Heating and current drive on NSTX
NASA Astrophysics Data System (ADS)
Wilson, J. R.; Batchelor, D.; Carter, M.; Hosea, J.; Ignat, D.; LeBlanc, B.; Majeski, R.; Ono, M.; Phillips, C. K.; Rogers, J. H.; Schilling, G.
1997-04-01
Low aspect ratio tokamaks pose interesting new challenges for heating and current drive. The NSTX (National Spherical Tokamak Experiment) device to be built at Princeton is a low aspect ratio toroidal device that has the achievement of high toroidal beta (˜45%) and non-inductive operation as two of its main research goals. To achieve these goals significant auxiliary heating and current drive systems are required. Present plans include ECH (Electron cyclotron heating) for pre-ionization and start-up assist, HHFW (high harmonic fast wave) for heating and current drive and eventually NBI (neutral beam injection) for heating, current drive and plasma rotation.
Plasma heating and current drive using intense, pulsed microwaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, B.I.; Cohen, R.H.; Nevins, W.M.
1988-01-01
The use of powerful new microwave sources, e.g., free-electron lasers and relativistic gyrotrons, provide unique opportunities for novel heating and current-drive schemes in the electron-cyclotron and lower-hybrid ranges of frequencies. These high-power, pulsed sources have a number of technical advantages over conventional, low-intensity sources; and their use can lead to improved current-drive efficiencies and better penetration into a reactor-grade plasma in specific cases. The Microwave Tokamak Experiment at Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. This paper reports theoretical progress both in modeling absorption and current drive for intense pulsesmore » and in analyzing some of the possible complications that may arise, e.g., parametric instabilities and nonlinear self-focusing. 22 refs., 9 figs., 1 tab.« less
Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment
NASA Astrophysics Data System (ADS)
Wilson, J. R.; Bell, R. E.; Bernabei, S.; Bitter, M.; Bonoli, P.; Gates, D.; Hosea, J.; LeBlanc, B.; Mau, T. K.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C. K.; Pinsker, R. I.; Raman, R.; Rosenberg, A.; Ryan, P.; Sabbagh, S.; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.
2003-05-01
High harmonic fast wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, S. Neumeyer et al., in Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999 (IEEE, Piscataway, NJ, 1999), p. 53] is such a device. An rf heating system has been installed on the NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.
Survey of heating and current drive for K-DEMO
NASA Astrophysics Data System (ADS)
Mikkelsen, D. R.; Kessel, C. E.; Poli, F. M.; Bertelli, N.; Kim, K.
2018-03-01
We present calculations of heating and current drive by neutral injection and by electromagnetic waves in the ion cyclotron, helicon, lower hybrid, and electron cyclotron frequency ranges for the steady state burn conditions in a K-DEMO configuration with I_p=12.3 MA, a = 2.1 m, R_o=6.8 m, B_o=7.4 T, \
Exploration of High Harmonic Fast Wave Heating on the National Spherical Torus Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.R. Wilson; R.E. Bell; S. Bernabei
2003-02-11
High Harmonic Fast Wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high-beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [Ono, M., Kaye, S.M., Neumeyer, S., et al., Proceedings, 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999, (IEEE, Piscataway, NJ (1999), p. 53.)] is such a device. An radio-frequency (rf) heating system has been installed on NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the STmore » concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode (high-confinement mode) discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.« less
Poli, F. M.; Andre, R. G.; Bertelli, N.; ...
2015-10-30
One of the goals of the National Spherical Torus Experiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) is the demonstration of fully non-inductive start-up, current ramp-up and sustainment. This work discusses predictive simulations where the available heating and current drive systems are combined to maximize the non-inductive current and minimize the solenoidal contribution. Radio-frequency waves at harmonics higher than the ion cyclotron resonance (high-harmonic fast waves (HHFW)) and neutral beam injection are used to ramp the plasma current non-inductively starting from an initial Ohmic plasma. An interesting synergy is observed in the simulations between the HHFW andmore » electron cyclotron (EC) wave heating. Furthermore, time-dependent simulations indicate that, depending on the phasing of the HHFW antenna, EC wave heating can significantly increase the effectiveness of the radio-frequency power, by heating the electrons and increasing the current drive efficiency, thus relaxing the requirements on the level of HHFW power that needs to be absorbed in the core plasma to drive the same amount of fast-wave current.« less
Molecular wires acting as quantum heat ratchets.
Zhan, Fei; Li, Nianbei; Kohler, Sigmund; Hänggi, Peter
2009-12-01
We explore heat transfer in molecular junctions between two leads in the absence of a finite net thermal bias. The application of an unbiased time-periodic temperature modulation of the leads entails a dynamical breaking of reflection symmetry, such that a directed heat current may emerge (ratchet effect). In particular, we consider two cases of adiabatically slow driving, namely, (i) periodic temperature modulation of only one lead and (ii) temperature modulation of both leads with an ac driving that contains a second harmonic, thus, generating harmonic mixing. Both scenarios yield sizable directed heat currents, which should be detectable with present techniques. Adding a static thermal bias allows one to compute the heat current-thermal load characteristics, which includes the ratchet effect of negative thermal bias with positive-valued heat flow against the thermal bias, up to the thermal stop load. The ratchet heat flow in turn generates also an electric current. An applied electric stop voltage, yielding effective zero electric current flow, then mimics a solely heat-ratchet-induced thermopower ("ratchet Seebeck effect"), although no net thermal bias is acting. Moreover, we find that the relative phase between the two harmonics in scenario (ii) enables steering the net heat current into a direction of choice.
Survey of heating and current drive for K-DEMO
Mikkelsen, D. R.; Kessel, C. E.; Poli, F. M.; ...
2018-01-22
Here, we present calculations of heating and current drive by neutral injection and by electromagnetic waves in the ion cyclotron, helicon, lower hybrid, and electron cyclotron frequency ranges for the steady state burn conditions in a K-DEMO configuration withmore » $$I_{\\rm p}=12.3$$ MA, a = 2.1 m, $$R_{\\rm o}=6.8$$ m, $$B_{\\rm o}=7.4$$ T, $$ \
Survey of heating and current drive for K-DEMO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikkelsen, D. R.; Kessel, C. E.; Poli, F. M.
Here, we present calculations of heating and current drive by neutral injection and by electromagnetic waves in the ion cyclotron, helicon, lower hybrid, and electron cyclotron frequency ranges for the steady state burn conditions in a K-DEMO configuration withmore » $$I_{\\rm p}=12.3$$ MA, a = 2.1 m, $$R_{\\rm o}=6.8$$ m, $$B_{\\rm o}=7.4$$ T, $$ \
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekedahl, Annika, E-mail: annika.ekedahl@cea.fr; Bourdelle, Clarisse; Artaud, Jean-François
The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m{sup 2}), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatiblemore » with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at I{sub P} = 0.8 MA) or high fluence (up to 10 MW / 1000 s at I{sub P} = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.« less
NASA Astrophysics Data System (ADS)
Poli, Francesca M.; Kessel, Charles E.
2013-05-01
Plasmas with internal transport barriers (ITBs) are a potential and attractive route to steady-state operation in ITER. These plasmas exhibit radially localized regions of improved confinement with steep pressure gradients in the plasma core, which drive large bootstrap current and generate hollow current profiles and negative magnetic shear. This work examines the formation and sustainment of ITBs in ITER with electron cyclotron heating and current drive. The time-dependent transport simulations indicate that, with a trade-off of the power delivered to the equatorial and to the upper launcher, the sustainment of steady-state ITBs can be demonstrated in ITER with the baseline heating configuration.
Ion Heating During Local Helicity Injection Plasma Startup in the Pegasus ST
NASA Astrophysics Data System (ADS)
Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.
2015-11-01
Plasmas in the Pegasus ST are initiated either through standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of impurity ion heating has been observed, with the passively measured impurity Ti as high as 800 eV compared to Ti ~ 60 eV and Te ~ 175 eV during standard inductive current drive discharges. In addition, non-thermal ion velocity distributions are observed and appear to be strongest near the helicity injectors. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n =1 MHD mode. An approximate temporal scaling of the heating with the amplitude of higher frequency magnetic fluctuations has also been observed, with large amounts of power spectral density present at several impurity ion cyclotron frequencies. Recent experiments have focused on investigating the impurity ion heating scaling with the ion charge to mass ratio as well as the reconnecting field strength. The ion charge to mass ratio was modified by observing different impurity charge states in similar LHI plasmas while the reconnecting field strength was modified by changing the amount of injected edge current. Work supported by US DOE grant DE-FG02-96ER54375.
Anomalous Ion Heating, Intrinsic and Induced Rotation in the Pegasus Toroidal Experiment
NASA Astrophysics Data System (ADS)
Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Thome, K. E.
2014-10-01
Pegasus plasmas are initiated through either standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of anomalous impurity ion heating has been observed, with Ti ~ 800 eV but Te < 100 eV. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n = 1 MHD mode. Chordal Ti spatial profiles indicate centrally peaked temperatures, suggesting a region of good confinement near the plasma core surrounded by a stochastic region. LHI plasmas are observed to rotate, perhaps due to an inward radial current generated by the stochastization of the plasma edge by the injected current streams. H-mode plasmas are initiated using a combination of high-field side fueling and Ohmic current drive. This regime shows a significant increase in rotation shear compared to L-mode plasmas. In addition, these plasmas have been observed to rotate in the counter-Ip direction without any external momentum sources. The intrinsic rotation direction is consistent with predictions from the saturated Ohmic confinement regime. Work supported by US DOE Grant DE-FG02-96ER54375.
Overview of ECRH experimental results
NASA Astrophysics Data System (ADS)
Lloyd, Brian
1998-08-01
A review of the present status of electron cyclotron heating and current drive experiments in toroidal fusion devices is presented. In addition to basic heating and current drive studies the review also addresses advances in wave physics and the application of electron cyclotron waves for instability control, transport studies, pre-ionization/start-up assist, etc. A comprehensive overview is given with particular emphasis on recent advances since the major review of Erckmann and Gasparino (1994) ( 36 1869), including results from the latest generation of high-power, high-frequency experiments.
Baseline tests of the Kordesh hybrid passenger vehicle
NASA Technical Reports Server (NTRS)
Soltis, R. F.; Bozek, J. M.; Denington, R. J.; Dustin, M. O.
1978-01-01
Performance test results are presented for a four-passenger Austin A40 sedan that was converted to a heat-engine-alternator-and battery-powered hybrid. It is propelled by a conventional, gasoline-fueled, heat-engine-driven alternator and a traction pack powering a series-wound, 10 hp direct-current electric drive motor. The 16 hp gasoline engine drives the 7 kilowatt alternator, which provides electrical power to the drive motor or to the 96 volt traction battery through a rectifier. The propulsion battery consists of eight 12 volt batteries connected in series. The electric motor is coupled to a four-speed standard transmission, which drives the rear wheels. Power to the motor is controlled by a three-step foot throttle, which actuates relays that control armature current and field excitation. Conventional hydraulic brakes are used.
Status of Electron Bernstein Wave (EBW) Research on NSTX and CDX-U
NASA Astrophysics Data System (ADS)
Taylor, G.; Efthimion, P. C.; Jones, B. M.; Wilson, J. R.; Wilgen, J. B.; Bell, G. L.; Bigelow, T. S.; Rasmussen, D. A.; Ram, A. K.; Bers, A.; Harvey, R. W.
2002-11-01
Recent studies of EBWs, via mode conversion (MC) to X-mode electromagnetic radiation on the CDX-U and NSTX spherical torus (ST) plasmas, support the use of EBWs to measure the Te profile and allow local heating and current drive in ST plasmas. An in-vessel antenna with a local adjustable limiter has successfully controlled the density scale length at the MC layer in CDX-U increasing the MC by an order of magnitude to ˜ 100%. A similar technique on NSTX has so far increased MC efficiency fivefold to ˜ 50%. Both results are in good agreement with theoretical predictions. Experiments focused on achieving >= 80% MC on NSTX are planned for the coming year. Ray tracing and Fokker-Planck modeling support the design of a ˜ 1 MW EBW heating and current drive system for NSTX that will assist plasma startup, locally heat electrons, drive non-inductive current and may suppress tearing modes or other MHD that limit high β operation.
Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-D
Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; ...
2015-05-22
The results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qminqmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β N and the noninductive current drive. However, in scenarios with q min>2 that target the typical range of q 95= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. Thismore » enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β N. Conversely similar plasmas except with q min just above 1 have approximately classical fast-ion transport. Experiments that take q min>3 plasmas to higher β P with q 95= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q min scenario, the high β P cases have shorter slowing-down time and lower ∇β fast, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β N, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q 95, high-q min plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less
Fast-ion transport in q{sub min}>2, high-β steady-state scenarios on DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, C. T.; Heidbrink, W. W.; Collins, C.
2015-05-15
Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-q{sub min} confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β{sub N} and the noninductive current drive. However, in scenarios with q{sub min}>2 that target the typical range of q{sub 95}= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. Thismore » enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β{sub N}. In contrast, similar plasmas except with q{sub min} just above 1 have approximately classical fast-ion transport. Experiments that take q{sub min}>3 plasmas to higher β{sub P} with q{sub 95}= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q{sub min} scenario, the high β{sub P} cases have shorter slowing-down time and lower ∇β{sub fast}, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β{sub N}, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q{sub 95}, high-q{sub min} plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less
Core conditions for alpha heating attained in direct-drive inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, A.; Woo, K. M.; Betti, R.
It is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett. 117,more » 025001 (2016)] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions.« less
Core conditions for alpha heating attained in direct-drive inertial confinement fusion
Bose, A.; Woo, K. M.; Betti, R.; ...
2016-07-07
It is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett. 117,more » 025001 (2016)] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions.« less
Core conditions for alpha heating attained in direct-drive inertial confinement fusion.
Bose, A; Woo, K M; Betti, R; Campbell, E M; Mangino, D; Christopherson, A R; McCrory, R L; Nora, R; Regan, S P; Goncharov, V N; Sangster, T C; Forrest, C J; Frenje, J; Gatu Johnson, M; Glebov, V Yu; Knauer, J P; Marshall, F J; Stoeckl, C; Theobald, W
2016-07-01
It is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett. 117, 025001 (2016)10.1103/PhysRevLett.117.025001] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions.
Optimal joule heating of the subsurface
Berryman, James G.; Daily, William D.
1994-01-01
A method for simultaneously heating the subsurface and imaging the effects of the heating. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.
Amplitude-frequency effect of Y-cut langanite and langatate.
Kim, Yoonkee
2003-12-01
Amplitude-frequency effect of a Y-cut langanite (LGN) resonator and a Y-cut langatate (LGT) resonator were measured. The frequency shifts from the baseline frequency with 1 mA were measured as a function of drive currents up to 28 mA. High-drive current shifted the frequency, but it also heated the crystal locally, causing temperature-related frequency changes. The local heat transfer and its influence on the frequency were analyzed. The amplitude-frequency shift was effectively measured, and was not affected by the temperature-related frequency changes. The 3rd, 5th, and 7th overtones (OT's) were found to behave as soft springs, i.e., resonant frequency decreases as drive current increases. The drive sensitivity coefficients of the 3rd and 5th OT's are in the vicinity of -2 ppb/mA2 for both resonators. The 7th OT's are higher than the other OT's: -5 approximately -7 ppb/mA2. The lowest drive sensitivity is -1.2 ppb/mA2 on the 5th OT of the LGT.
Effect of heating on the suppression of tearing modes in tokamaks.
Classen, I G J; Westerhof, E; Domier, C W; Donné, A J H; Jaspers, R J E; Luhmann, N C; Park, H K; van de Pol, M J; Spakman, G W; Jakubowski, M W
2007-01-19
The suppression of (neoclassical) tearing modes is of great importance for the success of future fusion reactors like ITER. Electron cyclotron waves can suppress islands, both by driving noninductive current in the island region and by heating the island, causing a perturbation to the Ohmic plasma current. This Letter reports on experiments on the TEXTOR tokamak, investigating the effect of heating, which is usually neglected. The unique set of tools available on TEXTOR, notably the dynamic ergodic divertor to create islands with a fully known driving term, and the electron cyclotron emission imaging diagnostic to provide detailed 2D electron temperature information, enables a detailed study of the suppression process and a comparison with theory.
Transport simulation of EAST long-pulse H-mode discharge with integrated modeling
NASA Astrophysics Data System (ADS)
Wu, M. Q.; Li, G. Q.; Chen, J. L.; Du, H. F.; Gao, X.; Ren, Q. L.; Li, K.; Chan, Vincent; Pan, C. K.; Ding, S. Y.; Jian, X.; Zhu, X.; Lian, H.; Qian, J. P.; Gong, X. Z.; Zang, Q.; Duan, Y. M.; Liu, H. Q.; Lyu, B.
2018-04-01
In the 2017 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than 100 s has been obtained using only radio frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H98y2 ~ 1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge in the 2016 EAST experimental campaign has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2 MW LHW, ~0.3 MW ECH and ~1.1 MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (I p ~ 0.45 MA) and electron density are kept constantly. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~28%, the RF drive current fraction is ~72%. The predicted current density profile matches the experimental one well. Analysis shows that electron cyclotron heating (ECH) makes large contribution to the plasma confinement when heating in the core region while heating in large radius does smaller improvement, also a more peaked LHW driven current profile is got when heating in the core. Linear analysis shows that the high-k modes instability (electron temperature gradient driven modes) is suppressed in the core region where exists weak electron internal transport barriers. The trapped electron modes dominates in the low-k region, which is mainly responsible for driving the electron energy flux. It is found that the ECH heating effect is very local and not the main cause to sustained the good confinement, the peaked current density profile has the most important effect on plasma confinement improvement. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments.
NASA Astrophysics Data System (ADS)
Andre, R.; Carlsson, J.; Gorelenkova, M.; Jardin, S.; Kaye, S.; Poli, F.; Yuan, X.
2016-10-01
TRANSP is an integrated interpretive and predictive transport analysis tool that incorporates state of the art heating/current drive sources and transport models. The treatments and transport solvers are becoming increasingly sophisticated and comprehensive. For instance, the ISOLVER component provides a free boundary equilibrium solution, while the PT- SOLVER transport solver is especially suited for stiff transport models such as TGLF. TRANSP incorporates high fidelity heating and current drive source models, such as NUBEAM for neutral beam injection, the beam tracing code TORBEAM for EC, TORIC for ICRF, the ray tracing TORAY and GENRAY for EC. The implementation of selected components makes efficient use of MPI for speed up of code calculations. Recently the GENRAY-CQL3D solver for modeling of LH heating and current drive has been implemented and currently being extended to multiple antennas, to allow modeling of EAST discharges. Also, GENRAY+CQL3D is being extended to the use of EC/EBW and of HHFW for NSTX-U. This poster will describe present uses of the code worldwide, as well as plans for upgrading the physics modules and code framework. Work supported by the US Department of Energy under DE-AC02-CH0911466.
Optimal joule heating of the subsurface
Berryman, J.G.; Daily, W.D.
1994-07-05
A method for simultaneously heating the subsurface and imaging the effects of the heating is disclosed. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.
Heating and current drive requirements towards steady state operation in ITER
NASA Astrophysics Data System (ADS)
Poli, F. M.; Bonoli, P. T.; Kessel, C. E.; Batchelor, D. B.; Gorelenkova, M.; Harvey, B.; Petrov, Y.
2014-02-01
Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H/CD sources that maintain weakly reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of quasi-steady state ITBs could be demonstrated in ITER with the baseline heating configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current are below the ITER target. Upgrades of the heating and current drive system in ITER, like the use of Lower Hybrid current drive, could overcome these limitations, sustaining higher non-inductive current and confinement, more expanded ITBs which are ideal MHD stable.
Recent experimental results of KSTAR RF heating and current drive
NASA Astrophysics Data System (ADS)
Wang, S. J.; Kim, J.; Jeong, J. H.; Kim, H. J.; Joung, M.; Bae, Y. S.; Kwak, J. G.
2015-12-01
The overview of KSTAR activities on ICRH, LHCD and ECH/CD including the last experimental results and future plan aiming for long-pulse high-beta plasma will be presented. Recently we achieved reasonable coupling of ICRF power to H-mode plasma through several efforts to increase system reliability. Power balance will be discussed on this experiment. LHCD is still struggling in the low power regime. Review of antenna spectrum for the higher coupling in H-mode plasma will be tried. ECH/CD provides 41 sec, 0.8 MW of heating power to support high-performance long-pulse discharge. Also, 170 GHz ECH system is integrated with the Plasma Control System (PCS) for the feedback controlling of NTM. Status and plan of ECH/CD will be discussed. Finally, helicon current drive is being prepared for the next stage of KSTAR operation. The hardware preparation and the calculation results of helicon current drive in KSTAR plasma will be discussed.
Control of neoclassical tearing modes by sawtooth control.
Sauter, O; Westerhof, E; Mayoral, M L; Alper, B; Belo, P A; Buttery, R J; Gondhalekar, A; Hellsten, T; Hender, T C; Howell, D F; Johnson, T; Lamalle, P; Mantsinen, M J; Milani, F; Nave, M F F; Nguyen, F; Pecquet, A L; Pinches, S D; Podda, S; Rapp, J
2002-03-11
The onset of a neoclassical tearing mode (NTM) depends on the existence of a large enough seed island. It is shown in the Joint European Torus that NTMs can be readily destabilized by long-period sawteeth, such as obtained by sawtooth stabilization from ion-cyclotron heating or current drive. This has important implications for burning plasma scenarios, as alpha particles strongly stabilize the sawteeth. It is also shown that, by adding heating and current drive just outside the inversion radius, sawteeth are destabilized, resulting in shorter sawtooth periods and larger beta values being obtained without NTMs.
NASA Astrophysics Data System (ADS)
Sharapov, S. E.; Garcia-Munoz, M.; Van Zeeland, M. A.; Bobkov, B.; Classen, I. G. J.; Ferreira, J.; Figueiredo, A.; Fitzgerald, M.; Galdon-Quiroga, J.; Gallart, D.; Geiger, B.; Gonzalez-Martin, J.; Johnson, T.; Lauber, P.; Mantsinen, M.; Nabais, F.; Nikolaeva, V.; Rodriguez-Ramos, M.; Sanchis-Sanchez, L.; Schneider, P. A.; Snicker, A.; Vallejos, P.; the AUG Team; the EUROfusion MST1 Team
2018-01-01
Dedicated studies performed for toroidal Alfvén eigenmodes (TAEs) in ASDEX-Upgrade (AUG) discharges with monotonic q-profiles have shown that electron cyclotron resonance heating (ECRH) can make TAEs more unstable. In these AUG discharges, energetic ions driving TAEs were obtained by ion cyclotron resonance heating (ICRH). It was found that off-axis ECRH facilitated TAE instability, with TAEs appearing and disappearing on timescales of a few milliseconds when the ECRH power was switched on and off. On-axis ECRH had a much weaker effect on TAEs, and in AUG discharges performed with co- and counter-current electron cyclotron current drive (ECCD), the effects of ECCD were found to be similar to those of ECRH. Fast ion distributions produced by ICRH were computed with the PION and SELFO codes. A significant increase in T e caused by ECRH applied off-axis is found to increase the fast ion slowing-down time and fast ion pressure causing a significant increase in the TAE drive by ICRH-accelerated ions. TAE stability calculations show that the rise in T e causes also an increase in TAE radiative damping and thermal ion Landau damping, but to a lesser extent than the fast ion drive. As a result of the competition between larger drive and damping effects caused by ECRH, TAEs become more unstable. It is concluded, that although ECRH effects on AE stability in present-day experiments may be quite significant, they are determined by the changes in the plasma profiles and are not particularly ECRH specific.
Experiment to investigate current drive by fast Alfven waves in a small tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gahl, J.; Ishihara, O.; Wong, K.
1985-07-01
An experiment has been carried out to study current generation by Doppler shifted cyclotron resonance heating of minority ions with a unidirectional wave in the small tokamak at Texas Tech University. One of the objectives of the experiment is to understand in detail the wave-particle interactions through which fast (compressional) Alfven waves in the ion cyclotron range of frequencies drive currents in toroidal devices.
Non-inductive current drive and transport in high βN plasmas in JET
NASA Astrophysics Data System (ADS)
Voitsekhovitch, I.; Alper, B.; Brix, M.; Budny, R. V.; Buratti, P.; Challis, C. D.; Ferron, J.; Giroud, C.; Joffrin, E.; Laborde, L.; Luce, T. C.; McCune, D.; Menard, J.; Murakami, M.; Park, J. M.; JET-EFDA contributors
2009-05-01
A route to stationary MHD stable operation at high βN has been explored at the Joint European Torus (JET) by optimizing the current ramp-up, heating start time and the waveform of neutral beam injection (NBI) power. In these scenarios the current ramp-up has been accompanied by plasma pre-heat (or the NBI has been started before the current flat-top) and NBI power up to 22 MW has been applied during the current flat-top. In the discharges considered transient total βN ≈ 3.3 and stationary (during high power phase) βN ≈ 3 have been achieved by applying the feedback control of βN with the NBI power in configurations with monotonic or flat core safety factor profile and without an internal transport barrier (ITB). The transport and current drive in this scenario is analysed here by using the TRANSP and ASTRA codes. The interpretative analysis performed with TRANSP shows that 50-70% of current is driven non-inductively; half of this current is due to the bootstrap current which has a broad profile since an ITB was deliberately avoided. The GLF23 transport model predicts the temperature profiles within a ±22% discrepancy with the measurements over the explored parameter space. Predictive simulations with this model show that the E × B rotational shear plays an important role for thermal ion transport in this scenario, producing up to a 40% increase of the ion temperature. By applying transport and current drive models validated in self-consistent simulations of given reference scenarios in a wider parameter space, the requirements for fully non-inductive stationary operation at JET are estimated. It is shown that the strong stiffness of the temperature profiles predicted by the GLF23 model restricts the bootstrap current at larger heating power. In this situation full non-inductive operation without an ITB can be rather expensive strongly relying on the external non-inductive current drive sources.
NASA Astrophysics Data System (ADS)
Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.; Schlossberg, D. J.
2017-07-01
Plasmas in the Pegasus spherical tokamak are initiated and grown by the non-solenoidal local helicity injection (LHI) current drive technique. The LHI system consists of three adjacent electron current sources that inject multiple helical current filaments that can reconnect with each other. Anomalously high impurity ion temperatures are observed during LHI with T i,OV ⩽ 650 eV, which is in contrast to T i,OV ⩽ 70 eV from Ohmic heating alone. Spatial profiles of T i,OV indicate an edge localized heating source, with T i,OV ~ 650 eV near the outboard major radius of the injectors and dropping to ~150 eV near the plasma magnetic axis. Experiments without a background tokamak plasma indicate the ion heating results from magnetic reconnection between adjacent injected current filaments. In these experiments, the HeII T i perpendicular to the magnetic field is found to scale with the reconnecting field strength, local density, and guide field, while {{T}\\text{i,\\parallel}} experiences little change, in agreement with two-fluid reconnection theory. This ion heating is not expected to significantly impact the LHI plasma performance in Pegasus, as it does not contribute significantly to the electron heating. However, estimates of the power transfer to the bulk ion are quite large, and thus LHI current drive provides an auxiliary ion heating mechanism to the tokamak plasma.
Burke, Marcus G.; Barr, Jayson L.; Bongard, Michael W.; ...
2017-05-16
Plasmas in the Pegasus spherical tokamak are initiated and grown by the non-solenoidal local helicity injection (LHI) current drive technique. The LHI system consists of three adjacent electron current sources that inject multiple helical current filaments that can reconnect with each other. Anomalously high impurity ion temperatures are observed during LHI with T i,OV ≤ 650 eV, which is in contrast to T i,OV ≤ 70 eV from Ohmic heating alone. Spatial profiles of T i,OV indicate an edge localized heating source, with T i,OV ~ 650 eV near the outboard major radius of the injectors and dropping to ~150 eV near the plasma magnetic axis. Experiments without a background tokamak plasma indicate the ion heating results from magnetic reconnection between adjacent injected current filaments. In these experiments, the HeII T i perpendicular to the magnetic field is found to scale with the reconnecting field strength, local density, and guide field, whilemore » $${{T}_{\\text{i},\\parallel}}$$ experiences little change, in agreement with two-fluid reconnection theory. In conclusion, this ion heating is not expected to significantly impact the LHI plasma performance in Pegasus, as it does not contribute significantly to the electron heating. However, estimates of the power transfer to the bulk ion are quite large, and thus LHI current drive provides an auxiliary ion heating mechanism to the tokamak plasma.« less
Recent progress of RF-dominated experiments on EAST
NASA Astrophysics Data System (ADS)
Liu, F. K.; Zhao, Y. P.; Shan, J. F.; Zhang, X. J.; Ding, B. J.; Wang, X. J.; Wang, M.; Xu, H. D.; Qin, C. M.; Li, M. H.; Gong, X. Z.; Hu, L. Q.; Wan, B. N.; Song, Y. T.; Li, J. G.
2017-10-01
The research of EAST program is mostly focused on the development of high performance steady state scenario with ITER-like poloidal configuration and RF-dominated heating schemes. With the enhanced ITER-relevant auxiliary heating and current drive systems, the plasma profile control by coupling/integration of various combinations has been investigated, including lower hybrid current drive (LHCD), electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH). The 12 MW ICRH system has been installed on EAST. Heating and confinement studies using the Hydrogen Minority Heating scheme have been investigated. One of the importance challenges for EAST is coupling higher power into the core plasma, experiments including changing plasma position, electron density, local gas puffing and antenna phasing scanning were performed to improve ICRF coupling efficiency on EAST. Results show that local gas injection and reducing the k|| can improve the coupling efficiency directly. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and sustained at relatively high density, even up to ne ˜ 4.5 × 1019 m-3, where a current drive effect is still observed. Meanwhile, effect of source frequency (2.45GHz and 4.6GHz) on LHCD characteristic has been studied on EAST, showing that higher frequency improves penetration of the coupled LH (lower hybrid) power into the plasma core and leads to a better effect on plasma characteristics. Studies demonstrate the role of parasitic effects of edge plasma in LHCD and the mitigation by increasing source frequency. Experiments of effect of LH spectrum and plasma density on plasma characteristics are performed, suggesting the possibility of plasma control for high performance. The development of a 4MW ECRH system is in progress for the purpose of plasma heating and MHD control. The built ECRH system with 1MW source power has been successfully put into use on EAST in 2015. H-mode discharges with L-H transition triggered by ECRH injection were obtained and its effects on the electron temperature, particle confinement and the core MHD stabilities were observed. By further exploring and optimizing the RF combination for the sole RF heating and current drive regime, fully non-inductive H-mode discharges with Vloop˜0V has progressed steadily in the 2016 campaign. The overview of the significant progress of RF dominated experiments is presented in this paper.
Thermally driven electrokinetic energy conversion with liquid water microjets
Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; ...
2015-11-01
One goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.
Thermally driven electrokinetic energy conversion with liquid water microjets
NASA Astrophysics Data System (ADS)
Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; Saykally, Richard J.
2015-11-01
A goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.
Sawtooth control in fusion plasmas
NASA Astrophysics Data System (ADS)
Graves, J. P.; Angioni, C.; Budny, R. V.; Buttery, R. J.; Coda, S.; Eriksson, L.-G.; Gimblett, C. G.; Goodman, T. P.; Hastie, R. J.; Henderson, M. A.; Koslowski, H. R.; Mantsinen, M. J.; Martynov, An; Mayoral, M.-L.; Mück, A.; Nave, M. F. F.; Sauter, O.; Westerhof, E.; Contributors, JET–EFDA
2005-12-01
Clear observations of early triggering of neo-classical tearing modes by sawteeth with long quiescent periods have motivated recent efforts to control, and in particular destabilize, sawteeth. One successful approach explored in TCV utilizes electron cyclotron heating in order to locally increase the current penetration time in the core. The latter is also achieved in various machines by depositing electron cyclotron current drive or ion cyclotron current drive close to the q = 1 rational surface. Crucially, localized current drive also succeeds in destabilizing sawteeth which are otherwise stabilized by a co-existing population of energetic trapped ions in the core. In addition, a recent reversed toroidal field campaign at JET demonstrates that counter-neutral beam injection (NBI) results in shorter sawtooth periods than in the Ohmic regime. The clear dependence of the sawtooth period on the NBI heating power and the direction of injection also manifests itself in terms of the toroidal plasma rotation, which consequently requires consideration in the theoretical interpretation of the experiments. Another feature of NBI, expected to be especially evident in the negative ion based neutral beam injection (NNBI) heating planned for ITER, is the parallel velocity asymmetry of the fast ion population. It is predicted that a finite orbit effect of asymmetrically distributed circulating ions could strongly modify sawtooth stability. Furthermore, NNBI driven current with non-monotonic profile could significantly slow down the evolution of the safety factor in the core, thereby delaying sawteeth.
Advanced electron cyclotron heating and current drive experiments on the stellarator Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Stange, Torsten; Laqua, Heinrich Peter; Beurskens, Marc; Bosch, Hans-Stephan; Bozhenkov, Sergey; Brakel, Rudolf; Braune, Harald; Brunner, Kai Jakob; Cappa, Alvaro; Dinklage, Andreas; Erckmann, Volker; Fuchert, Golo; Gantenbein, Gerd; Gellert, Florian; Grulke, Olaf; Hartmann, Dirk; Hirsch, Matthias; Höfel, Udo; Kasparek, Walter; Knauer, Jens; Langenberg, Andreas; Marsen, Stefan; Marushchenko, Nikolai; Moseev, Dmitry; Pablant, Novomir; Pasch, Ekkehard; Rahbarnia, Kian; Mora, Humberto Trimino; Tsujimura, Toru; Turkin, Yuriy; Wauters, Tom; Wolf, Robert
2017-10-01
During the first operational phase (OP 1.1) of Wendelstein 7-X (W7-X) electron cyclotron resonance heating (ECRH) was the exclusive heating method and provided plasma start-up, wall conditioning, heating and current drive. Six gyrotrons were commissioned for OP1.1 and used in parallel for plasma operation with a power of up to 4.3 MW. During standard X2-heating the spatially localized power deposition with high power density allowed controlling the radial profiles of the electron temperature and the rotational transform. Even though W7-X was not fully equipped with first wall tiles and operated with a graphite limiter instead of a divertor, electron densities of n e > 3·1019 m-3 could be achieved at electron temperatures of several keV and ion temperatures above 2 keV. These plasma parameters allowed the first demonstration of a multipath O2-heating scenario, which is envisaged for safe operation near the X-cutoff-density of 1.2·1020 m-3 after full commissioning of the ECRH system in the next operation phase OP1.2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, R. W.
This DOE grant supported fusion energy research, a potential long-term solution to the world's energy needs. Magnetic fusion, exemplified by confinement of very hot ionized gases, i.e., plasmas, in donut-shaped tokamak vessels is a leading approach for this energy source. Thus far, a mixture of hydrogen isotopes has produced 10's of megawatts of fusion power for seconds in a tokamak reactor at Princeton Plasma Physics Laboratory in New Jersey. The research grant under consideration, ER54684, uses computer models to aid in understanding and projecting efficacy of heating and current drive sources in the National Spherical Torus Experiment, a tokamak variant,more » at PPPL. The NSTX experiment explores the physics of very tight aspect ratio, almost spherical tokamaks, aiming at producing steady-state fusion plasmas. The current drive is an integral part of the steady-state concept, maintaining the magnetic geometry in the steady-state tokamak. CompX further developed and applied models for radiofrequency (rf) heating and current drive for applications to NSTX. These models build on a 30 year development of rf ray tracing (the all-frequencies GENRAY code) and higher dimensional Fokker-Planck rf-collisional modeling (the 3D collisional-quasilinear CQL3D code) at CompX. Two mainline current-drive rf modes are proposed for injection into NSTX: (1) electron Bernstein wave (EBW), and (2) high harmonic fast wave (HHFW) modes. Both these current drive systems provide a means for the rf to access the especially high density plasma--termed high beta plasma--compared to the strength of the required magnetic fields. The CompX studies entailed detailed modeling of the EBW to calculate the efficiency of the current drive system, and to determine its range of flexibility for driving current at spatial locations in the plasma cross-section. The ray tracing showed penetration into NSTX bulk plasma, relatively efficient current drive, but a limited ability to produce current over the whole radial plasma cross-section. The actual EBW experiment will cost several million dollars, and remains in the proposal stage. The HHFW current drive system has been experimentally implemented on NSTX, and successfully drives substantial current. The understanding of the experiment is to be accomplished in terms of general concepts of rf current drive, and also detailed modeling of the experiment which can discern the various competing processes which necessarily occur simultaneously in the experiment. An early discovery of the CompX codes, GENRAY and CQL3D, was that there could be significant interference between the neutral beam injection fast ions in the machine (injected for plasma heating) and the HHFW energy. Under many NSTX experimental conditions, power which could go to the fast ions would then be unavailable for current drive by the desired HHFW interaction with electrons. This result has been born out by experiments; the modeling helps in understanding difficulties with HHFW current drive, and has enabled adjustment of the experiment to avoid interaction with neutral beam injected fast ions thereby achieving stronger HHFW current drive. The detailed physics modeling of the various competing processes is almost always required in fusion energy plasma physics, to ensure a reasonably accurate and certain interpretation of the experiment, enabling the confident design of future, more advanced experiments and ultimately a commercial fusion reactor. More recent work entails detailed investigation of the interaction of the HHFW radiation for fast ions, accounting for the particularly large radius orbits in NSTX, and correlations between multiple HHFW-ion interactions. The spherical aspect of the NSTX experiment emphasized particular physics such as the large orbits which are present to some degree in all tokamaks, but gives clearer clues on the resulting physics phenomena since competing physics effects are reduced.« less
Recent experimental results of KSTAR RF heating and current drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S. J., E-mail: sjwang@nfri.re.kr; Kim, J.; Jeong, J. H.
2015-12-10
The overview of KSTAR activities on ICRH, LHCD and ECH/CD including the last experimental results and future plan aiming for long-pulse high-beta plasma will be presented. Recently we achieved reasonable coupling of ICRF power to H-mode plasma through several efforts to increase system reliability. Power balance will be discussed on this experiment. LHCD is still struggling in the low power regime. Review of antenna spectrum for the higher coupling in H-mode plasma will be tried. ECH/CD provides 41 sec, 0.8 MW of heating power to support high-performance long-pulse discharge. Also, 170 GHz ECH system is integrated with the Plasma Control Systemmore » (PCS) for the feedback controlling of NTM. Status and plan of ECH/CD will be discussed. Finally, helicon current drive is being prepared for the next stage of KSTAR operation. The hardware preparation and the calculation results of helicon current drive in KSTAR plasma will be discussed.« less
Electron Bernstein Wave Studies in MST
NASA Astrophysics Data System (ADS)
Seltzman, Andrew; Anderson, Jay; Forest, Cary; Nonn, Paul; Thomas, Mark; Reusch, Joshua; Hendries, Eric
2013-10-01
The overdense condition in a RFP prevents electromagnetic waves from propagating past the extreme edge. However use of the electron Bernstein wave (EBW) has the potential to heat and drive current in the plasma. MHD simulations have demonstrated that resistive tearing mode stability is very sensitive to the gradient in the edge current density profile, allowing EBW current drive to influence and potentially stabilize tearing mode activity. Coupling between the X-mode and Bernstein waves is strongly dependent on the edge density gradient. The effects on coupling of plasma density, magnetic field strength, antenna radial position and launch polarization have been examined. Coupling as high as 90% has been observed. Construction of a 450 kw RF source is complete and initial experimental results will be reported. The power and energy of this auxiliary system should be sufficient for several scientific purposes, including verifying mode conversion, EBW propagation and absorption in high beta plasmas. Target plasmas in the 300-400 kA range will be heated near the reversal surface, potentially allowing mode control, while target plasmas in the 250 kA range will allow heating near the core, allowing better observation of heating effects. Heating and heat pulse propagation experiments are planned, as well as probing the stability of parametric decay during mode conversion, at moderate injected power. Work supported by USDOE.
Electron Bernstein waves in spherical torus plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saveliev, A. N.
2006-11-30
Propagation and absorption of the electron Bernstein waves (EBWs) in spherical tokamaks (STs) have been intensively discussed in recent years because the EBWs coupled with an externally launched electromagnetic beam seem to be the only opportunity for microwave plasma heating and current drive in the electron cyclotron (EC) frequency range in the STs. The whole problem of the electron Bernstein heating and current drive (EBWHCD) in spherical plasmas is naturally divided into three major parts: coupling of incident electromagnetic waves (EMWs) to the EBWs near the upper hybrid resonance (UHR) surface, propagation and absorption of the EBWs in the plasmamore » interior and generation of noninductive current driven by the EBWs. The present paper is a brief survey of the most important theoretical and numerical results on the issue of EBWs.« less
NASA Astrophysics Data System (ADS)
Moriyama, S.; Kajiwara, K.; Takahashi, K.; Kasugai, A.; Seki, M.; Ikeda, Y.; Fujii, T.
2005-11-01
A compact antenna system was designed and fabricated to enable millimeter-wave beam scanning in the toroidal and poloidal directions of the JT-60U tokamak for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) experiments. The antenna consists of a fast movable flat mirror mounted on the tokamak vacuum vessel and a rotary focusing mirror attached at the end of the waveguide that is supported from outside the vacuum vessel. This separate support concept enables a compact structure inside a shallow port (0.68×0.54×0.2m) that is shared with a subport for an independent diagnostic system. During a plasma shot, the flat mirror is driven by a servomotor with a 3-m-long drive shaft to reduce the influence of the high magnetic field on the motor. The focusing mirror is rotated by a simple mechanism utilizing a push rod and an air cylinder. The antenna has been operated reliably for 3 years after a small improvement to the rotary drive mechanism. It has made significant contributions to ECH and ECCD experiments, especially the current profile control in JT-60U.
NASA Astrophysics Data System (ADS)
Gu, Yimin; Narendran, Nadarajah; Freyssinier, Jean Paul
2004-10-01
Two life tests were conducted to compare the effects of drive current and ambient temperature on the degradation rate of 5 mm and high-flux white LEDs. Tests of 5 mm white LED arrays showed that junction temperature increases produced by drive current had a greater effect on the rate of light output degradation than junction temperature increases from ambient heat. A preliminary test of high-flux white LEDs showed the opposite effect, with junction temperature increases from ambient heat leading to a faster depreciation. However, a second life test is necessary to verify this finding. The dissimilarity in temperature effect among 5 mm and high-flux LEDs is likely caused by packaging differences between the two device types.
Non-Solenoidal Startup via Helicity Injection in the Pegasus ST
NASA Astrophysics Data System (ADS)
Bongard, M. W.; Bodner, G. M.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Pierren, C.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Reusch, J. A.; Weberski, J. D.
2017-10-01
Research on the A 1 . 2 Pegasus ST is developing the physics and technology basis for optimal non-solenoidal tokamak startup. Recent work explores startup via Local Helicity Injection (LHI) using compact, multi-MW current sources placed at the plasma edge in the lower divertor region. This minimizes inductive drive from poloidal fields and dynamic shaping. Plasmas with Ip <= 200 kA, Δtpulse 20 ms and BT <= 0 . 15 T are produced to date, sustained by two injectors with Ainj = 4 cm2 , Vinj 1 . 5 kV, and Iinj 8 kA, facilitated by improvements to the injectors, limiters, and divertor plates that mitigate deleterious PMI. These plasmas feature anomalous, reconnection-driven ion heating with Ti >=Te >= 50 - 100 eV and large-amplitude MHD activity driven by the injectors. Under some conditions, MHD fluctuations abruptly decrease by over an order of magnitude without loss of LHI drive, improving realized Ip , and suggesting short-wavelength modes may relate to the current drive mechanism. The high IN >= 10 , ion heating, and low li driven by LHI, and the favorable stability of A 1 STs allows access to record βt 100 % and high βN 6 . 5 . Such high-βt plasmas have a minimum | B | well spanning 50 % of the plasma volume. Enhancements to the Pegasus facility are considered to increase BT towards NSTX-U levels; establish coaxial helicity injection capabilities; and add auxiliary heating and current drive. Work supported by US DOE Grant DE-FG02-96ER54375.
High beta plasma operation in a toroidal plasma producing device
Clarke, John F.
1978-01-01
A high beta plasma is produced in a plasma producing device of toroidal configuration by ohmic heating and auxiliary heating. The plasma pressure is continuously monitored and used in a control system to program the current in the poloidal field windings. Throughout the heating process, magnetic flux is conserved inside the plasma and the distortion of the flux surfaces drives a current in the plasma. As a consequence, the total current increases and the poloidal field windings are driven with an equal and opposing increasing current. The spatial distribution of the current in the poloidal field windings is determined by the plasma pressure. Plasma equilibrium is maintained thereby, and high temperature, high beta operation results.
Integrated modelling of steady-state scenarios and heating and current drive mixes for ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Masanori; Park, Jin Myung; Giruzzi, G.
2011-01-01
Recent progress on ITER steady-state (SS) scenario modelling by the ITPA-IOS group is reviewed. Code-to-code benchmarks as the IOS group's common activities for the two SS scenarios (weak shear scenario and internal transport barrier scenario) are discussed in terms of transport, kinetic profiles, and heating and current drive (CD) sources using various transport codes. Weak magnetic shear scenarios integrate the plasma core and edge by combining a theory-based transport model (GLF23) with scaled experimental boundary profiles. The edge profiles (at normalized radius rho = 0.8-1.0) are adopted from an edge-localized mode-averaged analysis of a DIII-D ITER demonstration discharge. A fullymore » noninductive SS scenario is achieved with fusion gain Q = 4.3, noninductive fraction f(NI) = 100%, bootstrap current fraction f(BS) = 63% and normalized beta beta(N) = 2.7 at plasma current I(p) = 8MA and toroidal field B(T) = 5.3 T using ITER day-1 heating and CD capability. Substantial uncertainties come from outside the radius of setting the boundary conditions (rho = 0.8). The present simulation assumed that beta(N)(rho) at the top of the pedestal (rho = 0.91) is about 25% above the peeling-ballooning threshold. ITER will have a challenge to achieve the boundary, considering different operating conditions (T(e)/T(i) approximate to 1 and density peaking). Overall, the experimentally scaled edge is an optimistic side of the prediction. A number of SS scenarios with different heating and CD mixes in a wide range of conditions were explored by exploiting the weak-shear steady-state solution procedure with the GLF23 transport model and the scaled experimental edge. The results are also presented in the operation space for DT neutron power versus stationary burn pulse duration with assumed poloidal flux availability at the beginning of stationary burn, indicating that the long pulse operation goal (3000s) at I(p) = 9 MA is possible. Source calculations in these simulations have been revised for electron cyclotron current drive including parallel momentum conservation effects and for neutral beam current drive with finite orbit and magnetic pitch effects.« less
Quantum thermal diode based on two interacting spinlike systems under different excitations.
Ordonez-Miranda, Jose; Ezzahri, Younès; Joulain, Karl
2017-02-01
We demonstrate that two interacting spinlike systems characterized by different excitation frequencies and coupled to a thermal bath each, can be used as a quantum thermal diode capable of efficiently rectifying the heat current. This is done by deriving analytical expressions for both the heat current and rectification factor of the diode, based on the solution of a master equation for the density matrix. Higher rectification factors are obtained for lower heat currents, whose magnitude takes their maximum values for a given interaction coupling proportional to the temperature of the hotter thermal bath. It is shown that the rectification ability of the diode increases with the excitation frequencies difference, which drives the asymmetry of the heat current, when the temperatures of the thermal baths are inverted. Furthermore, explicit conditions for the optimization of the rectification factor and heat current are explicitly found.
NASA Astrophysics Data System (ADS)
Feng, Songlin; Yang, Xuanzong; Feng, Chunhua; Wang, Long; Rao, Jun; Feng, Kecheng
2005-06-01
Experiments on the start-up and formation of spherical tokamak plasmas by electron cyclotron heating alone without ohmic heating and electrode discharge assisted electron cyclotron wave current start-up will be carried out on the SUNIST (Sino United Spherical Tokamak) device. The 2.45 GHz/100kW/30 ms microwave power system and 1000 V/50 A power supply for electrode discharge are ready for experiments with non-inductive current drive.
Self-regulating proportionally controlled heating apparatus and technique
NASA Technical Reports Server (NTRS)
Strange, M. G. (Inventor)
1975-01-01
A self-regulating proportionally controlled heating apparatus and technique is provided wherein a single electrical resistance heating element having a temperature coefficient of resistance serves simultaneously as a heater and temperature sensor. The heating element is current-driven and the voltage drop across the heating element is monitored and a component extracted which is attributable to a change in actual temperature of the heating element from a desired reference temperature, so as to produce a resulting error signal. The error signal is utilized to control the level of the heater drive current and the actual heater temperature in a direction to reduce the noted temperature difference. The continuous nature of the process for deriving the error signal feedback information results in true proportional control of the heating element without the necessity for current-switching which may interfere with nearby sensitive circuits, and with no cyclical variation in the controlled temperature.
Integrated modeling of high βN steady state scenario on DIII-D
Park, Jin Myung; Ferron, J. R.; Holcomb, Christopher T.; ...
2018-01-10
Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with β N > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state ( d/dt = 0) solutions and reproduces most features of DIII-D high β N discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high q min > 2 scenario achieves stable operation at β N as high as 5 by using a very broadmore » current density profile to improve the ideal-wall stabilization of low- n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high β N steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.« less
Integrated modeling of high βN steady state scenario on DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jin Myung; Ferron, J. R.; Holcomb, Christopher T.
Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with β N > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state ( d/dt = 0) solutions and reproduces most features of DIII-D high β N discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high q min > 2 scenario achieves stable operation at β N as high as 5 by using a very broadmore » current density profile to improve the ideal-wall stabilization of low- n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high β N steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.« less
Integrated modeling of high βN steady state scenario on DIII-D
NASA Astrophysics Data System (ADS)
Park, J. M.; Ferron, J. R.; Holcomb, C. T.; Buttery, R. J.; Solomon, W. M.; Batchelor, D. B.; Elwasif, W.; Green, D. L.; Kim, K.; Meneghini, O.; Murakami, M.; Snyder, P. B.
2018-01-01
Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with βN > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state (d/dt = 0) solutions and reproduces most features of DIII-D high βN discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high qmin > 2 scenario achieves stable operation at βN as high as 5 by using a very broad current density profile to improve the ideal-wall stabilization of low-n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high βN steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.
Physics-based Control-oriented Modeling of the Current Profile Evolution in NSTX-Upgrade
NASA Astrophysics Data System (ADS)
Ilhan, Zeki; Barton, Justin; Shi, Wenyu; Schuster, Eugenio; Gates, David; Gerhardt, Stefan; Kolemen, Egemen; Menard, Jonathan
2013-10-01
The operational goals for the NSTX-Upgrade device include non-inductive sustainment of high- β plasmas, realization of the high performance equilibrium scenarios with neutral beam heating, and achievement of longer pulse durations. Active feedback control of the current profile is proposed to enable these goals. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards feedback control design is the development of a physics-based, control-oriented model for the current profile evolution in response to non-inductive current drives and heating systems. For this purpose, the nonlinear magnetic-diffusion equation is coupled with empirical models for the electron density, electron temperature, and non-inductive current drives (neutral beams). The resulting first-principles-driven, control-oriented model is tailored for NSTX-U based on the PTRANSP predictions. Main objectives and possible challenges associated with the use of the developed model for control design are discussed. This work was supported by PPPL.
NASA Astrophysics Data System (ADS)
Papadopoulos, K.; Eliasson, B.; Shao, X.; Labenski, J.; Chang, C.
2011-12-01
A new concept of generating ionospheric currents in the ULF/ELF range with modulated HF heating using ground-based transmitters even in the absence of electrojet currents is presented. The new concept relies on using HF heating of the F-region to modulate the electron temperature and has been given the name Ionospheric Current Drive (ICD). In ICD, the pressure gradient associated with anomalous or collisional F-region electron heating drives a local diamagnetic current that acts as an antenna to inject mainly Magneto-Sonic (MS) waves in the ionospheric plasma. The electric field associated with the MS wave drives Hall currents when it reaches the E region of the ionosphere. The Hall currents act as a secondary antenna that inject waves in the Earth-Ionosphere Waveguide (EIW) below and shear Alfven waves or EMIC waves upwards towards the conjugate regions. The paper presents: (i) Theoretical results using a cold Hall MHD model to study ICD and the generation of ULF/ELF waves by the modulation of the electron pressure at the F2-region with an intense HF electromagnetic wave. The model solves equations governing the dynamics of the shear Alfven and magnetosonic modes, of the damped modes in the diffusive Pedersen layer, and of the weakly damped helicon wave mode in the Hall-dominated E-region. The model incorporates realistic profile of the ionospheric conductivities and magnetic field configuration. We use the model to simulate propagation and dynamics of the low-frequency waves and their injection into the magnetosphere from the HAARP and Arecibo ionospheric heaters. (ii) Proof of principle experiments using the HAARP ionospheric heater in conjunction with measurements by the DEMETER satellite This work is supported by ONR MURI grant and DARPA BRIOCHE Program
Heating of the solar middle chromosphere by large-scale electric currents
NASA Technical Reports Server (NTRS)
Goodman, M. L.
1995-01-01
A global resistive, two-dimensional, time-dependent magnetohydrodynamic (MHD) model is used to introduce and support the hypothesis that the quiet solar middle chromosphere is heated by resistive dissipation of large-scale electric currents which fill most of its volume. The scale height and maximum magnitude of the current density are 400 km and 31.3 m/sq m, respectively. The associated magnetic field is almost horizontal, has the same scale height as the current density, and has a maximum magnitude of 153 G. The current is carried by electrons flowing across magnetic field lines at 1 m/s. The resistivity is the electron contribution to the Pedersen resitivity for a weakly ionized, strongly magnetized, hydrogen gas. The model does not include a driving mechanism. Most of the physical quantities in the model decrease exponentially with time on a resistive timescale of 41.3 minutes. However, the initial values and spatial; dependence of these quantities are expected to be essentially the same as they would be if the correct driving mechanism were included in a more general model. The heating rate per unit mass is found to be 4.5 x 10(exp 9) ergs/g/s, independent of height and latitude. The electron density scale height is found to be 800 km. The model predicts that 90% of the thermal energy required to heat the middle chromosphere is deposited in the height range 300-760 km above the temperature minimum. It is shown to be consistent to assume that the radiation rate per unit volume is proportional to the magnetic energy density, and then it follows that the heating rate per unit volume is also proportional to the energy from the photosphere into the overlying chromosphere are briefly discussed as possible driving mechanisms for establishing and maintaining the current system. The case in which part of or all of the current is carried by protons and metal ions, and the contribution of electron-proton scattering to the current are also considered, with the conclusion that these effects do not change the qualitative prediction of the model, but probably change the quantitative predictions slightly, mainly by increasing the maximum magntiude of the current density and magnetic field to at most approximately 100 mA/m and approximately 484 G, respectively. The heating rate per unit mass, current density scale height, magnetic field scale height, temperatures, and pressures are unchanged or are only slightly changed by including these additional effects due to protons and ions.
NASA Astrophysics Data System (ADS)
Ongena, Jef; Mailloux, Joelle; Mayoral, Marie-Line
2009-04-01
This special cluster of papers summarizes the work accomplished during the last three years in the framework of the Task Force Heating at JET, whose mission it is to study the optimisation of heating systems for plasma heating and current drive, launching and deposition questions and the physics of plasma rotation. Good progress and new physics insights have been obtained with the three heating systems available at JET: lower hybrid (LH), ion cyclotron resonance heating (ICRH) and neutral beam injection (NBI). Topics covered in the present issue are the use of edge gas puffing to improve the coupling of LH waves at large distances between the plasma separatrix and the LH launcher. Closely linked with this topic are detailed studies of the changes in LH coupling due to modifications in the scrape-off layer during gas puffing and simultaneous application of ICRH. We revisit the fundamental ICRH heating of D plasmas, include new physics results made possible by recently installed new diagnostic capabilities on JET and point out caveats for ITER when NBI is simultaneously applied. Other topics are the study of the anomalous behaviour of fast ions from NBI, and a study of toroidal rotation induced by ICRH, both again with possible implications for ITER. In finalizing this cluster of articles, thanks are due to all colleagues involved in preparing and executing the JET programme under EFDA in recent years. We want to thank the EFDA leadership for the special privilege of appointing us as Leaders or Deputies of Task Force Heating, a wonderful and hardworking group of colleagues. Thanks also to all other European and non-European scientists who contributed to the JET scientific programme, the Operations team of JET and the colleagues of the Close Support Unit (CSU). Thanks are also due to the Editors, Editorial Board and referees of Plasma Physics and Controlled Fusion together with the publishing staff of IOP Publishing who have supported and contributed substantially to this initiative.
Overview of long pulse H-mode operation on EAST
NASA Astrophysics Data System (ADS)
Gong, X.; Garofalo, A. M.; Wan, B.; Li, J.; Qian, J.; Li, E.; Liu, F.; Zhao, Y.; Wang, M.; Xu, H.; EAST Team
2017-10-01
The EAST research program aims to demonstrate steady-state long-pulse high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. In the recent experimental campaign, a long pulse fully non-inductive H-mode discharge lasting over 100 seconds using the upper ITER-like tungsten divertor has been achieved in EAST. This scenario used only RF heating and current drive, but also benefitted from an integrated control of the wall conditioning, plasma configuration, divertor heat flux, particle exhaust, impurity management and superconducting coils safety. Maintaining effective coupling of multiple RF heating and current drive sources on EAST is a critical ingredient. This long pulse discharge had good energy confinement, H98,y2 1.1-1.2, and all of the plasma parameters reach a true steady-state. Power balance indicates that the confinement improvement is due partly to a significantly reduced core electron transport inside minor radius rho<0.4. This work was supported by the National Magnetic Confinement Fusion Program of China Contract No. 2015GB10200 and the US Department of Energy Contract No. DE-SC0010685.
NASA Astrophysics Data System (ADS)
Kim, Sun Ho; Hwang, Yong Seok; Jeong, Seung Ho; Wang, Son Jong; Kwak, Jong Gu
2017-10-01
An efficient current drive scheme in central or off-axis region is required for the steady state operation of tokamak fusion reactors. The current drive by using the fast wave in frequency range higher than two times lower hybrid resonance (w>2wlh) could be such a scheme in high density, high temperature reactor-grade tokamak plasmas. First, it has relatively higher parallel electric field to the magnetic field favorable to the current generation, compared to fast waves in other frequency range. Second, it can deeply penetrate into high density plasmas compared to the slow wave in the same frequency range. Third, parasitic coupling to the slow wave can contribute also to the current drive avoiding parametric instability, thermal mode conversion and ion heating occured in the frequency range w<2wlh. In this study, the propagation boundary, accessibility, and the energy flow of the fast wave are given via cold dispersion relation and group velocity. The power absorption and current drive efficiency are discussed qualitatively through the hot dispersion relation and the polarization. Finally, those characteristics are confirmed with ray tracing code GENRAY for the KSTAR plasmas.
Heating and current drive requirements towards steady state operation in ITER
NASA Astrophysics Data System (ADS)
Poli, Francesca; Kessel, Charles; Bonoli, Paul; Batchelor, Donald; Harvey, Bob
2013-10-01
Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) to reach adequate fusion gain at typical currents of 9 MA. Scenarios are established as relaxed flattop states with time-dependent transport simulations with TSC. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of external sources that maintain weakly reversed shear profiles and ρ (qmin >= 0 . 5 are the focus of this work. Simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of ITBs could be demonstrated with the baseline configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current (6.2MA) are below the target. Upgrades of the heating and current drive system, like the use of Lower Hybrid current drive, could overcome these limitations. With 30MW of coupled LH in the flattop and operating at the Greenwald density, plasmas can sustain ~ 9 MA and achieve Q ~ 4 . Work supported by the US Department of Energy under DE-AC02-CH0911466.
NASA Astrophysics Data System (ADS)
Poli, Francesca
2012-10-01
Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities in a wide range of βN, reducing the no-wall limit. Scenarios are established as relaxed flattop states with time-dependent transport simulations with TSC [1]. Fully non-inductive configurations with current in the range of 7-10 MA and various heating mixes (NB, EC, IC and LH) have been studied against variations of the pressure profile peaking and of the Greenwald fraction. It is found that stable equilibria have qmin> 2 and moderate ITBs at 2/3 of the minor radius [2]. The ExB flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H&CD sources that maintain reverse or weak magnetic shear profiles throughout the discharge and ρ(qmin)>=0.5 are the focus of this work. The ITER EC upper launcher, designed for NTM control, can provide enough current drive off-axis to sustain moderate ITBs at mid-radius and maintain a non-inductive current of 8-9MA and H98>=1.5 with the day one heating mix. LH heating and current drive is effective in modifying the current profile off-axis, facilitating the formation of stronger ITBs in the rampup phase, their sustainment at larger radii and larger bootstrap fraction. The implications for steady state operation and fusion performance are discussed.[4pt] [1] Jardin S.C. et al, J. Comput. Phys. 66 (1986) 481[0pt] [2] Poli F.M. et al, Nucl. Fusion 52 (2012) 063027.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litaudon, X; Bernard, J. M.; Colas, L.
2013-01-01
To support the design of an ITER ion-cyclotron range of frequency heating (ICRH) system and to mitigate risks of operation in ITER, CEA has initiated an ambitious Research & Development program accompanied by experiments on Tore Supra or test-bed facility together with a significant modelling effort. The paper summarizes the recent results in the following areas: Comprehensive characterization (experiments and modelling) of a new Faraday screen concept tested on the Tore Supra antenna. A new model is developed for calculating the ICRH sheath rectification at the antenna vicinity. The model is applied to calculate the local heat flux on Toremore » Supra and ITER ICRH antennas. Full-wave modelling of ITER ICRH heating and current drive scenarios with the EVE code. With 20 MW of power, a current of 400 kA could be driven on axis in the DT scenario. Comparison between DT and DT(3He) scenario is given for heating and current drive efficiencies. First operation of CW test-bed facility, TITAN, designed for ITER ICRH components testing and could host up to a quarter of an ITER antenna. R&D of high permittivity materials to improve load of test facilities to better simulate ITER plasma antenna loading conditions.« less
A Finite-Orbit-Width Fokker-Planck solver for modeling of RF Current Drive in ITER
NASA Astrophysics Data System (ADS)
Petrov, Yu. V.; Harvey, R. W.
2017-10-01
The bounce-average (BA) finite-difference Fokker-Planck (FP) code CQL3D now includes the essential physics to describe the RF heating of Finite-Orbit-Width (FOW) ions in tokamaks. The FP equation is reformulated in terms of constants-of-motion coordinates, which we select to be particle speed, pitch angle, and major radius on the equatorial plane thus obtaining the distribution function directly at this location. A recent development is the capability to obtain solution simultaneously for FOW ions and Zero-Orbit-Width (ZOW) electrons. As a practical application, the code is used for simulation of alpha-particle heating by high-harmonic waves in ITER scenarios. Coupling of high harmonic or helicon fast waves power to electrons is a promising current drive (CD) scenario for high beta plasmas. However, the efficiency of current drive can be diminished by parasitic channeling of RF power into fast ions such as alphas or NBI-produced deuterons, through finite Larmor-radius effects. Based on simulations, we formulate conditions where the fast ions absorb less than 10% of RF power. Supported by USDOE Grants ER54649, ER54744, and SC0006614.
Exciting cell membranes with a blustering heat shock.
Liu, Qiang; Frerck, Micah J; Holman, Holly A; Jorgensen, Erik M; Rabbitt, Richard D
2014-04-15
Brief heat shocks delivered to cells by pulsed laser light can evoke action potentials in neurons and contraction in cardiomyocytes, but the primary biophysical mechanism has been elusive. In this report we show in the neuromuscular junction of Caenorhabditis elegans that application of a 500°C/s heat shock for 500 μs evoked ~35 pA of excitatory current and injected ~23 fC(femtocoulomb) of charge into the cell while raising the temperature only 0.25°C. The key variable driving the current was the rate of change of temperature (dT/dt heat shock), not temperature itself. The photothermal heat shock current was voltage-dependent and was from thermally driven displacement of ions near the plasma membrane. The charge movement was rapid during the heat shock and slow during thermal relaxation, thus leading to an asymmetrical capacitive current that briefly depolarized the cell. A simple quantitative model is introduced to describe modulation of the membrane potential and facilitate practical application of optical heat shock stimuli. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Interpretation of steam drive pilots in the Belridge Diatomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, R.M.; Shahin, G.T.
1995-12-31
The South Belridge Diatomite Field contains more than 2.5 billion barrels of oil-in-place. Current primary and waterflood development are estimated to recover only a small fraction of this oil. Despite its low permeability, the diatomite may be a good candidate for the steam drive process, due to its thick oil column (1,000 ft), high porosity (50% to 65%), and high oil saturation (up to 70%). With these attributes, thermal expansion and decreased viscosity of reservoir fluids accelerate oil production, without significant heat loss to cap and base rock. Steam drive pilot operations have been conducted at South Belridge since 1986.more » This paper discusses the pilot projects and the 15-acre steam drive full-scale project currently being installed.« less
Integrating preconcentrator heat controller
Bouchier, Francis A.; Arakaki, Lester H.; Varley, Eric S.
2007-10-16
A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.
Recent Heating and Current Drive results on JET
NASA Astrophysics Data System (ADS)
Tuccillo, A. A.; Baranov, Y.; Barbato, E.; Bibet, Ph.; Castaldo, C.; Cesario, R.; Cocilovo, V.; Crisanti, F.; De Angelis, R.; Ekedahl, A. C.; Figueiredo, A.; Graham, M.; Granucci, G.; Hartmann, D.; Heikkinen, J.; Hellsten, T.; Imbeaux, F.; Jones, T. T. H.; Johnson, T.; Kirov, K. V.; Lamalle, P.; Laxaback, M.; Leuterer, F.; Litaudon, X.; Maget, P.; Mailloux, J.; Mantsinen, M. J.; Mayoral, M. L.; Meo, F.; Monakhov, I.; Nguyen, F.; Noterdaeme, J.-M.; Pericoli-Ridolfini, V.; Podda, S.; Panaccione, L.; Righi, E.; Rimini, F.; Sarazin, Y.; Sibley, A.; Staebler, A.; Tala, T.; Van Eester, D.
2001-10-01
An overview is presented of the results obtained on JET by the Heating and Current Drive Task Force (TF-H) in the period May 2000—March 2001. A strongly improved Lower Hybrid (LH) coupling was achieved by optimizing the plasma shape and by controlling the local edge density via the injection of CD4. Up to 4 MW have been coupled in type III ELMy H-mode and/or on Internal Transport Barrier (ITB) plasmas with reflection coefficients as low as 4%. Long lasting quasi steady-state ITBs have been obtained by adding the LH current to the bootstrap and beam driven components. Furthermore the use of LH in the pre-heat phase results in electron temperature in excess of 10 keV, deep negative magnetic shear and strongly reduced power threshold for ITB formation. Preliminary results on ICRF coupling are reported including the effect of CD4 injection and the commissioning of the wide band matching system on ELMy plasmas. IC CD scenarios have been studied in H and 3He minority and used to modify the stability of the sawtooth to influence the formation of seed islands for the appearance of NTM. Up to 3 MW of IC power was coupled in the high magnetic field fast wave CD scenario. Preliminary MSE measurements indicate differences in the current profiles between -90° and +90° phasing. Careful measurements of the toroidal rotation, in plasmas heated by ICRF only show some dependence on the position of the resonance layer. Finally the use of ICRF minority heating under real-time control, in response to measured plasma parameters to simulate the effect of alpha particles, is presented. ICRF heating results in ITER non-activated scenarios are reported in a companion paper.
ADX: a high field, high power density, advanced divertor and RF tokamak
NASA Astrophysics Data System (ADS)
LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.
2015-05-01
The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept (affordable, robust, compact) (Sorbom et al 2015 Fusion Eng. Des. submitted (arXiv:1409.3540)) that makes use of high-temperature superconductor technology—a high-field (9.25 T) tokamak the size of the Joint European Torus that produces 270 MW of net electricity.
An Imposed Dynamo Current Drive Experiment: Demonstration of Confinement
NASA Astrophysics Data System (ADS)
Jarboe, Thomas; Hansen, Chris; Hossack, Aaron; Marklin, George; Morgan, Kyle; Nelson, Brian; Sutherland, Derek; Victor, Brian
2014-10-01
An experiment for studying and developing the efficient sustainment of a spheromak with sufficient confinement (current-drive power heats the plasma to its stability β-limit) and in the keV temperature range is discussed. A high- β spheromak sustained by imposed dynamo current drive (IDCD) is justified because: previous transient experiments showed sufficient confinement in the keV range with no external toroidal field coil; recent results on HIT-SI show sustainment with sufficient confinement at low temperature; the potential of IDCD of solving other fusion issues; a very attractive reactor concept; and the general need for efficient current drive in magnetic fusion. The design of a 0.55 m minor radius machine with the required density control, wall loading, and neutral shielding for a 2 s pulse is presented. Peak temperatures of 1 keV and toroidal currents of 1.35 MA and 16% wall-normalized plasma beta are envisioned. The experiment is large enough to address the key issues yet small enough for rapid modification and for extended MHD modeling of startup and code validation.
Role of thermal heating on the voltage induced insulator-metal transition in VO2.
Zimmers, A; Aigouy, L; Mortier, M; Sharoni, A; Wang, Siming; West, K G; Ramirez, J G; Schuller, Ivan K
2013-02-01
We show that the main mechanism for the dc voltage or dc current induced insulator-metal transition in vanadium dioxide VO(2) is due to local Joule heating and not a purely electronic effect. This "tour de force" experiment was accomplished by using the fluorescence spectra of rare-earth doped micron sized particles as local temperature sensors. As the insulator-metal transition is induced by a dc voltage or dc current, the local temperature reaches the transition temperature indicating that Joule heating plays a predominant role. This has critical implications for the understanding of the dc voltage or dc current induced insulator-metal transition and has a direct impact on applications which use dc voltage or dc current to externally drive the transition.
Electron heating and the Electrical Asymmetry Effect in capacitively coupled RF discharges
NASA Astrophysics Data System (ADS)
Schulze, Julian
2011-10-01
For applications of capacitive radio frequency discharges, the control of particle distribution functions at the substrate surface is essential. Their spatio-temporal shape is the result of complex heating mechanisms of the respective species. Enhanced process control, therefore, requires a detailed understanding of the heating dynamics. There are two known modes of discharge operation: α- and γ-mode. In α-mode, most ionization is caused by electron beams generated by the expanding sheaths and field reversals during sheath collapse, while in γ-mode secondary electrons dominate the ionisation. In strongly electronegative discharges, a third heating mode is observed. Due to the low electron density in the discharge center the bulk conductivity is reduced and a high electric field is generated to drive the RF current through the discharge center. In this field, electrons are accelerated and cause significant ionisation in the bulk. This bulk heating mode is observed experimentally and by PIC simulations in CF4 discharges. The electron dynamics and mode transitions as a function of driving voltage and pressure are discussed. Based on a detailed understanding of the heating dynamics, the concept of separate control of the ion mean energy and flux in classical dual-frequency discharges is demonstrated to fail under process relevant conditions. To overcome these limitations of process control, the Electrical Asymmetry Effect (EAE) is proposed in discharges driven at multiple consecutive harmonics with adjustable phase shifts between the driving frequencies. Its concept and a recipe to optimize the driving voltage waveform are introduced. The functionality of the EAE in different gases and first applications to large area solar cell manufacturing are discussed. Finally, limitations caused by the bulk heating in strongly electronegative discharges are outlined.
RF current profile control studies in the alcator C-mod tokamak
NASA Astrophysics Data System (ADS)
Bonoli, P. T.; Porkolab, M.; Wukitch, S. J.; Bernabei, S.; Kaita, R.; Mikkelsen, D.; Phillips, C. K.; Schilling, G.
1999-09-01
Time dependent calculations of lower hybrid (LH) current profile control in Alcator C-Mod have been done using the TRANSP [1], FPPRF [2], and LSC [3] codes. Up to 3 MW of LH current drive power was applied in plasmas with high power ICRF minority heating (PICH=1.8-3 MW) and fast current ramp up. Using the experimentally measured temperature profiles, off-axis current generation resulted in nonmonotonic q-profiles with qmin~=1.6. Self-consistent effects of off-axis electron heating by the LH power were also included in the analysis and significant broadening of the electron temperature profile was found with qmin>~2 and a larger shear reversal radius.
Oscillating field current drive experiments in the Madison Symmetric Torus
NASA Astrophysics Data System (ADS)
Blair, Arthur P., Jr.
Oscillating Field Current Drive (OFCD) is an inductive current drive method for toroidal pinches. To test OFCD, two 280 Hz 2 MVA oscillators were installed in the toroidal and poloidal magnetic field circuits of the Madison Symmetric Torus (MST) Reversed Field Pinch (RFP.) Partial sustainment experiments were conducted where the two voltage oscillations were superimposed on the standard MST power supplies. Supplementary current drive of about 10% has been demonstrated, comparable to theoretical predictions. However, maximum current drive does not coincide with maximum helicity injection rate - possibly due to an observed dependence of core and edge tearing modes on the relative phase of the oscillators. A dependence of wall interactions on phase was also observed, the largest interaction coinciding with negative current drive. Experiments were conducted at 280 and 530 Hz. 530 Hz proved to be too high and yielded little or no net current drive. Experiments at 280 Hz proved more fruitful. A 1D relaxed state model was used to predict the effects of voltage amplitudes, frequencies, and waveforms on performance and to optimize the design of OFCD hardware. Predicted current drive was comparable to experimental values, though the aforementioned phase dependence was not. Comparisons were also made with a more comprehensive 3D model which proved to be a more accurate predictor of current drive. Both 1D and 3D models predicted the feasability of full sustainment via OFCD. Experiments were also conducted with only the toroidal field oscillator applied. An entrainment of the natural sawtooth frequency to our applied oscillation was observed as well as a slow modulation of the edge tearing mode amplitudes. A large modulation (20 to 80 eV) of the ion temperature was also observed that can be partially accounted for by collisional heating via magnetic pumping. Work is in progress to increase the power of the existing OFCD hardware.
Advanced tokamak investigations in full-tungsten ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Bock, A.; Doerk, H.; Fischer, R.; Rittich, D.; Stober, J.; Burckhart, A.; Fable, E.; Geiger, B.; Mlynek, A.; Reich, M.; Zohm, H.; ASDEX Upgrade Team
2018-05-01
The appropriate tailoring of the q-profile is the key to accessing Advanced Tokamak (AT) scenarios, which are of great benefit to future all-metal fusion power plants. Such scenarios depend on low collisionality ν* which permits efficient external current drive and high amounts of intrinsic bootstrap current. At constant pressure, lowering of the electron density ne leads to a strong decrease in the collisionality with increasing electron temperature ν* ˜ Te-3 . Simultaneously, the conditions for low ne also benefit impurity accumulation. This paper reports on how radiative collapses due to central W accumulation were overcome by improved understanding of the changes to recycling and pumping, substantially expanded ECRH capacities for both heating and current drive, and a new solid W divertor capable of withstanding the power loads at low ne. Furthermore, it reports on various improvements to the reliability of the q-profile reconstruction. A candidate steady state scenario for ITER/DEMO (q95 = 5.3, βN = 2.7, fbs > 40%) is presented. The ion temperature profiles are steeper than predicted by TGLF, but nonlinear electromagnetic gyro-kinetic analyses with GENE including fast particle effects matched the experimental heat fluxes. A fully non-inductive scenario at higher q95 = 7.1 for current drive model validation is also discussed. The results show that non-inductive operation is principally compatible with full-metal machines.
Status of the ITER Electron Cyclotron Heating and Current Drive System
NASA Astrophysics Data System (ADS)
Darbos, Caroline; Albajar, Ferran; Bonicelli, Tullio; Carannante, Giuseppe; Cavinato, Mario; Cismondi, Fabio; Denisov, Grigory; Farina, Daniela; Gagliardi, Mario; Gandini, Franco; Gassmann, Thibault; Goodman, Timothy; Hanson, Gregory; Henderson, Mark A.; Kajiwara, Ken; McElhaney, Karen; Nousiainen, Risto; Oda, Yasuhisa; Omori, Toshimichi; Oustinov, Alexander; Parmar, Darshankumar; Popov, Vladimir L.; Purohit, Dharmesh; Rao, Shambhu Laxmikanth; Rasmussen, David; Rathod, Vipal; Ronden, Dennis M. S.; Saibene, Gabriella; Sakamoto, Keishi; Sartori, Filippo; Scherer, Theo; Singh, Narinder Pal; Strauß, Dirk; Takahashi, Koji
2016-01-01
The electron cyclotron (EC) heating and current drive (H&CD) system developed for the ITER is made of 12 sets of high-voltage power supplies feeding 24 gyrotrons connected through 24 transmission lines (TL), to five launchers, four located in upper ports and one at the equatorial level. Nearly all procurements are in-kind, following general ITER philosophy, and will come from Europe, India, Japan, Russia and the USA. The full system is designed to couple to the plasma 20 MW among the 24 MW generated power, at the frequency of 170 GHz, for various physics applications such as plasma start-up, central H&CD and magnetohydrodynamic (MHD) activity control. The design takes present day technology and extends toward high-power continuous operation, which represents a large step forward as compared to the present state of the art. The ITER EC system will be a stepping stone to future EC systems for DEMO and beyond.
Steady-State Operation in Tore Supra
NASA Astrophysics Data System (ADS)
Hoang, G. T.; Tore Supra, Equipe
1999-11-01
The Tore Supra superconducting tokamak is devoted to steady-state operation. The CIEL (French acronym for internal component and limiter) project( LIPA, M., et al., Proc. of the 17th IEEE/NPSS Symp. on Fus. Engineering, San Diego, USA, 1997.) consists of a complete upgrade of the inner chamber of Tore Supra, planned to be installed during the year 2000. This project will allow physics scenarios with up to 24 MW of radio frequency heating and current drive (typically 8 - 10 MW of ICRF, 10 - 12 MW of LHCD and 2 MW of ECRF) in stationary plasmas up to 1000 s, with active particle control. This paper presents an overview of the experiments planned to explore the properties, such as the confinement and MHD stability, of various heating and current drive scenarios for long duration discharges. The expected performance for the CIEL phase is also reported.
Near-Blackbody Enclosed Particle-Receiver Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhiwen; Sakadjian, Bartev
2015-12-01
This 3-year project develops a technology using gas/solid, two-phase flow as a heat-transfer fluid and separated, stable, solid particles as a thermal energy storage (TES) medium for a concentrating solar power (CSP) plant, to address the temperature, efficiency, and cost barriers associated with current molten-salt CSP systems. This project focused on developing a near-blackbody particle receiver and an integrated fluidized-bed heat exchanger with auxiliary components to achieve greater than 20% cost reduction over current CSP plants, and to provide the ability to drive high-efficiency power cycles.
Hydrothermal systems in small ocean planets.
Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael
2007-12-01
We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).
Entropic bounds on currents in Langevin systems
NASA Astrophysics Data System (ADS)
Dechant, Andreas; Sasa, Shin-ichi
2018-06-01
We derive a bound on generalized currents for Langevin systems in terms of the total entropy production in the system and its environment. For overdamped dynamics, any generalized current is bounded by the total rate of entropy production. We show that this entropic bound on the magnitude of generalized currents imposes power-efficiency tradeoff relations for ratchets in contact with a heat bath: Maximum efficiency—Carnot efficiency for a Smoluchowski-Feynman ratchet and unity for a flashing or rocking ratchet—can only be reached at vanishing power output. For underdamped dynamics, while there may be reversible currents that are not bounded by the entropy production rate, we show that the output power and heat absorption rate are irreversible currents and thus obey the same bound. As a consequence, a power-efficiency tradeoff relation holds not only for underdamped ratchets but also for periodically driven heat engines. For weak driving, the bound results in additional constraints on the Onsager matrix beyond those imposed by the second law. Finally, we discuss the connection between heat and entropy in a nonthermal situation where the friction and noise intensity are state dependent.
Transmission line component testing for the ITER Ion Cyclotron Heating and Current Drive System
NASA Astrophysics Data System (ADS)
Goulding, Richard; Bell, G. L.; Deibele, C. E.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Moon, R. L.; Pesavento, P. V.; Fredd, E.; Greenough, N.; Kung, C.
2014-10-01
High power RF testing is underway to evaluate transmission line components for the ITER Ion Cyclotron Heating and Current Drive System. The transmission line has a characteristic impedance Z0 = 50 Ω and a nominal outer diameter of 305 mm. It is specified to carry up to 6 MW at VSWR = 1.5 for 3600 s pulses, with transient voltages up to 40 kV. The transmission line is actively cooled, with turbulent gas flow (N2) used to transfer heat from the inner to outer conductor, which is water cooled. High voltage and high current testing of components has been performed using resonant lines generating steady state voltages of 35 kV and transient voltages up to 60 kV. A resonant ring, which has operated with circulating power of 6 MW for 1 hr pulses, is being used to test high power, low VSWR operation. Components tested to date include gas barriers, straight sections of various lengths, and 90 degree elbows. Designs tested include gas barriers fabricated from quartz and aluminum nitride, and transmission lines with quartz and alumina inner conductor supports. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
Solar-Driven Liquid-Metal MHD Generator
NASA Technical Reports Server (NTRS)
Hohl, F.; Lee, J. H.
1982-01-01
Liquid-metal magnetohydrodynamic (MHD) power generator with solar oven as its heat source has potential to produce electric power in space and on Earth at high efficiency. Generator focuses radiation from Sun to heat driving gas that pushes liquid metal past magnetic coil. Power is extracted directly from electric currents set up in conducting liquid. Using solar energy as fuel can save considerable costs and payload weight, compared to previous systems.
NASA Astrophysics Data System (ADS)
Pinsker, R. I.
2014-10-01
In hot magnetized plasmas, two types of linear collisionless absorption processes are used to heat and drive noninductive current: absorption at ion or electron cyclotron resonances and their harmonics, and absorption by Landau damping and the transit-time-magnetic-pumping (TTMP) interactions. This tutorial discusses the latter process, i.e., parallel interactions between rf waves and electrons in which cyclotron resonance is not involved. Electron damping by the parallel interactions can be important in the ICRF, particularly in the higher harmonic region where competing ion cyclotron damping is weak, as well as in the Lower Hybrid Range of Frequencies (LHRF), which is in the neighborhood of the geometric mean of the ion and electron cyclotron frequencies. On the other hand, absorption by parallel processes is not significant in conventional ECRF schemes. Parallel interactions are especially important for the realization of high current drive efficiency with rf waves, and an application of particular recent interest is current drive with the whistler or helicon wave at high to very high (i.e., the LHRF) ion cyclotron harmonics. The scaling of absorption by parallel interactions with wave frequency is examined and the advantages and disadvantages of fast (helicons/whistlers) and slow (lower hybrid) waves in the LHRF in the context of reactor-grade tokamak plasmas are compared. In this frequency range, both wave modes can propagate in a significant fraction of the discharge volume; the ways in which the two waves can interact with each other are considered. The use of parallel interactions to heat and drive current in practice will be illustrated with examples from past experiments; also looking forward, this tutorial will provide an overview of potential applications in tokamak reactors. Supported by the US Department of Energy under DE-FC02-04ER54698.
Pushing Particles with Waves: Current Drive and α-Channeling
FISCH, Nathaniel J.
2016-01-01
It can be advantageous to push particles with waves in tokamaks or other magnetic confinement devices, relying on wave-particle resonances to accomplish specific goals. Waves that damp on electrons or ions in toroidal fusion devises can drive currents if the waves are launched with toroidal asymmetry. Theses currents are important for tokamaks, since they operate in the absence of an electric field with curl, enabling steady state operation. The lower hybrid wave and the electron cyclotron wave have been demonstrated to drive significant currents. Non-inductive current also stabilizes deleterious tearing modes. Waves can also be used to broker the energymore » transfer between energetic alpha particles and the background plasma. Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled instead into useful energy, that heats fuel ions or drives current. Furthermore, an important question is the extent to which these effects can be accomplished together.« less
Ideal MHD stability and performance of ITER steady-state scenarios with ITBs
NASA Astrophysics Data System (ADS)
Poli, F. M.; Kessel, C. E.; Chance, M. S.; Jardin, S. C.; Manickam, J.
2012-06-01
Non-inductive steady-state scenarios on ITER will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. The large pressure gradients at the location of the internal barrier are conducive to the development of ideal MHD instabilities that may limit the plasma performance and may lead to plasma disruptions. Fully non-inductive scenario simulations with five combinations of heating and current drive sources are presented in this work, with plasma currents in the range 7-10 MA. For each configuration the linear, ideal MHD stability is analysed for variations of the Greenwald fraction and of the pressure peaking factor around the operating point, aiming at defining an operational space for stable, steady-state operations at optimized performance. It is shown that plasmas with lower hybrid heating and current drive maintain the minimum safety factor above 1.5, which is desirable in steady-state operations to avoid neoclassical tearing modes. Operating with moderate ITBs at 2/3 of the minor radius, these plasmas have a minimum safety factor above 2, are ideal MHD stable and reach Q ≳ 5 operating above the ideal no-wall limit.
First demonstration of HF-driven ionospheric currents
NASA Astrophysics Data System (ADS)
Papadopoulos, K.; Chang, C.-L.; Labenski, J.; Wallace, T.
2011-10-01
The first experimental demonstration of HF driven currents in the ionosphere at low ELF/ULF frequencies without relying in the presence of electrojets is presented. The effect was predicted by theoretical/computational means in a recent letter and given the name Ionospheric Current Drive (ICD). The effect relies on modulated F-region HF heating to generate Magneto-Sonic (MS) waves that drive Hall currents when they reach the E-region. The Hall currents inject ELF waves into the Earth-Ionosphere waveguide and helicon and Shear Alfven (SA) waves in the magnetosphere. The proof-of-concept experiments were conducted using the HAARP heater in Alaska under the BRIOCHE program. Waves between 0.1-70 Hz were measured at both near and far sites. The letter discusses the differences between ICD generated waves and those relying on modulation of electrojets.
Pulsed Eddy Current Probe Design Based on Transient Circuit Analysis
NASA Astrophysics Data System (ADS)
Cadeau, Trevor J.; Krause, Thomas W.
2009-03-01
Probe design parameters affecting depth of penetration of pulsed eddy currents in multi-layer aluminum 2024-T3 were examined. Several probe designs were evaluated for their ability to detect a discontinuity at the bottom of a stack of aluminum plates. The reflection type probes, consisting of pick-up coil and encircling drive coil, were characterized based on their transient response to a square pulse excitation. Probes with longer fundamental time constants, equivalent to a lower driving frequency, generated greater depth of penetration. However, additional factors such as inductive and resistive load, and excessive coil heating were also factors that limited signal-to-noise response with increasing layer thickness.
Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U
NASA Astrophysics Data System (ADS)
Lopez, N. A.; Poli, F. M.
2018-06-01
Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modeling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here, we extend a previous optimization of O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97% of the absorbed EBW power.
Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Nicolas; Poli, Francesca M.
Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) [Menard J et al 2012 Nucl. Fusion 52 083015] show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modelling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here in this paper, we extend a previous optimization ofmore » O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97\\% of the absorbed EBW power.« less
Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U
Lopez, Nicolas; Poli, Francesca M.
2018-03-29
Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) [Menard J et al 2012 Nucl. Fusion 52 083015] show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modelling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here in this paper, we extend a previous optimization ofmore » O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97\\% of the absorbed EBW power.« less
NASA Astrophysics Data System (ADS)
Amiribavandpour, Parisa; Shen, Weixiang; Mu, Daobin; Kapoor, Ajay
2015-06-01
A theoretical electrochemical thermal model combined with a thermal resistive network is proposed to investigate thermal behaviours of a battery pack. The combined model is used to study heat generation and heat dissipation as well as their influences on the temperatures of the battery pack with and without a fan under constant current discharge and variable current discharge based on electric vehicle (EV) driving cycles. The comparison results indicate that the proposed model improves the accuracy in the temperature predication of the battery pack by 2.6 times. Furthermore, a large battery pack with four of the investigated battery packs in series is simulated in the presence of different ambient temperatures. The simulation results show that the temperature of the large battery pack at the end of EV driving cycles can reach to 50 °C or 60 °C in high ambient temperatures. Therefore, thermal management system in EVs is required to maintain the battery pack within the safe temperature range.
Experiments and simulation of thermal behaviors of the dual-drive servo feed system
NASA Astrophysics Data System (ADS)
Yang, Jun; Mei, Xuesong; Feng, Bin; Zhao, Liang; Ma, Chi; Shi, Hu
2015-01-01
The machine tool equipped with the dual-drive servo feed system could realize high feed speed as well as sharp precision. Currently, there is no report about the thermal behaviors of the dual-drive machine, and the current research of the thermal characteristics of machines mainly focuses on steady simulation. To explore the influence of thermal characterizations on the precision of a jib boring machine assembled dual-drive feed system, the thermal equilibrium tests and the research on thermal-mechanical transient behaviors are carried out. A laser interferometer, infrared thermography and a temperature-displacement acquisition system are applied to measure the temperature distribution and thermal deformation at different feed speeds. Subsequently, the finite element method (FEM) is used to analyze the transient thermal behaviors of the boring machine. The complex boundary conditions, such as heat sources and convective heat transfer coefficient, are calculated. Finally, transient variances in temperatures and deformations are compared with the measured values, and the errors between the measurement and the simulation of the temperature and the thermal error are 2 °C and 2.5 μm, respectively. The researching results demonstrate that the FEM model can predict the thermal error and temperature distribution very well under specified operating condition. Moreover, the uneven temperature gradient is due to the asynchronous dual-drive structure that results in thermal deformation. Additionally, the positioning accuracy decreases as the measured point became further away from the motor, and the thermal error and equilibrium period both increase with feed speeds. The research proposes a systematical method to measure and simulate the boring machine transient thermal behaviors.
NASA Astrophysics Data System (ADS)
Venkataramanan, Arjun; Rios Perez, Carlos A.; Hidrovo, Carlos H.
2016-11-01
Electric vehicles (EVs) are the future of clean transportation and driving range is one of the important parameters which dictates its marketability. In order to increase driving range, electrical battery energy consumption should be minimized. Vapor-compression refrigeration systems currently employed in EVs for climate control consume a significant fraction of the battery charge. Thus, by replacing this traditional heating ventilation and air-conditioning system with an adsorption based climate control system one can have the capability of increasing the drive range of EVs.The Advanced Thermo-adsorptive Battery (ATB) for climate control is a water-based adsorption type refrigeration cycle. An essential component of the ATB is a low pressure evaporator/condenser unit (ECU) which facilitates both the evaporation and condensation processes. The thermal design of the ECU relies predominantly on the accurate prediction of evaporation/boiling heat transfer coefficients since the standard correlations for predicting boiling heat transfer coefficients have large uncertainty at the low operating pressures of the ATB. This work describes the design and development of a low pressure ECU as well as the thermal performance of the actual ECU prototype.
Rail Brake System Using a Linear Induction Motor for Dynamic Braking
NASA Astrophysics Data System (ADS)
Sakamoto, Yasuaki; Kashiwagi, Takayuki; Tanaka, Minoru; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo
One type of braking system for railway vehicles is the eddy current brake. Because this type of brake has the problem of rail heating, it has not been used for practical applications in Japan. Therefore, we proposed the use of a linear induction motor (LIM) for dynamic braking in eddy current brake systems. The LIM reduces rail heating and uses an inverter for self excitation. In this paper, we estimated the performance of an LIM from experimental results of a fundamental test machine and confirmed that the LIM generates an approximately constant braking force under constant current excitation. At relatively low frequencies, this braking force remains unaffected by frequency changes. The reduction ratio of rail heating is also approximately proportional to the frequency. We also confirmed that dynamic braking resulting in no electrical output can be used for drive control of the LIM. These characteristics are convenient for the realization of the LIM rail brake system.
Realizing steady-state tokamak operation for fusion energy
NASA Astrophysics Data System (ADS)
Luce, T. C.
2011-03-01
Continuous operation of a tokamak for fusion energy has clear engineering advantages but requires conditions beyond those sufficient for a burning plasma. The fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually, and significant progress has been made in the past decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are operated routinely without disruptions near pressure limits, as needed for steady-state operation. Fully noninductive sustainment with more than half of the current from intrinsic currents has been obtained for a resistive time with normalized pressure and confinement approaching those needed for steady-state conditions. One remaining challenge is handling the heat and particle fluxes expected in a steady-state tokamak without compromising the core plasma performance.
Evaluation of heat and particle controllability on the JT-60SA divertor
NASA Astrophysics Data System (ADS)
Kawashima, H.; Hoshino, K.; Shimizu, K.; Takizuka, T.; Ide, S.; Sakurai, S.; Asakura, N.
2011-08-01
The JT-60SA divertor design has been established on the basis of engineering requirements and physics analysis. Heat and particle fluxes under the full input power of 41 MW can give severe heat loads on the divertor targets, while the allowable heat load is limited below 15 MW/m2. Dependence of the heat flux mitigation on a D2 gas-puff is evaluated by SONIC simulations for high density (ne_ave ˜ 1 × 1020 m-3) high current plasmas. It is found that the peak heat load 10 MW/m2 with dense (ned > 4 × 1020 m-3) and cold (Ted, Tid ⩽ 1 eV) divertor plasmas are obtained at a moderate gas-puff of Γpuff = 15 × 1021 s-1. Divertor plasmas are controlled from attached to detached condition using the divertor pump with pumping-speed below 100 m3/s. In full non-inductive current drive plasmas with low density (ne_ave ˜ 5 × 1019 m-3), the reduction of divertor heat load is achieved with the Ar injection.
A Saturnian cam current system driven by asymmetric thermospheric heating
NASA Astrophysics Data System (ADS)
Smith, C. G. A.
2011-02-01
We show that asymmetric heating of Saturn's thermosphere can drive a current system consistent with the magnetospheric ‘cam’ proposed by Espinosa, Southwood & Dougherty. A geometrically simple heating distribution is imposed on the Northern hemisphere of a simplified three-dimensional global circulation model of Saturn's thermosphere. Currents driven by the resulting winds are calculated using a globally averaged ionosphere model. Using a simple assumption about how divergences in these currents close by flowing along dipolar field lines between the Northern and Southern hemispheres, we estimate the magnetic field perturbations in the equatorial plane and show that they are broadly consistent with the proposed cam fields, showing a roughly uniform field implying radial and azimuthal components in quadrature. We also identify a small longitudinal phase drift in the cam current with radial distance as a characteristic of a thermosphere-driven current system. However, at present our model does not produce magnetic field perturbations of the required magnitude, falling short by a factor of ˜100, a discrepancy that may be a consequence of an incomplete model of the ionospheric conductance.
ADX: a high field, high power density, Advanced Divertor test eXperiment
NASA Astrophysics Data System (ADS)
Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team
2014-10-01
The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.
Physical Processes for Driving Ionospheric Outflows in Global Simulations
NASA Technical Reports Server (NTRS)
Moore, Thomas Earle; Strangeway, Robert J.
2009-01-01
We review and assess the importance of processes thought to drive ionospheric outflows, linking them as appropriate to the solar wind and interplanetary magnetic field, and to the spatial and temporal distribution of their magnetospheric internal responses. These begin with the diffuse effects of photoionization and thermal equilibrium of the ionospheric topside, enhancing Jeans' escape, with ambipolar diffusion and acceleration. Auroral outflows begin with dayside reconnexion and resultant field-aligned currents and driven convection. These produce plasmaspheric plumes, collisional heating and wave-particle interactions, centrifugal acceleration, and auroral acceleration by parallel electric fields, including enhanced ambipolar fields from electron heating by precipitating particles. Observations and simulations show that solar wind energy dissipation into the atmosphere is concentrated by the geomagnetic field into auroral regions with an amplification factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Internal plasmas thus enable electromagnetic driving via coupling to the plasma, neutral gas and by extension, the entire body " We assess the Importance of each of these processes in terms of local escape flux production as well as global outflow, and suggest methods for their implementation within multispecies global simulation codes. We complete 'he survey with an assessment of outstanding obstacles to this objective.
ADX - Advanced Divertor and RF Tokamak Experiment
NASA Astrophysics Data System (ADS)
Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl
2015-11-01
The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.
Gas concentration cells for utilizing energy
Salomon, R.E.
1987-06-30
An apparatus and method are disclosed for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine. 4 figs.
Gas concentration cells for utilizing energy
Salomon, Robert E.
1987-01-01
An apparatus and method for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine.
NASA Astrophysics Data System (ADS)
Taylor, Gary; Bertelli, Nicola; Gerhardt, Stefan P.; Hosea, Joel C.; Mueller, Dennis; Perkins, Rory J.; Poli, Francesca M.; Wilson, James R.; Raman, Roger
2017-10-01
30 MHz fast-wave heating may be an effective tool for non-inductively ramping low-current plasmas to a level suitable for initiating up to 12 MW of neutral beam injection on the National Spherical Tokamak Experiment Upgrade (NSTX-U). Previously on NSTX 30 MHz fast wave heating was shown to efficiently and rapidly heat electrons; at the NSTX maximum axial toroidal magnetic field (BT(0)) of 0.55 T, 1.4 MW of 30 MHz heating increased the central electron temperature from 0.2 to 2 keV in 30 ms and generated an H-mode plasma with a non-inductive fraction (fNI) ˜ 0.7 at a plasma current (Ip) of 300 kA. NSTX-U will operate at BT(0) up to 1 T, with up to 4 MW of 30 MHz power (Prf). Predictive TRANSP free boundary transport simulations, using the TORIC full wave spectral code to calculate the fast-wave heating and current drive, have been run for NSTX-U Ip = 300 kA H-mode plasmas. Favorable scaling of fNI with 30 MHz heating power is predicted, with fNI ≥ 1 for Prf ≥ 2 MW.
Resistive instabilities in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutherford, P.H.
1985-10-01
Low-m tearing modes constitute the dominant instability problem in present-day tokamaks. In this lecture, the stability criteria for representative current profiles with q(0)-values slightly less than unit are reviewed; ''sawtooth'' reconnection to q(0)-values just at, or slightly exceeding, unity is generally destabilizing to the m = 2, n = 1 and m = 3, n = 2 modes, and severely limits the range of stable profile shapes. Feedback stabilization of m greater than or equal to 2 modes by rf heating or current drive, applied locally at the magnetic islands, appears feasible; feedback by island current drive is much moremore » efficient, in terms of the radio-frequency power required, then feedback by island heating. Feedback stabilization of the m = 1 mode - although yielding particularly beneficial effects for resistive-tearing and high-beta stability by allowing q(0)-values substantially below unity - is more problematical, unless the m = 1 ideal-MHD mode can be made positively stable by strong triangular shaping of the central flux surfaces. Feedback techniques require a detectable, rotating MHD-like signal; the slowing of mode rotation - or the excitation of non-rotating modes - by an imperfectly conducting wall is also discussed.« less
Phononic heat transport in nanomechanical structures: steady-state and pumping
NASA Astrophysics Data System (ADS)
Sena-Junior, Marcone I.; Lima, Leandro R. F.; Lewenkopf, Caio H.
2017-10-01
We study the heat transport due to phonons in nanomechanical structures using a phase space representation of non-equilibrium Green’s functions. This representation accounts for the atomic degrees of freedom making it particularly suited for the description of small (molecular) junctions systems. We rigorously show that for the steady state limit our formalism correctly recovers the heuristic Landauer-like heat conductance for a quantum coherent molecular system coupled to thermal reservoirs. We find general expressions for the non-stationary heat current due to an external periodic drive. In both cases we discuss the quantum thermodynamic properties of the systems. We apply our formalism to the case of a diatomic molecular junction.
MM-wave cyclotron auto-resonance maser for plasma heating
NASA Astrophysics Data System (ADS)
Ceccuzzi, S.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Mirizzi, F.; Spassovsky, I.; Ravera, G. L.; Surrenti, V.; Tuccillo, A. A.
2014-02-01
Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R&D development.
NASA Astrophysics Data System (ADS)
Tanaka, Tatsuro; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru
2016-10-01
TIG arc welding is chemically a joining technology with melting the metallic material and it can be high quality. However, this welding should not be used in high current to prevent cathode melting. Thus, the heat transfer is poor. Therefore, the deep penetration cannot be obtained and the weld defect sometimes occurs. The pulsed arc welding has been used for the improvement of this defect. The pulsed arc welding can control the heat flux to anode. The convention and driving force in the weld pool are caused by the arc. Therefore, it is important to grasp the distribution of arc temperature. The metal vapor generate from the anode in welding. In addition, the pulsed current increased or decreased periodically. Therefore, the arc is affected by such as a current value and current frequency, the current rate of increment and the metal vapor. In this paper, the transient response of arc temperature and the iron vapor concentration affected by the current frequency with iron vapor in pulsed arc was elucidated by the EMTF (ElectroMagnetic Thermal Fluid) simulation. As a result, the arc temperature and the iron vapor were transient response as the current frequency increase. Thus, the temperature and the electrical conductivity decreased. Therefore, the electrical field increased in order to maintain the current continuity. The current density and electromagnetic force increased at the axial center. In addition, the electronic flow component of the heat flux increased at the axial center because the current density increased. However, the heat conduction component of the heat flux decreased.
Plasma Confinement in the UCLA Electric Tokamak.
NASA Astrophysics Data System (ADS)
Taylor, Robert J.
2001-10-01
The main goal of the newly constructed large Electric Tokamak (R = 5 m, a = 1 m, BT < 0.25 T) is to access an omnigeneous, unity beta(S.C. Cowley, P.K. Kaw, R.S. Kelly, R.M. Kulsrud, Phys. fluids B 3 (1991) 2066.) plasma regime. The design goal was to achieve good confinement at low magnetic fields, consistent with the high beta goal. To keep the program cost down, we adopted the use of ICRF as the primary heating source. Consequently, antenna surfaces covering 1/2 of the surface of the tokamak has been prepared for heating and current drive. Very clean hydrogenic plasmas have been achieved with loop voltage below 0.7 volt and densities 3 times above the Murakami limit, n(0) > 8 x 10^12 cm-3 when there is no MHD activity. The electron temperature, derived from the plasma conductivity is > 250 eV with a central electron energy confinement time > 350 msec in ohmic conditions. The sawteeth period is 50 msec. Edge plasma rotation is induced by plasma biasing via electron injection in an analogous manner to that seen in CCT(R.J. Taylor, M.L. Brown, B.D. Fried, H. Grote, J.R. Liberati, G.J. Morales, P. Pribyl, D. Darrow, and M. Ono. Phys. Rev Lett. 63 2365 1989.) and the neoclassical bifurcation is close to that described by Shaing et al(K.C. Shaing and E.C. Crume, Phys. Rev. Lett. 63 2369 (1989).). In the ohmic phase the confinement tends to be MHD limited. The ICRF heating eliminates the MHD disturbances. Under second harmonic heating conditions, we observe an internal confinement peaking characterized by doubling of the core density and a corresponding increase in the central electron temperature. Charge exchange data, Doppler data in visible H-alpha light, and EC radiation all indicate that ICRF heating works much better than expected. The major effort is focused on increasing the power input and controlling the resulting equilibrium. This task appears to be easy since our current pulses are approaching the 3 second mark without RF heating or current drive. Our initial experience with current profile control, needed for high beta plasma equilibrium, will be also discussed.
High-harmonic fast magnetosonic wave coupling, propagation, and heating in a spherical torus plasma
NASA Astrophysics Data System (ADS)
Menard, J.; Majeski, R.; Kaita, R.; Ono, M.; Munsat, T.; Stutman, D.; Finkenthal, M.
1999-05-01
A novel rotatable two-strap antenna has been installed in the current drive experiment upgrade (CDX-U) [T. Jones, Ph.D. thesis, Princeton University (1995)] in order to investigate high-harmonic fast wave coupling, propagation, and electron heating as a function of strap angle and strap phasing in a spherical torus plasma. Radio-frequency-driven sheath effects are found to fit antenna loading trends at very low power and become negligible above a few kilowatts. At sufficiently high power, the measured coupling efficiency as a function of strap angle is found to agree favorably with cold plasma wave theory. Far-forward microwave scattering from wave-induced density fluctuations in the plasma core tracks the predicted fast wave loading as the antenna is rotated. Signs of electron heating during rf power injection have been observed in CDX-U with central Thomson scattering, impurity ion spectroscopy, and Langmuir probes. While these initial results appear promising, damping of the fast wave on thermal ions at high ion-cyclotron-harmonic number may compete with electron damping at sufficiently high ion β—possibly resulting in a significantly reduced current drive efficiency and production of a fast ion population. Preliminary results from ray-tracing calculations which include these ion damping effects are presented.
DIII-D Upgrade to Prepare the Basis for Steady-State Burning Plasmas
NASA Astrophysics Data System (ADS)
Buttery, R. J.; Guo, H. Y.; Taylor, T. S.; Wade, M. R.; Hill, D. N.
2014-10-01
Future steady-state burning plasma facilities will access new physics regimes and modes of plasma behavior. It is vital to prepare for this both experimentally using existing facilities, and theoretically in order to develop the tools to project to and optimize these devices. An upgrade to DIII-D is proposed to address the three critical aspects where research must go beyond what we can do now: (i) torque free electron heating to address the energy, particle and momentum transport mechanisms of burning plasmas using electron cyclotron (EC) heating and full power balanced neutral beams; (ii) off-axis heating and current drive to develop the path to true fusion steady state by reorienting neutral beams and deploying EC and helicon current drive; (iii) a new divertor with hot walls and reactor relevant materials to develop the basis for benign detached divertor operation compatible with wall materials and a high performance fusion core. These elements with modest incremental cost and enacted as a user facility for the whole US program will enable the US to lead on ITER and take a decision to proceed with a Fusion Nuclear Science Facility. Work supported by the US Department of Energy under DE-FC02-04ER54698 and DE-AC52-07NA27344.
Efficient prediction of terahertz quantum cascade laser dynamics from steady-state simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnew, G.; Lim, Y. L.; Nikolić, M.
2015-04-20
Terahertz-frequency quantum cascade lasers (THz QCLs) based on bound-to-continuum active regions are difficult to model owing to their large number of quantum states. We present a computationally efficient reduced rate equation (RE) model that reproduces the experimentally observed variation of THz power with respect to drive current and heat-sink temperature. We also present dynamic (time-domain) simulations under a range of drive currents and predict an increase in modulation bandwidth as the current approaches the peak of the light–current curve, as observed experimentally in mid-infrared QCLs. We account for temperature and bias dependence of the carrier lifetimes, gain, and injection efficiency,more » calculated from a full rate equation model. The temperature dependence of the simulated threshold current, emitted power, and cut-off current are thus all reproduced accurately with only one fitting parameter, the interface roughness, in the full REs. We propose that the model could therefore be used for rapid dynamical simulation of QCL designs.« less
Observation of Electron Bernstein Wave Heating in the MST Reversed Field Pinch
NASA Astrophysics Data System (ADS)
Seltzman, Andrew; Anderson, Jay; Dubois, Ami; Almagri, Abdulgader; Nonn, Paul; McCollam, Karsten; Chapman, Brett; Goetz, John; Forest, Cary
2016-10-01
We report the first observation of electron Bernstein wave heating in the MST RFP. Similar to a high density stellarator, the RFP is inaccessible to electromagnetic ECRH. The plasma current and |B|operating range of MST allows a 5.5 GHz RF source (100kW, 4ms pulse) to heat on the fundamental and up to 4th harmonic EC resonances. With an x-ray diagnostic most sensitive to edge electrons located +12 degrees toroidally from the antenna, the measured emission is a strong function of predicted heating inside versus outside the Bt =0 reversal layer of the RFP. Measured during a scan of plasma current, distinct edges in a plot of emissivity versus predicted deposition layer align with the deposition layers crossing of this reversal layer and confirm EBW heating on the fundamental through 4th EC harmonic. Additional confirmation of the absorption location has been demonstrated by using auxiliary poloidal current drive to reduce electron diffusion rates and sweep the location of the Bt =0 surface across a static RF absorption location in RFP discharges. In these discharges EBW enhancement of the 15-40keV x-ray energies has been observed. Work supported by USDOE.
A survey of electron Bernstein wave heating and current drive potential for spherical tokamaks
NASA Astrophysics Data System (ADS)
Urban, Jakub; Decker, Joan; Peysson, Yves; Preinhaelter, Josef; Shevchenko, Vladimir; Taylor, Gary; Vahala, Linda; Vahala, George
2011-08-01
The electron Bernstein wave (EBW) is typically the only wave in the electron cyclotron (EC) range that can be applied in spherical tokamaks for heating and current drive (H&CD). Spherical tokamaks (STs) operate generally in high-β regimes, in which the usual EC O- and X-modes are cut off. In this case, EBWs seem to be the only option that can provide features similar to the EC waves—controllable localized H&CD that can be used for core plasma heating as well as for accurate plasma stabilization. The EBW is a quasi-electrostatic wave that can be excited by mode conversion from a suitably launched O- or X-mode; its propagation further inside the plasma is strongly influenced by the plasma parameters. These rather awkward properties make its application somewhat more difficult. In this paper we perform an extensive numerical study of EBW H&CD performance in four typical ST plasmas (NSTX L- and H-mode, MAST Upgrade, NHTX). Coupled ray-tracing (AMR) and Fokker-Planck (LUKE) codes are employed to simulate EBWs of varying frequencies and launch conditions, which are the fundamental EBW parameters that can be chosen and controlled. Our results indicate that an efficient and universal EBW H&CD system is indeed viable. In particular, power can be deposited and current reasonably efficiently driven across the whole plasma radius. Such a system could be controlled by a suitably chosen launching antenna vertical position and would also be sufficiently robust.
Advanced ST plasma scenario simulations for NSTX
NASA Astrophysics Data System (ADS)
Kessel, C. E.; Synakowski, E. J.; Bell, M. E.; Gates, D. A.; Harvey, R. W.; Kaye, S. M.; Mau, T. K.; Menard, J.; Phillips, C. K.; Taylor, G.; Wilson, R.; NSTX Research Team
2005-08-01
Integrated scenario simulations are done for NSTX that address four primary objectives for developing advanced spherical torus (ST) configurations: high β and high βN inductive discharges to study all aspects of ST physics in the high β regime; non-inductively sustained discharges for flattop times greater than the skin time to study the various current drive techniques; non-inductively sustained discharges at high β for flattop times much greater than a skin time which provides the integrated advanced ST target for NSTX and non-solenoidal startup and plasma current rampup. The simulations done here use the tokamak simulation code and are based on a discharge 109070. TRANSP analysis of the discharge provided the thermal diffusivities for electrons and ions, the neutral beam deposition profile and other characteristics. CURRAY is used to calculate the high harmonic fast wave (HHFW) heating depositions and current drive. GENRAY/CQL3D is used to establish the heating and CD deposition profiles for electron Bernstein waves (EBW). Analysis of the ideal MHD stability is done with JSOLVER, BALMSC and PEST2. The simulations indicate that the integrated advanced ST plasma is reachable, obtaining stable plasmas with βT ap 40% at βN's of 7.7-9, IP = 1.0 MA and BT = 0.35 T. The plasma is 100% non-inductive and has a flattop of four skin times. The resulting global energy confinement corresponds to a multiplier of H98(y),2 = 1.5. The simulations have demonstrated the importance of HHFW heating and CD, EBW off-axis CD, strong plasma shaping, density control and early heating/H-mode transition for producing and optimizing these plasma configurations.
Tearing Mode Stability of Evolving Toroidal Equilibria
NASA Astrophysics Data System (ADS)
Pletzer, A.; McCune, D.; Manickam, J.; Jardin, S. C.
2000-10-01
There are a number of toroidal equilibrium (such as JSOLVER, ESC, EFIT, and VMEC) and transport codes (such as TRANSP, BALDUR, and TSC) in our community that utilize differing equilibrium representations. There are also many heating and current drive (LSC and TORRAY), and stability (PEST1-3, GATO, NOVA, MARS, DCON, M3D) codes that require this equilibrium information. In an effort to provide seamless compatibility between the codes that produce and need these equilibria, we have developed two Fortran 90 modules, MEQ and XPLASMA, that serve as common interfaces between these two classes of codes. XPLASMA provides a common equilibrium representation for the heating and current drive applications while MEQ provides common equilibrium and associated metric information needed by MHD stability codes. We illustrate the utility of this approach by presenting results of PEST-3 tearing stability calculations of an NSTX discharge performed on profiles provided by the TRANSP code. Using the MEQ module, the TRANSP equilibrium data are stored in a Fortran 90 derived type and passed to PEST3 as a subroutine argument. All calculations are performed on the fly, as the profiles evolve.
NASA Astrophysics Data System (ADS)
Klepper, C. C.; Martin, E. H.; Isler, R. C.; Colas, L.; Hillairet, J.; Marandet, Y.; Lotte, Ph.; Colledani, G.; Martin, V.; Hillis, D. L.; Harris, J. H.; Saoutic, B.
2011-10-01
Computational models of the interaction between RF waves and the scrape-off layer plasma near ion cyclotron resonant heating (ICRH) and lower hybrid current drive launch antennas are continuously improving. These models mainly predict the RF electric fields produced in the SOL and, therefore, the best measurement for verification of these models would be a direct measurement of these electric fields. Both types of launch antennas are used on Tore Supra and are designed for high power (up to 4MW/antenna) and long pulse (> > 25s) operation. Direct, non-intrusive measurement of the RF electric fields in the vicinity of these structures is achieved by fitting spectral profiles of deuterium Balmer-alpha and Balmer-beta to a model that includes the dynamic, external-field Stark effect, as well as Zeeman splitting and Doppler broadening mechanisms. The measurements are compared to the mentioned, near-field region, RF antenna models. *Work supported in part by the US DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.
Advances in the physics basis for the European DEMO design
NASA Astrophysics Data System (ADS)
Wenninger, R.; Arbeiter, F.; Aubert, J.; Aho-Mantila, L.; Albanese, R.; Ambrosino, R.; Angioni, C.; Artaud, J.-F.; Bernert, M.; Fable, E.; Fasoli, A.; Federici, G.; Garcia, J.; Giruzzi, G.; Jenko, F.; Maget, P.; Mattei, M.; Maviglia, F.; Poli, E.; Ramogida, G.; Reux, C.; Schneider, M.; Sieglin, B.; Villone, F.; Wischmeier, M.; Zohm, H.
2015-06-01
In the European fusion roadmap, ITER is followed by a demonstration fusion power reactor (DEMO), for which a conceptual design is under development. This paper reports the first results of a coherent effort to develop the relevant physics knowledge for that (DEMO Physics Basis), carried out by European experts. The program currently includes investigations in the areas of scenario modeling, transport, MHD, heating & current drive, fast particles, plasma wall interaction and disruptions.
Generation of electrical power
Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.
1976-01-01
A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.
Transport modeling of L- and H-mode discharges with LHCD on EAST
NASA Astrophysics Data System (ADS)
Li, M. H.; Ding, B. J.; Imbeaux, F.; Decker, J.; Zhang, X. J.; Kong, E. H.; Zhang, L.; Wei, W.; Shan, J. F.; Liu, F. K.; Wang, M.; Xu, H. D.; Yang, Y.; Peysson, Y.; Basiuk, V.; Artaud, J.-F.; Yuynh, P.; Wan, B. N.
2013-04-01
High-confinement (H-mode) discharges with lower hybrid current drive (LHCD) as the only heating source are obtained on EAST. In this paper, an empirical transport model of mixed Bohm/gyro-Bohm for electron and ion heat transport was first calibrated against a database of 3 L-mode shots on EAST. The electron and ion temperature profiles are well reproduced in the predictive modeling with the calibrated model coupled to the suite of codes CRONOS. CRONOS calculations with experimental profiles are also performed for electron power balance analysis. In addition, the time evolutions of LHCD are calculated by the C3PO/LUKE code involving current diffusion, and the results are compared with experimental observations.
External heating and current drive source requirements towards steady-state operation in ITER
NASA Astrophysics Data System (ADS)
Poli, F. M.; Kessel, C. E.; Bonoli, P. T.; Batchelor, D. B.; Harvey, R. W.; Snyder, P. B.
2014-07-01
Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of heating and current drive (H/CD) sources that sustain reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that a combination of electron cyclotron (EC) and lower hybrid (LH) waves is a promising route towards steady state operation in ITER. The LH forms and sustains expanded barriers and the EC deposition at mid-radius freezes the bootstrap current profile stabilizing the barrier and leading to confinement levels 50% higher than typical H-mode energy confinement times. Using LH spectra with spectrum centred on parallel refractive index of 1.75-1.85, the performance of these plasma scenarios is close to the ITER target of 9 MA non-inductive current, global confinement gain H98 = 1.6 and fusion gain Q = 5.
The electrothermal conductance and heat capacity of black phosphorus
NASA Astrophysics Data System (ADS)
Sengupta, Parijat; Das, Saptarshi; Shi, Junxia
2018-03-01
We study a thermal gradient induced current (It h ) flow in potassium-doped two-dimensional anisotropic black phosphorus (BP) with semi-Dirac dispersion. The prototype device is a BP channel clamped between two contacts maintained at unequal temperatures. The choice of BP lies in the predicted efficient thermoelectric behaviour. A temperature-induced difference in the Fermi levels of the two contacts drives the current (typified by the electro-thermal conductance) which we calculate using the Landauer transport equation. The current shows an initial rise when the device is operated at lower temperatures. The rise stalls at progressively higher temperatures and Ith acquires a plateau-like flat profile indicating a competing effect between a larger number of transmission modes and a corresponding drop in the Fermi level difference between the contacts. The current is computed for both n- and p-type BP, and the difference thereof is attributed to the particle-hole asymmetry. The utility of such calculations lie in conversion of the heat produced in a miniaturized chip to useful thermopower via a prototypical Seebeck power generator. Unlike the flow of Ith that purportedly utilizes the additional removable heat in a nanoscale device heat, the ability of a material to maintain a steady temperature is reflected in its heat capacity through effective absorption of thermal energy. The heat capacity is formulated in this work for BP via a Sommerfeld expansion. In the concluding part, we draw a microscopic connection between the two seemingly disparate processes of heat removal and absorption by pinning down their origin to the underlying density of states. Finally, a qualitative analysis of a Carnot-like efficiency of the considered thermoelectric engine is performed drawing upon the previous results on thermal current and heat capacity.
The electrothermal conductance and heat capacity of black phosphorus.
Sengupta, Parijat; Das, Saptarshi; Shi, Junxia
2018-03-14
We study a thermal gradient induced current I th flow in potassium-doped two-dimensional anisotropic black phosphorus (BP) with semi-Dirac dispersion. The prototype device is a BP channel clamped between two contacts maintained at unequal temperatures. The choice of BP lies in the predicted efficient thermoelectric behaviour. A temperature-induced difference in the Fermi levels of the two contacts drives the current (typified by the electro-thermal conductance) which we calculate using the Landauer transport equation. The current shows an initial rise when the device is operated at lower temperatures. The rise stalls at progressively higher temperatures and I th acquires a plateau-like flat profile indicating a competing effect between a larger number of transmission modes and a corresponding drop in the Fermi level difference between the contacts. The current is computed for both n- and p-type BP, and the difference thereof is attributed to the particle-hole asymmetry. The utility of such calculations lie in conversion of the heat produced in a miniaturized chip to useful thermopower via a prototypical Seebeck power generator. Unlike the flow of I th that purportedly utilizes the additional removable heat in a nanoscale device heat, the ability of a material to maintain a steady temperature is reflected in its heat capacity through effective absorption of thermal energy. The heat capacity is formulated in this work for BP via a Sommerfeld expansion. In the concluding part, we draw a microscopic connection between the two seemingly disparate processes of heat removal and absorption by pinning down their origin to the underlying density of states. Finally, a qualitative analysis of a Carnot-like efficiency of the considered thermoelectric engine is performed drawing upon the previous results on thermal current and heat capacity.
Miniature thermoacoustic cryocooler driven by a vertical comb-drive
NASA Astrophysics Data System (ADS)
Hao, Zhili; Fowler, Mark; Hammer, Jay A.; Whitley, Michael R.; Brown, David
2003-01-01
In this paper, we propose a novel miniature MEMS based thermoacoustic cryo-cooler for thermal management of cryogenic electronic devices. The basic idea is to exploit a new way to realize a highly-reliable miniature cryo-cooler, which would allow integration of a cryogenic cooling system directly into a cryogenic electronic device. A vertical comb-drive is proposed as the means to provide an acoustic source through a driving plate to a resonant tube. By exciting a standing wave within the resonant tube, a temperature difference develops across the stack in the tube, thereby enabling heat exchange between two heat exchangers. The use of gray scale technology to fabricate tapered resonant tube provides a way to improve the efficiency of the cooling system, compared with a simple cylinder configuration. Furthermore, a tapered tube leads to extremely strong standing waves with relatively pure waveforms and reduces possible harmonics. The working principle of this device is described here. The fabrication of this device is considered, which is compatible with current MEMS fabrication technology. Finally, the theoretical analysis of key components of this cryo-cooler is presented.
Design and testing of the reactor-internal hydraulic control rod drive for the nuclear heating plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batheja, P.; Meier, W.J.; Rau, P.J.
A hydraulically driven control rod is being developed at Kraftwerk Union for integration in the primary system of a small nuclear district heating reactor. An elaborate test program, under way for --3 yr, was initiated with a plexiglass rig to understand the basic principles. A design specification list was prepared, taking reactor boundary conditions and relevant German rules and regulations into account. Subsequently, an atmospheric loop for testing of components at 20 to 90/sup 0/C was erected. The objectives involved optimization of individual components such as a piston/cylinder drive unit, electromagnetic valves, and an ultrasonic position indication system as wellmore » as verification of computer codes. Based on the results obtained, full-scale components were designed and fabricated for a prototype test rig, which is currently in operation. Thus far, all atmospheric tests in this rig have been completed. Investigations under reactor temperature and pressure, followed by endurance tests, are under way. All tests to date have shown a reliable functioning of the hydraulic drive, including a novel ultrasonic position indication system.« less
Experimental and modeling uncertainties in the validation of lower hybrid current drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poli, F. M.; Bonoli, P. T.; Chilenski, M.
Our work discusses sources of uncertainty in the validation of lower hybrid wave current drive simulations against experiments, by evolving self-consistently the magnetic equilibrium and the heating and current drive profiles, calculated with a combined toroidal ray tracing code and 3D Fokker–Planck solver. The simulations indicate a complex interplay of elements, where uncertainties in the input plasma parameters, in the models and in the transport solver combine and compensate each other, at times. It is concluded that ray-tracing calculations should include a realistic representation of the density and temperature in the region between the confined plasma and the wall, whichmore » is especially important in regimes where the LH waves are weakly damped and undergo multiple reflections from the plasma boundary. Uncertainties introduced in the processing of diagnostic data as well as uncertainties introduced by model approximations are assessed. We show that, by comparing the evolution of the plasma parameters in self-consistent simulations with available data, inconsistencies can be identified and limitations in the models or in the experimental data assessed.« less
NASA Astrophysics Data System (ADS)
Hanson, D. L.; Vesey, R. A.; Cuneo Porter, M. E., Jr.; Chandler, G. A.; Ruggles, L. E.; Simpson, W. W.; Seamen, H.; Primm, P.; Torres, J.; McGurn, J.; Gilliland, T. L.; Reynolds, P.; Hebron, D. E.; Dropinski, S. C.; Schroen-Carey, D. G.; Hammer, J. H.; Landen, O.; Koch, J.
2000-10-01
We are currently exploring symmetry requirements of the z-pinch-driven hohlraum concept [1] for high-yield inertial confinement fusion. In experiments on the Z accelerator, the burnthrough of a low-density self-backlit foam ball has been used to diagnose the large time-dependent flux asymmetry of several single-sided-drive hohlraum geometries [2]. We are currently applying this technique to study polar radiation flux symmetry in a symmetric double z-pinch geometry. Wire arrays on opposite ends of the hohlraum, connected in series to a single current drive of 18 MA, implode and stagnate on axis, efficiently radiating about 100 TW of x rays which heat the secondary to 75 eV. Comparisons with 3-D radiosity and 2-D rad-hydro models of hohlraum symmetry performance will be presented. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. 1 J. H. Hammer et al., Phys. Plasmas 6, 2129 (1999). 2 D. L. Hanson et al., Bull. Am. Phys. Soc. 44, 40 (1999).
Experimental and modeling uncertainties in the validation of lower hybrid current drive
Poli, F. M.; Bonoli, P. T.; Chilenski, M.; ...
2016-07-28
Our work discusses sources of uncertainty in the validation of lower hybrid wave current drive simulations against experiments, by evolving self-consistently the magnetic equilibrium and the heating and current drive profiles, calculated with a combined toroidal ray tracing code and 3D Fokker–Planck solver. The simulations indicate a complex interplay of elements, where uncertainties in the input plasma parameters, in the models and in the transport solver combine and compensate each other, at times. It is concluded that ray-tracing calculations should include a realistic representation of the density and temperature in the region between the confined plasma and the wall, whichmore » is especially important in regimes where the LH waves are weakly damped and undergo multiple reflections from the plasma boundary. Uncertainties introduced in the processing of diagnostic data as well as uncertainties introduced by model approximations are assessed. We show that, by comparing the evolution of the plasma parameters in self-consistent simulations with available data, inconsistencies can be identified and limitations in the models or in the experimental data assessed.« less
Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mingyu; WolfeIV, Edward; Craig, Timothy
Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs tomore » achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.« less
Progress in theoretical and numerical modeling of RF/MHD coupling using NIMROD
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Schnack, Dalton D.; Hegna, Chris C.; Callen, James D.; Sovinec, Carl R.; Held, Eric D.; Ji, Jeong-Young; Kruger, Scott E.
2007-11-01
Preliminary work relevant to the development of a general framework for the self-consistent inclusion of RF effects in fluid codes is presented; specifically, the stabilization of neoclassical and conventional tearing modes by electron cyclotron current drive is considered. For this particular problem, the effects of the RF drive can be formally captured by a quasilinear diffusion operator which enters the fluid equations on the same footing as the collision operator. Furthermore, a Chapman-Enskog-like method can be used to determine the consequent effects of the RF drive on the fluid closures for the parallel heat flow and stress. We summarize our recent research along these lines and discuss issues relevant to its implementation in the NIMROD code.
The frequency dependence of the discharge properties in a capacitively coupled oxygen discharge
NASA Astrophysics Data System (ADS)
Gudmundsson, J. T.; Snorrason, D. I.; Hannesdottir, H.
2018-02-01
We use the one-dimensional object-oriented particle-in-cell Monte Carlo collision code oopd1 to explore the evolution of the charged particle density profiles, electron heating mechanism, the electron energy probability function (EEPF), and the ion energy distribution in a single frequency capacitively coupled oxygen discharge, with driving frequency in the range 12-100 MHz. At a low driving frequency and low pressure (5 and 10 mTorr), a combination of stochastic (α-mode) and drift ambipolar (DA) heating in the bulk plasma (the electronegative core) is observed and the DA-mode dominates the time averaged electron heating. As the driving frequency or pressure are increased, the heating mode transitions into a pure α-mode, where electron heating in the sheath region dominates. At low pressure (5 and 10 mTorr), this transition coincides with a sharp decrease in electronegativity. At low pressure and low driving frequency, the EEPF is concave. As the driving frequency is increased, the number of low energy electrons increases and the relative number of higher energy electrons (>10 eV) increases. At high driving frequency, the EEPF develops a convex shape or becomes bi-Maxwellian.
Takahashi, K; Kajiwara, K; Oda, Y; Kasugai, A; Kobayashi, N; Sakamoto, K; Doane, J; Olstad, R; Henderson, M
2011-06-01
High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20°-40° from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system. © 2011 American Institute of Physics
Fischer, M; Tuzson, B; Hugi, A; Brönnimann, R; Kunz, A; Blaser, S; Rochat, M; Landry, O; Müller, A; Emmenegger, L
2014-03-24
Intermittent scanning for continuous-wave quantum cascade lasers is proposed along with a custom-built laser driver optimized for such operation. This approach lowers the overall heat dissipation of the laser by dropping its drive current to zero between individual scans and holding a longer pause between scans. This allows packaging cw-QCLs in TO–3 housings with built-in collimating optics, thus reducing cost and footprint of the device. The fully integrated, largely analog, yet flexible laser driver eliminates the need for any external electronics for current modulation, lowers the demands on power supply performance, and allows shaping of the tuning current in a wide range. Optimized ramp shape selection leads to large and nearly linear frequency tuning (>1.5 cm−1). Experimental characterization of the proposed scheme with a QCL emitting at 7.7 μm gave a frequency stability of 3.2×10−5 cm−1 for the laser emission, while a temperature dependence of 2.3×10−4 cm−1/K was observed when the driver electronics was exposed to sudden temperature changes. We show that these characteristics make the driver suitable for high precision trace gas measurements by analyzing methane absorption lines in the respective spectral region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farina, D.; Figini, L.; Henderson, M.
2014-06-15
The design of the ITER Electron Cyclotron Heating and Current Drive (EC H and CD) system has evolved in the last years both in goals and functionalities by considering an expanded range of applications. A large effort has been devoted to a better integration of the equatorial and the upper launchers, both from the point of view of the performance and of the design impact on the engineering constraints. However, from the analysis of the ECCD performance in two references H-mode scenarios at burn (the inductive H-mode and the advanced non-inductive scenario), it was clear that the EC power depositionmore » was not optimal for steady-state applications in the plasma region around mid radius. An optimization study of the equatorial launcher is presented here aiming at removing this limitation of the EC system capabilities. Changing the steering of the equatorial launcher from toroidal to poloidal ensures EC power deposition out to the normalized toroidal radius ρ ≈ 0.6, and nearly doubles the EC driven current around mid radius, without significant performance degradation in the core plasma region. In addition to the improved performance, the proposed design change is able to relax some engineering design constraints on both launchers.« less
Thermoacoustic magnetohydrodynamic electrical generator
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1984-11-16
A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.
Electron Bernstein Wave Research on NSTX and CDX-U
NASA Astrophysics Data System (ADS)
Taylor, G.; Efthimion, P. C.; Jones, B.; Bell, G. L.; Bers, A.; Bigelow, T. S.; Carter, M. D.; Harvey, R. W.; Ram, A. K.; Rasmussen, D. A.; Smirnov, A. P.; Wilgen, J. B.; Wilson, J. R.
2003-12-01
Studies of thermally emitted electron Bernstein waves (EBWs) on CDX-U and NSTX, via mode conversion (MC) to electromagnetic radiation, support the use of EBWs to measure the Te profile and provide local electron heating and current drive (CD) in overdense spherical torus plasmas. An X-mode antenna with radially adjustable limiters successfully controlled EBW MC on CDX-U and enhanced MC efficiency to ˜ 100%. So far the X-mode MC efficiency on NSTX has been increased by a similar technique to 40-50% and future experiments are focused on achieving ⩾ 80% MC. MC efficiencies on both machines agree well with theoretical predictions. Ray tracing and Fokker-Planck modeling for NSTX equilibria are being conducted to support the design of a 3 MW, 15 GHz EBW heating and CD system for NSTX to assist non-inductive plasma startup, current ramp up, and to provide local electron heating and CD in high β NSTX plasmas.
Thermoacoustic magnetohydrodynamic electrical generator
Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1986-01-01
A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.
NASA Astrophysics Data System (ADS)
Tokano, T.; Lorenz, R. D.
2015-10-01
Density-driven circulation in Titan's seas forced by solar heating and methane evaporation/precipitation is simulated by an ocean circulation model. If the sea is transparent to sunlight, solar heating can induce anti-clockwise gyres near the sea surface and clockwise gyres near the sea bottom. The gyres are in geostrophic balance between the radially symmetric pressure gradient force and Coriolis force. If instead the sea is turbid and most sunlight is absorbed near the sea surface, the sea gets stratified in warm seasons and the circulation remains weak. Strong summer precipitation at high latitudes causes compositional stratification and increase of the nearsurface methane mole fraction towards the north pole. The resultant latitudinal density contrast drives a meridional overturning with equatorward currents near the sea surface and poleward currents near the sea bottom. Weak precipitation induces gyres rather than meridional overturning.
Mechanisms driving variability in the ocean forcing of Pine Island Glacier
Webber, Benjamin G. M.; Heywood, Karen J.; Stevens, David P.; Dutrieux, Pierre; Abrahamsen, E. Povl; Jenkins, Adrian; Jacobs, Stanley S.; Ha, Ho Kyung; Lee, Sang Hoon; Kim, Tae Wan
2017-01-01
Pine Island Glacier (PIG) terminates in a rapidly melting ice shelf, and ocean circulation and temperature are implicated in the retreat and growing contribution to sea level rise of PIG and nearby glaciers. However, the variability of the ocean forcing of PIG has been poorly constrained due to a lack of multi-year observations. Here we show, using a unique record close to the Pine Island Ice Shelf (PIIS), that there is considerable oceanic variability at seasonal and interannual timescales, including a pronounced cold period from October 2011 to May 2013. This variability can be largely explained by two processes: cumulative ocean surface heat fluxes and sea ice formation close to PIIS; and interannual reversals in ocean currents and associated heat transport within Pine Island Bay, driven by a combination of local and remote forcing. Local atmospheric forcing therefore plays an important role in driving oceanic variability close to PIIS. PMID:28211473
Magmas near the critical degassing pressure drive volcanic unrest towards a critical state.
Chiodini, Giovanni; Paonita, Antonio; Aiuppa, Alessandro; Costa, Antonio; Caliro, Stefano; De Martino, Prospero; Acocella, Valerio; Vandemeulebrouck, Jean
2016-12-20
During the reawaking of a volcano, magmas migrating through the shallow crust have to pass through hydrothermal fluids and rocks. The resulting magma-hydrothermal interactions are still poorly understood, which impairs the ability to interpret volcano monitoring signals and perform hazard assessments. Here we use the results of physical and volatile saturation models to demonstrate that magmatic volatiles released by decompressing magmas at a critical degassing pressure (CDP) can drive volcanic unrest towards a critical state. We show that, at the CDP, the abrupt and voluminous release of H 2 O-rich magmatic gases can heat hydrothermal fluids and rocks, triggering an accelerating deformation that can ultimately culminate in rock failure and eruption. We propose that magma could be approaching the CDP at Campi Flegrei, a volcano in the metropolitan area of Naples, one of the most densely inhabited areas in the world, and where accelerating deformation and heating are currently being observed.
Effects of MHD instabilities on neutral beam current drive
NASA Astrophysics Data System (ADS)
Podestà, M.; Gorelenkova, M.; Darrow, D. S.; Fredrickson, E. D.; Gerhardt, S. P.; White, R. B.
2015-05-01
Neutral beam injection (NBI) is one of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility. However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CD efficiency are investigated. A new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ∼50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.
Effects of MHD instabilities on neutral beam current drive
Podestà, M.; Gorelenkova, M.; Darrow, D. S.; ...
2015-04-17
One of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility is the neutral beam injection (NBI). However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CDmore » efficiency are investigated. When looking at the new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ~50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Finally, implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.« less
A New Type Hi-Speed BLDC Control System Base on Indirect Current Control Strategy
NASA Astrophysics Data System (ADS)
Wang, D. P.; Wang, Y. C.; Zhang, F. G.; Jin, S.
2017-05-01
High speed BLDC has the characteristic as larger air gap smaller armature inductance, traditional PWM modulation will produce a great number of high frequency current harmonics which led problem like large torque ripple and serious motor heat. In the meantime traditional PWM modulation use the diode rectifier which cause harmonic pollution in electric power net. To solve the problem above, proposes a new motor controller topology. Using the IGBT device to replace the diode on frequency converter rectifier side, apply the power factor correction technology, reduce the pollution on the grid. Using busbar current modulation on the inverter, driving bridge-arm use 3-phase 6-state open as driving Mode, realize the control on a 10000r/min,10kw BLDC. The results of Simulation on matlab show the topological structure as proposed can effectively improve the network side power factor and reduce the motor armature winding harmonic and motor torque ripple.
Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.
Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J
2015-06-26
Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.
NASA Astrophysics Data System (ADS)
Petrov, Yuri V.; Harvey, R. W.
2017-10-01
The bounce-average (BA) finite-difference Fokker-Planck (FP) code CQL3D [1,2] now includes the essential physics to describe the RF heating of Finite-Orbit-Width (FOW) ions in tokamaks. The FP equation is reformulated in terms of Constants-Of-Motion coordinates, which we select to be particle speed, pitch angle, and major radius on the equatorial plane thus obtaining the distribution function directly at this location. Full-orbit, low collisionality neoclassical radial transport emerges from averaging the local friction and diffusion coefficients along guiding center orbits. Similarly, the BA of local quasilinear RF diffusion terms gives rise to additional radial transport. The local RF electric field components needed for the BA operator are usually obtained by a ray-tracing code, such as GENRAY, or in conjunction with full-wave codes. As a new, practical application, the CQL3D-FOW version is used for simulation of alpha-particle heating by high-harmonic waves in ITER. Coupling of high harmonic or helicon fast waves power to electrons is a promising current drive (CD) scenario for high beta plasmas. However, the efficiency of current drive can be diminished by parasitic channeling of RF power into fast ions, such as alphas, through finite Larmor-radius effects. We investigate possibilities to reduce the fast ion heating in CD scenarios.
The Multiple Gyrotron System on the DIII-D Tokamak
Lohr, J.; Anderson, J.; Brambila, R.; ...
2015-08-28
A major component of the versatile heating systems on the DIII-D tokamak is the gyrotron complex. This system routinely operates at 110 GHz with 4.7 MW generated rf power for electron cyclotron heating and current drive. The complex is being upgraded with the addition of new depressed collector potential gyrotrons operating at 117.5 GHz and generating rf power in excess of 1.0 MW each. The long term upgrade plan calls for 10 gyrotrons at the higher frequency being phased in as resources permit, for an injected power near 10 MW. This article presents a summary of the current status ofmore » the DIII-D gyrotron complex, its performance, individual components, testing procedures, operational parameters, plans, and a brief summary of the experiments for which the system is currently being used.« less
Long pulse high performance plasma scenario development for the National Spherical Torus Experiment
NASA Astrophysics Data System (ADS)
Kessel, C. E.; Bell, R. E.; Bell, M. G.; Gates, D. A.; Kaye, S. M.; LeBlanc, B. P.; Menard, J. E.; Phillips, C. K.; Synakowski, E. J.; Taylor, G.; Wilson, R.; Harvey, R. W.; Mau, T. K.; Ryan, P. M.; Sabbagh, S. A.
2006-05-01
The National Spherical Torus Experiment [Ono et al., Nucl. Fusion, 44, 452 (2004)] is targeting long pulse high performance, noninductive sustained operations at low aspect ratio, and the demonstration of nonsolenoidal startup and current rampup. The modeling of these plasmas provides a framework for experimental planning and identifies the tools to access these regimes. Simulations based on neutral beam injection (NBI)-heated plasmas are made to understand the impact of various modifications and identify the requirements for (1) high elongation and triangularity, (2) density control to optimize the current drive, (3) plasma rotation and/or feedback stabilization to operate above the no-wall β limit, and (4) electron Bernstein waves (EBW) for off-axis heating/current drive (H/CD). Integrated scenarios are constructed to provide the transport evolution and H/CD source modeling, supported by rf and stability analyses. Important factors include the energy confinement, Zeff, early heating/H mode, broadening of the NBI-driven current profile, and maintaining q(0) and qmin>1.0. Simulations show that noninductive sustained plasmas can be reached at IP=800 kA, BT=0.5 T, κ≈2.5, βN⩽5, β⩽15%, fNI=92%, and q(0)>1.0 with NBI H/CD, density control, and similar global energy confinement to experiments. The noninductive sustained high β plasmas can be reached at IP=1.0 MA, BT=0.35 T, κ≈2.5, βN⩽9, β⩽43%, fNI=100%, and q(0)>1.5 with NBI H/CD and 3.0 MW of EBW H/CD, density control, and 25% higher global energy confinement than experiments. A scenario for nonsolenoidal plasma current rampup is developed using high harmonic fast wave H/CD in the early low IP and low Te phase, followed by NBI H/CD to continue the current ramp, reaching a maximum of 480 kA after 3.4 s.
A new method of efficient heat transfer and storage at very high temperatures
NASA Technical Reports Server (NTRS)
Shaw, D.; Bruckner, A. P.; Hertzberg, A.
1980-01-01
A unique, high temperature (1000-2000 K) continuously operating capacitive heat exchanger system is described. The system transfers heat from a combustion or solar furnace to a working gas by means of a circulating high temperature molten refractory. A uniform aggregate of beads of a glass-like refractory is injected into the furnace volume. The aggregate is melted and piped to a heat exchanger where it is sprayed through a counter-flowing, high pressure working gas. The refractory droplets transfer their heat to the gas, undergoing a phase change into the solid bead state. The resulting high temperature gas is used to drive a suitable high efficiency heat engine. The solidified refractory beads are delivered back to the furnace and melted to continue the cycle. This approach avoids the important temperature limitations of conventional tube-type heat exchangers, giving rise to the potential of converting heat energy into useful work at considerably higher efficiencies than currently attainable and of storing energy at high thermodynamic potential.
Overview of EAST experiments on the development of high-performance steady-state scenario
NASA Astrophysics Data System (ADS)
Wan, B. N.; Liang, Y. F.; Gong, X. Z.; Li, J. G.; Xiang, N.; Xu, G. S.; Sun, Y. W.; Wang, L.; Qian, J. P.; Liu, H. Q.; Zhang, X. D.; Hu, L. Q.; Hu, J. S.; Liu, F. K.; Hu, C. D.; Zhao, Y. P.; Zeng, L.; Wang, M.; Xu, H. D.; Luo, G. N.; Garofalo, A. M.; Ekedahl, A.; Zhang, L.; Zhang, X. J.; Huang, J.; Ding, B. J.; Zang, Q.; Li, M. H.; Ding, F.; Ding, S. Y.; Lyu, B.; Yu, Y. W.; Zhang, T.; Zhang, Y.; Li, G. Q.; Xia, T. Y.; the EAST Team; Collaborators
2017-10-01
The EAST research program aims to demonstrate steady-state long-pulse advanced high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. Since the 2014 IAEA FEC, EAST has been upgraded with all ITER-relevant auxiliary heating and current drive systems, enabling the investigation of plasma profile control by the coupling/integration of various auxiliary heating combinations. Fully non-inductive steady-state H-mode plasma (H 98,y2 > 1.1) was extended over 60 s for the first time with sole RF heating plus good power coupling and impurity and particle control. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and maintained at relatively high density, even up to n e ~ 4.5 × 1019 m-3, where a current drive effect is still observed. Significant progress has been achieved on EAST, including: (i) demonstration of a steady-state scenario (fully non-inductive with V loop ~ 0.0 V at high β P ~ 1.8 and high-performance in upper single-null (ɛ ~ 1.6) configuration with the tungsten divertor; (ii) discovery of a stationary H-mode regime with no/small ELM using 4.6 GHz LHCD, and; (iii) achievement of ELM suppression in slowly rotating H-mode plasma with n = 1 and 2 RMP compatible with long-pulse operations. The new advances in scenario development provide an integrated solution in achieving long-pulse steady-state operations on EAST.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betti, R.; Christopherson, A. R.; Spears, B. K.
Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusionmore » experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.« less
Effects of including electrojet turbulence in LFM-RCM simulations of geospace storms
NASA Astrophysics Data System (ADS)
Oppenheim, M. M.; Wiltberger, M. J.; Merkin, V. G.; Zhang, B.; Toffoletto, F.; Wang, W.; Lyon, J.; Liu, J.; Dimant, Y. S.
2016-12-01
Global geospace system simulations need to incorporate nonlinear and small-scale physical processes in order to accurately model storms and other intense events. During times of strong magnetospheric disturbances, large-amplitude electric fields penetrate from the Earth's magnetosphere to the E-region ionosphere where they drive Farley-Buneman instabilities (FBI) that create small-scale plasma density turbulence. This induces nonlinear currents and leads to anomalous electron heating. Current global Magnetosphere-Ionosphere-Thermosphere (MIT) models disregard these effects by assuming simple laminar ionospheric currents. This paper discusses the effects of incorporating accurate turbulent conductivities into MIT models. Recently, we showed in Liu et al. (2016) that during storm-time, turbulence increases the electron temperatures and conductivities more than precipitation. In this talk, we present the effect of adding these effects to the combined Lyon-Fedder-Mobarry (LFM) global MHD magnetosphere simulator and the Rice Convection Model (RCM). The LFM combines a magnetohydrodynamic (MHD) simulation of the magnetosphere with a 2D electrostatic solution of the ionosphere. The RCM uses drift physics to accurately model the inner magnetosphere, including a storm enhanced ring current. The LFM and coupled LFM-RCM simulations have previously shown unrealistically high cross-polar-cap potentials during strong solar wind driving conditions. We have recently implemented an LFM module that modifies the ionospheric conductivity to account for FBI driven anomalous electron heating and non-linear cross-field current enhancements as a function of the predicted ionospheric electric field. We have also improved the LFM-RCM code by making it capable of handling dipole tilts and asymmetric ionospheric solutions. We have tested this new LFM version by simulating the March 17, 2013 geomagnetic storm. These simulations showed a significant reduction in the cross-polar-cap potential during the strongest driving conditions, significant increases in the ionospheric conductivity in the auroral oval, and better agreement with DMSP observations of sub-auroral polarization streams. We conclude that accurate MIT simulations of geospace storms require the inclusion of turbulent conductivities.
Study of the choice of the decoupling layout for the ITER ICRH system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vervier, M., E-mail: michel.vervier@rma.ac.be; Messiaen, A.; Ongena, J.
10 decouplers are used to neutralize the mutual coupling effects and to control the current amplitude of the 24 straps array of the ITER ICRH antenna in the case of current drive phasing. In the case of heating phasing only 4 decouplers are active and the array current control needs to act on the ratio between the power delivered by the 4 generators. This ratio is very sensitive to the precise adjustment of the antenna array phasing. The maximum total radiated power capability is then limited when the power of one generator reaches its maximum value. With the addition ofmore » four switches all 10 installed decouplers are made active and can act on all mutual coupling effects with equal source power from the 4 generators. With four more switches the current drive phasing could work with a reduced poloidal phasing resulting in a 35% increase of its coupling to the plasma.« less
Generation of noninductive current by electron-Bernstein waves on the COMPASS-D Tokamak.
Shevchenko, V; Baranov, Y; O'Brien, M; Saveliev, A
2002-12-23
Electron-Bernstein waves (EBW) were excited in the plasma by mode converted extraordinary (X) waves launched from the high field side of the COMPASS-D tokamak at different toroidal angles. It has been found experimentally that X-mode injection perpendicular to the magnetic field provides maximum heating efficiency. Noninductive currents of up to 100 kA were found to be driven by the EBW mode with countercurrent drive. These results are consistent with ray tracing and quasilinear Fokker-Planck simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trenberth, Kevin E.; Fasullo, John T.
The Atlantic Meridional Overturning Circulation plays a major role in moving heat and carbon around in the ocean. A new estimate of ocean heat transports for 2000 through 2013 throughout the Atlantic is derived. Top-of-atmosphere radiation is combined with atmospheric reanalyses to estimate surface heat fluxes and combined with vertically integrated ocean heat content to estimate ocean heat transport divergence as a residual. Atlantic peak northward ocean heat transports average 1.18 ± 0.13PW (1 sigma) at 15°N but vary considerably in latitude and time. Results agree well with observational estimates at 26.5°N from the RAPID array, but for 2004–2013 themore » meridional heat transport is 1.00 ± 0.11PW versus 1.23 ± 0.11PW for RAPID. In addition, these results have no hint of a trend, unlike the RAPID results. Finally, strong westerlies north of a meridian drive ocean currents and an ocean heat loss into the atmosphere that is exacerbated by a decrease in ocean heat transport northward.« less
Trenberth, Kevin E.; Fasullo, John T.
2017-02-18
The Atlantic Meridional Overturning Circulation plays a major role in moving heat and carbon around in the ocean. A new estimate of ocean heat transports for 2000 through 2013 throughout the Atlantic is derived. Top-of-atmosphere radiation is combined with atmospheric reanalyses to estimate surface heat fluxes and combined with vertically integrated ocean heat content to estimate ocean heat transport divergence as a residual. Atlantic peak northward ocean heat transports average 1.18 ± 0.13PW (1 sigma) at 15°N but vary considerably in latitude and time. Results agree well with observational estimates at 26.5°N from the RAPID array, but for 2004–2013 themore » meridional heat transport is 1.00 ± 0.11PW versus 1.23 ± 0.11PW for RAPID. In addition, these results have no hint of a trend, unlike the RAPID results. Finally, strong westerlies north of a meridian drive ocean currents and an ocean heat loss into the atmosphere that is exacerbated by a decrease in ocean heat transport northward.« less
Basic Properties of Plasma-Neutral Coupling in the Solar Atmosphere
NASA Astrophysics Data System (ADS)
Goodman, Michael
2015-04-01
Plasma-neutral coupling (PNC) in the solar atmosphere concerns the effects of collisions between charged and neutral species’. It is most important in the chromosphere, which is the weakly ionized, strongly magnetized region between the weakly ionized, weakly magnetized photosphere and the strongly ionized, strongly magnetized corona. The charged species’ are mainly electrons, protons, and singly charged heavy ions. The neutral species’ are mainly hydrogen and helium. The resistivity due to PNC can be several orders of magnitude larger than the Spitzer resistivity. This enhanced resistivity is confined to the chromosphere, and provides a highly efficient dissipation mechanism unique to the chromosphere. PNC may play an important role in many processes such as heating and acceleration of plasma; wave generation, propagation, and dissipation; magnetic reconnection; maintaining the near force-free state of the corona; and limiting mass flux into the corona. It might play a major role in chromospheric heating, and be responsible for the existence of the chromosphere as a relatively thin layer of plasma that emits a net radiative flux 10-100 times greater than that of the overlying corona. The required heating rate might be generated by Pedersen current dissipation triggered by the rapid increase of magnetization with height in the lower chromosphere, where most of the net radiative flux is emitted. Relatively cool regions of the chromosphere might be regions of minimal Pedersen current dissipation due to smaller magnetic field strength or perpendicular current density. This talk will discuss PNC from an MHD point of view, and focus on the basic parameters that determine its effectiveness. These parameters are ionization fraction, magnetization, and the electric field that drives current perpendicular to the magnetic field. By influencing this current and the electric field that drives it, PNC directly influences the rate at which energy is exchanged between the electromagnetic field and particles. In this way, PNC can have a strong influence on the energetics of a process that involves the conversion of magnetic energy into particle energy, which subsequently appears as radiation, waves, bulk flow, and heating.
NASA Astrophysics Data System (ADS)
Cesario, R. C.; Castaldo, C.; Fonseca, A.; De Angelis, R.; Parail, V.; Smeulders, P.; Beurskens, M.; Brix, M.; Calabrò, G.; De Vries, P.; Mailloux, J.; Pericoli, V.; Ravera, G.; Zagorski, R.
2007-09-01
LHCD has been used in JET experiments aimed at producing internal transport barriers (ITBs) in highly triangular plasmas (δ≈0.4) at high βN (up to 3) for steady-state application. The LHCD is a potentially valuable tool for (i) modifying the target q-profile, which can help avoid deleterious MHD modes and favour the formation of ITBs, and (ii) contributing to the non-inductive current drive required to prolong such plasma regimes. The q-profile evolution has been simulated during the current ramp-up phase for such a discharge (B0 = 2.3 T, IP = 1.5 MA) where 2 MW of LHCD has been coupled. The JETTO code was used taking measured plasma profiles, and the LHCD profile modeled by the LHstar code. The results are in agreement with MSE measurements and indicate the importance of the elevated electron temperature due to LHCD, as well as the driven current. During main heating with 18 MW of NBI and 3 MW of ICRH the bootstrap current density at the edge also becomes large, consistently with the observed reduction of the local turbulence and of the MHD activity. JETTO modelling suggests that the bootstrap current can reduce the magnetic shear (sh) at large radius, potentially affecting the MHD stability and turbulence behaviour in this region. Keywords: lower hybrid current drive (LHCD), bootstrap current, q (safety factor) and shear (sh) profile evolutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisch, N. J.
2015-12-10
Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a waymore » that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.« less
NASA Astrophysics Data System (ADS)
Fisch, N. J.
2015-12-01
Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a way that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.
Resonances in a periodically driven bosonic system.
Quelle, Anton; Smith, Cristiane Morais
2017-11-01
Periodically driven systems are a common topic in modern physics. In optical lattices specifically, driving is at the origin of many interesting phenomena. However, energy is not conserved in driven systems, and under periodic driving, heating of a system is a real concern. In an effort to better understand this phenomenon, the heating of single-band systems has been studied, with a focus on disorder- and interaction-induced effects, such as many-body localization. Nevertheless, driven systems occur in a much wider context than this, leaving room for further research. Here, we fill this gap by studying a noninteracting model, characterized by discrete, periodically spaced energy levels that are unbounded from above. We couple these energy levels resonantly through a periodic drive, and discuss the heating dynamics of this system as a function of the driving protocol. In this way, we show that a combination of stimulated emission and absorption causes the presence of resonant stable states. This will serve to elucidate the conditions under which resonant driving causes heating in quantum systems.
Resonances in a periodically driven bosonic system
NASA Astrophysics Data System (ADS)
Quelle, Anton; Smith, Cristiane Morais
2017-11-01
Periodically driven systems are a common topic in modern physics. In optical lattices specifically, driving is at the origin of many interesting phenomena. However, energy is not conserved in driven systems, and under periodic driving, heating of a system is a real concern. In an effort to better understand this phenomenon, the heating of single-band systems has been studied, with a focus on disorder- and interaction-induced effects, such as many-body localization. Nevertheless, driven systems occur in a much wider context than this, leaving room for further research. Here, we fill this gap by studying a noninteracting model, characterized by discrete, periodically spaced energy levels that are unbounded from above. We couple these energy levels resonantly through a periodic drive, and discuss the heating dynamics of this system as a function of the driving protocol. In this way, we show that a combination of stimulated emission and absorption causes the presence of resonant stable states. This will serve to elucidate the conditions under which resonant driving causes heating in quantum systems.
Effects of energetic particle phase space modifications by instabilities on integrated modeling
NASA Astrophysics Data System (ADS)
Podestà, M.; Gorelenkova, M.; Fredrickson, E. D.; Gorelenkov, N. N.; White, R. B.
2016-11-01
Tokamak plasmas can feature a large population of energetic particles (EP) from neutral beam injection or fusion reactions. In turn, energetic particles can drive instabilities, which affect the driving EP population leading to a distortion of the original EP distribution function and of quantities that depend on it. The latter include, for example, neutral beam (NB) current drive and plasma heating through EP thermalization. Those effects must be taken into account to enable reliable and quantitative simulations of discharges for present devices as well as predictions for future burning plasmas. Reduced models for EP transport are emerging as an effective tool for long time-scale integrated simulations of tokamak plasmas, possibly including the effects of instabilities on EP dynamics. Available models differ in how EP distribution properties are modified by instabilities, e.g. in terms of gradients in real or phase space. It is therefore crucial to assess to what extent different assumptions in the transport models affect predicted quantities such as EP profile, energy distribution, NB driven current and energy/momentum transfer to the thermal populations. A newly developed kick model, which includes modifications of the EP distribution by instabilities in both real and velocity space, is used in this work to investigate these issues. Coupled to TRANSP simulations, the kick model is used to analyze NB-heated NSTX and DIII-D discharges featuring unstable Alfvén eigenmodes (AEs). Results show that instabilities can strongly affect the EP distribution function, and modifications propagate to macroscopic quantities such as NB-driven current profile and NB power transferred to the thermal plasma species. Those important aspects are only qualitatively captured by simpler fast ion transport models that are based on radial diffusion of energetic ions only.
Effects of energetic particle phase space modifications by instabilities on integrated modeling
Podesta, M.; Gorelenkova, M.; Fredrickson, E. D.; ...
2016-07-22
Tokamak plasmas can feature a large population of energetic particles (EP) from neutral beam injection or fusion reactions. In turn, energetic particles can drive instabilities, which affect the driving EP population leading to a distortion of the original EP distribution function and of quantities that depend on it. The latter include, for example, neutral beam (NB) current drive and plasma heating through EP thermalization. Those effects must be taken into account to enable reliable and quantitative simulations of discharges for present devices as well as predictions for future burning plasmas. Reduced models for EP transport are emerging as an effectivemore » tool for long time-scale integrated simulations of tokamak plasmas, possibly including the effects of instabilities on EP dynamics. Available models differ in how EP distribution properties are modified by instabilities, e.g. in terms of gradients in real or phase space. It is therefore crucial to assess to what extent different assumptions in the transport models affect predicted quantities such as EP profile, energy distribution, NB driven current and energy/momentum transfer to the thermal populations. A newly developed kick model, which includes modifications of the EP distribution by instabilities in both real and velocity space, is used in this work to investigate these issues. Coupled to TRANSP simulations, the kick model is used to analyze NB-heated NSTX and DIII-D discharges featuring unstable Alfvén eigenmodes (AEs). Results show that instabilities can strongly affect the EP distribution function, and modifications propagate to macroscopic quantities such as NB-driven current profile and NB power transferred to the thermal plasma species. Furthermore, those important aspects are only qualitatively captured by simpler fast ion transport models that are based on radial diffusion of energetic ions only.« less
Apparatus for thermally evolving chemical analytes from a removable substrate
Linker, Kevin L.; Hannum, David W.
2003-06-03
Method and apparatus suited to convenient field use for heating a porous metallic substrate swiped on the surface of an article possibly bearing residue of contraband or other target chemical substances. The preferred embodiment of the device includes means for holding the swiped substrate between electrodes bearing opposite electrical charges, thereby completing an electrical circuit in which current can flow through the porous metallic substrate. Resistance causes the substrate to heat, thus driving adherent target chemicals, if present, into a space from which they are carried via gas flow into a detector such as a portable IMS for analysis.
Electro-thermal analysis of Lithium Iron Phosphate battery for electric vehicles
NASA Astrophysics Data System (ADS)
Saw, L. H.; Somasundaram, K.; Ye, Y.; Tay, A. A. O.
2014-03-01
Lithium ion batteries offer an attractive solution for powering electric vehicles due to their relatively high specific energy and specific power, however, the temperature of the batteries greatly affects their performance as well as cycle life. In this work, an empirical equation characterizing the battery's electrical behavior is coupled with a lumped thermal model to analyze the electrical and thermal behavior of the 18650 Lithium Iron Phosphate cell. Under constant current discharging mode, the cell temperature increases with increasing charge/discharge rates. The dynamic behavior of the battery is also analyzed under a Simplified Federal Urban Driving Schedule and it is found that heat generated from the battery during this cycle is negligible. Simulation results are validated with experimental data. The validated single cell model is then extended to study the dynamic behavior of an electric vehicle battery pack. The modeling results predict that more heat is generated on an aggressive US06 driving cycle as compared to UDDS and HWFET cycle. An extensive thermal management system is needed for the electric vehicle battery pack especially during aggressive driving conditions to ensure that the cells are maintained within the desirable operating limits and temperature uniformity is achieved between the cells.
Two-fluid description of wave-particle interactions in strong Buneman turbulence
NASA Astrophysics Data System (ADS)
Che, H.
2014-06-01
To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum transport along electric current in the current layer are locally quasi-static, but globally dynamic and irreversible. Turbulent drag dissipates both the streaming energy of the current sheet and the associated magnetic energy. The net loss of streaming energy is converted into the electron component heat conduction parallel to the magnetic field and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation that relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drive local momentum transports, while phase mixing converts convective momentum into thermal momentum. The drag acts like a micro-macro link in the anomalous heating processes. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons, but most of the magnetic energy is dissipated and converted into the component heat of electrons perpendicular to the magnetic field. This heating process is decoupled from the heating of Buneman instability in the current sheets. Ion heating is weak but ions play an important role in assisting energy exchanges between waves and electrons. Cold ion fluid equations together with our electron fluid equations form a complete set of equations that describes the occurrence, growth, saturation and decay of the Buneman instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, C. S.; Arber, T. D., E-mail: c.s.brady@warwick.ac.uk
2016-10-01
Two of the central problems in our understanding of the solar chromosphere are how the upper chromosphere is heated and what drives spicules. Estimates of the required chromospheric heating, based on radiative and conductive losses, suggest a rate of ∼0.1 erg cm{sup −3} s{sup −1} in the lower chromosphere and drops to ∼10{sup −3} erg cm{sup −3} s{sup −1} in the upper chromosphere. The chromosphere is also permeated by spicules, higher density plasma from the lower atmosphere propelled upwards at speeds of ∼10–20 km s{sup −1}, for so-called Type I spicules, which reach heights of ∼3000–5000 km above the photosphere.more » A clearer understanding of chromospheric dynamics, its heating, and the formation of spicules is thus of central importance to solar atmospheric science. For over 30 years it has been proposed that photospheric driving of MHD waves may be responsible for both heating and spicule formation. This paper presents results from a high-resolution MHD treatment of photospheric driven Alfvén and kink waves propagating upwards into an expanding flux tube embedded in a model chromospheric atmosphere. We show that the ponderomotive coupling from Alfvén and kink waves into slow modes generates shocks, which both heat the upper chromosphere and drive spicules. These simulations show that wave driving of the solar chromosphere can give a local heating rate that matches observations and drive spicules consistent with Type I observations all within a single coherent model.« less
Development of shape memory metal as the actuator of a fail safe mechanism
NASA Technical Reports Server (NTRS)
Ford, V. G.; Johnson, M. R.; Orlosky, S. D.
1990-01-01
A small, compact, lightweight device was developed using shape memory alloy (SMA) in wire form to actuate a pin-puller that decouples the flanges of two shafts. When the SMA is heated it contracts producing a useful force and stroke. As it cools, it can be reset (elongated in this case) by applying a relatively small force. Resistive heating is accomplished by running a current through the SMA wire for a controlled length of time. The electronics to drive the device are not elaborate or complicated, consisting of a timed current source. The total available contraction is 3 percent of the length of the wire. This device, the engineering properties of the SMA, and the tests performed to verify the design concept are described.
Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, includingmore » commercial and residential buildings, data centers, and telecom facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temkin, Richard
2014-12-24
Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated themore » options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.« less
Integrated tokamak modeling: when physics informs engineering and research planning
NASA Astrophysics Data System (ADS)
Poli, Francesca
2017-10-01
Simulations that integrate virtually all the relevant engineering and physics aspects of a real tokamak experiment are a power tool for experimental interpretation, model validation and planning for both present and future devices. This tutorial will guide through the building blocks of an ``integrated'' tokamak simulation, such as magnetic flux diffusion, thermal, momentum and particle transport, external heating and current drive sources, wall particle sources and sinks. Emphasis is given to the connection and interplay between external actuators and plasma response, between the slow time scales of the current diffusion and the fast time scales of transport, and how reduced and high-fidelity models can contribute to simulate a whole device. To illustrate the potential and limitations of integrated tokamak modeling for discharge prediction, a helium plasma scenario for the ITER pre-nuclear phase is taken as an example. This scenario presents challenges because it requires core-edge integration and advanced models for interaction between waves and fast-ions, which are subject to a limited experimental database for validation and guidance. Starting from a scenario obtained by re-scaling parameters from the demonstration inductive ``ITER baseline'', it is shown how self-consistent simulations that encompass both core and edge plasma regions, as well as high-fidelity heating and current drive source models are needed to set constraints on the density, magnetic field and heating scheme. This tutorial aims at demonstrating how integrated modeling, when used with adequate level of criticism, can not only support design of operational scenarios, but also help to asses the limitations and gaps in the available models, thus indicating where improved modeling tools are required and how present experiments can help their validation and inform research planning. Work supported by DOE under DE-AC02-09CH1146.
Ion heating and characteristics of ST plasma used by double-pulsing CHI on HIST
NASA Astrophysics Data System (ADS)
Hanao, Takafumi; Hirono, Hidetoshi; Hyobu, Takahiro; Ito, Kengo; Matsumoto, Keisuke; Nakayama, Takashi; Oki, Nobuharu; Kikuchi, Yusuke; Fukumoto, Naoyuki; Nagata, Masayoshi
2013-10-01
Multi-pulsing Coaxial Helicity Injection (M-CHI) is an efficient current drive and sustainment method used in spheromak and spherical torus (ST). We have observed plasma current/flux amplification by double pulsing CHI. Poloidal ion temperature measured by Ion Doppler Spectrometer (IDS) has a peak at plasma core region. In this region, radial electric field has a negative peak. At more inboard side that is called separatrix between closed flux region and inner open flux region, poloidal flow has a large shear and radial electric field changes the polarity. After the second CHI pulse, we observed sharp and rapid ion heating at plasma core region and separatrix. In this region, the poloidal ion temperature is selective heating because electron temperature is almost uniform. At this time, flow shear become larger and radial electric field is amplified at separatorix. These effects produce direct heating of ion through the viscous flow damping. Furthermore, we observed decrease of electron density at separatrix. Decreased density makes Hall dynamo electric field as two-fluid effect. When the ion temperature is increasing, dynamo electric field is observed at separatrix. It may have influence with the ion heating. We will discuss characteristic of double pulsing CHI driven ST plasmas and correlation of direct heating of ion with dynamo electric field and any other parameters.
Manipulating Energetic Ion Velocity Space to Control Instabilities and Improve Tokamak Performance
NASA Astrophysics Data System (ADS)
Pace, David C.
2017-10-01
The first-ever demonstration of independent current (I) and voltage (V) control of high power neutral beams in tokamak plasma shots has successfully reduced the prevalence of instabilities and improved energetic ion confinement in experiments at the DIII-D tokamak. Energetic ions drive Alfvén eigenmode (AE) instabilities through a resonant energy exchange that can increase radial diffusion of the ions, thereby reducing beam heating and current drive efficiency. This resonance is incredibly sensitive to the ion velocity and orbit topology, which then allows changes in beam voltage (keeping the injected power constant through compensating changes in current) to remove nearly all instability drive. The implementation of temporal control of beam current and voltage allows for a reduction in the resonant energetic ion velocity space while maintaining the ability to inject maximum power. DIII-D low confinement (L-mode) plasmas demonstrate a nearly complete avoidance of AE activity in plasmas with 55 kV beam injection compared to the many AEs that are observed in plasmas featuring similar total beam power at 70 kV. Across the experimental range of beam settings, resulting increases in beam divergence have been inconsequential. High performance steady-state scenarios featuring equilibria that are conducive to dense arrays of Alfvén waves benefit the most from instability control mechanisms. One such scenario, the so-called high qmin scenario, demonstrates improved confinement and equilibrium evolution when the injected beam voltage begins at lower values (i.e., fewer resonances) and then increases as the plasma reaches its stationary period. These results suggest a future in which plasma confinement and performance is improved through continuous feedback control of auxiliary heating systems such that the energetic ion distribution is constantly adapted to produce an optimal plasma state. Work supported by US DOE under DE-FC02-04ER54698.
NASA Astrophysics Data System (ADS)
Perner, Kerstin; Moros, Matthias; De Deckker, Patrick; Blanz, Thomas; Wacker, Lukas; Telford, Richard; Siegel, Herbert; Schneider, Ralph; Jansen, Eystein
2018-01-01
The Leeuwin Current (LC), an eastern boundary current, transports tropical waters from the Indo-Pacific Warm Pool (IPWP) towards southern latitudes and modulates oceanic conditions offshore southern Australia. New, high-resolution planktic foraminifer assemblage data and alkenone-derived sea surface temperatures (SST) provide an in-depth view on LC variability and mechanisms driving the current's properties during the mid to late Holocene (last c. 7.4 ka BP). Our marine reconstructions highlight a longer-term mid to late Holocene reduction of tropical heat export from the IPWP area into the LC. Mid Holocene (c. 7.4 to 3.5 ka BP) occurrence of high SSTs (>19.5 °C), tropical planktic foraminifera and a well-stratified water column document an enhanced heat export from the tropics. From c. 3.5 ka BP onwards, a weaker LC and a notably reduced tropical heat export cause oceanic cooling offshore southern Australia. The observed mid to late Holocene trends likely result from large-scale changes in the IPWP's heat storage linked to the El Niño-Southern Oscillation (ENSO) phenomenon. We propose that a strong and warm LC occurs in response to a La Niña-like state of ENSO during the mid Holocene. The late Holocene LC cooling, however, results from a shift towards an El Niño-like state and a more variable ENSO system that causes cooling of the IPWP. Superimposed on these longer-term trends we find evidence of distinct late Holocene millennial-scale phases of enhanced El Niño/La Niña development, which appear synchronous with northern hemispheric climatic variability. Phases of dominant El Niño-like states occur parallel to North Atlantic cold phases: the '2800 years BP cooling event', the 'Dark Ages' and the 'Little Ice Age', whereas the 'Roman Warm Period' and the 'Medieval Climate Anomaly' parallel periods of a predominant La Niña-like state. Our findings provide further evidence of coherent interhemispheric climatic and oceanic conditions during the mid to late Holocene, suggesting ENSO as a potential mediator.
Recent results from the electron cyclotron heated plasmas in Tokamak à Configuration Variable (TCV)
NASA Astrophysics Data System (ADS)
Henderson, M. A.; Alberti, S.; Angioni, C.; Arnoux, G.; Behn, R.; Blanchard, P.; Bosshard, P.; Camenen, Y.; Coda, S.; Condrea, I.; Goodman, T. P.; Hofmann, F.; Hogge, J.-Ph.; Karpushov, A.; Manini, A.; Martynov, An.; Moret, J.-M.; Nikkola, P.; Nelson-Melby, E.; Pochelon, A.; Porte, L.; Sauter, O.; Ahmed, S. M.; Andrèbe, Y.; Appert, K.; Chavan, R.; Degeling, A.; Duval, B. P.; Etienne, P.; Fasel, D.; Fasoli, A.; Favez, J.-Y.; Furno, I.; Horacek, J.; Isoz, P.; Joye, B.; Klimanov, I.; Lavanchy, P.; Lister, J. B.; Llobet, X.; Magnin, J.-C.; Marlétaz, B.; Marmillod, P.; Martin, Y.; Mayor, J.-M.; Mylnar, J.; Paris, P. J.; Perez, A.; Peysson, Y.; Pitts, R. A.; Raju, D.; Reimerdes, H.; Scarabosio, A.; Scavino, E.; Seo, S. H.; Siravo, U.; Sushkov, A.; Tonetti, G.; Tran, M. Q.; Weisen, H.; Wischmeier, M.; Zabolotsky, A.; Yhuang, G.
2003-05-01
In noninductively driven discharges, 0.9 MW second harmonic (X2) off-axis co-electron cyclotron current drive deposition is combined with 0.45 MW X2 central heating to create an electron internal transport barrier (eITB) in steady plasma conditions resulting in a 1.6-fold increase of the confinement time (τEe) over ITER-98L-mode scaling. The eITB is associated with a reversed shear current profile enhanced by a large bootstrap current fraction (up to 80%) and is sustained for up to 10 current redistribution times. A linear dependence of the confinement improvement on the product of the global shear reversal factor (q0/qmin) and the reversed shear volume (ρq-min2) is shown. In other discharges heated with X2 the sawteeth are destabilized (respectively stabilized) when heating just inside (respectively outside) the q=1 surface. Control of the sawteeth may allow the avoidance of neoclassical tearing modes that can be seeded by the sawtooth instability. Results on H-mode and highly elongated plasmas using the newly completed third harmonic (X3) system and achieving up to 100% absorption are also discussed, along with comparison of experimental results with the TORAY-GA ray tracing code [K. Matsuda, IEEE Trans. Plasma Sci. PS-17, 6 (1989); R. H. Cohen, Phys. Fluids 30, 2442 (1987)].
NASA Astrophysics Data System (ADS)
Tokano, Tetsuya; Lorenz, Ralph D.
2016-05-01
Density-driven circulation in Titan's seas forced by solar heating and methane evaporation/precipitation is simulated by an ocean circulation model. If the sea is transparent to sunlight, solar heating can induce anti-clockwise gyres near the sea surface and clockwise gyres near the sea bottom. The gyres are in geostrophic balance between the radially symmetric pressure gradient force and Coriolis force. If instead the sea is turbid and most sunlight is absorbed near the sea surface, the sea gets stratified in warm seasons and the circulation remains weak. Precipitation causes compositional stratification of the sea to an extent that the sea surface temperature can be lower than the sea interior temperature without causing a convective overturning. Non-uniform precipitation can also generate a latitudinal gradient in the methane mole fraction and density, which drives a meridional overturning with equatorward currents near the sea surface and poleward currents near the sea bottom. However, gyres are more ubiquitous than meridional overturning.
Apparatus for and method of operating a cylindrical pulsed induction mass launcher
Cowan, M. Jr.; Duggin, B.W.; Widner, M.M.
1992-06-30
An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher. 2 figs.
Apparatus for and method of operating a cylindrical pulsed induction mass launcher
Cowan, Jr., Maynard; Duggin, Billy W.; Widner, Melvin M.
1992-01-01
An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher.
Magmas near the critical degassing pressure drive volcanic unrest towards a critical state
Chiodini, Giovanni; Paonita, Antonio; Aiuppa, Alessandro; Costa, Antonio; Caliro, Stefano; De Martino, Prospero; Acocella, Valerio; Vandemeulebrouck, Jean
2016-01-01
During the reawaking of a volcano, magmas migrating through the shallow crust have to pass through hydrothermal fluids and rocks. The resulting magma–hydrothermal interactions are still poorly understood, which impairs the ability to interpret volcano monitoring signals and perform hazard assessments. Here we use the results of physical and volatile saturation models to demonstrate that magmatic volatiles released by decompressing magmas at a critical degassing pressure (CDP) can drive volcanic unrest towards a critical state. We show that, at the CDP, the abrupt and voluminous release of H2O-rich magmatic gases can heat hydrothermal fluids and rocks, triggering an accelerating deformation that can ultimately culminate in rock failure and eruption. We propose that magma could be approaching the CDP at Campi Flegrei, a volcano in the metropolitan area of Naples, one of the most densely inhabited areas in the world, and where accelerating deformation and heating are currently being observed. PMID:27996976
Silicon Carbide (SiC) MOSFET-based Full-Bridge for Fusion Science Applications
NASA Astrophysics Data System (ADS)
Ziemba, Timothy; Miller, Kenneth; Prager, James; Picard, Julian; Hashim, Akel
2014-10-01
Switching power amplifiers (SPAs) have a wide variety of applications within the fusion science community, including feedback and control systems for dynamic plasma stabilization in tokamaks, inductive and arc plasma sources, Radio Frequency (RF) helicity and flux injection, RF plasma heating and current drive schemes, ion beam generation, and RF pre-ionizer systems. SiC MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities. When comparing SiC and traditional silicon-based MOSFETs, SiC MOSFETs provide higher current carrying capability allowing for smaller package weights and sizes and lower operating temperature. Eagle Harbor Technologies (EHT) is designing, constructing, and testing a SiC MOSFET-based full-bridge SPA. EHT will leverage the proprietary gate drive technology previously developed with the support of a DOE SBIR, which will enable fast, efficient switching in a small form factor. The primary goal is to develop a SiC MOSFET-based SPA for fusion science applications. Work supported in part by the DOE under Contract Number DE-SC0011907.
NASA Astrophysics Data System (ADS)
Bhattacharjee, N.; Sapozhnik, A. A.; Bodnar, S. Yu.; Grigorev, V. Yu.; Agustsson, S. Y.; Cao, J.; Dominko, D.; Obergfell, M.; Gomonay, O.; Sinova, J.; Kläui, M.; Elmers, H.-J.; Jourdan, M.; Demsar, J.
2018-06-01
We observe the excitation of collective modes in the terahertz (THz) range driven by the recently discovered Néel spin-orbit torques (NSOTs) in the metallic antiferromagnet Mn2Au . Temperature-dependent THz spectroscopy reveals a strong absorption mode centered near 1 THz, which upon heating from 4 to 450 K softens and loses intensity. A comparison with the estimated eigenmode frequencies implies that the observed mode is an in-plane antiferromagnetic resonance (AFMR). The AFMR absorption strength exceeds those found in antiferromagnetic insulators, driven by the magnetic field of the THz radiation, by 3 orders of magnitude. Based on this and the agreement with our theory modeling, we infer that the driving mechanism for the observed mode is the current-induced NSOT. Here the electric field component of the THz pulse drives an ac current in the metal, which subsequently drives the AFMR. This electric manipulation of the Néel order parameter at high frequencies makes Mn2Au a prime candidate for antiferromagnetic ultrafast memory applications.
Microturbulence studies of pulsed poloidal current drive discharges in the reversed field pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmody, D., E-mail: dcarmody@wisc.edu; Pueschel, M. J.; Anderson, J. K.
2015-01-15
Experimental discharges with pulsed poloidal current drive (PPCD) in the Madison Symmetric Torus reversed field pinch are investigated using a semi-analytic equilibrium model in the gyrokinetic turbulence code GENE. PPCD cases, with plasma currents of 500 kA and 200 kA, exhibit a density-gradient-driven trapped electron mode (TEM) and an ion temperature gradient mode, respectively. Relative to expectations of tokamak core plasmas, the critical gradients for the onset of these instabilities are found to be greater by roughly a factor of the aspect ratio. A significant upshift in the nonlinear TEM transport threshold, previously found for tokamaks, is confirmed in nonlinear reversed fieldmore » pinch simulations and is roughly three times the threshold for linear instability. The simulated heat fluxes can be brought in agreement with measured diffusivities by introducing a small, resonant magnetic perturbation, thus modeling the residual fluctuations from tearing modes. These fluctuations significantly enhance transport.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petty, C. C., E-mail: petty@fusion.gat.com; Van Zeeland, M. A.; Pace, D. C.
“Steady-state” hybrid plasmas in DIII-D with zero surface loop voltage have been maintained for up to two current relaxation times using 3.4 MW of central electron cyclotron current drive (ECCD). In addition to driving ≈0.2 MA of plasma current, central ECCD leads to significant changes in Alfvén eigenmode (AE) activity and thermal transport. For neutral-beam-only heating, strong AE activity is observed that causes a ∼35% degradation in the neutron rate. With central ECCD this AE activity is suppressed, replaced by a bursty energetic particle mode that appears more benign as the neutron rate is closer to the classical value. Themore » electron thermal diffusivity increases by ≈50% for 2.4 MW of ECCD compared to neutral-beam-only cases. Fortunately, the global thermal confinement factor remains the same (H{sub 98y2}=1.4) as the higher thermal transport for P{sub EC}=2.4 MW hybrids is offset by the decreased fast ion transport resulting from AE suppression.« less
NASA Astrophysics Data System (ADS)
Beklemishev, A. D.; Tajima, T.
1994-02-01
The authors propose a concept of thermonuclear fusion reactor in which the plasma pressure is balanced by direct gas-wall interaction in a high-pressure vessel. The energy confinement is achieved by means of the self-contained toroidal magnetic configuration sustained by an external current drive or charged fusion products. This field structure causes the plasma pressure to decrease toward the inside of the discharge and thus it should be magnetohydrodynamically stable. The maximum size, temperature and density profiles of the reactor are estimated. An important feature of confinement physics is the thin layer of cold gas at the wall and the adjacent transitional region of dense arc-like plasma. The burning condition is determined by the balance between these nonmagnetized layers and the current-carrying plasma. They suggest several questions for future investigation, such as the thermal stability of the transition layer and the possibility of an effective heating and current drive behind the dense edge plasma. The main advantage of this scheme is the absence of strong external magnets and, consequently, potentially cheaper design and lower energy consumption.
Eddy-current inspection of shuttle heat exchanger tube welds
NASA Technical Reports Server (NTRS)
Dodd, Casius V.; Scott, G. W.; Chitwood, L. D.
1990-01-01
The goal of this project was to develop the system necessary to demonstrate in the laboratory that an eddy current system can inspect the tubes and welds described, screening for the existence of flaws equal in size to, or larger than, the target flaw. The laboratory system was to include the probe necessary to traverse the tubing, the electronics to drive (i.e., electrically excite) the probe and receive and process signals from it, a data display, data recording, and playback devices, and microprocessor software or firmware necessary to operate the system.
Climate Control Load Reduction Strategies for Electric Drive Vehicles in Cold Weather
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffers, Matthew A.; Chaney, Larry; Rugh, John P.
When operated, the climate control system is the largest auxiliary load on a vehicle. This load has significant impact on fuel economy for conventional and hybrid vehicles, and it drastically reduces the driving range of all electric vehicles (EVs). Heating is even more detrimental to EV range than cooling because no engine waste heat is available. Reducing the thermal loads on the heating, ventilating, and air conditioning system will extend driving range and increase the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have evaluated strategies for vehicle climate control load reduction with special attention toward gridmore » connected electric vehicles. Outdoor vehicle thermal testing and computational modeling were used to assess potential strategies for improved thermal management and to evaluate the effectiveness of thermal load reduction technologies. A human physiology model was also used to evaluate the impact on occupant thermal comfort. Experimental evaluations of zonal heating strategies demonstrated a 5.5% to 28.5% reduction in cabin heating energy over a 20-minute warm-up. Vehicle simulations over various drive cycles show a 6.9% to 18.7% improvement in EV range over baseline heating using the most promising zonal heating strategy investigated. A national-level analysis was conducted to determine the overall national impact. If all vehicles used the best zonal strategy, the range would be improved by 7.1% over the baseline heating range. This is a 33% reduction in the range penalty for heating.« less
Climate Control Load Reduction Strategies for Electric Drive Vehicles in Cold Weather: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffers, Matthew; Chaney, Lawrence; Rugh, John
When operated, the climate control system is the largest auxiliary load on a vehicle. This load has significant impact on fuel economy for conventional and hybrid vehicles, and it drastically reduces the driving range of all electric vehicles (EVs). Heating is even more detrimental to EV range than cooling because no engine waste heat is available. Reducing the thermal loads on the heating, ventilating, and air conditioning system will extend driving range and increase the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have evaluated strategies for vehicle climate control load reduction with special attention toward gridmore » connected electric vehicles. Outdoor vehicle thermal testing and computational modeling were used to assess potential strategies for improved thermal management and to evaluate the effectiveness of thermal load reduction technologies. A human physiology model was also used to evaluate the impact on occupant thermal comfort. Experimental evaluations of zonal heating strategies demonstrated a 5.5% to 28.5% reduction in cabin heating energy over a 20-minute warm-up. Vehicle simulations over various drive cycles show a 6.9% to 18.7% improvement in EV range over baseline heating using the most promising zonal heating strategy investigated. A national-level analysis was conducted to determine the overall national impact. If all vehicles used the best zonal strategy, the range would be improved by 7.1% over the baseline heating range. This is a 33% reduction in the range penalty for heating.« less
Diagnostics for real-time plasma control in PBX-M
NASA Astrophysics Data System (ADS)
Kaita, R.; Batha, S.; Bell, R. E.; Bernabei, S.; Hatcher, R.; Kozub, T.; Kugel, H.; Levinton, F.; Okabayashi, M.; Sesnic, S.; von Goeler, S.; Zolfaghari, A.; PBX-M Group
1995-01-01
An important issue for future tokamaks is real-time plasma control for the avoidance of magnetohydrodynamic instabilities and other applications that require detailed plasma profile and fluctuation data. Although measurements from diagnostics providing this information require significantly more processing than magnetic flux data, recent advancements could make them practical for adjusting operational settings for plasma heating and current drive systems as well as field coil currents. On the Princeton Beta Experiment-Modification (PBX-M), the lower hybrid current drive phasing can be varied during a plasma shot using digitally programmable ferrite phase shifters, and neural beam functions can be fully computer controlled. PBX-M diagnostics that may be used for control purposes include motional Stark-effect polarimetry for magnetic field pitch angle profiles, soft x-ray arrays for plasma position control and the separation of βp from li, hard x-ray detectors for energetic electron distributions, a multichannel electron cyclotron emission radiometer for ballooning mode identification, and passive plate eddy current monitors for kink stabilization. We will describe the present status of these systems on PBX-M, and discuss their suitability for feedback applications.
Exploring the temperature dependence of failure mechanisms in fragmenting metal cylinders
NASA Astrophysics Data System (ADS)
Jones, David; Chapman, David; Hazell, Paul; Bland, Simon; Eakins, Daniel
2011-06-01
We present current work to investigate the influence of temperature on the dynamic fragmentation of metals. Pre-heated/cooled cylinders of Ti-6Al-4V were subjected to rapid radial expansion up to and past the point of failure using a modified expanding insert method on a single stage gas gun. Additional experiments were performed using an electromagnetic drive system to produce uniform deformations on targets of differing dimensions (radius, wall thickness). Issues concerning the geometry of the experiments, methods of heating and cooling the sample and diagnostics are covered. Finally, the role of temperature on adiabatic shear banding and fragment distribution statistics is discussed.
Electron-cyclotron wave scattering by edge density fluctuations in ITER
NASA Astrophysics Data System (ADS)
Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Strintzi, Dafni; Chatziantonaki, Ioanna; Vlahos, Loukas
2009-11-01
The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.
Material condition assessment with eddy current sensors
NASA Technical Reports Server (NTRS)
Goldfine, Neil J. (Inventor); Washabaugh, Andrew P. (Inventor); Sheiretov, Yanko K. (Inventor); Schlicker, Darrell E. (Inventor); Lyons, Robert J. (Inventor); Windoloski, Mark D. (Inventor); Craven, Christopher A. (Inventor); Tsukernik, Vladimir B. (Inventor); Grundy, David C. (Inventor)
2010-01-01
Eddy current sensors and sensor arrays are used for process quality and material condition assessment of conducting materials. In an embodiment, changes in spatially registered high resolution images taken before and after cold work processing reflect the quality of the process, such as intensity and coverage. These images also permit the suppression or removal of local outlier variations. Anisotropy in a material property, such as magnetic permeability or electrical conductivity, can be intentionally introduced and used to assess material condition resulting from an operation, such as a cold work or heat treatment. The anisotropy is determined by sensors that provide directional property measurements. The sensor directionality arises from constructs that use a linear conducting drive segment to impose the magnetic field in a test material. Maintaining the orientation of this drive segment, and associated sense elements, relative to a material edge provides enhanced sensitivity for crack detection at edges.
Study on heat pipe assisted thermoelectric power generation system from exhaust gas
NASA Astrophysics Data System (ADS)
Chi, Ri-Guang; Park, Jong-Chan; Rhi, Seok-Ho; Lee, Kye-Bock
2017-11-01
Currently, most fuel consumed by vehicles is released to the environment as thermal energy through the exhaust pipe. Environmentally friendly vehicle technology needs new methods to increase the recycling efficiency of waste exhaust thermal energy. The present study investigated how to improve the maximum power output of a TEG (Thermoelectric generator) system assisted with a heat pipe. Conventionally, the driving energy efficiency of an internal combustion engine is approximately less than 35%. TEG with Seebeck elements is a new idea for recycling waste exhaust heat energy. The TEG system can efficiently utilize low temperature waste heat, such as industrial waste heat and solar energy. In addition, the heat pipe can transfer heat from the automobile's exhaust gas to a TEG. To improve the efficiency of the thermal power generation system with a heat pipe, effects of various parameters, such as inclination angle, charged amount of the heat pipe, condenser temperature, and size of the TEM (thermoelectric element), were investigated. Experimental studies, CFD simulation, and the theoretical approach to thermoelectric modules were carried out, and the TEG system with heat pipe (15-20% charged, 20°-30° inclined configuration) showed the best performance.
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Sakai, J.-I.; Zhao, Jie; Neubert, T.; Buneman, Oscar
1994-01-01
We have studied the dynamics of a coalescence of current loops using three-dimensional electromagnetic (EM) particle simulation code. Our focus is the investigation of such kinetic processes as energy trasnfer, heating particles, and electromagnetic emissions associated with a current loop coalescence which cannot be studied by MHD simulations. First, the two loops undergo a pinching oscillation due to a pressure imbalance between the inside and outside of the current loop. During the pinching oscillation, a kinetic kink instability is excited and electrons in the loops are heated perpendicularly to an ambient magnetic field. Next, the two current loops collide and coalesce, while at the same time a helical structure grows further. Subsequently, the perturbed current, which is due to these helically bunched electrons, can drive a whistler instability. It should be noted in this case that the whistler wave is excited by the kinetic kink instability and not a beam instability. After the coalescence of two helical loops, tilting motions can be observed in the direction of left-hand rotation, and the helical structure will relax resulting in strong plasma heating mostly in the direction perpendicular to the ambient magnetic field. It is also shown that high-frequency electromagnetic waves can be emitted from the region where the two loops coalesce and propagate strongly in the direction of the electron drift velocity. These processes may be important in understanding heating mechansims for coronal loops as well as radio wave emission mechanisms from active regions of solar plasmas.
Heating performances of a IC in-blanket ring array
NASA Astrophysics Data System (ADS)
Bosia, G.; Ragona, R.
2015-12-01
An important limiting factor to the use of ICRF as candidate heating method in a commercial reactor is due to the evanescence of the fast wave in vacuum and in most of the SOL layer, imposing proximity of the launching structure to the plasma boundary and causing, at the highest power level, high RF standing and DC rectified voltages at the plasma periphery, with frequent voltage breakdowns and enhanced local wall loading. In a previous work [1] the concept for an Ion Cyclotron Heating & Current Drive array (and using a different wave guide technology, a Lower Hybrid array) based on the use of periodic ring structure, integrated in the reactor blanket first wall and operating at high input power and low power density, was introduced. Based on the above concept, the heating performance of such array operating on a commercial fusion reactor is estimated.
Heating performances of a IC in-blanket ring array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosia, G., E-mail: gbosia@to.infn.it; Ragona, R.
2015-12-10
An important limiting factor to the use of ICRF as candidate heating method in a commercial reactor is due to the evanescence of the fast wave in vacuum and in most of the SOL layer, imposing proximity of the launching structure to the plasma boundary and causing, at the highest power level, high RF standing and DC rectified voltages at the plasma periphery, with frequent voltage breakdowns and enhanced local wall loading. In a previous work [1] the concept for an Ion Cyclotron Heating & Current Drive array (and using a different wave guide technology, a Lower Hybrid array) basedmore » on the use of periodic ring structure, integrated in the reactor blanket first wall and operating at high input power and low power density, was introduced. Based on the above concept, the heating performance of such array operating on a commercial fusion reactor is estimated.« less
Status of the 1 MeV Accelerator Design for ITER NBI
NASA Astrophysics Data System (ADS)
Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Sonato, P.; Toigo, V.; Zaccaria, P.; Kraus, W.; Franzen, P.; Heinemann, B.; Inoue, T.; Watanabe, K.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; De Esch, H.
2011-09-01
The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D- at 1 MeV for 3600 sec. In order to realize the beam source, design and R&D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Guiding
Accurate measurement of the edge electron density profile is essential to optimizing antenna coupling and assessment of impurity contamination in studying long-pulse plasma heating and current drive in fusion devices. Measurement of the edge density profile has been demonstrated on the US fusion devices such as C-Mod, DIII-D, and TFTR amongst many devices, and has been used for RF loading and impurity modeling calculations for many years. University of Science and Technology of China (USTC) has recently installed a density profile reflectometer system on the EAST fusion device at the Institute of Plasma Physics, Chinese Academy of Sciences in Chinamore » based on the University of California Los Angeles (UCLA)-designed reflectometer system on the DIII-D fusion device at General Atomics Company in San Diego, California. UCLA has been working with USTC to optimize the existing microwave antenna, waveguide system, microwave electronics, and data analysis to produce reliable edge density profiles. During the past budget year, progress has been made in all three major areas: effort to achieve reliable system operations under various EAST operational conditions, effort to optimize system performance, and effort to provide quality density profiles into EAST’s database routinely.« less
EC power management and NTM control in ITER
NASA Astrophysics Data System (ADS)
Poli, Francesca; Fredrickson, E.; Henderson, M.; Bertelli, N.; Farina, D.; Figini, L.; Nowak, S.; Poli, E.; Sauter, O.
2016-10-01
The suppression of Neoclassical Tearing Modes (NTMs) is an essential requirement for the achievement of the demonstration baseline in ITER. The Electron Cyclotron upper launcher is specifically designed to provide highly localized heating and current drive for NTM stabilization. In order to assess the power management for shared applications, we have performed time-dependent simulations for ITER scenarios covering operation from half to full field. The free-boundary TRANSP simulations evolve the magnetic equilibrium and the pressure profiles in response to the heating and current drive sources and are interfaced with a GRE for the evolution of size and frequency of the magnetic islands. Combined with a feedback control of the EC power and the steering angle, these simulations are used to model the plasma response to NTM control, accounting for the misalignment of the EC deposition with the resonant surfaces, uncertainties in the magnetic equilibrium reconstruction and in the magnetic island detection threshold. Simulations indicate that the threshold for detection of the island should not exceed 2-3cm, that pre-emptive control is a preferable option, and that for safe operation the power needed for NTM control should be reserved, rather than shared with other applications. Work supported by ITER under IO/RFQ/13/9550/JTR and by DOE under DE-AC02-09CH11466.
Parameter exploration for a Compact Advanced Tokamak DEMO
NASA Astrophysics Data System (ADS)
Weisberg, D. B.; Buttery, R. J.; Ferron, J. R.; Garofalo, A. M.; Snyder, P. B.; Turnbull, A. D.; Holcomb, C. T.; McClenaghan, J.; Canik, J.; Park, J.-M.
2017-10-01
A new parameter study has explored a range of design points to assess the physics feasibility for a compact 200MWe advanced tokamak DEMO that combines high beta (βN < 4) and high toroidal field (BT = 6 - 7 T). A unique aspect of this study is the use of a FASTRAN modeling suite that combines integrated transport, pedestal, stability, and heating & current drive calculations to predict steady-state solutions with neutral beam and helicon powered current drive. This study has identified a range of design solutions in a compact (R0 = 4 m), high-field (BT = 6 - 7 T), strongly-shaped (κ = 2 , δ = 0.6) device. Unlike previous proposals, C-AT DEMO takes advantage of high-beta operation as well as emerging advances in magnet technology to demonstrate net electric production in a moderately sized machine. We present results showing that the large bootstrap fraction and low recirculating power enabled by high normalized beta can achieve tolerable heat and neutron load with good H-mode access. The prediction of operating points with simultaneously achieved high-confinement (H98 < 1.3), high-density (fGW < 1.3), and high-beta warrants additional assessment of this approach towards a cost-attractive DEMO device. Work supported by the US DOE under DE-FC02-04ER54698.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it; Consorzio RFX, Corso Stati Uniti 4, Padova 35127; Sartori, E.
Megavolt ITER Injector Concept Advancement is the full scale prototype of the heating and current drive neutral beam injectors for ITER, to be built at Consorzio RFX (Padova). The engineering design of its components is challenging: the total heat loads they will be subjected to (expected between 2 and 19 MW), the high heat fluxes (up to 20 MW/m{sup 2}), and the beam pulse duration up to 1 h, set demanding requirements for reliable active cooling circuits. In support of the design, the thermo-hydraulic behavior of each cooling circuit under steady state condition has been investigated by using one-dimensional models.more » The final results, obtained considering a number of optimizations for the cooling circuits, show that all the requirements in terms of flow rate, temperature, and pressure drop are properly fulfilled.« less
Non-inductive current driven by Alfvén waves in solar coronal loops
NASA Astrophysics Data System (ADS)
Elfimov, A. G.; de Azevedo, C. A.; de Assis, A. S.
1996-08-01
It has been shown that Alfvén waves can drive non-inductive current in solar coronal loops via collisional or collisionless damping. Assuming that all the coronal-loop density of dissipated wave power (W= 10-3 erg cm-3 s-1), which is necessary to keep the plasma hot, is due to Alfvén wave electron heating, we have estimated the axial current density driven by Alfvén waves to be
NASA Technical Reports Server (NTRS)
2004-01-01
This plot maps the increasing amounts of energy needed to spin Spirit's right front wheel drive, which has been showing signs of age. The wheel has now traveled six times farther than its design life. Since Spirit's 126th day on Mars, this wheel has required additional electric current to run at normal speeds, as indicated with blue diamonds on this graph. Efforts to improve the situation by redistributing the lubricant in the wheel with heat and rest were only mildly successful (pink squares). To cope with the condition, rover planners have come up with a creative solution: they will drive the rover backwards using five of six wheels. The sixth wheel will be activated only when the terrain demands it.Regimes of heating and dynamical response in driven many-body localized systems
NASA Astrophysics Data System (ADS)
Gopalakrishnan, Sarang; Knap, Michael; Demler, Eugene
2016-09-01
We explore the response of many-body localized (MBL) systems to periodic driving of arbitrary amplitude, focusing on the rate at which they exchange energy with the drive. To this end, we introduce an infinite-temperature generalization of the effective "heating rate" in terms of the spread of a random walk in energy space. We compute this heating rate numerically and estimate it analytically in various regimes. When the drive amplitude is much smaller than the frequency, this effective heating rate is given by linear response theory with a coefficient that is proportional to the optical conductivity; in the opposite limit, the response is nonlinear and the heating rate is a nontrivial power law of time. We discuss the mechanisms underlying this crossover in the MBL phase. We comment on implications for the subdiffusive thermal phase near the MBL transition, and for response in imperfectly isolated MBL systems.
Heat rejection efficiency research of new energy automobile radiators
NASA Astrophysics Data System (ADS)
Ma, W. S.; Shen, W. X.; Zhang, L. W.
2018-03-01
The driving system of new energy vehicle has larger heat load than conventional engine. How to ensure the heat dissipation performance of the cooling system is the focus of the design of new energy vehicle thermal management system. In this paper, the heat dissipation efficiency of the radiator of the hybrid electric vehicle is taken as the research object, the heat dissipation efficiency of the radiator of the new energy vehicle is studied through the multi-working-condition enthalpy difference test. In this paper, the test method in the current standard QC/T 468-2010 “automobile radiator” is taken, but not limited to the test conditions specified in the standard, 5 types of automobile radiator are chosen, each of them is tested 20 times in simulated condition of different wind speed and engine inlet temperature. Finally, regression analysis is carried out for the test results, and regression equation describing the relationship of radiator heat dissipation heat dissipation efficiency air side flow rate cooling medium velocity and inlet air temperature is obtained, and the influence rule is systematically discussed.
Method and system for storing and generating hydrogen
NASA Technical Reports Server (NTRS)
Kindler, Andrew (Inventor); Narayanan, Sri R. (Inventor); Huang, Yuhong (Inventor)
2011-01-01
A method and system for storing and generating hydrogen. The method comprises generating hydrogen and heat from the reaction of a metal or metal compound with water. The heat generated from this reaction may then be converted to other forms of energy such as by passing the heat through a thermal electric device to recover electrical energy for storage in a battery. In an alternative and preferred embodiment, the heat is used to drive additional reactions for generating more hydrogen and is preferably used to drive an endothermic dehydrogenation reaction resulting in increased hydrogen generation and consumption of the heat.
Effect of Joule heating and current crowding on electromigration in mobile technology
NASA Astrophysics Data System (ADS)
Tu, K. N.; Liu, Yingxia; Li, Menglu
2017-03-01
In the present era of big data and internet of things, the use of microelectronic products in all aspects of our life is manifested by the ubiquitous presence of mobile devices as i-phones and wearable i-products. These devices are facing the need for higher power and greater functionality applications such as in i-health, yet they are limited by physical size. At the moment, software (Apps) is much ahead of hardware in mobile technology. To advance hardware, the end of Moore's law in two-dimensional integrated circuits can be extended by three-dimensional integrated circuits (3D ICs). The concept of 3D ICs has been with us for more than ten years. The challenge in 3D IC technology is dense packing by using both vertical and horizontal interconnections. Mass production of 3D IC devices is behind schedule due to cost because of low yield and uncertain reliability. Joule heating is serious in a dense structure because of heat generation and dissipation. A change of reliability paradigm has advanced from failure at a specific circuit component to failure at a system level weak-link. Currently, the electronic industry is introducing 3D IC devices in mainframe computers, where cost is not an issue, for the purpose of collecting field data of failure, especially the effect of Joule heating and current crowding on electromigration. This review will concentrate on the positive feedback between Joule heating and electromigration, resulting in an accelerated system level weak-link failure. A new driving force of electromigration, the electric potential gradient force due to current crowding, will be reviewed critically. The induced failure tends to occur in the low current density region.
Integration and Validation of a Thermal Energy Storage System for Electric Vehicle Cabin Heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mingyu; Craig, Timothy; Wolfe, Edward
It is widely recognized in the automotive industry that, in very cold climatic conditions, the driving range of an Electric Vehicle (EV) can be reduced by 50% or more. In an effort to minimize the EV range penalty, a novel thermal energy storage system has been designed to provide cabin heating in EVs and Plug-in Hybrid Electric Vehicles (PHEVs) by using an advanced phase change material (PCM). This system is known as the Electrical PCM-based Thermal Heating System (ePATHS) [1, 2]. When the EV is connected to the electric grid to charge its traction battery, the ePATHS system is alsomore » “charged” with thermal energy. The stored heat is subsequently deployed for cabin comfort heating during driving, for example during commuting to and from work.The ePATHS system, especially the PCM heat exchanger component, has gone through substantial redesign in order to meet functionality and commercialization requirements. The final system development for EV implementation has occurred on a mid-range EV and has been evaluated for its capability to extend the driving range. Both simulated driving in a climatic tunnel and actual road testing have been carried out. The ePATHS has demonstrated its ability to supply the entire cabin heating needs for a round trip commute totaling 46 minutes, including 8 hours of parking, at an ambient temperature of -10°C.« less
Reexamination of Induction Heating of Primitive Bodies in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Menzel, Raymond L.; Roberge, Wayne G.
2013-10-01
We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the "motional electric field" that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in the freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows "electrodynamic heating," calculate its upper limits, and compare them to heating produced by short-lived radionuclides.
Resist heating effect on e-beam mask writing at 75 kV and 60 A/cm2
NASA Astrophysics Data System (ADS)
Benes, Zdenek; Deverich, Christina; Huang, Chester; Lawliss, Mark
2003-12-01
Resist heating has been known to be one of the main contributors to local CD variation in mask patterning using variable shape e-beam tools. Increasingly complex mask patterns require increased number of shapes which drives the need for higher electron beam current densities to maintain reasonable write times. As beam current density is increased, CD error resulting from resist heating may become a dominating contributor to local CD variations. In this experimental study, the IBM EL4+ mask writer with high voltage and high current density has been used to quantitatively investigate the effect of resist heating on the local CD uniformity. ZEP 7000 and several chemically amplified resists have been evaluated under various exposure conditions (single-pass, multi-pass, variable spot size) and pattern densities. Patterns were designed specifically to allow easy measurement of local CD variations with write strategies designed to maximize the effect of resist heating. Local CD variations as high as 15 nm in 18.75 × 18.75 μm sub-field size have been observed for ZEP 7000 in a single-pass writing with full 1000 nm spots at 50% pattern density. This number can be reduced by increasing the number of passes or by decreasing the maximum spot size. The local CD variation has been reduced to as low as 2 nm for ZEP 7000 for the same pattern under modified exposure conditions. The effectiveness of various writing strategies is discussed as well as their possible deficiencies. Minimal or no resist heating effects have been observed for the chemically amplified resists studied. The results suggest that the resist heating effect can be well controlled by careful selection of the resist/process system and/or writing strategy and that resist heating does not have to pose a problem for high throughput e-beam mask making that requires high voltage and high current densities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vukovic, M.; Harper, M.; Breun, R.
1995-12-31
Current drive experiments on the Phaedrus-T tokamak performed with a low field side two-strap fast wave antenna at frequencies below {omega}{sub cH} show loop volt drops of up to 30% with strap phasing (0, {pi}/2). RF induced density fluctuations in the plasma core have also been observed with a microwave reflectometer. It is believed that they are caused by kinetic Alfven waves generated by mode conversion of fast waves at the Alfven resonance. Correlation of the observed density fluctuations with the magnitude of the {Delta}V{sub loop} suggest that the {Delta}V{sub loop} is attributable to current drive/heating due to mode convertedmore » kinetic Alfven waves. The toroidal cold plasma wave code LION is used to model the Alfven resonance mode conversion surfaces in the experiments while the cylindrical hot plasma kinetic wave code ISMENE is used to model the behavior of kinetic Alfven waves at the Alfven resonance location. Initial results obtained from limited density, magnetic field, antenna phase, and impurity scans show good agreement between the RF induced density fluctuations and the predicted behavior of the kinetic Alfven waves. Detailed comparisons between the density fluctuations and the code predictions are presented.« less
NASA Astrophysics Data System (ADS)
Richner, N. J.; Bongard, M. W.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Reusch, J. A.
2017-10-01
Understanding the current drive mechanism(s) of Local Helicity Injection (LHI) is needed for confident scaling to next-step devices. 3D resistive MHD NIMROD simulations ascribe large-scale reconnection events of helical injector current streams as a current drive mechanism. The events generate n = 1 B fluctuations on outboard Mirnov coils, consistent with experiment. New results suggest additional mechanisms are also active during LHI. Reconnection-driven ion heating is better correlated with high frequency activity than the n = 1 bursts. Experiments with inboard injectors can exhibit an abrupt ( 250 μs) transition to a reduced MHD state on outboard Mirnovs where the n = 1 feature vanishes, while still maintaining current growth and/or sustainment. A new insertable magnetics probe was developed to investigate these phenomena. It measures TeXBz up to 3.5 MHz at 15 points over a 14 cm radial extent (ΔR 1 cm). Measurements with this probe are consistent with the outboard Mirnovs when positioned far from the plasma boundary. However, measurements near the plasma edge lack the reduction in broadband power (up to 2 MHz) following the transition. The probe shows power is concentrated at higher frequencies during LHI, with mostly flat B spectra up to 600-800 kHz ( fci) at which there is a resonance-like feature; at higher frequencies, the power decreases. These measurements suggest short-wavelength activity may play a significant role in LHI current drive. Work supported by US DOE Grant DE-FG02-96ER54375.
Proposed low-temperature solar engine
NASA Technical Reports Server (NTRS)
Peoples, J. A.; Kearns, G. B.
1976-01-01
Engine, proposed for conversion of Sun's heat to motion without need for heat pumps and associated equipment, uses expansion and contraction of aluminum rod to drive tow out-of-phase windlasses. Linear displacement of 0.076 cm in rod will exert sufficient force to drive pumps, generators, and compressors.
Liquid belt radiator design study
NASA Technical Reports Server (NTRS)
Teagan, W. P.; Fitzgerald, K. F.
1986-01-01
The Liquid Belt Radiator (LBR) is an advanced concept developed to meet the needs of anticipated future space missions. A previous study documented the advantages of this concept as a lightweight, easily deployable alternative to present day space heat rejection systems. The technical efforts associated with this study concentrate on refining the concept of the LBR as well as examining the issues of belt dynamics and potential application of the LBR to intermediate and high temperature heat rejection applications. A low temperature point design developed in previous work is updated assuming the use of diffusion pump oil, Santovac-6, as the heat transfer media. Additional analytical and design effort is directed toward determining the impact of interface heat exchanger, fluid bath sealing, and belt drive mechanism designs on system performance and mass. The updated design supports the earlier result by indicating a significant reduction in system specific system mass as compared to heat pipe or pumped fluid radiator concepts currently under consideration (1.3 kg/sq m versus 5 kg/sq m).
Air-sea heat exchange, an element of the water cycle
NASA Technical Reports Server (NTRS)
Chahine, M. T.
1984-01-01
The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.
Advances in multi-megawatt lower hybrid technology in support of steady-state tokamak operation
NASA Astrophysics Data System (ADS)
Delpech, L.; Achard, J.; Armitano, A.; Artaud, J. F.; Bae, Y. S.; Belo, J. H.; Berger-By, G.; Bouquey, F.; Cho, M. H.; Corbel, E.; Decker, J.; Do, H.; Dumont, R.; Ekedahl, A.; Garibaldi, P.; Goniche, M.; Guilhem, D.; Hillairet, J.; Hoang, G. T.; Kim, H. S.; Kim, J. H.; Kim, H.; Kwak, J. G.; Magne, R.; Mollard, P.; Na, Y. S.; Namkung, W.; Oh, Y. K.; Park, S.; Park, H.; Peysson, Y.; Poli, S.; Prou, M.; Samaille, F.; Yang, H. L.; The Tore Supra Team
2014-10-01
It has been demonstrated that lower hybrid current drive (LHCD) systems play a crucial role for steady-state tokamak operation, owing to their high current drive (CD) efficiency and hence their capability to reduce flux consumption. This paper describes the extensive technology programmes developed for the Tore Supra (France) and the KSTAR (Korea) tokamaks in order to bring continuous wave (CW) LHCD systems into operation. The Tore Supra LHCD generator at 3.7 GHz is fully CW compatible, with RF power PRF = 9.2 MW available at the generator to feed two actively water-cooled launchers. On Tore Supra, the most recent and novel passive active multijunction (PAM) launcher has sustained 2.7 MW (corresponding to its design value of 25 MW m-2 at the launcher mouth) for a 78 s flat-top discharge, with low reflected power even at large plasma-launcher gaps. The fully active multijunction (FAM) launcher has reached 3.8 MW of coupled power (24 MW m-2 at the launcher mouth) with the new TH2103C klystrons. By combining both the PAM and FAM launchers, 950 MJ of energy, using 5.2 MW of LHCD and 1 MW of ICRH (ion cyclotron resonance heating), was injected for 160 s in 2011. The 3.7 GHz CW LHCD system will be a key element within the W (for tungsten) environment in steady-state Tokamak (WEST) project, where the aim is to test ITER technologies for high heat flux components in relevant heat flux density and particle fluence conditions. On KSTAR, a 2 MW LHCD system operating at 5 GHz is under development. Recently the 5 GHz prototype klystron has reached 500 kW/600 s on a matched load, and studies are ongoing to design a PAM launcher. In addition to the studies of technology, a combination of ray-tracing and Fokker-Planck calculations have been performed to evaluate the driven current and the power deposition due to LH waves, and to optimize the N∥ spectrum for the future launcher design. Furthermore, an LHCD system at 5 GHz is being considered for a future upgrade of the ITER Heating and Current Drive systems, with a power capability of 20 MW coupled to the plasma using a PAM launcher. An R&D programme is being conducted at CEA/IRFM to develop a BeO vacuum window which is a safety critical component of the transmission line. In addition, a mock-up of a TE10-TE30 mode converter at 5 GHz, designed for a rectangular transmission line, has been manufactured and successfully tested on Tore Supra at low RF power.
Dimensionless factors for an alternating-current non-thermal arc plasma
NASA Astrophysics Data System (ADS)
Zhang, Si-Yuan; Li, Xiao-Song; Liu, Jin-Bao; Liu, Jing-Lin; Li, He-Ping; Zhu, Ai-Min
2016-12-01
A gliding arc discharge, as a source of warm plasma combining advantages of both thermal and cold plasmas, would have promising application prospects in the fields of fuel conversion, combustion enhancement, material synthesis, surface modifications, pollution control, etc. In order to gain insight into the features of an alternating-current gliding arc discharge plasma, three dimensionless factors, i.e., the extinction span (ψ), current lag (δ), and heating lag (χ) factors are proposed in this letter based on the measured waveforms of the discharge voltage and current in an AC gliding arc discharge plasma. The influences of the driving frequency of the power supply (f) on these three dimensionless parameters are investigated experimentally with the explanations on the physical meanings of these factors. The experimental results show that a higher value of f would lead to the lower values of ψ and δ, as well as a higher value of χ. These experimental phenomena indicate a lower threshold ignition voltage of the discharges, a lower current-growth inertia of the gliding arcs and a larger relative thermal inertia of the plasmas with increase the driving frequency of the power supply in the operating parameter range studied in this letter.
Novel Power Electronics Three-Dimensional Heat Exchanger: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, K.; Cousineau, J.; Lustbader, J.
2014-08-01
Electric drive systems for vehicle propulsion enable technologies critical to meeting challenges for energy, environmental, and economic security. Enabling cost-effective electric drive systems requires reductions in inverter power semiconductor area. As critical components of the electric drive system are made smaller, heat removal becomes an increasing challenge. In this paper, we demonstrate an integrated approach to the design of thermal management systems for power semiconductors that matches the passive thermal resistance of the packaging with the active convective cooling performance of the heat exchanger. The heat exchanger concept builds on existing semiconductor thermal management improvements described in literature and patents,more » which include improved bonded interface materials, direct cooling of the semiconductor packages, and double-sided cooling. The key difference in the described concept is the achievement of high heat transfer performance with less aggressive cooling techniques by optimizing the passive and active heat transfer paths. An extruded aluminum design was selected because of its lower tooling cost, higher performance, and scalability in comparison to cast aluminum. Results demonstrated a heat flux improvement of a factor of two, and a package heat density improvement over 30%, which achieved the thermal performance targets.« less
Quantum heat engines and refrigerators: continuous devices.
Kosloff, Ronnie; Levy, Amikam
2014-01-01
Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath.
Nuclear propulsion apparatus with alternate reactor segments
Szekely, Thomas
1979-04-03
1. Nuclear propulsion apparatus comprising: A. means for compressing incoming air; B. nuclear fission reactor means for heating said air; C. means for expanding a portion of the heated air to drive said compressing means; D. said nuclear fission reactor means being divided into a plurality of radially extending segments; E. means for directing a portion of the compressed air for heating through alternate segments of said reactor means and another portion of the compressed air for heating through the remaining segments of said reactor means; and F. means for further expanding the heated air from said drive means and the remaining heated air from said reactor means through nozzle means to effect reactive thrust on said apparatus.
Direct Fusion Drive for a Human Mars Orbital Mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paluszek, Michael; Pajer, Gary; Razin, Yosef
2014-08-01
The Direct Fusion Drive (DFD) is a nuclear fusion engine that produces both thrust and electric power. It employs a field reversed configuration with an odd-parity rotating magnetic field heating system to heat the plasma to fusion temperatures. The engine uses deuterium and helium-3 as fuel and additional deuterium that is heated in the scrape-off layer for thrust augmentation. In this way variable exhaust velocity and thrust is obtained.
SELF-ORGANIZATION OF RECONNECTING PLASMAS TO MARGINAL COLLISIONALITY IN THE SOLAR CORONA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imada, S.; Zweibel, E. G.
We explore the suggestions by Uzdensky and Cassak et al. that coronal loops heated by magnetic reconnection should self-organize to a state of marginal collisionality. We discuss their model of coronal loop dynamics with a one-dimensional hydrodynamic calculation. We assume that many current sheets are present, with a distribution of thicknesses, but that only current sheets thinner than the ion skin depth can rapidly reconnect. This assumption naturally causes a density-dependent heating rate which is actively regulated by the plasma. We report nine numerical simulation results of coronal loop hydrodynamics in which the absolute values of the heating rates aremore » different but their density dependences are the same. We find two regimes of behavior, depending on the amplitude of the heating rate. In the case that the amplitude of heating is below a threshold value, the loop is in stable equilibrium. Typically, the upper and less dense part of a coronal loop is collisionlessly heated and conductively cooled. When the amplitude of heating is above the threshold, the conductive flux to the lower atmosphere required to balance collisionless heating drives an evaporative flow which quenches fast reconnection, ultimately cooling and draining the loop until the cycle begins again. The key elements of this cycle are gravity and the density dependence of the heating function. Some additional factors are present, including pressure-driven flows from the loop top, which carry a large enthalpy flux and play an important role in reducing the density. We find that on average the density of the system is close to the marginally collisionless value.« less
Buprenorphine Transdermal Patch
... it to direct heat such as heating pads, electric blankets, heat lamps, saunas, hot tubs, and heated ... may make you drowsy. Do not drive a car, operate machinery, or do other possibly dangerous activities ...
... patch from direct heat such as heating pads, electric blankets, heat lamps, saunas, hot tubs, and heated ... may make you drowsy. Do not drive a car or operate machinery until you know how this ...
Modeling of a Thermoelectric Generator for Thermal Energy Regeneration in Automobiles
NASA Astrophysics Data System (ADS)
Tatarinov, Dimitri; Koppers, M.; Bastian, G.; Schramm, D.
2013-07-01
In the field of passenger transportation a reduction of the consumption of fossil fuels has to be achieved by any measures. Advanced designs of internal combustion engine have the potential to reduce CO2 emissions, but still suffer from low efficiencies in the range from 33% to 44%. Recuperation of waste heat can be achieved with thermoelectric generators (TEGs) that convert heat directly into electric energy, thus offering a less complicated setup as compared with thermodynamic cycle processes. During a specific driving cycle of a car, the heat currents and temperature levels of the exhaust gas are dynamic quantities. To optimize a thermoelectric recuperation system fully, various parameters have to be tested, for example, the electric and thermal conductivities of the TEG and consequently the heat absorbed and rejected from the system, the generated electrical power, and the system efficiency. A Simulink model consisting of a package for dynamic calculation of energy management in a vehicle, coupled with a model of the thermoelectric generator system placed on the exhaust system, determines the drive-cycle-dependent efficiency of the heat recovery system, thus calculating the efficiency gain of the vehicle. The simulation also shows the temperature drop at the heat exchanger along the direction of the exhaust flow and hence the variation of the voltage drop of consecutively arranged TEG modules. The connection between the temperature distribution and the optimal electrical circuitry of the TEG modules constituting the entire thermoelectric recuperation system can then be examined. The simulation results are compared with data obtained from laboratory experiments. We discuss error bars and the accuracy of the simulation results for practical thermoelectric systems embedded in cars.
Two coupled, driven Ising spin systems working as an engine.
Basu, Debarshi; Nandi, Joydip; Jayannavar, A M; Marathe, Rahul
2017-05-01
Miniaturized heat engines constitute a fascinating field of current research. Many theoretical and experimental studies are being conducted that involve colloidal particles in harmonic traps as well as bacterial baths acting like thermal baths. These systems are micron-sized and are subjected to large thermal fluctuations. Hence, for these systems average thermodynamic quantities, such as work done, heat exchanged, and efficiency, lose meaning unless otherwise supported by their full probability distributions. Earlier studies on microengines are concerned with applying Carnot or Stirling engine protocols to miniaturized systems, where system undergoes typical two isothermal and two adiabatic changes. Unlike these models we study a prototype system of two classical Ising spins driven by time-dependent, phase-different, external magnetic fields. These spins are simultaneously in contact with two heat reservoirs at different temperatures for the full duration of the driving protocol. Performance of the model as an engine or a refrigerator depends only on a single parameter, namely the phase between two external drivings. We study this system in terms of fluctuations in efficiency and coefficient of performance (COP). We find full distributions of these quantities numerically and study the tails of these distributions. We also study reliability of the engine. We find the fluctuations dominate mean values of efficiency and COP, and their probability distributions are broad with power law tails.
Two coupled, driven Ising spin systems working as an engine
NASA Astrophysics Data System (ADS)
Basu, Debarshi; Nandi, Joydip; Jayannavar, A. M.; Marathe, Rahul
2017-05-01
Miniaturized heat engines constitute a fascinating field of current research. Many theoretical and experimental studies are being conducted that involve colloidal particles in harmonic traps as well as bacterial baths acting like thermal baths. These systems are micron-sized and are subjected to large thermal fluctuations. Hence, for these systems average thermodynamic quantities, such as work done, heat exchanged, and efficiency, lose meaning unless otherwise supported by their full probability distributions. Earlier studies on microengines are concerned with applying Carnot or Stirling engine protocols to miniaturized systems, where system undergoes typical two isothermal and two adiabatic changes. Unlike these models we study a prototype system of two classical Ising spins driven by time-dependent, phase-different, external magnetic fields. These spins are simultaneously in contact with two heat reservoirs at different temperatures for the full duration of the driving protocol. Performance of the model as an engine or a refrigerator depends only on a single parameter, namely the phase between two external drivings. We study this system in terms of fluctuations in efficiency and coefficient of performance (COP). We find full distributions of these quantities numerically and study the tails of these distributions. We also study reliability of the engine. We find the fluctuations dominate mean values of efficiency and COP, and their probability distributions are broad with power law tails.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Dongcheol; Peterson, B. J.; Lee, Seung Hun
The resistive bolometers have been successfully installed in the midplane of L-port in Korea Superconducting Tokamak Advanced Research (KSTAR) device. The spatial and temporal resolutions, 4.5 cm and {approx}1 kHz, respectively, enable us to measure the radial profile of the total radiated power from magnetically confined plasma at a high temperature through radiation and neutral particles. The radiated power was measured at all shots. Even at low plasma current, the bolometer signal was detectable. The electron cyclotron resonance heating (ECH) has been used in tokamak for ECH assisted start-up and plasma control by local heating and current drive. The detectorsmore » of resistive bolometer, near the antenna of ECH, are affected by electron cyclotron wave. The tomographic reconstruction, using the Phillips-Tikhonov regularization method, will be carried out for a major radial profile of the radiation emissivity of the circular cross-section plasma.« less
NASA Technical Reports Server (NTRS)
Fink, Richard
2015-01-01
The increasing use of power electronics, such as high-current semiconductor devices and modules, within space vehicles is driving the need to develop specialty thermal management materials in both the packaging of these discrete devices and the packaging of modules consisting of these device arrays. Developed by Applied Nanotech, Inc. (ANI), CarbAl heat transfer material is uniquely characterized by its low density, high thermal diffusivity, and high thermal conductivity. Its coefficient of thermal expansion (CTE) is similar to most power electronic materials, making it an effective base plate substrate for state-of-the-art silicon carbide (SiC) super junction transistors. The material currently is being used to optimize hybrid vehicle inverter packaging. Adapting CarbAl-based substrates to space applications was a major focus of the SBIR project work. In Phase I, ANI completed modeling and experimentation to validate its deployment in a space environment. Key parameters related to cryogenic temperature scaling of CTE, thermal conductivity, and mechanical strength. In Phase II, the company concentrated on improving heat sinks and thermally conductive circuit boards for power electronic applications.
NASA Astrophysics Data System (ADS)
Luo, Weili
2017-11-01
A new type of heat engine has been proposed in 2005 that defies fundamental thermodynamic law: A specifically designed magnetic body force can reverse heat flow from high temperature to low temperature. This mechanism can drive heat to higher temperature, rendering the possibility to re-use the ``waste heat''. As the result, the efficiency is much higher than that of the Carnot Engine. In a recent paper a realization of this proposed mechanism is reported: by using a specific configuration of temperature and magnetic field gradients, we observed that magnetic body force suppresses the gravito-thermal convective heat when the gradients of temperature and field are anti-parallel to each other. This driving force stops the heat flow of approaching to thermal equilibrium in the system, causing the temperature difference across the sample to increase with applied fields. In this work, I will discuss the driving mechanism for this phenomenon and its application in the proposed engine. This remarkable result suggests that the 2nd law of thermodynamics maybe conditioned and needs to be re-examined.
Heat pipe cooled heat rejection subsystem modelling for nuclear electric propulsion
NASA Astrophysics Data System (ADS)
Moriarty, Michael P.
1993-11-01
NASA LeRC is currently developing a FORTRAN based computer model of a complete nuclear electric propulsion (NEP) vehicle that can be used for piloted and cargo missions to the Moon or Mars. Proposed designs feature either a Brayton or a K-Rankine power conversion cycle to drive a turbine coupled with rotary alternators. Both ion and magnetoplasmodynamic (MPD) thrusters will be considered in the model. In support of the NEP model, Rocketdyne is developing power conversion, heat rejection, and power management and distribution (PMAD) subroutines. The subroutines will be incorporated into the NEP vehicle model which will be written by NASA LeRC. The purpose is to document the heat pipe cooled heat rejection subsystem model and its supporting subroutines. The heat pipe cooled heat rejection subsystem model is designed to provide estimate of the mass and performance of the equipment used to reject heat from Brayton and Rankine cycle power conversion systems. The subroutine models the ductwork and heat pipe cooled manifold for a gas cooled Brayton; the heat sink heat exchanger, liquid loop piping, expansion compensator, pump and manifold for a liquid loop cooled Brayton; and a shear flow condenser for a K-Rankine system. In each case, the final heat rejection is made by way of a heat pipe radiator. The radiator is sized to reject the amount of heat necessary.
Heat pipe cooled heat rejection subsystem modelling for nuclear electric propulsion
NASA Technical Reports Server (NTRS)
Moriarty, Michael P.
1993-01-01
NASA LeRC is currently developing a FORTRAN based computer model of a complete nuclear electric propulsion (NEP) vehicle that can be used for piloted and cargo missions to the Moon or Mars. Proposed designs feature either a Brayton or a K-Rankine power conversion cycle to drive a turbine coupled with rotary alternators. Both ion and magnetoplasmodynamic (MPD) thrusters will be considered in the model. In support of the NEP model, Rocketdyne is developing power conversion, heat rejection, and power management and distribution (PMAD) subroutines. The subroutines will be incorporated into the NEP vehicle model which will be written by NASA LeRC. The purpose is to document the heat pipe cooled heat rejection subsystem model and its supporting subroutines. The heat pipe cooled heat rejection subsystem model is designed to provide estimate of the mass and performance of the equipment used to reject heat from Brayton and Rankine cycle power conversion systems. The subroutine models the ductwork and heat pipe cooled manifold for a gas cooled Brayton; the heat sink heat exchanger, liquid loop piping, expansion compensator, pump and manifold for a liquid loop cooled Brayton; and a shear flow condenser for a K-Rankine system. In each case, the final heat rejection is made by way of a heat pipe radiator. The radiator is sized to reject the amount of heat necessary.
NASA Astrophysics Data System (ADS)
Chapman, I. T.; Graves, J. P.; Sauter, O.; Zucca, C.; Asunta, O.; Buttery, R. J.; Coda, S.; Goodman, T.; Igochine, V.; Johnson, T.; Jucker, M.; La Haye, R. J.; Lennholm, M.; Contributors, JET-EFDA
2013-06-01
13 MW of electron cyclotron current drive (ECCD) power deposited inside the q = 1 surface is likely to reduce the sawtooth period in ITER baseline scenario below the level empirically predicted to trigger neoclassical tearing modes (NTMs). However, since the ECCD control scheme is solely predicated upon changing the local magnetic shear, it is prudent to plan to use a complementary scheme which directly decreases the potential energy of the kink mode in order to reduce the sawtooth period. In the event that the natural sawtooth period is longer than expected, due to enhanced α particle stabilization for instance, this ancillary sawtooth control can be provided from >10MW of ion cyclotron resonance heating (ICRH) power with a resonance just inside the q = 1 surface. Both ECCD and ICRH control schemes would benefit greatly from active feedback of the deposition with respect to the rational surface. If the q = 1 surface can be maintained closer to the magnetic axis, the efficacy of ECCD and ICRH schemes significantly increases, the negative effect on the fusion gain is reduced, and off-axis negative-ion neutral beam injection (NNBI) can also be considered for sawtooth control. Consequently, schemes to reduce the q = 1 radius are highly desirable, such as early heating to delay the current penetration and, of course, active sawtooth destabilization to mediate small frequent sawteeth and retain a small q = 1 radius. Finally, there remains a residual risk that the ECCD + ICRH control actuators cannot keep the sawtooth period below the threshold for triggering NTMs (since this is derived only from empirical scaling and the control modelling has numerous caveats). If this is the case, a secondary control scheme of sawtooth stabilization via ECCD + ICRH + NNBI, interspersed with deliberate triggering of a crash through auxiliary power reduction and simultaneous pre-emptive NTM control by off-axis ECCD has been considered, permitting long transient periods with high fusion gain. The power requirements for the necessary degree of sawtooth control using either destabilization or stabilization schemes are expected to be within the specification of anticipated ICRH and ECRH heating in ITER, provided the requisite power can be dedicated to sawtooth control.
Design of the klystron filament power supply control system for EAST LHCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zege; Wang, Mao; Hu, Huaichuan
A filament is a critical component of the klystron used to heat the cathode. There are totally 44 klystrons in experimental advanced superconducting tokamak (EAST) lower hybrid current drive (LHCD) systems. All klystron filaments are powered by AC power suppliers through isolated transformers. In order to achieve better klystron preheat, a klystron filament power supply control system is designed to obtain the automatic control of all filament power suppliers. Klystron filament current is measured by PLC and the interlock between filament current and klystron high voltage system is also implemented. This design has already been deployed in two LHCD systemsmore » and proves feasible completely.« less
Compressed air production with waste heat utilization in industry
NASA Astrophysics Data System (ADS)
Nolting, E.
1984-06-01
The centralized power-heat coupling (PHC) technique using block heating power stations, is presented. Compressed air production in PHC technique with internal combustion engine drive achieves a high degree of primary energy utilization. Cost savings of 50% are reached compared to conventional production. The simultaneous utilization of compressed air and heat is especially interesting. A speed regulated drive via an internal combustion motor gives a further saving of 10% to 20% compared to intermittent operation. The high fuel utilization efficiency ( 80%) leads to a pay off after two years for operation times of 3000 hr.
Al 1s-2p absorption spectroscopy of shock-wave heating and compression in laser-driven planar foil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, H.; Regan, S. P.; Radha, P. B.
Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (T{sub e}{approx}10-40 eV, {rho}{approx}3-11 g/cm{sup 3}) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10{sup 14}-10{sup 15} W/cm{sup 2} and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4-1.7 keV. The laser ablation process launches 10-70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectramore » were analyzed using the atomic physic code PRISMSPECT to infer T{sub e} and {rho} in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f=0.06 and f=0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f=0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less
Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, H.; Regan, S.P.; Radha, P.B.
Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (Te ~ 10–40 eV, rho ~ 3–11 g/cm^3) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10^14–10^15 W/cm^2 and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4–1.7 keV. The laser ablation process launches 10–70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra weremore » analyzed using the atomic physic code PRISMSPECT to infer Te and rho in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f =0.06 and f =0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f = 0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less
REEXAMINATION OF INDUCTION HEATING OF PRIMITIVE BODIES IN PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menzel, Raymond L.; Roberge, Wayne G., E-mail: menzer@rpi.edu, E-mail: roberw@rpi.edu
2013-10-20
We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the 'motional electric field' that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in themore » freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows 'electrodynamic heating', calculate its upper limits, and compare them to heating produced by short-lived radionuclides.« less
Magnetically multiplexed heating of single domain nanoparticles
NASA Astrophysics Data System (ADS)
Christiansen, M. G.; Senko, A. W.; Chen, R.; Romero, G.; Anikeeva, P.
2014-05-01
Selective hysteretic heating of multiple collocated types of single domain magnetic nanoparticles (SDMNPs) by alternating magnetic fields (AMFs) may offer a useful tool for biomedical applications. The possibility of "magnetothermal multiplexing" has not yet been realized, in part due to prevalent use of linear response theory to model SDMNP heating in AMFs. Dynamic hysteresis modeling suggests that specific driving conditions play an underappreciated role in determining optimal material selection strategies for high heat dissipation. Motivated by this observation, magnetothermal multiplexing is theoretically predicted and empirically demonstrated by selecting SDMNPs with properties that suggest optimal hysteretic heat dissipation at dissimilar AMF driving conditions. This form of multiplexing could effectively offer multiple channels for minimally invasive biological signaling applications.
Nonlinear mixing of electromagnetic waves in plasmas.
Stefan, V; Cohen, B I; Joshi, C
1989-01-27
Recently, a strong research effort has been focused on applications of beat waves in plasma interactions. This research has important implications for various aspects of plasma physics and plasma technology. This article reviews the present status of the field and comments on plasma probing, heating of magnetically confined and laser plasmas, ionospheric plasma modification, beat-wave particle acceleration, beat-wave current drive in toroidal devices, beat wave-driven free-electron lasers, and phase conjugation with beat waves.
The ETA-II induction linac as a high-average-power FEL driver
NASA Astrophysics Data System (ADS)
Nexsen, W. E.; Atkinson, D. P.; Barrett, D. M.; Chen, Y.-J.; Clark, J. C.; Griffith, L. V.; Kirbie, H. C.; Newton, M. A.; Paul, A. C.; Sampayan, S.; Throop, A. L.; Turner, W. C.
1990-10-01
The Experimental Test Accelerator II (ETA-II) is the first induction linac designed specifically to FEL requirements. It is primarily intended to demonstrate induction accelerator technology for high-average-power, high-brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high-vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switches allows high-average-power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 MeV energy, 2 kA current, 20 ns pulse width and a brightness of 1 × 108 A/(m rad)2 at the wiggler with a pulse repetition frequency (prf) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 MeV energy, 3 kA current, 50 ns pulse width and a brightness of 1 × 108 A/(m rad)2 with a 5 kHz prf for 0.5 s. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, R.W.; Nevins, W.M.; Smith, G.R.
Electron cyclotron (EC) power has technological and physics advantages for heating and current drive in a tokamak reactor, and advances in source development make it credible for applications in ITER. Strong single pass absorption makes heating to ignition particularly simple. The optimized EC current drive (ECCD) efficiency ({l_angle}n{r_angle}IR/P) shows a linear temperature scaling at temperatures up to {approximately} 15 keV. For temperatures above 30 keV, the efficiency saturates at approximately 0.3{center_dot}10{sup 20} A/(m{sup 2}W) for a frequency of 220 GHz in an ITER target plasma with toroidal field of 6 T, due primarily to harmonic overlap [G.R. Smith et al.,more » Phys. Fluids 30 3633 (1987)] and to a lesser extent due to limitations arising from relativistic effects [N.J. Fisch, Phys. Rev. A 24 3245 (1981)]. The same efficiency can also be obtained at 170 GHz for the same plasma equilibrium except that the magnetic field is reduced to (170/220) {times} 6 T = 4.6 T. The ECCD efficiencies are obtained with the comprehensive 3D, bounce-averaged Fokker-Planck CQL3D codes [R.W. Harvey and M.G. McCoy, Proc. IAEA TCM/Advances in Simulation and Modeling in Thermonuclear Plasmas 1992, Montreal], and BANDIT3D [M.R. O`Brien, M. Cox, C.D. Warrick, and F. S. Zaitsev, ibid.].« less
Feasibility study of ECRH in NSTX-U startup plasma
NASA Astrophysics Data System (ADS)
Lopez, N. A.; Poli, F.; Taylor, G.; Harvey, R.; Petrov, Yu.
2016-10-01
A key mission goal of the National Spherical Torus eXperiment Upgrade (NSTX-U) is the demonstration of fully non-inductive startup and operation. In part to accomplish this, a 1MW, 28 GHz ECRH system is presently being developed for implementation on NSTX-U in 2018. Like most spherical tokamaks, NSTX-U operates in the overdense regime (fpe>fce) , which limits traditional ECRH to the early startup phase. An extensive modelling effort of the propagation and absorption of EC waves in the evolving plasma is thus required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and for current drive during this window. In fact, the ECRH system will play an important role in preparing a target plasma for subsequent injection of IC waves and NBI. Here we assess the feasibility of O1-mode ECRH in NSTX-U startup plasma at full field of 1T through time-dependent simulations performed with the transport solver TRANSP. Linear ray-tracing calculations conducted by GENRAY are coupled into the TRANSP framework, allowing the plasma equilibrium and the temperature profiles to evolve self-consistently in response to the injected microwave power. Furthermore, we investigate additional possibilities of heating and current drive made available through coupling the injected O-mode power to the electrostatic EBW via the slow X-mode as an intermediary.
Status of Europe's contribution to the ITER EC system
NASA Astrophysics Data System (ADS)
Albajar, F.; Aiello, G.; Alberti, S.; Arnold, F.; Avramidis, K.; Bader, M.; Batista, R.; Bertizzolo, R.; Bonicelli, T.; Braunmueller, F.; Brescan, C.; Bruschi, A.; von Burg, B.; Camino, K.; Carannante, G.; Casarin, V.; Castillo, A.; Cauvard, F.; Cavalieri, C.; Cavinato, M.; Chavan, R.; Chelis, J.; Cismondi, F.; Combescure, D.; Darbos, C.; Farina, D.; Fasel, D.; Figini, L.; Gagliardi, M.; Gandini, F.; Gantenbein, G.; Gassmann, T.; Gessner, R.; Goodman, T. P.; Gracia, V.; Grossetti, G.; Heemskerk, C.; Henderson, M.; Hermann, V.; Hogge, J. P.; Illy, S.; Ioannidis, Z.; Jelonnek, J.; Jin, J.; Kasparek, W.; Koning, J.; Krause, A. S.; Landis, J. D.; Latsas, G.; Li, F.; Mazzocchi, F.; Meier, A.; Moro, A.; Nousiainen, R.; Purohit, D.; Nowak, S.; Omori, T.; van Oosterhout, J.; Pacheco, J.; Pagonakis, I.; Platania, P.; Poli, E.; Preis, A. K.; Ronden, D.; Rozier, Y.; Rzesnicki, T.; Saibene, G.; Sanchez, F.; Sartori, F.; Sauter, O.; Scherer, T.; Schlatter, C.; Schreck, S.; Serikov, A.; Siravo, U.; Sozzi, C.; Spaeh, P.; Spichiger, A.; Strauss, D.; Takahashi, K.; Thumm, M.; Tigelis, I.; Vaccaro, A.; Vomvoridis, J.; Tran, M. Q.; Weinhorst, B.
2015-03-01
The electron cyclotron (EC) system of ITER for the initial configuration is designed to provide 20MW of RF power into the plasma during 3600s and a duty cycle of up to 25% for heating and (co and counter) non-inductive current drive, also used to control the MHD plasma instabilities. The EC system is being procured by 5 domestic agencies plus the ITER Organization (IO). F4E has the largest fraction of the EC procurements, which includes 8 high voltage power supplies (HVPS), 6 gyrotrons, the ex-vessel waveguides (includes isolation valves and diamond windows) for all launchers, 4 upper launchers and the main control system. F4E is working with IO to improve the overall design of the EC system by integrating consolidated technological advances, simplifying the interfaces, and doing global engineering analysis and assessments of EC heating and current drive physics and technology capabilities. Examples are the optimization of the HVPS and gyrotron requirements and performance relative to power modulation for MHD control, common qualification programs for diamond window procurements, assessment of the EC grounding system, and the optimization of the launcher steering angles for improved EC access. Here we provide an update on the status of Europe's contribution to the ITER EC system, and a summary of the global activities underway by F4E in collaboration with IO for the optimization of the subsystems.
NASA Astrophysics Data System (ADS)
Shamarokov, A. S.; Zorin, V. M.; Dai, Fam Kuang
2016-03-01
At the current stage of development of nuclear power engineering, high demands on nuclear power plants (NPP), including on their economy, are made. In these conditions, improving the quality of NPP means, in particular, the need to reasonably choose the values of numerous managed parameters of technological (heat) scheme. Furthermore, the chosen values should correspond to the economic conditions of NPP operation, which are postponed usually a considerable time interval from the point of time of parameters' choice. The article presents the technique of optimization of controlled parameters of the heat circuit of a steam turbine plant for the future. Its particularity is to obtain the results depending on a complex parameter combining the external economic and operating parameters that are relatively stable under the changing economic environment. The article presents the results of optimization according to this technique of the minimum temperature driving forces in the surface heaters of the heat regeneration system of the steam turbine plant of a K-1200-6.8/50 type. For optimization, the collector-screen heaters of high and low pressure developed at the OAO All-Russia Research and Design Institute of Nuclear Power Machine Building, which, in the authors' opinion, have the certain advantages over other types of heaters, were chosen. The optimality criterion in the task was the change in annual reduced costs for NPP compared to the version accepted as the baseline one. The influence on the decision of the task of independent variables that are not included in the complex parameter was analyzed. An optimization task was decided using the alternating-variable descent method. The obtained values of minimum temperature driving forces can guide the design of new nuclear plants with a heat circuit, similar to that accepted in the considered task.
Gonzalez, Oriol; Roso, Sergio; Vilanova, Xavier; Llobet, Eduard
2016-01-01
We report on the use of combined heating and pulsed UV light activation of indium oxide gas sensors for enhancing their performance in the detection of nitrogen dioxide in air. Indium oxide nano-octahedra were synthesized at high temperature (900 °C) via vapour-phase transport and screen-printed onto alumina transducers that comprised interdigitated electrodes and a heating resistor. Compared to the standard, constant temperature operation of the sensor, mild heating (e.g., 100 °C) together with pulsed UV light irradiation employing a commercially available, 325 nm UV diode (square, 1 min period, 15 mA drive current signal), results in an up to 80-fold enhancement in sensitivity to nitrogen dioxide. Furthermore, this combined operation method allows for making savings in power consumption that range from 35% to over 80%. These results are achieved by exploiting the dynamics of sensor response under pulsed UV light, which convey important information for the quantitative analysis of nitrogen dioxide.
Reduction of toroidal rotation by fast wave power in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grassie, J.S. de; Baker, D.R.; Burrell, K.H.
1997-04-01
The application of fast wave power in DIII-D has proven effective for both electron heating and current drive. Since the last RIF Conference FW power has been applied to advanced confinement regimes in DIII-D; negative central shear (NCS), VH- and H-modes, high {beta}{sub p}, and high-{ell}i. Typically these regimes show enhanced confinement of toroidal momentum exhibited by increased toroidal rotation velocity. Indeed, layers of large shear in toroidal velocity are associated with transport barriers. A rather common occurrence in these experiments is that the toroidal rotation velocity is decreased when the FW power is turned on, to lowest order independentmore » of whether the antennas are phased for co or counter current drive. At present all the data is for co-injected beams. The central toroidal rotation can be reduced to 1/2 of the non-FW level. Here the authors describe the effect in NCS discharges with co-beam injection.« less
Self-consistent modeling of CFETR baseline scenarios for steady-state operation
NASA Astrophysics Data System (ADS)
Chen, Jiale; Jian, Xiang; Chan, Vincent S.; Li, Zeyu; Deng, Zhao; Li, Guoqiang; Guo, Wenfeng; Shi, Nan; Chen, Xi; CFETR Physics Team
2017-07-01
Integrated modeling for core plasma is performed to increase confidence in the proposed baseline scenario in the 0D analysis for the China Fusion Engineering Test Reactor (CFETR). The steady-state scenarios are obtained through the consistent iterative calculation of equilibrium, transport, auxiliary heating and current drives (H&CD). Three combinations of H&CD schemes (NB + EC, NB + EC + LH, and EC + LH) are used to sustain the scenarios with q min > 2 and fusion power of ˜70-150 MW. The predicted power is within the target range for CFETR Phase I, although the confinement based on physics models is lower than that assumed in 0D analysis. Ideal MHD stability analysis shows that the scenarios are stable against n = 1-10 ideal modes, where n is the toroidal mode number. Optimization of RF current drive for the RF-only scenario is also presented. The simulation workflow for core plasma in this work provides a solid basis for a more extensive research and development effort for the physics design of CFETR.
Steady state scenario development with elevated minimum safety factor on DIII-D
Holcomb, Christopher T.; Ferron, John R.; Luce, Timothy C.; ...
2014-08-15
On DIII-D, a high β scenario with minimum safety factor (q min) near 1.4 has been optimized with new tools and shown to be a favourable candidate for long pulse or steady state operation in future devices. Furthermore, the new capability to redirect up to 5 MW of neutral beam injection (NBI) from on- to off-axis improves the ability to sustain elevated q min with a less peaked pressure profile. The observed changes increase the ideal magnetohydrodynamics (MHD) n = 1 mode β N limit thus providing a path forward for increasing the noninductive current drive fraction by operating atmore » high β N. Quasi-stationary discharges free of tearing modes have been sustained at βN = 3.5 and β T = 3.6% for two current profile diffusion timescales (about 3 s) limited by neutral beam duration. The discharge performance has normalized fusion performance expected to give fusion gain Q ≈ 5 in a device the size of ITER. Analysis of the poloidal flux evolution and current drive balance show that the loop voltage profile is almost relaxed even with 25% of the current driven inductively, and q min remains elevated near 1.4. Our observations increase confidence that the current profile will not evolve to one unstable to a tearing mode. In preliminary tests a divertor heat flux reduction technique based on producing a radiating mantle with neon injection appears compatible with this operating scenario. 0D model extrapolations suggest it may be possible to push this scenario up to 100% noninductive current drive by raising β N. Similar discharges with q min = 1.5–2 were susceptible to tearing modes and off-axis fishbones, and with q min > 2 lower normalized global energy confinement time is observed.« less
Methylphenidate Transdermal Patch
... of heat such as hair dryers, heating pads, electric blankets, and heated waterbeds.Be careful not to ... or operate dangerous machinery. Do not drive a car or operate machinery until you know how this ...
... other sources of heat such as heating pads, electric blankets and heated waterbeds; or direct sunlight. Do ... you suddenly fall asleep. Do not drive a car or operate machinery at the beginning of your ...
Leveraging gigawatt potentials by smart heat-pump technologies using ionic liquids.
Wasserscheid, Peter; Seiler, Matthias
2011-04-18
One of the greatest challenges to science in the 21 st century is the development of efficient energy production, storage, and transformation systems with minimal ecological footprints. Due to the lack of efficient heat-transformation technologies, industries around the world currently waste energy in the gigawatt range at low temperatures (40-80 °C). These energy potentials can be unlocked or used more efficiently through a new generation of smart heat pumps operating with novel ionic liquid (IL)-based working pairs. The new technology is expected to allow revolutionary technical progress in heat-transformation devices, for example, significantly higher potential efficiencies, lower specific investments, and broader possibilities to incorporate waste energy from renewable sources. Furthermore, due to drastically reduced corrosion rates and excellent thermal stabilities of the new, IL-based working pairs, the high driving temperatures necessary for multi-effect cycles such as double- or triple-effect absorption chillers, can also be realized. The details of this novel and innovative heat-transformation technology are described. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Turbulent convection in geostrophic circulation with wind and buoyancy forcing
NASA Astrophysics Data System (ADS)
Sohail, Taimoor; Gayen, Bishakhdatta; Hogg, Andy
2017-11-01
We conduct a direct numerical simulation of geostrophic circulation forced by surface wind and buoyancy to model a circumpolar ocean. The imposed buoyancy forcing (represented by Rayleigh number) drives a zonal current and supports small-scale convection in the buoyancy destabilizing region. In addition, we observe eddy activity which transports heat southward, supporting a large amount of heat uptake. Increasing wind stress enhances the meridional buoyancy gradient, triggering more eddy activity inside the boundary layer. Therefore, heat uptake increases with higher wind stress. The majority of dissipation is confined within the surface boundary layer, while mixing is dominant inside the convective plume and the buoyancy destabilizing region of the domain. The relative strength of the mixing and dissipation in the system can be expressed by mixing efficiency. This study finds that mixing is much greater than viscous dissipation, resulting in higher values of mixing efficiency than previously used. Supported by Australian Research Council Grant DP140103706.
STELLTRANS: A Transport Analysis Suite for Stellarators
NASA Astrophysics Data System (ADS)
Mittelstaedt, Joseph; Lazerson, Samuel; Pablant, Novimir; Weir, Gavin; W7-X Team
2016-10-01
The stellarator transport code STELLTRANS allows us to better analyze the power balance in W7-X. Although profiles of temperature and density are measured experimentally, geometrical factors are needed in conjunction with these measurements to properly analyze heat flux densities in stellarators. The STELLTRANS code interfaces with VMEC to find an equilibrium flux surface configuration and with TRAVIS to determine the RF heating and current drive in the plasma. Stationary transport equations are then considered which are solved using a boundary value differential equation solver. The equations and quantities considered are averaged over flux surfaces to reduce the system to an essentially one dimensional problem. We have applied this code to data from W-7X and were able to calculate the heat flux coefficients. We will also present extensions of the code to a predictive capacity which would utilize DKES to find neoclassical transport coefficients to update the temperature and density profiles.
Comparative evaluation of surface and downhole steam-generation techniques
NASA Astrophysics Data System (ADS)
Hart, C.
The application of heat to reservoirs containing high API gravity oils can substantially improve recovery. Although steam injection is currently the principal thermal recovery method, heat transmission losses associated with delivery of the steam from the surface generators to the oil bearing formation has limited conventional steam injection to shallow reservoirs. The objective of the Department of Energy's Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. The tasks included in this effort are the development and evaluation of thermally efficient delivery systems and downhole steam generation systems. The technical and economic performance of conventional surface steam drives, which are strongly influenced by heat losses are compared. The selection of a preferred technology based upon either total efficiency or cost is found to be strongly influenced by reservoir depth, steam mass flow rate, and sandface steam quality.
A Transport Model for Non-Local Heating of Electrons in ICP Reactors
NASA Technical Reports Server (NTRS)
Chang, C. H.; Bose, Deepak; Arnold, James O. (Technical Monitor)
1998-01-01
A new model has been developed for non-local heating of electrons in ICP reactors, based on a hydrodynamic approach. The model has been derived using the electron momentum conservation in azimuthal direction with electromagnetic and frictional forces respectively as driving force and damper of harmonic oscillatory motion of electrons. The resulting transport equations include the convection of azimuthal electron momentum in radial and axial directions, thereby accounting for the non-local effects. The azimuthal velocity of electrons and the resulting electrical current are coupled to the Maxwell's relations, thus forming a self-consistent model for non-local heating. This model is being implemented along with a set of Navier-Stokes equations for plasma dynamics and gas flow to simulate low-pressure (few mTorr's) ICP discharges. Characteristics of nitrogen plasma in a TCP 300mm etch reactor is being studied. The results will be compared against the available Langmuir probe measurements.
Jesse D. Young; Nathaniel M. Anderson; Helen T. Naughton; Katrina Mullan
2018-01-01
Abundant stocks of woody biomass that are associated with active forest management can be used as fuel for bioenergy in many applications. Though factors driving large-scale biomass use in industrial settings have been studied extensively, small-scale biomass combustion systems commonly used by institutions for heating have received less attention. A zero inflated...
Investigating Liquid CO2 as a Coolant for a MTSA Heat Exchanger Design
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Padilla, Sebastian; Powers, Aaron; Iacomini, Christie
2009-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO 2) control for a future Portable Life Support System (PLSS), as well as water recycling. CO 2 removal and rejection is accomplished by driving a sorbent through a temperature swing of approximately 210 K to 280 K . The sorbent is cooled to these sub-freezing temperatures by a Sublimating Heat Exchanger (SHX) with liquid coolant expanded to sublimation temperatures. Water is the baseline coolant available on the moon, and if used, provides a competitive solution to the current baseline PLSS schematic. Liquid CO2 (LCO2) is another non-cryogenic coolant readily available from Martian resources which can be produced and stored using relatively low power and minimal infrastructure. LCO 2 expands from high pressure liquid (5800 kPa) to Mars ambient (0.8 kPa) to produce a gas / solid mixture at temperatures as low as 156 K. Analysis and experimental work are presented to investigate factors that drive the design of a heat exchanger to effectively use this sink. Emphasis is given to enabling efficient use of the CO 2 cooling potential and mitigation of heat exchanger clogging due to solid formation. Minimizing mass and size as well as coolant delivery are also considered. The analysis and experimental work is specifically performed in an MTSA-like application to enable higher fidelity modeling for future optimization of a SHX design. In doing so, the work also demonstrates principles and concepts so that the design can be further optimized later in integrated applications (including Lunar application where water might be a choice of coolant).
Factors affecting energy deposition and expansion in single wire low current experiments
NASA Astrophysics Data System (ADS)
Duselis, Peter U.; Vaughan, Jeffrey A.; Kusse, Bruce R.
2004-08-01
Single wire experiments were performed on a low current pulse generator at Cornell University. A 220 nF capacitor charged to 15-25 kV was used to drive single wire experiments. The capacitor and wire holder were connected in series through an external variable inductor to control the current rise rate. This external series inductance was adjustable from 0.2 to 2 μH. When coupled with the range of charging voltages this results in current rise rates from 5 to 50 A/ns. The current heated the wire through liquid and vapor phases until plasma formed around the wire. Energy deposition and expansion rates were measured as functions of the current rise rate. These results indicated better energy deposition and higher expansion rates with faster current rise rates. Effects of the wire-electrode connection method and wire polarity were also studied.
The development of a solar residential heating and cooling system
NASA Technical Reports Server (NTRS)
1975-01-01
The MSFC solar heating and cooling facility was assembled to demonstrate the engineering feasibility of utilizing solar energy for heating and cooling buildings, to provide an engineering evaluation of the total system and the key subsystems, and to investigate areas of possible improvement in design and efficiency. The basic solar heating and cooling system utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating, and an absorption cycle air conditioner for space cooling. A complete description of all systems is given. Development activities for this test system included assembly, checkout, operation, modification, and data analysis, all of which are discussed. Selected data analyses for the first 15 weeks of testing are included, findings associated with energy storage and the energy storage system are outlined, and conclusions resulting from test findings are provided. An evaluation of the data for summer operation indicates that the current system is capable of supplying an average of 50 percent of the thermal energy required to drive the air conditioner. Preliminary evaluation of data collected for operation in the heating mode during the winter indicates that nearly 100 percent of the thermal energy required for heating can be supplied by the system.
The Tidal History Of Iapetus: Spin Dynamics In The Light Of A Refined Dissipation Model
2011-01-01
a currently valid OMB control number. 1. REPORT DATE 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE The...that heating due to the decay of short‐lived radioisotopes , mainly 26Al, could drive early compaction. The consequent increase in thermal conductivity... Earth are for specific conditions of stress and temperature that are far different from those expected in Iapetus or other icy satellites: a temperature
1310nm VCSELs in 1-10Gb/s commercial applications
NASA Astrophysics Data System (ADS)
Jewell, Jack; Graham, Luke; Crom, Max; Maranowski, Kevin; Smith, Joseph; Fanning, Tom
2006-02-01
Beginning with 4 Gigabit/sec Fibre-Channel, 1310nm vertical-cavity surface-emitting lasers (VCSELs) are now entering the marketplace. Such VCSELs perform like distributed feedback lasers but have drive currents and heat dissipation like 850nm VCSELs, making them ideal for today's high-performance interconnects and the only choice for the next step in increased interconnection density. Transceiver performances at 4 and 10 Gigabits/sec over fiber lengths 10-40km are presented. The active material is extremely robust, resulting in excellent reliability.
The W7-X ECRH Plant: Recent Achievements
NASA Astrophysics Data System (ADS)
Erckmann, V.; Brand, P.; Braune, H.; Dammertz, G.; Gantenbein, G.; Kasparek, W.; Laqua, H. P.; Michel, G.; Schmid, M.; Thumm, M.; Weissgerber, M.
2007-09-01
The 10 MW, 140 GHz, CW ECRH-plant for W7-X is in an advanced state of commissioning and the installation was used to investigate advanced applications for extended heating- and current drive scenarios. The operation of the TED gyrotrons was recently extended to a 2nd frequency of 103.6 GHz at reduced output power and first results are presented. An improved collector sweep system for the W7-X gyrotrons with enhanced power capability and smooth power distribution was developed, results are reported.
Design and Performance Analysis of an Intrinsically Safe Ultrasonic Ranging Sensor
Zhang, Hongjuan; Wang, Yu; Zhang, Xu; Wang, Dong; Jin, Baoquan
2016-01-01
In flammable or explosive environments, an ultrasonic sensor for distance measurement poses an important engineering safety challenge, because the driving circuit uses an intermediate frequency transformer as an impedance transformation element, in which the produced heat or spark is available for ignition. In this paper, an intrinsically safe ultrasonic ranging sensor is designed and implemented. The waterproof piezoelectric transducer with integrated transceiver is chosen as an energy transducing element. Then a novel transducer driving circuit is designed based on an impedance matching method considering safety spark parameters to replace an intermediate frequency transformer. Then, an energy limiting circuit is developed to achieve dual levels of over-voltage and over-current protection. The detail calculation and evaluation are executed and the electrical characteristics are analyzed to verify the intrinsic safety of the driving circuit. Finally, an experimental platform of the ultrasonic ranging sensor system is constructed, which involves short-circuit protection. Experimental results show that the proposed ultrasonic ranging sensor is excellent in both ranging performance and intrinsic safety. PMID:27304958
Design and Performance Analysis of an Intrinsically Safe Ultrasonic Ranging Sensor.
Zhang, Hongjuan; Wang, Yu; Zhang, Xu; Wang, Dong; Jin, Baoquan
2016-06-13
In flammable or explosive environments, an ultrasonic sensor for distance measurement poses an important engineering safety challenge, because the driving circuit uses an intermediate frequency transformer as an impedance transformation element, in which the produced heat or spark is available for ignition. In this paper, an intrinsically safe ultrasonic ranging sensor is designed and implemented. The waterproof piezoelectric transducer with integrated transceiver is chosen as an energy transducing element. Then a novel transducer driving circuit is designed based on an impedance matching method considering safety spark parameters to replace an intermediate frequency transformer. Then, an energy limiting circuit is developed to achieve dual levels of over-voltage and over-current protection. The detail calculation and evaluation are executed and the electrical characteristics are analyzed to verify the intrinsic safety of the driving circuit. Finally, an experimental platform of the ultrasonic ranging sensor system is constructed, which involves short-circuit protection. Experimental results show that the proposed ultrasonic ranging sensor is excellent in both ranging performance and intrinsic safety.
Time-resolved scanning Kerr microscopy of flux beam formation in hard disk write heads
NASA Astrophysics Data System (ADS)
Valkass, Robert A. J.; Spicer, Timothy M.; Burgos Parra, Erick; Hicken, Robert J.; Bashir, Muhammad A.; Gubbins, Mark A.; Czoschke, Peter J.; Lopusnik, Radek
2016-06-01
To meet growing data storage needs, the density of data stored on hard disk drives must increase. In pursuit of this aim, the magnetodynamics of the hard disk write head must be characterized and understood, particularly the process of "flux beaming." In this study, seven different configurations of perpendicular magnetic recording (PMR) write heads were imaged using time-resolved scanning Kerr microscopy, revealing their detailed dynamic magnetic state during the write process. It was found that the precise position and number of driving coils can significantly alter the formation of flux beams during the write process. These results are applicable to the design and understanding of current PMR and next-generation heat-assisted magnetic recording devices, as well as being relevant to other magnetic devices.
Simulations with current constraints of ELM-induced tungsten melt motion in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Thorén, E.; Bazylev, B.; Ratynskaia, S.; Tolias, P.; Krieger, K.; Pitts, R. A.; Pestchanyi, S.; Komm, M.; Sieglin, B.; the EUROfusion MST1 Team; the ASDEX Upgrade Team
2017-12-01
Melt motion simulations of recent ASDEX Upgrade experiments on transient-induced melting of a tungsten leading edge during ELMing H-mode are performed with the incompressible fluid dynamics code MEMOS 3D. The total current flowing through the sample was measured in these experiments providing an important constraint for the simulations since thermionic emission is considered to be responsible for the replacement current driving melt motion. To allow for a reliable comparison, the description of the space-charge limited regime of thermionic emission has been updated in the code. The effect of non-periodic aspects of the spatio-temporal heat flux in the temperature distribution and melt characteristics as well as the importance of current limitation are investigated. The results are compared with measurements of the total current and melt profile.
Dual Expander Cycle Rocket Engine with an Intermediate, Closed-cycle Heat Exchanger
NASA Technical Reports Server (NTRS)
Greene, William D. (Inventor)
2008-01-01
A dual expander cycle (DEC) rocket engine with an intermediate closed-cycle heat exchanger is provided. A conventional DEC rocket engine has a closed-cycle heat exchanger thermally coupled thereto. The heat exchanger utilizes heat extracted from the engine's fuel circuit to drive the engine's oxidizer turbomachinery.
Electron cyclotron heating/current-drive system using high power tubes for QUEST spherical tokamak
NASA Astrophysics Data System (ADS)
Onchi, Takumi; Idei, H.; Hasegawa, M.; Nagata, T.; Kuroda, K.; Hanada, K.; Kariya, T.; Kubo, S.; Tsujimura, T. I.; Kobayashi, S.; Quest Team
2017-10-01
Electron cyclotron heating (ECH) is the primary method to ramp up plasma current non-inductively in QUEST spherical tokamak. A 28 GHz gyrotron is employed for short pulses, where the radio frequency (RF) power is about 300 kW. Current ramp-up efficiency of 0.5 A/W has been obtained with focused beam of the second harmonic X-mode. A quasi-optical polarizer unit has been newly installed to avoid arcing events. For steady-state tokamak operation, 8.56 GHz klystron with power of 200 kW is used as the CW-RF source. The high voltage power supply (54 kV/13 A) for the klystron has been built recently, and initial bench test of the CW-ECH system is starting. The array of insulated-gate bipolar transistor works to quickly cut off the input power for protecting the klystron. This work is supported by JSPS KAKENHI (15H04231), NIFS Collaboration Research program (NIFS13KUTR085, NIFS17KUTR128), and through MEXT funding for young scientists associated with active promotion of national university reforms.
A Kinetic Study of Microwave Start-up of Tokamak Plasmas
NASA Astrophysics Data System (ADS)
du Toit, E. J.; O'Brien, M. R.; Vann, R. G. L.
2017-07-01
A kinetic model for studying the time evolution of the distribution function for microwave startup is presented. The model for the distribution function is two dimensional in momentum space, but, for simplicity and rapid calculations, has no spatial dependence. Experiments on the Mega Amp Spherical Tokamak have shown that the plasma current is carried mainly by electrons with energies greater than 70 keV, and effects thought to be important in these experiments are included, i.e. particle sources, orbital losses, the loop voltage and microwave heating, with suitable volume averaging where necessary to give terms independent of spatial dimensions. The model predicts current carried by electrons with the same energies as inferred from the experiments, though the current drive efficiency is smaller.
Electron Temperature Gradient Scale Measurements in ICRF Heated Plasmas at Alcator C-Mod
NASA Astrophysics Data System (ADS)
Houshmandyar, Saeid; Phillips, Perry E.; Rowan, William L.; Howard, Nathaniel T.; Greenwald, Martin
2016-10-01
It is generally believed that the temperature gradient is a driving mechanism for the turbulent transport in hot and magnetically confined plasmas. A feature of many anomalous transport models is the critical threshold value (LC) for the gradient scale length, above which both the turbulence and the heat transport increases. This threshold is also predicted by the recent multi-scale gyrokinetic simulations, which are focused on addressing the electron (and ion) heat transport in tokamaks. Recently, we have established an accurate technique (BT-jog) to directly measure the electron temperature gradient scale length (LTe =Te / ∇T) profile, using a high-spatial resolution radiometer-based electron cyclotron emission (ECE) diagnostic. For the work presented here, electrons are heated by ion cyclotron range of frequencies (ICRF) through minority heating in L-mode plasmas at different power levels, TRANSP runs determine the electron heat fluxes and the scale lengths are measured through the BT-jog technique. Furthermore, the experiment is extended for different plasma current and electron densities by which the parametric dependence of LC on magnetic shear, safety factor and density will be investigated. This work is supported by U.S. DoE OFES, under Award No. DE-FG03-96ER-54373.
Oscillatory nonohomic current drive for maintaining a plasma current
Fisch, N.J.
1984-01-01
Apparatus and methods are described for maintaining a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.
Oscillatory nonhmic current drive for maintaining a plasma current
Fisch, Nathaniel J.
1986-01-01
Apparatus and method of the invention maintain a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.
Design and Construction of a Small Vacuum Furnace
NASA Astrophysics Data System (ADS)
Peawbang, P.; Thedsakhulwong, A.
2017-09-01
The purpose of this research is designed and constructed of a small vacuum furnace. A cylindrical graphite was chosen as the material of the furnace, the cylinder aluminium and copper sheets were employed to prevent the heat radiation that transfers from the furnace to the chamber wall. A rotary pump used, the pressure of graphite furnace can be pumped up to 30 mTorr and heated up to 700 °C driving by wire and the temperature of the chamber wall is relatively remained too low. In addition, heat loss obtained from the graphite furnace by conduction, convection, and radiation were analyzed. The dominating heat loss was found to be caused by the blackbody radiation, which can thus be used to estimate the relationship between graphite furnace temperature and the drive power needed. The cylindrical graphite furnace has an inner diameter of 44 mm, the outer diameter of 60 mm and 45 mm in height, the 355.5 W of power is needed to drive the furnace to 700 °C.
NASA Astrophysics Data System (ADS)
Roberts, C. D.; Palmer, M. D.; Allan, R. P.; Desbruyeres, D. G.; Hyder, P.; Liu, C.; Smith, D.
2017-01-01
We present an observation-based heat budget analysis for seasonal and interannual variations of ocean heat content (H) in the mixed layer (Hmld) and full-depth ocean (Htot). Surface heat flux and ocean heat content estimates are combined using a novel Kalman smoother-based method. Regional contributions from ocean heat transport convergences are inferred as a residual and the dominant drivers of Hmld and Htot are quantified for seasonal and interannual time scales. We find that non-Ekman ocean heat transport processes dominate Hmld variations in the equatorial oceans and regions of strong ocean currents and substantial eddy activity. In these locations, surface temperature anomalies generated by ocean dynamics result in turbulent flux anomalies that drive the overlying atmosphere. In addition, we find large regions of the Atlantic and Pacific oceans where heat transports combine with local air-sea fluxes to generate mixed layer temperature anomalies. In all locations, except regions of deep convection and water mass transformation, interannual variations in Htot are dominated by the internal rearrangement of heat by ocean dynamics rather than the loss or addition of heat at the surface. Our analysis suggests that, even in extratropical latitudes, initialization of ocean dynamical processes could be an important source of skill for interannual predictability of Hmld and Htot. Furthermore, we expect variations in Htot (and thus thermosteric sea level) to be more predictable than near surface temperature anomalies due to the increased importance of ocean heat transport processes for full-depth heat budgets.
Updated Global Patterns of Drought and Heat-Induced Forest Die-off, and Ecohydrological Feedbacks
NASA Astrophysics Data System (ADS)
Allen, C. D.
2011-12-01
Ongoing climate changes - particularly increases in mean temperatures as well as frequencies, durations, and severities of extreme drought and heat - can amplify tree physiological stress and thereby drive increases in both background tree mortality rates and episodes of rapid, broad-scale forest die-off. Updates are presented to a recent global synthesis of documented tree mortality episodes attributed to drought and/or heat, further expanding the documented spatial distribution and demonstrating the vulnerability of all major forest types from tropical moist forests and savannas to temperate and boreal forests. Given that anthropogenic climate change is projected to drive substantial increases in both mean temperatures and the frequency/duration/severity of extreme drought and heat in many regions, recent episodes of broad-scale drought-induced forest mortality may reflect increasing global risks of forest die-off, even in environments not normally considered water-limited. Since vegetation cover patterns are closely and interactively linked with ecosystem water fluxes, episodes of massive forest die-off can be expected to significantly affect ecohydrological patterns and processes, ranging from runoff and erosion to evaporation and transpiration, often with nonlinear threshold responses expected. Diverse examples of such feedbacks between climate-induced forest mortality and ecohydrology are presented, ranging from detailed observations of linked changes in vegetation, runoff, and erosion in response to forest mortality in the southwestern US to Western Australia and Amazonian rainforest water cycling. Current research efforts to address the large knowledge gaps that at present hinder our ability to predict climate-induced forest mortality and associated ecohydrological responses are discussed.
Drive Scaling of hohlraums heated with 2ω light
NASA Astrophysics Data System (ADS)
Oades, Kevin; Foster, John; Slark, Gary; Stevenson, Mark; Kauffman, Robert; Suter, Larry; Hinkel, Denise; Miller, Mike; Schneider, Marilyn; Springer, Paul
2002-11-01
We report on experiments using a single beam from the AWE?s HELEN laser to study scaling of hohlraum drive with hohlraum scale size. The hohlruams were heated with 400 J in a 1 ns square pulse with and without a phaseplate. The drive was measured using a PCD and an FRD. Scattered light was measured using a full aperture backscatter system. Drive is consistent with hohlraum scaling and LASNEX modeling using the absorbed laser energy. Bremsstrahlung from fast electrons and M-shell x-ray production were also measured. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
In situ heat treatment of a tar sands formation after drive process treatment
Vinegar, Harold J.; Stanecki, John
2010-09-21
A method for treating a tar sands formation includes providing a drive fluid to a hydrocarbon containing layer of the tar sands formation to mobilize at least some hydrocarbons in the layer. At least some first hydrocarbons from the layer are produced. Heat is provided to the layer from one or more heaters located in the formation. At least some second hydrocarbons are produced from the layer of the formation. The second hydrocarbons include at least some hydrocarbons that are upgraded compared to the first hydrocarbons produced by using the drive fluid.
Projecting High Beta Steady-State Scenarios from DIII-D Advanced Tokamk Discharges
NASA Astrophysics Data System (ADS)
Park, J. M.
2013-10-01
Fusion power plant studies based on steady-state tokamak operation suggest that normalized beta in the range of 4-6 is needed for economic viability. DIII-D is exploring a range of candidate high beta scenarios guided by FASTRAN modeling in a repeated cycle of experiment and modeling validation. FASTRAN is a new iterative numerical procedure coupled to the Integrated Plasma Simulator (IPS) that integrates models of core transport, heating and current drive, equilibrium and stability self-consistently to find steady state (d / dt = 0) solutions, and reproduces most features of DIII-D high beta discharges with a stationary current profile. Separately, modeling components such as core transport (TGLF) and off-axis neutral beam current drive (NUBEAM) show reasonable agreement with experiment. Projecting forward to scenarios possible on DIII-D with future upgrades, two self-consistent noninductive scenarios at βN > 4 are found: high qmin and high internal inductance li. Both have bootstrap current fraction fBS > 0 . 5 and rely on the planned addition of a second off-axis neutral beamline and increased electron cyclotron heating. The high qmin > 2 scenario achieves stable operation at βN as high as 5 by a very broad current density profile to improve the ideal-wall stabilization of low-n instabilities along with confinement enhancement from low magnetic shear. The li near 1 scenario does not depend on ideal-wall stabilization. Improved confinement from strong magnetic shear makes up for the lower pedestal needed to maintain li high. The tradeoff between increasing li and reduced edge pedestal determines the achievable βN (near 4) and fBS (near 0.5). This modeling identifies the necessary upgrades to achieve target scenarios and clarifies the pros and cons of particular scenarios to better inform the development of steady-state fusion. Supported by the US Department of Energy under DE-AC05-00OR22725 & DE-FC02-04ER54698.
Ballistic induced pumping of hypersonic heat current in DNA nano wire
NASA Astrophysics Data System (ADS)
Behnia, Sohrab; Panahinia, Robabe
2016-12-01
Heat shuttling properties of DNA nano-wire driven by an external force against the spontaneous heat current direction in non-zero temperature bias (non averaged) have been studied. We examined the valid region of driving amplitude and frequency to have pumping state in terms of temperature bias and the system size. It was shown that DNA could act as a high efficiency thermal pump in the hypersonic region. Amplitude-dependent resonance frequencies of DNA indicating intrinsic base pair internal vibrations have been detected. Nonlinearity implies that by increasing the driven amplitude new vibration modes are detected. To verify the results, an analytical parallel investigation based on multifractal concept has been done. By using the geometric properties of the strange attractor of the system, the threshold value to transition to the pumping state for given external amplitude has been identified. It was shown that the system undergoes a phase transition in sliding point to the pumping state. Fractal dimension demonstrates that the ballistic transport is responsible for energy pumping in the system. In the forbidden band gap, DNA could transmit the energy by exceeding the threshold amplitude. Despite of success in energy pumping, in this framework, DNA could not act as a real cooler.
Experimental Study of RF Sheaths due to Shear Alfv'en Waves in the LAPD
NASA Astrophysics Data System (ADS)
Martin, Michael; van Compernolle, Bart; Carter, Troy; Gekelman, Walter; Pribyl, Patrick; D'Ippolito, Daniel A.; Myra, James R.
2012-10-01
Ion cyclotron resonance frequency (ICRF) heating is an important tool in current fusion experiments and will be an essential part of the heating power in ITER. A current limitation of ICRF heating is impurity generation through the formation of radiofrequency (RF) sheaths, both near-field (at the antenna) and far-field (e.g. in the divertor region). Far-field sheaths are thought to be generated through the direct launch of or mode conversion to shear Alfv'en waves. Shear Alfv'en waves have an electric field component parallel to the background magnetic field near the wall that drives an RF sheath.footnotetextD. A. D'Ippolito and J. R. Myra, Phys. Plasmas 19, 034504 (2012) In this study we directly launch the shear Alfv'en wave and measure the plasma potential oscillations and DC potential in the bulk plasma of the LAPD using emissive and Langmuir probes. Measured changes in the DC plasma potential can serve as an indirect measurement of the formation of an RF sheath because of rectification. These measurements will be useful in guiding future experiments to measure the plasma potential profile inside RF sheaths as part of an ongoing campaign.
Power inverter with optical isolation
Duncan, Paul G.; Schroeder, John Alan
2005-12-06
An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.
Noninductive RF startup in CDX-U
NASA Astrophysics Data System (ADS)
Jones, B.; Majeski, R.; Efthimion, P.; Kaita, R.; Menard, J.; Munsat, T.; Takase, Y.
1998-11-01
For the spherical torus (ST) to prove viable as a reactor, it will be necessary to devise techniques for noninductive plasma startup. Initial studies of noninductive plasma initiation have been performed on CDX-U, using the 100 kW high harmonic fast wave (HHFW) system in combination with the 1 kW 2.45 GHz electron cyclotron heating system used for breakdown. Modest density (ne ~ 10^12 cm-3), low temperature (5 eV) plasmas were formed, but the density profile was peaked far off-axis, very near the HHFW antenna. High neutral fill pressures were also required. In upcoming experiments, up to 500 kW of low frequency RF power will utilized for heating and noninductive current drive in the mode conversion regime in a target noninductive plasma formed by a combination of 5.6 and 14 GHz ECH (40 kW total). Modeling will be presented which indicates that startup to plasma currents of 60 kA is feasible with this system.
Exploration of spherical torus physics in the NSTX device
NASA Astrophysics Data System (ADS)
Ono, M.; Kaye, S. M.; Peng, Y.-K. M.; Barnes, G.; Blanchard, W.; Carter, M. D.; Chrzanowski, J.; Dudek, L.; Ewig, R.; Gates, D.; Hatcher, R. E.; Jarboe, T.; Jardin, S. C.; Johnson, D.; Kaita, R.; Kalish, M.; Kessel, C. E.; Kugel, H. W.; Maingi, R.; Majeski, R.; Manickam, J.; McCormack, B.; Menard, J.; Mueller, D.; Nelson, B. A.; Nelson, B. E.; Neumeyer, C.; Oliaro, G.; Paoletti, F.; Parsells, R.; Perry, E.; Pomphrey, N.; Ramakrishnan, S.; Raman, R.; Rewoldt, G.; Robinson, J.; Roquemore, A. L.; Ryan, P.; Sabbagh, S.; Swain, D.; Synakowski, E. J.; Viola, M.; Williams, M.; Wilson, J. R.; NSTX Team
2000-03-01
The National Spherical Torus Experiment (NSTX) is being built at Princeton Plasma Physics Laboratory to test the fusion physics principles for the spherical torus concept at the MA level. The NSTX nominal plasma parameters are R0 = 85 cm, a = 67 cm, R/a >= 1.26, Bt = 3 kG, Ip = 1 MA, q95 = 14, elongation κ <= 2.2, triangularity δ <= 0.5 and a plasma pulse length of up to 5 s. The plasma heating/current drive tools are high harmonic fast wave (6 MW, 5 s), neutral beam injection (5 MW, 80 keV, 5 s) and coaxial helicity injection. Theoretical calculations predict that NSTX should provide exciting possibilities for exploring a number of important new physics regimes, including very high plasma β, naturally high plasma elongation, high bootstrap current fraction, absolute magnetic well and high pressure driven sheared flow. In addition, the NSTX programme plans to explore fully non-inductive plasma startup as well as a dispersive scrape-off layer for heat and particle flux handling.
Impurity behavior during ion-Bernstein wave heating in PBX-M
NASA Astrophysics Data System (ADS)
Isler, R. C.; Post-Zwicker, A. P.; Paul, S. F.; Tighe, W.; Ono, M.; Leblanc, B. P.; Bell, R.; Kugel, H. W.; Kaita, R.
1994-07-01
Ion-Bernstein-wave heating (IBWH) has been tested in several tokamaks. In some cases the results have been quite positive, producing temperature increases and also improving both energy and particle confinement times, whereas in others, no distinctive changes were observed. Most recently, IBWH has been utilized in the Princeton Beta Experiment-Modified (PBX-M) where the long-range goal is the achievement of operation in the second stable region by current and pressure profile control. Investigations have been performed in this machine using IBWH as the sole source of auxiliary power or using IBWH in conjunction with neutral-beam injection (NBI) or with lower-hybrid current drive (LHCD). Impurity studies seem particularly important for IBWH since not only have influxes often been observed to increase, but the global impurity confinement time has also been shown to lengthen as the confinement of the working gas improved. The authors present here a set of characteristic experimental results regarding the impurity behavior in PBX-M; in general, these are consonant with previous observations in other tokamaks.
NASA Technical Reports Server (NTRS)
Knox, James C.; Gauto, Hernando; Miller, Lee A.
2015-01-01
The International Space Station Carbon Dioxide Removal Assembly uses zeolite 5A molecular sieve material packed into beds for the capture of cabin CO2. The beds are cyclically heated to drive off the CO2 and restore the removal capacity. Over time, the sorbent material has been found to break down resulting in dust that restricts flow through the beds. Humidity adsorbed in the 5A zeolite when it is heated is a suspected cause of this sorbent degradation. To evaluate the impact of adsorbed water during thermal cycling, the Hydrothermal Stability Test was developed. The test configuration provides comparative side-by-side flow restriction data for two sorbent materials at specifically controlled humidity levels. While the initial focus of the testing is on 5A zeolite materials currently used on the ISS, the system will also be used to evaluate future candidate materials. This paper describes the approach, the test system, current results, and future testing.
NASA Astrophysics Data System (ADS)
Sugiartha, N.; Sastra Negara, P.
2018-01-01
A thermoelectric module composes of integrated p-n semiconductors as hot and cold side junctions and uses Seebeck effect between them to function as a thermoelectric generator (TEG) to directly convert heat into electrical power. Exhaust heat from engines as otherwise wasted to the atmosphere is one of the heat sources freely available to drive the TEG. This paper evaluates technical feasibility on the use of a Peltier thermoelectric module for energy recovery application of such kind of waste heat. An experimental apparatus has been setup to simulate real conditions of automobile engine exhaust piping system. It includes a square section aluminium ducting, an aluminium fin heat sink and a TEC1 12706 thermoelectric module. A heater and a cooling fan are employed to simulate hot exhaust gas and ambient air flows, respectively. Electrical loading is controlled by resistors. Dependent variables measured during the test are cold and hot side temperatures, open and loaded circuit output voltages and electrical current. The test results revealed a promising application of the Peltier thermoelectric module for the engine exhaust heat recovery, though the loaded output power produced and loaded output voltage are still far lower than the commercially thermoelectric module originally purposed for the TEG application.
Yamamoto, Takahiko; Koshiji, Kohji; Homma, Akihiko; Tatsumi, Eisuke; Taenaka, Yoshiyuki
2008-01-01
Transcutaneous energy transmission (TET) that uses electromagnetic induction between the external and internal coils of a transformer is the most promising method to supply driving energy to a totally implantable artificial heart without invasion. Induction-heating (IH) cookers generate magnetic flux, and if a cooker is operated near a transcutaneous transformer, the magnetic flux generated will link with the external and internal coils of the transcutaneous transformer. This will affect the performance of the TET and the artificial heart system. Hence, it is necessary to improve the magnetic field immunity of the TET system. During operation of the system, if the transcutaneous transformer is in close proximity to an IH cooker, the electric power generated by the cooker and coupled to the transformer can drive the artificial heart system. To prevent this coupling, the external coil was shielded with a conductive shield that had a slit in it. This reduces the coupling between the transformer and the magnetic field generated by the induction cooker. However, the temperature of the shield increased due to heating by eddy currents. The temperature of the shield can be reduced by separating the IH cooker and the shield.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaita, Robert; Boyle, Dennis; Gray, Timothy
Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating themore » shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy. Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions. __________________________________________________« less
Bora event variability and the role of air-sea feedback
Pullen, J.; Doyle, J.D.; Haack, T.; Dorman, C.; Signell, R.P.; Lee, C.M.
2007-01-01
A two-way interacting high resolution numerical simulation of the Adriatic Sea using the Navy Coastal Ocean Model (NCOM) and Coupled Ocean/ Atmosphere Mesoscale Prediction System (COAMPS??) was conducted to improve forecast momentum and heat flux fields, and to evaluate surface flux field differences for two consecutive bora events during February 2003. (COAMPS?? is a registered trademark of the Naval Research Laboratory.) The strength, mean positions and extensions of the bora jets, and the atmospheric conditions driving them varied considerably between the two events. Bora 1 had 62% stronger heat flux and 51% larger momentum flux than bora 2. The latter displayed much greater diurnal variability characterized by inertial oscillations and the early morning strengthening of a west Adriatic barrier jet, beneath which a stronger west Adriatic ocean current developed. Elsewhere, surface ocean current differences between the two events were directly related to differences in wind stress curl generated by the position and strength of the individual bora jets. The mean heat flux bias was reduced by 72%, and heat flux RMSE reduced by 30% on average at four instrumented over-water sites in the two-way coupled simulation relative to the uncoupled control. Largest reductions in wind stress were found in the bora jets, while the biggest reductions in heat flux were found along the north and west coasts of the Adriatic. In bora 2, SST gradients impacted the wind stress curl along the north and west coasts, and in bora 1 wind stress curl was sensitive to the Istrian front position and strength. The two-way coupled simulation produced diminished surface current speeds of ???12% over the northern Adriatic during both bora compared with a one-way coupled simulation. Copyright 2007 by the American Geophysical Union.
Magnetic Structure of Sites of Braiding in Hi-C Active Region
NASA Technical Reports Server (NTRS)
Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.
2014-01-01
High-resolution Coronal Imager (Hi-C) observations of an active region (AR) corona, at a spatial resolution of 0.2 arcsec, have offered the first direct evidence of field lines braiding, which could deliver sufficient energy to heat the AR corona by current dissipation via magnetic reconnection, a proposal given by Parker three decades ago. The energy required to heat the corona must be transported from the photosphere along the field lines. The mechanism that drives the energy transport to the corona is not yet fully understood. To investigate simultaneous magnetic and intensity structure in and around the AR in detail, we use SDO/HMI+AIA data of + / - 2 hours around the 5 minute Hi-C flight. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines probably translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. However, to the best of our knowledge, there is no observational evidence available to these processes. We investigate the changes taking place in the photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. Using HMI 45s magnetograms of four hours we find that, out of the two Hi-C sub-regions where the braiding of field lines were recently detected, flux emergence takes place in one region and flux cancellation in the other. The field in these sub-regions are highly sheared and have apparent high speed plasma flows at their feet. Therefore, shearing flows plausibly power much of the coronal and transition region heating in these areas of the AR. In addition, the presence of large flux emergence/cancellation strongly suggests that the work done by these processes on the pre-existing field also drives much of the observed heating.
Army Net Zero Prove Out. Net Zero Energy Best Practices
2014-11-18
energy which is then used to drive a heat engine to generate electrical power. Geothermal Power – These systems use thermal energy generated and...stored in the earth as a generating source for electricity. Several pilot installations are investigating this technology by conducting geothermal ...concentrate solar thermal energy which is then used to drive a heat engine to generate electrical power. • Geothermal Power - These systems use thermal energy
NASA Astrophysics Data System (ADS)
Milanesio, D.; Maggiora, R.
2015-12-01
Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.
Status of the ITER Electron Cyclotron Heating and Current Drive System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darbos, Caroline; Albajar, Ferran; Bonicelli, Tullio
2015-10-07
We present that the electron cyclotron (EC) heating and current drive (H&CD) system developed for the ITER is made of 12 sets of high-voltage power supplies feeding 24 gyrotrons connected through 24 transmission lines (TL), to five launchers, four located in upper ports and one at the equatorial level. Nearly all procurements are in-kind, following general ITER philosophy, and will come from Europe, India, Japan, Russia and the USA. The full system is designed to couple to the plasma 20 MW among the 24 MW generated power, at the frequency of 170 GHz, for various physics applications such as plasmamore » start-up, central H&CD and magnetohydrodynamic (MHD) activity control. The design takes present day technology and extends toward high-power continuous operation, which represents a large step forward as compared to the present state of the art. The ITER EC system will be a stepping stone to future EC systems for DEMO and beyond.The development of the EC system is facing significant challenges, which includes not only an advanced microwave system but also compliance with stringent requirements associated with nuclear safety as ITER became the first fusion device licensed as basic nuclear installations as of 9 November 2012. Finally, since the conceptual design of the EC system was established in 2007, the EC system has progressed to a preliminary design stage in 2012 and is now moving forward toward a final design.« less
The ETA-2 induction linac as a high average power FEL driver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nexsen, W.E.; Atkinson, D.P.; Barrett, D.M.
1989-10-16
The Experimental Test Accelerator-II (ETA-II) is the first induction linac designed specifically to FEL requirements. It primarily is intended to demonstrate induction accelerator technology for high average power, high brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switchesmore » allows high average power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 Mev energy, 2kA current, 20ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} at the wiggler with a pulse repetition frequency (PRF) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 Mev energy, 3kA current, 50ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} with a 5 kHz PRF for 0.5 sec. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements. 13 refs., 9 figs., 1 tab.« less
Thatcher, W.; England, P.C.
1998-01-01
We have carried out two-dimensional (2-D) numerical experiments on the bulk flow of a layer of fluid that is driven in a strike-slip sense by constant velocities applied at its boundaries. The fluid has the (linearized) conventional rheology assumed to apply to lower crust/upper mantle rocks. The temperature dependence of the effective viscosity of the fluid and the shear heating that accompanies deformation have been incorporated into the calculations, as has thermal conduction in an overlying crustal layer. Two end-member boundary conditions have been considered, corresponding to a strong upper crust driving a weaker ductile substrate and a strong ductile layer driving a passive, weak crust. In many cases of practical interest, shear heating is concentrated close to the axial plane of the shear zone for either boundary condition. For these cases, the resulting steady state temperature field is well approximated by a cylindrical heat source embedded in a conductive half-space at a depth corresponding to the top of the fluid layer. This approximation, along with the application of a theoretical result for one-dimensional shear zones, permits us to obtain simple analytical approximations to the thermal effects of 2-D ductile shear zones for a range of assumed rheologies and crustal geotherms, making complex numerical calculations unnecessary. Results are compared with observable effects on heat flux near the San Andreas fault using constraints on the slip distribution across the entire fault system. Ductile shearing in the lower crust or upper mantle can explain the observed increase in surface heat flux southeast of the Mendocino triple junction and match the amplitude of the regional heat flux anomaly in the California Coast Ranges. Because ductile dissipation depends only weakly on slip rate, faults moving only a few millimeters per year can be important heat sources, and the superposition of effects of localized ductile shearing on both currently active and now inactive strands of the San Andreas system can explain the breadth of the heat flux anomaly across central California.
Multiple Excitation Regimes in Jupiter’s Polar Aurorae
NASA Astrophysics Data System (ADS)
Trafton, Laurence M.
2017-10-01
Since the Voyager epoch, it has been known that the thermospheres of all the outer planets are heated to a temperature over 3 times higher than can be explained by solar EUV (Yelle & Miller 2000). The dominant heat source is still an open question. Without this knowledge, one cannot understand the structure, energy balance, and seasonal evolution of outer planet upper atmospheres. Majeed et al. (2009) suggest that the main ionospheric heat source driving the thermospheric flow at high Jovian latitudes is Joule currents resulting from the frictional motion of the ions relative to the neutrals, while particle precipitation dominates the heating of the auroral ovals at exospheric altitudes. However, since the diffuse emission interior to the oval is not directly connected to a source in the magnetosphere, and vice versa, separate processes may drive the heating in the auroral oval and the zone within. Because the latter’s open field lines expose it to “space weather”, it is subject to thermospheric heating by the solar wind, coronal mass ejections, and reconnection in the Jovian magnetotail.H3+ plays an important role in the cooling and stabilizing of hydrogenic planetary thermospheres (Miller et al. 2000). For Jupiter's hot upper atmosphere, above the homopause at ~1 µbar, H3+ appears to be the dominant coolant, so that the local heating rate may be estimated by measuring the H3+ emission flux. Consequently, the morphology and spectrum of the H3+ emission flux should be heavily influenced by, and so provide the clearest signature of, the unknown heating process. A study of Jupiter’s H3+ emission may therefore help to isolate and constrain that dominant process. Towards that end, we surveyed Jupiter's northern and southern auroral zones near pre-opposition quadrature on May 11 and 12, 2009, by obtaining emission line spectra between 3-4 microns at Keck II with NIRSPEC. The southern spectra resolve at least three contrarily excited H3+ emission spectra simultaneously, suggesting at least three distinct excitation processes operating within Jupiter's polar aurorae. The emission morphology cannot be explained by the observing geometry nor viewing aspect.
A High Power Helicon Antenna Design for DIII-D
Nagy, A.; deGrassie, J.; Moeller, C.; ...
2017-08-02
A new antenna design for driving current in high beta tokamaks using electromagnetic waves, called Helicons, will be experimentally tested for the first time at power approaching 1 megawatt (MW) in the DIII-D Tokamak. This method is expected to be more efficient than current drive using electron cyclotron waves or neutral beam injection, and may be well suited to reactor-like configurations. A low power (100 watt (W)) 476 megahertz (MHz) “comb-line” antenna, consisting of 12 inductively coupled electrostatically shielded, modular resonators, was tested in DIII-D and showed strong coupling to the plasma without disturbing its characteristics or introducing metal impurities.more » The high power antenna consists of 30 modules affixed to back-plates and mounted on the outer wall of the vacuum vessel above the mid-plane. The antenna design follows a similar low power antenna design modified to minimize RF loss. Heat removal is provided by water cooling and a novel heat conducting path using pyrolytic graphite sheet. The CuCrZr antenna modules are designed to handle high eddy current forces. The modules use molybdenum Faraday shields that have the plasma side coated with boron carbide to enhance thermal resistance and minimize high Z impurities. A RF strip-line feed routes the RF power from coaxial vacuum feed-throughs to the antenna. Multipactor analysis of the antenna, strip line, and feedthrough will be performed. A 1.2 MW, 476 MHz klystron system, provided by the Stanford Linear Accelerator (SLAC) will provide RF power to the new antenna. Lastly, a description of the design of the high power antenna, the RF strip-line feeds, and the vessel installation will be presented.« less
A High Power Helicon Antenna Design for DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagy, A.; deGrassie, J.; Moeller, C.
A new antenna design for driving current in high beta tokamaks using electromagnetic waves, called Helicons, will be experimentally tested for the first time at power approaching 1 megawatt (MW) in the DIII-D Tokamak. This method is expected to be more efficient than current drive using electron cyclotron waves or neutral beam injection, and may be well suited to reactor-like configurations. A low power (100 watt (W)) 476 megahertz (MHz) “comb-line” antenna, consisting of 12 inductively coupled electrostatically shielded, modular resonators, was tested in DIII-D and showed strong coupling to the plasma without disturbing its characteristics or introducing metal impurities.more » The high power antenna consists of 30 modules affixed to back-plates and mounted on the outer wall of the vacuum vessel above the mid-plane. The antenna design follows a similar low power antenna design modified to minimize RF loss. Heat removal is provided by water cooling and a novel heat conducting path using pyrolytic graphite sheet. The CuCrZr antenna modules are designed to handle high eddy current forces. The modules use molybdenum Faraday shields that have the plasma side coated with boron carbide to enhance thermal resistance and minimize high Z impurities. A RF strip-line feed routes the RF power from coaxial vacuum feed-throughs to the antenna. Multipactor analysis of the antenna, strip line, and feedthrough will be performed. A 1.2 MW, 476 MHz klystron system, provided by the Stanford Linear Accelerator (SLAC) will provide RF power to the new antenna. Lastly, a description of the design of the high power antenna, the RF strip-line feeds, and the vessel installation will be presented.« less
NASA Astrophysics Data System (ADS)
Schulz, Benjamin; Morgott, Stefan
2017-09-01
Direct red light-emitting diodes based on InGaAlP comprise a strong temperature sensitivity regarding their output flux. In étendue-limited applications, like digital projectors, these LEDs are usually driven at current densities exceeding 3 A/mm2 in pulsed mode. The losses inside the semiconductor lead to a large amount of heat, which has to be removed most efficiently by a heatsink to keep the junction temperature as low as possible and therefore to obtain the maximum output flux. One important performance parameter is the thermal resistance Rth of the LED, which has been improved during the last few years, e.g. by the development of new high-power chips and packages. In our present approach, we investigated the influence of the driving frequency - which is closely related to the thermal impedance Zth - on the luminous and the radiant flux of red LEDs. A simulation model based on the electro-thermal analogies was implemented in SPICE and the optical and electrical characteristics of one LED type (OSRAM OSTAR Projection Power LE A P1W) were measured under application-related driving conditions while varying the parameters frequency, duty cycle, forward current, and heatsink temperature. The experimental results show clearly that the luminous and the radiant flux go up when the driving frequency is increased while the other parameters are maintained. Moreover, it can be noticed that the degree of this effect depends on the other parameters. The largest impact can be observed at the lowest tested duty cycle (30 %) and the highest tested current density (4 A/mm2) and heatsink temperature (80 °C). At this operating point, the luminous and the radiant flux increase by 20 % and 14 % respectively when raising the frequency from 240 Hz to 1920 Hz.
Reconfigurable Drive Current System
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)
2017-01-01
A reconfigurable drive current system includes drive stages, each of which includes a high-side transistor and a low-side transistor in a totem pole configuration. A current monitor is coupled to an output of each drive stage. Input channels are provided to receive input signals. A processor is coupled to the input channels and to each current monitor for generating at least one drive signal using at least one of the input signals and current measured by at least one of the current monitors. A pulse width modulation generator is coupled to the processor and each drive stage for varying the drive signals as a function of time prior to being supplied to at least one of the drive stages.
The role of local heating in the 2015 Indian heat wave
USDA-ARS?s Scientific Manuscript database
India faced a major heat wave during the summer of 2015. Temperature anomalies peaked in the dry period before the onset of the summer monsoon, suggesting that local land-atmosphere feedbacks involving desiccated soils and vegetation might have played a role in driving the heat extreme. Upon examina...
Beyond ITER: neutral beams for a demonstration fusion reactor (DEMO) (invited).
McAdams, R
2014-02-01
In the development of magnetically confined fusion as an economically sustainable power source, International Tokamak Experimental Reactor (ITER) is currently under construction. Beyond ITER is the demonstration fusion reactor (DEMO) programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.
Time-resolved scanning Kerr microscopy of flux beam formation in hard disk write heads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valkass, Robert A. J., E-mail: rajv202@ex.ac.uk; Spicer, Timothy M.; Burgos Parra, Erick
To meet growing data storage needs, the density of data stored on hard disk drives must increase. In pursuit of this aim, the magnetodynamics of the hard disk write head must be characterized and understood, particularly the process of “flux beaming.” In this study, seven different configurations of perpendicular magnetic recording (PMR) write heads were imaged using time-resolved scanning Kerr microscopy, revealing their detailed dynamic magnetic state during the write process. It was found that the precise position and number of driving coils can significantly alter the formation of flux beams during the write process. These results are applicable tomore » the design and understanding of current PMR and next-generation heat-assisted magnetic recording devices, as well as being relevant to other magnetic devices.« less
Thermal engine driven heat pump for recovery of volatile organic compounds
Drake, Richard L.
1991-01-01
The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.
Condensation on Highly Superheated Surfaces: Unstable Thin Films in a Wickless Heat Pipe
NASA Astrophysics Data System (ADS)
Kundan, Akshay; Nguyen, Thao T. T.; Plawsky, Joel L.; Wayner, Peter C.; Chao, David F.; Sicker, Ronald J.
2017-03-01
A wickless heat pipe was operated on the International Space Station to provide a better understanding of how the microgravity environment might alter the physical and interfacial forces driving evaporation and condensation. Traditional heat pipes are divided into three zones: evaporation at the heated end, condensation at the cooled end, and intermediate or adiabatic in between. The microgravity experiments reported herein show that the situation may be dramatically more complicated. Beyond a threshold heat input, there was a transition from evaporation at the heated end to large-scale condensation, even as surface temperatures exceeded the boiling point by 160 K. The hotter the surface, the more vapor was condensed onto it. The condensation process at the heated end is initiated by thickness and temperature disturbances in the thin liquid film that wet the solid surface. Those disturbances effectively leave the vapor "superheated" in that region. Condensation is amplified and sustained by the high Marangoni stresses that exist near the heater and that drive liquid to cooler regions of the device.
Accumulation of electric currents driving jetting events in the solar atmosphere
NASA Astrophysics Data System (ADS)
Vargas Domínguez, S.; Guo, Y.; Demoulin, P.; Schmieder, B.; Ding, M.; Liu, Y.
2013-12-01
The solar atmosphere is populated with a wide variety of structures and phenomena at different spatial and temporal scales. Explosive phenomena are of particular interest due to their contribution to the atmosphere's energy budget and their implications, e.g. coronal heating. Recent instrumental developments have provided important observations and therefore new insights for tracking the dynamic evolution of the solar atmosphere. Jets of plasma are frequently observed in the solar corona and are thought to be a consequence of magnetic reconnection, however, the physics involved is not fully understood. Unprecedented observations (EUV and vector magnetic fields) are used to study solar jetting events, from which we derive the magnetic flux evolution, the photospheric velocity field, and the vertical electric current evolution. The evolution of magnetic parasitic polarities displaying diverging flows are detected to trigger recurrent jets in a solar regionon 17 September 2010. The interaction drive the build up of electric currents. Observed diverging flows are proposed to build continuously such currents. Magnetic reconnection is proposed to occur periodically, in the current layer created between the emerging bipole and the large scale active region field. SDO/AIA EUV composite images. Upper: SDO/AIA 171 Å image overlaid by the line-of-sight magnetic field observed at the same time as that of the 171 Å image. Lower: Map of photospheric transverse velocities derived from LCT analysis with the HMI magnetograms.
Two-Step Vapor/Liquid/Solid Purification
NASA Technical Reports Server (NTRS)
Holland, L. R.
1986-01-01
Vertical distillation system combines in single operation advantages of multiple zone refining with those of distillation. Developed specifically to load Bridgman-Stockbarger (vertical-solidification) growth ampoules with ultrapure tellurium and cadmium, system, with suitable modifications, serves as material refiner. In first phase of purification process, ampoule heated to drive off absorbed volatiles. Second phase, evaporator heated to drive off volatiles in charge. Third phase, slowly descending heater causes distillation from evaporator to growing crystal in ampoule.
Heating in Integrable Time-Periodic Systems
NASA Astrophysics Data System (ADS)
Ishii, Takashi; Kuwahara, Tomotaka; Mori, Takashi; Hatano, Naomichi
2018-06-01
We investigate a heating phenomenon in periodically driven integrable systems that can be mapped to free-fermion models. We find that heating to the high-temperature state, which is a typical scenario in nonintegrable systems, can also appear in integrable time-periodic systems; the amount of energy absorption rises drastically near a frequency threshold where the Floquet-Magnus expansion diverges. As the driving period increases, we also observe that the effective temperatures of the generalized Gibbs ensemble for conserved quantities go to infinity. By the use of the scaling analysis, we reveal that, in the limit of infinite system size and driving period, the steady state after a long time is equivalent to the infinite-temperature state. We obtain the asymptotic behavior L-1 and T-2 as to how the steady state approaches the infinite-temperature state as the system size L and the driving period T increase.
A review on battery thermal management in electric vehicle application
NASA Astrophysics Data System (ADS)
Xia, Guodong; Cao, Lei; Bi, Guanglong
2017-11-01
The global issues of energy crisis and air pollution have offered a great opportunity to develop electric vehicles. However, so far, cycle life of power battery, environment adaptability, driving range and charging time seems far to compare with the level of traditional vehicles with internal combustion engine. Effective battery thermal management (BTM) is absolutely essential to relieve this situation. This paper reviews the existing literature from two levels that are cell level and battery module level. For single battery, specific attention is paid to three important processes which are heat generation, heat transport, and heat dissipation. For large format cell, multi-scale multi-dimensional coupled models have been developed. This will facilitate the investigation on factors, such as local irreversible heat generation, thermal resistance, current distribution, etc., that account for intrinsic temperature gradients existing in cell. For battery module based on air and liquid cooling, series, series-parallel and parallel cooling configurations are discussed. Liquid cooling strategies, especially direct liquid cooling strategies, are reviewed and they may advance the battery thermal management system to a new generation.
Direct drive options for electric propulsion systems
NASA Technical Reports Server (NTRS)
Hamley, John A.
1995-01-01
Power processing units (PPU's) in an electric propulsion system provide many challenging integration issues. The PPU must provide power to the electric thruster while maintaining compatibility with all of the spacecraft power and data systems. Inefficiencies in the power processor produce heat, which must be radiated to the environment in order to ensure reliable operation. Although PPU efficiencies are generally greater than 0.9, heat loads are often substantial. This heat must be rejected by thermal control systems which generally have specific masses of 15-30 kg/kW. PPU's also represent a large fraction of the electric propulsion system dry mass. Simplification or elimination of power processing in a propulsion system would reduce the electric propulsion system specific mass and improve the overall reliability and performance. A direct drive system would eliminate all or some of the power supplies required to operate a thruster by directly connecting the various thruster loads to the solar array. The development of concentrator solar arrays has enabled power bus voltages in excess of 300 V which is high enough for direct drive applications for Hall thrusters such as the Stationary Plasma Thruster (SPT). The option of solar array direct drive for SPT's is explored to provide a comparison between conventional and direct drive system mass.
Characterization testing of Lockheed Martin high-power micro pulse tube cryocooler
NASA Astrophysics Data System (ADS)
McKinley, I. M.; Hummel, C. D.; Johnson, D. L.; Rodriguez, J. I.
2017-12-01
This paper describes the thermal vacuum, microphonics, magnetics, and radiation testing and results of a Lockheed Martin high-power micro pulse tube cryocooler. The thermal performance of the microcooler was measured in vacuum for heat reject temperatures between 185 and 300 K. The cooler was driven with a Chroma 61602 AC power source for input powers ranging from 10 to 60 W and drive frequency between 115 and 140 Hz during thermal performance testing. The optimal drive frequency was dependent on both input power and heat reject temperature. In addition, the microphonics of the cooler were measured with the cooler driven by Iris Technologies LCCE-2 and HP-LCCE drive electronics for input powers ranging from 10 to 60 W and drive frequency between 135 and 145 Hz. The exported forces were strongly dependent on input power while only weakly dependent on the drive frequency. Moreover, the exported force in the compressor axis was minimized by closed loop control with the HP-LCCE. The cooler also survived a 500 krad radiation dose while being continuously operated with 30 W of input power at 220 K heat rejection temperature in vacuum. Finally, the DC and AC magnetic fields around the cooler were measured at various locations.
Plasma Source Development for LAPD
NASA Astrophysics Data System (ADS)
Pribyl, P.; Gekelman, W.; Drandell, M.; Grunspen, S.; Nakamoto, M.; McBarron, A.
2003-10-01
The Large Plasma Device (LAPD) relies on an indirectly heated Barium Oxide (BaO) cathode to generate an extremely repeatable low-noise plasma. However there are two defects of this system: one is that the cathode is subject to oxygen poisoning in the event of accidental air leaks, requiring a lengthy recoating and regeneration process. Second, the indirect radiative heating is only about 50 % efficient, leading to a series of reliability issues. Alternate plasma sources are being investigated, including two types of directly heated BaO cathode and several configurations of inductively coupled RF plasmas. Direct heating for a cathode can be achieved either by embedding heaters within the nickel substrate, or by using inductive heating techniques to drive currents within the nickel itself. In both cases, the BaO coating still serves to emit the electrons and thus generate the plasma arc. An improved system would generate the plasma without the use of a "cathode" e.g. by inductively coupling energy directly into the plasma discharge. This technique is being investigated from the point of view of whether a) the bulk of the plasma column can be made sufficiently low-noise to be of experimental value and b) sufficiently dense plasmas can be formed.
Two-point modeling of SOL losses of HHFW power in NSTX
NASA Astrophysics Data System (ADS)
Kish, Ayden; Perkins, Rory; Ahn, Joon-Wook; Diallo, Ahmed; Gray, Travis; Hosea, Joel; Jaworski, Michael; Kramer, Gerrit; Leblanc, Benoit; Sabbagh, Steve
2017-10-01
High-harmonic fast-wave (HHFW) heating is a heating and current-drive scheme on the National Spherical Torus eXperiment (NSTX) complimentary to neutral beam injection. Previous experiments suggest that a significant fraction, up to 50%, of the HHFW power is promptly lost to the scrape-off layer (SOL). Research indicates that the lost power reaches the divertor via wave propagation and is converted to a heat flux at the divertor through RF rectification rather than heating the SOL plasma at the midplane. This counter-intuitive hypothesis is investigated using a simplified two-point model, relating plasma parameters at the divertor to those at the midplane. Taking measurements at the divertor region of NSTX as input, this two-point model is used to predict midplane parameters, using the predicted heat flux as an indicator of power input to the SOL. These predictions are compared to measurements at the midplane to evaluate the extent to which they are consistent with experiment. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.
Predictive modelling of JT-60SA high-beta steady-state plasma with impurity accumulation
NASA Astrophysics Data System (ADS)
Hayashi, N.; Hoshino, K.; Honda, M.; Ide, S.
2018-06-01
The integrated modelling code TOPICS has been extended to include core impurity transport, and applied to predictive modelling of JT-60SA high-beta steady-state plasma with the accumulation of impurity seeded to reduce the divertor heat load. In the modelling, models and conditions are selected for a conservative prediction, which considers a lower bound of plasma performance with the maximum accumulation of impurity. The conservative prediction shows the compatibility of impurity seeding with core plasma with high-beta (β N > 3.5) and full current drive conditions, i.e. when Ar seeding reduces the divertor heat load below 10 MW m‑2, its accumulation in the core is so moderate that the core plasma performance can be recovered by additional heating within the machine capability to compensate for Ar radiation. Due to the strong dependence of accumulation on the pedestal density gradient, high separatrix density is important for the low accumulation as well as the low divertor heat load. The conservative prediction also shows that JT-60SA has enough capability to explore the divertor heat load control by impurity seeding in high-beta steady-state plasmas.
Control of plasma profiles and stability through localised Electron Cyclotron Current Drive
NASA Astrophysics Data System (ADS)
Merkulov, Oleksiy
2006-06-01
The work presented in this thesis addresses several topics from the physics of the magnetically confined plasma inside a tokamak. At the moment, the tokamak is the most successful concept for becoming a future thermonuclear reactor. However, there are plenty of physics and engineering problems to surpass before the prototype can become an economically and environmentally feasible device. The plasma in the tokamak experiences periodic oscillations of the central temperature and density when the safety factor, q, drops below unity on-axis. These oscillations are called the sawtooth instability and are the subject of the first part of this thesis. The sawtooth oscillations are characterised by the relatively slow rise phase, when the central temperature increases, and a following crash phase, when the central temperature drops. The energy, particles and plasma current are redistributed during the sawtooth crash. Obviously, this leads to a confinement degradation and moreover, the sawtooth instability can trigger potentially other more dangerous instabilities, such as a neoclassical tearing mode. The sawtooth period control is realised on the basis of the sawtooth trigger model, derived by Porcelli. The main idea of this model is that the sawtooth crash is triggered when the magnetic shear at the q=1 surface, s1, reaches a critical value which depends on the local plasma parameters. The magnetic shear, s, is a measure for the rate of change in the direction of the field line as a function of the position in the plasma. The sawtooth period can be changed by affecting the evolution of s1. The effects of the electron cyclotron current drive (ECCD) on the shear evolution are studied with a simple model for the poloidal field evolution. The results of the model are summarised in a form of a criterion for the amount of the non-inductive current drive required for sawtooth period control. The effects of the ECCD have been studied in the TEXTOR tokamak in order to confirm the outcome of the model. The observations are complicated by the unavoidable presence of concurrent heating, which also affects the sawtooth period. The effects of additional heating have been separated from the effects of current drive by normalising the sawtooth period, as a function of the power deposition radius, to a case with heating only. The results are in qualitative agreement with the predictions of the theory and confirm that the shear around the q=1 surface determines the moment of the sawtooth crash. The next topic addresses the current diffusion in the presence of the ECCD. It is known that the synergy between non-inductively driven current and the ohmic current can affect the current penetration. However, the standard method of calculations, which assumes neoclassical plasma resistivity, cannot describe the synergistic effects. We propose a model which combines a Fokker-Planck code and magnetic diffusion calculation in a self-consistent manner; where the plasma resistivity is approximated from the Fokker-Planck code at every time step. In this way the parallel electric field is no longer a constant input profile for the Fokker-Planck code, but is a result of calculations of the magnetic diffusion. This model allowed us to identify situations where the synergy between the driven and the ohmic currents becomes significant and affects the current penetration. Both the ECCD power and the electron density have been varied over a wide range of parameters, thus changing the well known non-linearity criterion for ECCD after Harvey. This criterion indicates the non-linear behaviour of the current drive efficiency and also appears to be a good predictor for the synergistic effects. The results are compared with the standard method of calculations which were supplied by the ASTRA transport code. The standard method and the Fokker-Planck code with the self-consistent electric field show similar results in the absence of the synergy and therefore for low values of the Harvey parameter. For co-ECCD and high values of the Harvey parameter substantial synergy between ECCD and the ohmic current is observed and leads to the generation of a large population of suprathermal electrons and slows down the current penetration. The synergy between counter-ECCD and the inductive current results in a decrease of the total driven current and a much smaller population of suprathermal electrons. Another plasma stability problem has been studied during the current ramp-up phase. Quiet and MHD free current ramp-up is a necessary requirement for a long and efficient flat-top phase. The current penetration in the plasma scenarios with various plasma ramp-up rates has been modelled with the ASTRA transport code. It is shown that in the absence of MHD activity the predictions of the ASTRA code are in a agreement with the experimental results.
High Harmonic Fast Wave Damping on an Ion Beam: NSTX and DIII-D Regimes Compared
NASA Astrophysics Data System (ADS)
Pinsker, R. I.; Choi, C. C.; Petty, C. C.; Porkolab, M.; Wilson, J. R.; Murakami, M.; Harvey, R. W.
2004-11-01
Both NSTX and DIII-D use the combination of fast Alfven waves (FW) and neutral beam injection (NBI) for central electron heating and current drive. Damping of the fast wave on the beam ions at moderate to high harmonics (4th--20th) of the beam ion cyclotron frequency represents a loss process. In DIII-D current drive experiments at low density in which 4th and 8th harmonics were compared, damping at the 8th harmonic damping was much weaker than at the 4th [1]. However, recent simulations have predicted that in higher density and higher beam power regimes (of interest to the Advanced Tokamak program) the beam ion absorption will transition to the unmagnetized ion regime, where the damping is significant and essentially independent of harmonic number. In the present work, the transition from magnetized to unmagnetized ion regimes for the NSTX and DIII-D HHFW experiments is studied theoretically, with a combination of simple semi-analytic models and numerical models. \\vspace0.25 em [1] C.C. Petty, et al., Plasma Phys. and Contr. Fusion 43, 1747 (2001).
Noninductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta
Schlossberg, David J.; Bodner, Grant M.; Bongard, Michael W.; ...
2017-07-01
Access to and characterization of sustained, toroidally confined plasmas with a very high plasma-to-magnetic pressure ratio (β t), low internal inductance, high elongation, and nonsolenoidal current drive is a central goal of present tokamak plasma research. Stable access to this desirable parameter space is demonstrated in plasmas with ultralow aspect ratio and high elongation. Local helicity injection provides nonsolenoidal sustainment, low internal inductance, and ion heating. Equilibrium analyses indicate β t up to ~100% with a minimum |B| well spanning up to ~50% of the plasma volume.
Noninductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta.
Schlossberg, D J; Bodner, G M; Bongard, M W; Burke, M G; Fonck, R J; Perry, J M; Reusch, J A
2017-07-21
Access to and characterization of sustained, toroidally confined plasmas with a very high plasma-to-magnetic pressure ratio (β_{t}), low internal inductance, high elongation, and nonsolenoidal current drive is a central goal of present tokamak plasma research. Stable access to this desirable parameter space is demonstrated in plasmas with ultralow aspect ratio and high elongation. Local helicity injection provides nonsolenoidal sustainment, low internal inductance, and ion heating. Equilibrium analyses indicate β_{t} up to ∼100% with a minimum |B| well spanning up to ∼50% of the plasma volume.
Observation of odd toroidal Alfvén eigenmodes.
Kramer, G J; Sharapov, S E; Nazikian, R; Gorelenkov, N N; Budny, R V
2004-01-09
Experimental evidence is presented for the existence of the theoretically predicted odd toroidicity induced Alfvén eigenmode (TAE) from the simultaneous appearance of odd and even TAEs in a normal shear discharge of the joint European torus. The modes are observed in low central magnetic shear plasmas created by injecting lower hybrid current drive. A fast ion population was created by applying ion cyclotron heating at the high-field side to excite the TAEs. The odd TAEs were identified from their frequency, mode number, and timing relative to the even TAEs.
Availability of Heat to Drive Hydrothermal Systems in Large Martian Impact Craters
NASA Technical Reports Server (NTRS)
Thorsos, I. E.; Newsom, H. E.; Davies, A. G.
2001-01-01
The central uplift in large craters on Mars can provide a substantial source of heat, equivalent to heat produced by the impact melt sheet. The heat generated in large impacts could play a significant role in hydrothermal systems on Mars. Additional information is contained in the original extended abstract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tynan, George
This was a collaboration between UCSD and MIT to study the effective application of ion-cyclotron heating (ICRH) on the EAST tokamak, located in China. The original goal was for UCSD to develop a diagnostic that would allow measurement of the steady state, or DC, convection pattern that develops on magnetic field lines that attach or connect to the ICRH antenna. This diagnostic would then be used to develop techniques and approaches that minimize or even eliminate such DC convection during application of strong ICRH heating. This was thought to then indicate reduction or elimination of parasitic losses of heating power,more » and thus be an indicator of effective RF heating. The original plan to use high speed digital gas-puff imaging (GPI) of the antenna-edge plasma region in EAST was ultimately unsuccessful due to limitations in machine and camera operations. We then decided to attempt the same experiment on the ALCATOR C-MOD tokamak at MIT which had a similar instrument already installed. This effort was ultimately successful, and demonstrated that the underlying idea of using GPI as a diagnostic for ICRH antenna physics would, in fact, work. The two-dimensional velocity fields of the turbulent structures, which are advected by RF-induced E x B flows, are obtained via the time-delay estimation (TDE) techniques. Both the magnitude and radial extension of the radial electric field E-r were observed to increase with the toroidal magnetic field strength B and the ICRF power. The TDE estimations of RF-induced plasma potentials are consistent with previous results based on the probe measurements of poloidal phase velocity. The results suggest that effective ICRH heating with reduced impurity production is possible when the antenna/box system is designed so as to reduce the RF-induced image currents that flow in the grounded conducting antenna frame elements that surround the RF antenna current straps.« less
Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio-Oyashio Confluence region.
Sugimoto, Shusaku; Aono, Kenji; Fukui, Shin
2017-09-19
In the extratropical regions, surface winds enhance upward heat release from the ocean to atmosphere, resulting in cold surface ocean: surface ocean temperature is negatively correlated with upward heat flux. However, in the western boundary currents and eddy-rich regions, the warmer surface waters compared to surrounding waters enhance upward heat release-a positive correlation between upward heat release and surface ocean temperature, implying that the ocean drives the atmosphere. The atmospheric response to warm mesoscale ocean eddies with a horizontal extent of a few hundred kilometers remains unclear because of a lack of observations. By conducting regional atmospheric model experiments, we show that, in the Kuroshio-Oyashio Confluence region, wintertime warm eddies heat the marine atmospheric boundary layer (MABL), and accelerate westerly winds in the near-surface atmosphere via the vertical mixing effect, leading to wind convergence around the eastern edge of eddies. The warm-eddy-induced convergence forms local ascending motion where convective precipitation is enhanced, providing diabatic heating to the atmosphere above MABL. Our results indicate that warm eddies affect not only near-surface atmosphere but also free atmosphere, and possibly synoptic atmospheric variability. A detailed understanding of warm eddy-atmosphere interaction is necessary to improve in weather and climate projections.
Thermal battery for portable climate control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayanan, S; Li, XS; Yang, S
2015-07-01
Current technologies that provide climate control in the transportation sector are quite inefficient. In gasoline-powered vehicles, the use of air-conditioning is known to result in higher emissions of greenhouse gases and pollutants apart from decreasing the gas-mileage. On the other hand, for electric vehicles (EVs), a drain in the onboard electric battery due to the operation of heating and cooling system results in a substantial decrease in the driving range. As an alternative to the conventional climate control system, we are developing an adsorption-based thermal battery (ATB), which is capable of storing thermal energy, and delivering both heating and coolingmore » on demand, while requiring minimal electric power supply. Analogous to an electrical battery, the ATB can be charged for reuse. Furthermore, it promises to be compact, lightweight, and deliver high performance, which is desirable for mobile applications. In this study, we describe the design and operation of the ATB-based climate control system. We present a general theoretical framework to determine the maximum achievable heating and cooling performance using the ATB. The framework is then applied to study the feasibility of ATB integration in EVs, wherein we analyze the use of NaX zeolite-water as the adsorbent-refrigerant pair. In order to deliver the necessary heating and cooling performance, exceeding 2.5 kW h thermal capacity for EVs, the analysis determines the optimal design and operating conditions. While the use of the ATB in EVs can potentially enhance its driving range, it can also be used for climate control in conventional gasoline vehicles, as well as residential and commercial buildings as a more efficient and environmentally-friendly alternative. (C) 2015 Elsevier Ltd. All rights reserved.« less
Impact-Induced Liquid-Water Environments on Mars
NASA Astrophysics Data System (ADS)
Daubar, I. J.; Kring, D. A.
2001-11-01
The origin and evolution of life on Earth were likely associated with hydrothermal systems (e.g., Corliss et al. 1980, Baross and Hoffman 1985, Holm and Andersson 1995, Shock 1996). Although research has been concentrated on volcanic hydrothermal systems on Earth (e.g., Norton 1984, Farmer 2000) and on Mars (e.g., Allen et al. 1982, Gulick and Baker 1989, Farmer 1996), we suggest that large impacts can, and did, drive similar systems. Impacts are a significant source of thermal energy: melt rock produced in impacts, and hot rock uplifted from depth both provide sources of heat to drive hydrothermal systems. On Mars, these heat sources could provide enough energy to melt an underlying layer of permafrost and perhaps even initiate long-lived crater lakes (Newsom et al. 1996, Cabrol et al. 1999). In terms of the production of heat and the habitable volume incorporated in hydrothermal systems, impacts might have been at least as important as volcanic systems early in planetary development. The oldest (Noachian) surfaces on Mars support this hypothesis: they show very little evidence of volcanism (Carr 1996) and are instead dominated by impact cratering processes. Kring and Cohen (2001, submitted) estimate that more than 6400 craters with diameters greater than 20 km were produced on Mars 3.9 Ga. We present estimates of the lifetimes of hydrothermal systems in Martian craters with sizes ranging from 20 km to 200 km in diameter. Lifetimes calculated assuming convective cooling are 105 years for 100-km craters and several 106 years for 180-km craters (Daubar and Kring 2001, cf. Thorsos et al. 2001). These results may be influenced by an insulating breccia layer, shock heating, and convection of water; these factors are currently being evaluated.
Phase space effects on fast ion transport modeling in tokamaks
NASA Astrophysics Data System (ADS)
Podesta, Mario
2015-11-01
Simulations of burning plasmas require a consistent treatment of energetic particles (EP), possibly including the effects of instabilities. Reduced EP transport models are emerging as an effective tool to account for those effects in long time-scale simulations. Available models essentially differ for the main transport drive, which is associated to gradients in real or phase space. It is crucial to assess to what extent those different assumptions affect computed quantities such as EP profile, Neutral Beam (NB) driven current and energy/momentum transfer to the thermal populations. These issues are investigated through a kick model, which includes modifications of the EP distribution by instabilities in real and velocity space. TRANSP simulations including the kick model are applied to NB-heated NSTX discharges featuring unstable toroidal Alfvén eigenmodes (TAEs). Results show that TAEs mainly affect fast ions with large parallel velocity, i.e. the most effective for NB current drive. Other portions of the EP distribution are nearly unperturbed. Core NB driven current decreases by 10-30%, with even larger relative changes toward the plasma edge. When TAEs evolve in so-called avalanches, the model reproduces measured drops of ~ 10% in the neutron rate. Consistently with previous results, the drop is caused by both EP energy loss and EP redistribution. These results are compared to those from a simple diffusive model and a ``critical gradient'' model, which postulates radial EP gradient as the only transport drive. The importance of EP velocity space modifications is discussed in terms of accuracy of the predictions, with emphasis on Neutral Beam driven current. Work supported by U.S. DOE Contract DE-AC02-09CH11466.
Detecting anthropogenic climate forcing in the ocean
NASA Astrophysics Data System (ADS)
Wijffels, S. A.
2016-12-01
Owing to its immense heat capacity, the global ocean is the fly-wheel of the climate system, absorbing, redistributing and storing heat on long timescales and over great distances. Of the extra heat trapped in the Earth System due to rising greenhouse gases, over 90% is being stored in the global oceans. Tracking this warming has been challenging due to past changes in the coverage and technology used in past ocean observations. Here, I'll review progress in estimating past warming rates and patterns. The warming of Earth's surface is also driving changes in the global hydrological cycle, which also intimately involves the oceans. Global ocean salinity changes reveal another footprint of a warming Earth. Some simple model runs that give insight into observed subsurface changes will also be described, along with an update on current warming rates and patterns as tracked by the global Argo programme. The prospects for the next advances in broadscale ocean monitoring will also be discussed.
A transport model for non-local heating of electrons in ICP reactors
NASA Astrophysics Data System (ADS)
Chang, C. H.; Bose, Deepak
1998-10-01
A new model has been developed for non-local heating of electrons in ICP reactors, based on a hydrodynamic approach. The model has been derived using the electron momentum conservation in azimuthal direction with electromagnetic and frictional forces respectively as driving force and damper of harmonic oscillatory motion of electrons. The resulting transport equations include the convection of azimuthal electron momentum in radial and axial directions, thereby accounting for the non-local effects. The azimuthal velocity of electrons and the resulting electrical current are coupled to the Maxwell's relations, thus forming a self-consistent model for non-local heating. This model is being implemented along with a set of Navier-Stokes equations for plasma dynamics and gas flow to simulate low-pressure (few mTorr's) ICP discharges. Characteristics of nitrogen plasma in a TCP 300mm etch reactor is being studied. The results will be compared against the available Langmuir probe measurements [Collison et al. JVST-A 16(1),1998].
DEMO port plug design and integration studies
NASA Astrophysics Data System (ADS)
Grossetti, G.; Boccaccini, L. V.; Cismondi, F.; Del Nevo, A.; Fischer, U.; Franke, T.; Granucci, G.; Hernández, F.; Mozzillo, R.; Strauß, D.; Tran, M. Q.; Vaccaro, A.; Villari, R.
2017-11-01
The EUROfusion Consortium established in 2014 and composed by European Fusion Laboratories, and in particular the Power Plant Physics and Technology department aims to develop a conceptual design for the Fusion DEMOnstration Power Plant, DEMO. With respect to present experimental machines and ITER, the main goals of DEMO are to produce electricity continuously for a period of about 2 h, with a net electrical power output of a few hundreds of MW, and to allow tritium self-sufficient breeding with an adequately high margin in order to guarantee its planned operational schedule, including all planned maintenance intervals. This will eliminate the need to import tritium fuel from external sources during operations. In order to achieve these goals, extensive engineering efforts as well as physics studies are required to develop a design that can ensure a high level of plant reliability and availability. In particular, interfaces between systems must be addressed at a very early phase of the project, in order to proceed consistently. In this paper we present a preliminary design and integration study, based on physics assessments for the EU DEMO1 Baseline 2015 with an aspect ratio of 3.1 and 18 toroidal field coils, for the DEMO port plugs. These aim to host systems like electron cyclotron heating launchers currently developed within the Work Package Heating and Current Drive that need an external radial access to the plasma and through in-vessel systems like the breeder blanket. A similar approach shown here could be in principle followed by other systems, e.g. other heating and current drive systems or diagnostics. The work addresses the interfaces between the port plug and the blanket considering the helium-cooled pebble bed and the water cooled lithium lead which are two of four breeding blanket concepts under investigation in Europe within the Power Plant Physics and Technology Programme: the required openings will be evaluated in terms of their impact onto the blanket segments thermo-mechanical and nuclear design considering mechanical integration aspects but also their impact on tritium breeding ratio. Since DEMO is still in a pre-conceptual phase, the same methodology is applicable to the other two blanket concepts, as well.
Space-based Observational Constraints for 1-D Plume Rise Models
NASA Technical Reports Server (NTRS)
Martin, Maria Val; Kahn, Ralph A.; Logan, Jennifer A.; Paguam, Ronan; Wooster, Martin; Ichoku, Charles
2012-01-01
We use a space-based plume height climatology derived from observations made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the NASA Terra satellite to evaluate the ability of a plume-rise model currently embedded in several atmospheric chemical transport models (CTMs) to produce accurate smoke injection heights. We initialize the plume-rise model with assimilated meteorological fields from the NASA Goddard Earth Observing System and estimated fuel moisture content at the location and time of the MISR measurements. Fire properties that drive the plume-rise model are difficult to estimate and we test the model with four estimates for active fire area and four for total heat flux, obtained using empirical data and Moderate Resolution Imaging Spectroradiometer (MODIS) re radiative power (FRP) thermal anomalies available for each MISR plume. We show that the model is not able to reproduce the plume heights observed by MISR over the range of conditions studied (maximum r2 obtained in all configurations is 0.3). The model also fails to determine which plumes are in the free troposphere (according to MISR), key information needed for atmospheric models to simulate properly smoke dispersion. We conclude that embedding a plume-rise model using currently available re constraints in large-scale atmospheric studies remains a difficult proposition. However, we demonstrate the degree to which the fire dynamical heat flux (related to active fire area and sensible heat flux), and atmospheric stability structure influence plume rise, although other factors less well constrained (e.g., entrainment) may also be significant. Using atmospheric stability conditions, MODIS FRP, and MISR plume heights, we offer some constraints on the main physical factors that drive smoke plume rise. We find that smoke plumes reaching high altitudes are characterized by higher FRP and weaker atmospheric stability conditions than those at low altitude, which tend to remain confined below the BL, consistent with earlier results. We propose two simplified parameterizations for computing injection heights for fires in CTMs and discuss current challenges to representing plume injection heights in large scale atmospheric models.
Battery Thermal Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyser, Matthew; Saxon, Aron; Powell, Mitchell
2016-06-07
This poster shows the progress in battery thermal characterization over the previous year. NREL collaborated with U.S. DRIVE and USABC battery developers to obtain thermal properties of their batteries, obtained heat capacity and heat generation of cells under various power profiles, obtained thermal images of the cells under various drive cycles, and used the measured results to validate thermal models. Thermal properties are used for the thermal analysis and design of improved battery thermal management systems to support achieve life and performance targets.
Advanced Tokamak Investigations in Full-Tungsten ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Bock, Alexander
2017-10-01
The tailoring of the q-profile is the foundation of Advanced Tokamak (AT) scenarios. It depends on low collisionality ν* which permits efficient external current drive and high amounts of intrinsic bootstrap current. At constant pressure, lowering ne leads to a strong decrease of ν* Te - 3 . After the conversion of ASDEX Upgrade to fully W-coated plasma facing components, radiative collapses of H-modes with little gas puffing due to central W accumulation could only be avoided partially with central ECRH. Also, operation at high β with low ne presented a challenge for the divertor. Together, these issues prevented meaningful AT investigations. To overcome this, several major feats have been accomplished: Access to lower ne was achieved through a better understanding of the changes to recycling and pumping, and optionally the density pump-out phenomenon due to RMPs. ECRH capacities were substantially expanded for both heating and current drive, and a solid W divertor capable of withstanding the power loads was installed. A major overhaul improved the reliability of the current profile diagnostics. This contribution will detail the efforts needed to re-access AT scenarios and report on the development of candidate steady state scenarios for ITER/DEMO. Starting from the `hybrid scenario,' a non-inductive scenario (q95 = 5.3 , βN = 2.7 , fbs > 40 %) was developed. It can be sustained for many τE, limited only by technical boundaries, and is also independent of the ramp-up scenario. The β-limit is set by ideal modes that convert into NTMs. The Ti-profiles are steeper than predicted by TGLF, but nonlinear electromagnetic gyro-kinetic analyses with GENE including fast particle effects matched the experimental heat fluxes. We will also report on scenarios at higher q95, similar to the EAST/DIII-D steady state scenario. The extrapolation of these scenarios to ITER/DEMO will be discussed.
NASA Astrophysics Data System (ADS)
Reusch, Joshua
2017-10-01
A major goal of the spherical tokamak research program is accessing a state of low internal inductance li, high elongation κ, high toroidal and normalized beta (βt and βN) , and low collisionality without solenoidal current drive. A new local helicity injection (LHI) system in the lower divertor region of the ultra-low aspect ratio Pegasus ST provides non-solenoidally driven plasmas that exhibit most of these characteristics. LHI utilizes compact, edge-localized current sources (Ainj 4 cm2, Iinj 8 kA, Vinj 1.5 kV) for plasma startup and sustainment, and can sustain more than 200 kA of plasma current. Plasma growth via LHI is enhanced by a transition from a regime of high kink-like MHD activity to one of reduced MHD activity at higher frequencies and presumably shorter wavelengths. The strong edge current drive provided by LHI results in a hollow current density profile with low li. The low aspect ratio (R0 / a 1.2) of Pegasus allows ready access to high κ and MHD stable operation at very high normalized plasma currents (IN =Ip /aBT> 15). Thomson scattering measurements indicate Te 100 eV and ne 1 ×19 m-3. The impurity Ti evolution is correlated in time with high frequency magnetic fluctuations, implying substantial reconnection ion heating is driven by the applied helicity injection. Doppler spectroscopy indicates Ti >=Te and that the anomalous ion heating scales consistently with two fluid reconnection theory. Taken together, these features provide access to very high βt plasmas. Equilibrium analyses indicate βt up to 100% and βN 6.5 is achieved. At increasingly low BT, the discharge disrupts at the no-wall ideal stability limit. In these high βt discharges, a minimum |B| well forms over 50% of the plasma volume. This unique magnetic configuration may be of interest for testing predictions of stabilizing drift wave turbulence and/or improving energetic particle confinement. This work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.
Thermal Performance Benchmarking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Xuhui; Moreno, Gilbert; Bennion, Kevin
2016-06-07
The goal for this project is to thoroughly characterize the thermal performance of state-of-the-art (SOA) in-production automotive power electronics and electric motor thermal management systems. Information obtained from these studies will be used to: evaluate advantages and disadvantages of different thermal management strategies; establish baseline metrics for the thermal management systems; identify methods of improvement to advance the SOA; increase the publicly available information related to automotive traction-drive thermal management systems; help guide future electric drive technologies (EDT) research and development (R&D) efforts. The thermal performance results combined with component efficiency and heat generation information obtained by Oak Ridge Nationalmore » Laboratory (ORNL) may then be used to determine the operating temperatures for the EDT components under drive-cycle conditions. In FY16, the 2012 Nissan LEAF power electronics and 2014 Honda Accord Hybrid power electronics thermal management system were characterized. Comparison of the two power electronics thermal management systems was also conducted to provide insight into the various cooling strategies to understand the current SOA in thermal management for automotive power electronics and electric motors.« less
NASA Astrophysics Data System (ADS)
Sarff, J. S.; MST Team
2011-10-01
MST progress in advancing the RFP for (1) fusion plasma confinement with minimal external magnetization, (2) toroidal confinement physics, and (3) basic plasma physics is summarized. New tools and diagnostics are accessing physics barely studied in the RFP. Several diagnostic advances are important for ITER/burning plasma. A 1 MW neutral beam injector operates routinely for fast ion, heating, and transport investigations. Energetic ions are also created spontaneously by tearing mode reconnection, reminiscent of astrophysical plasmas. Classical confinement of impurity ions is measured in reduced-tearing plasmas. Fast ion slowing-down is also classical. Alfven-eigenmode-like activity occurs with NBI, but apparently not TAE. Stellarator-like helical structure appears in the core of high current plasmas, with improved confinement characteristics. FIR interferometry, Thomson scattering, and HIBP diagnostics are beginning to explore microturbulence scales, an opportunity to exploit the RFP's high beta and strong magnetic shear parameter space. A programmable power supply for the toroidal field flexibly explores scenarios from advanced inductive profile control to low current tokamak operation. A 1 MW 5.5 GHz source for electron Bernstein wave injection is nearly complete to investigate heating and current drive in over-dense plasmas. Supported by DOE and NSF.
PV Array Driven Adjustable Speed Drive for a Lunar Base Heat Pump
NASA Technical Reports Server (NTRS)
Domijan, Alexander, Jr.; Buchh, Tariq Aslam
1995-01-01
A study of various aspects of Adjustable Speed Drives (ASD) is presented. A summary of the relative merits of different ASD systems presently in vogue is discussed. The advantages of using microcomputer based ASDs is now widely understood and accepted. Of the three most popular drive systems, namely the Induction Motor Drive, Switched Reluctance Motor Drive and Brushless DC Motor Drive, any one may be chosen. The choice would depend on the nature of the application and its requirements. The suitability of the above mentioned drive systems for a photovoltaic array driven ASD for an aerospace application are discussed. The discussion is based on the experience of the authors, various researchers and industry. In chapter 2 a PV array power supply scheme has been proposed, this scheme will have an enhanced reliability in addition to the other known advantages of the case where a stand alone PV array is feeding the heat pump. In chapter 3 the results of computer simulation of PV array driven induction motor drive system have been included. A discussion on these preliminary simulation results have also been included in this chapter. Chapter 4 includes a brief discussion on various control techniques for three phase induction motors. A discussion on different power devices and their various performance characteristics is given in Chapter 5.
Experience with Geared Propeller Drives for Aviation Engines
NASA Technical Reports Server (NTRS)
Kutzbach, K
1920-01-01
I. The development of the gear wheels: (a) bending stresses; (b) compressive stresses; (c) heating; (d) precision of manufacture. II. General arrangement of the gearing. III. Vibration in the shaft transmission. An overview is given of experience with geared propeller drives for aviation engines. The development of gear wheels is discussed with emphasis upon bending stresses, compressive stresses, heating, and precision in manufacturing. With respect to the general arrangement of gear drives for airplanes, some principal rules of mechanical engineering that apply with special force are noted. The primary vibrations in the shaft transmission are discussed. With respect to vibration, various methods for computing vibration frequency and the influence of elastic couplings are discussed.
Method of producing drive fluid in situ in tar sands formations
Mudunuri, Ramesh Raju; Jaiswal, Namit; Vinegar, Harold J.; Karanikas, John Michael
2010-03-23
Methods of treating a tar sands formation are described herein. Methods for treating a tar sands may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. The heat may be allowed to transfer from the heaters to at least a portion of the formation such that a drive fluid is produced in situ in the formation. The drive fluid may move at least some mobilized, visbroken, and/or pyrolyzed hydrocarbons from a first portion of the formation to a second portion of the formation. At least some of the mobilized, visbroken, and/or pyrolyzed hydrocarbons may be produced from the formation.
Destabilization of counter-propagating TAEs by off-axis, co-current Neutral Beam Injection
NASA Astrophysics Data System (ADS)
Podesta', M.; Fredrickson, E.; Gorelenkova, M.
2017-10-01
Neutral Beam injection (NBI) is a common tool to heat the plasma and drive current non-inductively in fusion devices. Energetic particles (EP) resulting from NBI can drive instabilities that are detrimental for the performance and the predictability of plasma discharges. A broad NBI deposition profile, e.g. by off-axis injection aiming near the plasma mid-radius, is often assumed to limit those undesired effects by reducing the radial gradient of the EP density, thus reducing the ``universal'' drive for instabilities. However, this work presents new evidence that off-axis NBI can also lead to undesired effects such as the destabilization of Alfvénic instabilities, as observed in NSTX-U plasmas. Experimental observations indicate that counter propagating toroidal AEs are destabilized as the radial EP density profile becomes hollow as a result of off-axis NBI. Time-dependent analysis with the TRANSP code, augmented by a reduced fast ion transport model (known as kick model), indicates that instabilities are driven by a combination of radial and energy gradients in the EP distribution. Understanding the mechanisms for wave-particle interaction, revealed by the phase space resolved analysis, is the basis to identify strategies to mitigate or suppress the observed instabilities. Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Contract Number DE-AC02-09CH11466.
New Evidence that Magnetoconvection Drives Solar–Stellar Coronal Heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.
2017-07-10
How magnetic energy is injected and released in the solar corona, keeping it heated to several million degrees, remains elusive. Coronal heating generally increases with increasing magnetic field strength. From a comparison of a nonlinear force-free model of the three-dimensional active region coronal field to observed extreme-ultraviolet loops, we find that (1) umbra-to-umbra coronal loops, despite being rooted in the strongest magnetic flux, are invisible, and (2) the brightest loops have one foot in an umbra or penumbra and the other foot in another sunspot’s penumbra or in unipolar or mixed-polarity plage. The invisibility of umbra-to-umbra loops is new evidencemore » that magnetoconvection drives solar-stellar coronal heating: evidently, the strong umbral field at both ends quenches the magnetoconvection and hence the heating. Broadly, our results indicate that depending on the field strength in both feet, the photospheric feet of a coronal loop on any convective star can either engender or quench coronal heating in the loop’s body.« less
Sensitivity analysis for best-estimate thermal models of vertical dry cask storage systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVoe, Remy R.; Robb, Kevin R.; Skutnik, Steven E.
Loading requirements for dry cask storage of spent nuclear fuel are driven primarily by decay heat capacity limitations, which themselves are determined through recommended limits on peak cladding temperature within the cask. This study examines the relative sensitivity of peak material temperatures within the cask to parameters that influence both the stored fuel residual decay heat as well as heat removal mechanisms. Here, these parameters include the detailed reactor operating history parameters (e.g., soluble boron concentrations and the presence of burnable poisons) as well as factors that influence heat removal, including non-dominant processes (such as conduction from the fuel basketmore » to the canister and radiation within the canister) and ambient environmental conditions. By examining the factors that drive heat removal from the cask alongside well-understood factors that drive decay heat, it is therefore possible to make a contextual analysis of the most important parameters to evaluation of peak material temperatures within the cask.« less
Sensitivity analysis for best-estimate thermal models of vertical dry cask storage systems
DeVoe, Remy R.; Robb, Kevin R.; Skutnik, Steven E.
2017-07-08
Loading requirements for dry cask storage of spent nuclear fuel are driven primarily by decay heat capacity limitations, which themselves are determined through recommended limits on peak cladding temperature within the cask. This study examines the relative sensitivity of peak material temperatures within the cask to parameters that influence both the stored fuel residual decay heat as well as heat removal mechanisms. Here, these parameters include the detailed reactor operating history parameters (e.g., soluble boron concentrations and the presence of burnable poisons) as well as factors that influence heat removal, including non-dominant processes (such as conduction from the fuel basketmore » to the canister and radiation within the canister) and ambient environmental conditions. By examining the factors that drive heat removal from the cask alongside well-understood factors that drive decay heat, it is therefore possible to make a contextual analysis of the most important parameters to evaluation of peak material temperatures within the cask.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, B.E.; Biewer, T.M.; Chattopadhyay, P.K.
2000-09-01
Auxiliary edge current drive is routinely applied in the Madison Symmetric Torus [R.N. Dexter, D. W. Kerst, T.W. Lovell et.al., Fusion Technol. 19, 131 (1991)] with the goal of modifying the parallel current profile to reduce current- driven magnetic fluctuations and the associated particle and energy transport. Provided by an inductive electric field, the current drive successfully reduces energy transport. First-time measurements of the modified edge current profile reveal that, relative to discharges without auxiliary current drive, the edge current density decreases. This decrease is explicable in terms of newly measured reductions in the dynamo (fluctuation-based) electric field and themore » electrical conductivity. Induced by the current drive, these two changes to the edge plasma play as much of a role in determining the resultant edge current profile as does the current drive itself.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winterberg, F.
2006-03-15
It is proposed to use the neutrons released from a deuterium-tritium or deuterium-deuterium fusion reaction to drive thermomagnetic currents in a plasma corona surrounding the fusion plasma through the heating of the corona with nuclear reactions by the neutrons released in the fusion reaction. Because the neutron reaction cross sections are larger for slow neutrons, it is proposed to slow them down in a moderator separated from the hot plasma of the corona, giving the configuration a striking similarity to a heterogeneous nuclear fission reactor. While in a fission reactor the separation makes possible a growing neutron chain reaction, itmore » here makes possible the autocatalytic amplification of the thermomagnetic currents by an increase of the fusion reaction rate through a rise of the plasma pressure by the magnetic pressure of the thermomagnetic currents. This is expected to substantially increase the n{tau} product over its Lawson value.« less
Analysis of the efficiency of a hybrid foil tunnel heating system
NASA Astrophysics Data System (ADS)
Kurpaska, Sławomir; Pedryc, Norbert
2017-10-01
The paper analyzes the efficiency of the hybrid system used to heat the foil tunnel. The tested system was built on the basis of heat gain in a cascade manner. The first step is to heat the water in the storage tank using the solar collectors. The second stage is the use of a heat pump (HP) in order to heat the diaphragm exchangers. The lower HP heat source is a cascade first stage buffer. In the storage tank, diaphragm exchangers used for solar collectors and heat pumps are installed. The research was carried out at a research station located in the University of Agriculture in Cracow. The aim was to perform an analysis of the efficiency of a hybrid system for the heating of a foil tunnel in the months from May to September. The efficiency of the entire hybrid system was calculated as the relation of the effect obtained in reference to the electrical power used to drive the heat pump components (compressor drive, circulation pump), circulation pumps and fans installed in the diaphragm heaters. The resulting effect was the amount of heat supplied to the interior of the object as a result of the internal air being forced through the diaphragm exchangers.
Solar-Powered Refrigeration System
NASA Technical Reports Server (NTRS)
Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)
2001-01-01
A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.
Solar-Powered Refrigeration System
NASA Technical Reports Server (NTRS)
Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)
2002-01-01
A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.
Solar Powered Refrigeration System
NASA Technical Reports Server (NTRS)
Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)
2002-01-01
A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-04-01
This article describes a system developed for rapid light-off of underbody catalysts that has shown potential to meet Euro Stage III emissions targets and to be more cost-effective than some alternatives. Future emissions legislation will require SI engine aftertreatment systems to approach full operating efficiency within the first few seconds after starting to reduce the high total-emissions fraction currently contributed by the cold phase of driving. A reduction of cold-start emissions during Phase 1 (Euro) or Bag 1 (FTP), which in many cases can be as much as 80% of the total for the cycle, has been achieved by electricalmore » heating of the catalytic converter. But electrically heated catalyst (EHC) systems require high currents (100--200 A) to heat the metallic substrate to light-off temperatures over the first 15--20 seconds. Other viable approaches to reducing cold-start emissions include use of a fuel-powered burner upstream of the catalyst. However, as with EHC, the complexity of parts and the introduction of raw fuel into the exhaust system make this device unsatisfactory. Still another approach, an exhaust gas ignition (EGI) system, was first demonstrated in 1991. The operation of a system developed by engineers at Ford Motor Co., Ltd., Cambustion Ltd., and Tickford Ltd. is described here.« less
Electron Bernstein Wave Studies in MST
NASA Astrophysics Data System (ADS)
Seltzman, Andrew; Anderson, Jay; Forest, Cary; Nonn, Paul; Thomas, Mark; Almagri, Abdulgader; Chapman, Brett; Dubois, Ami; Goetz, John; McCollam, Karsten
2015-11-01
The RFP plasma is inaccessible to ECRH, requiring the electron Bernstein wave (EBW) for edge localized heating and current drive. MST is capable of generating RFPs or overdense tokamaks with Bt(0) ~ 0.08-0.14T in which a 5.55 GHz RF source (450kW, 2ms pulse) can heat at fundamental and harmonic EC resonances. The design of a suitable antenna is challenging in the RFP due to a magnetic field geometry that requires a low-field-side launch. The small vacuum gap between the close-fitting conducting shell and plasma leads to substantial antenna-plasma interaction. A minimized port hole size is required to limit error fields. Even so the port hole induced magnetic field perturbation in the antenna near-field that affects the mode conversion process and introduces EC resonances. A 5cm diameter cylindrical antenna centered in 5cm and 11cm diameter portholes is used. A multi-chord time-resolved x-ray detector and GENRAY ray tracing verifies EBW heating at higher harmonics in an MST tokamak with 10-40keV detected x-ray energies. Evidence of RF-induced emission from absorption at higher harmonics (4th / 5th) in low current RFP discharges has been observed. Simultaneous reflected power changes correspond to termination of x-ray emission indicating power limits. Work supported by USDOE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schunert, Sebastian; Schwen, Daniel; Ghassemi, Pedram
This work presents a multi-physics, multi-scale approach to modeling the Transient Test Reactor (TREAT) currently prepared for restart at the Idaho National Laboratory. TREAT fuel is made up of microscopic fuel grains (r ˜ 20µm) dispersed in a graphite matrix. The novelty of this work is in coupling a binary collision Monte-Carlo (BCMC) model to the Finite Element based code Moose for solving a microsopic heat-conduction problem whose driving source is provided by the BCMC model tracking fission fragment energy deposition. This microscopic model is driven by a transient, engineering scale neutronics model coupled to an adiabatic heating model. Themore » macroscopic model provides local power densities and neutron energy spectra to the microscpic model. Currently, no feedback from the microscopic to the macroscopic model is considered. TREAT transient 15 is used to exemplify the capabilities of the multi-physics, multi-scale model, and it is found that the average fuel grain temperature differs from the average graphite temperature by 80 K despite the low-power transient. The large temperature difference has strong implications on the Doppler feedback a potential LEU TREAT core would see, and it underpins the need for multi-physics, multi-scale modeling of a TREAT LEU core.« less
NASA Astrophysics Data System (ADS)
Cook, K. H.; Vizy, E. K.; Sun, X.
2016-12-01
Multiple atmospheric and ocean reanalyses are analyzed for 1980-2015 to understand annual-mean adjustments of the surface heat balance over the tropical oceans as the climate warms. Linear trends are examined, with statistical significance evaluated. While surface heat budgets and sea surface temperatures are mutually adjusted fields, insights into the physical processes of this adjustment and the implications for temperature trends can be identified. Two second-generation reanalyses, ERA-Interim and JRA-55, agree well on the distributions and magnitudes of trends in the net heat flux from the atmosphere to the ocean. Trends in the net longwave and sensible heat fluxes are generally small, and trends in solar radiation absorbed are only influential regionally and vary among the reanalyses. The largest contribution is from latent heat flux trends. Contributions to these trends associated with surface temperature (thermal-driving), 10-m wind (dynamical-driving) and specific humidity (hydrological-driving) trends are estimated. The dynamically-driven latent heat flux dominates and explains much of the regionality of the multi-decadal heat flux trends. However, trends in the net surface heat flux alone do not match the observed SSTs trends well, indicating that the redistribution of heat within the ocean mixed layer is also important. Ocean mixed layer heat budgets in various ocean reanalyses are examined to understand this redistribution, and we again identify a crucial role for changes in the surface wind. Acceleration of the tropical easterlies is associated with strengthening of the equatorial undercurrents in both the tropical Pacific and Atlantic. In the Pacific, where the EUC is also shoaling, the result is enhanced warm-water advection into the central Pacific. This advective warming is superimposed on cooling due to enhanced evaporation and equatorial upwelling, which are also associated with wind trends, to determine the observed pattern of SST trends.
NASA Technical Reports Server (NTRS)
Owens, L. J. (Inventor)
1978-01-01
A floating energy converter is described which uses large volumes of sea water to produce electrical power. In this plant, a fluid working medium is pumped to an evaporator where is is heated by a flow of warm surface sea water. The fluid in liquid form boils to a pressurized gas vapor which is routed to drive a turbine that, in turn, drives a generator for producing electricity. The gas vapor then enters a condenser immersed in cold sea water pumped from lower depths, condenses to its original liquid form, and then pumped to the evaporator to repeat the cycle. Modular components can be readily interchanged on the ocean thermal unit and inlet pipes for the sea water are provided with means for maintaining the pipes in alignment with the oncoming current. The modular construction allows for the testing of various components to provide a more rapid optimization of a standardized plant.
Operational Experience from Solar Thermal Energy Projects
NASA Technical Reports Server (NTRS)
Cameron, C. P.
1984-01-01
Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.
NASA Astrophysics Data System (ADS)
Shihab, Mohammed
2018-06-01
The discharge dynamics in geometrically asymmetric capacitively coupled plasmas are investigated via a lumped model circuit. A realistic reactor configuration is assumed. A single and two separate RF voltage sources are considered. One of the driven frequencies (the higher frequency) has been adjusted to excite a plasma series resonance, while the second frequency (the lower frequency) is in the range of the ion plasma frequency. Increasing the plasma pressure in the low pressure regime (≤ 100mTorr) is found to diminish the amplitude of the self-excited harmonics of the discharge current, however, the net result is enhancing the plasma heating. The modulation of the ion density with the lower driving frequency affect the plasma heating considerably. The net effect depends on the amplitude and the phase of the ion modulation.
NASA Astrophysics Data System (ADS)
Dulal, Prabesh
The massive amount of data that we produce and share today is the result of advancements made in the semiconductor and magnetic recording industries. As the number of transistors per unit area in integrated circuits continues to rise, power dissipation is reaching alarming levels. Photonics, which essentially is a marriage of semiconductor with laser technology has shown great promise in tackling the issue of power dissipation. The first part of this work focuses on optical isolators, which are essential to halt back-reflections that interfere with the laser source of the photonic systems. Novel terbium iron garnet thin-film optical isolators have been developed on semiconductor platforms and their magneto-optical properties are explored. Modesolver and finite-difference simulations are done to assess their device-feasibility and efficiency. Subsequently, a new photonic device has been developed using current semiconductor microelectronic fabrication techniques. Advancement in magnetic recording is equally vital to keep up with the demand for more data at faster speeds as the current perpendicular recording technique is fast-approaching its areal density limitations. Heat assisted magnetic recording (HAMR) is the next step in the evolution of hard drives. HAMR involves heating of magnetic media using plasmonic near field transducers (NFTs), which must be able to withstand elevated temperatures for extended times. The second part of this work presents a statistical crystallographic study of thermally induced deformation of Au NFTs. Subsequently, the most thermally stable crystallographic orientation for Au NFT has been determined that could lead to significant improvements in HAMR drive reliability.
Analysis of a Temperature-Controlled Exhaust Thermoelectric Generator During a Driving Cycle
NASA Astrophysics Data System (ADS)
Brito, F. P.; Alves, A.; Pires, J. M.; Martins, L. B.; Martins, J.; Oliveira, J.; Teixeira, J.; Goncalves, L. M.; Hall, M. J.
2016-03-01
Thermoelectric generators can be used in automotive exhaust energy recovery. As car engines operate under wide variable loads, it is a challenge to design a system for operating efficiently under these variable conditions. This means being able to avoid excessive thermal dilution under low engine loads and being able to operate under high load, high temperature events without the need to deflect the exhaust gases with bypass systems. The authors have previously proposed a thermoelectric generator (TEG) concept with temperature control based on the operating principle of the variable conductance heat pipe/thermosiphon. This strategy allows the TEG modules’ hot face to work under constant, optimized temperature. The variable engine load will only affect the number of modules exposed to the heat source, not the heat transfer temperature. This prevents module overheating under high engine loads and avoids thermal dilution under low engine loads. The present work assesses the merit of the aforementioned approach by analysing the generator output during driving cycles simulated with an energy model of a light vehicle. For the baseline evaporator and condenser configuration, the driving cycle averaged electrical power outputs were approximately 320 W and 550 W for the type-approval Worldwide harmonized light vehicles test procedure Class 3 driving cycle and for a real-world highway driving cycle, respectively.
Condensation on Highly Superheated Surfaces: Unstable Thin Films in a Wickless Heat Pipe.
Kundan, Akshay; Nguyen, Thao T T; Plawsky, Joel L; Wayner, Peter C; Chao, David F; Sicker, Ronald J
2017-03-03
A wickless heat pipe was operated on the International Space Station to provide a better understanding of how the microgravity environment might alter the physical and interfacial forces driving evaporation and condensation. Traditional heat pipes are divided into three zones: evaporation at the heated end, condensation at the cooled end, and intermediate or adiabatic in between. The microgravity experiments reported herein show that the situation may be dramatically more complicated. Beyond a threshold heat input, there was a transition from evaporation at the heated end to large-scale condensation, even as surface temperatures exceeded the boiling point by 160 K. The hotter the surface, the more vapor was condensed onto it. The condensation process at the heated end is initiated by thickness and temperature disturbances in the thin liquid film that wet the solid surface. Those disturbances effectively leave the vapor "superheated" in that region. Condensation is amplified and sustained by the high Marangoni stresses that exist near the heater and that drive liquid to cooler regions of the device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milanesio, D., E-mail: daniele.milanesio@polito.it; Maggiora, R.
Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna,more » based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.« less
NASA Astrophysics Data System (ADS)
Zheng, Huai; Lei, Xiang; Cheng, Ting; Liu, Sheng; Zeng, Xiaoliang; Sun, Rong
2017-06-01
Quantum dots (QDs) have been developed as one of the most promising light-converting materials for white light-emitting diodes (LEDs). In current QD-based LED packaging structures, composites of QDs and polymers are used as light-converting layers. However, the ultralow thermal conductivity of such composites seriously hinders the dissipation of QD-generating heat. In this paper, we demonstrate a method to enhance the thermal dissipation of QD-polymer composites through electrospinning polymer nanofibers. QD-polymer films embedded by electrospun nanofibers were prepared. Benefitting from aligned polymer chains in the electrospun nanofibers, the through-panel and in-panel thermal conductivities of the proposed QD-polymer film increased by 39.9% and 423.1%, respectively, compared to traditional QD-polymer film. The proposed and traditional QD-polymer films were both packaged on chip on board (CoB) LEDs for experimental comparison. Compared to traditional QD-polymer film, the luminous flux and luminous efficiency of the LEDs were increased by up to 51.8% and 42.9% by the proposed QD-polymer film under a current of 800 mA, respectively. With an increase in the driving current from 20-800 mA, the correlated color temperature (CCT) variation decreased by 72.7%. The maximum temperatures in the QD-polymer films were reduced from 419 K-411 K under a driving current of 200 mA.
Physics conditions for robust control of tearing modes in a rotating tokamak plasma
NASA Astrophysics Data System (ADS)
Lazzaro, E.; Borgogno, D.; Brunetti, D.; Comisso, L.; Fevrier, O.; Grasso, D.; Lutjens, H.; Maget, P.; Nowak, S.; Sauter, O.; Sozzi, C.; the EUROfusion MST1 Team
2018-01-01
The disruptive collapse of the current sustained equilibrium of a tokamak is perhaps the single most serious obstacle on the path toward controlled thermonuclear fusion. The current disruption is generally too fast to be identified early enough and tamed efficiently, and may be associated with a variety of initial perturbing events. However, a common feature of all disruptive events is that they proceed through the onset of magnetohydrodynamic instabilities and field reconnection processes developing magnetic islands, which eventually destroy the magnetic configuration. Therefore the avoidance and control of magnetic reconnection instabilities is of foremost importance and great attention is focused on the promising stabilization techniques based on localized rf power absorption and current drive. Here a short review is proposed of the key aspects of high power rf control schemes (specifically electron cyclotron heating and current drive) for tearing modes, considering also some effects of plasma rotation. From first principles physics considerations, new conditions are presented and discussed to achieve control of the tearing perturbations by means of high power ({P}{{EC}}≥slant {P}{{ohm}}) in regimes where strong nonlinear instabilities may be driven, such as secondary island structures, which can blur the detection and limit the control of the instabilities. Here we consider recent work that has motivated the search for the improvement of some traditional control strategies, namely the feedback schemes based on strict phase tracking of the propagating magnetic islands.
CHI during an ohmic discharge in HIT-II
NASA Astrophysics Data System (ADS)
Mueller, Dennis; Nelson, Brian A.; Redd, Aaron J.; Hamp, William T.
2004-11-01
Coaxial Helicity Injection (CHI) has been used on the National Spherical Torus Experiment (NSTX), the Helicity Injected Torus (HIT) and HIT-II to initiate plasma and to drive up to 400 kA of toroidal current. The primary goal of the CHI systems is to provide a start-up plasma with substantial toroidal current that can be heated and sustained with other methods. We have investigated the use of CHI systems to add current to an established, inductively driven plasma. This may be an attractive method to add edge current that may modify the stability characteristics of the discharge or modify the particle and energy transport in a spherical torus. For example, divertor biasing experiments have been successful in modifying particle and energy transport in the scrape-off layer of tokamaks. Use of IGBT power supplies to modulate the injector current makes analysis of current penetration feasible by comparisons of before and after CHI using EFIT analysis of the data.
Mechanisms of thermal acclimation to exercise and heat
NASA Technical Reports Server (NTRS)
Nadel, E. R.; Pandolf, K. B.; Roberts, M. F.; Stolwijk, J. A. J.
1974-01-01
By plotting local sweating rate from a given area against the central sweating drive (which is analogous to esophageal temperature, when mean skin temperature is constant), it is possible to determine the characteristic gain constant of that area as well as its point of zero central drive. An increase in the gain constant as a result of acclimation would indicate an increased sensitivity of the sweating mechanism per unit of central sweating drive, i.e., enhanced peripheral sensitivity. A displacement of the point of zero central drive as a result of acclimation would indicate that central mechanisms are responsible for the heightened sweating response. The study was undertaken to provide information about whether central or peripheral physiological mechanisms provide for increased sweating capabilities during acclimation, and about whether the increased sweating capabilities in heat acclimation and physical training are provided for by the same mechanisms.
Long pulse operation of the Kamaboko negative ion source on the MANTIS test bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tramham, R.; Jacquot, C.; Riz, D.
1998-08-20
Advanced Tokamak concepts and steady state plasma scenarios require external plasma heating and current drive for extended time periods. This poses several problems for the neutral beam injection systems that are currently in use. The power loading of the ion source and accelerator are especially problematic. The Kamaboko negative ion source, a small scale model of the ITER arc source, is being prepared for extended operation of deuterium beams for up to 1000 seconds. The operating conditions of the plasma grid prove to be important for reducing electron power loading of the accelerator. Operation of deuterium beams for extended periodsmore » also poses radiation safety risks which must be addressed.« less
The Farley-Buneman Instability in the Solar Chromosphere
NASA Astrophysics Data System (ADS)
Madsen, Chad A.; Dimant, Yakov S.; Oppenheim, Meers M.; Fontenla, Juan M.
2012-10-01
Strong currents drive the Farley-Buneman Instability (FBI) in the E-region ionosphere creating turbulence and heating. The solar chromosphere is a similar weakly ionized region with strong local Pedersen currents, and the FBI may play a role in sustaining the thin layer of enhanced temperature observed there. The plasma of the solar chromosphere requires a new theory of the FBI accounting for the presence of multiple ion species, higher temperatures and collisions between ionized metals and neutral hydrogen. This paper discusses the assumptions underlying the derivation of the multi-species FBI dispersion relation. It presents the predicted critical electron drift velocity needed to trigger the instability. Finally, this work argues that observed chromospheric neutral flow speeds are sufficiently large to trigger the multi-species FBI.
Neutral Beam Development for the Lockheed Martin Compact Fusion Reactor
NASA Astrophysics Data System (ADS)
Ebersohn, Frans; Sullivan, Regina
2017-10-01
The Compact Fusion Reactor project at Lockheed Martin Skunk Works is developing a neutral beam injection system for plasma heating. The neutral beam plasma source consists of a high current lanthanum hexaboride (LaB6) hollow cathode which drives an azimuthal cusp discharge similar to gridded ion thrusters. The beam is extracted with a set of focusing grids and is then neutralized in a chamber pumped with Titanium gettering. The design, testing, and analyses of individual components are presented along with the most current full system results. The goal of this project is to advance in-house neutral beam expertise at Lockheed Martin to aid in operation, procurement, and development of neutral beam technology. ©2017 Lockheed Martin Corporation. All Rights Reserved.
LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery
Ko, Suk M.
1980-01-01
This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.
Modeling of Heating During Food Processing
NASA Astrophysics Data System (ADS)
Zheleva, Ivanka; Kamburova, Veselka
Heat transfer processes are important for almost all aspects of food preparation and play a key role in determining food safety. Whether it is cooking, baking, boiling, frying, grilling, blanching, drying, sterilizing, or freezing, heat transfer is part of the processing of almost every food. Heat transfer is a dynamic process in which thermal energy is transferred from one body with higher temperature to another body with lower temperature. Temperature difference between the source of heat and the receiver of heat is the driving force in heat transfer.
NASA Technical Reports Server (NTRS)
Robertson, C., Jr.
1984-01-01
Solar receiver uses ceramic honeycomb matrix to absorb heat from Sun and transfer it to working fluid at temperatures of 1,095 degrees and 1,650 degrees C. Drives gas turbine engine or provides heat for industrial processes.
A Research Program of Spherical Tokamak in China
NASA Astrophysics Data System (ADS)
He, Ye-xi
2002-08-01
The mission of this program is to explore the spherical torus plasma with a SUNIST spherical tokamak. Main experiments in the start phase will be involved with breakdown and plasma current set-up with a mode of saving volt-second and without ohmic heating system, equilibrium and instability, current driving, heating and profile modification. The SUNIST is a university-scale conceptual spherical tokamak, with R = 0.3 m, A 1.3, Ip ~ 50 kA, BT < 0.15 T, and PRF = 100 kW. The only peculiarity of SUNIST is that there is a toroidal insulating break along the outer wall of vacuum vessel. The expected that advantages of this arrangement are helpful not only for saving flux swing, but also for having a deep understanding of what will influence the discharge startup and globe performances of plasma under different conditions of strong vessel eddy and ECR power assistance. Of course, the vessel structure of cross seal will be at a great risk of controlling vacuum quality, although we have achieved positive results on simulation test and vacuum vessel test.
EBW H&CD Potential for Spherical Tokamaks
NASA Astrophysics Data System (ADS)
Urban, J.; Decker, J.; Peysson, Y.; Preinhaelter, J.; Shevchenko, V.; Taylor, G.; Vahala, L.; Vahala, G.
2011-12-01
Spherical tokamaks (STs), which feature relatively high neutron flux and good economy, operate generally in high-ß regimes, in which the usual EC O- and X- modes are cut-off. In this case, electron Bernstein waves (EBWs) seem to be the only option that can provide features similar to the EC waves—controllable localized heating and current drive (H&) that can be utilized for core plasma heating as well as for accurate plasma stabilization. We first derive an analytical expression for Gaussian beam OXB conversion efficiency. Then, an extensive numerical study of EBW H&CD performance in four typical ST plasmas (NSTX L- and H-mode, MAST Upgrade, NHTX) is performed. Coupled ray-tracing (AMR) and Fokker-Planck (LUKE) codes are employed to simulate EBWs of varying frequencies and launch conditions. Our results indicate that an efficient and universal EBW H&CD system is indeed viable. In particular, power can be deposited and current reasonably efficiently driven across the whole plasma radius. Such a system could be controlled by a suitably chosen launching antenna vertical position and would also be sufficiently robust.
Method of Heating a Foam-Based Catalyst Bed
NASA Technical Reports Server (NTRS)
Fortini, Arthur J.; Williams, Brian E.; McNeal, Shawn R.
2009-01-01
A method of heating a foam-based catalyst bed has been developed using silicon carbide as the catalyst support due to its readily accessible, high surface area that is oxidation-resistant and is electrically conductive. The foam support may be resistively heated by passing an electric current through it. This allows the catalyst bed to be heated directly, requiring less power to reach the desired temperature more quickly. Designed for heterogeneous catalysis, the method can be used by the petrochemical, chemical processing, and power-generating industries, as well as automotive catalytic converters. Catalyst beds must be heated to a light-off temperature before they catalyze the desired reactions. This typically is done by heating the assembly that contains the catalyst bed, which results in much of the power being wasted and/or lost to the surrounding environment. The catalyst bed is heated indirectly, thus requiring excessive power. With the electrically heated catalyst bed, virtually all of the power is used to heat the support, and only a small fraction is lost to the surroundings. Although the light-off temperature of most catalysts is only a few hundred degrees Celsius, the electrically heated foam is able to achieve temperatures of 1,200 C. Lower temperatures are achievable by supplying less electrical power to the foam. Furthermore, because of the foam s open-cell structure, the catalyst can be applied either directly to the foam ligaments or in the form of a catalyst- containing washcoat. This innovation would be very useful for heterogeneous catalysis where elevated temperatures are needed to drive the reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, B. E.; Biewer, T. M.; Chattopadhyay, P. K.
2000-09-01
Auxiliary edge current drive is routinely applied in the Madison Symmetric Torus [R. N. Dexter, D. W. Kerst, T. W. Lovell et al., Fusion Technol. 19, 131 (1991)] with the goal of modifying the parallel current profile to reduce current-driven magnetic fluctuations and the associated particle and energy transport. Provided by an inductive electric field, the current drive successfully reduces fluctuations and transport. First-time measurements of the modified edge current profile reveal that, relative to discharges without auxiliary current drive, the edge current density decreases. This decrease is explicable in terms of newly measured reductions in the dynamo (fluctuation-based) electricmore » field and the electrical conductivity. Induced by the current drive, these two changes to the edge plasma play as much of a role in determining the resultant edge current profile as does the current drive itself. (c) 2000 American Institute of Physics.« less
Study and design of the ion cyclotron resonance heating system for the stellarator Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Ongena, J.; Messiaen, A.; Van Eester, D.; Schweer, B.; Dumortier, P.; Durodie, F.; Kazakov, Ye. O.; Louche, F.; Vervier, M.; Koch, R.; Krivska, A.; Lyssoivan, A.; Van Schoor, M.; Wauters, T.; Borsuk, V.; Neubauer, O.; Schmitz, O.; Offermans, G.; Altenburg, Y.; Baylard, C.; Birus, D.; Bozhenkov, S.; Hartmann, D. A.; Kallmeyer, J. P.; Renard, S.; Wolf, R. C.; Fülöp, T.
2014-06-01
The current status of the mechanical and electromagnetic design for the ICRF antenna system for W7-X is presented. Two antenna plugins are discussed: one consisting of a pair of straps with pre-matching to cover the first frequency band, 25-38 MHz, and a second one consisting of two short strap triplets to cover a frequency band around 76 MHz. This paper focusses on the two strap antenna for the lower frequency band. Power coupling of the antenna to a reference plasma profile is studied with the help of the codes TOPICA and Microwave Studio that deliver the scattering matrix needed for the optimization of the geometric parameters of the straps and antenna box. Radiation power spectra for different phasings of the two straps are obtained using the code ANTITER II and different heating scenario are discussed. The potential for heating, fast particle generation, and current drive is discussed. The problem of RF coupling through the plasma edge and of edge power deposition is summarized. Important elements of the complete ion cyclotron resonance heating system are discussed: a resonator circuit with tap feed to limit the maximum voltage in the system, and a decoupler to counterbalance the large mutual coupling between the 2 straps. The mechanical design highlights the challenges encountered with this antenna: adaptation to a large variety of plasma configurations, the limited space within the port to accommodate the necessary matching components and the watercooling needed for long pulse operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarboe, T. R.; Nelson, B. A.; Sutherland, D. A.
2015-07-15
An analysis of imposed dynamo current drive (IDCD) [T.R. Jarboe et al., Nucl. Fusion 52 083017 (2012)] reveals: (a) current drive on closed flux surfaces seems possible without relaxation, reconnection, or other flux-surface-breaking large events; (b) the scale size of the key physics may be smaller than is often computationally resolved; (c) helicity can be sustained across closed flux; and (d) IDCD current drive is parallel to the current which crosses the magnetic field to produce the current driving force. In addition to agreeing with spheromak data, IDCD agrees with selected tokamak data.
MHD and Reconnection Activity During Local Helicity Injection
NASA Astrophysics Data System (ADS)
Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Reusch, J. A.; Richner, N. J.
2016-10-01
Scaling local helicity injection (LHI) to larger devices requires a validated, predictive model of its current drive mechanism. NIMROD simulations predict the injected helical current streams persist in the edge and periodically reconnect to form axisymmetric current rings that travel into the bulk plasma to grow Ip and poloidal flux. In simulation, these events result in discrete bursts of Alfvénic-frequency MHD activity and jumps in Ip of order ΔIp Iinj , in qualitative agreement with large n = 1 activity found in experiment. Fast imaging prior to tokamak formation supports the instability of, and apparent reconnection between, adjacent helical streams. The bursts exhibit toroidal amplitude asymmetries consistent with a kink structure singly line-tied to the injectors. Internal measurements localize this activity to the injector radial location. Pairwise correlations of poloidal Mirnov coil amplitude and phase match expectations of an edge-localized current stream carrying Iinj. Prior to tokamak formation, reconnection from both adjacent helical windings and co-injected current streams are shown to strongly heat impurity ions. After tokamak formation, strong anomalous ion heating in the plasma edge is attributed to continuous reconnection between colinear streams. The n = 1 bursts occur less frequently as Ip rises, likely caused by increased stream stability as Bv rises and qedge drops. This evidence supports the general NIMROD model of LHI, confirms the persistence and role of the edge current streams, and motivates experiments at higher Iinj and BT. Supported by US DOE Grants DE-FG02-96ER54375, DE-SC0006928.
Drought and Heat Waves: The Role of SST and Land Surface Feedbacks
NASA Technical Reports Server (NTRS)
Schubert, Siegfried
2011-01-01
Drought occurs on a wide range of time scales, and within a variety of different types of regional climates. At the shortest time scales it is often associated with heat waves that last only several weeks to a few months but nevertheless can have profound detrimental impacts on society (e.g., heat-related impacts on human health, desiccation of croplands, increased fire hazard), while at the longest time scales it can extend over decades and can lead to long term structural changes in many aspects of society (e.g., agriculture, water resources, wetlands, tourism, population shifts). There is now considerable evidence that sea surface temperatures (SSTs) play a leading role in the development of drought world-wide, especially at seasonal and longer time scales, though land-atmosphere feedbacks can also play an important role. At shorter (subseasonal) time scales, SSTs are less important, but land feedbacks can play a critical role in maintaining and amplifying the atmospheric conditions associated with heat waves and short-term droughts. This talk reviews our current understanding of the physical mechanisms that drive precipitation and temperature variations on subseasonal to centennial time scales. This includes an assessment of predictability, prediction skill, and user needs at all time scales.
Ion energy balance in enhanced-confinement reversed-field pinch plasmas
NASA Astrophysics Data System (ADS)
Xing, Z. A.; Nornberg, M. D.; Boguski, J.; Craig, D.; den Hartog, D. J.; McCollam, K.
2017-10-01
Testing the applicability of collisional ion transport theory using tearing suppressed RFP plasma in MST achieved through Pulsed Poloidal Current Drive (PPCD), we find that the ion temperature dynamics in the core to be well-predicted by classical and collisional terms. Prior work demonstrated that impurity ion particle transport in PPCD plasmas is classical. Neoclassical effects on ions in the RFP are small and the stochastic transport is greatly suppressed during PPCD. Recent neutral modelling with DEGAS2 suggests higher core neutral temperatures than expected due to the preferential penetration of higher temperature neutrals generated by charge exchange. Further, investigations through equilibrium reconstruction point to the existence of an inward pinch flow associated with ExB drift. The heat balance model pulls together a wide range of diagnostic data to forward model Ti evolution in PPCD, which is then compared to charge exchange spectroscopy measurements of Ti. Ion power balance is mostly driven by classical effects including compressional heating, electron collisional heating, and charge exchange transport. This understanding provides a good baseline for investigations of anomalous heating in plasmas with tearing mode activity. This work is supported by US DOE.
Modulation characteristics of graphene-based thermal emitters
NASA Astrophysics Data System (ADS)
Mahlmeister, Nathan Howard; Lawton, Lorreta Maria; Luxmoore, Isaac John; Nash, Geoffrey Richard
2016-01-01
We have investigated the modulation characteristics of the emission from a graphene-based thermal emitter both experimentally and through simulations using finite element method modelling. Measurements were performed on devices containing square multilayer graphene emitting areas, with the devices driven by a pulsed DC drive current over a range of frequencies. Simulations show that the dominant heat path is from the emitter to the underlying substrate, and that the thermal resistance between the graphene and the substrate determines the modulation characteristics. This is confirmed by measurements made on devices in which the emitting area is encapsulated by hexagonal boron nitride.
Long Pulse Operation on Tore-Supra: Towards Steady State
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreau, P.; Bucalossi, J.; Brosset, C.
The experimental programme of Tore Supra is devoted to the study of technology and physics issues associated to long-duration high performance discharges. This new domain of operation requires simultaneously and in steady state: heat removal capability, particle exhaust, fully non-inductive current drive, advanced technology integration and real time plasma control. The long discharge allows for addressing new time scale physic such as the wall particle retention and erosion. Moreover, the physics of fully non-inductive discharges is full of novelty, namely: the MHD stability, the slow spontaneous oscillation of the central electron temperature or the outstanding inward particle pinch.
Vapor/Mist Used to Lubricate Gears After Loss of Primary Lubrication System
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Morales, Wilfredo
2001-01-01
Loss of lubrication in rotorcraft drive systems is a demanding requirement placed on drive system manufacturers. The drive system must operate for at least 30 minutes once the primary lubrication system has failed. This test is a military requirement that must be passed prior to certification of the aircraft. As new aircraft engines, operating at higher speeds, are fielded, the requirements for the drive system become increasingly more difficult. Also, the drive system must be lightweight, which minimizes the opportunity to use the gear bodies to absorb the tremendous amount of heating that takes place. In many cases, the amount of heat generated because of the high speed and load requires an emergency lubrication system that negatively impacts the aircraft's weight, complexity, and cost. A single mesh spur gear test rig is being used at the NASA Glenn Research Center to investigate possible emergency lubrication system improvements that will minimize the impact of having these systems onboard rotorcraft. A technique currently being investigated uses a vapor/mist system to lubricate the contacting surfaces after the primary lubrication system has been shut down. A number of tests were conducted in which the vapor/mist used the same lubricant as the primary system, but at a greatly reduced flow rate. Each test was initiated with the primary lubrication system operational and at steady-state conditions for a given speed and load. Then the primary lubrication system was shut down, and the vapor/mist lubrication system was initiated. An example of the tests conducted is shown in the figures. These preliminary tests have uncovered a mechanism that provides a lubricious, carbonaceous solid on the surface that actually reduces the surface temperature of the meshing gear teeth during operation. Surface analysis of the carbonaceous solid revealed it was graphitic. This mechanism is the synthetic lubricant "coking" on the active profile of the gears, which reduces the friction between the contacting gear surfaces. The level of load affects the onset of this mechanism: the higher the load, the sooner coking takes place. Future work will investigate several other factors that could improve the already promising results that have been attained.
NASA Astrophysics Data System (ADS)
Tcherdyntsev, V. V.; Kaloshkin, S. D.; Shelekhov, E. V.; Principi, G.; Rodin, A. O.
2008-02-01
Al65Cu23Fe12 alloys were prepared by ball milling of the elemental powders mixture. Phase and structural transformations at heating of as-milled powders were investigated by X-ray diffraction analysis. Precision analysis of Mössbauer spectra was performed to check the adequacy of the fitting of X-ray diffraction patterns. The results were compared with the data of differential scanning and solution calorimetry, as well as with the thermodynamic literature data, in order to estimate the driving forces of redistribution of elements that preceded the formation of single-phase quasicrystalline structure. The heat of elements mixing, which is positive for Cu-Fe system and negative for Al-Fe and Al-Cu systems, was supposed to be a decisive factor for phase transformations during heating of the alloy. The correlation between sequence of phase transformations during heating and the thermodynamic data was discussed and the scheme describing phase transformations observed was proposed.
The plasma physics of thermal conduction in the intracluster medium of galaxy clusters
NASA Astrophysics Data System (ADS)
Reynolds, Christopher
Most of the baryons in a galaxy cluster reside in a hot (10-100 million K) and tenuous gaseous atmosphere confined by the gravitational potential of the cluster's dark matter halo. Understanding the microphysics of this intracluster medium (ICM), particularly the transport processes such as thermal conduction and viscosity, is important to any understanding of the thermodynamic state of ICM atmospheres. For example, the current paradigm is that radiative losses in the ICM core are offset by energy from a central jetted active galactic nucleus (AGN), preventing a cooling catastrophe in the cluster core. However, the mechanism by which the jet-injected energy is thermalized in the ICM is highly uncertain - the dissipation of waves or turbulence by thermal conduction or plasma viscosity is a leading contender. A knowledge of thermal conduction in the ICM is also important for any attempts to understand the global temperature profiles of clusters, with consequences for e.g. cosmological studies based on observations of the SunyaevZeldovich (SZ) effect. The basic physics of thermal conduction in the ICM is very poorly understood, however, leading to a huge uncertainty in the relevant coefficients. The ICM resides in a poorly studied regime of plasma physics - it is a highly magnetized (gyroradii << particle mean free path), high-beta (thermal pressure >> magnetic pressure), and weakly collisional (mean-free path only moderately less than global scale lengths) plasma. Thermal conduction will be strongly suppressed perpendicular to magnetic fields lines. But even along field lines, the growth of small scale and fast kinetic instabilities may strongly suppress thermal conduction. Hence the usual assumption, that conduction along the field has its classical Spitzer value, has a shaky theoretical basis and may well be wildly inaccurate. In this proposal, we use analytical theory and computer models to explore thermal conduction in ICM-like plasmas. Recently, we have found that a strong heat-flux will drive a powerful whistler-wave instability and, provided we treat the problem in more than 1D so that oblique modes are captured, these waves efficiently scatter electrons thereby shutting down the heat-flux. Our proposed work builds on these findings with the goal of characterizing the macroscopic effective thermal conduction in a form that can be included in fluid (magnetohydrodynamic; MHD) models of the ICM. We will, 1) Conduct an extended linear analysis of the heat-flux whistler instability, exploring the interaction of the heat flux and the pressure anisotropies that would result from bulk motions of the ICM. We will map the stable/unstable regions as a function of heat-flux, pressure anisotropy, and plasma-beta. 2) Perform particle-in-cell (PIC) simulations to explore the non-linear saturation of the heat-flux whistler instability as a function of the plasma-beta and heat-flux, extending the current work (i.e. very strong fluxes) down to the modest heat-fluxes found in the real ICM. Key is whether overlapping wave-particle resonances that are so efficient at killing the conduction with strong heat-fluxes still operate when the driving heat-flux is weak. 3) Develop a new computational/PIC model that, in contrast to current work, sustains a temperature gradient across the domain thereby allowing us to directly measure the relationship between temperature gradient and heat flux. 4) Build a new thermal conduction model, allowing the heat flux to have a non-linear dependence on temperature gradient, and plasma-beta. We will develop thermal conduction algorithms that can be used in public MHD e.g., PLUTO or FLASH. This work will provide the crucial bridge between the global/MHD models of ICM atmospheres and the microphysics that dictates the transport processes. It will inform the next generation of cluster models used to interpret data from NASA's fleet of X-ray observatories.
Rotor and bearing system for a turbomachine
Lubell, Daniel; Weissert, Dennis
2006-09-26
A rotor and bearing system for a turbomachine. The turbomachine includes a drive shaft, an impeller positioned on the drive shaft, and a turbine positioned on the drive shaft proximate to the impeller. The bearing system comprises one gas journal bearing supporting the drive shaft between the impeller and the turbine. The area between the impeller and the turbine is an area of increased heat along the drive shaft in comparison to other locations along the drive shaft. The section of the drive shaft positioned between impeller and the turbine is also a section of the drive shaft that experiences increased stressed and load in the turbomachine. The inventive bearing machine system positions only one radial bearing in this area of increased stress and load.
Air Brayton Solar Receiver, phase 2
NASA Technical Reports Server (NTRS)
Deanda, L. E.
1981-01-01
An air Brayton solar receiver (ABSR) is discussed. The ABSR consists of a cylindrical, insulated, offset plate fin heat exchanger which is mounted at the focal plane of a fully tracking parabolic solar collector. The receiver transfer heat from the concentrated solar radiation (which impinges on the inside walls of the heat exchanger) to the working fluid i.e., air. The hot air would then e used to drive a small Brayton cycle heat engine. The engine in turn drives a generator which produces electrical energy. Symmetrical and asymmetrical solar power input into the ABSR are analyzed. The symmetrical cases involve the baseline incident flux and the axially shifted incident fluxes. The asymmetrical cases correspond to the solar fluxes that are obtained by reduced solar input from one half of the concentrator or by receiver offset of plus or minus 1 inch from the concentrator optical axis.
NASA Astrophysics Data System (ADS)
Wang, Hexiang; Schuster, Eugenio; Rafiq, Tariq; Kritz, Arnold; Ding, Siye
2016-10-01
Extensive research has been conducted to find high-performance operating scenarios characterized by high fusion gain, good confinement, plasma stability and possible steady-state operation. A key plasma property that is related to both the stability and performance of these advanced plasma scenarios is the safety factor profile. A key component of the EAST research program is the exploration of non-inductively driven steady-state plasmas with the recently upgraded heating and current drive capabilities that include lower hybrid current drive and neutral beam injection. Anticipating the need for tight regulation of the safety factor profile in these plasma scenarios, a first-principles-driven (FPD)control-oriented model is proposed to describe the safety factor profile evolution in EAST in response to the different actuators. The TRANSP simulation code is employed to tailor the FPD model to the EAST tokamak geometry and to convert it into a form suitable for control design. The FPD control-oriented model's prediction capabilities are demonstrated by comparing predictions with experimental data from EAST. Supported by the US DOE under DE-SC0010537,DE-FG02-92ER54141 and DE-SC0013977.
Design concept of K-DEMO for near-term implementation
NASA Astrophysics Data System (ADS)
Kim, K.; Im, K.; Kim, H. C.; Oh, S.; Park, J. S.; Kwon, S.; Lee, Y. S.; Yeom, J. H.; Lee, C.; Lee, G.-S.; Neilson, G.; Kessel, C.; Brown, T.; Titus, P.; Mikkelsen, D.; Zhai, Y.
2015-05-01
A Korean fusion energy development promotion law (FEDPL) was enacted in 2007. As a following step, a conceptual design study for a steady-state Korean fusion demonstration reactor (K-DEMO) was initiated in 2012. After the thorough 0D system analysis, the parameters of the main machine characterized by the major and minor radii of 6.8 and 2.1 m, respectively, were chosen for further study. The analyses of heating and current drives were performed for the development of the plasma operation scenarios. Preliminary results on lower hybrid and neutral beam current drive are included herein. A high performance Nb3Sn-based superconducting conductor is adopted, providing a peak magnetic field approaching 16 T with the magnetic field at the plasma centre above 7 T. Pressurized water is the prominent choice for the main coolant of K-DEMO when the balance of plant development details is considered. The blanket system adopts a ceramic pebble type breeder. Considering plasma performance, a double-null divertor is the reference configuration choice of K-DEMO. For a high availability operation, K-DEMO incorporates a design with vertical maintenance. A design concept for K-DEMO is presented together with the preliminary design parameters.
Progress and prospect of true steady state operation with RF
NASA Astrophysics Data System (ADS)
Jacquinot, Jean
2017-10-01
Operation of fusion confinement experiments in full steady state is a major challenge for the development towards fusion energy. Critical to achieving this goal is the availability of actively cooled plasma facing components and auxiliary systems withstanding the very harsh plasma environment. Equally challenging are physics issues related to achieving plasma conditions and current drive efficiency required by reactor plasmas. RF heating and current drive systems have been key instruments for obtaining the progress made until today towards steady state. They hold all the records of long pulse plasma operation both in tokamaks and in stellarators. Nevertheless much progress remains to be made in particular for integrating all the requirements necessary for maintaining in steady state the density and plasma pressure conditions of a reactor. This is an important stated aim of ITER and of devices equipped with superconducting magnets. After considering the present state of the art, this review will address the key issues which remain to be solved both in physics and technology for reaching this goal. They constitute very active subjects of research which will require much dedicated experimentation in the new generation of superconducting devices which are now in operation or becoming close to it.
Large heat capacity change in a protein-monovalent cation interaction.
Guinto, E R; Di Cera, E
1996-07-09
Current views about protein-ligand interactions state that electrostatic forces drive the binding of charged species and that burial of hydrophobic and polar surfaces controls the heat capacity change associated with the reaction. For the interaction of a protein with a monovalent cation the electrostatic components are expected to be significant due to the ionic nature of the ligand, whereas the heat capacity change is expected to be small due to the size of the surface area involved in the recognition event. The physiologically important interaction of Na+ with thrombin was studied over the temperature range from 5 to 45 degrees C and the ionic strength range from 50 to 800 mM. These measurements reveal an unanticipated result that bears quite generally on studies of molecular recognition and protein folding. Binding of Na+ to thrombin is characterized by a modest dependence on ionic strength but a large and negative heat capacity change of -1.1 +/- 0.1 kcal mol-1 K-1. The small electrostatic coupling can be explained in terms of a minimal perturbation of the ionic atmosphere of the protein upon Na+ binding. The large heat capacity change, however, is difficult to reconcile with current views on the origin of this effect from surface area changes or large folding transitions coupled to binding. It is proposed that this change is linked to burial of a large cluster of water molecules in the Na+ binding pocket upon Na+ binding. Due to their reduced mobility and highly ordered structure, water molecules sequestered in the interior of a protein must have a lower heat capacity compared to those on the surface of a protein or in the bulk solvent. Hence, a binding or folding event where water molecules are buried may result in significant heat capacity changes independent of changes in exposed hydrophobic surface or coupled conformational transitions.
Total Thermal Management of Battery Electric Vehicles (BEVs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustbader, Jason A; Rugh, John P; Winkler, Jonathan M
The key hurdles to achieving wide consumer acceptance of battery electric vehicles (BEVs) are weather-dependent drive range, higher cost, and limited battery life. These translate into a strong need to reduce a significant energy drain and resulting drive range loss due to auxiliary electrical loads the predominant of which is the cabin thermal management load. Studies have shown that thermal subsystem loads can reduce the drive range by as much as 45% under ambient temperatures below -10 degrees C. Often, cabin heating relies purely on positive temperature coefficient (PTC) resistive heating, contributing to a significant range loss. Reducing this rangemore » loss may improve consumer acceptance of BEVs. The authors present a unified thermal management system (UTEMPRA) that satisfies diverse thermal and design needs of the auxiliary loads in BEVs. Demonstrated on a 2015 Fiat 500e BEV, this system integrates a semi-hermetic refrigeration loop with a coolant network and serves three functions: (1) heating and/or cooling vehicle traction components (battery, power electronics, and motor) (2) heating and cooling of the cabin, and (3) waste energy harvesting and re-use. The modes of operation allow a heat pump and air conditioning system to function without reversing the refrigeration cycle to improve thermal efficiency. The refrigeration loop consists of an electric compressor, a thermal expansion valve, a coolant-cooled condenser, and a chiller, the latter two exchanging heat with hot and cold coolant streams that may be directed to various components of the thermal system. The coolant-based heat distribution is adaptable and saves significant amounts of refrigerant per vehicle. Also, a coolant-based system reduces refrigerant emissions by requiring fewer refrigerant pipe joints. The authors present bench-level test data and simulation analysis and describe a preliminary control scheme for this system.« less
Gao, Xujiao; Mamaluy, Denis; Mickel, Patrick R.; ...
2015-09-08
In this paper, we present a fully-coupled electrical and thermal transport model for oxide memristors that solves simultaneously the time-dependent continuity equations for all relevant carriers, together with the time-dependent heat equation including Joule heating sources. The model captures all the important processes that drive memristive switching and is applicable to simulate switching behavior in a wide range of oxide memristors. The model is applied to simulate the ON switching in a 3D filamentary TaOx memristor. Simulation results show that, for uniform vacancy density in the OFF state, vacancies fill in the conduction filament till saturation, and then fill outmore » a gap formed in the Ta electrode during ON switching; furthermore, ON-switching time strongly depends on applied voltage and the ON-to-OFF current ratio is sensitive to the filament vacancy density in the OFF state.« less
NASA Astrophysics Data System (ADS)
Covele, B.; Kotschenreuther, M.; Mahajan, S.; Valanju, P.; Leonard, A.; Watkins, J.; Makowski, M.; Fenstermacher, M.; Si, H.
2017-08-01
The X-divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at 10-20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. However, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. The model also points to carbon radiation as the primary driver of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency for core operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.
Pumping approximately integrable systems
Lange, Florian; Lenarčič, Zala; Rosch, Achim
2017-01-01
Weak perturbations can drive an interacting many-particle system far from its initial equilibrium state if one is able to pump into degrees of freedom approximately protected by conservation laws. This concept has for example been used to realize Bose–Einstein condensates of photons, magnons and excitons. Integrable quantum systems, like the one-dimensional Heisenberg model, are characterized by an infinite set of conservation laws. Here, we develop a theory of weakly driven integrable systems and show that pumping can induce large spin or heat currents even in the presence of integrability breaking perturbations, since it activates local and quasi-local approximate conserved quantities. The resulting steady state is qualitatively captured by a truncated generalized Gibbs ensemble with Lagrange parameters that depend on the structure but not on the overall amplitude of perturbations nor the initial state. We suggest to use spin-chain materials driven by terahertz radiation to realize integrability-based spin and heat pumps. PMID:28598444
Magneto-hydrodynamic modeling of gas discharge switches
NASA Astrophysics Data System (ADS)
Doiphode, P.; Sakthivel, N.; Sarkar, P.; Chaturvedi, S.
2002-12-01
We have performed one-dimensional, time-dependent magneto-hydrodynamic modeling of fast gas-discharge switches. The model has been applied to both high- and low-pressure switches, involving a cylindrical argon-filled cavity. It is assumed that the discharge is initiated in a small channel near the axis of the cylinder. Joule heating in this channel rapidly raises its temperature and pressure. This drives a radial shock wave that heats and ionizes the surrounding low-temperature region, resulting in progressive expansion of the current channel. Our model is able to reproduce this expansion. However, significant difference of detail is observed, as compared with a simple model reported in the literature. In this paper, we present details of our simulations, a comparison with results from the simple model, and a physical interpretation for these differences. This is a first step towards development of a detailed 2-D model for such switches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sovinec, Carl R.
1995-11-01
Numerical computation is used to investigate resistive magnetohydrodynamic (MHD) fluctuations in the reversed-field pinch (RFP) and in tokamak-like configurations driven solely by direct current (DC) helicity injection. A Lundquist number (S) scan of RFP turbulence without plasma pressure produces the weak scaling of S -0.18 for the root-mean-square magnetic fluctuation level for 2.5x10 3≤S≤4x10 4. The temporal behavior of fluctuations and the reversal parameter becomes more regular as S is increased, acquiring a "sawtooth" shape at the largest value of S. Simulations with plasma pressure and anisotropic thermal conduction demonstrate energy transport resulting from parallel heat fluctuations. To investigate meansmore » of improving RFP energy confinement, three forms of current profile modification are tested. Radio frequency (RF) current drive is modeled with an auxiliary electron force, and linear stability calculations are used.« less
NASA Astrophysics Data System (ADS)
Myers, Rachel; Egedal, Jan; Olson, Joseph; Greess, Samuel; Millet-Ayala, Alexander; Clark, Michael; Nonn, Paul; Wallace, John; Forest, Cary
2017-10-01
The NASA Magnetospheric Multiscale (MMS) Mission seeks to measure heating and motion of charged particles from reconnection events in the magnetotail and dayside magnetopause. MMS is paralleled by the Terrestrial Reconnection Experiment (TREX) at the Wisconsin Plasma Astrophysics Laboratory (WiPAL) in its study of collisionless magnetic reconnection. In the regimes seen by TREX and MMS, electron pressure anisotropy should develop, driving large-scale current layer formation. MMS has witnessed anisotropy, but the spatial coverage of the data is too limited to determine how the pressure anisotropy affects jet and current layer creation. Measurements of pressure anisotropy on TREX will be presented, and implications for reconnecting current layer structure in the magnetosphere, as measured by MMS, will be discussed. This research was conducted with support from a UW-Madison University Fellowship as well as the NSF/DOE award DE-SC0013032.
Twenty Years of Research on the Alcator C-Mod Tokamak
NASA Astrophysics Data System (ADS)
Greenwald, Martin
2013-10-01
Alcator C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since its start in 1993, contributing data that extended tests of critical physical models into new parameter ranges and into new regimes. Using only RF for heating and current drive with innovative launching structures, C-Mod operates routinely at very high power densities. Research highlights include direct experimental observation of ICRF mode-conversion, ICRF flow drive, demonstration of Lower-Hybrid current drive at ITER-like densities and fields and, using a set of powerful new diagnostics, extensive validation of advanced RF codes. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components--an approach adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and EDA H-mode regimes which have high performance without large ELMs and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and found that self-generated flow shear can be strong enough to significantly modify transport. C-Mod made the first quantitative link between pedestal temperature and H-mode performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. Work supported by U.S. DoE
Spaceborne Studies Of Ocean Circulation
NASA Astrophysics Data System (ADS)
Patzert, William C.
1984-08-01
The global view of the oceans seen by Seasat during its 1978 flight demonstrated the feasibility of ocean remote sensing. These first-ever global data sets of sea surface topography (altimeter) and marine winds (scatterometer) laid the foundation for two satellite missions planned for the late 1980's. The future missions are the next generation of altimeter and scatterometer to be flown aboard TOPEX (Topography Experiment) and NROSS (Navy Remote Ocean Sensing System), respectively. The data from these satellites will be coordinated with measurements made at sea to determine the driving forces of ocean circulation and to study the oceans role in climate variability. Sea surface winds (calculated from scatterometer measurements) are the fundamental driving force for ocean waves and currents (estimated from altimeter measurements). On a global scale, the winds and currents are approximately equal partners in redistributing the excess heat gained in the tropics from solar radiation to the cooler polar regions. Small perturbations in this system can dramatically alter global weather, such as the El Niho event of 1982-83. During an El Ni?io event, global wind patterns and ocean currents are perturbed causing unusual ocean warming in the tropical Pacfic Ocean. These ocean events are coupled to complex fluctuations in global weather. Only with satellites will we be able to collect the global data sets needed to study events such as El Ni?o. When TOPEX and NROSS fly, oceanographers will have the equivalent of meteorological high and low pressure charts of ocean topography as well as the surface winds to study ocean "weather." This ability to measure ocean circulation and its driving forces is a critical element in understanding the influence of oceans on society. Climatic changes, fisheries, commerce, waste disposal, and national defense are all involved.
Post, Richard F.
2001-01-01
An apparatus and method is disclosed for reducing inductive coupling between levitation and drive coils within a magnetic levitation system. A pole array has a magnetic field. A levitation coil is positioned so that in response to motion of the magnetic field of the pole array a current is induced in the levitation coil. A first drive coil having a magnetic field coupled to drive the pole array also has a magnetic flux which induces a parasitic current in the levitation coil. A second drive coil having a magnetic field is positioned to attenuate the parasitic current in the levitation coil by canceling the magnetic flux of the first drive coil which induces the parasitic current. Steps in the method include generating a magnetic field with a pole array for levitating an object; inducing current in a levitation coil in response to motion of the magnetic field of the pole array; generating a magnetic field with a first drive coil for propelling the object; and generating a magnetic field with a second drive coil for attenuating effects of the magnetic field of the first drive coil on the current in the levitation coil.
The DIII-D Plasma Control System as a Scientific Research Tool
NASA Astrophysics Data System (ADS)
Hyatt, A. W.; Ferron, J. R.; Humphreys, D. A.; Leuer, J. A.; Walker, M. L.; Welander, A. S.
2006-10-01
The digital plasma control system (PCS) is an essential element of the DIII-D tokamak as a scientific research instrument, providing experimenters with real-time measurement and control of the plasma equilibrium, heating, current drive, transport, stability, and plasma-wall interactions. A wide range of sensors and actuators allow feedback control not only of global quantities such as discharge shape, plasma energy, and toroidal rotation, but also of non-axisymmetric magnetic fields and features of the internal profiles of temperature and current density. These diverse capabilities of the PCS improve the effectiveness of tokamak operation and enable unique physics experiments. We will present an overview of the PCS and the systems it controls and interacts with, and show examples of various plasma parameters controlled by the PCS and its actuators.
Generation of spin currents by surface plasmon resonance
Uchida, K.; Adachi, H.; Kikuchi, D.; Ito, S.; Qiu, Z.; Maekawa, S.; Saitoh, E.
2015-01-01
Surface plasmons, free-electron collective oscillations in metallic nanostructures, provide abundant routes to manipulate light–electron interactions that can localize light energy and alter electromagnetic field distributions at subwavelength scales. The research field of plasmonics thus integrates nano-photonics with electronics. In contrast, electronics is also entering a new era of spintronics, where spin currents play a central role in driving devices. However, plasmonics and spin-current physics have so far been developed independently. Here we report the generation of spin currents by surface plasmon resonance. Using Au nanoparticles embedded in Pt/BiY2Fe5O12 bilayer films, we show that, when the Au nanoparticles fulfill the surface-plasmon-resonance conditions, spin currents are generated across the Pt/BiY2Fe5O12 interface. This spin-current generation cannot be explained by conventional heating effects, requiring us to introduce nonequilibrium magnons excited by surface-plasmon-induced evanescent electromagnetic fields in BiY2Fe5O12. This plasmonic spin pumping integrates surface plasmons with spin-current physics, opening the door to plasmonic spintronics. PMID:25569821
NASA Astrophysics Data System (ADS)
Darbos, C.; Henderson, M.; Albajar, F.; Bigelow, T.; Bomcelli, T.; Chavan, R.; Denisov, G.; Farina, D.; Gandini, F.; Heidinger, R.; Goodman, T.; Hogge, J. P.; Kajiwara, K.; Kasugai, A.; Kern, S.; Kobayashi, N.; Oda, Y.; Ramponi, G.; Rao, S. L.; Rasmussen, D.; Rzesnicki, T.; Saibene, G.; Sakamoto, K.; Sauter, O.; Scherer, T.; Strauss, D.; Takahashi, K.; Zohm, H.
2009-11-01
A 26 MW Electron Cyclotron Heating and Current Drive (EC H&CD) system is to be installed for ITER. The main objectives are to provide, start-up assist, central H&CD and control of MHD activity. These are achieved by a combination of two types of launchers, one located in an equatorial port and the second type in four upper ports. The physics applications are partitioned between the two launchers, based on the deposition location and driven current profiles. The equatorial launcher (EL) will access from the plasma axis to mid radius with a relatively broad profile useful for central heating and current drive applications, while the upper launchers (ULs) will access roughly the outer half of the plasma radius with a very narrow peaked profile for the control of the Neoclassical Tearing Modes (NTM) and sawtooth oscillations. The EC power can be switched between launchers on a time scale as needed by the immediate physics requirements. A revision of all injection angles of all launchers is under consideration for increased EC physics capabilities while relaxing the engineering constraints of both the EL and ULs. A series of design reviews are being planned with the five parties (EU, IN, JA, RF, US) procuring the EC system, the EC community and ITER Organization (IO). The review meetings qualify the design and provide an environment for enhancing performances while reducing costs, simplifying interfaces, predicting technology upgrades and commercial availability. In parallel, the test programs for critical components are being supported by IO and performed by the Domestic Agencies (DAs) for minimizing risks. The wide participation of the DAs provides a broad representation from the EC community, with the aim of collecting all expertise in guiding the EC system optimization. Still a strong relationship between IO and the DA is essential for optimizing the design of the EC system and for the installation and commissioning of all ex-vessel components when several teams from several DAs will be involved together in the tests on the ITER site.
ERIC Educational Resources Information Center
Lawrence, Allen
Tips are given here for energy conservation in the home. Included are heating and cooling houses, water heating, bathing, clothes washing and drying, cooking, refrigerating, dishwashing, lighting, and driving. Also included is a table of annual energy requirements of household electric appliances. (BB)
Gas dynamics in the impulsive phase of solar flares. I Thick-target heating by nonthermal electrons
NASA Technical Reports Server (NTRS)
Nagai, F.; Emslie, A. G.
1984-01-01
A numerical investigation is carried out of the gas dynamical response of the solar atmosphere to a flare energy input in the form of precipitating nonthermal electrons. Rather than discussing the origin of these electrons, the spectral and temporal characteristics of the injected flux are inferred through a thick-target model of hard X-ray bremsstrahlung production. It is assumed that the electrons spiral about preexisting magnetic field lines, making it possible for a one-dimensional spatial treatment to be performed. It is also assumed that all electron energy losses are due to Coulomb collisions with ambient particles; that is, return-current ohmic effects and collective plasma processes are neglected. The results are contrasted with earlier work on conductive heating of the flare atmosphere. A local temperature peak is seen at a height of approximately 1500 km above the photosphere. This derives from a spatial maximum in the energy deposition rate from an electron beam. It is noted that such a feature is not present in conductively heated models. The associated localized region of high pressure drives material both upward and downward.
Localized Electron Heating by Strong Guide-Field Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team
2015-11-01
Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.
Development progresses of radio frequency ion source for neutral beam injector in fusion devices.
Chang, D H; Jeong, S H; Kim, T S; Park, M; Lee, K W; In, S R
2014-02-01
A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe.
Characterization of a quantum cascade laser-based emissivity monitor for CORSAIR
NASA Astrophysics Data System (ADS)
Lwin, Maung; Wojcik, Michael; Latvakoski, Harri; Scott, Deron; Watson, Mike; Marchant, Alan; Topham, Shane; Mlynczak, Martin
2011-06-01
Continuous improvements of quantum cascade laser (QCL) technology have extended the applications in environmental trace gas monitoring, mid-infrared spectroscopy in medicine and life science, law enforcement and homeland security and satellite sensor systems. We present the QCL based emissivity monitor for the CORSAIR blackbody. The emissivity of the blackbody was designed to be better than 0.9999 for the spectral range between 5 to 50μm. To actively monitor changes in blackbody emissivity we employ a QCL-based infrared illumination source. The illumination source consisted of a QCL and thermoelectric cooler (TEC) unit mounted on a copper fixture. The stability of the QCL was measured for 30, 60, and 90s operation time at 1.5A driving current. The temperature distribution along the laser mounting fixture and time dependent system heat dispersion were analyzed. The results were compared to radiative and conductive heat transfer models to define the potential laser operating time and required waiting time to return to initial temperature of the laser mount. The observed cooling behaviour is consistent with a primarily conductive heat transfer mechanism.
Weight Penalty Incurred in Thermoelectric Recovery of Automobile Exhaust Heat
NASA Astrophysics Data System (ADS)
Rowe, D. M.; Smith, J.; Thomas, G.; Min, G.
2011-05-01
Thermoelectric recovery of automobile waste exhaust heat has been identified as having potential for reducing fuel consumption and environmentally unfriendly emissions. Around 35% of combustion energy is discharged as heat through the exhaust system, at temperatures which depend upon the engine's operation and range from 800°C to 900°C at the outlet port to less than 50°C at the tail-pipe. Beneficial reduction in fuel consumption of 5% to 10% is widely quoted in the literature. However, comparison between claims is difficult due to nonuniformity of driving conditions. In this paper the available waste exhaust heat energy produced by a 1.5 L family car when undergoing the new European drive cycle was measured and the potential thermoelectric output estimated. The work required to power the vehicle through the drive cycle was also determined and used to evaluate key parameters. This enabled an estimate to be made of the engine efficiency and additional work required by the engine to meet the load of a thermoelectric generating system. It is concluded that incorporating a thermoelectric generator would attract a penalty of around 12 W/kg. Employing thermoelectric modules fabricated from low-density material such as magnesium silicide would considerably reduce the generator weight penalty.
The critical limiting temperature and selective brain cooling: neuroprotection during exercise?
Marino, Frank E
2011-01-01
There is wide consensus that long duration exercise in the heat is impaired compared with cooler conditions. A common observation when examining exercise tolerance in the heat in laboratory studies is the critical limiting core temperature (CLT) and the apparent attenuation in central nervous system (CNS) drive leading to premature fatigue. Selective brain cooling (SBC) purportedly confers neuroprotection during exercise heat stress by attenuating the increase in brain temperature. As the CLT is dependent on heating to invoke a reduction in efferent drive, it is thus not compatible with SBC which supposedly attenuates the rise in brain temperature. Therefore, the CLT and SBC hypotheses cannot be complimentary if the goal is to confer neuroprotection from thermal insult as it is counter-intuitive to selectively cool the brain if the purpose of rising brain temperature is to down-regulate skeletal muscle recruitment. This presents a circular model for which there is no apparent end to the ultimate physiological outcome; a 'hot brain' selectively cooled in order to reduce the CNS drive to skeletal muscle. This review will examine the postulates of the CLT and SBC with their relationship to the avoidance of a 'hot brain' which together argue for a theoretical position against neuroprotection as the key physiological strategy in exercise-induced hyperthermia.
OPTIMAL ELECTRON ENERGIES FOR DRIVING CHROMOSPHERIC EVAPORATION IN SOLAR FLARES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reep, J. W.; Bradshaw, S. J.; Alexander, D., E-mail: jr665@cam.ac.uk, E-mail: stephen.bradshaw@rice.edu, E-mail: dalex@rice.edu
2015-08-01
In the standard model of solar flares, energy deposition by a beam of electrons drives strong chromospheric evaporation leading to a significantly denser corona and much brighter emission across the spectrum. Chromospheric evaporation was examined in great detail by Fisher et al., who described a distinction between two different regimes, termed explosive and gentle evaporation. In this work, we examine the importance of electron energy and stopping depths on the two regimes and on the atmospheric response. We find that with explosive evaporation, the atmospheric response does not depend strongly on electron energy. In the case of gentle evaporation, lowermore » energy electrons are significantly more efficient at heating the atmosphere and driving up-flows sooner than higher energy electrons. We also find that the threshold between explosive and gentle evaporation is not fixed at a given beam energy flux, but also depends strongly on the electron energy and duration of heating. Further, at low electron energies, a much weaker beam flux is required to drive explosive evaporation.« less
Energy-efficient quantum computing
NASA Astrophysics Data System (ADS)
Ikonen, Joni; Salmilehto, Juha; Möttönen, Mikko
2017-04-01
In the near future, one of the major challenges in the realization of large-scale quantum computers operating at low temperatures is the management of harmful heat loads owing to thermal conduction of cabling and dissipation at cryogenic components. This naturally raises the question that what are the fundamental limitations of energy consumption in scalable quantum computing. In this work, we derive the greatest lower bound for the gate error induced by a single application of a bosonic drive mode of given energy. Previously, such an error type has been considered to be inversely proportional to the total driving power, but we show that this limitation can be circumvented by introducing a qubit driving scheme which reuses and corrects drive pulses. Specifically, our method serves to reduce the average energy consumption per gate operation without increasing the average gate error. Thus our work shows that precise, scalable control of quantum systems can, in principle, be implemented without the introduction of excessive heat or decoherence.
Evaluation of rock/fracture interactions during steam injection through vertical hydrofractures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovscek, A.R.; Johnston, R.M.; Patzek, T.W.
1995-12-31
This paper illustrates the design and results of Shell`s Phase 2 steam drive pilot in the South Belridge Diatomite, Kern County, California. Steam drive on 5/8 acre spacing appears to be an economically viable alternative to waterflooding in the Diatomite; hence, it is being explored as a secondary recovery process. The purpose of the Phase 2 pilot was to demonstrate that steam could be injected across the full Diatomite interval and to quantify reservoir heating and volumetric sweep by steam. In this pilot, two separate, noncommunicating hydrofractures that span the entire Diatomite column (1,110--1,910 ft) are used for injection. Tomore » interpret quantitatively steam drive results the authors propose a computationally simple, high resolution model that captures formation heating due to both steam/hot condensate convection and heat conduction, evolution of formation permeability, and changes in the size and shape of the injection hydrofractures. From this model they obtain formation pressure, temperature, the cumulative steam injection, the dynamics of hydrofractures while they undergo steam injection, and, thus, a history match for the pilot.« less
NASA Astrophysics Data System (ADS)
Yonai, J.; Arai, T.; Hayashida, T.; Ohtake, H.; Namiki, J.; Yoshida, T.; Etoh, T. Goji
2012-03-01
We have developed an ultrahigh-speed CCD camera that can capture instantaneous phenomena not visible to the human eye and impossible to capture with a regular video camera. The ultrahigh-speed CCD was specially constructed so that the CCD memory between the photodiode and the vertical transfer path of each pixel can store 144 frames each. For every one-frame shot, the electric charges generated from the photodiodes are transferred in one step to the memory of all the parallel pixels, making ultrahigh-speed shooting possible. Earlier, we experimentally manufactured a 1M-fps ultrahigh-speed camera and tested it for broadcasting applications. Through those tests, we learned that there are cases that require shooting speeds (frame rate) of more than 1M fps; hence we aimed to develop a new ultrahigh-speed camera that will enable much faster shooting speeds than what is currently possible. Since shooting at speeds of more than 200,000 fps results in decreased image quality and abrupt heating of the image sensor and drive circuit board, faster speeds cannot be achieved merely by increasing the drive frequency. We therefore had to improve the image sensor wiring layout and the driving method to develop a new 2M-fps, 300k-pixel ultrahigh-speed single-chip color camera for broadcasting purposes.
NASA Astrophysics Data System (ADS)
Nimmo, Francis
2017-12-01
More than 20 GW of power are necessary to balance the heat emitted by Enceladus and avoid the freezing of its internal ocean. A very porous core undergoing tidal heating can generate the required power to maintain a liquid ocean and drive hydrothermal activity.
ERIC Educational Resources Information Center
Waring, Gene
1980-01-01
Discussed is the automobile in terms of the Otto cycle, engine heat losses, internal engine losses, drive train losses, road power, and driving habits. Each of these topics is described and calculations are shown to aid the physics teacher in the use of the automobile in the physics classroom. (Author/DS)
Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudd, Armin
2012-08-01
This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.
McClenaghan, Joseph; Garofalo, Andrea M.; Meneghini, Orso; ...
2017-08-03
In this study, transport modeling of a proposed ITER steady-state scenario based on DIII-D high poloidal-beta (more » $${{\\beta}_{p}}$$ ) discharges finds that ITB formation can occur with either sufficient rotation or a negative central shear q-profile. The high $${{\\beta}_{p}}$$ scenario is characterized by a large bootstrap current fraction (80%) which reduces the demands on the external current drive, and a large radius internal transport barrier which is associated with excellent normalized confinement. Modeling predictions of the electron transport in the high $${{\\beta}_{p}}$$ scenario improve as $${{q}_{95}}$$ approaches levels similar to typical existing models of ITER steady-state and the ion transport is turbulence dominated. Typical temperature and density profiles from the non-inductive high $${{\\beta}_{p}}$$ scenario on DIII-D are scaled according to 0D modeling predictions of the requirements for achieving a $Q=5$ steady-state fusion gain in ITER with 'day one' heating and current drive capabilities. Then, TGLF turbulence modeling is carried out under systematic variations of the toroidal rotation and the core q-profile. A high bootstrap fraction, high $${{\\beta}_{p}}$$ scenario is found to be near an ITB formation threshold, and either strong negative central magnetic shear or rotation in a high bootstrap fraction are found to successfully provide the turbulence suppression required to achieve $Q=5$.« less
Realizing Steady State Tokamak Operation for Fusion Energy
NASA Astrophysics Data System (ADS)
Luce, T. C.
2009-11-01
Continuous operation of a tokamak for fusion energy has obvious engineering advantages, but also presents physics challenges beyond the achievement of conditions needed for a burning plasma. The power from fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually in the present generation of tokamaks, and significant progress has been made in the last decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are now operated routinely without disruptions close to the ideal MHD pressure limit, as needed for steady-state operation. Scenarios that project to high fusion gain have been demonstrated where more than half of the current is supplied by the ``bootstrap'' current generated by the pressure gradient in the plasma. Fully noninductive sustainment has been obtained for about a resistive time (the longest intrinsic time scale in the confined plasma) with normalized pressure and confinement approaching those needed for demonstration of steady-state conditions in ITER. One key challenge remaining to be addressed is how to handle the demanding heat and particle fluxes expected in a steady-state tokamak without compromising the high level of core plasma performance. Rather than attempt a comprehensive historical survey, this review will start from the plasma requirements of a steady-state tokamak powerplant, illustrate with examples the progress made in both experimental and theoretical understanding, and point to the remaining physics challenges.
Steady state plasma operation in RF dominated regimes on EAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X. J.; Zhao, Y. P.; Gong, X. Z.
Significant progress has recently been made on EAST in the 2014 campaign, including the enhanced CW H&CD system over 20MW heating power (LHCD, ICRH and NBI), more than 70 diagnostics, ITER-like W-monoblock on upper divertor, two inner cryo-pumps and RMP coils, enabling EAST to investigate long pulse H mode operation with dominant electron heating and low torque to address the critical issues for ITER. H-mode plasmas were achieved by new H&CD system or 4.6GHz LHCD alone for the first time. Long pulse high performance H mode has been obtained by LHCD alone up to 28s at H{sub 98}∼1.2 or bymore » combing of ICRH and LHCD, no or small ELM was found in RF plasmas, which is essential for steady state operation in the future Tokamak. Plasma operation in low collision regimes were implemented by new 4.6GHz LHCD with core Te∼4.5keV. The non-inductive scenarios with high performance at high bootstrap current fraction have been demonstrated in RF dominated regimes for long pulse operation. Near full non-inductive CD discharges have been achieved. In addition, effective heating and decoupling method under multi-transmitter for ICRF system were developed in this campaign, etc. EAST could be in operation with over 30MW CW heating and current drive power (LHCD ICRH NBI and ECRH), enhanced diagnostic capabilities and full actively-cooled metal wall from 2015. It will therefore allow to access new confinement regimes and to extend these regimes towards to steady state operation.« less
Non-inductively driven tokamak plasmas at near-unity βt in the Pegasus toroidal experiment
NASA Astrophysics Data System (ADS)
Reusch, J. A.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Pierren, C.; Rhodes, A. T.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Weberski, J. D.
2018-05-01
A major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓi, high elongation κ, and high toroidal and normalized beta ( βt and βN) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓi. The low aspect ratio ( R0/a ˜1.2 ) of Pegasus allows access to high κ and high normalized plasma currents ( IN=Ip/a BT>14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high βt plasmas. Equilibrium analyses indicate that βt up to ˜100% is achieved. These high βt discharges disrupt at the ideal no-wall β limit at βN˜7.
A Hydrodynamic Model of Alfvénic Wave Heating in a Coronal Loop and Its Chromospheric Footpoints
NASA Astrophysics Data System (ADS)
Reep, Jeffrey W.; Russell, Alexander J. B.; Tarr, Lucas A.; Leake, James E.
2018-02-01
Alfvénic waves have been proposed as an important energy transport mechanism in coronal loops, capable of delivering energy to both the corona and chromosphere and giving rise to many observed features of flaring and quiescent regions. In previous work, we established that resistive dissipation of waves (ambipolar diffusion) can drive strong chromospheric heating and evaporation, capable of producing flaring signatures. However, that model was based on a simplified assumption that the waves propagate instantly to the chromosphere, an assumption that the current work removes. Via a ray-tracing method, we have implemented traveling waves in a field-aligned hydrodynamic simulation that dissipate locally as they propagate along the field line. We compare this method to and validate against the magnetohydrodynamics code Lare3D. We then examine the importance of travel times to the dynamics of the loop evolution, finding that (1) the ionization level of the plasma plays a critical role in determining the location and rate at which waves dissipate; (2) long duration waves effectively bore a hole into the chromosphere, allowing subsequent waves to penetrate deeper than previously expected, unlike an electron beam whose energy deposition rises in height as evaporation reduces the mean-free paths of the electrons; and (3) the dissipation of these waves drives a pressure front that propagates to deeper depths, unlike energy deposition by an electron beam.
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.; Wick, Gary; Bosilovich, Michael G.
2005-01-01
Remote sensing methodologies for turbulent heat fluxes over oceans depend on driving bulk formulations of fluxes with measured surface winds and estimated near surface thermodynamics from microwave sensors of the Special Sensor Microwave Imager (SSM/I) heritage. We will review recent work with a number of SSM/I-based algorithms and investigate the ability of current data sets to document global, tropical ocean-averaged evaporation changes in association with El Nino and La Nina SST changes. We show that in addition to interannual signals, latent heat flux increases over the period since late 1987 range from approx. .1 to .6 mm/ day are present; these represent trends 2 to 3 times larger than the NCEP Reanalysis. Since atmospheric storage cannot account for the difference, and since compensating evapotranspiration changes over land are highly unlikely to be this large, these evaporation estimates cannot be reconciled with ocean precipitation records such as those produced by the Global Precipitation Climatology Project, GPCP. The reasons for the disagreement include less than adequate intercalibration between SSM/I sensors providing winds and water vapor for driving the algorithms, biases due to the assumption that column integrated water vapor mirrors near surface water vapor variations, and other factors as well. The reanalyses have their own problems with spin-up during assimilation, lack of constraining input data at the ocean surface, and amplitude of synoptic transients.
ICRF fast wave current drive and mode conversion current drive in EAST tokamak
NASA Astrophysics Data System (ADS)
Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.
2017-10-01
Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.
Current limiting remote power control module
NASA Technical Reports Server (NTRS)
Hopkins, Douglas C.
1990-01-01
The power source for the Space Station Freedom will be fully utilized nearly all of the time. As such, any loads on the system will need to operate within expected limits. Should any load draw an inordinate amount of power, the bus voltage for the system may sag and disrupt the operation of other loads. To protect the bus and loads some type of power interface between the bus and each load must be provided. This interface is most crucial when load faults occur. A possible system configuration is presented. The proposed interface is the Current Limiting Remote Power Controller (CL-RPC). Such an interface should provide the following power functions: limit overloading and resulting undervoltage; prevent catastrophic failure and still provide for redundancy management within the load; minimize cable heating; and provide accurate current measurement. A functional block diagram of the power processing stage of a CL-RPC is included. There are four functions that drive the circuit design: rate control of current; current sensing; the variable conductance switch (VCS) technology; and the algorithm used for current limiting. Each function is discussed separately.
Polar-Drive Experiments at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Hohenberger, M.
2014-10-01
To support direct-drive inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) in its indirect-drive beam configuration, the polar-drive (PD) concept has been proposed. It requires direct-drive-specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments testing the performance of ignition-relevant PD implosions at the NIF have been performed. The goal of these early experiments was to develop a stable, warm implosion platform to investigate laser deposition and laser-plasma instabilities at ignition-relevant plasma conditions, and to develop and validate ignition-relevant models of laser deposition and heat conduction. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Warm, 2.2-mm-diam plastic shells were imploded with total drive energies ranging from ~ 350 to 750 kJ with peak powers of 60 to 180 TW and peak on-target intensities from 4 ×1014 to 1 . 2 ×1015 W/cm2. Results from these initial experiments are presented, including the level of hot-electron preheat, and implosion symmetry and shell trajectory inferred via self-emission imaging and backlighting. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray trace to model oblique beams, and a model for cross-beam energy transfer (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
NASA Technical Reports Server (NTRS)
Bragg-Sitton, S. M.; Webster, K. L.
2007-01-01
Nonnuclear testing can be a valuable tool in the development of an in-space nuclear power or propulsion system. In a nonnuclear test facility, electric heaters are used to simulate heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and full nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response and response characteristics, and assess potential design improvements with a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE 100a heat pipe cooled, electrically heated reactor and heat exchanger hardware. This Technical Memorandum discusses the status of the planned dynamic test methodology for implementation in the direct-drive gas-cooled reactor testing and assesses the additional instrumentation needed to implement high-fidelity dynamic testing.
Radio-frequency current drive efficiency in the presence of ITBs and a dc electric field
NASA Astrophysics Data System (ADS)
Rosa, P. R. da S.; Mourão, R.; Ziebell, L. F.
2009-05-01
This paper discusses the current drive efficiency by the combined action of EC and LH waves in the presence of a dc electric field and transport, with an internal transport barrier. The transport is assumed to be produced by magnetic fluctuations. The study explores the different barrier parameters and their influence on the current drive efficiency. We study the subject by numerically solving the Fokker-Planck equation. Our main result is that the barrier depth and barrier width are important to determine the correct shape of the current density profile but not to determine the current drive efficiency, which is very little influenced by these parameters. We also found similar results for the influence of the level of magnetic fluctuations on the current density profile and on the current drive efficiency.
8. POWERHOUSE, LOWER LEVEL, LEFT, GOVERNOR DRIVE MOTOR WITH BELT ...
8. POWERHOUSE, LOWER LEVEL, LEFT, GOVERNOR DRIVE MOTOR WITH BELT ON RIGHT, HYDRAULIC PUMP WITH RESERVOIR TANK, STEAM HEAT PIPES ON BACK WALL LOOKING NORTHEAST - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT
40 CFR 86.1229-85 - Dynamometer load determination and fuel temperature profile.
Code of Federal Regulations, 2012 CFR
2012-07-01
... specified driving schedule. The design of the laboratory facility should include consideration of any parameters that may affect fuel temperatures, such as solar loading, pavement heat, and relative wind... be at least 125 °F throughout the driving period. Pavement temperature shall be measured and recorded...
40 CFR 86.1229-85 - Dynamometer load determination and fuel temperature profile.
Code of Federal Regulations, 2010 CFR
2010-07-01
... specified driving schedule. The design of the laboratory facility should include consideration of any parameters that may affect fuel temperatures, such as solar loading, pavement heat, and relative wind... be at least 125 °F throughout the driving period. Pavement temperature shall be measured and recorded...
40 CFR 86.1229-85 - Dynamometer load determination and fuel temperature profile.
Code of Federal Regulations, 2013 CFR
2013-07-01
... specified driving schedule. The design of the laboratory facility should include consideration of any parameters that may affect fuel temperatures, such as solar loading, pavement heat, and relative wind... be at least 125 °F throughout the driving period. Pavement temperature shall be measured and recorded...
40 CFR 86.1229-85 - Dynamometer load determination and fuel temperature profile.
Code of Federal Regulations, 2011 CFR
2011-07-01
... specified driving schedule. The design of the laboratory facility should include consideration of any parameters that may affect fuel temperatures, such as solar loading, pavement heat, and relative wind... be at least 125 °F throughout the driving period. Pavement temperature shall be measured and recorded...
Ally, Moonis R.; Sharma, Vishaldeep; Abdelaziz, Omar
2017-02-21
The choice of driving a heat pump with an electrically$-$or a thermally-driven engine is a vexing question complicated by the carbon footprint and environmental impact of using electricity versus natural gas (or waste heat) as the main driver for the respective engines. The amount of useful work generated by these two distinct engines is the focal point of this paper, which addresses a key question: which engine presents a better choice for a given heat pumping application within the constraints of energy and environmental stewardship? Extensive use of energy, exergy, and availability analysis is necessary to quantify the useful workmore » and to examine the issue holistically for both types of engines. The methodology explains why the output of work from these two distinct engines to satisfy a given load is vastly different, a direct consequence of their inherent Irreversibility. Thermodynamic consistency is guaranteed by satisfaction of the First and Second Laws applied to closed systems and their subsystems. The general conclusion is that thermally-driven engines are not industrious converters of heat to mechanical work.« less
Effects of lava heating on volatile-rich slopes on Io
Dundas, Colin M.
2017-01-01
The upper crust of Io may be very rich in volatile sulfur and SO2. The surface is also highly volcanically active, and slopes may be warmed by radiant heat from the lava. This is particularly the case in paterae, which commonly host volcanic eruptions and long-lived lava lakes. Paterae slopes are highly variable, but some are greater than 70°. I model the heating of a volatile slope for two end-member cases: instantaneous emplacement of a large sheet flow, and persistent heating by a long-lived lava lake. In general, single flows can briefly raise sulfur to the melting temperature, or drive a modest amount of sublimation of SO2. Persistently lava-covered surfaces will drive much more significant geomorphic effects, with potentially significant sublimation and slope retreat. In addition to the direct effects, heating is likely to weaken slope materials and may trigger mass wasting. Thus, if the upper crust of Io is rich in these volatile species, future missions with high-resolution imaging are likely to observe actively retreating slopes around lava lakes and other locations of frequent eruptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ally, Moonis R.; Sharma, Vishaldeep; Abdelaziz, Omar
The choice of driving a heat pump with an electrically$-$or a thermally-driven engine is a vexing question complicated by the carbon footprint and environmental impact of using electricity versus natural gas (or waste heat) as the main driver for the respective engines. The amount of useful work generated by these two distinct engines is the focal point of this paper, which addresses a key question: which engine presents a better choice for a given heat pumping application within the constraints of energy and environmental stewardship? Extensive use of energy, exergy, and availability analysis is necessary to quantify the useful workmore » and to examine the issue holistically for both types of engines. The methodology explains why the output of work from these two distinct engines to satisfy a given load is vastly different, a direct consequence of their inherent Irreversibility. Thermodynamic consistency is guaranteed by satisfaction of the First and Second Laws applied to closed systems and their subsystems. The general conclusion is that thermally-driven engines are not industrious converters of heat to mechanical work.« less
A compact optical fiber positioner
NASA Astrophysics Data System (ADS)
Hu, Hongzhuan; Wang, Jianping; Liu, Zhigang; Zhou, Zengxiang; Zhai, Chao; Chu, Jiaru
2016-07-01
In this paper, a compact optical fiber positioner is proposed, which is especially suitable for small scale and high density optical fiber positioning. Based on the positioning principle of double rotation, positioner's center shaft depends on planetary gear drive principle, meshing with the fixed annular gear central motor gear driving device to rotate, and the eccentric shaft rotated driving by a coaxial eccentric motor, both center and the eccentric shaft are supported by a rolling bearings; center and eccentric shaft are both designed with electrical zero as a reference point, and both of them have position-limiting capability to ensure the safety of fiber positioning; both eccentric and center shaft are designed to eliminating clearance with spring structure, and can eliminate the influence of gear gap; both eccentric and center motor and their driving circuit can be installed in the positioner's body, and a favorable heat sink have designed, the heat bring by positioning operation can be effectively transmit to design a focal plane unit through the aluminum component, on sleeve cooling spiral airway have designed, when positioning, the cooling air flow is inlet into install hole on the focal plate, the cooling air flow can effectively take away the positioning's heat, to eliminate the impact of the focus seeing. By measuring position device's sample results show that: the unit accuracy reached 0.01mm, can meet the needs of fiber positioning.
Adjustable, High Voltage Pulse Generator with Isolated Output for Plasma Processing
NASA Astrophysics Data System (ADS)
Ziemba, Timothy; Miller, Kenneth E.; Prager, James; Slobodov, Ilia
2015-09-01
Eagle Harbor Technologies (EHT), Inc. has developed a high voltage pulse generator with isolated output for etch, sputtering, and ion implantation applications within the materials science and semiconductor processing communities. The output parameters are independently user adjustable: output voltage (0 - 2.5 kV), pulse repetition frequency (0 - 100 kHz), and duty cycle (0 - 100%). The pulser can drive loads down to 200 Ω. Higher voltage pulsers have also been tested. The isolated output allows the pulse generator to be connected to loads that need to be biased. These pulser generators take advantage modern silicon carbide (SiC) MOSFETs. These new solid-state switches decrease the switching and conduction losses while allowing for higher switching frequency capabilities. This pulse generator has applications for RF plasma heating; inductive and arc plasma sources; magnetron driving; and generation of arbitrary pulses at high voltage, high current, and high pulse repetition frequency. This work was supported in part by a DOE SBIR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Benjamin R.; Baldridge, W. Scott; Gable, Carl W.
Finite volume calculations of the flow of rhyolite are presented to investigate the fate of viscous magmas flowing in planar fractures with realistic length to width ratios of up to 2500:1. Heat and mass transfer for a melt with a temperature dependent viscosity and the potential to undergo phase change are considered. Magma driving pressures and dike widths are chosen to satisfy simple elastic considerations. These models are applied within a parameter space relevant to the Banco Bonito rhyolite flow, Valles caldera, New Mexico. We estimate a maximum eruption duration for the event of ~200 days, realized at a minimummore » possible dike width of 5-6 m and driving pressure of 7-8 MPa. Simplifications in the current model may warrant scaling of these results. However, we demonstrate the applicability of our model to magma dynamics issues and suggest that such models may be used to infer information about both the timing of an eruption and the evolution of the associated magma source.« less
Okamoto, Eiji; Nakamura, Masatoshi; Akasaka, Yuhta; Inoue, Yusuke; Abe, Yusuke; Chinzei, Tsuneo; Saito, Itsuro; Isoyama, Takashi; Mochizuki, Shuichi; Imachi, Kou; Mitamura, Yoshinori
2007-07-01
We have developed internal battery systems for driving an undulation pump ventricular assist device using two kinds of lithium ion rechargeable batteries. The lithium ion rechargeable batteries have high energy density, long life, and no memory effect; however, rise in temperature of the lithium ion rechargeable battery is a critical issue. Evaluation of temperature rise by means of numerical estimation is required to develop an internal battery system. Temperature of the lithium ion rechargeable batteries is determined by ohmic loss due to internal resistance, chemical loss due to chemical reaction, and heat release. Measurement results of internal resistance (R(cell)) at an ambient temperature of 37 degrees C were 0.1 Omega in the lithium ion (Li-ion) battery and 0.03 Omega in the lithium polymer (Li-po) battery. Entropy change (DeltaS) of each battery, which leads to chemical loss, was -1.6 to -61.1 J/(mol.K) in the Li-ion battery and -9.6 to -67.5 J/(mol.K) in the Li-po battery depending on state of charge (SOC). Temperature of each lithium ion rechargeable battery under a discharge current of 1 A was estimated by finite element method heat transfer analysis at an ambient temperature of 37 degrees C configuring with measured R(cell) and measured DeltaS in each SOC. Results of estimation of time-course change in the surface temperature of each battery coincided with results of measurement results, and the success of the estimation will greatly contribute to the development of an internal battery system using lithium ion rechargeable batteries.
NASA Technical Reports Server (NTRS)
Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.
2017-01-01
A data driven, near photospheric, 3 D, non-force free magnetohydrodynamic model pre- dicts time series of the complete current density, and the resistive heating rate Q at the photosphere in neutral line regions (NLRs) of 14 active regions (ARs). The model is driven by time series of the magnetic field B observed by the Helioseismic & Magnetic Imager on the Solar Dynamics Observatory (SDO) satellite. Spurious Doppler periods due to SDO orbital motion are filtered out of the time series for B in every AR pixel. Errors in B due to these periods can be significant. The number of occurrences N(q) of values of Q > or = q for each AR time series is found to be a scale invariant power law distribution, N(Q) / Q-s, above an AR dependent threshold value of Q, where 0.3952 < or = s < or = 0.5298 with mean and standard deviation of 0.4678 and 0.0454, indicating little variation between ARs. Observations show that the number of occurrences N(E) of coronal flares with a total energy released > or = E obeys the same type of distribution, N(E) / E-S, above an AR dependent threshold value of E, with 0.38 < or approx. S < or approx. 0.60, also with little variation among ARs. Within error margins the ranges of s and S are nearly identical. This strong similarity between N(Q) and N(E) suggests a fundamental connection between the process that drives coronal flares and the process that drives photospheric NLR heating rates in ARs. In addition, results suggest it is plausible that spikes in Q, several orders of magnitude above background values, are correlated with times of the subsequent occurrence of M or X flares.
NASA Technical Reports Server (NTRS)
Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.
2017-01-01
A data driven, near photospheric, 3 D, non-force free magnetohydrodynamic model predicts time series of the complete current density, and the resistive heating rate Q at the photosphere in neutral line regions (NLRs) of 14 active regions (ARs). The model is driven by time series of the magnetic field B observed by the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory (SDO) satellite. Spurious Doppler periods due to SDO orbital motion are filtered out of the time series for B in every AR pixel. Errors in B due to these periods can be significant. The number of occurrences N(q) of values of Q > or = q for each AR time series is found to be a scale invariant power law distribution, N(Q) / Q-s, above an AR dependent threshold value of Q, where 0.3952 < or = s < or = 0.5298 with mean and standard deviation of 0.4678 and 0.0454, indicating little variation between ARs. Observations show that the number of occurrences N(E) of coronal flares with a total energy released > or = E obeys the same type of distribution, N(E) / E-S, above an AR dependent threshold value of E, with 0.38 < or approx. S < or approx. 0.60, also with little variation among ARs. Within error margins the ranges of s and S are nearly identical. This strong similarity between N(Q) and N(E) suggests a fundamental connection between the process that drives coronal flares and the process that drives photospheric NLR heating rates in ARs. In addition, results suggest it is plausible that spikes in Q, several orders of magnitude above background values, are correlated with times of the subsequent occurrence of M or X flares.
NASA Astrophysics Data System (ADS)
Bonoli, Paul
2014-10-01
This paper presents a fresh physics perspective on the onerous problem of coupling and successfully utilizing ion cyclotron range of frequencies (ICRF) and lower hybrid range of frequencies (LHRF) actuators in the harsh environment of a nuclear fusion reactor. The ICRF and LH launchers are essentially first wall components in a fusion reactor and as such will be subjected to high heat fluxes. The high field side (HFS) of the plasma offers a region of reduced heat flux together with a quiescent scrape off layer (SOL). Placement of the ICRF and LHRF launchers on the tokamak HFS also offers distinct physics advantages: The higher toroidal magnetic field makes it possible to couple faster phase velocity LH waves that can penetrate farther into the plasma core and be absorbed by higher energy electrons, thereby increasing the current drive efficiency. In addition, re-location of the LH launcher off the mid-plane (i.e., poloidal ``steering'') allows further control of the deposition location. Also ICRF waves coupled from the HFS couple strongly to mode converted ion Bernstein waves and ion cyclotron waves waves as the minority density is increased, thus opening the possibility of using this scheme for flow drive and pressure control. Finally the quiescent nature of the HFS scrape off layer should minimize the effects of RF wave scattering from density fluctuations. Ray tracing / Fokker Planck simulations will be presented for LHRF applications in devices such as the proposed Advanced Divertor Experiment (ADX) and extending to ITER and beyond. Full-wave simulations will also be presented which demonstrate the possible combinations of electron and ion heating via ICRF mode conversion. Work supported by the US DoE under Contract Numbers DE-FC02-01ER54648 and DE-FC02-99ER54512.
NASA Astrophysics Data System (ADS)
Nowak, S.; Orefice, A.
1994-05-01
In today's high frequency systems employed for plasma diagnostics, power heating, and current drive the behavior of the wave beams is appreciably affected by the self-diffraction phenomena due to their narrow collimation. In the present article the three-dimensional propagation of Gaussian beams in inhomogeneous and anisotropic media is analyzed, starting from a properly formulated dispersion relation. Particular attention is paid, in the case of electromagnetic electron cyclotron (EC) waves, to the toroidal geometry characterizing tokamak plasmas, to the power density evolution on the advancing wave fronts, and to the absorption features occurring when a beam crosses an EC resonant layer.
Beyond the bipolar seesaw: Toward a process understanding of interhemispheric coupling
NASA Astrophysics Data System (ADS)
Pedro, Joel B.; Jochum, Markus; Buizert, Christo; He, Feng; Barker, Stephen; Rasmussen, Sune O.
2018-07-01
The thermal bipolar ocean seesaw hypothesis was advanced by Stocker and Johnsen (2003) as the 'simplest possible thermodynamic model' to explain the time relationship between Dansgaard-Oeschger (DO) and Antarctic Isotope Maxima (AIM) events. In this review we combine palaeoclimate observations, theory and general circulation model experiments to advance from the conceptual model toward a process understanding of interhemispheric coupling and the forcing of AIM events. We present four main results: (1) Changes in Atlantic heat transport invoked by the thermal seesaw are partially compensated by opposing changes in heat transport by the global atmosphere and Pacific Ocean. This compensation is an integral part of interhemispheric coupling, with a major influence on the global pattern of climate anomalies. (2) We support the role of a heat reservoir in interhemispheric coupling but argue that its location is the global interior ocean to the north of the Antarctic Circumpolar Current (ACC), not the commonly assumed Southern Ocean. (3) Energy budget analysis indicates that the process driving Antarctic warming during AIM events is an increase in poleward atmospheric heat and moisture transport following sea ice retreat and surface warming over the Southern Ocean. (4) The Antarctic sea ice retreat is itself driven by eddy-heat fluxes across the ACC, amplified by sea-ice-albedo feedbacks. The lag of Antarctic warming after AMOC collapse reflects the time required for heat to accumulate in the ocean interior north of the ACC (predominantly the upper 1500 m), before it can be mixed across this dynamic barrier by eddies.
Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen
2013-01-01
The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T a) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T a estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T a based on MODIS land surface temperature (LST) data. The verification results of maximum T a, minimum T a, GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001–2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale. PMID:23365013
Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen
2013-02-01
The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T(a)) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T(a) estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T(a) based on MODIS land surface temperature (LST) data. The verification results of maximum T(a), minimum T(a), GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001-2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale.
Quantifying the Terrestrial Surface Energy Fluxes Using Remotely-Sensed Satellite Data
NASA Astrophysics Data System (ADS)
Siemann, Amanda Lynn
The dynamics of the energy fluxes between the land surface and the atmosphere drive local and regional climate and are paramount to understand the past, present, and future changes in climate. Although global reanalysis datasets, land surface models (LSMs), and climate models estimate these fluxes by simulating the physical processes involved, they merely simulate our current understanding of these processes. Global estimates of the terrestrial, surface energy fluxes based on observations allow us to capture the dynamics of the full climate system. Remotely-sensed satellite data is the source of observations of the land surface which provide the widest spatial coverage. Although net radiation and latent heat flux global, terrestrial, surface estimates based on remotely-sensed satellite data have progressed, comparable sensible heat data products and ground heat flux products have not progressed at this scale. Our primary objective is quantifying and understanding the terrestrial energy fluxes at the Earth's surface using remotely-sensed satellite data with consistent development among all energy budget components [through the land surface temperature (LST) and input meteorology], including validation of these products against in-situ data, uncertainty assessments, and long-term trend analysis. The turbulent fluxes are constrained by the available energy using the Bowen ratio of the un-constrained products to ensure energy budget closure. All final products are within uncertainty ranges of literature values, globally. When validated against the in-situ estimates, the sensible heat flux estimates using the CFSR air temperature and constrained with the products using the MODIS albedo produce estimates closest to the FLUXNET in-situ observations. Poor performance over South America is consistent with the largest uncertainties in the energy budget. From 1984-2007, the longwave upward flux increase due to the LST increase drives the net radiation decrease, and the decrease in the available energy balances the decrease in the sensible heat flux. These datasets are useful for benchmarking climate models and LSM output at the global annual scale and the regional scale subject to the regional uncertainties and performance. Future work should improve the input data, particularly the temperature gradient and Zilitinkevich empirical constant, to reduce uncertainties.
Advanced electric motor technology flux mapping
NASA Technical Reports Server (NTRS)
Doane, George B., III; Campbell, Warren; Dean, Garvin
1993-01-01
Design of electric motors which fulfill the needs of Thrust Vector Control (TVC) actuators used in large rocket propelled launch vehicles is covered. To accomplish this end the methodology of design is laid out in some detail. In addition a point design of a motor to fulfill the requirements of a certain actuator specified by MSFC is accomplished and reported upon. In the course of this design great stress has been placed on ridding the actuator of internally generated heat. To conduct the heat out of the motor use is made of the unique properties of the in house MSFC designed driving electronics. This property is that as along as they are operated in a quasi-linear mode the electronics nullify the effects of armature inductance as far as the phase of the armature current versus the rotor position is concerned. Actually the additional inductance due to the extended end turns in this design is of benefit because in the shorted armature failure mode the armature current in the fault (caused by the rotor flux sweeping past the armature) is diminished at a given rotor speed when compared to a more conventional motor with lower inductance. The magnetic circuit is analyzed using electromagnetic finite element methods.
NASA Astrophysics Data System (ADS)
Perry, Justin M.
Local helicity injection (LHI) is a non-solenoidal current drive capable of achieving high-Ip tokamak startup with a relatively compact and non-invasive array of current injectors in the plasma scrape-off layer. The choice of injector location within the edge region is flexible, but has a profound influence on the nature of the current drive in LHI discharges. Past experiments on the Pegasus ST with injection on the low-field-side near the outboard midplane produced plasmas dominated by inductive drive resulting primarily from plasma geometry evolution over the discharge. Recent experiments with injection on the high-field- side in the lower divertor region produce plasmas dominated by helicity injection current drive, with relatively static plasma geometry, and thus negligible inductive drive. Plasma current up to 200 kA is driven with helicity injection as the dominant current drive using a pair of 4 cm2 area injectors sourcing 8 kA of total injected current. Steady sustainment with LHI current drive alone is demonstrated, with 100 kA sustained for 18 ms. Maximum achievable plasma current is found to scale approximately linearly with a plasma-geometry- normalized form of the effective loop voltage from LHI, Vnorm = AinjVinj/Rinj, where A inj is the total injector area, Vinj is the injector bias voltage, and Rinj is the major radius of the injectors. A newly-discovered MHD regime for LHI-driven plasmas is described, in which the large-amplitude n = 1 fluctuations at 20-50 kHz which are generally dominant during LHI are abruptly reduced by an order of magnitude on the outboard side. High frequency fluctuations ( f > 400 kHz) increase inside the plasma edge at the same time. This regime results in improved plasma current and pervasive changes to plasma behavior, and may suggest short wavelength turbulence as a current drive mechanism during LHI.
NASA Astrophysics Data System (ADS)
Mahdavi, Mahboobe
Thermal energy storage systems as an integral part of concentrated solar power plants improve the performance of the system by mitigating the mismatch between the energy supply and the energy demand. Using a phase change material (PCM) to store energy increases the energy density, hence, reduces the size and cost of the system. However, the performance is limited by the low thermal conductivity of the PCM, which decreases the heat transfer rate between the heat source and PCM, which therefore prolongs the melting, or solidification process, and results in overheating the interface wall. To address this issue, heat pipes are embedded in the PCM to enhance the heat transfer from the receiver to the PCM, and from the PCM to the heat sink during charging and discharging processes, respectively. In the current study, the thermal-fluid phenomenon inside a heat pipe was investigated. The heat pipe network is specifically configured to be implemented in a thermal energy storage unit for a concentrated solar power system. The configuration allows for simultaneous power generation and energy storage for later use. The network is composed of a main heat pipe and an array of secondary heat pipes. The primary heat pipe has a disk-shaped evaporator and a disk-shaped condenser, which are connected via an adiabatic section. The secondary heat pipes are attached to the condenser of the primary heat pipe and they are surrounded by PCM. The other side of the condenser is connected to a heat engine and serves as its heat acceptor. The applied thermal energy to the disk-shaped evaporator changes the phase of working fluid in the wick structure from liquid to vapor. The vapor pressure drives it through the adiabatic section to the condenser where the vapor condenses and releases its heat to a heat engine. It should be noted that the condensed working fluid is returned to the evaporator by the capillary forces of the wick. The extra heat is then delivered to the phase change material through the secondary heat pipes. During the discharging process, secondary heat pipes serve as evaporators and transfer the stored energy to the heat engine. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
Zheng, Pingwei; Gong, Xueyu; Lu, Xingqiang; He, Lihua; Cao, Jingjia; Huang, Qianhong; Deng, Sheng
2018-03-01
A localized and efficient current drive method in the outer-half region of the tokamak with a large inverse aspect ratio is proposed via the Ohkawa mechanism of electron cyclotron (EC) waves. Further off-axis Ohkawa current drive (OKCD) via EC waves was investigated in high electron beta β e HL-2M-like tokamaks with a large inverse aspect ratio, and in EAST-like tokamaks with a low inverse aspect ratio. OKCD can be driven efficiently, and the driven current profile is spatially localized in the radial region, ranging from 0.62 to 0.85, where the large fraction of trapped electrons provides an excellent advantage for OKCD. Furthermore, the current drive efficiency increases with an increase in minor radius, and then drops when the minor radius beyond a certain value. The effect of trapped electrons greatly enhances the current driving capability of the OKCD mechanism. The highest current drive efficiency can reach 0.183 by adjusting the steering mirror to change the toroidal and poloidal incident angle, and the total driven current by OKCD can reach 20-32 kA MW-1 in HL-2M-like tokamaks. The current drive is less efficient for the EAST-like scenario due to the lower inverse aspect ratio. The results show that OKCD may be a valuable alternative current drive method in large inverse aspect ratio tokamaks, and the potential capabilities of OKCD can be used to suppress some important magnetohydrodynamics instabilities in the far off-axis region.
NASA Astrophysics Data System (ADS)
Giuliano, Michael R.; Prasad, Ajay K.; Advani, Suresh G.
2012-10-01
Lithium-titanate batteries have become an attractive option for battery electric vehicles and hybrid electric vehicles. In order to maintain safe operating temperatures, these batteries must be actively cooled during operation. Liquid-cooled systems typically employed for this purpose are inefficient due to the parasitic power consumed by the on-board chiller unit and the coolant pump. A more efficient option would be to circulate ambient air through the battery bank and directly reject the heat to the ambient. We designed and fabricated such an air-cooled thermal management system employing metal-foam based heat exchanger plates for sufficient heat removal capacity. Experiments were conducted with Altairnano's 50 Ah cells over a range of charge-discharge cycle currents at two air flow rates. It was found that an airflow of 1100 mls-1 per cell restricts the temperature rise of the coolant air to less than 10 °C over ambient even for 200 A charge-discharge cycles. Furthermore, it was shown that the power required to drive the air through the heat exchanger was less than a conventional liquid-cooled thermal management system. The results indicate that air-cooled systems can be an effective and efficient method for the thermal management of automotive battery packs.
A novel high-temperature ejector-topping power cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freedman, B.Z.; Lior, N.
1994-01-01
A novel, patented topping power cycle is described that takes its energy from a very high-temperature heat source and in which the temperature of the heat sink is still high enough to operate another, conventional power cycle. The top temperatures heat source is used to evaporate a low saturation pressure liquid, which serves as the driving fluid for compressing the secondary fluid in an ejector. Due to the inherently simple construction of ejectors, they are well suited for operation at temperatures higher than those that can be used with gas turbines. The gases exiting from the ejector transfer heat tomore » the lower temperature cycle, and are separated by condensing the primary fluid. The secondary gas is then used to drive a turbine. For a system using sodium as the primary fluid and helium as the secondary fluid, and using a bottoming Rankine steam cycle, the overall thermal efficiency can be at least 11 percent better than that of conventional steam Rankine cycles.« less
Antarctic warming driven by internal Southern Ocean deep convection oscillations
NASA Astrophysics Data System (ADS)
Martin, Torge; Pedro, Joel B.; Steig, Eric J.; Jochum, Markus; Park, Wonsun; Rasmussen, Sune O.
2016-04-01
Simulations with the free-running, complex coupled Kiel Climate Model (KCM) show that heat release associated with recurring Southern Ocean deep convection can drive centennial-scale Antarctic temperature variations of 0.5-2.0 °C. We propose a mechanism connecting the intrinsic ocean variability with Antarctic warming that involves the following three steps: Preconditioning: heat supplied by the lower branch of the Atlantic Meridional Overturning Circulation (AMOC) accumulates at depth in the Southern Ocean, trapped by the Weddell Gyre circulation; Convection onset: wind and/or sea-ice changes tip the preconditioned, thermally unstable system into the convective state; Antarctic warming: fast sea-ice-albedo feedbacks (on annual to decadal timescales) and slower Southern Ocean frontal and sea-surface temperature adjustments to the convective heat release (on multi-decadal to centennial timescales), drive an increase in atmospheric heat and moisture transport towards Antarctica resulting in warming over the continent. Further, we discuss the potential role of this mechanism to explain climate variability observed in Antarctic ice-core records.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulconer, D.W
2004-03-15
Certain devices aimed at magnetic confinement of thermonuclear plasma rely on the steady flow of an electric current in the plasma. In view of the dominant place it occupies in both the world magnetic-confinement fusion effort and the author's own activity, the tokamak toroidal configuration is selected as prototype for discussing the question of how such a current can be maintained. Tokamaks require a stationary toroidal plasma current, this being traditionally provided by a pulsed magnetic induction which drives the plasma ring as the secondary of a transformer. Since this mechanism is essentially transient, and steady-state fusion reactor operation hasmore » manifold advantages, significant effort is now devoted to developing alternate steady-state means of generating toroidal current. These methods are classed under the global heading of 'noninductive current drive' or simply 'current drive', generally, though not exclusively, employing the injection of waves and/or toroidally directed particle beams. In what follows we highlight the physical mechanisms underlying surprisingly various approaches to driving current in a tokamak, downplaying a number of practical and technical issues. When a significant data base exists for a given method, its experimental current drive efficiency and future prospects are detailed.« less
NASA Astrophysics Data System (ADS)
Goodman, M. L.; Kwan, C.; Ayhan, B.; Eric, S. L.
2016-12-01
A data driven, near photospheric magnetohydrodynamic model predicts spikes in the horizontal current density, and associated resistive heating rate. The spikes appear as increases by orders of magnitude above background values in neutral line regions (NLRs) of active regions (ARs). The largest spikes typically occur a few hours to a few days prior to M or X flares. The spikes correspond to large vertical derivatives of the horizontal magnetic field. The model takes as input the photospheric magnetic field observed by the Helioseismic & Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) satellite. This 2.5 D field is used to determine an analytic expression for a 3 D magnetic field, from which the current density, vector potential, and electric field are computed in every AR pixel for 14 ARs. The field is not assumed to be force-free. The spurious 6, 12, and 24 hour Doppler periods due to SDO orbital motion are filtered out of the time series of the HMI magnetic field for each pixel. The subset of spikes analyzed at the pixel level are found to occur on HMI and granulation scales of 1 arcsec and 12 minutes. Spikes are found in ARs with and without M or X flares, and outside as well as inside NLRs, but the largest spikes are localized in the NLRs of ARs with M or X flares. The energy to drive the heating associated with the largest current spikes comes from bulk flow kinetic energy, not the electromagnetic field, and the current density is highly non-force free. The results suggest that, in combination with the model, HMI is revealing strong, convection driven, non-force free heating events on granulation scales, and it is plausible these events are correlated with subsequent M or X flares. More and longer time series need to be analyzed to determine if such a correlation exists.
Diesel engine catalytic combustor system. [aircraft engines
NASA Technical Reports Server (NTRS)
Ream, L. W. (Inventor)
1984-01-01
A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.
NASA Astrophysics Data System (ADS)
Oniciuc, E.; Stoleriu, L.; Stancu, A.
2014-02-01
An extension of Landau-Lifshitz-Bloch (LLB) equation is used to describe the behavior of single-domain particles under the influence of magnetic fields and polarized currents at elevated temperatures. We prove that using such a model, which takes into account the longitudinal magnetization relaxation, together with the consideration of the quartic crystalline anisotropy term, a number of recent experimental results can be explained concerning the free layer characteristic critical curves of spin valves commonly used in spin electronics. These results are of paramount importance for heat assisted magnetic recording (HAMR) processes in hard-drives or in new memory systems like the spin-transfer-torque magnetic random access memory (HA-STTMRAM) with the aim of increasing data density writing while avoiding superparamagnetic limit.
Electrical motor/generator drive apparatus and method
Su, Gui Jia
2013-02-12
The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.
NASA Astrophysics Data System (ADS)
Lin, Y.; Wukitch, S. J.; Edlund, E.; Ennever, P.; Hubbard, A. E.; Porkolab, M.; Rice, J.; Wright, J.
2017-10-01
In recent three-ion species (majority D and H plus a trace level of 3He) ICRF heating experiments on Alcator C-Mod, double mode conversion on both sides of the 3He cyclotron resonance has been observed using the phase contrast imaging (PCI) system. The MC locations are used to estimate the species concentrations in the plasma. Simulation using TORIC shows that with the 3He level <1%, most RF power is absorbed by the 3He ions and the process can generate energetic 3He ions. In mode conversion (MC) flow drive experiment in D(3He) plasma at 8 T, MC waves were also monitored by PCI. The MC ion cyclotron wave (ICW) amplitude and wavenumber kR have been found to correlate with the flow drive force. The MC efficiency, wave-number k of the MC ICW and their dependence on plasma parameters like Te0 have been studied. Based on the experimental observation and numerical study of the dispersion solutions, a hypothesis of the flow drive mechanism has been proposed.
Model Predictive Control of the Current Profile and the Internal Energy of DIII-D Plasmas
NASA Astrophysics Data System (ADS)
Lauret, M.; Wehner, W.; Schuster, E.
2015-11-01
For efficient and stable operation of tokamak plasmas it is important that the current density profile and the internal energy are jointly controlled by using the available heating and current-drive (H&CD) sources. The proposed approach is a version of nonlinear model predictive control in which the input set is restricted in size by the possible combinations of the H&CD on/off states. The controller uses real-time predictions over a receding-time horizon of both the current density profile (nonlinear partial differential equation) and the internal energy (nonlinear ordinary differential equation) evolutions. At every time instant the effect of every possible combination of H&CD sources on the current profile and internal energy is evaluated over the chosen time horizon. The combination that leads to the best result, which is assessed by a user-defined cost function, is then applied up until the next time instant. Simulations results based on a control-oriented transport code illustrate the effectiveness of the proposed control method. Supported by the US DOE under DE-FC02-04ER54698 & DE-SC0010661.
NASA Astrophysics Data System (ADS)
Verkhoglyadova, O. P.; Meng, X.; Mannucci, A. J.; Mlynczak, M. G.; Hunt, L. A.; Lu, G.
2017-09-01
The ionosphere-thermosphere (IT) energy partitioning for the interplanetary coronal mass ejection (ICME) storms of 16-19 March 2013 and 2015 is estimated with the Global Ionosphere-Thermosphere Model (GITM), empirical models and proxies derived from in situ measurements. We focus on auroral heating, Joule heating, and thermospheric cooling. Solar wind data, F10.7, OVATION Prime model and the Weimer 2005 model are used to drive GITM from above. Thermospheric nitric oxide and carbon dioxide cooling emission powers and fluxes are estimated from TIMED/SABER measurements. Assimilative mapping of ionospheric electrodynamics (AMIE) estimations of hemispheric power and Joule heating are presented, based on data from global magnetometers, the AMPERE magnetic field data, SSUSI auroral images, and the SuperDARN radar network. Modeled Joule heating and auroral heating of the IT system are mostly controlled by external driving in the March 2013 and 2015 storms, while NO cooling persists into the storm recovery phase. The total heating in the model is about 1000 GW to 3000 GW. Additionally, we intercompare contributions in selected energy channels for five coronal mass ejection-type storms modeled with GITM. Modeled auroral heating shows reasonable agreement with AMIE hemispheric power and is higher than other observational proxies. Joule heating and infrared cooling are likely underestimated in GITM. We discuss challenges and discrepancies in estimating and global modeling of the IT energy partitioning, especially Joule heating, during geomagnetic storms.
Magnetic structure of sites of braiding in Hi-C active region
NASA Astrophysics Data System (ADS)
Tiwari, Sanjiv Kumar; Alexander, Caroline; Winebarger, Amy R.; Moore, Ronald L.
2014-06-01
High-resolution Coronal Imager (Hi-C) observations of an active region (AR) corona, at a spatial resolution of 0.2 arcsec, have offered the first direct evidence of field lines braiding, which could deliver sufficient energy to heat the AR corona by current dissipation via magnetic reconnection, a proposal given by Parker three decades ago. The energy required to heat the corona must be transported from the photosphere along the field lines. The mechanism that drives the energy transport to the corona is not yet fully understood.To investigate simultaneous magnetic and intensity structure in and around the AR in detail, we use SDO/HMI+AIA data of + / - 2 hours around the 5 minute Hi-C flight. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines probably translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. However, to the best of our knowledge, there is no observational evidence available to these processes. We investigate the changes taking place in the photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. Using HMI 45s magnetograms of four hours we find that, out of the two Hi-C sub-regions where the braiding of field lines were recently detected, flux emergence takes place in one region and flux cancellation in the other. The field in these sub-regions are highly sheared and have apparent high speed plasma flows at their feet. Therefore, shearing flows plausibly power much of the coronal and transition region heating in these areas of the AR. In addition, the presence of large flux emergence/cancellation strongly suggests that the work done by these processes on the pre-existing field also drives much of the observed heating.For this work, SKT and CEA were supported by an appointment to the NASA Postdoctoral Program at the NASA Marshall Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA, and AW and RLM were supported by funding from the Living With a Star Targeted Research and Technology Program of the Heliophysics Division of NASA's Science Mission Directorate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, W P; Burrell, K H; Casper, T A
2004-12-03
The quiescent H (QH) mode, an edge localized mode (ELM)-free, high-confinement mode, combines well with an internal transport barrier to form quiescent double barrier (QDB) stationary state, high performance plasmas. The QH-mode edge pedestal pressure is similar to that seen in ELMing phases of the same discharge, with similar global energy confinement. The pedestal density in early ELMing phases of strongly pumped counter injection discharges drops and a transition to QH-mode occurs, leading to lower calculated edge bootstrap current. Plasmas current ramp experiment and ELITE code modeling of edge stability suggest that QH-modes lie near an edge current stability boundary.more » At high triangularity, QH-mode discharges operate at higher pedestal density and pressure, and have achieved ITER level values of {beta}{sub PED} and {nu}*. The QDB achieves performance of {alpha}{sub N}H{sub 89} {approx} 7 in quasi-stationary conditions for a duration of 10 tE, limited by hardware. Recently we demonstrated stationary state QDB discharges with little change in kinetic and q profiles (q{sub 0} > 1) for 2 s, comparable to ELMing ''hybrid scenarios'', yet without the debilitating effects of ELMs. Plasma profile control tools, including electron cyclotron heating and current drive and neutral beam heating, have been demonstrated to control simultaneously the q profile development, the density peaking, impurity accumulation and plasma beta.« less
Isotopic effect in experiments on lower hybrid current drive in the FT-2 tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lashkul, S. I., E-mail: Serguey.lashkul@mail.ioffe.ru; Altukhov, A. B.; Gurchenko, A. D., E-mail: aleksey.gurchenko@mail.ioffe.ru
To analyze factors influencing the limiting value of the plasma density at which lower hybrid (LH) current drive terminates, the isotopic factor (the difference in the LH resonance densities in hydrogen and deuterium plasmas) was used for the first time in experiments carried out at the FT-2 tokamak. It is experimentally found that the efficiency of LH current drive in deuterium plasma is appreciably higher than that in hydrogen plasma. The significant role of the parametric decay of the LH pumping wave, which hampers the use of the LH range of RF waves for current drive at high plasma densities,more » is confirmed. It is demonstrated that the parameters characterizing LH current drive agree well with the earlier results obtained at large tokamaks.« less
Universal power transistor base drive control unit
Gale, Allan R.; Gritter, David J.
1988-01-01
A saturation condition regulator system for a power transistor which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition.
Universal power transistor base drive control unit
Gale, A.R.; Gritter, D.J.
1988-06-07
A saturation condition regulator system for a power transistor is disclosed which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition. 2 figs.
Modeling activities on the negative-ion-based Neutral Beam Injectors of the Large Helical Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agostinetti, P.; Antoni, V.; Chitarin, G.
2011-09-26
At the National Institute for Fusion Science (NIFS) large-scaled negative ion sources have been widely used for the Neutral Beam Injectors (NBIs) mounted on the Large Helical Device (LHD), which is the world-largest superconducting helical system. These injectors have achieved outstanding performances in terms of beam energy, negative-ion current and optics, and represent a reference for the development of heating and current drive NBIs for ITER.In the framework of the support activities for the ITER NBIs, the PRIMA test facility, which includes a RF-drive ion source with 100 keV accelerator (SPIDER) and a complete 1 MeV Neutral Beam system (MITICA)more » is under construction at Consorzio RFX in Padova.An experimental validation of the codes has been undertaken in order to prove the accuracy of the simulations and the soundness of the SPIDER and MITICA design. To this purpose, the whole set of codes have been applied to the LHD NBIs in a joint activity between Consorzio RFX and NIFS, with the goal of comparing and benchmarking the codes with the experimental data. A description of these modeling activities and a discussion of the main results obtained are reported in this paper.« less
Design of an RF System for Electron Bernstein Wave Studies in MST
NASA Astrophysics Data System (ADS)
Kauffold, J. X.; Seltzman, A. H.; Anderson, J. K.; Nonn, P. D.; Forest, C. B.
2010-11-01
Motivated by the possibility of current profile control a 5.5GHz RF system for EBW is being developed. The central component is a standard radar Klystron with 1.2MW peak power and 4μs typical pulse length. Meaningful experiments require RF pulse lengths similar to the characteristic electron confinement times in MST necessitating the creation of a power supply providing 80kV at 40A for 10ms. A low inductance IGBT network switches power at 20kHz from an electrolytic capacitor bank into the primary of a three-phase resonant transformer system that is then rectified and filtered. The system uses three magnetically separate transformers with microcrystalline iron cores to provide suitable volt-seconds and low hysteresis losses. Each phase has a secondary with a large leakage inductance and a parallel capacitor providing a boost ratio greater than 60:1 with a physical turns ratio of 13.5:1. A microprocessor feedback control system varies the drive frequency around resonance to regulate the boost ratio and provide a stable output as the storage bank discharges. The completed system will deliver RF to the plasma boundary where coupling to the Bernstein mode and subsequent heating and current drive can occur.
Highlights of the Alcator C-Mod Research Campaign
NASA Astrophysics Data System (ADS)
Greenwald, Martin; Alcator Team
2011-10-01
Alcator C-Mod has completed an experimental campaign focusing on broad scientific issues with particular emphasis on ITER needs and requests. Experiments with no NBI torque have investigated spontaneous flow reversal, creation of transport barriers aided by the shear of intrinsic rotation and a variety of RF flow drive schemes. Studies of I-mode have found conditions where a wide operating regime opens up, allowing easy access to long-lived, high-performance discharges with L-mode like particle confinement. We are validating the EPED and BOUT++ models for pedestal height/width and ELM onset using extended parameter scans in ELMy H-mode. The challenge of high-Z impurity generation with ICRF is being addressed first by deployment of a novel antenna whose current straps and antenna box are perpendicular to the total magnetic field -second by studies of the modification of edge impurity transport, where fine-scale Er structures in the SOL in the presence of ICRF heating have been found. LH current drive has produced non-inductive reversed shear regimes at n ~ 5x1019 which exhibit electron temperature ITBs. The first observations have been made of in-tokamak production of divertor tungsten nano-structures (fuzz), which had previously been seen only in linear laboratory experiments. Supported by DoE DE-FC02-99ER54512.
Arctic and Antarctic Analogs for Planetary Surface Traverses
NASA Technical Reports Server (NTRS)
Hoffman, Stephen J.; Cameron, A. O.
2009-01-01
The proposed paper summarizes the workshop presentations and discusses several of the key findings or lessons including: (1) A recognition that NASA s current approach for long duration planetary surface operations has fundamental differences from any of the operational approaches described by the invited speakers. These approaches drive the crew size and skill mix to accomplish basic objectives and, in turn, drive the logistical pyramid needed to support these operations. NASA will review the operational approaches of the organizations represented to understand the differentiating factors. NASA will then decide if it should alter its current approach to surface exploration. (2) There are potential parallels between key characteristics of the systems used for exploration in these environments, such as heated volume as an analog for pressurized volume or energy usage for various activities. NASA will look at these characteristics to identify which could help with preliminary planning and gather raw data from the presenters to model these characteristics. (3) New technologies are being applied and design approaches are being tailored to take advantage of these technologies on both side. Interactions between these two communities has begun or is expanding to understand how these new technologies are being leveraged: NASA habitation designers are exchanging ideas and approaches with the Antarctic station designers; Antarctic support
Piezohydraulic Pump Development
NASA Technical Reports Server (NTRS)
Lynch, Christopher S.
2005-01-01
Reciprocating piston piezohydraulic pumps were developed originally under the Smart Wing Phase II program (Lynch) and later under the CHAP program (CSA, Kinetic Ceramics). These pumps focused on 10 cm scale stack actuators operating below resonance and, more recently, at resonance. A survey of commercially available linear actuators indicates that obtaining power density and specific power greater than electromagnetic linear actuators requires driving the stacks at frequencies greater than 1 KHz at high fields. In the case of 10 cm scale actuators the power supply signal conditioning becomes large and heavy and the soft PZT stack actuators generate a lot of heat due to internal losses. Reciprocation frequencies can be increased and material losses significantly decreased through use of millimeter scale single crystal stack actuators. We are presently targeting the design of pumps that utilize stacks at the 1-10 mm length scale and run at reciprocating frequencies of 20kHz or greater. This offers significant advantages over current approaches including eliminating audible noise and significantly increasing the power density and specific power of the system (including electronics). The pump currently under development will comprise an LC resonant drive of a resonant crystal and head mass operating against a resonant fluid column. Each of these resonant systems are high Q and together should produce a single high Q second order system.
Bootstrap and fast wave current drive for tokamak reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehst, D.A.
1991-09-01
Using the multi-species neoclassical treatment of Hirshman and Sigmar we study steady state bootstrap equilibria with seed currents provided by low frequency (ICRF) fast waves and with additional surface current density driven by lower hybrid waves. This study applies to reactor plasmas of arbitrary aspect ratio. IN one limit the bootstrap component can supply nearly the total equilibrium current with minimal driving power (< 20 MW). However, for larger total currents considerable driving power is required (for ITER: I{sub o} = 18 MA needs P{sub FW} = 15 MW, P{sub LH} = 75 MW). A computational survey of bootstrap fractionmore » and current drive efficiency is presented. 11 refs., 8 figs.« less
Cooling system for high speed aircraft
NASA Technical Reports Server (NTRS)
Lawing, P. L.; Pagel, L. L. (Inventor)
1981-01-01
The system eliminates the necessity of shielding an aircraft airframe constructed of material such as aluminum. Cooling is accomplished by passing a coolant through the aircraft airframe, the coolant acting as a carrier to remove heat from the airframe. The coolant is circulated through a heat pump and a heat exchanger which together extract essentially all of the added heat from the coolant. The heat is transferred to the aircraft fuel system via the heat exchanger and the heat pump. The heat extracted from the coolant is utilized to power the heat pump. The heat pump has associated therewith power turbine mechanism which is also driven by the extracted heat. The power turbines are utilized to drive various aircraft subsystems, the compressor of the heat pump, and provide engine cooling.
Merrigan, M.A.
1981-06-29
A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.
Merrigan, Michael A.
1984-01-01
A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.
Evaluation of High Temperature Knitted Spring Tubes for Structural Seal Applications
NASA Technical Reports Server (NTRS)
Taylor, Shawn C.; DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.
2004-01-01
Control surface seals are crucial to current and future space vehicles, as they are used to seal the gaps surrounding body flaps, elevons, and other actuated exterior surfaces. During reentry, leakage of high temperature gases through these gaps could damage underlying lower temperature structures such as rudder drive motors and mechanical actuators, resulting in impaired vehicle control. To be effective, control surface seals must shield lower temperature structures from heat transfer by maintaining sufficient resiliency to remain in contact with opposing sealing surfaces through multiple compression cycles. The current seal exhibits significant loss of resiliency after a few compression cycles at elevated temperatures (i.e., 1900 F) and therefore would be inadequate for advanced space vehicles. This seal utilizes a knitted Inconel X-750 spring tube as its primary resilient element. As part of a larger effort to enhance seal resiliency, researchers at the NASA Glenn Research Center performed high temperature compression testing (up to 2000 F) on candidate spring tube designs employing material substitutions and modified geometries. These tests demonstrated significant improvements in spring tube resiliency (5.5x better at 1750 F) through direct substitution of heat treated Rene 41 alloy in the baseline knit design. The impact of geometry modification was minor within the range of parameters tested, however trends did suggest that moderate resiliency improvements could be obtained by optimizing the current spring tube geometry.
Integrated Refrigeration and Storage for Advanced Liquid Hydrogen Operations
NASA Technical Reports Server (NTRS)
Swanger, A. M.; Notardonato, W. U.; Johnson, W. L.; Tomsik, T. M.
2016-01-01
NASA has used liquefied hydrogen (LH2) on a large scale since the beginning of the space program as fuel for the Centaur and Apollo upper stages, and more recently to feed the three space shuttle main engines. The LH2 systems currently in place at the Kennedy Space Center (KSC) launch pads are aging and inefficient compared to the state-of-the-art. Therefore, the need exists to explore advanced technologies and operations that can drive commodity costs down, and provide increased capabilities. The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) was developed at KSC to pursue these goals by demonstrating active thermal control of the propellant state by direct removal of heat using a cryocooler. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The key technology challenge was efficiently integrating the cryogenic refrigerator into the LH2 storage tank. A Linde LR1620 Brayton cycle refrigerator is used to produce up to 900W cooling at 20K, circulating approximately 22 g/s gaseous helium through the hydrogen via approximately 300 m of heat exchanger tubing. The GODU-LH2 system is fully operational, and is currently under test. This paper will discuss the design features of the refrigerator and storage system, as well as the current test results.
Planetary heat flow measurements.
Hagermann, Axel
2005-12-15
The year 2005 marks the 35th anniversary of the Apollo 13 mission, probably the most successful failure in the history of manned spaceflight. Naturally, Apollo 13's scientific payload is far less known than the spectacular accident and subsequent rescue of its crew. Among other instruments, it carried the first instrument designed to measure the flux of heat on a planetary body other than Earth. The year 2005 also should have marked the launch of the Japanese LUNAR-A mission, and ESA's Rosetta mission is slowly approaching comet Churyumov-Gerasimenko. Both missions carry penetrators to study the heat flow from their target bodies. What is so interesting about planetary heat flow? What can we learn from it and how do we measure it?Not only the Sun, but all planets in the Solar System are essentially heat engines. Various heat sources or heat reservoirs drive intrinsic and surface processes, causing 'dead balls of rock, ice or gas' to evolve dynamically over time, driving convection that powers tectonic processes and spawns magnetic fields. The heat flow constrains models of the thermal evolution of a planet and also its composition because it provides an upper limit for the bulk abundance of radioactive elements. On Earth, the global variation of heat flow also reflects the tectonic activity: heat flow increases towards the young ocean ridges, whereas it is rather low on the old continental shields. It is not surprising that surface heat flow measurements, or even estimates, where performed, contributed greatly to our understanding of what happens inside the planets. In this article, I will review the results and the methods used in past heat flow measurements and speculate on the targets and design of future experiments.
Shape Morphing Adaptive Radiator Technology (SMART) for Variable Heat Rejection
NASA Technical Reports Server (NTRS)
Erickson, Lisa
2016-01-01
The proposed technology leverages the temperature dependent phase change of shape memory alloys (SMAs) to drive the shape of a flexible radiator panel. The opening/closing of the radiator panel, as a function of temperature, passively adapts the radiator's rate of heat rejection in response to a vehicle's needs.
How to Save Money by Saving Energy.
ERIC Educational Resources Information Center
Department of Energy, Washington, DC.
This pamphlet presents energy conservation tips to help consumers save money. Conservation measures suggested here cover topics such as: (1) insulation; (2) space heating and cooling; (3) hot water heating; (4) cooking; (5) laundry; (6) lighting; (7) electrical appliances; (8) buying or building a home; and (9) buying, maintaining and driving a…
Exploding Pusher Targets for Electron-Ion Coupling Measurements
NASA Astrophysics Data System (ADS)
Whitley, Heather D.; Pino, Jesse; Schneider, Marilyn; Shepherd, Ronnie; Benedict, Lorin; Bauer, Joseph; Graziani, Frank; Garbett, Warren
2015-11-01
Over the past several years, we have conducted theoretical investigations of electron-ion coupling and electronic transport in plasmas. In the regime of weakly coupled plasmas, we have identified models that we believe describe the physics well, but experimental data is still needed to validate the models. We are currently designing spectroscopic experiments to study electron-ion equilibration and/or electron heat transport using exploding pusher (XP) targets for experiments at the National Ignition Facility. Two platforms are being investigated: an indirect drive XP (IDXP) with a plastic ablator and a polar-direct drive XP (PDXP) with a glass ablator. The fill gas for both designs is D2. We propose to use a higher-Z dopant, such as Ar, as a spectroscopic tracer for time-resolved electron and ion temperature measurements. We perform 1D simulations using the ARES hydrodynamic code, in order to produce the time-resolved plasma conditions, which are then post-processed with CRETIN to assess the feasibility of a spectroscopic measurement. We examine target performance with respect to variations in gas fill pressure, ablator thickness, atom fraction of the Ar dopant, and drive energy, and assess the sensitivity of the predicted spectra to variations in the models for electron-ion equilibration and thermal conductivity. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-675219.
Third Sound Generation in Superfluid 4He Films Adsorbed on Multiwall Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Iaia, Vito; Menachekanian, Emin; Williams, Gary
2014-03-01
A technique is developed for generating third sound in superfluid 4He films coating the surface of multiwall carbon nanotubes. Third sound is a thickness and temperature wave of the helium film, and in our case we detect the temperature oscillations with a carbon resistance bolometer. The nanotubes are packed in an annular resonator that is vibrated with a mechanical shaker assembly consisting of a permanent magnet mounted on springs, and surrounded by a superconducting coil. The coil is driven with an oscillating current, vibrating the cell at that frequency. Sweeping the drive frequency over the range 100-200 Hz excites the resonant third sound mode of the cell, seen as a high-Q signal in the FFT analysis of the bolometer signal. A problem with our original cell was that the mechanical drive would also shake the dilution refrigerator cooling the cell to low temperatures, and increasing the drive would start to heat up the refrigerator and the cell, which were rigidly coupled together. A new configuration now suspends the cell as a pendulum on a string, with thermal contact made by copper wires. Piezo sensor measurements show this reduces the vibration reaching the refrigerator by two orders of magnitude, which should allow measurements at lower temperatures.
NASA Astrophysics Data System (ADS)
Jaguemont, Joris; Omar, Noshin; Martel, François; Van den Bossche, Peter; Van Mierlo, Joeri
2017-11-01
In this paper, the development of a three-dimensional (3D) lithium titanium oxide (LTO) pouch cell is presented to first better comprehend its thermal behavior within electrified vehicle applications, but also to propose a strong modeling base for future thermal management system. Current 3D-thermal models are based on electrochemical reactions which are in need for elaborated meshing effort and long computational time. There lacks a fast electro-thermal model which can capture voltage, current and thermal distribution variation during the whole process. The proposed thermal model is a reduce-effort temperature simulation approach involving a 0D-electrical model accommodating a 3D-thermal model to exclude electrochemical processes. The thermal model is based on heat-transfer theory and its temperature distribution prediction incorporates internal conduction and heat generation effect as well as convection. In addition, experimental tests are conducted to validate the model. Results show that both the heat dissipation rate and surface temperature uniformity data are in agreement with simulation results, which satisfies the application requirements for electrified vehicles. Additionally, a LTO battery pack sizing and modeling is also designed, applied and displays a non-uniformity of the cells under driving operation. Ultimately, the model will serve as a basis for the future development of a thermal strategy for LTO cells that operate in a large temperature range, which is a strong contribution to the existing body of scientific literature.
NASA Astrophysics Data System (ADS)
Alamirew, Netsanet K.; Todd, Martin C.; Ryder, Claire L.; Marsham, John H.; Wang, Yi
2018-01-01
The Saharan heat low (SHL) is a key component of the west African climate system and an important driver of the west African monsoon across a range of timescales of variability. The physical mechanisms driving the variability in the SHL remain uncertain, although water vapour has been implicated as of primary importance. Here, we quantify the independent effects of variability in dust and water vapour on the radiation budget and atmospheric heating of the region using a radiative transfer model configured with observational input data from the Fennec field campaign at the location of Bordj Badji Mokhtar (BBM) in southern Algeria (21.4° N, 0.9° E), close to the SHL core for June 2011. Overall, we find dust aerosol and water vapour to be of similar importance in driving variability in the top-of-atmosphere (TOA) radiation budget and therefore the column-integrated heating over the SHL (˜ 7 W m-2 per standard deviation of dust aerosol optical depth - AOD). As such, we infer that SHL intensity is likely to be similarly enhanced by the effects of dust and water vapour surge events. However, the details of the processes differ. Dust generates substantial radiative cooling at the surface (˜ 11 W m-2 per standard deviation of dust AOD), presumably leading to reduced sensible heat flux in the boundary layer, which is more than compensated by direct radiative heating from shortwave (SW) absorption by dust in the dusty boundary layer. In contrast, water vapour invokes a radiative warming at the surface of ˜ 6 W m-2 per standard deviation of column-integrated water vapour in kg m-2. Net effects involve a pronounced net atmospheric radiative convergence with heating rates on average of 0.5 K day-1 and up to 6 K day-1 during synoptic/mesoscale dust events from monsoon surges and convective cold-pool outflows (haboobs
). On this basis, we make inferences on the processes driving variability in the SHL associated with radiative and advective heating/cooling. Depending on the synoptic context over the region, processes driving variability involve both independent effects of water vapour and dust and compensating events in which dust and water vapour are co-varying. Forecast models typically have biases of up to 2 kg m-2 in column-integrated water vapour (equivalent to a change in 2.6 W m-2 TOA net flux) and typically lack variability in dust and thus are expected to poorly represent these couplings. An improved representation of dust and water vapour and quantification of associated radiative impact in models is thus imperative to further understand the SHL and related climate processes.
"Non-Contact Ultrasonic Treatment of Metals in a Magnetic Field"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludtka, Gerard Michael; Wilgen, John B; Kisner, Roger A
2007-01-01
A concept has been originated for non-contact ultrasonic treatment of metals based on the use of an induction coil located in a high-field superconducting magnet. An advantage of using a high magnetic field environment (> 9 T) is that this allows the induced surface current in the sample to be decreased proportionately. As a result, the incidental induction heating associated with the use of the EMAT (Electromagnetic Acoustical Transducer) is greatly reduced, which improves the energy efficiency of the EMAT approach. The method can be coupled with high-field magnetic processing, but can also be used where only ultrasonic treatment ismore » beneficial. In the proof-of-principle experiments, a high-field EMAT was used for non-contact ultrasonic processing of aluminum samples during solidification. The magnetic field for the EMAT was supplied by a high-field (20 Tesla) resistive magnet, and the current was provided by an induction coil. This resulted in a highly efficient EMAT that delivered 0.5 MPa (~5 atmospheres) of acoustic drive to the surface of the sample while coupling less than 100 watts of incidental induction heating. The exceptionally high energy efficiency of the electromagnetic transducer is due to the use of the high magnetic field, which reduces the current needed to achieve the same acoustic pressure. In these initial experiments, aluminum samples of A356 alloy were heated to the liquid state and allowed to solidify at a controlled cooling rate while subjected to the non-contact ultrasonic stimulation (0.5 MPa @ 165 kHz) provided by an induction coil located within the 200 mm (~8-inch) bore of a 20-T Bitter resistive magnet.« less
NASA Astrophysics Data System (ADS)
Casagrande, F.; Souza, R.; Pezzi, L.
2013-05-01
In the Southwest Atlantic close to 40oS, the meeting of two ocean currents with distinct characteristics, the Brazil Current (BC), warm and saline, and the Malvinas Current (MC), cold and low salinity, resulting in strong activity marked by the formation of mesoscale eddies, this region is known as Brazil Malvinas Confluence (BMC). The INTERCONF project (Ocean Atmosphere Interaction over the region of CBM) perfoms since the 2002 data collection in situ radiosondes and XBTs onboard the Oceanographic Support Ship Ary Rongel during its trajectory of Brazil to the Antarctic continent. This paper analyzes the thermal contrast and ocean atmosphere coupling on the ocean front from the INTERCONF data, and compares the results to satellite data (QuikSCAT) and numerical models (Eta-CPTEC / INPE). The results indicate that the Sea Surface Temperature (SST) is driving the atmosphere, on the warm waters of the BC occurs an intensification of the winds and heat fluxes, and the reverse occurs on the cold waters of the MC. The data collected in 2009 include the presence of a warm core eddy (42 oS to 43.1 oS) which recorded higher values of heat fluxes and wind speed in relation to its surroundings. On the warm core eddy wind speed recorded was about 10 m.s-1, while on the BC and MC was approximately 7 m.s-1 and 2 m.s-1, respectively. Satellite data and numerical model tends to overestimate the wind speed data in the region in relation to data collected in situ. The heat flux data from the numerical model tend to increase over the warm waters and cold waters on the decline, though the amounts recorded by the model have low correlation.
What Causes the High Apparent Speeds in Chromospheric and Transition Region Spicules on the Sun?
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Pontieu, Bart; Martínez-Sykora, Juan; Chintzoglou, Georgios, E-mail: bdp@lmsal.com
Spicules are the most ubuiquitous type of jets in the solar atmosphere. The advent of high-resolution imaging and spectroscopy from the Interface Region Imaging Spectrograph ( IRIS ) and ground-based observatories has revealed the presence of very high apparent motions of order 100–300 km s{sup −1} in spicules, as measured in the plane of the sky. However, line of sight measurements of such high speeds have been difficult to obtain, with values deduced from Doppler shifts in spectral lines typically of order 30–70 km s{sup −1}. In this work, we resolve this long-standing discrepancy using recent 2.5D radiative MHD simulations.more » This simulation has revealed a novel driving mechanism for spicules in which ambipolar diffusion resulting from ion-neutral interactions plays a key role. In our simulation, we often see that the upward propagation of magnetic waves and electrical currents from the low chromosphere into already existing spicules can lead to rapid heating when the currents are rapidly dissipated by ambipolar diffusion. The combination of rapid heating and the propagation of these currents at Alfvénic speeds in excess of 100 km s{sup −1} leads to the very rapid apparent motions, and often wholesale appearance, of spicules at chromospheric and transition region temperatures. In our simulation, the observed fast apparent motions in such jets are actually a signature of a heating front, and much higher than the mass flows, which are of order 30–70 km s{sup −1}. Our results can explain the behavior of transition region “network jets” and the very high apparent speeds reported for some chromospheric spicules.« less
Heat loading of hoist brakes by example of drum brakes
NASA Astrophysics Data System (ADS)
Vöth, S.; Vasilyeva, M. A.
2017-10-01
Due to the technological development in drive technology, drives controlled by frequency inverters in hoists of cranes are almost standard. Since these drives offer the possibility of electric braking, the operation of the mechanical brakes changes as a result. As a result, the mechanical brakes are used more rarely and, if so, more likely in critical operating conditions. In this paper, an analysis of the changes that occur in the structure under the influence of thermal load is presented.
Refrigerant charge management in a heat pump water heater
Chen, Jie; Hampton, Justin W.
2014-06-24
Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.
NASA Technical Reports Server (NTRS)
Vandersande, Ian W. (Inventor); Ewell, Richard (Inventor); Fleurial, Jean-Pierre (Inventor); Lyon, Hylan B. (Inventor)
1998-01-01
A cooling device for lowering the temperature of a heat-dissipating device. The cooling device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with the heat-dissipating device. During operation, heat flows from the heat-dissipating device into the heat-conducting substrate, where it is spread out over a relatively large area. A thermoelectric cooling material (e.g., a Bi.sub.2 Te.sub.3 -based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. Application of electrical power to the thermoelectric material drives the thermoelectric material to pump heat into a second heat-conducting substrate which, in turn, is attached to a heat sink.
Brief Report: Driving and Young Adults with ASD--Parents' Experiences
ERIC Educational Resources Information Center
Cox, Neill Broderick; Reeve, Ronald E.; Cox, Stephany M.; Cox, Daniel J.
2012-01-01
A paucity of research exists regarding driving skills and individuals with Autism Spectrum Disorders (ASD). The current study sought to gain a better understanding of driving and ASD by surveying parents/caregivers of adolescents/young adults with ASD who were currently attempting, or had previously attempted, to learn to drive. Respondents…
Disruption avoidance by means of electron cyclotron waves
NASA Astrophysics Data System (ADS)
Esposito, B.; Granucci, G.; Maraschek, M.; Nowak, S.; Lazzaro, E.; Giannone, L.; Gude, A.; Igochine, V.; McDermott, R.; Poli, E.; Reich, M.; Sommer, F.; Stober, J.; Suttrop, W.; Treutterer, W.; Zohm, H.; ASDEX Upgrade, the; FTU Teams
2011-12-01
Disruptions are very challenging to ITER operation as they may cause damage to plasma facing components due to direct plasma heating, forces on structural components due to halo and eddy currents and the production of runaway electrons. Electron cyclotron (EC) waves have been demonstrated as a tool for disruption avoidance by a large set of recent experiments performed in ASDEX Upgrade and FTU using various disruption types, plasma operating scenarios and power deposition locations. The technique is based on the stabilization of magnetohydrodynamic (MHD) modes (mainly m/n = 2/1) through the localized injection of EC power on the resonant surface. This paper presents new results obtained in ASDEX Upgrade regarding stable operation above the Greenwald density achieved after avoidance of density limit disruptions by means of ECRH and suitable density feedback control (L-mode ohmic plasmas, Ip = 0.6 MA, Bt = 2.5 T) and NTM-driven disruptions at high-β limit delayed/avoided by means of both co-current drive (co-ECCD) and pure heating (ECRH) with power <=1.7 MW (H-mode NBI-heated plasmas, PNBI ~ 7.5 MW, Ip = 1 MA, Bt = 2.1 T, q95 ~ 3.6). The localized perpendicular injection of ECRH/ECCD onto a resonant surface leads to the delay and/or complete avoidance of disruptions. The experiments indicate the existence of a power threshold for mode stabilization to occur. An analysis of the MHD mode evolution using the generalized Rutherford equation coupled to the frequency and phase evolution equations shows that control of the modes is due to EC heating close to the resonant surface. The ECRH contribution (Δ'H term) is larger than the co-ECCD one in the initial and more important phase when the discharge is 'saved'. Future research and developments of the disruption avoidance technique are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Philip Michael; Ahn, Joonwook; Bell, R. E.
High-harmonic fast wave (HHFW) heating and current drive is being developed in NSTX to provide bulk electron heating and q(0) control during non-inductively sustained Hmode plasmas fuelled by deuterium neutral-beam injection (NBI). In addition, it is used to assist the plasma current ramp-up. A major modification to increase the RF power limit was made in 2009; the original end-grounded, single end-powered current straps of the 12- element array were replaced with center-grounded, double end-powered straps. Greater than 3 MW have been coupled into NBI-driven, ELMy H-mode plasmas with this upgraded antenna. Improved core HHFW heating, particularly at longer wavelengths andmore » during low-density start-up and plasma current ramp-up, has been obtained by lowering the edge density with lithium wall conditioning, thereby moving the critical density for fast-wave propagation away from the vessel wall [1]. Significant core electron heating of NBI-fuelled H-modes has been observed for the first time over a range of launched wavelengths and H-modes can be accessed by HHFW alone. Visible and IR camera images of the antenna and divertor indicate that fast wave interactions can deposit considerable RF energy on the outboard divertor plate, especially at longer wavelengths that begin to propagate closer to the vessel walls. Edge power loss can also arise from HHFWgenerated parametric decay instabilities; edge ion heating is observed that is wavelength dependent. During plasmas where HHFW is combined with NBI, there is a significant enhancement in neutron rate, and fast-ion D-alpha (FIDA) emission measurements clearly show broadening of the fast-ion profile in the plasma core. Large edge localized modes (ELMs) have been observed immediately following the termination of RF power, whether the power turn off is programmed or due to antenna arcing. Causality has not been established but new experiments are planned and will be reported. Fast digitization of the reflected power signal indicates a much faster rise time for arcs than for ELMs. Based on this observation, an ELM/arc discrimination system is being implemented to maintain RF power during ELMs even when the reflection coefficient becomes large. This work is supported by US DOE contracts DE-AC-05-00OR22725 and DE-AC02- 09CH11466. References [1] C. K. Phillips, et al, Nuclear Fusion 10, 075015 (2009)« less
Intrinsically irreversible heat engine
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1984-01-01
A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.
Intrinsically irreversible heat engine
Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1984-01-01
A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.
Intrinsically irreversible heat engine
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1984-12-25
A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.
New Submount Requirement of Conductively Cooled Laser Diodes for Lidar Applications
NASA Technical Reports Server (NTRS)
Mo, S. Y.; Cutler, A. D.; Choi, S. H.; Lee, M. H.; Singh, U. N.
2000-01-01
New submount technology is essential for the development of conductively cooled high power diode laser. The simulation and experimental results indicate that thermal conductivity of submount for high power laser-diode must be at least 600 W/m/k or higher for stable operation. We have simulated several theoretical thermal model based on new submount designs and characterized high power diode lasers to determine temperature effects on the performances of laser diodes. The characterization system measures the beam power, output beam profile, temperature distribution, and spectroscopic property of high power diode laser. The characterization system is composed of four main parts: an infrared imaging camera, a CCD camera, a monochromator, and a power meter. Thermal characteristics of two commercial-grade CW 20-W diode laser bars with open heat-sink type were determined with respect to the line shift of emission spectra and beam power stability. The center wavelength of laser emission has a tendency to shift toward longer wavelength as the driving current and heat sink temperature are increased. The increase of heat sink temperature decreases the output power of the laser bar too. Such results lay the guidelines for the design of new submount for high power laser-diodes.
A Unified Computational Model for Solar and Stellar Flares
NASA Technical Reports Server (NTRS)
Allred, Joel C.; Kowalski, Adam F.; Carlsson, Mats
2015-01-01
We present a unified computational framework that can be used to describe impulsive flares on the Sun and on dMe stars. The models assume that the flare impulsive phase is caused by a beam of charged particles that is accelerated in the corona and propagates downward depositing energy and momentum along the way. This rapidly heats the lower stellar atmosphere causing it to explosively expand and dramatically brighten. Our models consist of flux tubes that extend from the sub-photosphere into the corona. We simulate how flare-accelerated charged particles propagate down one-dimensional flux tubes and heat the stellar atmosphere using the Fokker-Planck kinetic theory. Detailed radiative transfer is included so that model predictions can be directly compared with observations. The flux of flare-accelerated particles drives return currents which additionally heat the stellar atmosphere. These effects are also included in our models. We examine the impact of the flare-accelerated particle beams on model solar and dMe stellar atmospheres and perform parameter studies varying the injected particle energy spectra. We find the atmospheric response is strongly dependent on the accelerated particle cutoff energy and spectral index.
Thermally induced delay and reversal of liquid film dewetting on chemically patterned surfaces.
Kalpathy, Sreeram K; Francis, Lorraine F; Kumar, Satish
2013-10-15
A thin liquid film resting on a solid substrate that is heated or cooled from below experiences surface tension gradients, which lead to Marangoni flows. We explore the behavior of such a film on a chemically patterned substrate which drives film dewetting in order to determine how surface patterning and applied temperature gradients can be designed to influence the behavior of thin-film coatings. A nonlinear partial differential equation for the film height based on lubrication theory is solved numerically for a broad range of problem parameters. Uniform cooling of the substrate is found to significantly delay dewetting that is driven by wettability gradients. Uniform heating speeds up dewetting but can destroy the near-perfect templating imposed by the surface patterning. However, localized heating and cooling together can accelerate dewetting while maintaining templating quality. Localized heating and cooling can also be used to drive liquid onto areas that it would dewet from in the absence of heating. Overall, these results indicate that applied temperature gradients can significantly influence dewetting driven by surface patterning, and suggest strategies for the creation of spatially patterned thin-film coatings and flow control in microfluidic devices. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gomez Llorente, J. M.; Plata, J.
2016-06-01
We focus on a technique recently implemented for controlling the magnitude of synthetic spin-orbit coupling (SOC) in ultracold atoms in the Raman-coupling scenario. This technique uses a periodic modulation of the Raman-coupling amplitude to tune the SOC. Specifically, it has been shown that the effect of a high-frequency sinusoidal modulation of the Raman-laser intensity can be incorporated into the undriven Hamiltonian via effective parameters, whose adiabatic variation can therefore be used to tune the SOC. Here, we characterize the heating mechanisms that can be relevant to this method. We identify the main mechanism responsible for the heating observed in the experiments as basically rooted in driving-induced transfer of population to excited states. Characteristics of that process determined by the harmonic trapping, the decay of the excited states, and the technique used for preparing the system are discussed. Additional heating, rooted in departures from adiabaticity in the variation of the effective parameters, is also described. Our analytical study provides some clues that may be useful in the design of strategies for curbing the effects of heating on the efficiency of the control methods.