of Nephrology workforce survey.
Ward, David R; Manns, Braden; Gil, Sarah; Au, Flora; Kappel, Joanne E
2016-01-01
Nephrology was previously identified as a subspecialty with few Canadian employment opportunities, and in recent years, fewer trainees are choosing nephrology. The objective of this study is to better understand the current Canadian adult nephrology workforce and the expected workforce trends over the next 5 years. This is an online self-administered survey. This study is set in Canada. Survey participants are Canadian adult nephrologists, including self-identified division heads. The measurements of this study are demographics, training, current practice characteristics, work hours, and projected workforce needs. Survey questions were based on previous workforce surveys. Ethics approval was obtained through the University of Saskatchewan. The survey was piloted in both English and French and modified based on the feedback to ensure that responses accurately reflected the information desired. It was circulated to all identified Canadian nephrologists via an anonymous e-mail link for self-administration. Categorical data was aggregated, and free-text answers were thematically analyzed. Additional descriptive analysis was conducted by all authors. Five hundred ninety-two Canadian nephrologists were contacted and 48 % responded, with representation from all Canadian provinces. One third of the respondents were female, and the largest age cohort was 41-50 years. Most nephrologists are trained in Canada and 61 % completed additional training. The majority of the respondents (69.1 %) began working as a nephrologist immediately upon completion of fellowship training. Younger nephrologists reported more challenges in finding a job. Eighty percent of responding nephrologists were satisfied with their current work hours, 13.1 % will reduce work hours within 3 years, an additional 8.2 % will reduce work hours within 5 years, and a further 14.2 % will reduce work hours within 10 years. Nephrology division heads forecasted the number of clinical and academic nephrologists needed for the next 3 and 5 years. The response rate was 48 %. Forecasted workforce needs are not indicative of guaranteed future positions. This Canadian Society of Nephrology workforce survey demonstrated the current workforce demographics, individual nephrologist future workforce plans, and projected nephrology division requirements for the next 3 and 5 years. Further work will need to be done to refine Canadian nephrology workforce planning with the development of a robust strategy that encompasses both societal and nephrologists' needs with the realities of employment.
Robots and Humans in Planetary Exploration: Working Together?
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)
2002-01-01
Today's approach to human-robotic cooperation in planetary exploration focuses on using robotic probes as precursors to human exploration. A large portion of current NASA planetary surface exploration is focussed on Mars, and robotic probes are seen as precursors to human exploration in: Learning about operation and mobility on Mars; Learning about the environment of Mars; Mapping the planet and selecting landing sites for human mission; Demonstration of critical technology; Manufacture fuel before human presence, and emplace elements of human-support infrastructure
Adsorption of O_{2} on Ag(111): Evidence of Local Oxide Formation.
Andryushechkin, B V; Shevlyuga, V M; Pavlova, T V; Zhidomirov, G M; Eltsov, K N
2016-07-29
The atomic structure of the disordered phase formed by oxygen on Ag(111) at low coverage is determined by a combination of low-temperature scanning tunneling microscopy and density functional theory. We demonstrate that the previous assignment of the dark objects in STM to chemisorbed oxygen atoms is incorrect and incompatible with trefoil-like structures observed in atomic-resolution images in current work. In our model, each object is an oxidelike ring formed by six oxygen atoms around the vacancy in Ag(111).
Research and applications: Artificial intelligence
NASA Technical Reports Server (NTRS)
Raphael, B.; Duda, R. O.; Fikes, R. E.; Hart, P. E.; Nilsson, N. J.; Thorndyke, P. W.; Wilber, B. M.
1971-01-01
Research in the field of artificial intelligence is discussed. The focus of recent work has been the design, implementation, and integration of a completely new system for the control of a robot that plans, learns, and carries out tasks autonomously in a real laboratory environment. The computer implementation of low-level and intermediate-level actions; routines for automated vision; and the planning, generalization, and execution mechanisms are reported. A scenario that demonstrates the approximate capabilities of the current version of the entire robot system is presented.
2009-01-01
controllers (currently using the Robostix+Gumstix pair ). The interface between the plant simulator and the controller is ‘hard real-time’, and the xPC box... simulation ) on aerobatic maneuver design for the STARMAC quadrotor helicopter testbed. In related work, we have developed a new optimization scheme...for scheduling hybrid systems, and have demonstrated the results on an autonomous car simulation testbed. We are focusing efforts this summer for
Advice offered by practitioners of complementary/ alternative medicine: an important ethical issue.
Ernst, E
2009-12-01
The current popularity of complementary/alternative medicine (CAM) generates many challenges to medical ethics. The one discussed here is the advice offered by CAM practitioners. Using selected examples, the author tries to demonstrate that some of the advice issued through the popular media or provided by acupuncturists, chiropractors, herbalists, homeopaths, pharmacists, and doctors is misleading or dangerous. This, the author argues, can impinge on the main principle of medical ethics: beneficence, nonmaleficence, and autonomy. We should work toward correcting this deplorable situation.
Solid Polymer Electrolyte (SPE) fuel cell technology program
NASA Technical Reports Server (NTRS)
1979-01-01
The overall objectives of the Phase IV Solid Polymer Electrolyte Fuel Cell Technology Program were to: (1) establish fuel cell life and performance at temperatures, pressures and current densities significantly higher than those previously demonstrated; (2) provide the ground work for a space energy storage system based on the solid polymer electrolyte technology (i.e., regenerative H2/O2 fuel cell); (3) design, fabricate and test evaluate a full-scale single cell unit. During this phase, significant progress was made toward the accomplishment of these objectives.
Anode energy transfer in a transient arc
NASA Astrophysics Data System (ADS)
Valensi, F.; Ratovoson, P.; Razafinimanana, M.; Gleizes, A.
2017-04-01
This work deals with experimental investigation of a transient arc. Arc configuration and electrode erosion were studied in order to quantify the energy transfer to the electrodes as a function of maximal current, time constant and electrodes material. Experiments with two consecutive arcs allow demonstrating non stationary behaviour of the arc electrode interaction. This is due to the fact that while the duration of the experiments is far larger than plasma phenomena time constants, it is comparable to those of electrode heating and melting processes.
Nandrolone decanoate for the treatment of erythropoietin refractory anemia: a case series.
Chawla, Bobby; Iqbal, Fahad M; Chawla, Manjeet S
2009-01-01
Erythropoietin refractory anemias represent a continuing and increasing burden on the healthcare system. The current practice of providing these patients with rHuEPO does not seem to be working. Fewer than 50% of patients respond in some studies. We demonstrate that androgens have multiple benefits in this population. They control anemia and stop transfusion dependence and improve nutritional parameters. In some patients, they also have a salutary effect on both white blood cell and platelet counts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Christopher T.
We review and expand upon recent work demonstrating that Weyl invariant theories can be broken "inertially," which does not depend upon a potential. This can be understood in a general way by the "current algebra" of these theories, independently of specific Lagrangians. Maintaining the exact Weyl invariance in a renormalized quantum theory can be accomplished by renormalization conditions that refer back to the VEV's of fields in the action. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential that breaks a U(1) symmetry together,with scale invariance.
European Science Notes Information Bulletin. Reports on Current European and Middle Eastern Science
1993-01-01
network. Mechanical properties of ormolytes can tion of TiO2 to "open-up" the structure tb.r Li be modified by altering the structure of the silicate...Cambridge es. The group from the University of California, group has demonstrated that the color (wavelength) Santa Barbara, and Uniax Corporation...A.J. of the electroluminescence can be tuned over a Heeger, F. Wudi, P. Smith) reported on their work range of colors . with polymer 12 in several talks
Solving the multi-frequency electromagnetic inverse source problem by the Fourier method
NASA Astrophysics Data System (ADS)
Wang, Guan; Ma, Fuming; Guo, Yukun; Li, Jingzhi
2018-07-01
This work is concerned with an inverse problem of identifying the current source distribution of the time-harmonic Maxwell's equations from multi-frequency measurements. Motivated by the Fourier method for the scalar Helmholtz equation and the polarization vector decomposition, we propose a novel method for determining the source function in the full vector Maxwell's system. Rigorous mathematical justifications of the method are given and numerical examples are provided to demonstrate the feasibility and effectiveness of the method.
Tissue tightening: a hot topic utilizing deep dermal heating.
Gold, Michael H
2007-12-01
The US market has seen a rapid growth in new radiofrequency (RF) devices over the past several years, all for the benefit of our patients. This column will summarize the various types of RF devices currently available and review their technologies for a nonsurgical approach to tissue tightening. Further clinical trials are necessary to demonstrate the efficacy as well as safety of RF devices for tissue tightening so that we can treat our patients with devices that truly work and provide the desired results.
CPD and revalidation: our future is happening now.
Austin, Zubin
2013-01-01
Around the world, there is growing interest in ensuring health professionals (including pharmacists) maintain and demonstrate competency throughout their careers. Mechanisms to assure regulators, employers, colleagues, and--most importantly--patients that practitioners are indeed competent to provide safe and effective care are evolving, but generally include both continuing professional development (CPD) and assessment components. This commentary reviews current work in these areas within the pharmacy profession, in both the UK and the US. Copyright © 2013 Elsevier Inc. All rights reserved.
Bolwig, Tom G; Fink, Max
2009-03-01
The electrical induction of seizures with a therapeutic aim began in 1938, but the history of electric currents to relieve mental illness began 2 centuries earlier with the pioneering work of the Italian Giovanni Aldini and the American Benjamin Franklin.These early experiments are described demonstrating that the electrical force encouraged hopeful applications. This history emphasizes the unique contribution in the induction of grand mal seizures as the therapeutic basis rather than the role of electricity alone.
Bilayer insulator tunnel barriers for graphene-based vertical hot-electron transistors
NASA Astrophysics Data System (ADS)
Vaziri, S.; Belete, M.; Dentoni Litta, E.; Smith, A. D.; Lupina, G.; Lemme, M. C.; Östling, M.
2015-07-01
Vertical graphene-based device concepts that rely on quantum mechanical tunneling are intensely being discussed in the literature for applications in electronics and optoelectronics. In this work, the carrier transport mechanisms in semiconductor-insulator-graphene (SIG) capacitors are investigated with respect to their suitability as electron emitters in vertical graphene base transistors (GBTs). Several dielectric materials as tunnel barriers are compared, including dielectric double layers. Using bilayer dielectrics, we experimentally demonstrate significant improvements in the electron injection current by promoting Fowler-Nordheim tunneling (FNT) and step tunneling (ST) while suppressing defect mediated carrier transport. High injected tunneling current densities approaching 103 A cm-2 (limited by series resistance), and excellent current-voltage nonlinearity and asymmetry are achieved using a 1 nm thick high quality dielectric, thulium silicate (TmSiO), as the first insulator layer, and titanium dioxide (TiO2) as a high electron affinity second layer insulator. We also confirm the feasibility and effectiveness of our approach in a full GBT structure which shows dramatic improvement in the collector on-state current density with respect to the previously reported GBTs. The device design and the fabrication scheme have been selected with future CMOS process compatibility in mind. This work proposes a bilayer tunnel barrier approach as a promising candidate to be used in high performance vertical graphene-based tunneling devices.
[Autonomy, Trust and Medical Ethics in Onora O'Neill's Work].
Jaramillo, Carlos Alberto López; Lew, Jorge Carlos Holguín
2013-03-01
Autonomy has become a key concept in bioethics. Onora O'neill is perhaps the most representative author and researcher in the philosophical and bioethical fields regrding the concept of autonomy. To review the concept of autonomy in Onora O'Neill's work so as to understand its relevance in current bioethics. The concept of bioethics is reviewed in relation to three fundamental quesions: 1) Which are the main limitations of the individualistic conception of autonomy? 2) How to understand the relations between trust and autonomy together with their implications? and 3) Which are the implications of principled autonomy for aspects such as doctor-patient relationship and informed consent. The main works by O'Neill are reviewed, specifically regarding medical bioethics. O'neill's approach is original and relates Kantian autonomy to her own conceptions about trust, and both the individual and social levels of bioethics. The author has developed a Kantian non indvidualistic view of autonomy. Her conceptulization of trust and the crises this concept is currently undergoing complement and strengthen the concept of principled autonomy. The implications of O'Neill's concepts go beyond theoretical discussions and in her work she uses examples and analyzes circumstances which demonstrate the applicability of her proposals. O'Neill's work contributes to dealing with the challenges posed by the socio-political context of cost-efficiency oriented health systems and of the so-called defensive medicine. Copyright © 2013 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Cloudbursting - Solving the 3-body problem
NASA Astrophysics Data System (ADS)
Chang, G.; Heistand, S.; Vakhnin, A.; Huang, T.; Zimdars, P.; Hua, H.; Hood, R.; Koenig, J.; Mehrotra, P.; Little, M. M.; Law, E.
2014-12-01
Many science projects in the future will be accomplished through collaboration among 2 or more NASA centers along with, potentially, external scientists. Science teams will be composed of more geographically dispersed individuals and groups. However, the current computing environment does not make this easy and seamless. By being able to share computing resources among members of a multi-center team working on a science/ engineering project, limited pre-competition funds could be more efficiently applied and technical work could be conducted more effectively with less time spent moving data or waiting for computing resources to free up. Based on the work from an NASA CIO IT Labs task, this presentation will highlight our prototype work in identifying the feasibility and identify the obstacles, both technical and management, to perform "Cloudbursting" among private clouds located at three different centers. We will demonstrate the use of private cloud computing infrastructure at the Jet Propulsion Laboratory, Langley Research Center, and Ames Research Center to provide elastic computation to each other to perform parallel Earth Science data imaging. We leverage elastic load balancing and auto-scaling features at each data center so that each location can independently define how many resources to allocate to a particular job that was "bursted" from another data center and demonstrate that compute capacity scales up and down with the job. We will also discuss future work in the area, which could include the use of cloud infrastructure from different cloud framework providers as well as other cloud service providers.
Early working memory and maternal communication in toddlers born very low birth weight
Lowe, Jean; Erickson, Sarah J; MacLean, Peggy; Duvall, Susanne W
2010-01-01
Aim Early working memory is emerging as an important indicator of developmental outcome predicting later cognitive, behavioural and academic competencies. The current study compared early working memory in a sample of toddlers (18–22 months) born very low birth weight (VLBW; n = 40) and full term (n = 51) and the relationship between early working memory, mental developmental index (MDI), and maternal communication in both samples. Methods Early working memory, measured by object permanence; Bayley mental developmental index; and maternal communication, coded during mother-toddler play interaction, were examined in 39 toddlers born VLBW and 41 toddlers born full term. Results Toddlers born VLBW were found to be 6.4 times less likely to demonstrate attainment of object permanence than were toddlers born full term, adjusting for age at testing. MDI and maternal communication were found to be positively associated with attainment of object permanence in the VLBW group only. Conclusion The difference found in the early working memory performance of toddlers born VLBW, compared with those born full term, emphasizes the importance of assessing early working memory in at-risk populations, while the maternal communication finding highlights potential targets of intervention for improving working memory in toddlers born VLBW. PMID:19154525
Early working memory and maternal communication in toddlers born very low birth weight.
Lowe, Jean; Erickson, Sarah J; Maclean, Peggy; Duvall, Susanne W
2009-04-01
Early working memory is emerging as an important indicator of developmental outcome predicting later cognitive, behavioural and academic competencies. The current study compared early working memory in a sample of toddlers (18-22 months) born very low birth weight (VLBW; n = 40) and full term (n = 51) and the relationship between early working memory, mental developmental index (MDI), and maternal communication in both samples. Early working memory, measured by object permanence; Bayley mental developmental index; and maternal communication, coded during mother-toddler play interaction, were examined in 39 toddlers born VLBW and 41 toddlers born full term. Toddlers born VLBW were found to be 6.4 times less likely to demonstrate attainment of object permanence than were toddlers born full term, adjusting for age at testing. MDI and maternal communication were found to be positively associated with attainment of object permanence in the VLBW group only. The difference found in the early working memory performance of toddlers born VLBW, compared with those born full term, emphasizes the importance of assessing early working memory in at-risk populations, while the maternal communication finding highlights potential targets of intervention for improving working memory in toddlers born VLBW.
Poli, F. M.; Andre, R. G.; Bertelli, N.; ...
2015-10-30
One of the goals of the National Spherical Torus Experiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) is the demonstration of fully non-inductive start-up, current ramp-up and sustainment. This work discusses predictive simulations where the available heating and current drive systems are combined to maximize the non-inductive current and minimize the solenoidal contribution. Radio-frequency waves at harmonics higher than the ion cyclotron resonance (high-harmonic fast waves (HHFW)) and neutral beam injection are used to ramp the plasma current non-inductively starting from an initial Ohmic plasma. An interesting synergy is observed in the simulations between the HHFW andmore » electron cyclotron (EC) wave heating. Furthermore, time-dependent simulations indicate that, depending on the phasing of the HHFW antenna, EC wave heating can significantly increase the effectiveness of the radio-frequency power, by heating the electrons and increasing the current drive efficiency, thus relaxing the requirements on the level of HHFW power that needs to be absorbed in the core plasma to drive the same amount of fast-wave current.« less
A POM–organic framework anode for Li-ion battery
Yue, Yanfeng; Li, Yunchao; Bi, Zhonghe; ...
2015-10-12
Rechargeable Li-ion batteries (LIBs) are currently the dominant power source for portable electronic devices and electric vehicles, and for small-scale stationary energy storage. However, one bottleneck of the anode materials for LIBs is the poor cycling performance caused by the fact that the anodes cannot maintain their integrity over several charge–discharge cycles. In this work, we demonstrate an approach to improving the cycling performance of lithium-ion battery anodes by constructing an extended 3D network of flexible redox active polyoxometalate (POM) clusters with redox active organic linkers, herein described as POMOF. In addition, this architecture enables the accommodation of large volumemore » changes during cycling at relatively high current rates. For example, the POMOF anode exhibits a high reversible capacity of 540 mA h g –1 after 360 cycles at a current rate of 0.25C and a long cycle life at a current rate of 1.25C (>500 cycles).« less
Giusi, G; Giordano, O; Scandurra, G; Rapisarda, M; Calvi, S; Ciofi, C
2016-04-01
Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz(1/2), while DC performances are limited only by the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.
Endometriosis: Survey of Current Diagnostic and Therapeutic Options and Latest Research Work
Juhasz-Böss, I.; Laschke, M. W.; Müller, F.; Rosenbaum, P.; Baum, S.; Solomayer, E. F.; Ulrich, U.
2014-01-01
Endometriosis is one of the most frequent benign diseases in women of child-bearing age. The main symptoms are chronic upper abdominal pain and infertility. However, the aetiology and pathogenesis of endometriosis are as yet insufficiently clarified. Thus, therapy is mainly symptomatic with laparoscopic surgery being the gold standard. The aim of drug therapy is to achieve a hypo-oestrogenic condition. In cases of severe endometriosis and a desire to have children there is often an indication for assisted reproduction. The present article illustrates almost all current aspects on the diagnosis of and therapy of endometriosis. From the clinical viewpoint, emphasis is placed on the rare cases of deeply infiltrating endometriosis that are, however, accompanied with a high morbidity. Current therapeutic options in cases of infertility are also presented in more detail. Furthermore, special attention is paid to the latest research results from both clinical and basic research fields in order to demonstrate our current knowledge on the pathogenesis and, where possible, potentially related therapeutic options. PMID:25221341
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giusi, G.; Giordano, O.; Scandurra, G.
Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz{sup 1/2}, while DC performances are limited only bymore » the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.« less
Kiely, A; O'Meara, S; Fitzgerald, N; Regan, A M; Durcan, P; McGuire, G; Kelly, M E
2017-03-10
The Special Type Consultation (STC) scheme is a fee-for-service reimbursement scheme for General Practitioners (GPs) in Ireland. Introduced in 1989, the scheme includes specified patient services involving the application of a learned skill, e.g. suturing. This study aims to establish the extent to which GPs believe this scheme is appropriate for current General Practice. This is an embedded mixed-methods study combining quantitative data on GPs working experience of and qualitative data on GPs attitudes towards the scheme. Data were collected by means of an anonymous postal questionnaire. The response rate was 60.4% (n=159.) Twenty-nine percent (n=46) disagreed and 65% (n=104) strongly disagreed that the current list of special items is satisfactory. Two overriding themes were identified: economics and advancement of the STC process. This study demonstrates an overwhelming consensus among GPs that the current STC scheme is outdated and in urgent need of revision to reflect modern General Practice.
Modeling, simulation and control of pulsed DE-GMA welding process for joining of aluminum to steel
NASA Astrophysics Data System (ADS)
Zhang, Gang; Shi, Yu; Li, Jie; Huang, Jiankang; Fan, Ding
2014-09-01
Joining of aluminum to steel has attracted significant attention from the welding research community, automotive and rail transportation industries. Many current welding methods have been developed and applied, however, they can not precisely control the heat input to work-piece, they are high costs, low efficiency and consist lots of complex welding devices, and the generated intermetallic compound layer in weld bead interface is thicker. A novel pulsed double electrode gas metal arc welding(Pulsed DE-GMAW) method is developed. To achieve a stable welding process for joining of aluminum to steel, a mathematical model of coupled arc is established, and a new control scheme that uses the average feedback arc voltage of main loop to adjust the wire feed speed to control coupled arc length is proposed and developed. Then, the impulse control simulation of coupled arc length, wire feed speed and wire extension is conducted to demonstrate the mathematical model and predict the stability of welding process by changing the distance of contact tip to work-piece(CTWD). To prove the proposed PSO based PID control scheme's feasibility, the rapid prototyping experimental system is setup and the bead-on-plate control experiments are conducted to join aluminum to steel. The impulse control simulation shows that the established model can accurately represent the variation of coupled arc length, wire feed speed and the average main arc voltage when the welding process is disturbed, and the developed controller has a faster response and adjustment, only runs about 0.1 s. The captured electric signals show the main arc voltage gradually closes to the supposed arc voltage by adjusting the wire feed speed in 0.8 s. The obtained typical current waveform demonstrates that the main current can be reduced by controlling the bypass current under maintaining a relative large total current. The control experiment proves the accuracy of proposed model and feasibility of new control scheme further. The beautiful and smooth weld beads are also obtained by this method. Pulsed DE-GMAW can thus be considered as an alternative method for low cost, high efficiency joining of aluminum to steel.
Soil moisture observations using L-, C-, and X-band microwave radiometers
NASA Astrophysics Data System (ADS)
Bolten, John Dennis
The purpose of this thesis is to further the current understanding of soil moisture remote sensing under varying conditions using L-, C-, and X-band. Aircraft and satellite instruments are used to investigate the effects of frequency and spatial resolution on soil moisture sensitivity. The specific objectives of the research are to examine multi-scale observed and modeled microwave radiobrightness, evaluate new EOS Aqua Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperature and soil moisture retrievals, and examine future satellite-based technologies for soil moisture sensing. The cycling of Earth's water, energy and carbon is vital to understanding global climate. Over land, these processes are largely dependent on the amount of moisture within the top few centimeters of the soil. However, there are currently no methods available that can accurately characterize Earth's soil moisture layer at the spatial scales or temporal resolutions appropriate for climate modeling. The current work uses ground truth, satellite and aircraft remote sensing data from three large-scale field experiments having different land surface, topographic and climate conditions. A physically-based radiative transfer model is used to simulate the observed aircraft and satellite measurements using spatially and temporally co-located surface parameters. A robust analysis of surface heterogeneity and scaling is possible due to the combination of multiple datasets from a range of microwave frequencies and field conditions. Accurate characterization of spatial and temporal variability of soil moisture during the three field experiments is achieved through sensor calibration and algorithm validation. Comparisons of satellite observations and resampled aircraft observations are made using soil moisture from a Numerical Weather Prediction (NWP) model in order to further demonstrate a soil moisture correlation where point data was unavailable. The influence of vegetation, spatial scaling, and surface heterogeneity on multi-scale soil moisture prediction is presented. This work demonstrates that derived soil moisture using remote sensing provides a better coverage of soil moisture spatial variability than traditional in-situ sensors. Effects of spatial scale were shown to be less significant than frequency on soil moisture sensitivity. Retrievals of soil moisture using the current methods proved inadequate under some conditions; however, this study demonstrates the need for concurrent spaceborne frequencies including L-, C, and X-band.
NASA Astrophysics Data System (ADS)
Daniel, Erik Stephen
In this thesis we present the results of experimental and theoretical studies of two quantum effect devices--the Tunnel Switch Diode (TSD) and the Velocity Modulation Transistor (VMT). We show that TSD devices can be fabricated such that they behave (semi-quantitatively) as predicted by simple analytical models and more advanced drift-diffusion simulations. These devices possess characteristics, such as on-state currents which range over nearly five orders of magnitude, and on/off current ratios which are even larger, which may allow for a practical implementation of a very dense transistorless SRAM architecture and possibly other novel circuit designs. We demonstrate that many TSD properties can be explained by analogy to a thyristor. In particular, we show that the thin oxide layer in the TSD plays a critical role, and that this can be understood in terms of current injection through the oxide, analogous to transport through the "current limiting" layer in a thyristor. As this oxide layer can be subjected to extreme stress during device operation, we have studied the effect of this stress on device behavior. We demonstrate many significant stress-dependent effects, and identify structures and operation modes which minimize these effects. We propose an InAs/GaSb/AlSb VMT which may allow for larger conductance modulation and higher temperature operation than has been demonstrated in similar GaAs/AlAs structures. Fundamental differences in device operation in the two materials systems and unusual transport mechanisms in the InAs/GaSb/AlSb system are identified as a result of the band lineups in the two systems. Boltzmann transport simulations are developed and presented, allowing a qualitative description of the transport in the InAs/GaSb/AlSb structure. Band structure calculations are carried out, allowing for device design. While no working VMT devices were produced, this is believed to be due to processing and crystal growth problems. We present methods used to overcome or circumvent a number of processing problems which resulted in shorting of the gate to the source/drain contacts. The results of electrical measurements are given, which may allow for identification of further obstacles to the production of working devices.
Flight Control Laws for NASA's Hyper-X Research Vehicle
NASA Technical Reports Server (NTRS)
Davidson, J.; Lallman, F.; McMinn, J. D.; Martin, J.; Pahle, J.; Stephenson, M.; Selmon, J.; Bose, D.
1999-01-01
The goal of the Hyper-X program is to demonstrate and validate technology for design and performance predictions of hypersonic aircraft with an airframe-integrated supersonic-combustion ramjet propulsion system. Accomplishing this goal requires flight demonstration of a hydrogen-fueled scramjet powered hypersonic aircraft. A key enabling technology for this flight demonstration is flight controls. Closed-loop flight control is required to enable a successful stage separation, to achieve and maintain the design condition during the engine test, and to provide a controlled descent. Before the contract award, NASA developed preliminary flight control laws for the Hyper-X to evaluate the feasibility of the proposed scramjet test sequence and descent trajectory. After the contract award, a Boeing/NASA partnership worked to develop the current control laws. This paper presents a description of the Hyper-X Research Vehicle control law architectures with performance and robustness analyses. Assessments of simulated flight trajectories and stability margin analyses demonstrate that these control laws meet the flight test requirements.
Tripathi, Ashish; Emmons, Erik D; Wilcox, Phillip G; Guicheteau, Jason A; Emge, Darren K; Christesen, Steven D; Fountain, Augustus W
2011-06-01
We have previously demonstrated the use of wide-field Raman chemical imaging (RCI) to detect and identify the presence of trace explosives in contaminated fingerprints. In this current work we demonstrate the detection of trace explosives in contaminated fingerprints on strongly Raman scattering surfaces such as plastics and painted metals using an automated background subtraction routine. We demonstrate the use of partial least squares subtraction to minimize the interfering surface spectral signatures, allowing the detection and identification of explosive materials in the corrected Raman images. The resulting analyses are then visually superimposed on the corresponding bright field images to physically locate traces of explosives. Additionally, we attempt to address the question of whether a complete RCI of a fingerprint is required for trace explosive detection or whether a simple non-imaging Raman spectrum is sufficient. This investigation further demonstrates the ability to nondestructively identify explosives on fingerprints present on commonly found surfaces such that the fingerprint remains intact for further biometric analysis.
Omar, Artur; Kadesjö, Nils; Palmgren, Charlotta; Marteinsdottir, Maria; Segerdahl, Tony; Fransson, Annette
2017-03-20
In accordance with recommendations by the International Commission on Radiological Protection, the current European Basic Safety Standards has adopted a reduced occupational eye lens dose limit of 20 mSv yr -1 . The radiation safety implications of this dose limit is of concern for clinical staff that work with relatively high dose x-ray angiography and interventional radiology. Presented in this work is a thorough assessment of the occupational eye lens dose based on clinical measurements with active personal dosimeters worn by staff during various types of procedures in interventional radiology, cardiology and neuroradiology. Results are presented in terms of the estimated equivalent eye lens dose for various medical professions. In order to compare the risk of exceeding the regulatory annual eye lens dose limit for the widely different clinical situations investigated in this work, the different medical professions were separated into categories based on their distinct work pattern: staff that work (a) regularly beside the patient, (b) in proximity to the patient and (c) typically at a distance from the patient. The results demonstrate that the risk of exceeding the annual eye lens dose limit is of concern for staff category (a), i.e. mainly the primary radiologist/cardiologist. However, the results also demonstrate that the risk can be greatly mitigated if radiation protection shields are used in the clinical routine. The results presented in this work cover a wide range of clinical situations, and can be used as a first indication of the risk of exceeding the annual eye lens dose limit for staff at other medical centres.
Bedyńska, Sylwia; Krejtz, Izabela; Sedek, Grzegorz
2018-01-01
Stereotype threat affects performance in many different groups across many different domains. Despite a large body of experimental research on situational stereotype threat, little attention has been paid to the consequences of repeated experience of stereotype threat. Using structural equation modeling on data from a representative sample of girls from secondary schools, the current research examined the relations of chronic stereotype threat with mathematical achievement, and effectiveness of working memory functions. Moving beyond past theory, this study examined a new mechanism by which chronic stereotype threat decreases school achievement – namely intellectual helplessness. We assumed that repeated experience of stereotype threat works as intellectual helplessness training. After the phase of cognitive mobilization, cognitive exhaustion appears, because the individual has no gain from intense cognitive effort. Corroborating previous research on acute stereotype threat, we demonstrated that chronic stereotype threat is negatively associated with mathematical achievement. Additionally, it was also associated with lower effectiveness of working memory functions, which seems to show depletion of working memory as an effect of chronic stereotype threat. The results also demonstrated that both mediational paths from chronic stereotype threat to mathematical achievement: through working memory depletion and through intellectual helplessness were significant but only for girls that were highly identified with their gender group. In sum, we extended a well-established model of acute stereotype threat to its chronic version and suggested a new mechanism of chronic stereotype threat, which involves intellectual helplessness. Implications for stereotype threat theory and educational practice are discussed. PMID:29666599
Bedyńska, Sylwia; Krejtz, Izabela; Sedek, Grzegorz
2018-01-01
Stereotype threat affects performance in many different groups across many different domains. Despite a large body of experimental research on situational stereotype threat, little attention has been paid to the consequences of repeated experience of stereotype threat. Using structural equation modeling on data from a representative sample of girls from secondary schools, the current research examined the relations of chronic stereotype threat with mathematical achievement, and effectiveness of working memory functions. Moving beyond past theory, this study examined a new mechanism by which chronic stereotype threat decreases school achievement - namely intellectual helplessness. We assumed that repeated experience of stereotype threat works as intellectual helplessness training. After the phase of cognitive mobilization, cognitive exhaustion appears, because the individual has no gain from intense cognitive effort. Corroborating previous research on acute stereotype threat, we demonstrated that chronic stereotype threat is negatively associated with mathematical achievement. Additionally, it was also associated with lower effectiveness of working memory functions, which seems to show depletion of working memory as an effect of chronic stereotype threat. The results also demonstrated that both mediational paths from chronic stereotype threat to mathematical achievement: through working memory depletion and through intellectual helplessness were significant but only for girls that were highly identified with their gender group. In sum, we extended a well-established model of acute stereotype threat to its chronic version and suggested a new mechanism of chronic stereotype threat, which involves intellectual helplessness. Implications for stereotype threat theory and educational practice are discussed.
Paul, Sally; Sallnow, Libby
2013-06-01
The public health approach to end-of-life care has gained recognition over the past decade regarding its contribution to palliative care services. Terms, such as health-promoting palliative care, and compassionate communities, have entered the discourse of palliative care and practice; examples exist in the UK and globally. This scoping study aimed to determine if such initiatives were priorities for hospices in the UK and, if so, provide baseline data on the types of initiatives undertaken. An online survey was designed, piloted and emailed to 220 palliative care providers across the four UK countries. It included a total of six questions. Quantitative data were analysed using descriptive statistics. Qualitative data were analysed thematically. There was a 66% response rate. Of those providers, 60% indicated that public health approaches to death, dying and loss were a current priority for their organisation. Respondents identified a range of work being undertaken currently in this area. The most successful were felt to be working with schools and working directly with local community groups. The findings demonstrate the relevance of a public health approach for palliative care services and how they are currently engaging with the communities they serve. Although the approach was endorsed by the majority of respondents, various challenges were highlighted. These related to the need to balance this against service provision, and the need for more training and resources to support these initiatives, at both national and community levels.
daCosta DiBonaventura, Marco; Gupta, Shaloo; Cho, Michelle; Mrus, Joseph
2012-01-01
Due to stable incidence and improved survival rates, there are an increasing number of patients living with HIV/AIDS in the USA. Although highly effective, current antiretroviral therapies are associated with a variety of side effects. The role side effects play on health outcomes has not been fully examined. The current study assessed the association of medication side effects with (1) self-assessed health status; (2) work productivity and activity impairment; and (3) healthcare resource utilization. Data were from a cross-sectional patient-reported survey fielded in the USA using a dual methodology of Internet and paper questionnaires. A total of 953 patients living with HIV/AIDS who were currently taking a medication for their condition were included in the analyses. The most frequent side effects reported by patients were fatigue (70.72%), diarrhea (62.96%), insomnia (58.97%), dizziness (52.78%), neuropathy (52.68%), joint pain (52.36%), nausea (51.63%), and abdominal pain (50.37%). The presence of each side effect was associated with reduced self-assessed health status, increased productivity loss, increased activity impairment, and increased healthcare resource use. Controlling for CD4 cell counts in regression modeling did little to diminish the impact of side effects. Although not all side effects were associated with all outcomes, every side effect was associated with worse health status, some measure of increased work productivity loss, and/or some measure of increased healthcare resource use. Patients are living longer with HIV and, therefore, spending a greater length of time on treatment. The results of the current study suggest that many of these patients are experiencing a wide array of side effects from these therapies. These side effects have demonstrated a profound association with self-assessed health, work productivity, and healthcare resource use. Improved management of these side effects or development of treatments with a better side effect profile may have a substantial humanistic and economic benefit.
Cherkasskaya, Eugenia; Rosario, Margaret
2017-11-01
The etiology of low female sexual desire, the most prevalent sexual complaint in women, is multi-determined, implicating biological and psychological factors, including women's early parent-child relationships and bodily self-representations. The current study evaluated a model that hypothesized that sexual body self-representations (sexual subjectivity, self-objectification, genital self-image) explain (i.e., mediate) the relation between internalized working models of parent-child relationships (attachment, separation-individuation, parental identification) and sexual desire in heterosexual women. We recruited 614 young, heterosexual women (M = 25.5 years, SD = 4.63) through social media. The women completed an online survey. Structural equation modeling was used. The hypotheses were supported in that the relation between internalized working models of parent-child relationships (attachment and separation-individuation) and sexual desire was mediated by sexual body self-representations (sexual body esteem, self-objectification, genital self-image). However, parental identification was not related significantly to sexual body self-representations or sexual desire in the model. Current findings demonstrated that understanding female sexual desire necessitates considering women's internalized working models of early parent-child relationships and their experiences of their bodies in a sexual context. Treatment of low or absent desire in women would benefit from modalities that emphasize early parent-child relationships as well as interventions that foster mind-body integration.
Automated Work Package: Conceptual Design and Data Architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Rashdan, Ahmad; Oxstrand, Johanna; Agarwal, Vivek
The automated work package (AWP) is one of the U.S. Department of Energy’s (DOE) Light Water Reactor Sustainability Program efforts to enhance the safety and economics of the nuclear power industry. An AWP is an adaptive and interactive work package that intelligently drives the work process according to the plant condition, resources status, and users progress. The AWP aims to automate several manual tasks of the work process to enhance human performance and reduce human errors. Electronic work packages (eWPs), studied by the Electric Power Research Institute (EPRI), are work packages that rely to various extent on electronic data processingmore » and presentation. AWPs are the future of eWPs. They are envisioned to incorporate the advanced technologies of the future, and thus address the unresolved deficiencies associated with the eWPs in a nuclear power plant. In order to define the AWP, it is necessary to develop an ideal envisioned scenario of the future work process without any current technology restriction. The approach followed to develop this scenario is specific to every stage of the work process execution. The scenario development resulted in fifty advanced functionalities that can be part of the AWP. To rank the importance of these functionalities, a survey was conducted involving several U.S. nuclear utilities. The survey aimed at determining the current need of the nuclear industry with respect to the current work process, i.e. what the industry is satisfied with, and where the industry envisions potential for improvement. The survey evaluated the most promising functionalities resulting from the scenario development. The results demonstrated a significant desire to adopt the majority of these functionalities. The results of the survey are expected to drive the Idaho National Laboratory (INL) AWP research and development (R&D). In order to facilitate this mission, a prototype AWP is needed. Since the vast majority of earlier efforts focused on the frontend aspects of the AWP, the backend data architecture was researched and developed in this effort. The backend design involved data architecture aspects. It was realized through this effort that the key aspects of this design are hierarchy, data configuration and live information, data templates and instances, the flow of work package execution, the introduction of properties, and the means to interface the backend to the frontend. After the backend design was developed, a data structure was built to reflect the developed data architecture. The data structure was developed to accommodate the fifty functionalities identified by the envisioned scenario development. The data structure was evaluated by incorporating an example work order from the nuclear power industry. The implementation resulted in several optimization iterations of the data structure. In addition, the rearrangement of the work order information to fit the data structure highlighted several possibilities for improvement in the current work order design, and significantly reduced the size of the work order.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belomyttsev, S. Ya.; Grishkov, A. A.; Tsygankov, R. V.
2014-03-15
This paper studies the motion of a virtual cathode in a two-section drift tube with the formation and breakup of the “compressed” state of an electron beam. Experimental arrangements to intercept part of the injected current during the voltage pulse and to provide virtual cathode motion toward the collector are proposed. The arrangements were implemented on the SINUS-7 high-current electron accelerator. Theoretical and experimental dependences of the virtual cathode velocity on the injected current and cathode voltage are presented. The experimental data on virtual cathode motion agree with its theoretical model based on analytical solutions of equations assisted by computermore » simulation with the PIC code KARAT. The results of the work demonstrate the feasibility of controlling the virtual cathode motion which can be used in collective ion acceleration and microwave generation.« less
Molten Salt Electrolysis of MgCl2 in a Cell with Rapid Chlorine Removal Feature
NASA Astrophysics Data System (ADS)
Demirci, Gökhan; Karakaya, İshak
An experimental electrolytic magnesium production cell was designed to remove chlorine gas from the electrolyte rapidly and demonstrate the beneficial effects of reduced chlorine dissolution into the molten salt electrolyte. The back reaction that is the main cause of current losses in electrolytic magnesium production was reduced as a result of effective separation of electrode products and decreased contact time of chlorine gas with the electrolyte. Moreover, smaller inter electrode distances employed and lower chlorine gas present on the anode surface made it possible to work at low cell voltages. Electrolytic cell was tested at different current densities. Energy consumption of 7.0 kWh kg-1 Mg that is slightly above the theoretical minimum, 6.2 kWh kg-1 Mg, at 0.68 Acm-2 anodic current density was achieved for a MgCl2/NaCl/KCl electrolyte.
Ab-Initio analysis of TlBr: limiting the ionic current without degrading the electronic one
NASA Astrophysics Data System (ADS)
Rocha Leao, Cedric; Lordi, Vincenzo
2011-03-01
Although TlBr in principle presents all the theoretical requirements for making high resolution room temperature radiation detectors, practical applications of TlBr have proven to be nonviable due to the polarization that is observed in the crystal after relatively short periods of operation. This polarization, that is believed to be caused by accumulation of oppositely charged ionic species at the ends of the crystal, results in an electric field that opposes that of the applied bias, counter-acting its effect. In this work, we use state of the art quantum modeling to benchmark the theoretical limits for the performance of TlBr as a radiation detector, showing that the best experimental reports demonstrate near-ideal electronic characteristics. We then propose a model to inhibit the detrimental ionic current in the material without impacting the excellent properties of the electronic current. Prepared by LLNL under Contract DE-AC52-07NA27344.
Dynamic Routing of Aircraft in the Presence of Adverse Weather Using a POMDP Framework
NASA Technical Reports Server (NTRS)
Balaban, Edward; Roychoudhury, Indranil; Spirkovska, Lilly; Sankararaman, Shankar; Kulkarni, Chetan; Arnon, Tomer
2017-01-01
Each year weather-related airline delays result in hundreds of millions of dollars in additional fuel burn, maintenance, and lost revenue, not to mention passenger inconvenience. The current approaches for aircraft route planning in the presence of adverse weather still mainly rely on deterministic methods. In contrast, this work aims to deal with the problem using a Partially Observable Markov Decision Processes (POMDPs) framework, which allows for reasoning over uncertainty (including uncertainty in weather evolution over time) and results in solutions that are more robust to disruptions. The POMDP-based decision support system is demonstrated on several scenarios involving convective weather cells and is benchmarked against a deterministic planning system with functionality similar to those currently in use or under development.
Conducting-insulating transition in adiabatic memristive networks
NASA Astrophysics Data System (ADS)
Sheldon, Forrest C.; Di Ventra, Massimiliano
2017-01-01
The development of neuromorphic systems based on memristive elements—resistors with memory—requires a fundamental understanding of their collective dynamics when organized in networks. Here, we study an experimentally inspired model of two-dimensional disordered memristive networks subject to a slowly ramped voltage and show that they undergo a discontinuous transition in the conductivity for sufficiently high values of memory, as quantified by the memristive ON-OFF ratio. We investigate the consequences of this transition for the memristive current-voltage characteristics both through simulation and theory, and demonstrate the role of current-voltage duality in relating forward and reverse switching processes. Our work sheds considerable light on the statistical properties of memristive networks that are presently studied both for unconventional computing and as models of neural networks.
Theory of atomistic simulation of spin-transfer torque in nanomagnets
NASA Astrophysics Data System (ADS)
Tay, Tiamhock; Sham, L. J.
2013-05-01
In spin-transfer torque (STT) for technological applications, the miniaturization of the magnet may reach the stage of requiring a fully quantum-mechanical treatment. We present an STT theory which uses the quantum macrospin ground and excited (magnon) states of the nanomagnet. This allows for energy and angular momentum exchanges between the current electron and the nano-magnet. We develop a method of magnetization dynamics simulation which captures the heating effect on the magnet by the spin-polarized current and the temperature dependence in STT. We also discuss the magnetostatics effect on magnon scattering for ferromagnetic relaxation in a thin film. Our work demonstrates a realistic step towards simulation of quantum spin-transfer torque physics in nanoscale magnets.
Evaluation of Current Planetary Boundary Layer Retrieval Capabilities from Space
NASA Technical Reports Server (NTRS)
Santanello, Joseph A., Jr.; Schaefer, Alexander J.; Blaisdell, John; Yorks, John
2016-01-01
The PBL over land remains a significant gap in our water and energy cycle understanding from space. This work combines unique NASA satellite and model products to demonstrate the ability of current sensors (advanced IR sounding and lidar) to retrieve PBL properties and in turn their potential to be used globally to evaluate and improve weather and climate prediction models. While incremental progress has been made in recent AIRS retrieval versions, insufficient vertical resolution remains in terms of detecting PBL properties. Lidar shows promise in terms of detecting vertical gradients (and PBLh) in the lower troposphere, but daytime conditions over land remain a challenge due to noise, and their coverage is limited to approximately 2 weeks or longer return times.
Spin filter and spin valve in ferromagnetic graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yu, E-mail: kwungyusung@gmail.com; Dai, Gang; Research Center for Microsystems and Terahertz, China Academy of Engineering Physics, Mianyang 621999
2015-06-01
We propose and demonstrate that a EuO-induced and top-gated graphene ferromagnetic junction can be simultaneously operated as a spin filter and a spin valve. We attribute such a remarkable result to a coexistence of a half-metal band and a common energy gap for opposite spins in ferromagnetic graphene. We show that both the spin filter and the spin valve can be effectively controlled by a back gate voltage, and they survive for practical metal contacts and finite temperature. Specifically, larger single spin currents and on-state currents can be reached with contacts with work functions similar to graphene, and the spinmore » filter can operate at higher temperature than the spin valve.« less
Temporal Evolution of the Plasma Sheath Surrounding Solar Cells in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Willis, Emily M.; Pour, Maria Z. A.
2017-01-01
Initial results from the PIC simulation and the LEM simulation have been presented. The PIC simulation results show that more detailed study is required to refine the ISS solar array current collection model and to understand the development of the current collection in time. The initial results from the LEM demonstrate that is it possible the transients are caused by solar array interaction with the environment, but there are presently too many assumptions in the model to be certain. Continued work on the PIC simulation will provide valuable information on the development of the barrier potential, which will allow refinement the LEM simulation and a better understanding of the causes and effects of the transients.
Water management in a planar air-breathing fuel cell array using operando neutron imaging
NASA Astrophysics Data System (ADS)
Coz, E.; Théry, J.; Boillat, P.; Faucheux, V.; Alincant, D.; Capron, P.; Gébel, G.
2016-11-01
Operando Neutron imaging is used for the investigation of a planar air-breathing array comprising multiple cells in series. The fuel cell demonstrates a stable power density level of 150 mW/cm2. Water distribution and quantification is carried out at different operating points. Drying at high current density is observed and correlated to self-heating and natural convection. Working in dead-end mode, water accumulation at lower current density is largely observed on the anode side. However, flooding mechanisms are found to begin with water condensation on the cathode side, leading to back-diffusion and anodic flooding. Specific in-plane and through-plane water distribution is observed and linked to the planar array design.
An Aircraft Vortex Spacing System (AVOSS) for Dynamical Wake Vortex Spacing Criteria
NASA Technical Reports Server (NTRS)
Hinton, D. A.
1996-01-01
A concept is presented for the development and implementation of a prototype Aircraft Vortex Spacing System (AVOSS). The purpose of the AVOSS is to use current and short-term predictions of the atmospheric state in approach and departure corridors to provide, to ATC facilities, dynamical weather dependent separation criteria with adequate stability and lead time for use in establishing arrival scheduling. The AVOSS will accomplish this task through a combination of wake vortex transport and decay predictions, weather state knowledge, defined aircraft operational procedures and corridors, and wake vortex safety sensors. Work is currently underway to address the critical disciplines and knowledge needs so as to implement and demonstrate a prototype AVOSS in the 1999/2000 time frame.
Anti-Hermitian photodetector facilitating efficient subwavelength photon sorting.
Kim, Soo Jin; Kang, Ju-Hyung; Mutlu, Mehmet; Park, Joonsuk; Park, Woosung; Goodson, Kenneth E; Sinclair, Robert; Fan, Shanhui; Kik, Pieter G; Brongersma, Mark L
2018-01-22
The ability to split an incident light beam into separate wavelength bands is central to a diverse set of optical applications, including imaging, biosensing, communication, photocatalysis, and photovoltaics. Entirely new opportunities are currently emerging with the recently demonstrated possibility to spectrally split light at a subwavelength scale with optical antennas. Unfortunately, such small structures offer limited spectral control and are hard to exploit in optoelectronic devices. Here, we overcome both challenges and demonstrate how within a single-layer metafilm one can laterally sort photons of different wavelengths below the free-space diffraction limit and extract a useful photocurrent. This chipscale demonstration of anti-Hermitian coupling between resonant photodetector elements also facilitates near-unity photon-sorting efficiencies, near-unity absorption, and a narrow spectral response (∼ 30 nm) for the different wavelength channels. This work opens up entirely new design paradigms for image sensors and energy harvesting systems in which the active elements both sort and detect photons.
Carraro, Luciana; Castelli, Luigi; Macchiella, Claudia
2011-01-01
Research has widely explored the differences between conservatives and liberals, and it has been also recently demonstrated that conservatives display different reactions toward valenced stimuli. However, previous studies have not yet fully illuminated the cognitive underpinnings of these differences. In the current work, we argued that political ideology is related to selective attention processes, so that negative stimuli are more likely to automatically grab the attention of conservatives as compared to liberals. In Experiment 1, we demonstrated that negative (vs. positive) information impaired the performance of conservatives, more than liberals, in an Emotional Stroop Task. This finding was confirmed in Experiment 2 and in Experiment 3 employing a Dot-Probe Task, demonstrating that threatening stimuli were more likely to attract the attention of conservatives. Overall, results support the conclusion that people embracing conservative views of the world display an automatic selective attention for negative stimuli. PMID:22096486
Is overall similarity classification less effortful than single-dimension classification?
Wills, Andy J; Milton, Fraser; Longmore, Christopher A; Hester, Sarah; Robinson, Jo
2013-01-01
It is sometimes argued that the implementation of an overall similarity classification is less effortful than the implementation of a single-dimension classification. In the current article, we argue that the evidence securely in support of this view is limited, and report additional evidence in support of the opposite proposition--overall similarity classification is more effortful than single-dimension classification. Using a match-to-standards procedure, Experiments 1A, 1B and 2 demonstrate that concurrent load reduces the prevalence of overall similarity classification, and that this effect is robust to changes in the concurrent load task employed, the level of time pressure experienced, and the short-term memory requirements of the classification task. Experiment 3 demonstrates that participants who produced overall similarity classifications from the outset have larger working memory capacities than those who produced single-dimension classifications initially, and Experiment 4 demonstrates that instructions to respond meticulously increase the prevalence of overall similarity classification.
Strain-Based Damage Determination Using Finite Element Analysis for Structural Health Management
NASA Technical Reports Server (NTRS)
Hochhalter, Jacob D.; Krishnamurthy, Thiagaraja; Aguilo, Miguel A.
2016-01-01
A damage determination method is presented that relies on in-service strain sensor measurements. The method employs a gradient-based optimization procedure combined with the finite element method for solution to the forward problem. It is demonstrated that strains, measured at a limited number of sensors, can be used to accurately determine the location, size, and orientation of damage. Numerical examples are presented to demonstrate the general procedure. This work is motivated by the need to provide structural health management systems with a real-time damage characterization. The damage cases investigated herein are characteristic of point-source damage, which can attain critical size during flight. The procedure described can be used to provide prognosis tools with the current damage configuration.
Communicating Scientific Research to Non-Specialists
NASA Astrophysics Data System (ADS)
Holman, Megan
Public outreach to effectively communicate current scientific advances is an essential component of the scientific process. The challenge in making this information accessible is forming a clear, accurate, and concise version of the information from a variety of different sources, so that the information is understandable and compelling to non-specialists in the general public. We are preparing a magazine article about planetary system formation. This article will include background information about star formation and different theories and observations of planet formation to provide context. We will then discuss the latest research and theories describing how planetary systems may be forming in different areas of the universe. We demonstrate here the original professional-level scientific work alongside our public-level explanations and original graphics to demonstrate our editorial process.
Turning art into mere illustration: concretizing art renders its influence context dependent.
Hagtvedt, Henrik; Patrick, Vanessa M
2011-12-01
Broadly speaking, artworks are accorded a special significance and are recognized as powerful communication tools. In the current research, the authors posit that the "specialness" of artworks may be diminished simply by emphasizing that which is depicted in them. This emphasis results in the artwork being viewed as a mere illustration rather than a work of art. Specifically, the influence of an "artwork as art" is context independent, but the influence of an "artwork as illustration" is context dependent. The authors demonstrate this phenomenon in two experiments, in the context of products associated with artworks. In a third experiment, they further demonstrate that an abstract (concrete) mind-set aligns with the influence of an artwork as art (illustration).
Monetary losses do not loom large in later life: age differences in the framing effect.
Mikels, Joseph A; Reed, Andrew E
2009-06-01
Studies of the framing effect indicate that individuals are risk averse for decisions framed as gains but risk seeking for decisions framed as losses. However, findings regarding age-related changes in susceptibility to framing are mixed. Recent work demonstrating age-related decreases in reactivity to anticipated monetary losses, but not gains, suggests that older and younger adults might show equivalent risk aversion for gains but discrepant risk seeking for losses. In the current study, older and younger adults completed a monetary gambling task in which they chose between sure options and risky gambles (the expected outcomes of which were equated). Although both groups demonstrated risk aversion in the gain frame, only younger adults showed risk seeking in the loss frame.
The Physics of Local Helicity Injection Non-Solenoidal Tokamak Startup
NASA Astrophysics Data System (ADS)
Redd, A. J.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Jardin, S.
2013-10-01
Non-solenoidal startup via Local Helicity Injection (LHI) uses compact current injectors to produce toroidal plasma current Ip up to 170 kA in the PEGASUS Toroidal Experiment, driven by 4-8 kA injector current on timescales of 5-20 milliseconds. Increasing the Ip buildup duration enables experimental demonstration of plasma position control on timescales relevant for high-current startup. LHI-driven discharges exhibit bursty MHD activity, apparently line-tied kinking of LHI-driven field lines, with the bursts correlating with rapid equilibrium changes, sharp Ip rises, and sharp drops in the injector impedance. Preliminary NIMROD results suggest that helical LHI-driven current channels remain coherent, with Ip increases due to reconnection between adjacent helical turns forming axisymmetric plasmoids, and corresponding sharp drops in the bias circuit impedance. The DC injector impedance is consistent with a space charge limit at low bias current and a magnetic limit at high bias current. Internal measurements show the current density profile starts strongly hollow and rapidly fills in during Ip buildup. Simulations of LHI discharges using the Tokamak Simulation Code (TSC) will provide insight into the detailed current drive mechanism and guide experiments on PEFASUS and NSTX-U. Work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.
Magnon-mediated current drag across a magnetic insulator
NASA Astrophysics Data System (ADS)
Shi, Jing
Electric current transmission can occur in a magnetic insulator via spin current inter-conversions at heavy metal/magnetic insulator interfaces. In magnetic insulators, spin current is carried by spin wave excitations or their quanta, magnons. This marvelous phenomenon was first theoretically predicted and dubbed as the magnon-mediated current drag in 2012 by Zhang et al.. Following a breakthrough in materials growth, i.e. yttrium iron garnet films or YIG ranging from 30 to 80 nm in thickness sandwiched between two heavy metal films, we successfully showed the nonlocal DC current transmission in such sandwich structures via spin current rather than charge current. To exclude the leakage effect, the experiments are conducted at temperatures below 250 K where the resistance between the metal layers exceeds 20 Gohms. In addition, by replacing the top Pt electrode with beta-Ta which is known to reverse the sign in the spin Hall angle, we found that the nonlocal signal reverses the polarity, which is a direct demonstration of the spin current nature. Furthermore, the temperature dependence of the nonlocal signal confirms the role of magnons in this effect. The work was supported as part of the SHINES, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award No. SC0012670.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-16
... Information Collection for Public Comment; Moving To Work Demonstration AGENCY: Office of the Assistant... lists the following information: Title of Proposal: Moving to Work Demonstration. OMB Control Number... to Work (MTW) demonstration agreements (33 at the time of submission of this request) the [[Page...
Functional Characterization of a Novel Shape Memory Alloy
NASA Astrophysics Data System (ADS)
Collado, M.; Cabás, R.; San Juan, J.; López-Ferreño, I.
2014-07-01
A novel shape memory alloy (SMA) has been developed as an alternative to currently available alloys. This alloy, commercially known by its proprietary brand SMARQ, shows a higher working range of temperatures with respect to the SMA materials used until now in actuators, limited to environment temperatures below 90 °C. SMARQ is a high temperature SMA (HTSMA) based on a fully European material technology and production processes, which allows the manufacture of high quality products, with tuneable transformation temperatures up to 200 °C. Both, material and production processes have been evaluated for its use in space applications. A full characterization test campaign has been completed in order to obtain the material properties and check its suitability to be used as active material in space actuators. In order to perform the functional characterization of the material, it has been considered as the key element of a basic SMA actuator, consisting in the SMA wire and the mechanical and electrical interfaces. The functional tests presented in this work have been focused on the actuator behavior when heated by means of an electrical current. Alloy composition has been adjusted in order to match a transition temperature (As) of +145 °C, which satisfies the application requirements of operating temperatures in the range of -70 and +125 °C. Details of the tests and results of the characterization test campaign, focused in the material unique properties for their use in actuators, will be presented in this work. Some application examples in the field of space mechanisms and actuators, currently under development, will be summarized as part of this work, demonstrating the technology suitability as active material for space actuators.
Changes in hospital nurse work environments and nurse job outcomes: an analysis of panel data.
Kutney-Lee, Ann; Wu, Evan S; Sloane, Douglas M; Aiken, Linda H
2013-02-01
One strategy proposed to alleviate nursing shortages is the promotion of organizational efforts that will improve nurse recruitment and retention. Cross-sectional studies have shown that the quality of the nurse work environment is associated with nurse outcomes related to retention, but there have been very few longitudinal studies undertaken to examine this relationship. To demonstrate how rates of burnout, intention to leave, and job dissatisfaction changed in a panel of hospitals over time, and to explore whether these outcomes were associated with changes in nurse work environments. A retrospective, two-stage panel design was chosen for this study. Survey data collected from large random samples of registered nurses employed in Pennsylvania hospitals in 1999 and 2006 were used to derive hospital-level rates of burnout, intention to leave current position, and job dissatisfaction, and to classify the quality of nurses' work environments at both points in time. A two-period difference model was used to estimate the dependence of changes in rates of nurse burnout, intention to leave, and job dissatisfaction on changes in nurse work environments between 1999 and 2006 in 137 hospitals, accounting for concurrent changes in nurse staffing levels. In general, nurse outcomes improved between 1999 and 2006, with fewer nurses reporting burnout, intention to leave, and job dissatisfaction in 2006 as compared to 1999. Our difference models showed that improvements in work environment had a strong negative association with changes in rates of burnout (β=-6.42%, p<0.01) intention to leave (β=-4.10%, p<0.01), and job dissatisfaction (β=-8.00%, p<0.01). Improvements in nurse work environments over time are associated with lower rates of nurse burnout, intention to leave current position, and job dissatisfaction. Copyright © 2012 Elsevier Ltd. All rights reserved.
Changes in Hospital Nurse Work Environments and Nurse Job Outcomes: An Analysis of Panel Data
Wu, Evan S.; Sloane, Douglas M.; Aiken, Linda H.; Fagin, Claire M.
2013-01-01
Background One strategy proposed to alleviate nursing shortages is the promotion of organizational efforts that will improve nurse recruitment and retention. Cross-sectional studies have shown that the quality of the nurse work environment is associated with nurse outcomes related to retention, but there have been very few longitudinal studies undertaken to examine this relationship. Objectives To demonstrate how rates of burnout, intention to leave, and job dissatisfaction changed in a panel of hospitals over time, and to explore whether these outcomes were associated with changes in nurse work environments. Methods A retrospective, two-stage panel design was chosen for this study. Survey data collected from large random samples of registered nurses employed in Pennsylvania hospitals in 1999 and 2006 were used to derive hospital-level rates of burnout, intentions to leave current positions, and job dissatisfaction, and to classify the quality of nurses’ work environments at both points in time. A two-period difference model was used to estimate the dependence of changes in rates of nurse burnout, intentions to leave, and job dissatisfaction on changes in nurse work environments between 1999 and 2006 in 137 hospitals, accounting for concurrent changes in nurse staffing levels. Results In general, nurse outcomes improved between 1999 and 2006, with fewer nurses reporting burnout, intentions to leave, and job dissatisfaction in 2006 as compared to 1999. Our difference models showed that improvements in work environment had a strong negative association with changes in rates of burnout (β =−6.42%, p<0.01) intentions to leave (β =−4.10%, p<0.01), and job dissatisfaction (β =−8.00%, p<0.01). Conclusions Improvements in nurse work environments over time are associated with lower rates of nurse burnout, intentions to leave current positions, and job dissatisfaction. PMID:22902135
The Substorm Current Wedge Revisited
NASA Astrophysics Data System (ADS)
Kepko, Larry; McPherron, Robert; Apatenkov, Sergey; Baumjohann, Wolfgang; Birn, Joachim; Lester, Mark; Nakamura, Rumi; Pulkkinen, Tuija; Sergeev, Victor
2015-04-01
Almost 40 years ago the concept of the substorm current wedge was developed to explain the magnetic signatures observed on the ground and in geosynchronous orbit during substorm expansion. In the ensuing decades new observations, including radar and low-altitude spacecraft, MHD simulations, and theoretical considerations have tremendously advanced our understanding of this system. The AMPTE/IRM, THEMIS and Cluster missions have added considerable observational knowledge, especially on the important role of fast flows in producing the stresses that generate the substorm current wedge. Recent detailed, multi-spacecraft, multi-instrument observations both in the magnetosphere and in the ionosphere have brought a wealth of new information about the details of the temporal evolution and structure of the current system. In this paper, we briefly review recent in situ and ground-based observations and theoretical work that have demonstrated a need for an update of the original picture. We present a revised, time-dependent picture of the substorm current wedge that follows its evolution from the initial substorm flows through substorm expansion and recovery, and conclude by identifying open questions.
Koutilellis, G D; Economou, A; Efstathiou, C E
2016-03-01
This work reports the design and construction of a novel potentiostat which features an integrator transimpedance amplifier as a current-monitoring unit. The integration approach addresses the limitations of the feedback resistor approach used for current monitoring in conventional potentiostat designs. In the present design, measurement of the current is performed by a precision switched integrator transimpedance amplifier operated in the dual sampling mode which enables sub-pA resolution. The potentiostat is suitable for measuring very low currents (typical dynamic range: 5 pA-4.7 μA) with a 16 bit resolution, and it can support 2-, 3- and 4-electrode cell configurations. Its operation was assessed by using it as a detection module in a home-made capillary electrophoresis system for the separation and amperometric detection of paracetamol and p-aminophenol at a 3-electrode microfluidic chip. The potential and limitations of the proposed potentiostat to implement fast potential-scan voltammetric techniques were demonstrated for the case of cyclic voltammetry.
NASA Astrophysics Data System (ADS)
Liu, Lilin; Ling, Minjie; Yang, Jianfu; Xiong, Wang; Jia, Weiqing; Wang, Gang
2012-05-01
With this work, we demonstrate a three-stage degradation behavior of GaN based LED chips under current/thermal co-stressing. The three stages in sequence are the initial improvement stage, the platform stage, and the rapid degradation stage, indicating that current/thermal co-stressing activates positive effects and negative ones simultaneously, and the dominant degradation mechanisms evolve with aging time. Degradation mechanisms are discussed. Electric current stress has dual characters: damaging the active layers by generating defects and at the same time improving the p-type conductivity by activating the Mg-dopant. High temperature stresses will promote the effects from electric current stresses. The activation of the Mg-dopant will saturate, whereas the generation of defects is carried on in a progressive way. Other mechanisms, such as deterioration of ohmic contacts, also operate. These mechanisms compete/cooperate with each other and evolve with aging time, resulting in the observed three-stage degradation behavior. There exist risks to predict the lifetime of LEDs by a model with a constant accelerated factor.
Modeling of RF/MHD coupling using NIMROD and GENRAY
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Schnack, D. D.; Sovinec, C. R.; Hegna, C. C.; Callen, J. D.; Ebrahimi, F.; Kruger, S. E.; Carlsson, J.; Held, E. D.; Ji, J.-Y.; Harvey, R. W.; Smirnov, A. P.
2008-11-01
We summarize ongoing theoretical/numerical work relevant to the development of a self--consistent framework for the inclusion of RF effects in fluid simulations, specifically considering the stabilization of resistive tearing modes in tokamak (DIII--D--like) geometry by electron cyclotron current drive. Previous investigations [T. G. Jenkins et al., Bull. APS 52, 131 (2007)] have demonstrated that relatively simple (though non--self--consistent) models for the RF--induced currents can be incorporated into the fluid equations, and that these currents can markedly reduce the width of the nonlinearly saturated magnetic islands generated by tearing modes. We report our progress toward the self--consistent modeling of these RF--induced currents. The initial interfacing of the NIMROD* code with the GENRAY/CQL3D** codes (which calculate RF propagation and energy/momentum deposition) is explained, equilibration of RF--induced currents over the plasma flux surfaces is investigated, and initial studies exploring the efficient reduction of saturated island widths through time modulation of the ECCD are presented. Conducted as part of the SWIM*** project; funded by U. S. DoE. *www.nimrodteam.org **www.compxco.com ***www.cswim.org
Demonstration of Inductive Flux Saving by Transient CHI on NSTX
NASA Astrophysics Data System (ADS)
Raman, Roger
2010-11-01
Experiments in NSTX have now demonstrated the saving of central solenoid flux equivalent to 200kA of toroidal plasma current after coupling plasmas produced by Transient Coaxial Helicity Injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current [R. Raman, et al., PRL 104, 095003 (2010)]. This is a record for non-inductive plasma startup, and an important step for developing the spherical torus concept. With an injector current of only 4kA and total power supply energy of only 21 kJ, CHI initiated a toroidal current of 250 kA that when coupled to 0.11 Vs of induction ramped up to 525 kA without using any auxiliary heating, whereas an otherwise identical inductive-only discharge ramped to only 325 kA. This flux saving was realized by reducing the influx of low-Z impurities during the start-up phase through the use of electrode conditioning discharges, followed by lithium evaporative coating of the plasma-facing surfaces and reducing parasitic arcs in the upper divertor region through use of additional shaping-field coils. As a result of these improvements, and for the first time in NSTX, the electron temperature during the CHI phase continually increased with input energy, indicating that the additional injected energy was contributing to heating the plasma instead of being lost through impurity line radiation. Simulations with the Tokamak Simulation Code (TSC) show that the observed scaling of CHI start-up current with toroidal field in NSTX is consistent with theory, suggesting that use of CHI on larger machines is quite attractive. These exciting results from NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks. This work supported by U.S. DOE Contracts DE-AC02-09CH11466 and DE-FG02-99ER54519 AM08.
Applications of Carbon Nanotubes in CFx Electrodes for High-power Li/CFx Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qing; Takeuchi, Kenneth J.; Takeuchi, Esther S.
2016-01-01
ABSTRACT Carbon monofluoride (CF x) has been extensively used as a reliable cathode material in lithium primary batteries because of its high energy density and long shelf life. However, the implementation of Li/ CF xbatteries in high-power applications is limited by the low power capability resulting from the insulative nature of CF xmaterial. In this work, we incorporated multi-walled carbon nanotubes into CF xelectrodes and studied the impact on the electrochemical performances when CNTs were used as a conductive additive material and current collector substrate. Our work demonstrated the promising utilization of CNTs in CF xelectrodes in improving the practicalmore » capacity and power capability of Li/ CF xbatteries.« less
Center Director Bridges visits Disability Awareness and Action working Group Technology Fair
NASA Technical Reports Server (NTRS)
1999-01-01
Center Director Roy Bridges (standing, center) poses with members of the Disability Awareness and Action Working Group (DAAWG), which is holding the 1999 Technology Fair Oct. 20-21 at Kennedy Space Center. The Fair is highlighting vendors demonstrating mobility, hearing, vision and silent disability assistive technology. The purpose is to create an awareness of the types of technology currently available to assist people with various disabilities in the workplace. The theme is that of this year's National Disability Employment Awareness Month, 'Opening Doors to Ability.' Some of the vendors participating are Canine Companions for Independence, Goodwill Industries, Accessible Structures, Division of Blind Services, Space Coast Center for Independent Living, KSC Fitness Center and Delaware North Parks Services.
Baseline practices and user needs for Web dissemination of geotechnical data
Turner, L.L.; Brown, M.P.; Chambers, D.; Davis, C.A.; Diehl, J.; Hitchcock, C.S.; Holzer, T.L.; Nigbor, R.L.; Plumb, C.; Real, C.; Reimer, M.; Steidl, J.H.; Sun, J.I.; Tinsley, J.C.; Vaughn, D.; ,
2004-01-01
This paper presents the findings and recommendations of the User Scenario Work Group (USWG) in identifying a baseline of current practices within the geo-professional community and prioritizing desired functional requirements in the development of a comprehensive geotechnical information management system. This work was conducted as an initial phase of a larger project to demonstrate the effectiveness of a web based virtual data center for the dissemination of geotechnical data from multiple linked databases of various government and private sector organizations. An online survey was administered over the course of several months to practitioners across the nation. The results from the survey were compiled and examined to provide direction to the other project teams in the development of user-driven prototype data system.
Integrating Rehabilitation Engineering Technology With Biologics
Collinger, Jennifer L.; Dicianno, Brad E.; Weber, Douglas J.; Cui, Xinyan Tracy; Wang, Wei; Brienza, David M.; Boninger, Michael L.
2017-01-01
Rehabilitation engineers apply engineering principles to improve function or to solve challenges faced by persons with disabilities. It is critical to integrate the knowledge of biologics into the process of rehabilitation engineering to advance the field and maximize potential benefits to patients. Some applications in particular demonstrate the value of a symbiotic relationship between biologics and rehabilitation engineering. In this review we illustrate how researchers working with neural interfaces and integrated prosthetics, assistive technology, and biologics data collection are currently integrating these 2 fields. We also discuss the potential for further integration of biologics and rehabilitation engineering to deliver the best technologies and treatments to patients. Engineers and clinicians must work together to develop technologies that meet clinical needs and are accessible to the intended patient population. PMID:21703573
[Somatoform pain disorder and work disability].
Fauchère, P A
2001-04-12
Over the past few years, the number of i.v. pensioners has risen drastically. According to BSV statistics the diagnosis for the new pensions was mainly based on psychological disorders and problems with the musculoskeletal system. A large portion of these people with new disabilities are probably suffering from somatoform disorder, whereby the insured person complains about pain for which there are no demonstrable organic findings. The author contests the fact that this condition automatically leads to disability and makes an appeal for stricter, more exacting diagnostic screening: psychiatric co-morbidity must be considered in order to be able to determine the degree of work disability. Due to its multiplicity and inconsistencies, current practice is no longer able to ensure equal handling of all insured persons.
Effective implementation of work-hour limits and systemic improvements.
Landrigan, Christopher P; Czeisler, Charles A; Barger, Laura K; Ayas, Najib T; Rothschild, Jeffrey M; Lockley, Steven W
2007-11-01
Sleep deprivation, ubiquitous among nurses and physicians, recently has been shown to greatly increase rates of serious medical errors and occupational injuries among health care workers in the United States. The Accreditation Council for Graduate Medical Education's current work-hour limits for physicians-in-training allow work hours well in excess of those proven safe. No regulations limit the work hours of other groups of health care providers in the United States. Consequently, nursing work shifts exceeding 12 hours remain common. Physician-in-training shifts of 30 consecutive hours continue to be endorsed officially, and data demonstrate that even the 30-hour limit is exceeded routinely. By contrast, European health care workers are limited by law to 13 consecutive hours of work and to 48-56 hours of work per week. Except for a few institutions that have eliminated 24-hour shifts, as a whole, the United States lags far behind other industrialized nations in ensuring safe work hours. Preventing health care provider sleep deprivation could be an extremely powerful means of addressing the epidemic of medical errors in the United States. Implementation of evidence-based work-hour limits, scientifically designed work schedules, and infrastructural changes, such as the development of standardized handoff systems, are urgently needed.
Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles.
Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd
2015-05-21
Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA) acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0-20 min) of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung's and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung's methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.
Amplification of perpendicular and parallel magnetic fields by cosmic ray currents
NASA Astrophysics Data System (ADS)
Matthews, J. H.; Bell, A. R.; Blundell, K. M.; Araudo, A. T.
2017-08-01
Cosmic ray (CR) currents through magnetized plasma drive strong instabilities producing amplification of the magnetic field. This amplification helps explain the CR energy spectrum as well as observations of supernova remnants and radio galaxy hotspots. Using magnetohydrodynamic simulations, we study the behaviour of the non-resonant hybrid (NRH) instability (also known as the Bell instability) in the case of CR currents perpendicular and parallel to the initial magnetic field. We demonstrate that extending simulations of the perpendicular case to 3D reveals a different character to the turbulence from that observed in 2D. Despite these differences, in 3D the perpendicular NRH instability still grows exponentially far into the non-linear regime with a similar growth rate to both the 2D perpendicular and 3D parallel situations. We introduce some simple analytical models to elucidate the physical behaviour, using them to demonstrate that the transition to the non-linear regime is governed by the growth of thermal pressure inside dense filaments at the edges of the expanding loops. We discuss our results in the context of supernova remnants and jets in radio galaxies. Our work shows that the NRH instability can amplify magnetic fields to many times their initial value in parallel and perpendicular shocks.
Development of a Josephson vortex two-state system based on a confocal annular Josephson junction
NASA Astrophysics Data System (ADS)
Monaco, Roberto; Mygind, Jesper; Koshelets, Valery P.
2018-07-01
We report theoretical and experimental work on the development of a Josephson vortex two-state system based on a confocal annular Josephson tunnel junction (CAJTJ). The key ingredient of this geometrical configuration is a periodically variable width that generates a spatial vortex potential with bistable states. This intrinsic vortex potential can be tuned by an externally applied magnetic field and tilted by a bias current. The two-state system is accurately modeled by a one-dimensional sine-Gordon like equation by means of which one can numerically calculate both the magnetic field needed to set the vortex in a given state as well as the vortex-depinning currents. Experimental data taken at 4.2 {{K}} on high-quality Nb/Al-AlOx/Nb CAJTJs with an individual trapped fluxon advocate the presence of a robust and finely tunable double-well potential for which reliable manipulation of the vortex state has been classically demonstrated. The vortex is prepared in a given potential by means of an externally applied magnetic field, while the state readout is accomplished by measuring the vortex-depinning current in a small magnetic field. Our proof of principle experiment convincingly demonstrates that the proposed vortex two-state system based on CAJTJs is robust and workable.
Wang, Mingzhan; Tang, Miao; Chen, Shulin; Ci, Haina; Wang, Kexin; Shi, Liurong; Lin, Li; Ren, Huaying; Shan, Jingyuan; Gao, Peng; Liu, Zhongfan; Peng, Hailin
2017-12-01
Aluminum (Al) foil, as the most accepted cathode current collector for lithium-ion batteries (LIBs), is susceptible to local anodic corrosions during long-term operations. Such corrosions could lead to the deterioration or even premature failure of the batteries and are generally believed to be a bottleneck for next-generation 5 V LIBs. Here, it is demonstrated that Al foil armored by conformal graphene coating exhibits significantly reinforced anodic corrosion resistance in both LiPF 6 and lithium bis(trifluoromethanesulphonyl) imide (LiTFSI) based electrolytes. Moreover, LiMn 2 O 4 cells using graphene-armored Al foil as current collectors (LMO/GA) demonstrate enhanced electrochemical performance in comparison with those using pristine Al foil (LMO/PA). The long-term discharge capacity retention of LMO/GA cell after ≈950 h straight operations at low rate (0.5 C) reaches up to 91%, remarkably superior to LMO/PA cell (75%). The self-discharge propensity of LMO/GA is clearly relieved and the rate/power performance is also improved with graphene mediations. This work not only contributes to the long-term stable operations of LIBs but also might catalyze the deployment of 5 V LIBs in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel insights into hydrogen sulfide--mediated cytoprotection.
Calvert, John W; Coetzee, William A; Lefer, David J
2010-05-15
Hydrogen sulfide (H(2)S) is a colorless, water soluble, flammable gas that has the characteristic smell of rotten eggs. Like other members of the gasotransmitter family (nitric oxide and carbon monoxide), H(2)S has traditionally been considered to be a highly toxic gas and environmental hazard. However, much like for nitric oxide and carbon monoxide, the initial negative perception of H(2)S has evolved with the discovery that H(2)S is produced enzymatically in mammals under normal conditions. As a result of this discovery, there has been a great deal of work to elucidate the physiological role of H(2)S. H(2)S is now recognized to be cytoprotective in various models of cellular injury. Specifically, it has been demonstrated that the acute administration of H(2)S, either prior to ischemia or at reperfusion, significantly ameliorates in vitro or in vivo myocardial and hepatic ischemia-reperfusion injury. These studies have also demonstrated a cardioprotective role for endogenous H(2)S. This review article summarizes the current body of evidence demonstrating the cytoprotective effects of H(2)S with an emphasis on the cardioprotective effects. This review also provides a detailed description of the current signaling mechanisms shown to be responsible for these cardioprotective actions.
Leung, Christy Y Y; Miller, Alison L; Lumeng, Julie C; Kaciroti, Niko A; Rosenblum, Katherine L
2015-12-01
Identifying maternal characteristics in relation to child feeding is important for addressing the current childhood obesity epidemic. The present study examines whether maternal representations of their children are associated with feeding beliefs and practices. Maternal representations refer to mothers' affective and cognitive perspectives regarding their children and their subjective experiences of their relationships with their children. This key maternal characteristic has not been examined in association with maternal feeding. Thus the purpose of the current study was to examine whether maternal representations of their children, reflected by Working Model of the Child Interview typologies (Balanced, Disengaged, or Distorted), were associated with maternal feeding beliefs (Authority, Confidence, and Investment) and practices (Pressure to Eat, Restriction, and Monitoring) among low-income mothers of young children, with maternal education examined as a covariate. Results showed that Balanced mothers were most likely to demonstrate high authority, Distorted mothers were least likely to demonstrate confidence, and Disengaged mothers were least likely to demonstrate investment in child feeding. Moreover, Balanced mothers were least likely to pressure their children to eat. Findings are discussed with regard to implications for the study of childhood obesity and for applied preventions. Copyright © 2015 Elsevier Ltd. All rights reserved.
A study of mass data storage technology for rocket engine data
NASA Technical Reports Server (NTRS)
Ready, John F.; Benser, Earl T.; Fritz, Bernard S.; Nelson, Scott A.; Stauffer, Donald R.; Volna, William M.
1990-01-01
The results of a nine month study program on mass data storage technology for rocket engine (especially the Space Shuttle Main Engine) health monitoring and control are summarized. The program had the objective of recommending a candidate mass data storage technology development for rocket engine health monitoring and control and of formulating a project plan and specification for that technology development. The work was divided into three major technical tasks: (1) development of requirements; (2) survey of mass data storage technologies; and (3) definition of a project plan and specification for technology development. The first of these tasks reviewed current data storage technology and developed a prioritized set of requirements for the health monitoring and control applications. The second task included a survey of state-of-the-art and newly developing technologies and a matrix-based ranking of the technologies. It culminated in a recommendation of optical disk technology as the best candidate for technology development. The final task defined a proof-of-concept demonstration, including tasks required to develop, test, analyze, and demonstrate the technology advancement, plus an estimate of the level of effort required. The recommended demonstration emphasizes development of an optical disk system which incorporates an order-of-magnitude increase in writing speed above the current state of the art.
Mercado, Francisco; Almanza, Angélica; Rubio, Nazario; Soto, Enrique
2018-06-11
Multiple sclerosis (MS) is a high prevalence degenerative disease characterized at the cellular level by glial and neuronal cell death. The causes of cell death during the disease course are not fully understood. In this work we demonstrate that in a MS model induced by Theiler's murine encephalomyelitis virus (TMEV) infection, the inward rectifier (Kir) 4.1 potassium channel subunit is overexpressed in astrocytes. In voltage clamp experiments the inward current density from TMEV-infected astrocytes was significantly larger than in mock-infected ones. The cRNA hybridization analysis from mock- and TMEV-infected cells showed an upregulation of a potassium transport channel coding sequence. We validated this mRNA increase by RT-PCR and quantitative PCR using Kir 4.1 specific primers. Western blotting experiments confirmed the upregulation of Kir 4.1, and alignment between sequences provided the demonstration that the over-expressed gene encodes for a Kir family member. Flow cytometry showed that the Kir 4.1 protein is located mainly in the cell membrane in mock and TMEV-infected astrocytes. Our results demonstrate an increase in K + inward current in TMEV-infected glial cells, this increment may reduce the neuronal depolarization, contributing to cell resilience mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-18
... Proposed Information Collection to OMB; Moving to Work Demonstration AGENCY: Office of the Chief... required to submit annual plans, however, PHAs with Moving to Work demonstration agreements (29 at the time... Following Information Title of Proposal: Moving to Work Demonstration. OMB Approval Number: 2577-0216. Form...
Debilitating lung disease among surface coal miners with no underground mining tenure.
Halldin, Cara N; Reed, William R; Joy, Gerald J; Colinet, Jay F; Rider, James P; Petsonk, Edward L; Abraham, Jerrold L; Wolfe, Anita L; Storey, Eileen; Laney, A Scott
2015-01-01
To characterize exposure histories and respiratory disease among surface coal miners identified with progressive massive fibrosis from a 2010 to 2011 pneumoconiosis survey. Job history, tenure, and radiograph interpretations were verified. Previous radiographs were reviewed when available. Telephone follow-up sought additional work and medical history information. Among eight miners who worked as drill operators or blasters for most of their tenure (median, 35.5 years), two reported poor dust control practices, working in visible dust clouds as recently as 2012. Chest radiographs progressed to progressive massive fibrosis in as few as 11 years. One miner's lung biopsy demonstrated fibrosis and interstitial accumulation of macrophages containing abundant silica, aluminum silicate, and titanium dust particles. Overexposure to respirable silica resulted in progressive massive fibrosis among current surface coal miners with no underground mining tenure. Inadequate dust control during drilling/blasting is likely an important etiologic factor.
Debilitating Lung Disease Among Surface Coal Miners With No Underground Mining Tenure
Halldin, Cara N.; Reed, William R.; Joy, Gerald J.; Colinet, Jay F.; Rider, James P.; Petsonk, Edward L.; Abraham, Jerrold L.; Wolfe, Anita L.; Storey, Eileen; Laney, A. Scott
2015-01-01
Objective To characterize exposure histories and respiratory disease among surface coal miners identified with progressive massive fibrosis from a 2010 to 2011 pneumoconiosis survey. Methods Job history, tenure, and radiograph interpretations were verified. Previous radiographs were reviewed when available. Telephone follow-up sought additional work and medical history information. Results Among eight miners who worked as drill operators or blasters for most of their tenure (median, 35.5 years), two reported poor dust control practices, working in visible dust clouds as recently as 2012. Chest radiographs progressed to progressive massive fibrosis in as few as 11 years. One miner’s lung biopsy demonstrated fibrosis and interstitial accumulation of macrophages containing abundant silica, aluminum silicate, and titanium dust particles. Conclusions Overexposure to respirable silica resulted in progressive massive fibrosis among current surface coal miners with no underground mining tenure. Inadequate dust control during drilling/blasting is likely an important etiologic factor. PMID:25563541
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaudioso, Jennifer Marie
2006-02-01
Over 300 Asian life scientists were surveyed to provide insight into work with infectious agents. This report provides the reader with a more complete understanding of the current practices employed to study infectious agents by laboratories located in Asian countries--segmented by level of biotechnology sophistication. The respondents have a variety of research objectives and study over 60 different pathogens and toxins. Many of the respondents indicated that their work was hampered by lack of adequate resources and the difficulty of accessing critical resources. The survey results also demonstrate that there appears to be better awareness of laboratory biosafety issues comparedmore » to laboratory biosecurity. Perhaps not surprisingly, many of these researchers work with pathogens and toxins under less stringent laboratory biosafety and biosecurity conditions than would be typical for laboratories in the West.« less
Arkansas People Participating in Lead Education (APPLE): results of a lead-safe training program.
Ferguson, Alesia; Bursac, Zoran; Kern, David F
2011-06-01
Lead is still seen as one of the most harmful environmental toxins for young children, with the predominant source being deteriorating lead-based paint. Those at continued risk include those living in homes built before 1978, renovators and remodelers, and especially those with limited access to proper healthcare and diets. Proper training on lead-safe work practices focused on preventing and reducing the spread of lead dust can help reduce lead exposure. Presented in this paper are experiences in delivering lead-safe work practices training in six Arkansas cities, and results from pre- and post- surveys delivered before and immediately after the training. Pre- and post-surveys assess strong and weak areas of training. Participants demonstrated positive shifts in attitude and behavior towards lead-safe work practices following training. However, our research found that more emphasis should be focused on clarifying current lead exposure sources and routes for children.
Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature.
Villa, E; Aja, B; de la Fuente, L; Artal, E
2016-01-01
This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.
Baldan, Damiano; Porporato, Erika Maria Diletta; Pastres, Roberto
2018-01-01
A new R software package, RAC, is presented. RAC allows to simulate the rearing cycle of 4 species, finfish and shellfish, highly important in terms of production in the Mediterranean Sea. The package works both at the scale of the individual and of the farmed population. Mathematical models included in RAC were all validated in previous works, and account for growth and metabolism, based on input data characterizing the forcing functions—water temperature, and food quality/quantity. The package provides a demo dataset of forcings for each species, as well as a typical set of husbandry parameters for Mediterranean conditions. The present work illustrates RAC main features, and its current capabilities/limitations. Three test cases are presented as a proof of concept of RAC applicability, and to demonstrate its potential for integrating different open products nowadays provided by remote sensing and operational oceanography. PMID:29723208
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, Kathryn A.; Adams, Bradley J.
The LWR RD&D Working Group developed a detailed list of RD&D suggestions and recommendations, which are provided in Appendix D. The Working Group then undertook a systematic ranking process, described in Appendix E. The results of the ranking process are not meant to be a strict set of priorities, but rather should provide insight into how the items generally ranked within the Working Group. Future discussions and investigation into these items could provide information that would support a change in these priorities or in their emphasis. The results of this prioritization are provided below. Note that in general, many RD&Dmore » ideas are applicable to both new Advanced Light Water Reactor (ALWR) plants and currently operating plants.« less
Reinhart, Robert M G; Carlisle, Nancy B; Woodman, Geoffrey F
2014-08-01
Current research suggests that we can watch visual working memory surrender the control of attention early in the process of learning to search for a specific object. This inference is based on the observation that the contralateral delay activity (CDA) rapidly decreases in amplitude across trials when subjects search for the same target object. Here, we tested the alternative explanation that the role of visual working memory does not actually decline across learning, but instead lateralized representations accumulate in both hemispheres across trials and wash out the lateralized CDA. We show that the decline in CDA amplitude occurred even when the target objects were consistently lateralized to a single visual hemifield. Our findings demonstrate that reductions in the amplitude of the CDA during learning are not simply due to the dilution of the CDA from interhemispheric cancellation. Copyright © 2014 Society for Psychophysiological Research.
Modeling the effect of dynamic surfaces on membrane penetration
NASA Astrophysics Data System (ADS)
van Lehn, Reid; Alexander-Katz, Alfredo
2011-03-01
The development of nanoscale materials for targeted drug delivery is an important current pursuit in materials science. One task of drug carriers is to release therapeutic agents within cells by bypassing the cell membrane to maximize the effectiveness of their payload and minimize bodily exposure. In this work, we use coarse-grained simulations to study nanoparticles (NPs) grafted with hydrophobic and hydrophilic ligands that rearrange in response to the amphiphilic lipid bilayer. We demonstrate that this dynamic surface permits the NP to spontaneously penetrate to the bilayer midplane when the surface ligands are near an order-disorder transition. We believe that this work will lead to the design of new drug carriers capable of non-specifically accessing cell interiors based solely on their dynamic surface properties. Our work is motivated by existing nanoscale systems such as micelles, or NPs grafted with highly mobile ligands or polymer brushes.
Application of nonlinear ultrasonics to inspection of stainless steel for dry storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulrich, Timothy James II; Anderson, Brain E.; Remillieux, Marcel C.
This report summarized technical work conducted by LANL staff an international collaborators in support of the UFD Storage Experimentation effort. The focus of the current technical work is on the detection and imaging of a failure mechanism known as stress corrosion cracking (SCC) in stainless steel using the nonlinear ultrasonic technique known as TREND. One of the difficulties faced in previous work is in finding samples that contain realistically sized SCC. This year such samples were obtained from EPRI. Reported here are measurements made on these samples. One of the key findings is the ability to detect subsurface changes tomore » the direction in which a crack is penetrating into the sample. This result follows from last year's report that demonstrated the ability of TREND techniques to image features below the sample surface. A new collaboration was established with AGH University of Science and Technology, Krakow, Poland.« less
The effects of working memory resource depletion and training on sensorimotor adaptation
Anguera, Joaquin A.; Bernard, Jessica A.; Jaeggi, Susanne M.; Buschkuehl, Martin; Benson, Bryan L.; Jennett, Sarah; Humfleet, Jennifer; Reuter-Lorenz, Patricia; Jonides, John; Seidler, Rachael D.
2011-01-01
We have recently demonstrated that visuospatial working memory performance predicts the rate of motor skill learning, particularly during the early phase of visuomotor adaptation. Here, we follow up these correlational findings with direct manipulations of working memory resources to determine the impact on visuomotor adaptation, a form of motor learning. We conducted two separate experiments. In the first one, we used a resource depletion strategy to investigate whether the rate of early visuomotor adaptation would be negatively affected by fatigue of spatial working memory resources. In the second study, we employed a dual n-back task training paradigm that has been shown to result in transfer effects [1] over five weeks to determine whether training-related improvements would boost the rate of early visuomotor adaptation. The depletion of spatial working memory resources negatively affected the rate of early visuomotor adaptation. However, enhancing working memory capacity via training did not lead to improved rates of visuomotor adaptation, suggesting that working memory capacity may not be the factor limiting maximal rate of visuomotor adaptation in young adults. These findings are discussed from a resource limitation / capacity framework with respect to current views of motor learning. PMID:22155489
NASA Technical Reports Server (NTRS)
Bailin, Sydney; Paterra, Frank; Henderson, Scott; Truszkowski, Walt
1993-01-01
This paper presents a discussion of current work in the area of graphical modeling and model-based reasoning being undertaken by the Automation Technology Section, Code 522.3, at Goddard. The work was initially motivated by the growing realization that the knowledge acquisition process was a major bottleneck in the generation of fault detection, isolation, and repair (FDIR) systems for application in automated Mission Operations. As with most research activities this work started out with a simple objective: to develop a proof-of-concept system demonstrating that a draft rule-base for a FDIR system could be automatically realized by reasoning from a graphical representation of the system to be monitored. This work was called Knowledge From Pictures (KFP) (Truszkowski et. al. 1992). As the work has successfully progressed the KFP tool has become an environment populated by a set of tools that support a more comprehensive approach to model-based reasoning. This paper continues by giving an overview of the graphical modeling objectives of the work, describing the three tools that now populate the KFP environment, briefly presenting a discussion of related work in the field, and by indicating future directions for the KFP environment.
Considerations in the Use of Nonhuman Primate Models of Ebola Virus and Marburg Virus Infection.
Geisbert, Thomas W; Strong, James E; Feldmann, Heinz
2015-10-01
The filoviruses, Ebola virus and Marburg virus, are zoonotic pathogens that cause severe hemorrhagic fever in humans and nonhuman primates (NHPs), with case-fatality rates ranging from 23% to 90%. The current outbreak of Ebola virus infection in West Africa, with >26 000 cases, demonstrates the long-underestimated public health danger that filoviruses pose as natural human pathogens. Currently, there are no vaccines or treatments licensed for human use. Licensure of any medical countermeasure may require demonstration of efficacy in the gold standard cynomolgus or rhesus macaque models of filovirus infection. Substantial progress has been made over the last decade in characterizing the filovirus NHP models. However, there is considerable debate over a variety of experimental conditions, including differences among filovirus isolates used, routes and doses of exposure, and euthanasia criteria, all of which may contribute to variability of results among different laboratories. As an example of the importance of understanding these differences, recent data with Ebola virus shows that an addition of a single uridine residue in the glycoprotein gene at the editing site attenuates the virus. Here, we draw on decades of experience working with filovirus-infected NHPs to provide a perspective on the importance of various experimental conditions. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
NASA Technical Reports Server (NTRS)
Wright, C. C.; Baker, D. J.
1980-01-01
This report describes the third phase of work, the objective of which was to overcome the excessive brittleness of the previously developed UH-1 helicopter tail rotor drive shaft design which demonstrated a shaft train weight savings of 53.1% over the current 2024-T3 aluminum shaft train. A materials impact program demonstrated exceptionally noteworthy performance of two woven constructions containing E-glass and PRD 49-III (designation later changed to KEVLAR 49) fibers in an epoxy resin matrix. Thermoplastic matrices and PRD 49-III fiber provided impact resistance at low weight which was superior to composites having the same fiber in a thermoset resin matrix. A design, fabrication, and test program showed that shaft impact resistance could be improved over the previously developed graphite composite design at a cost in shaft train rate savings. The shaft train weight savings of the most impact tolerant construction was 4.0% over the current aluminum shaft train. Alternating plies of graphite and glass appear to provide substantially greater tube impact durability than that provided by hybridization of the two fibers into one tape wound to a ply design equivalent in strength and stiffness to that of the alternating ply design. Recommendations were made to continue research work to exploit the potential for more impact-durable structures through the use of KEVLAR 49 fiber, woven structures, thermoplastic matrices and THORNEL 50-S/KEVLAR 49 blends with thermoset matrices.
Optofluidic waveguides: I. Concepts and implementations
Schmidt, Holger; Hawkins, Aaron R.
2011-01-01
We review recent developments and current status of liquid-core optical waveguides in optofluidics with emphasis on suitability for creating fully planar optofluidic labs-on-a-chip. In this first of two contributions, we give an overview of the different waveguide types that are being considered for effectively combining micro and nanofluidics with integrated optics. The large number of approaches is separated into conventional index-guided waveguides and more recent implementations using wave interference. The underlying principle for waveguiding and the current status are described for each type. We then focus on reviewing recent work on microfabricated liquid-core antiresonant reflecting optical (ARROW) waveguides, including the development of intersecting 2D waveguide networks and optical fluorescence and Raman detection with planar beam geometry. Single molecule detection capability and addition of electrical control for electrokinetic manipulation and analysis of single bioparticles are demonstrated. The demonstrated performance of liquid-core ARROWs is representative of the potential of integrated waveguides for on-chip detection with ultrahigh sensitivity, and points the way towards the next generation of high-performance, low-cost and portable biomedical instruments. PMID:21442048
A Multiphysics and Multiscale Software Environment for Modeling Astrophysical Systems
NASA Astrophysics Data System (ADS)
Portegies Zwart, Simon; McMillan, Steve; O'Nualláin, Breanndán; Heggie, Douglas; Lombardi, James; Hut, Piet; Banerjee, Sambaran; Belkus, Houria; Fragos, Tassos; Fregeau, John; Fuji, Michiko; Gaburov, Evghenii; Glebbeek, Evert; Groen, Derek; Harfst, Stefan; Izzard, Rob; Jurić, Mario; Justham, Stephen; Teuben, Peter; van Bever, Joris; Yaron, Ofer; Zemp, Marcel
We present MUSE, a software framework for tying together existing computational tools for different astrophysical domains into a single multiphysics, multiscale workload. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computational efficiency. This approach allows scientists to use combinations of codes to solve highly-coupled problems without the need to write new codes for other domains or significantly alter their existing codes. MUSE currently incorporates the domains of stellar dynamics, stellar evolution and stellar hydrodynamics for a generalized stellar systems workload. MUSE has now reached a "Noah's Ark" milestone, with two available numerical solvers for each domain. MUSE can treat small stellar associations, galaxies and everything in between, including planetary systems, dense stellar clusters and galactic nuclei. Here we demonstrate an examples calculated with MUSE: the merger of two galaxies. In addition we demonstrate the working of MUSE on a distributed computer. The current MUSE code base is publicly available as open source at http://muse.li.
Hybrid Spintronic-CMOS Spiking Neural Network with On-Chip Learning: Devices, Circuits, and Systems
NASA Astrophysics Data System (ADS)
Sengupta, Abhronil; Banerjee, Aparajita; Roy, Kaushik
2016-12-01
Over the past decade, spiking neural networks (SNNs) have emerged as one of the popular architectures to emulate the brain. In SNNs, information is temporally encoded and communication between neurons is accomplished by means of spikes. In such networks, spike-timing-dependent plasticity mechanisms require the online programing of synapses based on the temporal information of spikes transmitted by spiking neurons. In this work, we propose a spintronic synapse with decoupled spike-transmission and programing-current paths. The spintronic synapse consists of a ferromagnet-heavy-metal heterostructure where the programing current through the heavy metal generates spin-orbit torque to modulate the device conductance. Low programing energy and fast programing times demonstrate the efficacy of the proposed device as a nanoelectronic synapse. We perform a simulation study based on an experimentally benchmarked device-simulation framework to demonstrate the interfacing of such spintronic synapses with CMOS neurons and learning circuits operating in the transistor subthreshold region to form a network of spiking neurons that can be utilized for pattern-recognition problems.
Ahmed, Towfiq; Haraldsen, Jason T; Rehr, John J; Di Ventra, Massimiliano; Schuller, Ivan; Balatsky, Alexander V
2014-03-28
Nanopore-based sequencing has demonstrated a significant potential for the development of fast, accurate, and cost-efficient fingerprinting techniques for next generation molecular detection and sequencing. We propose a specific multilayered graphene-based nanopore device architecture for the recognition of single biomolecules. Molecular detection and analysis can be accomplished through the detection of transverse currents as the molecule or DNA base translocates through the nanopore. To increase the overall signal-to-noise ratio and the accuracy, we implement a new 'multi-point cross-correlation' technique for identification of DNA bases or other molecules on the single molecular level. We demonstrate that the cross-correlations between each nanopore will greatly enhance the transverse current signal for each molecule. We implement first-principles transport calculations for DNA bases surveyed across a multilayered graphene nanopore system to illustrate the advantages of the proposed geometry. A time-series analysis of the cross-correlation functions illustrates the potential of this method for enhancing the signal-to-noise ratio. This work constitutes a significant step forward in facilitating fingerprinting of single biomolecules using solid state technology.
Temperature stable oxide-confined 850-nm VCSELs operating at bit rates up to 25 Gbit/s at 150°C
NASA Astrophysics Data System (ADS)
Ledentsov, N.; Agustin, M.; Kropp, J.-R.; Shchukin, V. A.; Kalosha, V. P.; Chi, K. L.; Khan, Z.; Shi, J. W.; Ledentsov, N. N.
2018-02-01
New applications in industrial, automotive and datacom applications require vertical-cavity surface-emitting lasers (VCSELs) operating at very high ambient temperatures at ultrahigh speed. We discuss issues related to high temperature performance of the VCSELs including temperature response and spectral properties. The influence of the gain-to-cavity wavelength detuning on temperature performance and spectral width of the VCSELs is discussed. Performance of the oxide-confined 850 nm VCSELs with increased temperature stability capable of operating at bit rates up to 25 Gbit/s at heat sink temperature of 150°C and 35Gbit/s at 130°C. Furthermore, opposite to previous studies of VCSELs with large gain-to-cavity detuning, which demonstrated strongly increased spectral width and a strong redistribution of the mode intensities upon current increase. VCSELs demonstrated in this work show good reproducibility of a narrow spectrum in a wide range of currents and temperatures. Such performance strongly improves the transmission distance over multi-mode fiber and can reduce mode partition noise during high speed operation.
Hybrid tunnel junction contacts to III-nitride light-emitting diodes
NASA Astrophysics Data System (ADS)
Young, Erin C.; Yonkee, Benjamin P.; Wu, Feng; Oh, Sang Ho; DenBaars, Steven P.; Nakamura, Shuji; Speck, James S.
2016-02-01
In this work, we demonstrate highly doped GaN p-n tunnel junction (TJ) contacts on III-nitride heterostructures where the active region of the device and the top p-GaN layers were grown by metal organic chemical vapor deposition and highly doped n-GaN was grown by NH3 molecular beam epitaxy to form the TJ. The regrowth interface in these hybrid devices was found to have a high concentration of oxygen, which likely enhanced tunneling through the diode. For optimized regrowth, the best tunnel junction device had a total differential resistivity of 1.5 × 10-4 Ω cm2, including contact resistance. As a demonstration, a blue-light-emitting diode on a (20\\bar{2}\\bar{1}) GaN substrate with a hybrid tunnel junction and an n-GaN current spreading layer was fabricated and compared with a reference sample with a transparent conducting oxide (TCO) layer. The tunnel junction LED showed a lower forward operating voltage and a higher efficiency at a low current density than the TCO LED.
Effect of hysteretic and non-hysteretic negative capacitance on tunnel FETs DC performance
NASA Astrophysics Data System (ADS)
Saeidi, Ali; Jazaeri, Farzan; Stolichnov, Igor; Luong, Gia V.; Zhao, Qing-Tai; Mantl, Siegfried; Ionescu, Adrian M.
2018-03-01
This work experimentally demonstrates that the negative capacitance effect can be used to significantly improve the key figures of merit of tunnel field effect transistor (FET) switches. In the proposed approach, a matching condition is fulfilled between a trained-polycrystalline PZT capacitor and the tunnel FET (TFET) gate capacitance fabricated on a strained silicon-nanowire technology. We report a non-hysteretic switch configuration by combining a homojunction TFET and a negative capacitance effect booster, suitable for logic applications, for which the on-current is increased by a factor of 100, the transconductance by 2 orders of magnitude, and the low swing region is extended. The operation of a hysteretic negative capacitance TFET, when the matching condition for the negative capacitance is fulfilled only in a limited region of operation, is also reported and discussed. In this late case, a limited improvement in the device performance is observed. Overall, the paper demonstrates the main beneficial effects of negative capacitance on TFETs are the overdrive and transconductance amplification, which exactly address the most limiting performances of current TFETs.
Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate
NASA Astrophysics Data System (ADS)
Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Zhang, Ke-Qin; Liao, Liangsheng; Sun, Baoquan
2015-10-01
Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq-1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A-1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices.
Punishment Learning in U.S. Veterans With Posttraumatic Stress Disorder.
Sawyer, Alice T; Liverant, Gabrielle I; Jun, Janie J; Lee, Daniel J; Cohen, Andrew L; Dutra, Sunny J; Pizzagalli, Diego A; Sloan, Denise M
2016-08-01
Learning processes have been implicated in the development and course of posttraumatic stress disorder (PTSD); however, little is currently known about punishment-based learning in PTSD. The current study investigated impairments in punishment-based learning in U.S. veterans. We expected that veterans with PTSD would demonstrate greater punishment-based learning compared to a non-PTSD control group. We compared a PTSD group with and without co-occurring depression (n = 27) to a control group (with and without trauma exposure) without PTSD or depression (n = 29). Participants completed a computerized probabilistic punishment-based learning task. Compared to the non-PTSD control group, veterans with PTSD showed significantly greater punishment-based learning. Specifically, there was a significant Block × Group interaction, F(1, 54) = 4.12, p = .047, η(2) = .07. Veterans with PTSD demonstrated greater change in response bias for responding toward a less frequently punished stimulus across blocks. The observed hypersensitivity to punishment in individuals with PTSD may contribute to avoidant responses that are not specific to trauma cues. Copyright © 2016 International Society for Traumatic Stress Studies No claim to original US government works.
NASA Astrophysics Data System (ADS)
Engebretsen, Erik; Hinds, Gareth; Meyer, Quentin; Mason, Tom; Brightman, Edward; Castanheira, Luis; Shearing, Paul R.; Brett, Daniel J. L.
2018-04-01
Advances in bespoke diagnostic techniques for polymer electrolyte fuel cells continue to provide unique insight into the internal operation of these devices and lead to improved performance and durability. Localised measurements of current density have proven to be extremely useful in designing better fuel cells and identifying optimal operating strategies, with electrochemical impedance spectroscopy (EIS) now routinely used to deconvolute the various losses in fuel cells. Combining the two techniques provides another dimension of understanding, but until now each localised EIS has been based on 2-electrode measurements, composed of both the anode and cathode responses. This work shows that a reference electrode array can be used to give individual electrode-specific EIS responses, in this case the cathode is focused on to demonstrate the approach. In addition, membrane hydration dynamics are studied under current load steps from open circuit voltage. A three-stage process is identified associated with an initial rapid reduction in membrane resistance after 10 s of applying a current step, followed by a slower ramp to approximately steady state, which was achieved after ∼250 s. These results support previously published work that has looked at membrane swelling dynamics and reveal that membrane hydration/membrane resistance is highly heterogeneous.
Brown, Patrick R; Lunt, Richard R; Zhao, Ni; Osedach, Timothy P; Wanger, Darcy D; Chang, Liang-Yi; Bawendi, Moungi G; Bulović, Vladimir
2011-07-13
The ability to engineer interfacial energy offsets in photovoltaic devices is one of the keys to their optimization. Here, we demonstrate that improvements in power conversion efficiency may be attained for ZnO/PbS heterojunction quantum dot photovoltaics through the incorporation of a MoO(3) interlayer between the PbS colloidal quantum dot film and the top-contact anode. Through a combination of current-voltage characterization, circuit modeling, Mott-Schottky analysis, and external quantum efficiency measurements performed with bottom- and top-illumination, these enhancements are shown to stem from the elimination of a reverse-bias Schottky diode present at the PbS/anode interface. The incorporation of the high-work-function MoO(3) layer pins the Fermi level of the top contact, effectively decoupling the device performance from the work function of the anode and resulting in a high open-circuit voltage (0.59 ± 0.01 V) for a range of different anode materials. Corresponding increases in short-circuit current and fill factor enable 1.5-fold, 2.3-fold, and 4.5-fold enhancements in photovoltaic device efficiency for gold, silver, and ITO anodes, respectively, and result in a power conversion efficiency of 3.5 ± 0.4% for a device employing a gold anode.
Li, Chen-Yu; Hemmig, Elisa A.; Kong, Jinglin; Yoo, Jejoong; Hernández-Ainsa, Silvia
2015-01-01
The DNA origami technique can enable functionalization of inorganic structures for single-molecule electric current recordings. Experiments have shown that several layers of DNA molecules—a DNA origami plate— placed on top of a solid-state nanopore is permeable to ions. Here, we report a comprehensive characterization of the ionic conductivity of DNA origami plates by means of all-atom molecular dynamics (MD) simulations and nanocapillary electric current recordings. Using the MD method, we characterize the ionic conductivity of several origami constructs, revealing the local distribution of ions, the distribution of the electrostatic potential and contribution of different molecular species to the current. The simulations determine the dependence of the ionic conductivity on the applied voltage, the number of DNA layers, the nucleotide content and the lattice type of the plates. We demonstrate that increasing the concentration of Mg2+ ions makes the origami plates more compact, reducing their conductivity. The conductance of a DNA origami plate on top of a solid-state nanopore is determined by the two competing effects: bending of the DNA origami plate that reduces the current and separation of the DNA origami layers that increases the current. The latter is produced by the electro-osmotic flow and is reversible at the time scale of a hundred nanoseconds. The conductance of a DNA origami object is found to depend on its orientation, reaching maximum when the electric field aligns with the direction of the DNA helices. Our work demonstrates feasibility of programming the electrical properties of a self-assembled nanoscale object using DNA. PMID:25623807
Li, Chen-Yu; Hemmig, Elisa A; Kong, Jinglin; Yoo, Jejoong; Hernández-Ainsa, Silvia; Keyser, Ulrich F; Aksimentiev, Aleksei
2015-02-24
The DNA origami technique can enable functionalization of inorganic structures for single-molecule electric current recordings. Experiments have shown that several layers of DNA molecules, a DNA origami plate, placed on top of a solid-state nanopore is permeable to ions. Here, we report a comprehensive characterization of the ionic conductivity of DNA origami plates by means of all-atom molecular dynamics (MD) simulations and nanocapillary electric current recordings. Using the MD method, we characterize the ionic conductivity of several origami constructs, revealing the local distribution of ions, the distribution of the electrostatic potential and contribution of different molecular species to the current. The simulations determine the dependence of the ionic conductivity on the applied voltage, the number of DNA layers, the nucleotide content and the lattice type of the plates. We demonstrate that increasing the concentration of Mg(2+) ions makes the origami plates more compact, reducing their conductivity. The conductance of a DNA origami plate on top of a solid-state nanopore is determined by the two competing effects: bending of the DNA origami plate that reduces the current and separation of the DNA origami layers that increases the current. The latter is produced by the electro-osmotic flow and is reversible at the time scale of a hundred nanoseconds. The conductance of a DNA origami object is found to depend on its orientation, reaching maximum when the electric field aligns with the direction of the DNA helices. Our work demonstrates feasibility of programming the electrical properties of a self-assembled nanoscale object using DNA.
McQuail, Joseph A; Beas, B Sofia; Kelly, Kyle B; Simpson, Kailey L; Frazier, Charles J; Setlow, Barry; Bizon, Jennifer L
2016-12-14
Working memory, the ability to temporarily maintain representational knowledge, is a foundational cognitive process that can become compromised in aging and neuropsychiatric disease. NMDA receptor (NMDAR) activation in prefrontal cortex (PFC) is necessary for the pyramidal neuron activity believed to enable working memory; however, the distinct biophysical properties and localization of NMDARs containing NR2A and NR2B subunits suggest unique roles for NMDAR subtypes in PFC neural activity and working memory. Experiments herein show that working memory depends on NR2A- but not NR2B-NMDARs in PFC of rats and that NR2A-NMDARs mediate the majority of evoked NMDAR currents on layer 2/3 PFC pyramidal neurons. Moreover, attenuated expression of the NR2A but not the NR2B subunit in PFC associates with naturally occurring working memory impairment in aged rats. Finally, NMDAR currents and working memory are enhanced in aged rats by promoting activation of the NR2A-enriched synaptic pool of PFC NMDARs. These results implicate NR2A-NMDARs in normal working memory and suggest novel treatment strategies for improving working memory in cognitive disorders. Working memory, the ability to hold information "in mind," requires persistent activity of pyramidal neurons in prefrontal cortex (PFC) mediated by NMDA receptor (NMDAR) activation. NMDAR loss in PFC may account for working memory impairments in aging and psychiatric disease. Our studies demonstrate that NMDARs containing the NR2A subunit, but not the NR2B subunit, are required for working memory and that loss of NR2A predicts severity of age-related working memory impairment. The importance of NR2A to working memory is likely due its abundant contribution to pyramidal neuron activity and location at synaptic sites in PFC. This information is useful in designing new therapies to treat working memory impairments by enhancing the function of NR2A-containing NMDARs. Copyright © 2016 the authors 0270-6474/16/3612537-12$15.00/0.
Van der Waals heterojunction diode composed of WS2 flake placed on p-type Si substrate
NASA Astrophysics Data System (ADS)
Aftab, Sikandar; Farooq Khan, M.; Min, Kyung-Ah; Nazir, Ghazanfar; Afzal, Amir Muhammad; Dastgeer, Ghulam; Akhtar, Imtisal; Seo, Yongho; Hong, Suklyun; Eom, Jonghwa
2018-01-01
P-N junctions represent the fundamental building blocks of most semiconductors for optoelectronic functions. This work demonstrates a technique for forming a WS2/Si van der Waals junction based on mechanical exfoliation. Multilayered WS2 nanoflakes were exfoliated on the surface of bulk p-type Si substrates using a polydimethylsiloxane stamp. We found that the fabricated WS2/Si p-n junctions exhibited rectifying characteristics. We studied the effect of annealing processes on the performance of the WS2/Si van der Waals p-n junction and demonstrated that annealing improved its electrical characteristics. However, devices with vacuum annealing have an enhanced forward-bias current compared to those annealed in a gaseous environment. We also studied the top-gate-tunable rectification characteristics across the p-n junction interface in experiments as well as density functional theory calculations. Under various temperatures, Zener breakdown occurred at low reverse-bias voltages, and its breakdown voltage exhibited a negative coefficient of temperature. Another breakdown voltage was observed, which increased with temperature, suggesting a positive coefficient of temperature. Therefore, such a breakdown can be assigned to avalanche breakdown. This work demonstrates a promising application of two-dimensional materials placed directly on conventional bulk Si substrates.
Preliminary test results of electrical charged particle generator for application to fog dispersal
NASA Technical Reports Server (NTRS)
Frost, W.
1982-01-01
A charged particle generator for use in fog dispersal applications was built and preliminary tests were carried out. The parameter used as a measure of performance was the current measured with a needle probe positioned in the charged jet connected to ground through an ammeter. The needle was movable and allowed the current profile throughout the jet to be determined. The measured current is referred to as the current output. The major independent parameters were liquid water injection rate, plenum pressure, and corona voltage. Optimum current output was achieved at the approximate pressure of 30 psig, corona voltage of 5600 volts, and liquid water injection rate of 6 cc/min. The results of the test with the prototype charged particle generator clearly demonstrate that a current on the order of 20 microamperes can be routinely achieved with the system. This measurement of current does not necessarily represent the total issuing from the nozzle current which is expected to be larger. From these results, confidence was established that a charged particle generator which will operate continuously and consistently can be designed, constructed, and operated. Further work is required, however, to better understand the physical mechanisms involved and to optimize the system for fog dispersal application.
Cement Based Batteries and their Potential for Use in Low Power Operations
NASA Astrophysics Data System (ADS)
Byrne, A.; Holmes, N.; Norton, B.
2015-11-01
This paper presents the development of an innovative cement-electrolyte battery for low power operations such as cathodic protection of reinforced concrete. A battery design was refined by altering different constituents and examining the open circuit voltage, resistor loaded current and lifespan. The final design consisted of a copper plate cathode, aluminium plate anode, and a cement electrolyte which included additives of carbon black, plasticiser, Alum salt and Epsom salt. A relationship between age, temperature and hydration of the cell and the current it produced was determined. It was found that sealing the battery using varnish increased the moisture retention and current output. Current was also found to increase with internal temperature of the electrolyte and connecting two cells in parallel further doubled or even tripled the current. Parallel-connected cells could sustain an average current of 0.35mA through a 10Ω resistor over two weeks of recording. The preliminary findings demonstrate that cement-based batteries can produce sufficient sustainable electrical outputs with the correct materials and arrangement of components. Work is ongoing to determine how these batteries can be recharged using photovoltaics which will further enhance their sustainability properties.
Asymmetric SOL Current in Vertically Displaced Plasma
NASA Astrophysics Data System (ADS)
Cabrera, J. D.; Navratil, G. A.; Hanson, J. M.
2017-10-01
Experiments at the DIII-D tokamak demonstrate a non-monotonic relationship between measured scrape-off layer (SOL) currents and vertical displacement event (VDE) rates with SOL currents becoming largely n=1 dominant as plasma is displaced by the plasma control system (PCS) at faster rates. The DIII-D PCS is used to displace the magnetic axis 10x slower than the intrinsic growth time of similar instabilities in lower single-null plasmas. Low order (n <=2) mode decomposition is done on toroidally spaced current monitors to attain measures of asymmetry in SOL current. Normalized to peak n=0 response, a 2-4x increase is seen in peak n=1 response in plasmas displaced by the PCS versus previous VDE instabilities observed when vertical control is disabled. Previous inquiry shows VDE asymmetry characterized by SOL current fraction and geometric parameters of tokamak plasmas. We note that, of plasmas displaced by the PCS, short displacement time scales near the limit of the PCS temporal control appear to result in larger n=1/n=2 asymmetries. Work supported under USDOE Cooperative Agreement DE-FC02-04ER54698 and DE-FG02-04ER54761.
NASA Astrophysics Data System (ADS)
Fung, Dennis; Lui, Wai-mei
2016-05-01
This paper, through discussion of a teaching intervention at two secondary schools in Hong Kong, demonstrates the learning advancement brought about by group work and dissects the facilitating role of teachers in collaborative discussions. One-hundred and fifty-two Secondary Two (Grade 8) students were divided into three pedagogical groups, namely 'whole-class teaching', 'self-directed group work' and 'teacher-supported group work' groups, and engaged in peer-review, team debate, group presentation and reflection tasks related to a junior secondary science topic (i.e. current electricity). Pre- and post-tests were performed to evaluate students' scientific conceptions, alongside collected written responses and audio-recorded discussions. The results indicate that students achieved greater cognitive growth when they engaged in cooperative learning activities, the interactive and multi-sided argumentative nature of which is considered to apply particularly well to science education and Vygotsky's zone of proximal development framework. Group work learning is also found to be most effective when teachers play a role in navigating students during the joint construction of conceptual knowledge.
Hadley, Wendy; Brown, L K; Barker, D; Warren, J; Weddington, P; Fortune, T; Juzang, I
2016-09-01
The purpose of the current study was to test an interactive DVD and workbook specifically designed for African-American parents and adolescents (ages 13-18), based on an efficacious face-to-face intervention, to address key factors associated with risk. A total of 170 parent-adolescent dyads were enrolled and randomly assigned to receive either the "Work It Out Together" DVD or a General Health Promotion DVD (HP). Parents and adolescents completed measures of HIV knowledge, self-efficacy, and parenting behaviors. Immediately after receiving the Work It Out Together intervention, parents and adolescents demonstrated higher HIV knowledge and greater HIV prevention self-efficacy. Three months after receiving the Work It Out Together intervention, parents and adolescents reported higher levels of parental monitoring and sexually active adolescents reported higher levels of condom use self-efficacy and a lower rate of recent sex. These outcomes provide preliminary evidence that the "Work It Out Together" DVD impacted individual attitudes and protective parenting behaviors.
Study of the H2O/Al2O3 Interface and the Acting Mechanism of Water in the Working Electrolyte
NASA Astrophysics Data System (ADS)
Jia, Ming; Li, Qiang; Li, Lixiang; Cao, Liang; Yang, Juan; Zhou, Xiangyang; Ai, Liang
2018-04-01
Using a working electrolyte containing mixed solvents of ethylene glycol and N,N-dimethylformamide, this paper presents a study of the reactions on the H2O/Al2O3 interface with sum frequency vibrational spectroscopy and the effects of different water content on the performance of the working electrolyte and an aluminum electrolytic capacitor and summarizes the rules of the variations in the performance parameters of the working electrolyte and aluminum electrolytic capacitor with respect to the water content. The results demonstrate that, when the water content is increased from 2.5 to 15%, the conductivity of the working electrolyte increased by 930 μS/cm, and the sparking voltage decreased by 27 V. Also, the increased water content causes lower oxidation efficiency and lower thermal stability. The leakage current of the aluminum electrolytic capacitor after high-temperature storage increases with an increase in the water content, and the attenuation rate of capacitor's the low-temperature capacitance decreases with an increase in the water content.
Brown, L. K.; Barker, D.; Warren, J.; Weddington, P.; Fortune, T.; Juzang, I.
2016-01-01
The purpose of the current study was to test an interactive DVD and workbook specifically designed for African-American parents and adolescents (ages 13–18), based on an efficacious face-to-face intervention, to address key factors associated with risk. A total of 170 parent-adolescent dyads were enrolled and randomly assigned to receive either the “Work It Out Together” DVD or a General Health Promotion DVD (HP). Parents and adolescents completed measures of HIV knowledge, self-efficacy, and parenting behaviors. Immediately after receiving the Work It Out Together intervention, parents and adolescents demonstrated higher HIV knowledge and greater HIV prevention self-efficacy. Three months after receiving the Work It Out Together intervention, parents and adolescents reported higher levels of parental monitoring and sexually active adolescents reported higher levels of condom use self-efficacy and a lower rate of recent sex. These outcomes provide preliminary evidence that the “Work It Out Together” DVD impacted individual attitudes and protective parenting behaviors. PMID:27155880
Tugnoli, Alessandro; Khan, Faisal; Amyotte, Paul; Cozzani, Valerio
2008-12-15
The design of layout plans requires adequate assessment tools for the quantification of safety performance. The general focus of the present work is to introduce an inherent safety perspective at different points of the layout design process. In particular, index approaches for safety assessment and decision-making in the early stages of layout design are developed and discussed in this two-part contribution. Part 1 (accompanying paper) of the current work presents an integrated index approach for safety assessment of early plant layout. In the present paper (Part 2), an index for evaluation of the hazard related to the potential of domino effects is developed. The index considers the actual consequences of possible escalation scenarios and scores or ranks the subsequent accident propagation potential. The effects of inherent and passive protection measures are also assessed. The result is a rapid quantification of domino hazard potential that can provide substantial support for choices in the early stages of layout design. Additionally, a case study concerning selection among various layout options is presented and analyzed. The case study demonstrates the use and applicability of the indices developed in both parts of the current work and highlights the value of introducing inherent safety features early in layout design.
Intensified diapycnal mixing in the midlatitude western boundary currents.
Jing, Zhao; Wu, Lixin
2014-12-10
The wind work on oceanic near-inertial motions is suggested to play an important role in furnishing the diapycnal mixing in the deep ocean which affects the uptake of heat and carbon by the ocean as well as climate changes. However, it remains a puzzle where and through which route the near-inertial energy penetrates into the deep ocean. Using the measurements collected in the Kuroshio extension region during January 2005, we demonstrate that the diapycnal mixing in the thermocline and deep ocean is tightly related to the shear variance of wind-generated near-inertial internal waves with the diapycnal diffusivity 6 × 10(-5) m(2)s(-1) almost an order stronger than that observed in the circulation gyre. It is estimated that 45%-62% of the local near-inertial wind work 4.5 × 10(-3) Wm(-2) radiates into the thermocline and deep ocean and accounts for 42%-58% of the energy required to furnish mixing there. The elevated mixing is suggested to be maintained by the energetic near-inertial wind work and strong eddy activities causing enhanced downward near-inertial energy flux than earlier findings. The western boundary current turns out to be a key region for the penetration of near-inertial energy into the deep ocean and a hotspot for the diapycnal mixing in winter.
A New Image Processing and GIS Package
NASA Technical Reports Server (NTRS)
Rickman, D.; Luvall, J. C.; Cheng, T.
1998-01-01
The image processing and GIS package ELAS was developed during the 1980's by NASA. It proved to be a popular, influential and powerful in the manipulation of digital imagery. Before the advent of PC's it was used by hundreds of institutions, mostly schools. It is the unquestioned, direct progenitor or two commercial GIS remote sensing packages, ERDAS and MapX and influenced others, such as PCI. Its power was demonstrated by its use for work far beyond its original purpose, having worked several different types of medical imagery, photomicrographs of rock, images of turtle flippers and numerous other esoteric imagery. Although development largely stopped in the early 1990's the package still offers as much or more power and flexibility than any other roughly comparable package, public or commercial. It is a huge body or code, representing more than a decade of work by full time, professional programmers. The current versions all have several deficiencies compared to current software standards and usage, notably its strictly command line interface. In order to support their research needs the authors are in the process of fundamentally changing ELAS, and in the process greatly increasing its power, utility, and ease of use. The new software is called ELAS II. This paper discusses the design of ELAS II.
Fahnert, Beatrix
2015-10-01
Employers expect graduates and postgraduates to demonstrate their education through more than good grades. Learning activities that develop subject skills during formalized programmes of undergraduate and postgraduate study also develop employability skills, if the curriculum is suitably aligned, and developmental planning is supported. Only little extra provision is required, but all development needs to be explicitly signposted to the learner, and the curriculum should be developed in consultation with employers. This review aims to raise awareness of current issues in the context of enhancing employability that arise from an increased global competition on the job market and the expectation of the Higher Education sector to produce work-ready graduates and postgraduates that are well equipped to adapt to a quickly changing work environment particularly due to transferable skills. In the context of lessons from the UK, these current issues and employability are discussed, and approaches to Personal Development Planning that prepare students for lifelong learning and that enable communicating and evidencing achievement are addressed. Issues specific to postgraduates, how actual work experience should be maximized as well as other career influences such as learned societies and social networking are highlighted. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Amperometric detector for gas chromatography based on a silica sol-gel solid electrolyte.
Steinecker, William H; Miecznikowski, Krzysztof; Kulesza, Pawel J; Sandlin, Zechariah D; Cox, James A
2017-11-01
An electrochemical cell comprising a silica sol-gel solid electrolyte, a working electrode that protrudes into a gas phase, and reference and counter electrodes that contact the solid electrolyte comprises an amperometric detector for gas chromatography. Under potentiostatic conditions, a current related to the concentration of an analyte in the gas phase is produced by its oxidation at the three-phase boundary among the sol-gel, working electrode, and the gas phase. The sol-gel is processed to contain an electrolyte that also serves as a humidistat to maintain a constant water activity even in the presence the gas chromatographic mobile phase. Response was demonstrated toward a diverse set of analytes, namely hydrogen, 1,2-ethandithiol, phenol, p-cresol, and thioanisole. Using flow injection amperometry of hydrogen with He as the carrier gas, 90% of the steady-state current was achieved in < 1s at a flow rate of 20mLmin -1 . A separation of 1,2-ethandithiol, phenol, p-cresol, and thioanisole at a 2.2mLmin -1 flow rate was achieved with respective detection limits (k = 3 criterion) of 4, 1, 3, and 70 ppmv when the working electrode potential was 800mV. Copyright © 2017 Elsevier B.V. All rights reserved.
Velloso, Isabela; Ceci, Christine; Alves, Marilia
2013-09-01
In this paper, we make explicit the changing configurations of power relations that currently characterize the Brazilian Emergency Care System (SAMU) team in Belo Horizonte, Brazil. The SAMU is a recent innovation in Brazilian healthcare service delivery. A qualitative case study methodology was used to explore SAMU's current organizational arrangements, specifically the power relations that have developed and that demonstrate internal team struggles over space and defense of particular occupational interests. The argument advanced in this paper is that these professionals are developing their work in conditions of exposure, that is, they are always being observed by someone, and that such observational exposure provides the conditions whereby everyday emergency care practices are enacted such that practice is shaped by, as well as shapes, particular, yet recognizable power relationships. Data were collected through the observation of the SAMU's work processes and through semi-structured interviews. Research materials were analyzed using discourse analysis. In the emergency care process of work, visibility is actually embedded in the disciplinary context and can thus be analyzed as a technique applied to produce disciplined individuals through the simple mechanisms elaborated by Foucault such as hierarchical surveillance, normalizing judgment, and the examination. © 2012 John Wiley & Sons Ltd.