NASA Technical Reports Server (NTRS)
Mairs, R. L.
1971-01-01
Apollo 9 photographs, color band separations, and oceanographic and meteorological data are used in the study of the origin, movement, and dissipation of masses of discolored water near the shores of North and South Carolina. A model has been developed incorporating jet theory, climatology, currents, surface temperatures, color separations, and other oceanographic data to explain the processes involved in the life cycle of the discolored water masses. Special treatment is afforded the Gulf Stream boundary definition and the Cape Hatteras oceanographic barrier.
Using Machine Learning Techniques in the Analysis of Oceanographic Data
NASA Astrophysics Data System (ADS)
Falcinelli, K. E.; Abuomar, S.
2017-12-01
Acoustic Doppler Current Profilers (ADCPs) are oceanographic tools capable of collecting large amounts of current profile data. Using unsupervised machine learning techniques such as principal component analysis, fuzzy c-means clustering, and self-organizing maps, patterns and trends in an ADCP dataset are found. Cluster validity algorithms such as visual assessment of cluster tendency and clustering index are used to determine the optimal number of clusters in the ADCP dataset. These techniques prove to be useful in analysis of ADCP data and demonstrate potential for future use in other oceanographic applications.
Development and Testing of a Coupled Ocean-atmosphere Mesoscale Ensemble Prediction System
2011-06-28
wind, temperature, and moisture variables, while the oceanographic ET is derived from ocean current, temperature, and salinity variables. Estimates of...wind, temperature, and moisture variables while the oceanographic ET is derived from ocean current temperature, and salinity variables. Estimates of...uncertainty in the model. Rigorously accurate ensemble methods for describing the distribution of future states given past information include particle
ERIC Educational Resources Information Center
Hollister, Charles D., Ed.
This booklet was prepared by practicing oceanographers to help college students in their search for professional direction. The booklet: (1) points out some frontiers of current research; (2) describes five major subfields of oceanography (marine geology and geophysics, oceanographic engineering, physical oceanography, chemical oceanography, and…
NASA Technical Reports Server (NTRS)
Guest, DeNeice C.
2006-01-01
The Nation uses water-level data for a variety of practical purposes, including hydrography, nautical charting, maritime navigation, coastal engineering, and tsunami and storm surge warnings (NOAA, 2002; Digby et al., 1999). Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years (NOAA, 2006). NOAA s Tides & Currents DST (decision support tool, managed by the Center for Operational Oceanographic Products and Services, is the portal to a vast collection of oceanographic and meteorological data (historical and real-time), predictions, and nowcasts and forecasts. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s Tides & Currents.
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Tanaka, K.; Almeida, E. G.
1978-01-01
The author has identified the following significant results. Data obtained during the cruise of the Cabo Frio and from LANDSAT imagery are used to discuss the characteristics of a linear model which simulates wind induced currents calculated from meteorological conditions at the time of the mission. There is a significant correspondance between the model of simulated horizontal water circulation, sea surface temperature, and surface currents observed on LANDSAT imagery. Close approximations were also observed between the simulation of vertical water movement (upwelling) and the oceanographic measurements taken along a series of points of the prevailing currents.
ERIC Educational Resources Information Center
Mangelsdorf, Frederick E.; And Others
Reported are the papers presented at the New England Conference on Ocean Science Education. The purpose of the conference was to bring together prominent oceanographers and New England educators at the primary and secondary level to discuss current progress in oceanographic research and to relate this progress to the needs of schools for materials…
Monitoring of oceanographic properties of Glacier Bay, Alaska 2004
Madison, Erica N.; Etherington, Lisa L.
2005-01-01
Glacier Bay is a recently (300 years ago) deglaciated fjord estuarine system that has multiple sills, very deep basins, tidewater glaciers, and many streams. Glacier Bay experiences a large amount of runoff, high sedimentation, and large tidal variations. High freshwater discharge due to snow and ice melt and the presence of the tidewater glaciers makes the bay extremely cold. There are many small- and large-scale mixing and upwelling zones at sills, glacial faces, and streams. The complex topography and strong currents lead to highly variable salinity, temperature, sediment, primary productivity, light penetration, stratification levels, and current patterns within a small area. The oceanographic patterns within Glacier Bay drive a large portion of the spatial and temporal variability of the ecosystem. It has been widely recognized by scientists and resource managers in Glacier Bay that a program to monitor oceanographic patterns is essential for understanding the marine ecosystem and to differentiate between anthropogenic disturbance and natural variation. This year’s sampling marks the 12th continuous year of monitoring the oceanographic conditions at 23 stations along the primary axes within Glacier Bay, AK, making this a very unique and valuable data set in terms of its spatial and temporal coverage.
Advanced study of global oceanographic requirements for EOS A/B: Technical volume
NASA Technical Reports Server (NTRS)
1972-01-01
Characteristics of the ocean are considered in terms of U.S. social, scientific and ecomomic priorities and in terms of the measurements that can best be made from a spacecraft. The kinds of information needed to advance the basic ocean sciences, to improve marine transportation and fisheries operations, and to provide information for pollution control are discussed. These information needs were related to sensor concepts and an optimum sensor complement is presented, together with orbital considerations. The data-gathering capabilities of an oceanographic spacecraft were considered in relation to those of terrestrial oceanographic programs, using airborne, surface, and submarine platforms. Data management problems are discussed and are considered to be solvable with current technology.
Satellite remote sensing of the ocean
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng; Liu, W. T.; Abbott, Mark R.
1990-01-01
A concise description of the principles and applications of several selected instruments that have been utilized most frequently in remote sensing of the ocean from satellites is presented. Emphasis is placed on the current progress in oceanographic applications and the outlook of the instruments in future oceanographic satellite missions is discussed. The instruments under discussion are placed into three groups: active microwave sensors, passive ocean color and infrared sensors, and passive microwave sensors.
Beyond Currents: The Next Phase in GOCE Oceanographic Research
NASA Astrophysics Data System (ADS)
Bingham, Rory J.; Haines, Keith; Hughes, Chris W.
2015-03-01
GOCE has mapped the surface currents of the world’s oceans in unprecedented detail. What is now required is a concerted effort by the oceanographic community to go beyond currents and exploit these measurements for societal benefit. The aim of this review paper is to explore the ways in which this may be achieved, particularly in relation to ocean modelling. With the final gravity models now released, we begin by reviewing the progress GOCE has in made in measuring the ocean’s mean dynamic topography and associated ocean currents. In the light of this progress, we then examine the important oceanographic questions and technical challenges of societal relevance that can potentially be addressed with the help of the observations GOCE has delivered and outline the benefits their solution could deliver. Benefits may either be direct, through, for example, improved ocean modelling and operational forecasting, or indirect through improved understanding of particular oceanographic processes, such as heat transport by the Atlantic meridional overturning circulation or sea level change. Next we consider the technical challenges that must be overcome in bringing GOCE to bear on these problems. In particular we examine how best to use GOCE error information, this being an especially uncertain, underdeveloped and challenging area of investigation, due largely to the fact that such information has not been previously available to the user community. Finally, we consider measures of success; that is, metrics that can be used to quantify any GOCE-enabled progress that the community makes towards answering these questions. Such metrics are essential for demonstrating progress. Ultimately, with this review paper, we aim to paint a road map that will act as an impetus to the oceanography community to exploit the yet untapped potential of GOCE for scientific understanding and societal benefit.
NASA Astrophysics Data System (ADS)
Fish, C.; Hill, T. M.; Davis, C. V.; Lipski, D.; Jahncke, J.
2017-12-01
Elucidating both surface and bottom water ecosystem impacts of temperature change, acidification, and food web disruption are needed to understand anthropogenic processes in the ocean. The Applied California Current Ecosystem Studies (ACCESS) partnership surveys the California Current within the Greater Farallones and Cordell Bank National Marine Sanctuaries three times annually, sampling water column hydrography and discrete water samples from 0 m and 200 m depth at five stations along three primary transects. The transects span the continental shelf with stations as close as 13 km from the coastline to 65 km. This time series extends from 2004 to 2017, integrating information on climate, productivity, zooplankton abundance, oxygenation, and carbonate chemistry. We focus on the interpretation of the 2012-2017 carbonate chemistry data and present both long term trends over the duration of the time series as well as shorter term variability (e.g., ENSO, `warm blob' conditions) to investigate the region's changing oceanographic conditions. For example, we document oscillations in carbonate chemistry, oxygenation, and foraminiferal abundance in concert with interannual oceanographic variability and seasonal (upwelling) cycles. We concentrate on results from near Cordell Bank that potentially impact deep sea coral ecosystems.
NASA Astrophysics Data System (ADS)
Bush, Susan
1992-02-01
More than a year after the Persian Gulf War, scientists are still trying to assess the environmental impact of the estimated 6-8 million barrels of oil that were dumped into the gulf and to understand the environmental processes that take place in such a disturbance. Many atmospheric studies were done in the months immediately following the war, but oceanographic studies have been slower in getting started.The National Oceanic and Atmospheric Administration is currently spearheading a major oceanographic study being undertaken in the Persian Gulf by the research vessel Mt. Mitchell. The ship left its home port of Norfolk, Va., in mid-January and arrived in Muscat, Oman, on February 16 to begin a 100-day oceanographic and environmental survey. The six-leg cruise will feature physical oceanography, near-shore, and marine life studies.
Design document for the Surface Currents Data Base (SCDB) Management System (SCDBMS), version 1.0
NASA Technical Reports Server (NTRS)
Krisnnamagaru, Ramesh; Cesario, Cheryl; Foster, M. S.; Das, Vishnumohan
1994-01-01
The Surface Currents Database Management System (SCDBMS) provides access to the Surface Currents Data Base (SCDB) which is maintained by the Naval Oceanographic Office (NAVOCEANO). The SCDBMS incorporates database technology in providing seamless access to surface current data. The SCDBMS is an interactive software application with a graphical user interface (GUI) that supports user control of SCDBMS functional capabilities. The purpose of this document is to define and describe the structural framework and logistical design of the software components/units which are integrated into the major computer software configuration item (CSCI) identified as the SCDBMS, Version 1.0. The preliminary design is based on functional specifications and requirements identified in the governing Statement of Work prepared by the Naval Oceanographic Office (NAVOCEANO) and distributed as a request for proposal by the National Aeronautics and Space Administration (NASA).
2008-01-01
Master Oceanographic Observation Data Set 2 ( MOODS ) maintained by the Naval Oceanographic Office (NAVOCEANO), Stennis Space 3 Center, Mississippi...of the CYF. The 17 SYBG also shows a thermal front induced by the Taiwan Warm Current and/or the uplifted 18 Kuroshio northeast of Taiwan merging...c. Generation mechanism 8 Since the cold Kuroshio subsurface water is uplifted at Stn-A, temperature of Stn-9 A is colder than that of Stn-C at
NASA Astrophysics Data System (ADS)
Ranintyari, Maulida; Sunarto; Syamsuddin, Mega L.; Astuty, Sri
2018-05-01
Whale sharks are a leading species in Cendrawasih Bay due to its benign nature and its regular appearance. Recently, whale sharks are vulnerable to scarcity and even extinction. One of the efforts to maintain the existence of the whale shark population is by knowing its spatial distribution. This study aims to analyze how the oceanographic factors affect the spatial distribution of whale sharks in Cendrawasih Bay National Park. The method used in this research is descriptive with the quantitative approach using the Generalized Additive Model (GAM) analysis. The data consisted of the whale shark monitoring data in TNTC taken by WWF-Indonesia, and image data of sea surface temperature (SST) and chlorophyll-a concentration of Aqua-MODIS, and also sea surface current from Aviso. Analyses were conducted for the period of January 2012 until March 2015. The GAM result indicated that sea surface current was better than the other environment (SST and chlorophyll-a concentration) as an oceanographic predictor of whale shark appearance. High probabilities of the whale shark’s to appear on the surface were observed in sea surface current velocities between 0.30-0.60 m/s, for SST ranged from 30.50-31.80 °C, and for chlorophyll-a concentration ranged from 0.20-0.40 mg/m3.
Data availability and data archeology from the former Soviet Union
NASA Technical Reports Server (NTRS)
Sychev, Yuri; Mikhailov, Nickolai N.
1992-01-01
Acquisition of data on the ocean is believed to start in 1872, when the Royal Navy ship 'Challenger' performed oceanographic stations in its round-world voyage (1872-1876). The first oceanographic studies of the World Ocean refer to the 80s second half of the 19th century. During its round-world expedition 'Vityaz' (1886-1889) headed by S.O. Markov, performed hydrological measurements in the Baltic Sea, Atlantic and Pacific Oceans. According to information available the regular expedition observations (prototype of future complex international program on the ocean research) started in the second half of 80s last century under the auspice of Kiev commission for exploration of German Seas. Systematic hydrological observations were organized by Hydrographic Department of Russia in 1876-1879 according to the program similar to the Kiev one and observations were regularly made by ships of custom service over the Russian area of the Baltic Sea. The increasing demands in oceanographic data contributed to considerable progress in exploration of the World Ocean during current century whole tendency to increase and become more significant has been observed for the last 30-40 years. Most probably various expeditions which were carried out during International Geophysical Year in different regions of the World Ocean are to be reference point in performing intensive oceanographic observations of Marine environment. In the former USSR oceanographic observations are made by research and hydrographic vessels, commercial and fishery ships as well as oil production platforms, coastal hydrometeorological station and other observing platforms. Oceanographic observations data, available from main sources of information on the ocean-research vessels, are also considered in the report.
NASA Astrophysics Data System (ADS)
Roggenstein, E. B.; Gray, G.
2013-12-01
The National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) Center for Operational Oceanographic Products and Services (COOPS) manages three national observing system programs. These are the National Water level Observation Network (NWLON) (210 stations), the 23 NOAA/Physical Oceanographic Real-Time Systems (PORTS), and National Currents Observing Program (NCOP) (approximately 70 deployments/year). In support of its mission COOPS operates and maintains a number of small boats. During vessel operations, side-scan sonar data are at times needed to provide information about bottom structure for future work in the area. For example, potential hazards, obstructions, or bottom morphology features that have not been identified on localized charts for a given area could be used to inform decisions on planned installations. Side-scan sonar capability is also important when attempting to reacquire bottom mounts that fail to surface at the conclusion of a current meter survey. Structure mapping and side-scan capabilities have been added to recent consumer-level, commercial, off-the-shelf fathometers, generally intended for recreational, commercial fishing, and diving applications. We are proposing to investigate these systems' viability for meeting survey requirements. We assess their ability to provide a flexible alternative to research/commercial oceanographic level side-scan system at a significant cost savings. Such systems could provide important information to support scientific missions that require qualitative seafloor imagery.
Buonomo, Roberto; Assis, Jorge; Fernandes, Francisco; Engelen, Aschwin H; Airoldi, Laura; Serrão, Ester A
2017-02-01
Effective predictive and management approaches for species occurring in a metapopulation structure require good understanding of interpopulation connectivity. In this study, we ask whether population genetic structure of marine species with fragmented distributions can be predicted by stepping-stone oceanographic transport and habitat continuity, using as model an ecosystem-structuring brown alga, Cystoseira amentacea var. stricta. To answer this question, we analysed the genetic structure and estimated the connectivity of populations along discontinuous rocky habitat patches in southern Italy, using microsatellite markers at multiple scales. In addition, we modelled the effect of rocky habitat continuity and ocean circulation on gene flow by simulating Lagrangian particle dispersal based on ocean surface currents allowing multigenerational stepping-stone dynamics. Populations were highly differentiated, at scales from few metres up to thousands of kilometres. The best possible model fit to explain the genetic results combined current direction, rocky habitat extension and distance along the coast among rocky sites. We conclude that a combination of variable suitable habitat and oceanographic transport is a useful predictor of genetic structure. This relationship provides insight into the mechanisms of dispersal and the role of life-history traits. Our results highlight the importance of spatially explicit modelling of stepping-stone dynamics and oceanographic directional transport coupled with habitat suitability, to better describe and predict marine population structure and differentiation. This study also suggests the appropriate spatial scales for the conservation, restoration and management of species that are increasingly affected by habitat modifications. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Brandini, C.; Coudray, S.; Taddei, S.; Fattorini, M.; Costanza, L.; Lapucci, C.; Poulain, P.; Gerin, R.; Ortolani, A.; Gozzini, B.
2012-04-01
The need for regional governments to implement operational systems for the sustainable management of coastal waters, in order to meet the requirements imposed by legislation (e.g. EU directives such as WFD, MSFD, BD and relevant national legislation) often lead to the implementation of coastal measurement networks and to the construction of computational models that surround and describe parts of regional seas without falling in the classic definition of regional/coastal models. Although these operational models may be structured to cover parts of different oceanographic basins, they can have considerable advantages and highlight relevant issues, such as the role of narrow channels, straits and islands in coastal circulation, as both in physical and biogeochemical processes such as in the exchanges of water masses among basins. Two models of this type were made in the context of cross-border European project MOMAR: an operational model of the Tuscan Archipelago sea and one around the Corsica coastal waters, which are both located between the Tyrrhenian and the Algerian-Ligurian-Provençal basins. Although these two models were based on different computer codes (MARS3D and ROMS), they have several elements in common, such as a 400 m resolution, boundary conditions from the same "father" model, and an important area of overlap, the Corsica channel, which has a key role in the exchange of water masses between the two oceanographic basins. In this work we present the results of the comparison of these two ocean forecasting systems in response to different weather and oceanographic forcing. In particular, we discuss aspects related to the validation of the two systems, and a systematic comparison between the forecast/hindcast based on such hydrodynamic models, as regards to both operational models available at larger scale, both to in-situ measurements made by fixed or mobile platforms. In this context we will also present the results of two oceanographic cruises in the marine area between Tuscany and Corsica, named MELBA (May 2011) and Milonga (October 2011). In both campaigns, in addition to standard oceanographic measurements (profiles, samples), currentemeter data were collected along tracks using vessel mounted ADCPs, which have allowed us to identify some of the most interesting hydrodynamic features of the area. During MELBA, such current measurements were also carried out through the use of an Autonomous Underwater Vehicle (AUV), while during MILONGA a large survey of the area and a mapping of currents and water masses were carried out by a large number of Lagrangian instruments (drifters and floats). First results allow a hydrodynamic characterization of the Corsica channel, highlighting the three-dimensional structure of the currents along the channel, and characterizing the current reversals (from North to South and vice versa) in dependence to different oceanographic and weather conditions. Collected data provides a basis for a first validation of such operational models, and allow the evaluation of their relative reliability under different conditions.
Proceedings of oceans 87. The ocean - an international workplace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
This book includes proceedings containing 347 papers. Some of the topics are: ICE -Cold ocean and ice research; ICE-1-Icebergs; ICE-2-Sea ice and structures; IE-3-Cold ocean instrumentation; ICE-4-Ocean and ice; INS-Oceanographic instrumentation; INS-1-Acoustic Doppler Current profilers; ENG-1-New solutions to old problems; ENG-2-energy from the ocean; ENG-3-Cables and connectors; POL-Policy, education and technology transfer; POL-1-International issues; POL-2-Ocean space utilization; POL-3-Economics, planning and management; SCI-6-fish stock assessment; ACI-7-Coastal currents and sediment; SCI-9-Satellite navigation; SCI-10-Deep sea minerals and methods of recovery; ODS-Fifth working symposium on oceanographic data system; ODS-1-Data base management; UND-Underwater work systems; UND-1-Diving for science.
A New Meteo-oceanographic and Environmental Monitoring Laboratory in Brazil
NASA Astrophysics Data System (ADS)
Fontes, Roberto F. C.; Dottori, Marcelo; Silveira, Ilson C. A.; Castro, Belmiro M.
2013-04-01
The newer oil provinces in the pre-salt regions off the Brazilian Coast have raised the necessity of the creation of monitoring and observational centers, regarding the best comprehension on the ocean and atmosphere dynamics. The relation between industry and university is a concept based on collaboration, and it is an innovative social experiment in Brazil. The sustainability of that collaboration depends on the balance of mutual interests on private business and public academic institutions. The entrepreneur needs continuous accesses to the new academic researches, and the greatest benefit, for the academy, are funding complementation and personnel qualification. We need to establish a thread of new challenges, some of them based on disruption of paradigms in the Brazilian academic culture, and removal of obstructive clauses from the entrepreneur. Questioning and methods revalidation, in the oceanic environment areas, also requires a collaborative and interdisciplinary effort, congregating the physical aspects along with others compartments of the environmental monitoring. We proposed the creation of a Meteo-oceanographic and Environmental Monitoring Laboratory - LAMMOA (Portuguese acronym), which will be installed in a new facility funded by PETROBRAS (the Brazilian leading oil company) and ruled by USP, UNESP and UNICAMP, the state public universities in Santos (São Paulo State, Brazil). The new facility will be a research center in oil and gas activities, named CENPEG-BS (Portuguese acronym for Research Center of Oil and Gas in the Bay of Santos). Several laboratories and groups will work together, in a highly collaborative environment and so, capable of quickly respond to sudden demands on offshore activities and logistic operations, as well as in contingency situations. LAMMOA will continuous monitor oceanic regions where the pre-salt activities of oil exploitation occur. It will monitor meteo-oceanographic parameters like winds, waves and currents, providing suitable data for offshore and transportation activities. For such, LAMMOA will operate a system of moored acoustic current meters and others environmental sensors, applying analytical and numerical methods for improving comprehension of the oceanic environment. Oceanographic gliders, satellite measurements and newer observational technics should replace expensive hydrographic surveys, and enhance the efforts on the knowledge of oceanographic processes as those that occur in the Brazil Current. We hope these actions create a new culture on continuous monitoring the ocean, along and offshore the 8,000-km Brazilian coast, including its continental shelf and coastal regions.
NASA Astrophysics Data System (ADS)
Lanuru, M.; Samad, W.; Amri, K.; Priosambodo, D.
2018-05-01
Small islands are vulnerable to long-term natural disasters like coastal erosion due to their size and topography. Barrang Caddi is one the small island in the Spermonde Archipelago (South Sulawesi) that encountered serious coastal erosion. Several attempts have been done by the relevant parties like by building a wave breaker to prevent erosion. But in fact some parts of the island are still eroded. A comprehensive oceanographic study of the wave climate and coastal processes at work to delineate the factors responsible for shoreline chance and to identify the location that need protection is needed. In this study, physical oceanographic data including waves, currents, tide, bathymetry, sediment characteristics and sediment transport were collected in the Barrang Caddi Island to analyze the factors responsible for shoreline chance (erosion) in the island. Results of the study showed that tide in the study site is mixed tide, predominantly semidiurnal with tidal range of 118 cm. Current measurements using a electromagnetic current meter revealed that current velocities at the study site were relatively low and vary spatially and temporally with magnitude of 0.02 – 0.58 m/s. Under normal conditions (no storms) the significant wave height (H 1/3) varied from 0.04 to 0.20 m. The wave height decreases from the fore reef to the reef flat due to the presence of coral reefs that reduce wave energy (wave height). Sediments were dominated by biogenic sand with grain diameter of 0.38 – 1.04 mm. Island erosion analysis showed that wave action was a main factor that responsible for shoreline chance (erosion) at the island. Current velocity alone with average of 0.19 m/s was not strong enough to move (erode) sediments at the island.
NASA Technical Reports Server (NTRS)
Hendrickson, J. R. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Results of studies of the oceanography of the northern Gulf of California (Mexico) are reported. A remote, instrumented buoy measuring and telemetering oceanographic data by ERTS-1 satellite was designed, constructed, deployed, and tested. Regular cruises by a research ship on a pattern of 47 oceanographic stations collected data which are analyzed and referenced to analysis of ERTS-1 satellite imagery. A thermal dynamic model of current patterns in the northern Gulf of California is proposed. Findings are examined in relation to the model.
Physical oceanographic data from the OTEC Punta Tuna, Puerto Rico Site, September 1979-June 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frye, D.; Davison, A.; Leavitt, K.
1981-01-01
The first results of an oceanographic measurement program being conducted off the southeast corner of Puerto Rico are presented. The study site is a proposed OTEC site and is located about 20 km off Punta Tuna. The objectives of the measurement program are to document the physical oceanography of the site as related to the engineering and environmental factors involved in OTEC design and operation. Oceanographic measurements include: (1) a subsurface mooring instrumented with five current, temperature, and pressure recorders; and (2) quarterly hydrographic cruises to measure salinity, temperature, and depth profiles on a grid of 33 stations in themore » vicinity of the mooring site. The first cruise, conducted between 16 and 21 June 1980, included the initial mooring deployment and a CTD (conductivity, temperature, and depth) and XBT (expendable bathythermograph) survey. The CTD/XBT measurements are presented. Also included are results of in situ current, temperature, and pressure measurements made during two previous programs. In September 1979, Coastal Marine Research (CMR) deployed a mooring at approximately the same site as the present mooring. Results from three of these instruments are included. The Naval Underwater Systems Center deployed a mooring at this site in February 1979 and partial results from one instrument on this mooring are also presented. (WHK)« less
NASA Astrophysics Data System (ADS)
Piliczewski, B.
2003-04-01
The Golden Software Surfer has been used in IMGW Maritime Branch for more than ten years. This tool provides ActiveX Automation objects, which allow scripts to control practically every feature of Surfer. These objects can be accessed from any Automation-enabled environment, such as Visual Basic or Excel. Several applications based on Surfer has been developed in IMGW. The first example is an on-line oceanographic service, which presents forecasts of the water temperature, sea level and currents originating from the HIROMB model and is automatically updated every day. Surfer was also utilised in MERMAID, an international project supported by EC under the 5th Framework Programme. The main aim of this project was to create a prototype of the Internet-based data brokerage system, which would enable to search, extract, buy and download datasets containing meteorological or oceanographic data. During the project IMGW developed an online application, called Mermaid Viewer, which enables communication with the data broker and automatic visualisation of the downloaded data using Surfer. Both the above mentioned applications were developed in Visual Basic. Currently it is considered to adopt Surfer for the monitoring service, which provides access to the data collected in the monitoring of the Baltic Sea environment.
Persistent Identifiers for Field Expeditions: A Next Step for the US Oceanographic Research Fleet
NASA Astrophysics Data System (ADS)
Arko, Robert; Carbotte, Suzanne; Chandler, Cynthia; Smith, Shawn; Stocks, Karen
2016-04-01
Oceanographic research cruises are complex affairs, typically requiring an extensive effort to secure the funding, plan the experiment, and mobilize the field party. Yet cruises are not typically published online as first-class digital objects with persistent, citable identifiers linked to the scientific literature. The Rolling Deck to Repository (R2R; info@rvdata.us) program maintains a master catalog of oceanographic cruises for the United States research fleet, currently documenting over 6,000 expeditions on 37 active and retired vessels. In 2015, R2R started routinely publishing a Digital Object Identifier (DOI) for each completed cruise. Cruise DOIs, in turn, are linked to related persistent identifiers where available including the Open Researcher and Contributor ID (ORCID) for members of the science party, the International Geo Sample Number (IGSN) for physical specimens collected during the cruise, the Open Funder Registry (FundRef) codes that supported the experiment, and additional DOIs for datasets, journal articles, and other products resulting from the cruise. Publishing a persistent identifier for each field expedition will facilitate interoperability between the many different repositories that hold research products from cruises; will provide credit to the investigators who secured the funding and carried out the experiment; and will facilitate the gathering of fleet-wide altmetrics that demonstrate the broad impact of oceanographic research.
Enhancing SAMOS Data Access in DOMS via a Neo4j Property Graph Database.
NASA Astrophysics Data System (ADS)
Stallard, A. P.; Smith, S. R.; Elya, J. L.
2016-12-01
The Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative provides routine access to high-quality marine meteorological and near-surface oceanographic observations from research vessels. The Distributed Oceanographic Match-Up Service (DOMS) under development is a centralized service that allows researchers to easily match in situ and satellite oceanographic data from distributed sources to facilitate satellite calibration, validation, and retrieval algorithm development. The service currently uses Apache Solr as a backend search engine on each node in the distributed network. While Solr is a high-performance solution that facilitates creation and maintenance of indexed data, it is limited in the sense that its schema is fixed. The property graph model escapes this limitation by creating relationships between data objects. The authors will present the development of the SAMOS Neo4j property graph database including new search possibilities that take advantage of the property graph model, performance comparisons with Apache Solr, and a vision for graph databases as a storage tool for oceanographic data. The integration of the SAMOS Neo4j graph into DOMS will also be described. Currently, Neo4j contains spatial and temporal records from SAMOS which are modeled into a time tree and r-tree using Graph Aware and Spatial plugin tools for Neo4j. These extensions provide callable Java procedures within CYPHER (Neo4j's query language) that generate in-graph structures. Once generated, these structures can be queried using procedures from these libraries, or directly via CYPHER statements. Neo4j excels at performing relationship and path-based queries, which challenge relational-SQL databases because they require memory intensive joins due to the limitation of their design. Consider a user who wants to find records over several years, but only for specific months. If a traditional database only stores timestamps, this type of query would be complex and likely prohibitively slow. Using the time tree model, one can specify a path from the root to the data which restricts resolutions to certain timeframes (e.g., months). This query can be executed without joins, unions, or other compute-intensive operations, putting Neo4j at a computational advantage to the SQL database alternative.
1981-09-01
Management Information System Naval Oceanography Program Naval Oceanographic Requirements Acoustic Reference Service Research Vehicle...THE OCEANOGRAPHIC MANAGEMENT INFORMATION SYSTEM . .. .... 2-1 3. ACOUSTIC DATA .. .. .... ......... ...... 3-1 4. GEOLOGICAL AND GEOPHYSICAL DATA...36 CHAPTER 2 THE OCEANOGRAPHIC MANAGEMENT INFORMATION SYSTEM 2-i CHAPTER 2 THE OCEANOGRAPHIC MANAGEMENT INFORMATION SYSTEM CONTENTS Page
Scripps Ocean Modeling and Remote Sensing (SOMARS)
1988-09-20
Topics in this brief reports include: Kalman filtering of oceanographic data; Remote sensing of sea surface temperature; Altimetry and Surface heat fluxes; Ocean models of the marine mixed layer; Radar altimetry; Mathematical model of California current eddies.
46 CFR 3.05-3 - Oceanographic research vessel.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Oceanographic research vessel. 3.05-3 Section 3.05-3... OCEANOGRAPHIC RESEARCH VESSELS Definition of Terms Used in This Part § 3.05-3 Oceanographic research vessel. “An oceanographic research vessel is a vessel which the U.S. Coast Guard finds is employed exclusively in one or...
46 CFR 3.05-3 - Oceanographic research vessel.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Oceanographic research vessel. 3.05-3 Section 3.05-3... OCEANOGRAPHIC RESEARCH VESSELS Definition of Terms Used in This Part § 3.05-3 Oceanographic research vessel. “An oceanographic research vessel is a vessel which the U.S. Coast Guard finds is employed exclusively in one or...
46 CFR 3.05-3 - Oceanographic research vessel.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Oceanographic research vessel. 3.05-3 Section 3.05-3... OCEANOGRAPHIC RESEARCH VESSELS Definition of Terms Used in This Part § 3.05-3 Oceanographic research vessel. “An oceanographic research vessel is a vessel which the U.S. Coast Guard finds is employed exclusively in one or...
46 CFR 3.05-3 - Oceanographic research vessel.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Oceanographic research vessel. 3.05-3 Section 3.05-3... OCEANOGRAPHIC RESEARCH VESSELS Definition of Terms Used in This Part § 3.05-3 Oceanographic research vessel. “An oceanographic research vessel is a vessel which the U.S. Coast Guard finds is employed exclusively in one or...
46 CFR 3.05-3 - Oceanographic research vessel.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Oceanographic research vessel. 3.05-3 Section 3.05-3... OCEANOGRAPHIC RESEARCH VESSELS Definition of Terms Used in This Part § 3.05-3 Oceanographic research vessel. “An oceanographic research vessel is a vessel which the U.S. Coast Guard finds is employed exclusively in one or...
NASA Technical Reports Server (NTRS)
Koblinsky, C. J.
1984-01-01
Remotely sensed signatures of ocean surface characteristics from active and passive satellite-borne radiometers in conjunction with in situ data were utilized to examine the large scale, low frequency circulation of the world's oceans. Studies of the California Current, the Gulf of California, and the Kuroshio Extension Current in the western North Pacific were reviewed briefly. The importance of satellite oceanographic tools was emphasized.
A review of climate change impacts on birds
Robert W. Butler; William Taylor
2005-01-01
Regions of the world with high coastal zone biological productivity often support large numbers of birds. Important sources of this productivity are oceanographic upwelling created by winds and ocean currents, and runoff from the land. It is suggested that climate change effects on winds and ocean currents will potentially affect the timing and magnitude of coastal...
Proietti, Maira C; Reisser, Julia; Marins, Luis Fernando; Rodriguez-Zarate, Clara; Marcovaldi, Maria A; Monteiro, Danielle S; Pattiaratchi, Charitha; Secchi, Eduardo R
2014-01-01
Understanding the connections between sea turtle populations is fundamental for their effective conservation. Brazil hosts important hawksbill feeding areas, but few studies have focused on how they connect with nesting populations in the Atlantic. Here, we (1) characterized mitochondrial DNA control region haplotypes of immature hawksbills feeding along the coast of Brazil (five areas ranging from equatorial to temperate latitudes, 157 skin samples), (2) analyzed genetic structure among Atlantic hawksbill feeding populations, and (3) inferred natal origins of hawksbills in Brazilian waters using genetic, oceanographic, and population size information. We report ten haplotypes for the sampled Brazilian sites, most of which were previously observed at other Atlantic feeding grounds and rookeries. Genetic profiles of Brazilian feeding areas were significantly different from those in other regions (Caribbean and Africa), and a significant structure was observed between Brazilian feeding grounds grouped into areas influenced by the South Equatorial/North Brazil Current and those influenced by the Brazil Current. Our genetic analysis estimates that the studied Brazilian feeding aggregations are mostly composed of animals originating from the domestic rookeries Bahia and Pipa, but some contributions from African and Caribbean rookeries were also observed. Oceanographic data corroborated the local origins, but showed higher connection with West Africa and none with the Caribbean. High correlation was observed between origins estimated through genetics/rookery size and oceanographic/rookery size data, demonstrating that ocean currents and population sizes influence haplotype distribution of Brazil's hawksbill populations. The information presented here highlights the importance of national conservation strategies and international cooperation for the recovery of endangered hawksbill turtle populations.
Proietti, Maira C.; Reisser, Julia; Marins, Luis Fernando; Rodriguez-Zarate, Clara; Marcovaldi, Maria A.; Monteiro, Danielle S.; Pattiaratchi, Charitha; Secchi, Eduardo R.
2014-01-01
Understanding the connections between sea turtle populations is fundamental for their effective conservation. Brazil hosts important hawksbill feeding areas, but few studies have focused on how they connect with nesting populations in the Atlantic. Here, we (1) characterized mitochondrial DNA control region haplotypes of immature hawksbills feeding along the coast of Brazil (five areas ranging from equatorial to temperate latitudes, 157 skin samples), (2) analyzed genetic structure among Atlantic hawksbill feeding populations, and (3) inferred natal origins of hawksbills in Brazilian waters using genetic, oceanographic, and population size information. We report ten haplotypes for the sampled Brazilian sites, most of which were previously observed at other Atlantic feeding grounds and rookeries. Genetic profiles of Brazilian feeding areas were significantly different from those in other regions (Caribbean and Africa), and a significant structure was observed between Brazilian feeding grounds grouped into areas influenced by the South Equatorial/North Brazil Current and those influenced by the Brazil Current. Our genetic analysis estimates that the studied Brazilian feeding aggregations are mostly composed of animals originating from the domestic rookeries Bahia and Pipa, but some contributions from African and Caribbean rookeries were also observed. Oceanographic data corroborated the local origins, but showed higher connection with West Africa and none with the Caribbean. High correlation was observed between origins estimated through genetics/rookery size and oceanographic/rookery size data, demonstrating that ocean currents and population sizes influence haplotype distribution of Brazil's hawksbill populations. The information presented here highlights the importance of national conservation strategies and international cooperation for the recovery of endangered hawksbill turtle populations. PMID:24558419
European Science Notes Information Bulletin. Report on Current European and Middle Eastern Science
1992-10-01
oceanographers. This has occurred at a time of current radar systems . The independent develop- rapidly increasing government interest in and fund...over each area in which surface current is ment of the waves (some motions caused by wave determined (for HF systems , averaging time spans action and...Ocean Observing System ; high-resolution model capabilities; ocean- atmosphere interface; Surface Density Depression Pool; forecasting INTRODUCTION tion
Oceanographic and Fisheries Data Collection and Telemetry From Commercial Fishing Vessels
1998-09-30
for the oceanographic and fisheries communities . TRANSITIONS Mike Curran, of the Naval Oceanographic Office, has offerred to help coordinate the...1 Oceanographic and Fisheries Data Collection and Telemetry From Commercial Fishing Vessels Ann Bucklin Ocean Process Analysis Laboratory...control number. 1. REPORT DATE 1998 2. REPORT TYPE 3. DATES COVERED 00-00-1998 to 00-00-1998 4. TITLE AND SUBTITLE Oceanographic and Fisheries
A nowcast model for tides and tidal currents in San Francisco Bay, California
Cheng, Ralph T.; Smith, Richard E.
1998-01-01
National Oceanographic and Atmospheric Administration (NOAA) installed Physical Oceanographic Real-Time System (PORTS) in San Francisco Bay, California to provide observations of tides, tidal currents, and meteorological conditions. PORTS data are used for optimizing vessel operations, increasing margin of safety for navigation, and guiding hazardous material spill prevention and response. Because tides and tidal currents in San Francisco Bay are extremely complex, limited real-time observations are insufficient to provide spatial resolution for variations of tides and tidal currents. To fill the information gaps, a highresolution, robust, semi-implicit, finite-difference nowcast numerical model has been implemented for San Francisco Bay. The model grid and water depths are defined on coordinates based on Mercator projection so the model outputs can be directly superimposed on navigation charts. A data assimilation algorithm has been established to derive the boundary conditions for model simulations. The nowcast model is executed every hour continuously for tides and tidal currents starting from 24 hours before the present time (now) covering a total of 48 hours simulation. Forty-eight hours of nowcast model results are available to the public at all times through the World Wide Web (WWW). Users can view and download the nowcast model results for tides and tidal current distributions in San Francisco Bay for their specific applications and for further analysis.
Matching genetics with oceanography: directional gene flow in a Mediterranean fish species.
Schunter, C; Carreras-Carbonell, J; Macpherson, E; Tintoré, J; Vidal-Vijande, E; Pascual, A; Guidetti, P; Pascual, M
2011-12-01
Genetic connectivity and geographic fragmentation are two opposing mechanisms determining the population structure of species. While the first homogenizes the genetic background across populations the second one allows their differentiation. Therefore, knowledge of processes affecting dispersal of marine organisms is crucial to understand their genetic distribution patterns and for the effective management of their populations. In this study, we use genetic analyses of eleven microsatellites in combination with oceanographic satellite and dispersal simulation data to determine distribution patterns for Serranus cabrilla, a ubiquitous demersal broadcast spawner, in the Mediterranean Sea. Pairwise population F(ST) values ranged between -0.003 and 0.135. Two genetically distinct clusters were identified, with a clear division located between the oceanographic discontinuities at the Ibiza Channel (IC) and the Almeria-Oran Front (AOF), revealing an admixed population in between. The Balearic Front (BF) also appeared to dictate population structure. Directional gene flow on the Spanish coast was observed as S. cabrilla dispersed from west to east over the AOF, from north to south on the IC and from south of the IC towards the Balearic Islands. Correlations between genetic and oceanographic data were highly significant. Seasonal changes in current patterns and the relationship between ocean circulation patterns and spawning season may also play an important role in population structure around oceanographic fronts. © 2011 Blackwell Publishing Ltd.
The CORSAGE Programme: Continuous Orbital Remote Sensing of Archipelagic Geochemical Effects
NASA Technical Reports Server (NTRS)
Acker, J. G.; Brown, C. W.; Hine, A. C.
1997-01-01
Current and pending oceanographic remote sensing technology allows the conceptualization of a programme designed to investigate ocean island interactions that could induce short-term nearshore fluxes of particulate organic carbon and biogenic calcium carbonate from pelagic island archipelagoes. These events will influence the geochemistry of adjacent waters, particularly the marine carbon system. Justification and design are provided for a study that would combine oceanographic satellite remote sensing (visible and infrared radiometry, altimetry and scatterometry) with shore-based facilities. A programme incorporating the methodology outlined here would seek to identify the mechanisms that cause such events, assess their geochemical significance, and provide both analytical and predictive capabilities for observations on greater temporal and spatial scales.
Summary of oceanographic and water-quality measurements in Barnegat Bay, New Jersey, 2014–15
Suttles, Steven E.; Ganju, Neil K.; Montgomery, Ellyn T.; Dickhudt, Patrick J.; Borden, Jonathan; Brosnahan, Sandra M.; Martini, Marinna A.
2016-09-26
Scientists and technical support staff from the U.S. Geological Survey measured suspended-sediment concentrations, currents, pressure, and water temperature in two tidal creeks, Reedy Creek and Dinner Creek, in Barnegat Bay, New Jersey, from August 11, 2014, to July 10, 2015 as part of the Estuarine Physical Response to Storms project (GS2–2D). The oceanographic and water-quality data quantify suspended-sediment transport in Reedy Creek and Dinner Creek, which are part of a tidal marsh wetland complex in the Edwin B. Forsythe National Wildlife Refuge. All deployed instruments were removed between January 7, 2015, and April 14, 2015, to avoid damage by ice.
1983-11-01
spectrum of the linear stability theory has multiple roots with zero real parts. Then the general forms of the amplitude equations may be found for given...76 Dynamical Generation of Eastern Boundary Currents George eronis. .......................... 77 ..Amplitude Equations Edward...Associated Countercurrent. Benoit Cushman-Roisin ....... .................... ... 103 Turbulently Generated Eastern Boundary Currents Roger L. Hughes
Lost at sea: genetic, oceanographic and meteorological evidence for storm-forced dispersal.
Monzón-Argüello, C; Dell'Amico, F; Morinière, P; Marco, A; López-Jurado, L F; Hays, Graeme C; Scott, Rebecca; Marsh, Robert; Lee, Patricia L M
2012-08-07
For many species, there is broad-scale dispersal of juvenile stages and/or long-distance migration of individuals and hence the processes that drive these various wide-ranging movements have important life-history consequences. Sea turtles are one of these paradigmatic long-distance travellers, with hatchlings thought to be dispersed by ocean currents and adults often shuttling between distant breeding and foraging grounds. Here, we use multi-disciplinary oceanographic, atmospheric and genetic mixed stock analyses to show that juvenile turtles are encountered 'downstream' at sites predicted by currents. However, in some cases, unusual occurrences of juveniles are more readily explained by storm events and we show that juvenile turtles may be displaced thousands of kilometres from their expected dispersal based on prevailing ocean currents. As such, storms may be a route by which unexpected areas are encountered by juveniles which may in turn shape adult migrations. Increased stormy weather predicted under climate change scenarios suggests an increasing role of storms in dispersal of sea turtles and other marine groups with life-stages near the ocean surface.
Lost at sea: genetic, oceanographic and meteorological evidence for storm-forced dispersal
Monzón-Argüello, C.; Dell'Amico, F.; Morinière, P.; Marco, A.; López-Jurado, L. F.; Hays, Graeme C.; Scott, Rebecca; Marsh, Robert; Lee, Patricia L. M.
2012-01-01
For many species, there is broad-scale dispersal of juvenile stages and/or long-distance migration of individuals and hence the processes that drive these various wide-ranging movements have important life-history consequences. Sea turtles are one of these paradigmatic long-distance travellers, with hatchlings thought to be dispersed by ocean currents and adults often shuttling between distant breeding and foraging grounds. Here, we use multi-disciplinary oceanographic, atmospheric and genetic mixed stock analyses to show that juvenile turtles are encountered ‘downstream’ at sites predicted by currents. However, in some cases, unusual occurrences of juveniles are more readily explained by storm events and we show that juvenile turtles may be displaced thousands of kilometres from their expected dispersal based on prevailing ocean currents. As such, storms may be a route by which unexpected areas are encountered by juveniles which may in turn shape adult migrations. Increased stormy weather predicted under climate change scenarios suggests an increasing role of storms in dispersal of sea turtles and other marine groups with life-stages near the ocean surface. PMID:22319111
Satellite Remote Sensing of Harmful Algal Blooms (HABs) and a Potential Synthesized Framework
Shen, Li; Xu, Huiping; Guo, Xulin
2012-01-01
Harmful algal blooms (HABs) are severe ecological disasters threatening aquatic systems throughout the World, which necessitate scientific efforts in detecting and monitoring them. Compared with traditional in situ point observations, satellite remote sensing is considered as a promising technique for studying HABs due to its advantages of large-scale, real-time, and long-term monitoring. The present review summarizes the suitability of current satellite data sources and different algorithms for detecting HABs. It also discusses the spatial scale issue of HABs. Based on the major problems identified from previous literature, including the unsystematic understanding of HABs, the insufficient incorporation of satellite remote sensing, and a lack of multiple oceanographic explanations of the mechanisms causing HABs, this review also attempts to provide a comprehensive understanding of the complicated mechanism of HABs impacted by multiple oceanographic factors. A potential synthesized framework can be established by combining multiple accessible satellite remote sensing approaches including visual interpretation, spectra analysis, parameters retrieval and spatial-temporal pattern analysis. This framework aims to lead to a systematic and comprehensive monitoring of HABs based on satellite remote sensing from multiple oceanographic perspectives. PMID:22969372
Controlled Vocabularies and Ontologies for Oceanographic Data: The R2R Eventlogger Project
NASA Astrophysics Data System (ADS)
Coburn, E.; Maffei, A. R.; Chandler, C. L.; Raymond, L. M.
2012-12-01
Research vessels coordinated by the United States University-National Oceanographic Laboratory System (US-UNOLS) collect data which is considered an important oceanographic resource. The NSF-funded Rolling Deck to Repository (R2R) project aims to improve access to this data and diminish the barriers to use. One aspect of the R2R project has been to develop a shipboard scientific event logging system, Eventlogger, that incorporates best practice guidelines, controlled vocabularies, a cruise metadata schema, and a scientific event log. This will facilitate the eventual ingestion of datasets into oceanographic data repositories for subsequent integration and synthesis by investigators. One important aspect of this system is the careful use of controlled vocabularies and ontologies. Existing ontologies, where available, will be used and others will be developed. The use of internationally-informed, consensus-driven controlled vocabularies will make datasets more interoperable, and discoverable. The R2R Eventlogger project is led by Woods Hole Oceanographic Institution (WHOI), and the management of the controlled vocabularies and mapping of these vocabularies to authoritative community vocabularies are led by the Data Librarian in the Marine Biological Laboratory/Woods Hole Oceanographic Institution (MBLWHOI) Library. The first target vocabulary is oceanographic instruments. Management of this vocabulary has thus far consisted of reconciling local community terms with the more widely used SeaDataNet Device Vocabulary terms. Rather than adopt existing terms, often the local terms are mapped by data managers in the NSF-funded Biological and Chemical Oceanographic Data Management Office (BCO-DMO) to the existing terms as they are given by investigators and often provide important information and meaning. New terms (often custom, or modified instruments) are submitted for review to the SeaDataNet community listserv for discussion and eventual incorporation into the Device Vocabulary. These vocabularies and their mappings are an important part of the Eventlogger system. Before a research cruise investigators configure the instruments they intend to use for science activities. The instruments available for selection are pulled directly from the instrument vocabulary. The promotion and use of controlled vocabularies and ontologies will pave the way for linked data. By mapping local terms to agreed upon authoritative terms links are created, whereby related datasets can be discovered, and utilized. The Library is a natural home for the management of standards. Librarians have an established history of working with controlled vocabularies and metadata and libraries serve as centers for information discovery. Eventlogger is currently being tested across the UNOLS fleet. A large submission of suggested instrument terms to the SeaDataNet community listserv is in progress. References: Maffei, Andrew R., Cynthia L. Chandler, Janet Fredericks, Nan Galbraith, Laura Stolp. Rolling Deck to Repository (R2R): A Controlled Vocabulary and Ontology Development Effort for Oceanographic Research Cruise Event Logging. EGU2011-12341. Poster presented at the 2011 EGU Meeting.
Range-wide reproductive consequences of ocean climate variability for the seabird Cassin's Auklet.
Wolf, Shaye G; Sydeman, William J; Hipfner, J Mark; Abraham, Christine L; Tershy, Bernie R; Croll, Donald A
2009-03-01
We examine how ocean climate variability influences the reproductive phenology and demography of the seabird Cassin's Auklet (Ptychoramphus aleuticus) across approximately 2500 km of its breeding range in the oceanographically dynamic California Current System along the west coast of North America. Specifically, we determine the extent to which ocean climate conditions and Cassin's Auklet timing of breeding and breeding success covary across populations in British Columbia, central California, and northern Mexico over six years (2000-2005) and test whether auklet timing of breeding and breeding success are similarly related to local and large-scale ocean climate indices across populations. Local ocean foraging environments ranged from seasonally variable, high-productivity environments in the north to aseasonal, low-productivity environments to the south, but covaried similarly due to the synchronizing effects of large-scale climate processes. Auklet timing of breeding in the southern population did not covary with populations to the north and was not significantly related to local oceanographic conditions, in contrast to northern populations, where timing of breeding appears to be influenced by oceanographic cues that signal peaks in prey availability. Annual breeding success covaried similarly across populations and was consistently related to local ocean climate conditions across this system. Overall, local ocean climate indices, particularly sea surface height, better explained timing of breeding and breeding success than a large-scale climate index by better representing heterogeneity in physical processes important to auklets and their prey. The significant, consistent relationships we detected between Cassin's Auklet breeding success and ocean climate conditions across widely spaced populations indicate that Cassin's Auklets are susceptible to climate change across the California Current System, especially by the strengthening of climate processes that synchronize oceanographic conditions. Auklet populations in the northern and central regions of this ecosystem may be more sensitive to changes in the timing and variability of ocean climate conditions since they appear to time breeding to take advantage of seasonal productivity peaks.
NASA Astrophysics Data System (ADS)
Teodósio, M. A.; Garrido, S.; Peters, J.; Leitão, F.; Ré, P.; Peliz, A.; Santos, A. M. P.
2017-02-01
Understanding the environmental processes affecting fish larvae survival is critical for population dynamics, conservation purposes and to ecosystem-based fishery management. Using anchovies (Engraulis encrasicolus) of the Cadiz Gulf as a study case and considering the "Ocean Triad" hypothesis, we investigate the larval ecophysiological status and potential survival in relation to oceanographic variables. Therefore, this study aims to describe the nutritional condition of anchovy larvae during spawning season (peak in summer) through nucleic acid- and fatty acid (FA)-derived indices and to analyze the effects of the major environmental parameters (Depth, Temperature, Salinity, Plankton biomass) on anchovy survival potential at early phases. Fish larvae were collected in August from 30 m to 400 m depth at 35 stations off the southern Iberian coast. A previous upwelling event influenced the oceanographic conditions of the more western stations off Cape São Vicente (CSV). Along the coast, the water became warmer from west to the east through Cape Santa Maria (CSM) ending at Guadiana estuary, where easterly winds originated the development of a counter current. The standardized RNA/DNA (sRD) of anchovy larvae decreased throughout larval ontogeny, reflecting a reduction of growth during the development. Essential FA concentrations also decreased, but docosahexaenoic acid (DHA) in particular was highly conserved even after the reduction of total FA concentration in anchovy larvae related to the onset of swimming abilities (post-flexion phase). The oceanographic conditions (west upwelling, east counter current, and stratification) led to a nearshore aggregation of plankton and anchovy larvae with good ecophysiological conditions in the central area of the southern coast, where an optimal range of temperature and chlorophyll, as an indirect food proxy for anchovy larval development, were registered. The study proves that the oceanographic conditions of the study area are putative drivers of the ecophysiological condition of anchovy larvae to guarantee potential survival, supporting the "Ocean Triad" hypothesis with major repercussions for recruitment and population dynamics.
Ocean Current Effects on Marine Seismic Systems and Deployments.
1982-01-01
UNCLASSIFIED NOROA-TN 132 N 44, i . 4- iv L~~~ Kr~4~ !jj A r qt4 : ~’~A71 I0 AII ABSTRACT Upper level and near bottom current measurements were made...indicated a variable yet generally slow 1 " current regime which posed minimal threat of cable entanglement. Current [ measurements made 5 m off bottom during...diameters a iv -ALI-- - 1. 1. Introduction Two types of physical oceanographic measurements were supplied by NORDA Code 331 In support of the March-April
Woods Hole Oceanographic Institution
OCEAN Ocean Topics Oceanus Magazine Visual WHOI Blogs/Expeditions Exhibit Center JOIN US DONATE Technology Transfer 90% of international trade travels by ship Explore Ocean Topics Hydrothermal Vents Trenches Ocean Acidification Phytoplankton Currents, Gyres, & Eddies [ ALL OCEAN TOPICS ] Dive into our
The influence of decadal scale climactic events on the transport of larvae.
NASA Astrophysics Data System (ADS)
Rasmuson, L. K.; Edwards, C. A.; Shanks, A.
2016-02-01
Understanding the processes that influence larval transport remains an important, yet difficult, task. This is especially true as more studies demonstrate that biological and physical oceanographic processes vary at long (e.g. decadal+) time scales. We used individual based biophysical models to study transport of Dungeness crab larvae (the most economically valuable fishery on the West Coast of the Continental United States) over a 10-year period; during both positive and negative phases of the Pacific decadal oscillation (PDO). A physical oceanographic model of the California current was developed using the Regional Ocean Modeling System with 1/30-degree resolution. Measured and modeled PDO indices were positively correlated. The biological model was implemented using the Lagrangian Transport Model, and modified to incorporate temperature dependent development and stage specific behaviors. Super individuals were used to scale production and incorporate mortality. Models were validated using time series statistics to compare measured and modeled daily recruitment. More larvae recruited, in both our measured and modeled time series, during negative PDOs. Our work suggests larvae exhibit a vertically migratory behavior too or almost too the bottom each day. During positive PDO years larvae were competent to settle earlier than negative PDO years, however, pelagic larval durations did not differ. The southern end of the population appears to be a sink population, which likely explains the decline in commercial catch. Ultimately, the population is much more demographically closed than previously thought. We hypothesize the stronger flow in the California current during negative PDO's enhances membership of larvae in the current. Further, migrating almost too the bottom causes larvae to enter the benthic boundary layer on the continental shelf and the California undercurrent on the continental slope, both, which decrease net alongshore advection. These factors result in a higher number of larvae closing their larval phase within the California current. We hypothesize Dungeness crabs have evolved to complete their larval phase within the oceanographic context of the California current and differences with the oceanography in the Alaska current may explain the difficulties in managing fisheries.
NASA Astrophysics Data System (ADS)
Roggenstein, E. B.; Hensley, W.
2011-12-01
Over the past two hundred years, water level observations in coastal areas have been used to help mariners navigate oceans and estuaries, cartographers develop nautical charts, government agencies regulate boundaries, and scientists gain a better understanding of various physical processes in the ocean. As technology has progressed the latency in providing these data to the user has been reduced. The National Oceanic and Atmospheric Administration's (NOAA) Center for Operational Oceanographic Products and Services (CO-OPS) provides near real-time oceanographic and meteorological data to support navigation, coastal managers, and storm surge and tsunami warning programs. CO-OPS maintains the National Water Level Observation Network (NWLON), a system of over 200 stations for the coastal United States, Great Lakes, Caribbean islands, and Pacific island territories. CO-OPS also supports the NOAA Physical Oceanographic Real Time Systems° (PORTS), which are currently operating in 21 US ports. With an expanding role in Arctic and Alaska support, CO-OPS has identified a need for a robust and reliable data communications pathway to supplement the existing Geostationary Operational Environmental Systems (GOES) network, which has limitations at high latitudes. Iridium satellite Short Burst Data (SBD) services offer a global coverage, including remote Arctic regions outside of GOES coverage. Previous testing conducted by CO-OPS has shown a great potential for the SBD service including continuous near-real-time 6 minute data transmissions from two CO-OPS test water level stations located in Guam, with >99.9% data return. Also, successful transmissions of hourly wave statistics were demonstrated with a with a test system that employed a Nortek Acoustic Wave and Current (AWAC) instrument in Chesapeake Bay were accomplished. Data transmissions involved a buoy-mounted SIM-less SBD modem. Independent of location, data can be transmitted from a remote instrument platform to Iridium satellites with a latency of just 15 seconds. Successful test demonstrations have led to discussions regarding prospective work to integrate these small modems into CO-OPS current meters that are mounted on United States Coast Guard (USCG) Aid to Navigation (ATON) buoys, improving the reliability of the real-time transmission pathway between data collection and data reporting via PORTS °. Overall, this work has shown that with careful evaluation of data needs, commercial Iridium service can be economically used to accomplish telemetry requirements. It also shows potential for event-driven high frequency data transmission options, for applications such as marine warning systems. CO-OPS efforts to test and evaluate Iridium communications oceanographic observatories reported on here has been a collaborative endeavor with the United States Army Corp Engineers (USACE) Field Research Facility (FRF) in Duck, NC, the USACE Cold Regions Research Engineering Laboratory (CRREL) in Hanover, NH, NAL Research Inc, Sutron Corporation,and Nortek USA.
NASA Astrophysics Data System (ADS)
Chambault, Philippine; de Thoisy, Benoît; Heerah, Karine; Conchon, Anna; Barrioz, Sébastien; Dos Reis, Virginie; Berzins, Rachel; Kelle, Laurent; Picard, Baptiste; Roquet, Fabien; Le Maho, Yvon; Chevallier, Damien
2016-03-01
The circulation in the Western Equatorial Atlantic is characterized by a highly dynamic mesoscale activity that shapes the Guiana continental shelf. Olive ridley sea turtles (Lepidochelys olivacea) nesting in French Guiana cross this turbulent environment during their post-nesting migration. We studied how oceanographic and biological conditions drove the foraging behavior of 18 adult females, using satellite telemetry, remote sensing data (sea surface temperature, sea surface height, current velocity and euphotic depth), simulations of micronekton biomass (pelagic organisms) and in situ records (water temperature and salinity). The occurrence of foraging events throughout migration was located using Residence Time analysis, while an innovative proxy of the hunting time within a dive was used to identify and quantify foraging events during dives. Olive ridleys migrated northwestwards using the Guiana current and remained on the continental shelf at the edge of eddies formed by the North Brazil retroflection, an area characterized by low turbulence and high micronekton biomass. They performed mainly pelagic dives, hunting for an average 77% of their time. Hunting time within a dive increased with shallower euphotic depth and with lower water temperatures, and mean hunting depth increased with deeper thermocline. This is the first study to quantify foraging activity within dives in olive ridleys, and reveals the crucial role played by the thermocline on the foraging behavior of this carnivorous species. This study also provides novel and detailed data describing how turtles actively use oceanographic structures during post-nesting migration.
Atlantic Oceanographic and Meteorological Laboratory of NOAA
the physics of ocean currents and water properties, and on the role of the ocean in climate, weather © 2006 AOML. All rights reserved. Office of National Oceanic and Atmospheric Research National Oceanic and Atmospheric Administration Department of Commerce
Larger Pacific Climate Event Helps Current La Niña Linger
2008-04-22
One of the strongest La Niñas in many years is slowly weakening but continues to blanket the Pacific Ocean near the equator, as shown by new sea-level height data collected by NASA U.S.-French Jason oceanographic satellite.
greater danger near shore or any shallow waters? NOAA PORTS PROGRAM The Physical Oceanographic Real-Time navigation by providing ship masters and pilots with accurate real-time information required to avoid data acquisition and dissemination systems that provide real-time water levels, currents, and other
46 CFR 188.35-1 - Standards to be used.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL... subchapter an item, or method of construction, or testing is required to meet the standards established by the American Bureau of Shipping, the current standards in effect at the time of construction of the...
Comparison of BASS and VACM current measurements during STRESS
Lentz, Steven J.; Butman, Bradford; Williams, A. J.
1995-01-01
The equations used to convert VACM rotor rotation rates to current speed we based on a calibration study by Woodward and Appell rather than one based on a study by Cherriman that is routinely used at the Woods Hole Oceanographic Institution. The former yields closer agreement between the BASS and VACM speed measurements during STRESS (mean speed difference 0.2 cm s−1 versus 1.4 cm s−1).
2011-09-01
project research addresses our long-term goal to develop an analytical suite of the Advanced Laser Fluorescence (ALF) methods and instruments to improve...demonstrated ALF utility as an integrated tool for aquatic research and observations. The ALF integration into the major oceanographic programs is...currently in progress, including the California Current Ecosystem Long Term Ecological Research (CCE LTER, NSF) and California Cooperative Oceanic
Submarine sand dunes and sedimentary environments in Oceanographer Canyon.
Valentine, P.C.; Cooper, R.A.; Uzmann, J.R.
1984-01-01
Observations from research submersibles in the northern part of Oceanographer Canyon reveal the presence of an extensive field of large sand dunes on the canyon floor. The dunes are medium to coarse sand, are oriented across the axis, and the largest of them are as high as 3 m and have wavelengths up to 15 m. Their asymmetry, grain size, and height suggest that they are formed by axial currents flowing up- and downcanyon and that the largest dunes require flows of at least 70 cm/sec. Shelf sand, low in silt and clay content, is transported by currents down and along the canyon walls onto the canyon floor. As the sand enters the canyon, it is mixed with immobile gravel deposits on the canyon rim; lower on the walls, the sand is mixed with silt and clay burrowed by organisms from the semiconsolidated sandy silt that underlies the canyon walls and floor. Upon reaching the canyon floor, the sand is sculpted into bed forms by currents, and the fines are winnowed out and transported out of the canyon. At present, the shelf and canyon walls are being eroded by bottom currents and burrowing organisms, whereas the canyon floor is covered by mobile sand that moves both up and down the axis in this part of the canyon.
Oceanography promotes self-recruitment in a planktonic larval disperser.
Teske, Peter R; Sandoval-Castillo, Jonathan; van Sebille, Erik; Waters, Jonathan; Beheregaray, Luciano B
2016-09-30
The application of high-resolution genetic data has revealed that oceanographic connectivity in marine species with planktonic larvae can be surprisingly limited, even in the absence of major barriers to dispersal. Australia's southern coast represents a particularly interesting system for studying planktonic larval dispersal, as the hydrodynamic regime of the wide continental shelf has potential to facilitate onshore retention of larvae. We used a seascape genetics approach (the joint analysis of genetic data and oceanographic connectivity simulations) to assess population genetic structure and self-recruitment in a broadcast-spawning marine gastropod that exists as a single meta-population throughout its temperate Australian range. Levels of self-recruitment were surprisingly high, and oceanographic connectivity simulations indicated that this was a result of low-velocity nearshore currents promoting the retention of planktonic larvae in the vicinity of natal sites. Even though the model applied here is comparatively simple and assumes that the dispersal of planktonic larvae is passive, we find that oceanography alone is sufficient to explain the high levels of genetic structure and self-recruitment. Our study contributes to growing evidence that sophisticated larval behaviour is not a prerequisite for larval retention in the nearshore region in planktonic-developing species.
76 FR 5782 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-02
... currently approved information collection. The Cooperative Game Fish Tagging Program (CGFTP) was initiated in 1954 by Woods Hole Oceanographic Institution (WHOI). In 1973 the CGFTP became a cooperative effort... resulting from passage of the Migratory Game Fish Study Act of 1959 (Pub. L. 86- 359) and other legislative...
von Biela, Vanessa R.; Kruse, Gordon H.; Mueter, Franz J.; Black, Bryan A.; Douglas, David C.; Helser, Thomas E.; Zimmerman, Christian E.
2015-01-01
Fish otolith growth increments were used as indices of annual production at nine nearshore sites within the Alaska Coastal Current (downwelling region) and California Current (upwelling region) systems (~36–60°N). Black rockfish (Sebastes melanops) and kelp greenling (Hexagrammos decagrammus) were identified as useful indicators in pelagic and benthic nearshore food webs, respectively. To examine the support for bottom-up limitations, common oceanographic indices of production [sea surface temperature (SST), upwelling, and chlorophyll-a concentration] during summer (April–September) were compared to spatial and temporal differences in fish growth using linear mixed models. The relationship between pelagic black rockfish growth and SST was positive in the cooler Alaska Coastal Current and negative in the warmer California Current. These contrasting growth responses to SST among current systems are consistent with the optimal stability window hypothesis in which pelagic production is maximized at intermediate levels of water column stability. Increased growth rates of black rockfish were associated with higher chlorophyll concentrations in the California Current only, but black rockfish growth was unrelated to the upwelling index in either current system. Benthic kelp greenling growth rates were positively associated with warmer temperatures and relaxation of downwelling (upwelling index near zero) in the Alaska Coastal Current, while none of the oceanographic indices were related to their growth in the California Current. Overall, our results are consistent with bottom-up forcing of nearshore marine ecosystems—light and nutrients constrain primary production in pelagic food webs, and temperature constrains benthic food webs.
NOAA’s Physical Oceanographic Real-Time Systems (PORTS(Registered))
2010-06-01
1 NOAA’s Physical Oceanographic Real - Time Systems (PORTS®) Darren Wright and Robert Bassett National Oceanic and Atmospheric Administration...operation of several Physical Oceanographic Real - Time Systems (PORTS®). 0-933957-38-1 ©2009 MTS Report Documentation Page Form ApprovedOMB No. 0704-0188...TITLE AND SUBTITLE NOAAs Physical Oceanographic Real - Time Systems (PORTS®) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6
Satellite observations of mesoscale features in lower Cook Inlet and Shelikof Strait, Gulf of Alaska
NASA Technical Reports Server (NTRS)
Schumacher, James D.; Barber, Willard E.; Holt, Benjamin; Liu, Antony K.
1991-01-01
The Seasat satellite launched in Summer 1978 carried a synthetic aperture radar (SAR). Although Seasat failed after 105 days in orbit, it provided observations that demonstrate the potential to examine and monitor upper oceanic processes. Seasat made five passes over lower Cook Inlet and Shelikof Strait, Alaska, during Summer 1978. SAR images from the passes show oceanographic features, including a meander in a front, a pair of mesoscale eddies, and internal waves. These features are compared with contemporary and representative images from a satellite-borne Advanced Very High Resolution Radiometer (AVHRR) and Coastal Zone Color Scanner (CZCS), with water property data, and with current observations from moored instruments. The results indicate that SAR data can be used to monitor mesoscale oceanographic features.
Oceanographic controls over sediment water content: northern Bermuda rise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, M.; Laine, E.P.
1985-01-01
Cores taken from the plateaus of Northern Bermuda Rise show that the region is underlain at depths of 1-5 m by a 1-3 m thick layer of hemipelagic lutites with anomalously high water contents. The lack of visually apparent textural and lithological changes in this extremely fine grained sediment rule out these common causes for variation in water content. The water content averages 175% within this layer and 100% immediately above and below it. This is an increase of 9.5% in porosity. The high water content sediment is confined to a period between 12 and 16 ka. Current work onmore » the mineralogy of the sediments which comprise this layer suggest two oceanographic factors that may have influenced its formation. A meltwater spike associated with deglaciation may have altered the ecological conditions above the thermocline sufficiently to promote the increased production of radiolaria, resulting in the deposition of silica enriched sediment on the sea floor. A combination of textural and perhaps chemical factors caused by the silica enrichment may have influenced the increase in water content. Intensified bottom currents at this time also may have eroded smectite rich sediments from exposures of Neogene age and deposited them on the plateaus. An increase in smectite would increase the water content due to the extremely fine grain size and the chemistry of the clay. Thus, the lateral continuity and isochroniety of this layer, combined with its mineralogical characteristics suggests that oceanographic changes can influence water content and perhaps other geotechnical properties on a regional scale.« less
Chinese-U.S. sediment source-to-sink research in the east China and Yellow Seas: a brief history
NASA Astrophysics Data System (ADS)
Milliman, John D.; Zuosheng, Yang
2014-11-01
In the autumn of 1979, US oceanographers were offered a unique and in many respects a once-in-a-lifetime opportunity, as were, in hindsight, Chinese oceanographers: to help formulate and participate in the initial US-China cooperative joint oceanographic research study, as part of a cooperative research agreement signed earlier that year by the US National Oceanographic and Atmospheric Administration (NOAA) and the Chinese National Bureau of Oceanology (NBO; now known as the State Ocean Administration-SOA). Ten oceanographers from nine US oceanographic institutions and agencies traveled to China in late November with the hope-at this early stage of Chinese-US scientific relations, it was no more than a hope-to begin discussions about the possibility of a cooperative investigation of the river-estuary-shelf interactions from the Yangtze River to the adjacent East China Sea. Two years of cooperative research (1980-82) were envisioned.
Novel Acoustic Scattering Processes for Target Discrimination
2014-12-31
Woods Hole Oceanographic Institution. WORK COMPLETED During FY10, in addition to La Follett’s thesis [6] a publication appeared based primarily on...function of tilt angle is very similar to the case in which the cylinder is hung adjacent to a flat floating platform of closed-cell extruded ...departed during FY10 who are currently employed at NSWC-PCD and remain involved in related research. Dr. Baik [5] is currently a postdoc at Woods Hole
NASA Astrophysics Data System (ADS)
Silyakova, A.; Jansson, P.; Serov, P.; Graves, C. A.; Niemann, H.; Grundger, F.; Ferre, B.; Mienert, J.
2016-02-01
The area west of Prins Karls Forland (PKF, West Spitsbergen) in the Arctic Ocean, restricted to 90 m water depth, is known for a large amount of shallow active gas flares. Gas flares are streams of bubbles that contain mostly methane, which is a potent greenhouse gas. The important questions for many areas with discovered gas flares are: Does this gas reach the atmosphere? What controls the vertical and horizontal distribution of dissolved methane away from the source on the seafloor? Is all dissolved methane detected above gas flares released from those flares or does it partially originate from other areas (eg. Storfjorden, or area of deeper flares on the PKF slope)? The present study is based on two repeated oceanographic surveys conducted in the summers of 2014 and 2015. During the surveys, we sampled 64 CTD stations in a grid above a 30 x 15 km area with active methane flares. Vertical profiles of temperature (T) and salinity (S), as well as TS diagrams indicate very different oceanographic settings during the two surveys. Warm and saline Atlantic waters originating from the West Spitsbergen Current prevailed during the 2014 campaign. In 2015, in contrast, waters were distinctly less saline and cooler. These waters originate from the East-Spitsbergen current that flows northwards over the shelf from the Barents Sea around the southern tip of Spitsbergen. The water mass was furthermore influenced by local sources from the fjords. In both years, we observed strong vertical gradients in the distribution of dissolved methane in the water column above gas flares, with only 4% methane concentrations at the sea surface when compared to bottom waters. However, the circulation of the dominant water masses mainly controlled the horizontal distribution of methane in the water column in the specific year. We discuss oceanographic processes and mechanisms responsible for methane transport and transformation in the study area. This study is funded by CAGE (Centre for Arctic Gas Hydrate, Environment and Climate), Norwegian Research Council grant no. 223259.
NOAA Photo Library - Meet the Photographers/Dr. Picciolo (Tony)
Biology Group Leader at the National Oceanographic Data center. Current primary emphasis is in coral reef Maryland. His first introduction to marine biology was as a graduate student, where with his professor, Dr these years he also worked on reproductive biology and behavior of southeast Asian fishes, bioacoustics
46 CFR 188.10-53 - Oceanographic research vessel.
Code of Federal Regulations, 2014 CFR
2014-10-01
... and other marine geophysical or geological surveys, atmospheric research, and biological research... 46 Shipping 7 2014-10-01 2014-10-01 false Oceanographic research vessel. 188.10-53 Section 188.10-53 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS...
46 CFR 188.10-53 - Oceanographic research vessel.
Code of Federal Regulations, 2012 CFR
2012-10-01
... and other marine geophysical or geological surveys, atmospheric research, and biological research... 46 Shipping 7 2012-10-01 2012-10-01 false Oceanographic research vessel. 188.10-53 Section 188.10-53 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS...
46 CFR 188.10-53 - Oceanographic research vessel.
Code of Federal Regulations, 2013 CFR
2013-10-01
... and other marine geophysical or geological surveys, atmospheric research, and biological research... 46 Shipping 7 2013-10-01 2013-10-01 false Oceanographic research vessel. 188.10-53 Section 188.10-53 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS...
46 CFR 188.10-53 - Oceanographic research vessel.
Code of Federal Regulations, 2011 CFR
2011-10-01
... and other marine geophysical or geological surveys, atmospheric research, and biological research... 46 Shipping 7 2011-10-01 2011-10-01 false Oceanographic research vessel. 188.10-53 Section 188.10-53 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS...
46 CFR 188.10-53 - Oceanographic research vessel.
Code of Federal Regulations, 2010 CFR
2010-10-01
... and other marine geophysical or geological surveys, atmospheric research, and biological research... 46 Shipping 7 2010-10-01 2010-10-01 false Oceanographic research vessel. 188.10-53 Section 188.10-53 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS...
Equatorial Currents in the Indian Ocean Based on Measurements in February 2017
NASA Astrophysics Data System (ADS)
Neiman, V. G.; Frey, D. I.; Ambrosimov, A. K.; Kaplunenko, D. D.; Morozov, E. G.; Shapovalov, S. M.
2018-03-01
We analyze the results of measurements of the Tareev equatorial undercurrent in the Indian Ocean in February 2017. Sections from 3° S to 3°45' N along 68° and 65° E crossed the current with measurements of the temperature, salinity, and current velocity at oceanographic stations. The maximum velocity of this eastward flow was recorded precisely at the equator. The velocity at a depth of 50 m was approximately 60 cm/s. The transport of the Tareev Current was estimated at 9.8 Sv (1 Sv = 106 m3/s).
Assessing performance of gravity models in the Arctic and the implications for polar oceanography
NASA Astrophysics Data System (ADS)
Thomas, S. F.; McAdoo, D. C.; Farrell, S. L.; Brozena, J. M.; Childers, V. A.; Ziebart, M. K.; Shepherd, A.
2014-12-01
The circulation of the Arctic Ocean is of great interest to both the oceanographic and cryospheric communities. Understanding both the steady state and variations of this circulation is essential to building our knowledge of Arctic climate. With the advent of high inclination altimeter missions such as CryoSat and ICESat, it is now feasible to produce Mean Dynamic Topography (MDT) products for the region, which allow a comprehensive investigation of geostrophic currents. However, the accuracy of these products is largely limited by our knowledge of the marine geoid in the Arctic. There are a number of publicly available gravity models commonly used to derive the geoid. These use different combinations of available data (satellite gravimetry, altimetry, laser ranging, and in-situ) and are calculated using different mathematical techniques. However, the effect of these differences on the real world performance of these models when used for oceanographic studies in the Arctic is not well known. Given the unique problems for gravimetry in the region (especially data gaps) and their potential impact on MDT products, it is especially important that the relative performance of these models be assessed We consider the needs of the "end user" satellite oceanographer in the Arctic with respect to gravimetry, and the relationship between the precision of gravity data and the accuracy of a final MDT/current velocity product. Using high-precision aerogravity data collected over 3 years of campaigns by NASA's Operation IceBridge we inter-compare 10 of the leading gravity models and assess their performance in the Arctic. We also use historical data from campaigns flown by the US Naval Research Laboratory (NRL) to demonstrate the impact of gravity errors on MDT products. We describe how gravity models for the region might be improved in the future, in an effort to maximize the level at which Arctic currents may be resolved.
NASA Technical Reports Server (NTRS)
Guest, DeNeice
2007-01-01
The Nation uses water-level data for a variety of practical purposes, including nautical charting, maritime navigation, hydrography, coastal engineering, and tsunami and storm surge warnings. Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years. NOAA s PORTS (Physical Oceanographic Real-Time System) DST (decision support tool), managed by the Center for Operational Oceanographic Products and Services, supports safe and cost-efficient navigation by providing ship masters and pilots with accurate real-time information required to avoid groundings and collisions. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s PORTS. NASA has a long heritage of collecting data for ocean research, including its current Terra and Aqua missions. Numerous other missions provide additional important information for coastal management issues, and data collection will continue in the coming decade with such missions as the OSTM (Ocean Surface Topography Mission). OSTM will provide data on sea-surface heights for determining ocean circulation, climate change, and sea-level rise. We suggest that NASA incorporate OSTM altimeter data (C- and Ku-band) into NOAA s PORTS DST in support of NASA s Coastal Management National Application with secondary support to the Disaster Management and Public Health National Applications.
The gravimetric geodesy investigation
NASA Technical Reports Server (NTRS)
Siry, J. W.
1971-01-01
The Gravimetric Geodesy Investigation which will utilize altimeter and satellite-to-satellite tracking data from GEOS-C, ATS-F, and other spacecraft as appropriate to improve our knowledge of the earth's gravitational field is discussed. This investigation is interrelated with the study of oceanographic phenomena such as those associated with tides and currents, hence the latter are considered together with gravitational effects in the analysis of the data. The oceanographic effects, each of the order of a meter or two in amplitude and with still smaller uncertainties does not seriously hamper the altimeter gravimetric studies at the five meter level. Laser and satellite-to-satellite tracking data, when combined with the altimeter results, should provide the basis for such studies over wide areas of the ocean surface. Laser and conventional geodetic tracking data from ISAGEX and succeeding campaigns will provide a valuable framework for these analyses.
Oceanographer tracks marine debris from the Japan tsunami and other incidents
NASA Astrophysics Data System (ADS)
Showstack, Randy
2011-09-01
In the wake of the 11 March 2011 Tohoku earthquake and resulting tsunami that struck Japan, much of the debris that washed out to sea continues to float slowly on ocean currents across the Pacific Ocean. The leading edge of a dispersed field of debris that has not already sunk or biodegraded was estimated by a computer model to be about halfway across the Pacific, north of Midway Island, as of 31 July, 142 days after the tsunami. According to Curtis Ebbesmeyer, a consulting oceanographer who has been involved with tracking various kinds of ocean flotsam for decades, the debris field, which encompasses an area about the size of California, could begin to reach the U.S. West Coast by March 2012. The National Oceanic and Atmospheric Administration's (NOAA) Satellite and Information Service was able to track the debris field until mid-April, when the debris became too dispersed to be detected in satellite imagery. Ebbesmeyer, formerly an oceanographer with Mobil and Standard Oil, told Eos that he does not have any recent physical evidence of the debris field because it is now widely dispersed and still far away from any landfall. Ebbesmeyer said, though, that his confidence level for the debris field's estimated size and location is “very high.”
Teacher, Amber GF; André, Carl; Jonsson, Per R; Merilä, Juha
2013-01-01
Marine fish often show little genetic structuring in neutral marker genes, and Atlantic herring (Clupea harengus) in the Baltic Sea are no exception; historically, very low levels of population differentiation (FST ≍ 0.002) have been found, despite a high degree of interpopulation environmental heterogeneity in salinity and temperature. Recent exome sequencing and SNP studies have however shown that many loci are under selection in this system. Here, we combined population genetic analyses of a large number of transcriptome-derived microsatellite markers with oceanographic modelling to investigate genetic differentiation and connectivity in Atlantic herring at a relatively fine scale within the Baltic Sea. We found evidence for weak but robust and significant genetic structuring (FST = 0.008) explainable by oceanographic connectivity. Genetic differentiation was also associated with site differences in temperature and salinity, with the result driven by the locus Her14 which appears to be under directional selection (FST = 0.08). The results show that Baltic herring are genetically structured within the Baltic Sea, and highlight the role of oceanography and environmental factors in explaining this structuring. The results also have implications for the management of herring fisheries, the most economically important fishery in the Baltic Sea, suggesting that the current fisheries management units may be in need of revision. PMID:23745145
Role of oceanography in shaping the genetic structure in the North Pacific hake Merluccius productus
2018-01-01
Determining the relative influence of biotic and abiotic factors on genetic connectivity among populations remains a major challenge in evolutionary biology and in the management and conservation of species. North Pacific hake (Merluccius productus) inhabits upwelling regions in the California Current ecosystem from the Gulf of California to the Gulf of Alaska. In this study, we examined mitochondrial DNA (mtDNA) and microsatellite variation to estimate levels of genetic differentiation of M. productus in relation to the role of oceanographic features as potential barriers to gene flow. Samples were obtained from nine sites spanning a large part of the geographic range of the species, from Puget Sound, Washington to Costa Rica. The microsatellite results revealed three genetically discrete populations: one spanning the eastern Pacific coast, and two apparently resident populations circumscribed to the Puget Sound and the northern Gulf of California (FST = 0.032, p = 0.036). Cytochrome b sequence data indicated that isolation between the Puget Sound and northern Gulf of California populations from the coastal Pacific were recent phenomena (18.5 kyr for Puget Sound and 40 kyr for the northern Gulf of California). Oceanographic data obtained from the Gulf of California support the hypothesis that permanent fronts within the region, and strong gradients at the entrance to the Gulf of California act as barriers to gene flow. A seascape genetics approach found significant genetic–environment associations, where the daytime sea surface temperature and chlorophyll concentrations were the best predictive variables for the observed genetic differentiation. Considering the potential causes of genetic isolation among the three populations, e.g. spawning areas in different latitudes associated with upwelling processes, oceanographic barriers, asymmetric migration and specialized diet, oceanographic barriers appear to be a likely mechanism restricting gene flow. PMID:29579060
García-De León, Francisco Javier; Galván-Tirado, Carolina; Sánchez Velasco, Laura; Silva-Segundo, Claudia A; Hernández-Guzmán, Rafael; Barriga-Sosa, Irene de Los Angeles; Díaz Jaimes, Píndaro; Canino, Michael; Cruz-Hernández, Pedro
2018-01-01
Determining the relative influence of biotic and abiotic factors on genetic connectivity among populations remains a major challenge in evolutionary biology and in the management and conservation of species. North Pacific hake (Merluccius productus) inhabits upwelling regions in the California Current ecosystem from the Gulf of California to the Gulf of Alaska. In this study, we examined mitochondrial DNA (mtDNA) and microsatellite variation to estimate levels of genetic differentiation of M. productus in relation to the role of oceanographic features as potential barriers to gene flow. Samples were obtained from nine sites spanning a large part of the geographic range of the species, from Puget Sound, Washington to Costa Rica. The microsatellite results revealed three genetically discrete populations: one spanning the eastern Pacific coast, and two apparently resident populations circumscribed to the Puget Sound and the northern Gulf of California (FST = 0.032, p = 0.036). Cytochrome b sequence data indicated that isolation between the Puget Sound and northern Gulf of California populations from the coastal Pacific were recent phenomena (18.5 kyr for Puget Sound and 40 kyr for the northern Gulf of California). Oceanographic data obtained from the Gulf of California support the hypothesis that permanent fronts within the region, and strong gradients at the entrance to the Gulf of California act as barriers to gene flow. A seascape genetics approach found significant genetic-environment associations, where the daytime sea surface temperature and chlorophyll concentrations were the best predictive variables for the observed genetic differentiation. Considering the potential causes of genetic isolation among the three populations, e.g. spawning areas in different latitudes associated with upwelling processes, oceanographic barriers, asymmetric migration and specialized diet, oceanographic barriers appear to be a likely mechanism restricting gene flow.
NASA Astrophysics Data System (ADS)
Menge, B. A.; Gouhier, T.; Chan, F.; Hacker, S.; Menge, D.; Nielsen, K. J.
2016-02-01
Ecology focuses increasingly on the issue of matching spatial and temporal scales responsible for ecosystem pattern and dynamics. Benthic coastal communities traditionally were studied at local scales using mostly short-term research, while environmental (oceanographic, climatic) drivers were investigated at large scales (e.g., regional to oceanic, mostly offshore) using combined snapshot and monitoring (time series) research. The comparative-experimental approach combines local-scale studies at multiple sites spanning large-scale environmental gradients in combination with monitoring of inner shelf oceanographic conditions including upwelling/downwelling wind forcing and their consequences (e.g., temperature), and inputs of subsidies (larvae, phytoplankton, detritus). Temporal scale varies depending on the questions, but can extend from years to decades. We discuss two examples of rocky intertidal ecosystem dynamics, one at a regional scale (California Current System, CCS) and one at an interhemispheric scale. In the upwelling-dominated CCS, 52% and 32% of the variance in local community structure (functional group abundances at 13 sites across 725 km) was explained by external factors (ecological subsidies, oceanographic conditions, geographic location), and species interactions, respectively. The interhemispheric study tested the intermittent upwelling hypothesis (IUH), which predicts that key ecological processes will vary unimodally along a persistent downwelling to persistent upwelling gradient. Using 14-22 sites, unimodal relationships between ecological subsidies (phytoplankton, prey recruitment), prey responses (barnacle colonization, mussel growth) and species interactions (competition rate, predation rate and effect) and the Bakun upwelling index calculated at each site accounted for 50% of the variance. Hence, external factors can account for about half of locally-expressed community structure and dynamics.
The Fram Strait integrated ocean observatory
NASA Astrophysics Data System (ADS)
Fahrbach, E.; Beszczynska-Möller, A.; Rettig, S.; Rohardt, G.; Sagen, H.; Sandven, S.; Hansen, E.
2012-04-01
A long-term oceanographic moored array has been operated since 1997 to measure the ocean water column properties and oceanic advective fluxes through Fram Strait. While the mooring line along 78°50'N is devoted to monitoring variability of the physical environment, the AWI Hausgarten observatory, located north of it, focuses on ecosystem properties and benthic biology. Under the EU DAMOCLES and ACOBAR projects, the oceanographic observatory has been extended towards the innovative integrated observing system, combining the deep ocean moorings, multipurpose acoustic system and a network of gliders. The main aim of this system is long-term environmental monitoring in Fram Strait, combining satellite data, acoustic tomography, oceanographic measurements at moorings and glider sections with high-resolution ice-ocean circulation models through data assimilation. In future perspective, a cable connection between the Hausgarten observatory and a land base on Svalbard is planned as the implementation of the ESONET Arctic node. To take advantage of the planned cabled node, different technologies for the underwater data transmission were reviewed and partially tested under the ESONET DM AOEM. The main focus was to design and evaluate available technical solutions for collecting data from different components of the Fram Strait ocean observing system, and an integration of available data streams for the optimal delivery to the future cabled node. The main components of the Fram Strait integrated observing system will be presented and the current status of available technologies for underwater data transfer will be reviewed. On the long term, an initiative of Helmholtz observatories foresees the interdisciplinary Earth-Observing-System FRAM which combines observatories such as the long term deep-sea ecological observatory HAUSGARTEN, the oceanographic Fram Strait integrated observing system and the Svalbard coastal stations maintained by the Norwegian ARCTOS network. A vision of this modular underwater observatory network in Fram Strait will be presented.
Seals as collectors of oceanographic data in the coastal zone
NASA Astrophysics Data System (ADS)
del Villar-Guerra, Diego; Cronin, Michelle; Dabrowski, Tomasz; Bartlett, Darius
2012-12-01
Understanding spatial and temporal variation in water temperatures in the coastal zone is generally limited, as conventional monitoring platforms often prove problematic in these areas, e.g. shallow depths limit access by research vessels, and issues of accuracy and resolution can affect the use of remotely sensed sea-surface temperature data. As a result most currently available data on sea temperature are from offshore waters while coastal areas have remained relatively unexplored. Water temperature is an important parameter to study in these coastal waters, considering its impact and influence on the timing and frequency of harmful algal blooms and their associated impacts on aquaculture. It is a significant factor in the timing of the spring bloom and primary productivity, with consequent influences on the entire marine food web. Advances in bio-logging technologies in recent years have provided opportunities for sensor deployment on a variety of marine animals, including marine mammals, sea birds, fish and turtles, to gather data from inaccessible areas. In this study, we explored the use of telemetry-derived data from instrumented seals in Kenmare Bay in southwest Irish waters to ascertain if seals can be used as sampling platforms in oceanographic studies in the coastal zone and to examine fine scale changes in water temperatures. High spatial and temporal measurements allowed the characterisation of the water dynamics in the estuarine area by the identification of processes such as thermal stratification, up/downwellings and the onset of the thermocline, and provide unique insights into the marine environment in and around the bay, where no previous oceanographic studies have been conducted. Strong correlation between the seal-derived temperature data and in situ temperature recorders and modelled data validates the use of seals as oceanographic platforms on different spatial scales.
15 CFR 950.4 - National Oceanographic Data Center (NODC).
Code of Federal Regulations, 2010 CFR
2010-01-01
... established and houses the world's largest usuable collection of marine data. (a) Oceanographic data available... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false National Oceanographic Data Center... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.4 National...
Pacific western boundary currents and their roles in climate.
Hu, Dunxin; Wu, Lixin; Cai, Wenju; Gupta, Alex Sen; Ganachaud, Alexandre; Qiu, Bo; Gordon, Arnold L; Lin, Xiaopei; Chen, Zhaohui; Hu, Shijian; Wang, Guojian; Wang, Qingye; Sprintall, Janet; Qu, Tangdong; Kashino, Yuji; Wang, Fan; Kessler, William S
2015-06-18
Pacific Ocean western boundary currents and the interlinked equatorial Pacific circulation system were among the first currents of these types to be explored by pioneering oceanographers. The widely accepted but poorly quantified importance of these currents-in processes such as the El Niño/Southern Oscillation, the Pacific Decadal Oscillation and the Indonesian Throughflow-has triggered renewed interest. Ongoing efforts are seeking to understand the heat and mass balances of the equatorial Pacific, and possible changes associated with greenhouse-gas-induced climate change. Only a concerted international effort will close the observational, theoretical and technical gaps currently limiting a robust answer to these elusive questions.
The Gulf of Mexico Coastal Ocean Observing System: A Decade of Data Aggregation and Services.
NASA Astrophysics Data System (ADS)
Howard, M.; Gayanilo, F.; Kobara, S.; Baum, S. K.; Currier, R. D.; Stoessel, M. M.
2016-02-01
The Gulf of Mexico Coastal Ocean Observing System Regional Association (GCOOS-RA) celebrated its 10-year anniversary in 2015. GCOOS-RA is one of 11 RAs organized under the NOAA-led U.S. Integrated Ocean Observing System (IOOS) Program Office to aggregate regional data and make these data publicly-available in preferred forms and formats via standards-based web services. Initial development of GCOOS focused on building elements of the IOOS Data Management and Communications Plan which is a framework for end-to-end interoperability. These elements included: data discovery, catalog, metadata, online-browse, data access and transport. Initial data types aggregated included near real-time physical oceanographic, marine meteorological and satellite data. Our focus in the middle of the past decade was on the production of basic products such as maps of current oceanographic conditions and quasi-static datasets such as bathymetry and climatologies. In the latter part of the decade we incorporated historical physical oceanographic datasets and historical coastal and offshore water quality data into our holdings and added our first biological dataset. We also developed web environments and products to support Citizen Scientists and stakeholder groups such as recreational boaters. Current efforts are directed towards applying data quality assurance (testing and flagging) to non-federal data, data archiving at national repositories, serving and visualizing numerical model output, providing data services for glider operators, and supporting marine biodiversity observing networks. GCOOS Data Management works closely with the Gulf of Mexico Research Initiative Information and Data Cooperative and various groups involved with Gulf Restoration. GCOOS-RA has influenced attitudes and behaviors associated with good data stewardship and data management practices across the Gulf and will to continue to do so into the next decade.
Characteristics of the Areas in which Fast Current Oil Control is Needed
1973-11-01
Synoptic Meteorlogical Observations (1970) U. S. Department of Commerce, Local Cllmatologlcal Data (1972) 51 Q po «» o ov in .Hi «M iH H H <N S 4...Oceanographic Office, Washington, D. C. 24. Summary of Synoptic Meteorlogical Observations; U.S. Navy Weather Command, Washington, P C. 1970 - Volumes 1
Jr. Hunt
1995-01-01
Marbled Murrelets (Brachyramphus marmoratus) occupy nearshore waters in the eastern North Pacific Ocean from central California to the Aleutian Islands. The offshore marine ecology of these waters is dominated by a series of currents roughly parallel to the coast that determine marine productivity of shelf waters by influencing the rate of nutrient...
Multi-Model Validation of Currents in the Chesapeake Bay Region in June 2010
2012-01-01
host “ DaVinci ” at the Naval Oceanographic Office (NAVOCEANO). The same model configuration also took approximately 1 hr of wall clock time for a 72-hr...comparable to the performance Navy DSRC host DaVinci . Products of water level and horizontal current maps as well as station time series, identical to...DSRC host DaVinci and required approximately 5 hrs of wall-clock time for 72-hr forecasts, including data Figure 10. The Chesapeake Bay Delft3D
The organization of oceanographic investigations in Rumania is entrusted to the Fisheries Institute, which is part of the Ministry of Food Resources...inland waters investigate mainly the aspects that further a rational use of fish resources. Also the oceanographic forecasting serves the development of fisheries and fishing. (Author)
33 CFR 1.25-48 - Oceanographic research.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Oceanographic research. 1.25-48... GENERAL PROVISIONS Fees and Charges for Certain Records and Services § 1.25-48 Oceanographic research. (a... research is charged the cost of each meal that he consumes while on board the Coast Guard vessel. (b) The...
33 CFR 1.25-48 - Oceanographic research.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Oceanographic research. 1.25-48... GENERAL PROVISIONS Fees and Charges for Certain Records and Services § 1.25-48 Oceanographic research. (a... research is charged the cost of each meal that he consumes while on board the Coast Guard vessel. (b) The...
33 CFR 1.25-48 - Oceanographic research.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Oceanographic research. 1.25-48... GENERAL PROVISIONS Fees and Charges for Certain Records and Services § 1.25-48 Oceanographic research. (a... research is charged the cost of each meal that he consumes while on board the Coast Guard vessel. (b) The...
33 CFR 1.25-48 - Oceanographic research.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Oceanographic research. 1.25-48... GENERAL PROVISIONS Fees and Charges for Certain Records and Services § 1.25-48 Oceanographic research. (a... research is charged the cost of each meal that he consumes while on board the Coast Guard vessel. (b) The...
33 CFR 1.25-48 - Oceanographic research.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Oceanographic research. 1.25-48... GENERAL PROVISIONS Fees and Charges for Certain Records and Services § 1.25-48 Oceanographic research. (a... research is charged the cost of each meal that he consumes while on board the Coast Guard vessel. (b) The...
Code of Federal Regulations, 2010 CFR
2010-10-01
... research vessels and terms and conditions which apply in lieu thereof. 188.05-2 Section 188.05-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL... terms and conditions which apply in lieu thereof. (a) The oceanographic research vessel shall comply...
Towards The Operational Oceanographic Model System In Estonian Coastal Sea, Baltic Sea
NASA Astrophysics Data System (ADS)
Kõuts, T.; Elken, J.; Raudsepp, U.
An integrated system of nested 2D and 3D hydrodynamic models together with real time forcing data asquisition is designed and set up in pre-operational mode in the Gulf of Finland and Gulf of Riga, the Baltic Sea. Along the Estonian coast, implicit time-stepping 3D models are used in the deep bays and 2D models in the shallow bays with ca 200 m horizontal grid step. Specific model setups have been verified by in situ current measurements. Optimum configuration of initial parameters has been found for certain critical locations, usually ports, oil terminals, etc. Operational system in- tegrates also section of historical database of most important hydrologic parameters in the region, allowing use of certain statistical analysis and proper setup of initial conditions for oceanographic models. There is large variety of applications for such model system, ranging from environmental impact assessment at local coastal sea pol- lution problems to forecast of offshore blue algal blooms. Most probable risk factor in the coastal sea engineering is oil pollution, therefore current operational model sys- tem has direct custom oriented output the oil spill forecast for critical locations. Oil spill module of the operational system consist the automatic weather and hydromet- ric station (distributed in real time to internet) and prognostic model of sea surface currents. System is run using last 48 hour wind data and wind forecast and estimates probable oil deposition areas on the shoreline under certain weather conditions. Cal- culated evolution of oil pollution has been compared with some real accidents in the past and there was found good agreement between model and measurements. Graphi- cal user interface of oil spill model is currently installed at location of port authorities (eg. Muuga port), so in case of accidents it could be used in real time supporting the rescue operations. In 2000 current pre-operational oceanographic model system has been sucessfully used to evaluate environmental impacts of three different deep-port construction options in Saaremaa, NW the Baltic Sea. Intensive campaign of field measurements, consisting the high-resolution surveys of thermohaline properties of water masses (CTD) and timeseries as well horisontal structure of currents were in good agreement with model calculations. Model system well simulated the transport of pollution by surface currents originating from potential port locations at NW coast of the Saaremaa. It allowed to choose the optimum location for port and give also some hindcasts for port construction and exploitation.
Barotropic Tidal Predictions and Validation in a Relocatable Modeling Environment. Revised
NASA Technical Reports Server (NTRS)
Mehra, Avichal; Passi, Ranjit; Kantha, Lakshmi; Payne, Steven; Brahmachari, Shuvobroto
1998-01-01
Under funding from the Office of Naval Research (ONR), and the Naval Oceanographic Office (NAVOCEANO), the Mississippi State University Center for Air Sea Technology (CAST) has been working on developing a Relocatable Modeling Environment(RME) to provide a uniform and unbiased infrastructure for efficiently configuring numerical models in any geographic/oceanic region. Under Naval Oceanographic Office (NAVO-CEANO) funding, the model was implemented and tested for NAVOCEANO use. With our current emphasis on ocean tidal modeling, CAST has adopted the Colorado University's numerical ocean model, known as CURReNTSS (Colorado University Rapidly Relocatable Nestable Storm Surge) Model, as the model of choice. During the RME development process, CURReNTSS has been relocated to several coastal oceanic regions, providing excellent results that demonstrate its veracity. This report documents the model validation results and provides a brief description of the Graphic user Interface (GUI).
Predicting and explaining the movement of mesoscale oceanographic features using CLIPS
NASA Technical Reports Server (NTRS)
Bridges, Susan; Chen, Liang-Chun; Lybanon, Matthew
1994-01-01
The Naval Research Laboratory has developed an oceanographic expert system that describes the evolution of mesoscale features in the Gulf Stream region of the northwest Atlantic Ocean. These features include the Gulf Stream current and the warm and cold core eddies associated with the Gulf Stream. An explanation capability was added to the eddy prediction component of the expert system in order to allow the system to justify the reasoning process it uses to make predictions. The eddy prediction and explanation components of the system have recently been redesigned and translated from OPS83 to C and CLIPS and the new system is called WATE (Where Are Those Eddies). The new design has improved the system's readability, understandability and maintainability and will also allow the system to be incorporated into the Semi-Automated Mesoscale Analysis System which will eventually be embedded into the Navy's Tactical Environmental Support System, Third Generation, TESS(3).
Tracking the Polar Front south of New Zealand using penguin dive data
NASA Astrophysics Data System (ADS)
Sokolov, Serguei; Rintoul, Stephen R.; Wienecke, Barbara
2006-04-01
Nearly 36,000 vertical temperature profiles collected by 15 king penguins are used to map oceanographic fronts south of New Zealand. There is good correspondence between Antarctic Circumpolar Current (ACC) front locations derived from temperatures sampled in the upper 150 m along the penguin tracks and front positions inferred using maps of sea surface height (SSH). Mesoscale features detected in the SSH maps from this eddy-rich region are also reproduced in the individual temperature sections based on dive data. The foraging strategy of Macquarie Island king penguins appears to be influenced strongly by oceanographic structure: almost all the penguin dives are confined to the region close to and between the northern and southern branches of the Polar Front. Surface chlorophyll distributions also reflect the influence of the ACC fronts, with the northern branch of the Polar Front marking a boundary between low surface chlorophyll to the north and elevated values to the south.
The depiction of Alboran Sea Gyre during Donde Va? using remote sensing and conventional data
NASA Technical Reports Server (NTRS)
Laviolette, P. E.
1984-01-01
Experienced oceanographic investigators have come to realize that remote sensing techniques are most successful when applied as part of programs of integrated measurements aimed at solving specific oceanographic problems. A good example of such integration occurred during the multi-platform international experiment, Donde Va? in the Alboran Sea during the period June through October, 1982. The objective of Donde Va? was to derive the interrelationship of the Atlantic waters entering the Mediterranean Sea and the Alboran Sea Gyre. The experimental plan conceived solely with this objective in mind consisted of a variety of remote sensing and conventional platforms: three ships, three aircraft, five current moorings, two satellites and a specialized beach radar (CODAR). Integrated analyses of these multiple-data sets are still being conducted. However, the initial results show detailed structure of the incoming Atlantic jet and Alboran Sea Gyre that would not have been possible by conventional means.
Atmospheric and oceanographic research review, 1979
NASA Technical Reports Server (NTRS)
1980-01-01
Papers generated by atmospheric, oceanographic, and climatological research performed during 1979 at the Goddard Laboratory for Atmospheric Sciences are presented. The GARP/global weather research is aimed at developing techniques for the utilization and analysis of the FGGE data sets. Observing system studies were aimed at developing a GLAS TIROS N sounding retrieval system and preparing for the joint NOAA/NASA AMTS simulation study. The climate research objective is to support the development and effective utilization of space acquired data systems by developing the GLAS GCM for short range climate predictions, studies of the sensitivity of climate to boundary conditions, and predictability studies. Ocean/air interaction studies concentrated on the development of models for the prediction of upper ocean currents, temperatures, sea state, mixed layer depths, and upwelling zones, and on studies of the interactions of the atmospheric and oceanic circulation systems on time scales of a month or more.
Collaborative Preservation of At-Risk Data at NOAA's National Centers for Environmental Information
NASA Astrophysics Data System (ADS)
Casey, K. S.; Collins, D.; Cooper, J. M.; Ritchey, N. A.
2017-12-01
The National Centers for Environmental Information (NCEI) serves as the official long term archive of NOAA's environmental data. Adhering to the principles and responsibilities of the Open Archival Information System (OAIS, ISO 14721), and backed by both agency policies and formal legislation, NCEI ensures that these irreplaceable environmental data are preserved and made available for current users and future generations. These goals are achieved through regional, national, and international collaborative efforts like the ICSU World Data System, the Intergovernmental Oceanographic Commission's International Oceanographic Data and Information Exchange (IODE) program, NSF's DataOne, and through specific data preservation projects with partners such as the NOAA Cooperative Institutes, ESIP, and even retired federal employees. Through efforts like these, at-risk data with poor documentation, on aging media, and of unknown format and content are being rescued and made available to the public for widespread reuse.
NASA Astrophysics Data System (ADS)
Jiang, Y.
2015-12-01
Oceanographic resource discovery is a critical step for developing ocean science applications. With the increasing number of resources available online, many Spatial Data Infrastructure (SDI) components (e.g. catalogues and portals) have been developed to help manage and discover oceanographic resources. However, efficient and accurate resource discovery is still a big challenge because of the lack of data relevancy information. In this article, we propose a search engine framework for mining and utilizing dataset relevancy from oceanographic dataset metadata, usage metrics, and user feedback. The objective is to improve discovery accuracy of oceanographic data and reduce time for scientist to discover, download and reformat data for their projects. Experiments and a search example show that the propose engine helps both scientists and general users search for more accurate results with enhanced performance and user experience through a user-friendly interface.
Thermal Fronts and Cross-Frontal Heat Flux in the Southern Yellow Sea and the East China Sea
2008-01-01
as 9305), and 2–10 September 1993 (as 9309). The data, a part of the Master 6 Oceanographic Observation Data Set ( MOODS ), were obtained under the...the modified YSBCW, and the southern one is generated by the 11 Taiwan Warm Current and/or the uplifted Kuroshio northeast off Taiwan according 12
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Exemptions from inspection laws for oceanographic research vessels and terms and conditions which apply in lieu thereof. 188.05-2 Section 188.05-2 Shipping... PROVISIONS Application § 188.05-2 Exemptions from inspection laws for oceanographic research vessels and...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Exemptions from inspection laws for oceanographic research vessels and terms and conditions which apply in lieu thereof. 188.05-2 Section 188.05-2 Shipping... PROVISIONS Application § 188.05-2 Exemptions from inspection laws for oceanographic research vessels and...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Exemptions from inspection laws for oceanographic research vessels and terms and conditions which apply in lieu thereof. 188.05-2 Section 188.05-2 Shipping... PROVISIONS Application § 188.05-2 Exemptions from inspection laws for oceanographic research vessels and...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Exemptions from inspection laws for oceanographic research vessels and terms and conditions which apply in lieu thereof. 188.05-2 Section 188.05-2 Shipping... PROVISIONS Application § 188.05-2 Exemptions from inspection laws for oceanographic research vessels and...
Larval fish variability in response to oceanographic features in a nearshore nursery area.
Pattrick, P; Strydom, N A
2014-09-01
The influence of oceanographic features on ichthyoplankton assemblages in the warm temperate nearshore region of Algoa Bay, South Africa, was assessed. The nearshore ichthyoplankton comprised 88 taxa from 34 families. Samples were collected at six stations between August 2010 and July 2012 using a plankton ring net of 750 mm diameter and 500 µm mesh aperture. The majority of larvae collected were in a preflexion stage, indicating the potential importance of the nearshore for newly hatched larvae. Engraulidae dominated the catch (38·4%), followed by Cynoglossidae (28·1%) and Sparidae (8·4%). Larval fish abundance was highest during austral spring and summer (September to February). Unique patterns in responses of each dominant fish species to oceanographic features in the nearshore indicate the sensitivity of the early developmental stage to environmental variables. Using generalized linear models, ichthyoplankton abundance responded positively to upwelling and when warm water plumes originating from an Agulhas Current meander entered Algoa Bay. Highest abundances of Engraulis encrasicolus and Sardinops sagax were observed during Agulhas Plume intrusions into Algoa Bay. When a mixed and stratified water column persisted in the nearshore region of Algoa Bay, larval fish abundance decreased. The nearshore region of Algoa Bay appears to serve as a favourable environment for the accumulation of ichthyoplankton. © 2014 The Fisheries Society of the British Isles.
The impact of El Niño events on the pelagic food chain in the northern California Current.
Fisher, Jennifer L; Peterson, William T; Rykaczewski, Ryan R
2015-12-01
The zooplankton of the northern California Current are typically characterized by an abundance of lipid-rich copepods that support rapid growth and survival of ecologically, commercially, and recreationally valued fish, birds, and mammals. Disruption of this food chain and reduced ecosystem productivity are often associated with climatic variability such as El Niño events. We examined the variability in timing, magnitude, and duration of positive temperature anomalies and changes in copepod species composition in the northern California Current in relation to 10 tropical El Niño events. Measurable impacts on mesozooplankton of the northern California Current were observed during seven of 10 of these events. The occurrence of anomalously warm water and the response of the copepod community was rapid (lag of zero to 2 months) following the initiation of canonical Eastern Pacific (EP) events, but delayed (lag of 2-8 months) following 'Modoki' Central Pacific (CP) events. The variable lags in the timing of a physical and biological response led to impacts in the northern California Current peaking in winter during EP events and in the spring during CP events. The magnitude and duration of the temperature and copepod anomalies were strongly and positively related to the magnitude and duration of El Niño events, but were also sensitive to the phase of the lower frequency Pacific Decadal Oscillation. When fisheries managers and biological oceanographers are faced with the prospect of a future El Niño event, prudent management and observation will require consideration of the background oceanographic conditions, the type of event, and both the magnitude and duration of the event when assessing the potential physical and biological impacts on the northern California Current. © 2015 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutken, Carol; Macelloni, Leonardo; D'Emidio, Marco
This study was designed to investigate temporal variations in hydrate system dynamics by measuring changes in volumes of hydrate beneath hydrate-bearing mounds on the continental slope of the northern Gulf of Mexico, the landward extreme of hydrate occurrence in this region. Direct Current Resistivity (DCR) measurements were made contemporaneously with measurements of oceanographic parameters at Woolsey Mound, a carbonate-hydrate complex on the mid-continental slope, where formation and dissociation of hydrates are most vulnerable to variations in oceanographic parameters affected by climate change, and where changes in hydrate stability can readily translate to loss of seafloor stability, impacts to benthic ecosystems,more » and venting of greenhouse gases to the water-column, and eventually, the atmosphere. We focused our study on hydrate within seafloor mounds because the structurally-focused methane flux at these sites likely causes hydrate formation and dissociation processes to occur at higher rates than at sites where the methane flux is less concentrated and we wanted to maximize our chances of witnessing association/dissociation of hydrates. We selected a particularly well-studied hydrate-bearing seafloor mound near the landward extent of the hydrate stability zone, Woolsey Mound (MC118). This mid-slope site has been studied extensively and the project was able to leverage considerable resources from the team’s research experience at MC118. The site exhibits seafloor features associated with gas expulsion, hydrates have been documented at the seafloor, and changes in the outcropping hydrates have been documented, photographically, to have occurred over a period of months. We conducted observatory-based, in situ measurements to 1) characterize, geophysically, the sub-bottom distribution of hydrate and its temporal variability, and 2) contemporaneously record relevant environmental parameters (temperature, pressure, salinity, turbidity, bottom currents) to detect short-term changes within the hydrates system, identify relationships/impacts of local oceanographic parameters on the hydrates system, and improve our understanding of how seafloor instability is affected by hydrates-driven changes. A 2009 DCR survey of MC118 demonstrated that we could image resistivity anomalies to a depth of 75m below the seafloor in water depths of 1km. We reconfigured this system to operate autonomously on the seafloor in a pre-programmed mode, for periods of months. We designed and built a novel seafloor lander and deployment capability that would allow us to investigate the seafloor at potential deployment sites and deploy instruments only when conditions met our criteria. This lander held the DCR system, controlling computers, and battery power supply, as well as instruments to record oceanographic parameters. During the first of two cruises to the study site, we conducted resistivity surveying, selected a monitoring site, and deployed the instrumented lander and DCR, centered on what appeared to be the most active locations within the site, programmed to collect a DCR profile, weekly. After a 4.5-month residence on the seafloor, the team recovered all equipment. Unfortunately, several equipment failures occurred prior to recovery of the instrument packages. Prior to the failures, however, two resistivity profiles were collected together with oceanographic data. Results show, unequivocally, that significant changes can occur in both hydrate volume and distribution during time periods as brief as one week. Occurrences appear to be controlled by both deep and near-surface structure. Results have been integrated with seismic data from the area and show correspondence in space of hydrate and structures, including faults and gas chimneys.« less
[Oceanography and King Dom Carlos I's collection of iconography].
Jardim, Maria Estela; Peres, Isabel Marília; Ré, Pedro Barcia; Costa, Fernanda Madalena
2014-01-01
After the Challenger expedition (1872-1878), other nations started to show interest in oceanographic research and organizing their own expeditions. As of 1885, Prince Albert I of Monaco conducted oceanographic campaigns with the collaboration of some of the best marine biologists and physical oceanographers of the day, inventing new techniques and instruments for the oceanographic work. Prince Albert's scientific activity certainly helped kindle the interest of his friend, Dom Carlos I, king of Portugal, in the study of the oceans and marine life. Both shared the need to use photography to document their studies. This article analyzes the role of scientific photography in oceanography, especially in the expeditions organized by the Portuguese monarch.
Commercial applications of satellite oceanography
NASA Technical Reports Server (NTRS)
Montgomery, D. R.
1981-01-01
It is shown that in the next decade the oceans' commercial users will require an operational oceanographic satellite system or systems capable of maximizing real-time coverage over all ocean areas. Seasat studies suggest that three spacecraft are required to achieve this. Here, the sensor suite would measure surface winds, wave heights (and spectral energy distribution), ice characteristics, sea-surface temperature, ocean colorimetry, height of the geoid, salinity, and subsurface thermal structure. The importance of oceanographic data being distributed to commercial users within two hours of observation time is stressed. Also emphasized is the importance of creating a responsive oceanographic satellite data archive. An estimate of the potential dollar benefits of such an operational oceanographic satellite system is given.
Circulation in the Hudson Shelf Valley: MESA physical oceanographic studies in New York Bight, 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, D.A.; Hansen, D.V.; Han, G.C.
1982-11-20
Over 900 days of current velocity data were obtained at mainly two locations in the inner and outer Hudson Shelf Valley (HSV). The large cross-axis depth gradients in the HSV, together with the strong winter cyclones and the baroclinic density distribution over the shelf, are primarily responsible for the major circulation features observed in the valley. CSTD data from 12 cruises and meteorological data from JFK International Airport and an environmental buoy were collected concurrently with the current meter data.
Enhancing AUV Operational Capabilities: Hovering, Rendezvous, and Docking
1997-09-30
ton on the dock that plunges into the bottom of the puck. A rubber sheath insulates the end of the button from the seawater and the exposed current...AUV Navigation and Self -Motion in Shallow Water, ONR. Autonomous Oceanographic Sampling Network Development, ONR. Enhancing AUV Operational...and Failure Recovery, ONR. Dependable Network Topologies with Network Fragment Healing for Component Level Intelli- gent Distributed Control Systems for
Acoustically-equipped Ocean Gliders for Environmental and Oceanographic Research
2014-09-30
mammal occurrence and behavior. The instruments purchased with this grant will significantly enhance our DoD-funded work, including both currently...funded research and proposed research. OBJECTIVES The Navy observes and studies marine mammals , both to better understand marine mammal ...occurrence and behavior and also to mitigate the deleterious effects of its operations on marine mammals . To facilitate acquisition of marine mammal data, we
Oceanographic Analysis of Sun Glint Images Taken on Space Shuttle Mission STS 41-G.
1986-03-01
10. SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. ?I TITLE (Include Security Ciassification) OCEANOGRAPHIC...CONTENTS le INTRJODUCTION --- ---. m.--- --..-- --.-- -- -- -- --- -- ---.-. II. WESTERN MEDITERRANEAN OCEANOGRAPHIC OVERVIEV - --------------- 10. A...By computing the arc tangent of 128 n.m./125 n.m. a tilt angle of 45.7’ was approximated for the camera lens. Two simplifications were made. Earth
Global Isotopic Signatures of Oceanic Island Basalts.
1991-08-01
and the__ WOODS HOLE OCEANOGRAPHIC INSTITUTION August 1991 ©Lynn A. Oschmann 1991 The author hereby grants to MIT, WHOI, and the U.S. Government...Massachusetts Institute of Technology! Woods Hole Oceanographic Institution Certified 1W ___ ____________________ Dr. Staidlc\\ R. I L, rt Senior Scientik, Woods ...Institute of T’echnology! Woods Hole Oceanographic Institution 3 GLOBAL ISOTOPIC SIGNATURES OF OCEANIC ISLAND BASALTS by LYNN A. OSCHMANN Submitted to the
REMOTE SENSING IN OCEANOGRAPHY.
remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and
The non-Federal oceanographic community: An overview
NASA Technical Reports Server (NTRS)
Swetnick, M. A.
1981-01-01
A portion of the broad domestic non-Federal oceanographic community that represents a potential market for satellite remote sensor derived oceanographic data and/or marine environmental information is presented. The overview consists of listings of individuals and/or organizations who have used, or are likely to use such data or information for scientific research, offshore engineering purposes, marine resources exploration and utilization, marine related operational applications, or coastal zone management.
Networking Multiple Autonomous Air and Ocean Vehicles for Oceanographic Research and Monitoring
NASA Astrophysics Data System (ADS)
McGillivary, P. A.; Borges de Sousa, J.; Rajan, K.
2013-12-01
Autonomous underwater and surface vessels (AUVs and ASVs) are coming into wider use as components of oceanographic research, including ocean observing systems. Unmanned airborne vehicles (UAVs) are now available at modest cost, allowing multiple UAVs to be deployed with multiple AUVs and ASVs. For optimal use good communication and coordination among vehicles is essential. We report on the use of multiple AUVs networked in communication with multiple UAVs. The UAVs are augmented by inferential reasoning software developed at MBARI that allows UAVs to recognize oceanographic fronts and change their navigation and control. This in turn allows UAVs to automatically to map frontal features, as well as to direct AUVs and ASVs to proceed to such features and conduct sampling via onboard sensors to provide validation for airborne mapping. ASVs can also act as data nodes for communication between UAVs and AUVs, as well as collecting data from onboard sensors, while AUVs can sample the water column vertically. This allows more accurate estimation of phytoplankton biomass and productivity, and can be used in conjunction with UAV sampling to determine air-sea flux of gases (e.g. CO2, CH4, DMS) affecting carbon budgets and atmospheric composition. In particular we describe tests in July 2013 conducted off Sesimbra, Portugal in conjunction with the Portuguese Navy by the University of Porto and MBARI with the goal of tracking large fish in the upper water column with coordinated air/surface/underwater measurements. A thermal gradient was observed in the infrared by a low flying UAV, which was used to dispatch an AUV to obtain ground truth to demonstrate the event-response capabilities using such autonomous platforms. Additional field studies in the future will facilitate integration of multiple unmanned systems into research vessel operations. The strength of hardware and software tools described in this study is to permit fundamental oceanographic measurements of both ocean and atmosphere over temporal and spatial scales that have previously been problematic. The methods demonstrated are particularly suited to the study of oceanographic fronts and for tracking and mapping oil spills or plankton blooms. With the networked coordination of multiple autonomous systems, individual components may be changed out while ocean observations continue, allowing coarse to fine spatial studies of hydrographic features over temporal dimensions that would otherwise be difficult, including diurnal and tidal periods. Constraints on these methods currently involve coordination of data archiving systems into shipboard operating systems, familiarization of oceanographers with these methods, and existing nearshore airspace use constraints on UAVs. An important outcome of these efforts is to understand the methodology for using multiple heterogeneous autonomous vehicles for targeted science exploration.
NASA Astrophysics Data System (ADS)
Baird, Mark E.; Everett, Jason D.; Suthers, Iain M.
2011-03-01
The research vessel Warreen obtained 1742 planktonic samples along the continental shelf and slope of southeast Australia from 1938-42, representing the earliest spatially and temporally resolved zooplankton data from Australian marine waters. In this paper, Warreen observations along the southeast Australian seaboard from 28°S to 38°S are interpreted based on synoptic meteorological and oceanographic conditions and ocean climatologies. Meteorological conditions are based on the NOAA-CIRES 20th Century Reanalysis Project; oceanographic conditions use Warreen hydrological observations, and the ocean climatology is the CSIRO Atlas of Regional Seas. The Warreen observations were undertaken in waters on average 0.45 °C cooler than the climatological average, and included the longest duration El Niño of the 20th century. In northern New South Wales (NSW), week time-scale events dominate zooplankton response. In August 1940 an unusual winter upwelling event occurred in northern NSW driven by a stronger than average East Australian Current (EAC) and anomalous northerly winds that resulted in high salp and larvacean abundance. In January 1941 a strong upwelling event between 28° and 33°S resulted in a filament of upwelled water being advected south and alongshore, which was low in zooplankton biovolume. In southern NSW a seasonal cycle in physical and planktonic characteristics is observed. In January 1941 the poleward extension of the EAC was strong, advecting more tropical tunicate species southward. Zooplankton abundance and distribution on the continental shelf and slope are more dependent on weekly to monthly timescales on local oceanographic and meteorological conditions than continental-scale interannual trends. The interpretation of historical zooplankton observations of the waters off southeast Australia for the purpose of quantifying anthropogenic impacts will be improved with the use of regional hindcasts of synoptic ocean and atmospheric weather that can explain some of the physically forced natural variability.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-29
... exclusively in instruction in oceanography or limnology, or both, or exclusively in oceanographic research.... 441 an oceanographic research vessel ``. . . being employed exclusively in instruction in oceanography...
Low-Frequency Oceanographic Variability Near Flemish Cap and Sackville Spur
NASA Astrophysics Data System (ADS)
Layton, Chantelle; Greenan, Blair J. W.; Hebert, Dave; Kelley, Dan E.
2018-03-01
To address a need for science-based advice on issues of resource exploration, two oceanographic moorings were placed on the abyssal slope of northwest Flemish Cap from July 2013 to July 2014. These yielded some of the first long-term moored measurements of velocity, temperature, and salinity in the region. Hydrographic and lowered-ADCP measurements made during mooring deployment and recovery reveal that the deep Labrador Current flows approximately along isobaths between water depths of 1,200 and 2,200 m. However, these snapshots differ significantly, with stronger currents observed during the deployment survey. The mooring data, obtained near the 1,500 m isobath, reveal a complex temporal variation of the current. The velocity spectrum is dominated by a peak at a period of approximately 21 days, with power increasing with depth in the water column and varying through the year. In other boundary-current studies, variations in the several-week band have been attributed to baroclinic topographic Rossby waves, but with just two widely spaced moorings, we cannot infer the wave number and test for such waves using the dispersion relationship. However, an indirect estimate of wave number can be made by examining the variation of spectral power with depth, and doing this yields results that are reasonably consistent with a linear theory of baroclinic topographic Rossby waves for water of constant stratification over a planar slope. This agreement is somewhat surprising, given the simplicity of the theory and the complexity of the domain, but it appears to offer a clear indication of the importance of baroclinic vorticity dynamics in this region.
Piper, David J.W.; Normark, William R.
2009-01-01
How the processes that initiate turbidity currents influence turbidite deposition is poorly understood, and many discussions in the literature rely on concepts that are overly simplistic. Marine geological studies provide information on the initiation and flow path of turbidity currents, including their response to gradient. In case studies of late Quaternary turbidites on the eastern Canadian and western U.S. margins, initiation processes are inferred either from real-time data for historical flows or indirectly from the age and contemporary paleogeography, erosional features, and depositional record. Three major types of initiation process are recognized: transformation of failed sediment, hyperpycnal flow from rivers or ice margins, and resuspension of sediment near the shelf edge by oceanographic processes. Many high-concentration flows result from hyperpycnal supply of hyperconcentrated bedload, or liquefaction failure of coarse-grained sediment, and most tend to deposit in slope conduits and on gradients < 0.5° at the base of slope and on the mid fan. Highly turbulent flows, from transformation of retrogressive failures and from ignitive flows that are triggered by oceanographic processes, tend to cannibalize these more proximal sediments and redeposit them on lower gradients on the basin plain. Such conduit flushing provides most of the sediment in large turbidites. Initiation mechanism exerts a strong control on the duration of turbidity flows. In most basins, there is a complex feedback between different types of turbidity-current initiation, the transformation of the flows, and the associated slope morphology. As a result, there is no simple relationship between initiating process and type of deposit.
NASA Astrophysics Data System (ADS)
Millard, R. C.; Seaver, G.
1990-12-01
A 27-term index of refraction algorithm for pure and sea waters has been developed using four experimental data sets of differing accuracies. They cover the range 500-700 nm in wavelength, 0-30°C in temperature, 0-40 psu in salinity, and 0-11,000 db in pressure. The index of refraction algorithm has an accuracy that varies from 0.4 ppm for pure water at atmospheric pressure to 80 ppm at high pressures, but preserves the accuracy of each original data set. This algorithm is a significant improvement over existing descriptions as it is in analytical form with a better and more carefully defined accuracy. A salinometer algorithm with the same uncertainty has been created by numerically inverting the index algorithm using the Newton-Raphson method. The 27-term index algorithm was used to generate a pseudo-data set at the sodium D wavelength (589.26 nm) from which a 6-term densitometer algorithm was constructed. The densitometer algorithm also produces salinity as an intermediate step in the salinity inversion. The densitometer residuals have a standard deviation of 0.049 kg m -3 which is not accurate enough for most oceanographic applications. However, the densitometer algorithm was used to explore the sensitivity of density from this technique to temperature and pressure uncertainties. To achieve a deep ocean densitometer of 0.001 kg m -3 accuracy would require the index of refraction to have an accuracy of 0.3 ppm, the temperature an accuracy of 0.01°C and the pressure 1 db. Our assessment of the currently available index of refraction measurements finds that only the data for fresh water at atmospheric pressure produce an algorithm satisfactory for oceanographic use (density to 0.4 ppm). The data base for the algorithm at higher pressures and various salinities requires an order of magnitude or better improvement in index measurement accuracy before the resultant density accuracy will be comparable to the currently available oceanographic algorithm.
NASA Technical Reports Server (NTRS)
OKeefe, Matthew (Editor); Kerr, Christopher L. (Editor)
1998-01-01
This report contains the abstracts and technical papers from the Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications, held June 15-18, 1998, in Scottsdale, Arizona. The purpose of the workshop is to bring together software developers in meteorology and oceanography to discuss software engineering and code design issues for parallel architectures, including Massively Parallel Processors (MPP's), Parallel Vector Processors (PVP's), Symmetric Multi-Processors (SMP's), Distributed Shared Memory (DSM) multi-processors, and clusters. Issues to be discussed include: (1) code architectures for current parallel models, including basic data structures, storage allocation, variable naming conventions, coding rules and styles, i/o and pre/post-processing of data; (2) designing modular code; (3) load balancing and domain decomposition; (4) techniques that exploit parallelism efficiently yet hide the machine-related details from the programmer; (5) tools for making the programmer more productive; and (6) the proliferation of programming models (F--, OpenMP, MPI, and HPF).
NASA Astrophysics Data System (ADS)
Fujii, Satoshi; Heron, Malcolm L.; Kim, Kuh; Lai, Jian-Wu; Lee, Sang-Ho; Wu, Xiangbai; Wu, Xiongbin; Wyatt, Lucy R.; Yang, Wen-Chang
2013-03-01
More than 110 radar stations are in operation at the present time in Asia and Oceania countries, which is nearly half of all the existing radar stations in the world, for purposes related to marine safety, oil spill response, tsunami warning, coastal zone management and understanding of ocean current dynamics, depending mainly on each country's coastal sea characteristics. This paper introduces the oceanographic radar networks of Australia, China, Japan, Korea and Taiwan, presented at the 1st Ocean Radar Conference for Asia (ORCA) held in May 2012, Seoul, Korea, to share information about the radar network developments and operations, knowledge and experiences of data management, and research activity and application of the radar-derived data of neighbouring countries. We hope this overview paper may contribute as the first step to promotion of regional collaborations in the radar observations and data usages and applications in order to efficiently monitor the coastal and marginal sea waters along the western Pacific Ocean periphery.
Design and Application of New Low-Cost Instruments for Marine Environmental Research
Marcelli, Marco; Piermattei, Viviana; Madonia, Alice; Mainardi, Umberto
2014-01-01
The development of low-cost instrumentation plays a key role in marine environmental studies and represents one of the most innovative aspects of current oceanographic research. These kinds of devices can be used for several applications, ranging from vertical profilers to stand-alone systems, and can be installed on different platforms (buoys, Voluntary Observing Ships, underwater vehicles, etc.). The availability of low-cost technologies enables the realization of extended observatory networks for the study of marine physical and biological processes through an integrated approach merging in situ observations, forecasting models and remotely sensed data. We present new low-cost sensors and probes developed to measure marine temperature, conductivity, chlorophyll a and Chromophoric Dissolved Organic Matter fluorescence, focusing on sensing strategies, general architecture, laboratory trials, in situ tests and comparison with standard instruments. Furthermore, we report the expendable (New T-FLaP), vertical profiler (T-FLaPpro) and stand-alone (Spectra) applications of these technological developments that were tested during several oceanographic surveys in the Mediterranean Sea. PMID:25490594
Cavalcante, Geórgenes H; Feary, David A; Burt, John A
2016-04-30
Using long-term oceanographic surveys and a 3-D hydrodynamic model we show that localized peak winds (known as shamals) cause fluctuation in water current speed and direction, and substantial oscillations in sea-bottom salinity and temperature in the southern Persian/Arabian Gulf. Results also demonstrate that short-term shamal winds have substantial impacts on oceanographic processes along the southern Persian/Arabian Gulf coastline, resulting in formation of large-scale (52 km diameter) eddies extending from the coast of the United Arab Emirates (UAE) to areas near the off-shore islands of Iran. Such eddies likely play an important role in transporting larvae from well-developed reefs of the off-shore islands to the degraded reef systems of the southern Persian/Arabian Gulf, potentially maintaining genetic and ecological connectivity of these geographically distant populations and enabling enhanced recovery of degraded coral communities in the UAE. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ocean Modeling in an Eddying Regime
NASA Astrophysics Data System (ADS)
Hecht, Matthew W.; Hasumi, Hiroyasu
This monograph is the first to survey progress in realistic simulation in a strongly eddying regime made possible by recent increases in computational capability. Its contributors comprise the leading researchers in this important and constantly evolving field. Divided into three parts, • Oceanographic Processes and Regimes: Fundamental Questions • Ocean Dynamics and State: From Regional to Global Scale, and • Modeling at the Mesoscale: State of the Art and Future Directions the volume details important advances in physical oceanography based on eddy resolving ocean modeling. It captures the state of the art and discusses issues that ocean modelers must consider in order to effectively contribute to advancing current knowledge, from subtleties of the underlying fluid dynamical equations to meaningful comparison with oceanographic observations and leading-edge model development. It summarizes many of the important results which have emerged from ocean modeling in an eddying regime, for those interested broadly in the physical science. More technical topics are intended to address the concerns of those actively working in the field.
Design and application of new low-cost instruments for marine environmental research.
Marcelli, Marco; Piermattei, Viviana; Madonia, Alice; Mainardi, Umberto
2014-12-05
The development of low-cost instrumentation plays a key role in marine environmental studies and represents one of the most innovative aspects of current oceanographic research. These kinds of devices can be used for several applications, ranging from vertical profilers to stand-alone systems, and can be installed on different platforms (buoys, Voluntary Observing Ships, underwater vehicles, etc.). The availability of low-cost technologies enables the realization of extended observatory networks for the study of marine physical and biological processes through an integrated approach merging in situ observations, forecasting models and remotely sensed data. We present new low-cost sensors and probes developed to measure marine temperature, conductivity, chlorophyll a and Chromophoric Dissolved Organic Matter fluorescence, focusing on sensing strategies, general architecture, laboratory trials, in situ tests and comparison with standard instruments. Furthermore, we report the expendable (New T-FLaP), vertical profiler (T-FLaPpro) and stand-alone (Spectra) applications of these technological developments that were tested during several oceanographic surveys in the Mediterranean Sea.
Oceanographic Research Capacity in the US Virgin Islands
NASA Astrophysics Data System (ADS)
Jobsis, P.; Habtes, S. Y.
2016-02-01
The University of the Virgin Islands (UVI), a small HBCU with campuses on both St Thomas and St Croix, has a growing marine science department that is quickly increasing its capacity for oceanographic monitoring and research due to VI-EPSCoR (National Science Foundation's Experimental Program to Stimulate Competitive Research in the Virgin Islands) and associations with CariCOOS (the Caribbean Coastal Ocean Observing System). CariCOOS is managed through the University of Puerto Rico Mayaguez, with funding from NOAA's Integrated Ocean Observing System (IOOS). Over the past five years two oceanographic data buoys have been deployed increasing the real-time oceanographic data available for the northeastern Caribbean. In addition, researchers at UVI have deployed ADCPs and conducted CTD casts at relevant research sites as part of routine territorial monitoring programs. With VI-EPSCoR funding UVI has developed an Institute for Geocomputational Analysis and Statistic (GeoCAS) to conduct geospatial analysis and to act as a data repository and hosting/serving center for research, environmental and other relevant data. Much of the oceanographic data is available at www.caricoos.org and www.geocas.uvi.edu. As the marine research infrastructure at UVI continues to grow, the oceanographic and marine biology research program at the University's Center for Marine and Environmental Studies will continue to expand. This will benefit not only UVI researchers but also any researcher with interests in this region of the Caribbean.
Assessment of Hybrid Coordinate Model Velocity Fields During Agulhas Return Current 2012 Cruise
2013-06-01
Forecasts GDEM Generalized Digital Environmental Model GPS Global Positioning System HYCOM HYbrid Coordinate Ocean Model MICOM Miami Isopycnal...speed profiles was climatology from the Generalized Digital Environmental Model ( GDEM ; Teague et al. 1990). Made operational in 1999, the Modular... GDEM was the only tool a naval oceanographer had at his or her disposal to characterize ocean conditions where in-situ observations could not be
Interpretation of remotely sensed data and its applications in oceanography
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Tanaka, K.; Inostroza, H. M.; Verdesio, J. J.
1982-01-01
The methodology of interpretation of remote sensing data and its oceanographic applications are described. The elements of image interpretation for different types of sensors are discussed. The sensors utilized are the multispectral scanner of LANDSAT, and the thermal infrared of NOAA and geostationary satellites. Visual and automatic data interpretation in studies of pollution, the Brazil current system, and upwelling along the southeastern Brazilian coast are compared.
Lowther, Andrew D.; Harcourt, Robert G.; Page, Bradley; Goldsworthy, Simon D.
2013-01-01
The southern coastline of Australia forms part of the worlds' only northern boundary current system. The Bonney Upwelling occurs every austral summer along the south-eastern South Australian coastline, a region that hosts over 80% of the worlds population of an endangered endemic otariid, the Australian sea lion. We present the first data on the movement characteristics and foraging behaviour of adult male Australian sea lions across their South Australian range. Synthesizing telemetric, oceanographic and isotopic datasets collected from seven individuals enabled us to characterise individual foraging behaviour over an approximate two year time period. Data suggested seasonal variability in stable carbon and nitrogen isotopes that could not be otherwise explained by changes in animal movement patterns. Similarly, animals did not change their foraging patterns despite fine-scale spatial and temporal variability of the upwelling event. Individual males tended to return to the same colony at which they were tagged and utilized the same at-sea regions for foraging irrespective of oceanographic conditions or time of year. Our study contrasts current general assumptions that male otariid life history strategies should result in greater dispersal, with adult male Australian sea lions displaying central place foraging behaviour similar to males of other otariid species in the region. PMID:24086338
A new seepage site south of Svalbard? Results from Eurofleets-2 BURSTER cruise
NASA Astrophysics Data System (ADS)
Giulia Lucchi, Renata; Morigi, Caterina; Sabbatini, Anna; Mazzini, Adriano; Krueger, Martin; de Vittor, Cinzia; Kovacevic, Vedrana; Deponte, Davide; Stefano, Graziani; Bensi, Manuel; Langone, Leonardo; Eurofleets2-Burster*, Scientific Party Of
2017-04-01
The oceanographic and environmental characteristics of the Kveithola Glacial Trough, located south of Svalbard, have been investigated during the Eurofleets2-BURSTER project onboard the German icebreaker Polarstern (expedition PS99-1a, June, 19-20, 2016). The inner part of the glacial trough contains a complex sediment drift that deposited under persistent bottom currents, active in the area after Last Glacial Maximum. Notwithstanding the highly dynamic environment depicted from the morphological and structural characteristics of the Kveithola sediment drift, previous studies indicated the presence of an apparently "stagnant" environment with black anoxic sediments and absence of bottom current related sediment features. We present the preliminary results from the new dataset that includes micropaleontological, geochemical and microbial analyses of multi-core sediments; morphological analyses of sea floor sediments with benthic camera (Ocean Floor Observatory System); acoustic analyses of the sub-bottom record, and oceanographic analyses of CTD-Rosette sampling, all together indicating the possible presence of a new seepage site in the Arctic area south of 75°N Latitude. *Bazzaro, M., Biebow, N., Carbonara, K., Caridi, F., Dominiczak, A., Gamboa Sojo, V.M., Laterza R., Le Gall, C., Musco, M.E., Povea, P., Relitti, F., Ruggiero, L., Rui, L., Sánchez Guillamón, O., Tagliaferro, M., Topchiy, M., Wiberg, D., Zoch, D.
Patterns in larval fish assemblages under the influence of the Brazil current
NASA Astrophysics Data System (ADS)
Katsuragawa, M.; Dias, J. F.; Harari, J.; Namiki, C.; Zani-Teixeira, M. L.
2014-10-01
The present work investigates the composition of larval fish assemblages in the area under the influence of the Brazil Current (BC) off the Southeastern Brazilian Bight. Ichthyoplankton was sampled during two oceanographic cruises (November-December/1997 - spring; May/2001 - autumn) with bongo nets oblique tows. Seasonal variation and a coastal-ocean pattern in the distribution of larval fish was observed and was influenced by the dynamics of the water masses, Coastal Water (CW), Tropical Water (TW) and South Atlantic Central Water (SACW), the last two of which were transported by the BC. During spring, the shelf assemblage was dominated by larvae of small pelagic fishes, such as Sardinella brasiliensis, Engraulis anchoita and Trachurus lathami, and was associated with the enrichment of shallow water by the SACW upwelling. In autumn, the abundance of coastal species larvae was reduced, and the shelf assemblage was dominated by Bregmaceros cantori. A transitional assemblage occurred during the spring, and comprised mesopelagic and coastal species. In both seasons, the oceanic assemblage was dominated by the mesopelagic families, Myctophidae, Sternopthychidae and Phosichthyidae. The oceanographic conditions also demonstrated clear differences between the northern and southern subareas, particularly in the shelf zone. This was especially the case during autumn when a latitudinal gradient in larval fish assemblages became more pronounced.
pub/dailyclim Retrospective CFS Atmospheric and Oceanographic MONTHLY cd pub/cfs/monthly Retrospective CFS Atmospheric DAILY Retrospective CFS Oceanographic DAILY cd pub/daily/glb cd pub/daily/ocndaily CFS
Technologies for Online Data Management of Oceanographic Data
NASA Astrophysics Data System (ADS)
Zodiatis, G.; Hayes, D.; Karaolia, A.; Stylianou, S.; Nikolaidis, A.; Constantinou, I.; Michael, S.; Galanis, G.; Georgiou, G.
2012-04-01
The need for efficient and effective on line data management is greatly recognized today by the marine research community. The Cyprus Oceanography Center at the University of Cyprus, realizing this need, is continuously working in this area and has developed a variety of data management and visualization tools which are currently utilized for both the Mediterranean and the Black Sea. Bythos, CYCOFOS and LAS server are three different systems employed by the Oceanography Center, each one dealing with different data sets and processes. Bythos is a rich internet application that combines the latest technologies and enables scientists to search, visualize and download climatological oceanographic data with capabilities of being applied worldwide. CYCOFOS is an operational coastal ocean forecasting and observing system which provides in near real time predictions for sea currents, hydrological characteristics, waves, swells and tides, remote sensing and in-situ data from various remote observing platforms in the Mediterranean Sea, the EEZ and the coastal areas of Cyprus. LAS (Live Access Server) is deployed to present distributed various types of data sets as a unified virtual data base through the use of OpenDap networking. It is first applied for providing an integrated, high resolution system for monitoring the energy potential from sea waves in the Exclusive Economic Zone of Cyprus and the Eastern Mediterranean Levantine Basin. This paper presents the aforementioned technologies as currently adopted by the Cyprus Oceanography Center and describes their utilization that supports both the research and operational activities in the Mediterranean.
2014-09-30
and Fish Near the Shelfbreak Front off Cape Hatteras James F. Lynch MS #11, Woods Hole Oceanographic Institution Woods Hole, MA 02543 Phone...508) 289-2230 Fax: (508) 457-2194 e-mail: jlynch@whoi.edu Glen Gawarkiewicz MS#21, Woods Hole Oceanographic Institution Woods Hole, MA 02543...Phone: (508) 289-2913 Fax: (508) 457-2181 e-mail: gleng@whoi.edu Ying-Tsong Lin MS #11, Woods Hole Oceanographic Institution Woods Hole, MA 02543
2016-09-01
searching for lost car keys in a parking lot to prosecuting a submarine in the South China Sea. This research draws on oceanographic properties to...search area based on the oceanographic properties at 21N 119E. 14. SUBJECT TERMS Search Theory, Undersea Warfare, South China Sea, Anti- Submarine ...lot to prosecuting a submarine in the South China Sea. This research draws on oceanographic properties to develop a search radii for two surface ships
Xu, Jingping; Lightsom, Fran; Noble, Marlene A.; Denham, Charles
2002-01-01
During the past several years, the sediment transport group in the Coastal and Marine Geology Program (CMGP) of the U. S. Geological Survey has made major revisions to its methodology of processing, analyzing, and maintaining the variety of oceanographic time-series data. First, CMGP completed the transition of the its oceanographic time-series database to a self-documenting NetCDF (Rew et al., 1997) data format. Second, CMGP’s oceanographic data variety and complexity have been greatly expanded from traditional 2-dimensional, single-point time-series measurements (e.g., Electro-magnetic current meters, transmissometers) to more advanced 3-dimensional and profiling time-series measurements due to many new acquisitions of modern instruments such as Acoustic Doppler Current Profiler (RDI, 1996), Acoustic Doppler Velocitimeter, Pulse-Coherence Acoustic Doppler Profiler (SonTek, 2001), Acoustic Bacscatter Sensor (Aquatec, 1001001001001001001). In order to accommodate the NetCDF format of data from the new instruments, a software package of processing, analyzing, and visualizing time-series oceanographic data was developed. It is named CMGTooL. The CMGTooL package contains two basic components: a user-friendly GUI for NetCDF file analysis, processing and manipulation; and a data analyzing program library. Most of the routines in the library are stand-alone programs suitable for batch processing. CMGTooL is written in MATLAB computing language (The Mathworks, 1997), therefore users must have MATLAB installed on their computer in order to use this software package. In addition, MATLAB’s Signal Processing Toolbox is also required by some CMGTooL’s routines. Like most MATLAB programs, all CMGTooL codes are compatible with different computing platforms including PC, MAC, and UNIX machines (Note: CMGTooL has been tested on different platforms that run MATLAB 5.2 (Release 10) or lower versions. Some of the commands related to MAC may not be compatible with later releases of MATLAB). The GUI and some of the library routines call low-level NetCDF file I/O, variable and attribute functions. These NetCDF exclusive functions are supported by a MATLAB toolbox named NetCDF, created by Dr. Charles Denham . This toolbox has to be installed in order to use the CMGTooL GUI. The CMGTooL GUI calls several routines that were initially developed by others. The authors would like to acknowledge the following scientists for their ideas and codes: Dr. Rich Signell (USGS), Dr. Chris Sherwood (USGS), and Dr. Bob Beardsley (WHOI). Many special terms that carry special meanings in either MATLAB or the NetCDF Toolbox are used in this manual. Users are encouraged to read the documents of MATLAB and NetCDF for references.
Dive and Discover : Expeditions to the Seafloor
, simply sign up. Name: * required Email: * required Are you a teacher? Yes No Your email will not be is a registered trademark of Woods Hole Oceanographic Institution Woods Hole Oceanographic
Varela, Alex Gonçalves
2014-01-01
Historians of science have yet to study the process by which the oceanographic sciences emerged and became firmly established in Brazil. The main goal of this article is to offer a preliminary analysis of this process by focusing on the contribution of the Instituto Paulista de Oceanografia (Paulista Institute of Oceanography), Brazil's first institution for oceanographic research; it was founded in 1946 and became part of the University of São Paulo in 1951, at which time it was renamed the Instituto Oceanográfico da Universidade de São Paulo (Oceanographic Institute of the University of São Paulo). The analysis centers on the role of three scientists who were on the facility's early research staff: Wladimir Besnard, Ingvar Emilsson, and Marta Vannucci.
Development of moored oceanographic spectroradiometer
NASA Technical Reports Server (NTRS)
Booth, Charles R.; Mitchell, B. Greg; Holm-Hansen, O.
1987-01-01
Biospherical Instruments has successfully completed a NASA sponsored SBIR (Small Business Innovational Research Program) project to develop spectroradiometers capable of being deployed in the ocean for long periods of time. The completion of this project adds a valuable tool for the calibration of future spaceborne ocean color sensors and enables oceanographers to extend remote sensing optical techniques beyond the intermittent coverage of spaceborne sensors. Highlights of the project include two moorings totalling 8 months generating extensive sets of optical, biological, and physical data sets in the ocean off La Jolla, California, and a 70 day operational deployment of the resulting commercial product by the ONR and NASA sponsored BIOWATT program. Based on experience gained in these moorings, Biospherical Instruments has developed a new line of spectroradiometers designed to support the oceanographic remote sensing missions of NASA, the Navy, and various oceanographers.
Current observations offshore Punta Tuna, Puerto Rico, 21 June-7 December 1980. Part A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frye, D.; Leavitt, K.; Whitney, A.
1981-08-01
An oceanographic measurement program was conducted in the vicinity of a proposed ocean thermal energy conversion (OTEC) site about 20 km offshore of Punta Tuna, Puerto Rico. As part of the program, a mooring consisting of five current meters was maintained between 21 June and 7 December, 1980. The current data collected are summarized according to frequency of occurrence within 5 cm/sec speed and 15/sup 0/ direction intervals. Sums and percentages of total occurrence are given for each speed and direction class, along with mean speed, extreme speeds, mean component speeds, and standard deviations. Hourly averages of current speed, truemore » direction, current vector, temperature, and pressure are plotted as a function of time. On 13 December, 1980, a current meter array was deployed at the Punta Tuna site and recovered on May 16, 1981. The processed current data from this current meter array are described. (LEW)« less
NASA Astrophysics Data System (ADS)
McGillivary, P. A.; Borges de Sousa, J.; Martins, R.; Rajan, K.
2012-12-01
Autonomous platforms are increasingly used as components of Integrated Ocean Observing Systems and oceanographic research cruises. Systems deployed can include gliders or propeller-driven autonomous underwater vessels (AUVs), autonomous surface vessels (ASVs), and unmanned aircraft systems (UAS). Prior field campaigns have demonstrated successful communication, sensor data fusion and visualization for studies using gliders and AUVs. However, additional requirements exist for incorporating ASVs and UASs into ship operations. For these systems to be optimally integrated into research vessel data management and operational planning systems involves addressing three key issues: real-time field data availability, platform coordination, and data archiving for later analysis. A fleet of AUVs, ASVs and UAS deployed from a research vessel is best operated as a system integrated with the ship, provided communications among them can be sustained. For this purpose, Disruptive Tolerant Networking (DTN) software protocols for operation in communication-challenged environments help ensure reliable high-bandwidth communications. Additionally, system components need to have considerable onboard autonomy, namely adaptive sampling capabilities using their own onboard sensor data stream analysis. We discuss Oceanographic Decision Support System (ODSS) software currently used for situational awareness and planning onshore, and in the near future event detection and response will be coordinated among multiple vehicles. Results from recent field studies from oceanographic research vessels using AUVs, ASVs and UAS, including the Rapid Environmental Picture (REP-12) cruise, are presented describing methods and results for use of multi-vehicle communication and deliberative control networks, adaptive sampling with single and multiple platforms, issues relating to data management and archiving, and finally challenges that remain in addressing these technological issues. Significantly, the use of UAS on oceanographic research vessels is just beginning. We report on several initial field efforts which demonstrated that UAS improve spatial and temporal mapping of ocean features, as well as monitoring marine mammal populations, ocean color, sea ice and wave fields and air-sea gas exchange. These studies however also confirm the challenges for shipboard computer systems ingesting and archiving UAS high resolution video, SAR and lidar data. We describe the successful inclusion of DTN communications for: 1) passing video data between two UAS or a UAS and ship; 2) for inclusion of ASVs as communication nodes for AUVs; as well as, 3) enabling extension of adaptive sampling software from AUVs and ASVs to include UAS. In conclusion, we describe how autonomous sampling systems may be best integrated into shipboard oceanographic vessel research to provide new and more comprehensive time-space ocean and atmospheric data collection that is important not only for scientific study, but also for sustainable ocean management, including emergency response capabilities. The recent examples of such integrated studies highlighted confirm ocean and atmospheric studies can more cost-effectively pursued, and in some cases only accomplished, by combining underwater, surface and aircraft autonomous systems with research vessel operations.
NASA Astrophysics Data System (ADS)
Falcini, Federico; Palatella, Luigi; Cuttitta, Angela; Bignami, Francesco; Patti, Bernardo; Santoleri, Rosalia; Fiorentino, Fabio
2014-05-01
The European Anchovy (Engraulis encrasicolus, Linnaeus, 1758) is one of the most important resources of the Mediterranean Sea. Despite its abundance and relevance, the anchovy population off the Mediterranean coasts exhibits a patchy distribution. Moreover, its biology and the influence of environment on its variability is poorly known. We here use data from ichthyoplankton-surveys carried out during the peak spawning season in order to analyze abundance and age of anchovy larvae in the Strait of Sicily, with respect to sea surface dynamic and hydrographic parameter patterns. The Strait of Sicily dynamics is characterized by upwelling regions, fronts, vortices, and filaments, with a consequent complexity in the spatial distribution of oceanographic parameters and anchovy larvae. To investigate the role of mesoscale features and oceanographic environment on the latter, anchovy larvae observations were paired to remote sensing data (such as sea surface temperature, chlorophyll, primary production, surface wind speed as well as light attenuation, absorption, and particle backscattering coefficients) and Lagrangian and Eulerian numerical simulations results for ocean currents and larval transport. The subsequent analysis shows and quantifies how the Atlantic Ionian Stream (AIS, a meandering current of Atlantic origin) path and variability, as well as the upwelling-induced south Sicilian coastal current, have consequences for anchovy spawning and larvae distribution. These currents transport anchovy larvae towards the Sicilian coast's south-eastern tip, where larvae are then retained in a frontal structure. However, significant cross-shore transport events due to relatively cold filament-like baroclinic instabilities generated by wind-induced coastal upwelling were also observed. Finally, the larval age distribution qualitatively agrees well with this transport pattern.
NASA Astrophysics Data System (ADS)
Louzao, Maite; Navarro, Joan; Delgado-Huertas, Antonio; de Sola, Luis Gil; Forero, Manuela G.
2017-06-01
Ecotones can be described as transition zones between neighbouring ecological systems that can be shaped by environmental gradients over a range of space and time scales. In the marine environment, the detection of ecotones is complex given the highly dynamic nature of marine systems and the paucity of empirical data over ocean-basin scales. One approach to overcome these limitations is to use stable isotopes from animal tissues since they can track spatial oceanographic variability across marine systems and, in turn, can be used as ecological tracers. Here, we analysed stable isotopes of deep-sea fishes to assess the presence of ecological discontinuities across the western Mediterranean. We were specifically interested in exploring the connection between deep-sea biological activity and particular oceanographic features (i.e., surface fronts) occurring in the pelagic domain. We collected samples for three different abundant deep-sea species in May 2004 from an experimental oceanographic trawling cruise (MEDITS): the Mictophydae jewel lanternfish Lampanyctus crocodilus and two species of the Gadidae family, the silvery pout Gadiculus argenteus and the blue whiting Micromesistius poutassou. The experimental survey occurred along the Iberian continental shelf and the upper and middle slopes, from the Strait of Gibraltar in the SW to the Cape Creus in the NE. The three deep-sea species were highly abundant throughout the study area and they showed geographic variation in their isotopic values, with decreasing values from north to south disrupted by an important change point around the Vera Gulf. Isotopic latitudinal gradients were explained by pelagic oceanographic conditions along the study area and confirm the existence of an ecotone at the Vera Gulf. This area could be considered as an oceanographic boundary where waters of Atlantic origin meet Mediterranean surface waters forming important frontal structures such as the Almeria-Oran front. In fact, our results relate geographical variation in stable isotopes of deep-sea fishes to regional changes in surface oceanography, highlighting the importance of mesoscale oceanographic features.
Expanded record of Quaternary oceanographic change: Amerasian Arctic Ocean
Ishman, S.E.; Polyak, L.V.; Poore, R.Z.
1996-01-01
Four sediment cores collected from the Northwind and Mendeleyev ridges, Arctic Ocean, from 1089 m to 1909 m water depth, provide an oceanographic record extending back into the Matuyama reversed polarity chron. Benthic foraminiferal analyses show four prominent assemblage zones: Bolivina arctica, Cassidulina teretis, Bulimina aculeata, and Oridorsalis tener from the upper Matuyama reversed polarity chronozone through the Brunhes normal polarity chronozone. These assemblage zones represent depth-dependent benthic foraminiferal biofacies changes associated with oceanographic events that occurred in the Amerasian basin at ??? 780 and 300 ka, and indicate oceanographic influence from the North Atlantic. Recognition of these benthic assemblage zones in Arctic cores from the Alpha Ridge indicates that the benthic foraminiferal zonations in intermediate to deep water (>1000 m) Arctic cores may be more useful than preexisting lithostratigraphic zonations and should provide important information pertaining to the Quaternary paleoceanographic evolution of the Arctic Ocean.
Foster, Scott D.; Griffin, David A.; Dunstan, Piers K.
2014-01-01
The physical climate defines a significant portion of the habitats in which biological communities and species reside. It is important to quantify these environmental conditions, and how they have changed, as this will inform future efforts to study many natural systems. In this article, we present the results of a statistical summary of the variability in sea surface temperature (SST) time-series data for the waters surrounding Australia, from 1993 to 2013. We partition variation in the SST series into annual trends, inter-annual trends, and a number of components of random variation. We utilise satellite data and validate the statistical summary from these data to summaries of data from long-term monitoring stations and from the global drifter program. The spatially dense results, available as maps from the Australian Oceanographic Data Network's data portal (http://www.cmar.csiro.au/geonetwork/srv/en/metadata.show?id=51805), show clear trends that associate with oceanographic features. Noteworthy oceanographic features include: average warming was greatest off southern West Australia and off eastern Tasmania, where the warming was around 0.6°C per decade for a twenty year study period, and insubstantial warming in areas dominated by the East Australian Current, but this area did exhibit high levels of inter-annual variability (long-term trend increases and decreases but does not increase on average). The results of the analyses can be directly incorporated into (biogeographic) models that explain variation in biological data where both biological and environmental data are on a fine scale. PMID:24988444
NASA Astrophysics Data System (ADS)
Lydersen, Christian; Anders Nøst, Ole; Kovacs, Kit M.; Fedak, Mike A.
2004-05-01
Free-living ringed seals ( N=11) equipped with satellite-relayed data loggers (SRDLs) with incorporated oceanographic-quality temperature sensors were used to collect data from a large sector of the northern Barents Sea during the autumn and early winter. A total of 2346 temperature profiles were collected over a 4-month period from Norwegian and Russian arctic waters in areas that were at times 90-100% ice-covered. Temperature distributions at different depths from northeastern parts of Svalbard, Norway show warm North Atlantic water (NAW) flowing along the continental slope and gradually cooling at all depths as it flows eastwards. The data suggest that most of the cooling takes place west of 30°E. Vertical temperature profiles from the area between Svalbard and Franz Josef Land, Russia show how the surface water cools during freeze-up and demonstrate a warm water flow, which is probably NAW, coming in from the north through a deep trench west of Franz Josef Land. Global oceanographic and climate models require improved oceanographic databases from crucial areas where important hydrological phenomena occur. Such areas in arctic waters are often inaccessible during winter and logistically difficult to reach even in summer. The present study demonstrates how large amounts of oceanographic information can be collected and retrieved in a cost-efficient manner using ice-associated marine mammals as carrier of oceanographic sampling equipment. In addition to the oceanographic value of the data collected by marine mammals in this manner, a vast amount of information regarding the habitat of these animals is concomitantly sampled.
Rosenberger, Kurt J.; Noble, Marlene A.; Norris, Benjamin
2014-01-01
An array of seven moorings housing current meters and oceanographic sensors was deployed for 6 months at 5 sites on the Continental Shelf and slope off Newport Beach, California, from July 2011 to January 2012. Full water-column profiles of currents were acquired at all five sites, and a profile of water-column temperature was also acquired at two of the five sites for the duration of the deployment. In conjunction with this deployment, the Orange County Sanitation District deployed four bottom platforms with current meters on the San Pedro Shelf, and these meters provided water-column profiles of currents. The data from this program will provide the basis for an investigation of the interaction between the deep water flow over the slope and the internal tide on the Continental Shelf.
Australian Oceanographic Data Centre Bulletin 16.
1983-05-01
iable that with the quantities of data involved sonic bad data will be archived. In order to exclude this various filtering techniques will be employed. 4...analysed for statistical properties (e.g. burst nican. variance, exceedance and spectral properties) and certain values are correlated with relevant forcing...seconds) < DAY N 0 : 281 z. -15 ,E: o E < INSTRUMENT: MMI 585 .- X AXIS BEARING: 280 0 DATA POINT Z MEAN RESOLVED CURRENT - 15 MAGNITUDE: 7. 1 Cm/s
2012-09-01
toward the coast due to upwelling . Acceleration potential on the 26.0 kg/m3 isopycnal showed persistent poleward inshore flow for all cruises and...100 km from shore that divided low offshore and high inshore spiciness. The 26.0 kg/m3 isopycnal sloped upward toward the coast due to upwelling ...8 Figure 3. The boundary conditions (and the direction convention of the
2015-05-31
currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (■DD-MM-YYYV9 05/31/2015 2. REPORT TYPE...completely describe and quantify behavioral responses of baleen whales to controlled exposure experiments while including the effects of prey provides a...novel and powerful insight into interpreting responses to sound and controlling for environmental factors. In order to determine whether and how
Derivation of revised formulae for eddy viscous forces used in the ocean general circulation model
NASA Technical Reports Server (NTRS)
Chou, Ru Ling
1988-01-01
Presented is a re-derivation of the eddy viscous dissipation tensor commonly used in present oceanographic general circulation models. When isotropy is imposed, the currently-used form of the tensor fails to return to the laplacian operator. In this paper, the source of this error is identified in a consistent derivation of the tensor in both rectangular and earth spherical coordinates, and the correct form of the eddy viscous tensor is presented.
NASA Astrophysics Data System (ADS)
Penny, M. F.; Phillips, D. M.
1981-03-01
At this Symposium, research on laser hydrography and related development programs currently in progress in the United States of America, Canada, and Australia, were reported. The depth sounding systems described include the US Airborne Oceanographic Lidar and Hydrographic Airborne Laser Sounder, the Canadian Profiling Lidar Bathymeter, and the Australian Laser Airborne Depth Sounder. Other papers presented research on blue-green lasers, theoretical modelling, position fixing, and data processing.
An individual-based model of the krill Euphausia pacifica in the California Current
NASA Astrophysics Data System (ADS)
Dorman, Jeffrey G.; Sydeman, William J.; Bograd, Steven J.; Powell, Thomas M.
2015-11-01
Euphausia pacifica is an abundant and important prey resource for numerous predators of the California Current and elsewhere in the North Pacific. We developed an individual-based model (IBM) for E. pacifica to study its bioenergetics (growth, stage development, reproduction, and mortality) under constant/ideal conditions as well as under varying ocean conditions and food resources. To model E. pacifica under varying conditions, we coupled the IBM to an oceanographic-ecosystem model over the period 2000-2008 (9 years). Model results under constant/ideal food conditions compare favorably with experimental studies conducted under food unlimited conditions. Under more realistic variable oceanographic conditions, mean growth rates over the continental shelf were positive only when individuals migrated diurnally to the depth of maximum phytoplankton layer during nighttime feeding. Our model only used phytoplankton as prey and coastal growth rates were lower than expected (0.01 mm d-1), suggesting that a diverse prey base (zooplankton, protists, marine snow) may be required to facilitate growth and survival of modeled E. pacifica in the coastal environment. This coupled IBM-ROMS modeling framework and its parameters provides a tool for understanding the biology and ecology of E. pacifica and could be developed to further the understanding of climatic effects on this key prey species and enhance an ecosystem approach to fisheries and wildlife management in this region.
NASA Astrophysics Data System (ADS)
Ichiye, Takashi
The first Japan and East China Seas Study (JECSS) workshop convened at Tsukuba University, about 60 km north of Tokyo, Japan, June 1-4, 1981, to assess hydrographic data, review descriptive and theoretical Work, and promote future cooperation for studying the Japan Sea and East China Sea and marginal seas of the Western North Pacific Ocean. The conveners were Takashi Ichiye of Texas A&M University and Kenzo Takano of Tsukuba University, and the workshop was funded by the Hidaka Foundation, which was founded by Koji Hidaka, patriarch of dynamic oceanography in Japan.There were 41 participants: seven from the United States, six from Korea, one from the Peoples Republic of China, and 27 from Japan. Twenty-four papers were presented, and topics included the Japan Sea, the East China Sea, and marginal seas in general. Subjects concerned descriptive physical oceanography; internal waves, tides, and shelf waves; circulation modeling; data assessment; remote sensing; and sedimentology and marine chemistry. The seasonal change of the Tsushima Current, a branch of the Kuroshio in the Japan Sea, was determined by the Tohoku University group; preliminary results of the NOAA R/V Oceanographer cruise in Spring 1980 were presented; and the numerical modeling of the Japan Sea circulation, the tides of the Yellow Sea, and the barotropic current of the East China Sea were discussed. The papers presented will be published in 1982 in La Mer, a journal of the Japanese-French Oceanographical Society.
Fleming, Alyson H; Clark, Casey T; Calambokidis, John; Barlow, Jay
2016-03-01
Large, migratory predators are often cited as sentinel species for ecosystem processes and climate-related changes, but their utility as indicators is dependent upon an understanding of their response to environmental variability. Documentation of the links between climate variability, ecosystem change and predator dynamics is absent for most top predators. Identifying species that may be useful indicators and elucidating these mechanistic links provides insight into current ecological dynamics and may inform predictions of future ecosystem responses to climatic change. We examine humpback whale response to environmental variability through stable isotope analysis of diet over a dynamic 20-year period (1993-2012) in the California Current System (CCS). Humpback whale diets captured two major shifts in oceanographic and ecological conditions in the CCS. Isotopic signatures reflect a diet dominated by krill during periods characterized by positive phases of the North Pacific Gyre Oscillation (NPGO), cool sea surface temperature (SST), strong upwelling and high krill biomass. In contrast, humpback whale diets are dominated by schooling fish when the NPGO is negative, SST is warmer, seasonal upwelling is delayed and anchovy and sardine populations display increased biomass and range expansion. These findings demonstrate that humpback whales trophically respond to ecosystem shifts, and as a result, their foraging behavior is a synoptic indicator of oceanographic and ecological conditions across the CCS. Multi-decadal examination of these sentinel species thus provides insight into biological consequences of interannual climate fluctuations, fundamental to advancing ecosystem predictions related to global climate change. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Antenna Pattern Measurements for Oceanographic Radars Using Small Aerial Drones
NASA Astrophysics Data System (ADS)
Washburn, L.; Romero, E.; Johnson, C.; Emery, B.; Gotschalk, C.
2016-12-01
We describe a method employing small, quadrotor drone aircraft for antenna pattern measurements (APMs) of high-frequency (HF) oceanographic radars used for observing ocean surface currents. During APMs, the drones carry small radio signal sources in circular arcs centered on receive antenna arrays at HF radar sites, similarly to conventional boat-based APMs. Previous studies have shown that accurate surface current measurements using HF radar require APMs. In the absence of APMs so-called "ideal" antenna patterns are assumed and these can differ substantially from measured patterns. Typically APMs are obtained using small research vessels, an expensive procedure requiring sea-going technicians, a vessel, and other equipment necessary to support small boat operations. Adverse sea conditions and obstacles in the water can limit the ability of small vessels to conduct APMs. In contrast, drones can successfully conduct APMs at much lower cost and in a broader range of sea states with comparable accuracy. Drone-based patterns can extend farther shoreward since they are not affected by the surf zone and thereby expand the range of bearings over which APMs are conducted. We describe recent progress in the use of drones for APMs including: (1) evaluation of the accuracy APM flight trajectories; (2) estimates of radial velocity components due to deviation of flight paths from circular arcs; and (3) the effects of altitude with respect to ground wave versus direct signal propagation. Use of drones simplifies APMs and it is hoped that this will lead to more frequent APMs and improved surface current measurements from HF radar networks.
Nowcast model for hazardous material spill prevention and response, San Francisco Bay, California
Cheng, Ralph T.; Wilmot, Wayne L.; Galt, Jerry A.
1997-01-01
The National Oceanic and Atmospheric Administration (NOAA) installed the Physical Oceanographic Real-time System (PORTS) in San Francisco Bay, California, to provide real-time observations of tides, tidal currents, and meteorological conditions to, among other purposes, guide hazardous material spill prevention and response. Integrated with nowcast modeling techniques and dissemination of real-time data and the nowcasting results through the Internet on the World Wide Web, emerging technologies used in PORTS for real-time data collection forms a nowcast modeling system. Users can download tides and tidal current distribution in San Francisco Bay for their specific applications and/or for further analysis.
30 CFR 250.1605 - Drilling requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... provide information and data on the fitness of the drilling unit to perform the proposed drilling... rated capacity of the unit. (c) Oceanographic, meteorological, and drilling unit performance data. Where oceanographic, meteorological, and drilling unit performance data are not otherwise readily available, lessees...
Oceanographic applications of the Kalman filter
NASA Technical Reports Server (NTRS)
Barbieri, R. W.; Schopf, P. S.
1982-01-01
The Kalman filter is a data-processing algorithm with a distinguished history in systems theory. Its application to oceanographic problems is in the embryo stage. The behavior of the filter is demonstrated in the context of an internal equatorial Rossby wave propagation problem.
World Ocean Circulation Experiment
NASA Technical Reports Server (NTRS)
Clarke, R. Allyn
1992-01-01
The oceans are an equal partner with the atmosphere in the global climate system. The World Ocean Circulation Experiment is presently being implemented to improve ocean models that are useful for climate prediction both by encouraging more model development but more importantly by providing quality data sets that can be used to force or to validate such models. WOCE is the first oceanographic experiment that plans to generate and to use multiparameter global ocean data sets. In order for WOCE to succeed, oceanographers must establish and learn to use more effective methods of assembling, quality controlling, manipulating and distributing oceanographic data.
Satellite oceanography - The instruments
NASA Technical Reports Server (NTRS)
Stewart, R. H.
1981-01-01
It is pointed out that no instrument is sensitive to only one oceanographic variable; rather, each responds to a combination of atmospheric and oceanic phenomena. This complicates data interpretation and usually requires that a number of observations, each sensitive to somewhat different phenomena, be combined to provide unambiguous information. The distinction between active and passive instruments is described. A block diagram illustrating the steps necessary to convert data from satellite instruments into oceanographic information is included, as is a diagram illustrating the operation of a radio-frequency radiometer. Attention is also given to the satellites that carry the various oceanographic instruments.
User requirements for NASA data base management systems. Part 1: Oceanographic discipline
NASA Technical Reports Server (NTRS)
Fujimoto, B.
1981-01-01
Generic oceanographic user requirements were collected and analyzed for use in developing a general multipurpose data base management system for future missions of the Office of Space and Terrestrial Applications (OSTA) of NASA. The collection of user requirements involved; studying the state-of-the-art technology in data base management systems; analyzing the results of related studies; formulating a viable and diverse list of scientists to be interviewed; developing a presentation format and materials; and interviewing oceanographic data users. More effective data management systems are needed to handle the increasing influx of data.
Expendable oceanographic sensor apparatus
McCoy, Kim O.; Downing, Jr., John P.; DeRoos, Bradley G.; Riches, Michael R.
1993-01-01
An expendable oceanographic sensor apparatus is deployed from an airplane or a ship to make oceanographic observations in a profile of the surface-to-ocean floor, while deployed on the floor, and then a second profile when returning to the ocean surface. The device then records surface conditions until on-board batteries fail. All data collected is stored and then transmitted from the surface to either a satellite or other receiving station. The apparatus is provided with an anchor that causes descent to the ocean floor and then permits ascent when the anchor is released. Anchor release is predetermined by the occurrence of a pre-programmed event.
NASA Astrophysics Data System (ADS)
Gonzalez-Orduno, A.; Fucugauchi, J. U.; Monreal, M.; Perez-Cruz, G.; Salas de León, D. A.
2013-05-01
The seismic reflection method has been successfully applied worldwide to investigate subsurface conditions to support important business decisions in the oil industry. When applied in the marine environment, useful reflection information is limited to events on and below the sea floor; Information from the water column, if any, is disregarded. Seismic oceanography is emerging as a new technique that utilize the reflection information within the water column to infer thermal-density contrasts associated with oceanographic processes, such as cyclonic-anticyclonic eddies, ascending-descending water flows, and water flows related to rapid topographic changes on the sea floor. A seismic investigation to infer such oceanographic changes in one sector of the Campeche Canyon is in progress as a research matter at the Instituto de Ciencias del Mar y Limnologia from the University of Mexico (UNAM). First steps of the investigation consisted of creating synthetic seismograms based on oceanographic information (temperature and density) derived from direct observation on a series of close spaced depth points along vertical profiles. Details of the selected algorithms used for the transformation of the oceanographic data to acoustic impedances data sets and further construction of synthetic seismograms on each site and their representation as synthetic seismic sections, are presented in this work, as well as the road ahead in the investigation.
Bermejo, Ricardo; de la Fuente, Gina; Ramírez-Romero, Eduardo; Vergara, Juan J; Hernández, Ignacio
2016-04-15
The Cystoseira ericaefolia group is conformed by three species: C. tamariscifolia, C. mediterranea and C. amentacea. These species are among the most important habitat forming species of the upper sublittoral rocky shores of the Mediterranean Sea and adjacent Atlantic coast. This species group is sensitive to human pressures and therefore is currently suffering important losses. This study aimed to assess the influence of anthropogenic pressures, oceanographic conditions and local spatial variability in assemblages dominated by C. ericaefolia in the Alboran Sea. The results showed the absence of significant effects of anthropogenic pressures or its interactions with environmental conditions in the Cystoseira assemblages. This fact was attributed to the high spatial variability, which is most probably masking the impact of anthropogenic pressures. The results also showed that most of the variability occurred on at local levels. A relevant spatial variability was observed at regional level, suggesting a key role of oceanographic features in these assemblages. Copyright © 2016 Elsevier Ltd. All rights reserved.
Why consider subseabed disposal of high-level nuclear waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heath, G. R.; Hollister, C. D.; Anderson, D. R.
1980-01-01
Large areas of the deep seabed warrant assessment as potential disposal sites for high-level radioactive waste because: (1) they are far from seismically and tectonically active lithospheric plate boundaries; (2) they are far from active or young volcanos; (3) they contain thick layers of very uniform fine-grained clays; (4) they are devoid of natural resources likely to be exploited in the forseeable future; (5) the geologic and oceanographic processes governing the deposition of sediments in such areas are well understood, and are remarkably insensitive to past oceanographic and climatic changes; and (6) sedmentary records of tens of millions of yearsmore » of slow, uninterrupted deposition of fine grained clay support predictions of the future stability of such sites. Data accumulated to date on the permeability, ion-retardation properties, and mechanical strength of pelagic clay sediments indicate that they can act as a primary barrier to the escape of buried nuclides. Work in progress should determine within the current decade whether subseabed disposal is environmentally acceptable and technically feasible, as well as address the legal, political and social issues raised by this new concept.« less
Air Deployable Underwater Glider and Buoy Development for Arctic and Oceanographic Sensing
NASA Astrophysics Data System (ADS)
Legnos, P. J.
2013-12-01
LBI developed under a NOAA SBIR the AXIB (Airborne eXpendable Ice Buoy). The initial buoy was developed to collect barometric pressure, air temperature two meters above the surface and sea surface or ice temperature. A number of these AXIBs have been successfully deployed in the Arctic and Antarctic. Currently we are in the process of integrating additional sensors to include an anemometer, thermistor chain and hydrophones. Further development is in process for the integration of solar and wind recharging systems and lower power sensors and processing LBI developed under an ONR SBIR Grant two Air Deployable Underwater Gliders. They are primarily designed for air deployment from Navy P-3 or P-8 Aircraft though easily deployed from other aircraft or helicopters. The A-size (4 7/8'dia. X 36' long) and the 12 ¾ (12 ¾' dia. X 9' 9' long). On the development side we are in the process of integrating sensors and enhancing the battery storage capacity. We anticipate a broad range of Oceanographic sensing missions for these Gliders.
HiSeasNet: Oceanographic Ships Join the Grid
NASA Astrophysics Data System (ADS)
Berger, Jonathan; Orcutt, John; Foley, Steven; Bohlen, Steven
2006-05-01
HiSeasNet, the communications network providing full-period Internet access for the U.S. academic ocean research fleet, is an enabling technology that is changing the way oceanography is done in the 21st century. With the installation in March 2006 of a system on the research vessel (R/V) Seward Johnson and the planned installation on the R/V Marcus Langseth later this year, all but two of the Universities National Oceanographic Laboratories System (UNOLS) fleet of large/global and intermediate/ocean vessels will be equipped with HiSeasNet capability. HiSeasNet is a full-service Internet Protocol (IP) satellite network utilizing Cisco technology. In addition to the familiar IP services-such as e-mail, telnet, ssh, rlogin, Web traffic, and ftp-HiSeasNet can move real-time audio and video traffic across the satellite links. Phone systems onboard research ships can be connected to their home institutions' phone exchanges. Video teleconferencing with the current 96 kilobits per second circuits supports compressed video frame rates at about 10 frames per second, allowing for effective conversations and demonstrations with ship-to-shore video.
NASA Astrophysics Data System (ADS)
Xu, J.; Wang, Z.; Wang, C.; Li, J.; Gwiazda, R.; Paull, C. K.; Maier, K. L.
2016-12-01
Conductivity-Temperature (CT) sensors are one of the most common instruments in oceanographic research that record water conductivity and temperature, two most important parameters of ocean waters from which salinity is computed. When used in super-high turbid water or flows (e.g. turbidity currents or slurries), however, the working principle of CT sensors suggests possibility of bias in conductivity measurements. In this study, a series of lab experiments were conducted to investigate how the presence of high-concentrated sediment particles influences the conductivity readings from an inductive CT sensor. The results provided evidence to challenge a long-held notion that the reduced conductivity often seen inside turbidity currents is an indication of fresh water presence.
Charts designate probable future oceanographic research fields
NASA Technical Reports Server (NTRS)
1968-01-01
Charts outline the questions and problems of oceanographic research in the future. NASA uses the charts to estimate the probable requirements for instrumentation carried by satellites engaged in cooperative programs with other agencies concerned with identification, analysis, and solution of many of these problems.
Planning and Implementation of Remote Sensing Experiments.
Contents: TEKTITE II experiment-upwelling detection (NASA Mx 138); Design of oceanographic experiments (Gulf of Mexico, Mx 159); Design of oceanographic experiments (Gulf of Mexico, Mx 165); Experiments on thermal pollution; Remote sensing newsletter; Symposium on remote sensing in marine biology and fishery resources.
NASA Astrophysics Data System (ADS)
Syamsuddin, Mega; Sunarto; Yuliadi, Lintang
2018-02-01
The remotely derived oceanographic variables included sea surface temperature (SST), chlorophyll-a (Chl-a) and Eastern Little Tuna (Euthynnus affinis) catches are used as a combined dataset to understand the seasonal variation of oceanographic variables and Eastern Little Tuna catches in the north Indramayu waters, Java Sea. The fish catches and remotely sensed data were analysed for the 5 years datasets from 2010-2014. This study has shown the effect of monsoon inducing oceanographic condition in the study area. Seasonal change features were dominant for all the selected oceanographic parameters of SST and Chl-a, and also Eastern Little Tuna catches, respectively. The Eastern Little Tuna catch rates have the peak season from September to December (700 to 1000) ton that corresponded with the value of SST ranging from 29 °C to 30 °C following the decreasing of Chl-a concentrations in September to November (0.4 to 0.5) mg m-3. The monsoonal system plays a great role in determining the variability of oceanographic conditions and catch in the north Indramayu waters, Java Sea. The catches seemed higher during the northwest monsoon than in the southeast monsoon for all year observations except in 2010. The wavelet spectrum analysis results confirmed that Eastern Little Tuna catches had seasonal and inter-annual variations during 2012-2014. The SST had seasonal variations during 2010-2014. The Chl-a also showed seasonal variations during 2010-2011 and interannual variations during 2011-2014. Our results would benefit the fishermen and policy makers to have better management for sustainable catch in the study area.
NASA Astrophysics Data System (ADS)
Woo, K. S.; Chun, S. S.; Moon, K. O.
2017-12-01
The `Korean Archipelago Getbol (KAG; Getbol means tidal flat deposits in Korean)' has developed due to the decreasing accommodation space during the Holocene sea-level rise on the broad epicontinental shelf of the southeastern part of the Yellow Sea. Sedimentation and evolution show a variety of quite distinctive tidal flat patterns with intertidal and subtidal drainage systems depending upon the location and orientation of rocky shores. The following KAG`s Outstanding Universal Values are suggested to support the WH: 1) It is the unique coastal sedimentary environment formed by special geological and oceanographic setting in the world. It is the only place in the world where tide-controlled sedimentation processes have produced special tidal flats surrounding numerous rocky islands on a broad epicontinental shelf near convergent tectonic boundary. Macrotidal currents combined with waves and typhoons in this semi-closed oceanographic setting have provided unique geological and oceanographic conditions for their formation. 2) It diplays the most dynamic and complicated, but stable coastal depositional system in the world. Even though the property has been constantly influenced by strong microtidal currents combined with East Asian Monsoon climate (winter erosion and summer deposition) with occasional typhoons during summer, Getbol has maintained its stable depositional system and tidal flat sediments have been accumulated for the past 9,000 years. Sufficient supply of suspended load through Geumgang River provides sustainable depositional system within the property. Complicated island-topography also produced the most complicated and divese depositional systems as well as the deepest tidal channels in the world. (3) The KAG shows the thickest tidal flat sediments protected by numerous islands. Aggradation of tidal sediments has caught up with the rapid Holocene sealevel rise and produced the thickest tidal flat sediments in the world. As a results, numerous former islands of relatively elevated areas have been vanished and hidden. In addition, the KAG shows a complete story of geological, ecological and conservational integrity (the wholeness and intactness). Thus, we strongly believe that the KAG has great potential to be inscribed on a World Heritage List for the criterion (viii).
NASA Astrophysics Data System (ADS)
Hood, Raleigh; D'Adamo, Nick; Burkill, Peter; Urban, Ed; Bhikajee, Mitrasen
2014-05-01
The International Indian Ocean Expedition (IIOE) was one of the greatest international, interdisciplinary oceanographic research efforts of all time. Planning for the IIOE began in 1959 and the project officially continued through 1965, with forty-six research vessels participating under fourteen different flags. The IIOE motivated an unprecedented number of hydrographic surveys (and repeat surveys) over the course of the expedition covering the entire Indian Ocean basin. And it was an interdisciplinary endeavor that embraced physical oceanography, chemical oceanography, meteorology, marine biology, marine geology and geophysics. The end of 2015 will mark the 50th Anniversary of the completion of the IIOE. In the 50 years since the IIOE three fundamental changes have taken place in ocean science. The first is the deployment of a broad suite of oceanographic sensors on satellites that have dramatically improved the characterization of both physical and biological oceanographic variability. The second is the emergence of new components of the ocean observing system, most notably remote sensing and Argo floats. And the third is the development of ocean modeling in all its facets from short-term forecasting to seasonal prediction to climate projections. These advances have revolutionized our understanding of the global oceans, including the Indian Ocean. Compared to the IIOE era, we now have the capacity to provide a much more integrated picture of the Indian Ocean, especially if these new technologies can be combined with targeted and well-coordinated in situ measurements. In this presentation we report on current efforts to motivate an IIOE 50th Anniversary Celebration (IIOE-2). We envision this IIOE-2 as a 5-year expedition and effort beginning in 2015 and continuing through to 2020. An important objective of our planning efforts is assessing ongoing and planned research activities in the Indian Ocean in the 2015 to 2020 time frame, with the goal of embracing and helping to organize these activities as part of a larger coordinated 50th Anniversary research initiative. In addition we are working to motivate conferences, summer schools, data recovery, repeat line work and new process studies.
Into the Deep Black Sea: The Icefin Modular AUV for Ice-Covered Ocean Exploration
NASA Astrophysics Data System (ADS)
Meister, M. R.; Schmidt, B. E.; West, M. E.; Walker, C. C.; Buffo, J.; Spears, A.
2015-12-01
The Icefin autonomous underwater vehicle (AUV) was designed to enable long-range oceanographic exploration of physical and biological ocean environments in ice-covered regions. The vehicle is capable of surveying under-ice geometry, ice and ice-ocean interface properties, as well as water column conditions beneath the ice interface. It was developed with both cryospheric and planetary-analog exploration in mind. The first Icefin prototype was successfully operated in Antarctica in Austral summer 2014. The vehicle was deployed through a borehole in the McMurdo Ice Shelf near Black Island and successfully collected sonar, imaging, video and water column data down to 450 m depth. Icefin was developed using a modular design. Each module is designed to perform specific tasks, dependent on the mission objective. Vehicle control and data systems can be stably developed, and power modules added or subtracted for mission flexibility. Multiple sensor bays can be developed in parallel to serve multiple science objectives. This design enables the vehicle to have greater depth capability as well as improved operational simplicity compared to larger vehicles with equivalent capabilities. As opposed to those vehicles that require greater logistics and associated costs, Icefin can be deployed through boreholes drilled in the ice. Thus, Icefin satisfies the demands of achieving sub-ice missions while maintaining a small form factor and easy deployment necessary for repeated, low-logistical impact field programs. The current Icefin prototype is 10.5 inches in diameter by 10 feet long and weighs 240 pounds. It is comprised of two thruster modules with hovering capabilities, an oceanographic sensing module, main control module and a forward-sensing module for obstacle avoidance. The oceanographic sensing module is fitted with a side scan sonar (SSS), CT sensor, altimetry profiler and Doplar Velocity Log (DVL) with current profiling. Icefin is depth-rated to 1500 m and is equipped with 3.5 km of fiber optic, Kevlar reinforced cable, which provides point-to-point communications as well as a stable recovery platform between missions. SUPPORT: Icefin was designed and built at Georgia Tech, under Dr. Britney Schmidt's startup funds with effort contributed from Georgia Tech Research Institute (GTRI).
Geo-Seas - building a unified e-infrastructure for marine geoscientific data management in Europe
NASA Astrophysics Data System (ADS)
Glaves, H.; Schaap, D.
2012-04-01
A significant barrier to marine geoscientific research in Europe is the lack of standardised marine geological and geophysical data and data products which could potentially facilitate multidisciplinary marine research extending across national and international boundaries. Although there are large volumes of geological and geophysical data available for the marine environment it is currently very difficult to use these datasets in an integrated way due to different nomenclatures, formats, scales and coordinate systems being used within different organisations as well as between countries. This makes the direct use of primary data very difficult and also hampers use of the data to produce integrated multidisciplinary data products and services. The Geo-Seas project, an EU Framework 7 funded initiative, is developing a unified e-infrastructure to facilitate the sharing of marine geoscientific data within Europe. This e-infrastructure is providing on-line access to both discovery metadata and the associated federated data sets from 26 European data centres via a dedicated portal. The implementation of the Geo-Seas portal is allowing a range of end users to locate, assess and access standardised geoscientific data from multiple sources which is interoperable with other marine data types. Geo-Seas is building on the work already done by the existing SeaDataNet project which currently provides a data management e-infrastructure for oceanographic data which allows users to locate and access federated oceanographic data sets. By adopting and adapting the SeaDataNet methodologies and technologies the Geo-Seas project has not only avoid unnecessary duplication of effort by reusing existing and proven technologies but also contributed to the development of a multidisciplinary approach to ocean science across Europe through the creation of a joint infrastructure for both marine geoscientific and oceanographic data. This approach is also leading to the development of collaborative links with other European projects including EMODNET, Eurofleets. Genesi-DEC and iMarine as well as extending to the wider marine geoscientific and oceanographic community including projects in the USA such as the Rolling Deck Repository (R2R) initiative and also organisations in both the USA and Australia. On behalf of the Geo-Seas consortium partners: NERC-BGS (United Kingdom), NERC-BODC (United Kingdom), NERC-NOCS (United Kingdom), MARIS (Netherlands), IFREMER (France), BRGM (France), TNO (Netherlands), BSH (Germany), IGME (Spain), LNEG (Portugal), GSI (Ireland), BGR (Germany), OGS (Italy), GEUS (Denmark), NGU (Norway), PGI (Poland), EGK (Estonia), NRC-IGG (Lithuania), IO-BAS (Bulgaria), NOA (Greece), CIRIA (United Kingdom), MUMM (Belgium), UB (Spain), UCC (Ireland), EU-Consult (Netherlands), CNRS (France), SHOM (France), CEFAS (United Kingdom), and LU (Latvia).
Nur, N.; Jahncke, J.; Herzog, M.P.; Howar, J.; Hyrenbach, K.D.; Zamon, J.E.; Ainley, D.G.; Wiens, J.A.; Morgan, K.; Balance, L.T.; Stralberg, D.
2011-01-01
Marine Protected Areas (MPAs) provide an important tool for conservation of marine ecosystems. To be most effective, these areas should be strategically located in a manner that supports ecosystem function. To inform marine spatial planning and support strategic establishment of MPAs within the California Current System, we identified areas predicted to support multispecies aggregations of seabirds ("hotspot????). We developed habitat-association models for 16 species using information from at-sea observations collected over an 11-year period (1997-2008), bathymetric data, and remotely sensed oceanographic data for an area from north of Vancouver Island, Canada, to the USA/Mexico border and seaward 600 km from the coast. This approach enabled us to predict distribution and abundance of seabirds even in areas of few or no surveys. We developed single-species predictive models using a machine-learning algorithm: bagged decision trees. Single-species predictions were then combined to identify potential hotspots of seabird aggregation, using three criteria: (1) overall abundance among species, (2) importance of specific areas ("core area????) to individual species, and (3) predicted persistence of hotspots across years. Model predictions were applied to the entire California Current for four seasons (represented by February, May, July, and October) in each of 11 years. Overall, bathymetric variables were often important predictive variables, whereas oceanographic variables derived from remotely sensed data were generally less important. Predicted hotspots often aligned with currently protected areas (e.g., National Marine Sanctuaries), but we also identified potential hotspots in Northern California/Southern Oregon (from Cape Mendocino to Heceta Bank), Southern California (adjacent to the Channel Islands), and adjacent to Vancouver Island, British Columbia, that are not currently included in protected areas. Prioritization and identification of multispecies hotspots will depend on which group of species is of highest management priority. Modeling hotspots at a broad spatial scale can contribute to MPA site selection, particularly if complemented by fine-scale information for focal areas. ?? 2011 by the Ecological Society of America.
Atmospheric and Oceanographic Information Processing System (AOIPS) system description
NASA Technical Reports Server (NTRS)
Bracken, P. A.; Dalton, J. T.; Billingsley, J. B.; Quann, J. J.
1977-01-01
The development of hardware and software for an interactive, minicomputer based processing and display system for atmospheric and oceanographic information extraction and image data analysis is described. The major applications of the system are discussed as well as enhancements planned for the future.
Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)
NASA Technical Reports Server (NTRS)
2003-01-01
This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.
ERIC Educational Resources Information Center
American Society for Oceanography, Washington, DC.
This Oceanographic Information Kit consists of seven booklets which discuss career opportunities and related information in oceanography as follows: a general overview of the nature of oceanography and the study necessary in preparing for a career in this field; oceanographic employment opportunities possible with the federal government described…
Warm oceanographic anomalies and fishing pressure drive seabird nesting north
Velarde, Enriqueta; Ezcurra, Exequiel; Horn, Michael H.; Patton, Robert T.
2015-01-01
Parallel studies of nesting colonies in Mexico and the United States show that Elegant Terns (Thalasseus elegans) have expanded from the Gulf of California Midriff Island Region into Southern California, but the expansion fluctuates from year to year. A strong inverse relationship between nesting pairs in three Southern California nesting areas [San Diego saltworks, Bolsa Chica Ecological Reserve, and Los Angeles Harbor (1991 to 2014)] and Isla Rasa in the Midriff (1980 to 2014) shows that terns migrate northward when confronting warm oceanographic anomalies (>1.0°C), which may decrease fish availability and hamper nesting success. Migration pulses are triggered by sea surface temperature anomalies localized in the Midriff and, secondarily, by reductions in the sardine population as a result of intensive fishing. This behavior is new; before year 2000, the terns stayed in the Midriff even when oceanographic conditions were adverse. Our results show that terns are responding dynamically to rapidly changing oceanographic conditions and fish availability by migrating 600 km northwest in search of more productive waters. PMID:26601193
NASA Astrophysics Data System (ADS)
Lydersen, Christian; Nøst, Ole Anders; Lovell, Phil; McConnell, Bernie J.; Gammelsrød, Tor; Hunter, Colin; Fedak, Michael A.; Kovacs, Kit M.
2002-12-01
In this study we report results from satellite-linked conductivity-temperature-depth (CTD) loggers that were deployed on wild, free-ranging white whales to study the oceanographic structure of an Arctic fjord, Storfjorden, Svalbard. The whales dove to the bottom of the fjord routinely during the study and occupied areas with up to 90% ice-cover, where performance of conventional ship-based CTD-casts would have been difficult. During the initial period of freezing in the fjord, over a period of approximately 2 weeks, 540 CTD profiles were successfully transmitted. The data indicate that Storfjorden has a substantial inflow of warm North Atlantic Water; this is contrary to conventional wisdom that has suggested that it contains only cold Arctic water. This study confirms that marine-mammal-based CTDs have enormous potential for cost-effective, future oceanographic studies; many different marine mammal species target oceanographic discontinuities for foraging and thus may be good `adaptive samplers' that naturally seek areas of high oceanographic interest.
Spaceborne imaging radar - Geologic and oceanographic applications
NASA Technical Reports Server (NTRS)
Elachi, C.
1980-01-01
Synoptic, large-area radar images of the earth's land and ocean surface, obtained from the Seasat orbiting spacecraft, show the potential for geologic mapping and for monitoring of ocean surface patterns. Structural and topographic features such as lineaments, anticlines, folds and domes, drainage patterns, stratification, and roughness units can be mapped. Ocean surface waves, internal waves, current boundaries, and large-scale eddies have been observed in numerous images taken by the Seasat imaging radar. This article gives an illustrated overview of these applications.
Eddy-Mean Flow Interactions in Western Boundary Current Jets
2009-02-01
have had the honor of being Steve’s first student and Nelson’s last, and to each I owe much gratitude for all they have contributed towards my education ...given me so much happiness during my years here. It is because of you I am most sad to say goodbye. I thank my parents for their unconditional and...oceanographer. Funding was for this research and my education was provided by the MIT Pres- idential Fellowship and NSF grants OCE-0220161 and OCE-0825550. The
Near Real Time VHF Telemetry of Near Shore Oceanographic Data
1989-06-01
drecktion. but can also measure temperature , pressure ’ind coniductnit:\\ N1 ic ,- ttd w tXt.i uuall have sevecral recording current meters Nverticalix sPaICed...hich can comne fr-om other transmiissions, man-made static. atmo~lteic s tic c cni emsions and receiver temperature -inducedl noise. NI oiatonschieme...Sea Surface Temperature (SSTL DNISP Microwave Imcer iSS!I I) and Advanced Vern Ilih Resolution Radiometer (AVI RR). NIPRFs’ interest is to provide the
Organization of an Oceanographic Data Bank for the Peruvian Navy.
1981-09-01
pfrhedactsan for the ayfihte and orn potential users are presented.," Accas o n Tr IQOPY AI in-IIS P .. .. . .. . .. ... .a- iz- -- H DD Forr% 1473 2...been collected at high cost and1. effort for so many years is not centrali7ed and is, therefore, not readily available to potential users in Peru or...northward current that affected the route of the ships sailing between Panama and Callao. An excerpt fZarate, 15553, from the " Account of the Country
2008-01-01
species studied in our research program, we have chosen to highlight the results of tagging studies on the bluefin tuna (Thunnus orientalis), which has...been extensively tagged and has been found to heavily rely on the CCS. Building on the tracking studies of migrating Pacific bluefin tuna along the...consistently attract large numbers of Pacific bluefin tuna during spring and summer seasons. Integrating track data from archival tags with tag
2007-01-01
Fish To date 1,000 archival tags have been deployed on 3 species of tunas ( bluefin , yellowfin and albacore) and over 400 tags have been...observations. Analyses of seasonal movements off California indicated four distinct regions that are occupied primarily by tunas . For example, bluefin ...when in areas of high productivity and more dispersed when in regions of low productivity. In the spring through fall, bluefin tuna were located in
Airborne oceanographic lidar system
NASA Technical Reports Server (NTRS)
1975-01-01
Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olfe, J.
California Cooperative Oceanic Fisheries Investigations (CalCOFI) performs research in the area of sampling physical, chemical, and biological variables in the California Current. The information received is stored in databases and gives a better understanding of the physics and chemistry of the California Current. Their effect on the food chain make it possible to view current oceanographic and biological conditions in the context of the long term. Measurements taken during 1994 and early 1995 on CalCOFI cruises have indicated a return to normal conditions after anomalous conditions that dominated the two preceding years. The data have permitted an increasingly prompt assessmentmore » of the state of the California Current system off southern California. This report also contains papers presented at the CalCOFI conference in 1994 regarding the 1991--92 El Nino and its impact on fisheries. In addition, individual scientific contributions are included which provide an additional understanding of the processes involved in the California Current.« less
NASA Astrophysics Data System (ADS)
Bollozos, I.; Yniguez, A. T.; Palermo, J. H.; Cabrera, O. C.; Villanoy, C. L.
2013-12-01
The waters in the eastern part of Luzon are highly influenced by the western boundary current system of the western Pacific brought about by the bifurcation of the North Equatorial Current into the Kuroshio and Mindanao Current. Eddies are formed with varying intensities as an effect of the ENSO cycle. Three spatial zones were identified according to prominent current movements and circulations observed during the summer 2011 and 2012 oceanographic cruises. These events also affect the productivity in the surrounding waters. Plankton samples were collected to determine the relative abundances of major groups representing three trophic levels. The abundance and composition of phyto- and zooplankton major groups slightly varied among the zones. Gut analysis of fish larvae was then conducted to determine potential prey preference and linked to the phyto- and zooplankton densities.
Oceanographic influences on the sea ice cover in the Sea of Okhotsk
NASA Technical Reports Server (NTRS)
Gratz, A. J.; Parkinson, C. L.
1981-01-01
Sea ice conditions in the Sea of Okhotsk, as determined by satellite images from the electrically scanning microwave radiometer on board Nimbus 5, were analyzed in conjunction with the known oceanography. In particular, the sea ice coverage was compared with the bottom bathymetry and the surface currents, water temperatures, and salinity. It is found that ice forms first in cold, shallow, low salinity waters. Once formed, the ice seems to drift in a direction approximating the Okhotsk-Kuril current system. Two basic patterns of ice edge positioning which persist for significant periods were identified as a rectangular structure and a wedge structure. Each of these is strongly correlated with the bathymetry of the region and with the known current system, suggesting that convective depth and ocean currents play an important role in determining ice patterns.
The Artistic Oceanographer Program
ERIC Educational Resources Information Center
Haley, Sheean T.; Dyhrman, Sonya T.
2009-01-01
The Artistic Oceanographer Program (AOP) was designed to engage elementary school students in ocean sciences and to illustrate basic fifth-grade science and art standards with ocean-based examples. The program combines short science lessons, hands-on observational science, and art, and focuses on phytoplankton, the tiny marine organisms that form…
36 Years of Remote Oceanographic Laser Fluorosensing: Findings, Challenges and Pathways to Explore
NASA Astrophysics Data System (ADS)
Chekalyuk, A. M.
2009-12-01
Since its initial bright start in early 70s, the oceanographic applications of laser remote fluorosensing have been mostly driven by the enthusiastic laser geeks, who tried to transfer the recent technological advances from their laboratory breadboards to the real world. This communication provides an overview of the key milestones and advances in the oceanographic applications of remote laser fluorosensing that is used for qualitative and quantitative characterization of the key aquatic constituents, including chromophoric dissolved organic matter, phytoplankton pigments, their biomass, community structure, and photo-physiological status. The basic principles and analytical techniques, including fluorescence excitation and emission measurements, as well as active control over the media to retrieve additional information (“super-active remote sensing”), are briefly discussed and illustrated with examples of practical applications. The laser excitation sources (including solid state, tunable lasers and optical parametric oscillators) and signal detectors and analyzers (including multi-spectral and hyperspectral systems) are discussed. The advantages and limitations of various platforms (stationary settings, ships, airplanes, helicopters, unmanned autonomous vehicles (UAV), and satellites) are analyzed. The recent findings, methodological and technological developments in oceanographic applications of laser fluorescence indicate that there is a significant, still underexplored potential of remote fluorosensing that may provide new observational capabilities and serve as a useful tool for oceanographic research, bio-environmental monitoring, and validation of passive satellite retrievals.
Dynamic of aragonite saturation horizon in waters of Baja California, Mexico
NASA Astrophysics Data System (ADS)
Valencia Gasti, J. A.; Oliva, N. L.; Martin Hernandez-Ayon, J. M.; Durazo, R.; Santamaria-del-Angel, E.; Alin, S. R.; Feely, R. A.
2016-02-01
The status of the ocean acidification can be estimated by hydrographic calibrated data with carbon system variables. Recently empirical models for the coast of southern California and northern Baja California were developed. These models can be applied mainly in places where hydrographic data exist but also with measurements of the carbon system available for calibrations. The aim of this study was to analyze the hydrographic data of a transect in front of Ensenada's coast, corresponding to the line 100 of IMECOCAL's program during the period 1998-2014. Such data was used to apply an empirical model to estimate the aragonite saturation state (Ωa) in order to identify oceanographic conditions that could influence the variability of the depth of saturation horizon that might be in the last 17 years in habitats of shellfish and oyster production areas adjacent to the coast of Ensenada. It was found that the temperature, salinity, oxygen, pH, dissolved inorganic carbon and Ωa showed a seasonal variation with different oceanographic scenarios: (a) during spring-summer the California Current flow to the Ecuador and upwelling events are presented; (b) in autumn-winter the influence the Southern California Bight Eddy can transport water from the subarctic to Ecuador in the oceanic portion of the transect and towards the pole at the coastal side. These oceanographic characteristics encourage that coastal stations present seasonal variability, reflected in the depth of the horizon Ωa shallower ( 66m + 21m) in spring and deeper into the winter ( 122m + 35). It has been reported that the upwelling off the coast of BC transport water from a depth between 80 and 90m in spring and summer; therefore under saturated water (Ωa <1) may be transported to the platform upwelling off the coast of BC
Abdul-Hadi, Alaa; Mansor, Shattri; Pradhan, Biswajeet; Tan, C K
2013-05-01
A study was conducted to investigate the influence of Asian monsoon on chlorophyll-a (Chl-a) content in Sabah waters and to identify the related oceanographic conditions that caused phytoplankton blooms at the eastern and western coasts of Sabah, Malaysia. A series of remote sensing measurements including surface Chl-a, sea surface temperature, sea surface height anomaly, wind speed, wind stress curl, and Ekman pumping were analyzed to study the oceanographic conditions that lead to large-scale nutrients enrichment in the surface layer. The results showed that the Chl-a content increased at the northwest coast from December to April due to strong northeasterly wind and coastal upwelling in Kota Kinabalu water. The southwest coast (Labuan water) maintained high concentrations throughout the year due to the effect of Padas River discharge during the rainy season and the changing direction of Baram River plume during the northeast monsoon (NEM). However, with the continuous supply of nutrients from the upwelling area, the high Chl-a batches were maintained at the offshore water off Labuan for a longer time during NEM. On the other side, the northeast coast illustrated a high Chl-a in Sandakan water during NEM, whereas the northern tip off Kudat did not show a pronounced change throughout the year. The southeast coast (Tawau water) was highly influenced by the direction of the surface water transport between the Sulu and Sulawesi Seas and the prevailing surface currents. The study demonstrates the presence of seasonal phytoplankton blooms in Sabah waters which will aid in forecasting the possible biological response and could further assist in marine resource managements.
NASA Astrophysics Data System (ADS)
Musco, Maria Elena; Caricchi, Chiara; Giulia Lucchi, Renata; Princivalle, Francesco; GIorgetti, Giovanna; Caburlotto, Andrea
2017-04-01
The Kveithola and Storfjorden troughs are two glacial depositional systems, situated South of the Svalbard Archipelago (North Western Barents Sea), that during the last glaciation (MIS-2) have hosted ice streams, which contributed to the build-up of the relative Trough Mouth Fans (TMFs) on the continental slope. The sedimentary record contained in TMFs provides several proxies that can be useful for reconstructing the ice-streams dynamics during glacial periods, the onset of deglaciation and the climatic variability during interglacials. The TMF slopes facing the two troughs have been investigated during several international oceanographic cruises: SVAIS onboard R/V BIO Hespérides; EGLACOM, onboard R/V OGS Explora; PNRA Project CORIBAR, onboard R/V Maria S. Marien; Eurofleets-2 PREPARED, onboard RV-G.O. Sars. For this study we have focused on XRD analyses on clay minerals, collected from seven cores, taken during these cruises, and XRF analyses have also been conducted on the whole length of the cores. Clay mineral assemblages are controlled by source rock composition, physical-chemical weathering, transport and depositional mechanisms. In polar areas clay mineral analysis can be used also for reconstructing sedimentary processes, associated with glacial and interglacial conditions. Moreover in the North western Barents Sea smectite is considered a good proxy for reconstructing the North Atlantic Current strength, giving thus additional indication on the palaeoceanographic conditions associated with climatic changes. Here we present a first correlation among these cores, aiming to describe the clay mineral distribution in response to the climatic variations that followed the Last Glacial Maximum and describe the changes in ice-stream dynamics and related oceanographic/environmental changes along the margin.
An Oceanographic Curriculum for High Schools.
ERIC Educational Resources Information Center
Taber, Robert W.; And Others
Contained are outlines for 18 one-hour lectures on oceanology. Each outline lists topics to be covered, suggestions on which topics should be covered most thoroughly, and books for further reading and related films. Lecture topics include: oceanographic surveying and research; geology of the oceans; physical properties of sea water; waves, tides…
Publication Of Oceanographic Data on CD-ROM
NASA Technical Reports Server (NTRS)
Hilland, Jeffrey E.; Smith, Elizabeth A.; Martin, Michael D.
1992-01-01
Large collections of oceanographic data and other large collections of data published on CD-ROM's in formats facilitating access and analysis. Involves four major steps: preprocessing, premastering, mastering, and verification. Large capacity, small size, commercial availability, long-life, and standard format of CD-ROM's offer advantages over computer-compatible magnetic tape.
Main directions in the simulation of physical characteristics of the World Ocean and seas
NASA Astrophysics Data System (ADS)
Sarkisyan, A. S.
2016-07-01
A brief analysis of the oceanographic papers printed in this issue is presented. For convenience of the reader, the paper by K. Bryan, a prominent scientist and expert in modeling the physical characteristics of the ocean, is discussed in detail. The remaining studies are described briefly in several sections: direct prognostic modeling, diagnosis-adaptation, four-dimensional analysis, and operational oceanography. At the end of the study, we separately discuss the problem of the reproduction of coastal intensification of temperature, salinity, density, and currents. We believe that the quality of the simulation results can be best assessed in terms of the intensity of coastal currents. In conclusion, this opinion is justified in detail.
NASA Astrophysics Data System (ADS)
Scholin, C.; Preston, C.; Harris, A.; Birch, J.; Marin, R.; Jensen, S.; Roman, B.; Everlove, C.; Makarewicz, A.; Riot, V.; Hadley, D.; Benett, W.; Dzenitis, J.
2008-12-01
An internet search using the phrase "ecogenomic sensor" will return numerous references that speak broadly to the idea of detecting molecular markers indicative of specific organisms, genes or other biomarkers within an environmental context. However, a strict and unified definition of "ecogenomic sensor" is lacking and the phrase may be used for laboratory-based tools and techniques as well as semi or fully autonomous systems that can be deployed outside of laboratory. We are exploring development of an ecogenomic sensor from the perspective of a field-portable device applied towards oceanographic research and water quality monitoring. The device is known as the Environmental Sample Processor, or ESP. The ESP employs wet chemistry molecular analytical techniques to autonomously assess the presence and abundance of specific organisms, their genes and/or metabolites in near real-time. Current detection chemistries rely on low- density DNA probe and protein arrays. This presentation will emphasize results from 2007-8 field trials when the ESP was moored in Monterey Bay, CA, as well as current engineering activities for improving analytical capacity of the instrument. Changes in microbial community structure at the rRNA level were observed remotely in accordance with changing chemical and physical oceanographic conditions. Current developments include incorporation of a reusable solid phase extraction column for purifying nucleic acids and a 4-channel real-time PCR module. Users can configure this system to support a variety of PCR master mixes, primer/probe combinations and control templates. An update on progress towards fielding a PCR- enabled ESP will be given along with an outline of plans for its use in coastal and oligotrophic oceanic regimes.
Potential geologic hazards on the eastern Gulf of Cadiz slope (SW Spain)
Baraza, J.; Ercilla, G.; Nelson, C.H.
1999-01-01
Geologic hazards resulting from sedimentary, oceanographic and tectonic processes affect more than one third of the offshore Gulf of Cadiz, and are identified by interpreting high-resolution seismic profiles and sonographs. Hazards of sedimentary origin include the occurrence of slope instability processes in the form of single or multiple slumps occupying up to 147 km2 mainly concentrated in the steeper, upper slope area. Besides the presence of steep slopes, the triggering of submarine landslides is probably due to seismic activity and favoured by the presence of biogenic gas within the sediment. Gassy sediments and associated seafloor pockmarks cover more than 240 km2 in the upper slope. Hazards from oceanographic processes result from the complex system of bottom currents created by the interaction of the strong Mediterranean Undercurrent and the rough seafloor physiography. The local intensification of bottom currents is responsible for erosive processes along more than 1900 km2 in the upper slope and in the canyons eroded in the central area of the slope, undermining slopes and causing instability. The strong bottom currents also create a mobile seafloor containing bedforms in an area of the Gulf that extends more than 2500 km2, mostly in the continental slope terraces. Hazards of tectonic origin are important because the Gulf of Cadiz straddles two major tectonic regions, the Azores-Gibraltar fracture zone and the Betic range, which results in diapir uplift over an area of more than 1000 km2, and in active seismicity with earthquakes of moderate magnitude. Also, tsunamis produced by strong earthquakes occur in the Gulf of Cadiz, and are related to the tectonic activity along the Azores-Gibraltar fracture zone.
Path Planning Algorithms for the Adaptive Sensor Fleet
NASA Technical Reports Server (NTRS)
Stoneking, Eric; Hosler, Jeff
2005-01-01
The Adaptive Sensor Fleet (ASF) is a general purpose fleet management and planning system being developed by NASA in coordination with NOAA. The current mission of ASF is to provide the capability for autonomous cooperative survey and sampling of dynamic oceanographic phenomena such as current systems and algae blooms. Each ASF vessel is a software model that represents a real world platform that carries a variety of sensors. The OASIS platform will provide the first physical vessel, outfitted with the systems and payloads necessary to execute the oceanographic observations described in this paper. The ASF architecture is being designed for extensibility to accommodate heterogenous fleet elements, and is not limited to using the OASIS platform to acquire data. This paper describes the path planning algorithms developed for the acquisition phase of a typical ASF task. Given a polygonal target region to be surveyed, the region is subdivided according to the number of vessels in the fleet. The subdivision algorithm seeks a solution in which all subregions have equal area and minimum mean radius. Once the subregions are defined, a dynamic programming method is used to find a minimum-time path for each vessel from its initial position to its assigned region. This path plan includes the effects of water currents as well as avoidance of known obstacles. A fleet-level planning algorithm then shuffles the individual vessel assignments to find the overall solution which puts all vessels in their assigned regions in the minimum time. This shuffle algorithm may be described as a process of elimination on the sorted list of permutations of a cost matrix. All these path planning algorithms are facilitated by discretizing the region of interest onto a hexagonal tiling.
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
University of Washington Applied Physics Laboratory Senior Oceanographer Andrey Shcherbina, left, and University of Washington Applied Physics Laboratory Senior Principal Oceanographer Jason Gobat work one of their instruments onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
University of Washington Applied Physics Laboratory Senior Oceanographer Andrey Shcherbina, left, and University of Washington Applied Physics Laboratory Senior Principal Oceanographer Jason Gobat carry one of their instruments onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France). Intergovernmental Oceanographic Commission.
Summarized in this report are the discussions which took place during the twelfth session of the Intergovernmental Oceanographic Commission (IOC) Assembly. Summaries are provided in 15 sections: opening comments; administrative arrangements; adoption of triennial commission report; ocean sciences; ocean services; training, education, and mutual…
Oceanography for the Visually Impaired
ERIC Educational Resources Information Center
Fraser, Kate
2008-01-01
Amy Bower is a physical oceanographer and senior scientist at the Woods Hole Oceanographic Institution (WHOI) in Woods Hole, Massachusetts--she has also been legally blind for 14 years. Through her partnership with the Perkins School for the Blind in Watertown, Massachusetts, the oldest K-12 school for the visually impaired in the United States,…
Identification of genetically and oceanographically distinct blooms of jellyfish
Lee, Patricia L. M.; Dawson, Michael N; Neill, Simon P.; Robins, Peter E.; Houghton, Jonathan D. R.; Doyle, Thomas K.; Hays, Graeme C.
2013-01-01
Reports of nuisance jellyfish blooms have increased worldwide during the last half-century, but the possible causes remain unclear. A persistent difficulty lies in identifying whether blooms occur owing to local or regional processes. This issue can be resolved, in part, by establishing the geographical scales of connectivity among locations, which may be addressed using genetic analyses and oceanographic modelling. We used landscape genetics and Lagrangian modelling of oceanographic dispersal to explore patterns of connectivity in the scyphozoan jellyfish Rhizostoma octopus, which occurs en masse at locations in the Irish Sea and northeastern Atlantic. We found significant genetic structure distinguishing three populations, with both consistencies and inconsistencies with prevailing physical oceanographic patterns. Our analyses identify locations where blooms occur in apparently geographically isolated populations, locations where blooms may be the source or result of migrants, and a location where blooms do not occur consistently and jellyfish are mostly immigrant. Our interdisciplinary approach thus provides a means to ascertain the geographical origins of jellyfish in outbreaks, which may have wide utility as increased international efforts investigate jellyfish blooms. PMID:23287405
NASA Astrophysics Data System (ADS)
Smith, S. R.; Rolph, J.; Briggs, K.; Elya, J. L.; Bourassa, M. A.
2016-02-01
The authors will describe the successes and lessons learned from the Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative. Over the past decade, SAMOS has acquired, quality controlled, and distributed underway surface meteorological and oceanographic observations from nearly 40 oceanographic research vessels. Research vessels provide underway observations at high-temporal frequency (1-minute sampling interval) that include navigational (position, course, heading, and speed), meteorological (air temperature, humidity, wind, surface pressure, radiation, rainfall), and oceanographic (surface sea temperature and salinity) samples. Vessels recruited to the SAMOS initiative collect a high concentration of data within the U.S. continental shelf, around Hawaii and the islands of the tropical Pacific, and frequently operate well outside routine shipping lanes, capturing observations in extreme ocean environments (Southern, Arctic, South Atlantic, and South Pacific oceans) desired by the air-sea exchange, modeling, and satellite remote sensing communities. The presentation will highlight the data stewardship practices of the SAMOS initiative. Activities include routine automated and visual data quality evaluation, feedback to vessel technicians and operators regarding instrumentation errors, best practices for instrument siting and exposure on research vessels, and professional development activities for research vessel technicians. Best practices for data, metadata, and quality evaluation will be presented. We will discuss ongoing efforts to expand data services to enhance interoperability between marine data centers. Data access and archival protocols will also be presented, including how these data may be referenced and accessed via NCEI.
NASA Astrophysics Data System (ADS)
Koslow, J. Anthony; Davison, Peter; Lara-Lopez, Ana; Ohman, Mark D.
2014-10-01
We use zooplankton and ichthyoplankton data from the ~ 60-year CalCOFI time series to examine relationships of mesopelagic (i.e. midwater) fishes in the California Current System with midwater predators, potential competitors (epipelagic planktivorous fishes) and zooplankton prey, within the context of local and basin-scale oceanography. Equilibrium-based near-steady state models and the “wasp-waist” paradigm for eastern boundary currents predict tightly-coupled trophic interactions, with negative correlations between the abundance of planktivorous competitors and between dominant planktivores and their prey. Testing these hypotheses with the CalCOFI time series, we found them to be generally invalid. Potential competitors within the mesopelagic community (planktivorous vertical migrators (VMs) and non-migrators (NMs)) were highly positively correlated, as were these groups with the mesopelagic piscivores (e.g. dragonfishes) that prey on them. In addition, the abundance of VMs was mostly positively correlated with that of epipelagic planktivores, such as anchovy, mackerels and hake. The VMs and epipelagic planktivores were negatively correlated with key potential planktonic prey groups, indicating a lack of bottom-up forcing. However, neither do these negative correlations appear to signify top-down forcing, since they seem to be mediated through correlations with key environmental drivers, such as the Pacific Decadal Oscillation (PDO), sea surface temperature, and the relative strength of the California Current. We suggest that the web of correlations linking key meso- and epipelagic planktivores, their predators and prey is mediated through common links with basin-scale oceanographic drivers, such as the PDO and ENSO cycles. Thus, the abundance of mesopelagic fishes in the California Current is closely tied to variation in the oxygen minimum zone, whose dynamics have been linked to the PDO. The PDO and other drivers are also linked to the transport of the California Current System, which influences the abundance of many dominant taxa off southern California that have broad biogeographic distributions linked to water masses that extend to the north (Transition Zone/sub-Arctic faunas) or the south (tropical/subtropical faunas).
NASA Astrophysics Data System (ADS)
Fredrickson, E. K.; Wilcock, W. S. D.; MacCready, P.; Roland, E. C.; Schmidt, D. A.; Zumberge, M. A.; Sasagawa, G. S.; Kurapov, A. L.
2017-12-01
The Cascadia subduction zone produces M8-9 megathrust earthquakes with a recurrence interval of 500 years. While land-based geodetic measurements indicate a large degree of locking offshore, these observations cannot resolve the extent of locking nearest the trench. One method for detecting displacement at shallow depths on the megathrust is through the use of seafloor pressure to track uplift and subsidence of the seafloor, a technique that shows potential for both constraining long term plate locking behavior and searching for slow slip transients. Past studies using seafloor pressure for geodesy have used differenced pairs of pressure records to eliminate oceanographic noise, a primary noise source of seafloor pressure, on the assumption that oceanographic signals are uniform between stations. These studies have identified vertical displacements associated with slow slip on the order of 1-5 cm over instrument separations from 1-50 km in subduction zone settings across the globe. We present an analysis of pressure records from 30 stations in the 2011-2015 Cascadia Initiative experiment and regional physical oceanographic hind cast models developed using the Regional Ocean Modeling System, which have been validated with oceanographic observations, but not previously analyzed for seafloor pressure. We study the root mean square (RMS) amplitude of time series of pressure and pressure differences at periods of 5-30 days to assess the scale, spatial dependence, and temporal dependence of seafloor pressure oceanographic signals. The results indicate that these signals are strongly depth dependent, with filtered pressure RMS values decreasing with depth from >4.5 cm on the continental shelf to <1.5 cm on the abyssal plane for the pressure observations and from >2.5 cm to <1 cm for the model. In contrast, oceanographic signals vary more slowly along depth contours and both data and model show RMS values varying <1 cm at separations >100 km. Based on our noise analysis, we infer that experiments that search for slow slip events should deploy pressure sensors along strike, rather than solely in across strike profiles. We will also explore using temporally and spatially coincident oceanographic models and physical data to correct pressure signals and assess the impact on the threshold for slow slip event detection.
High Frequency Radar Observations of Tidal Current Variability in the Lower Chesapeake Bay
NASA Astrophysics Data System (ADS)
Updyke, T. G.; Dusek, G.; Atkinson, L. P.
2016-02-01
Analysis of eight years of high frequency radar surface current observations in the lower Chesapeake Bay is presented with a focus on the variability of the tidal component of the surface circulation which accounts for a majority of the variance of the surface flow (typically 70-80% for the middle of the radar footprint). Variations in amplitude and phase of the major tidal constituents are examined in the context of water level, wind and river discharge data. Comparisons are made with harmonic analysis results from long-term records of current data measured by three current profilers operated by NOAA as part of the Chesapeake Bay Physical Oceanographic Real-Time System (PORTS). Preliminary results indicate that there is significant spatial variability in the M2 amplitude over the HF radar grid as well as temporal variability when harmonic analysis is performed using bi-monthly time segments over the course of the record.
Including eddies in global ocean models
NASA Astrophysics Data System (ADS)
Semtner, Albert J.; Chervin, Robert M.
The ocean is a turbulent fluid that is driven by winds and by surface exchanges of heat and moisture. It is as important as the atmosphere in governing climate through heat distribution, but so little is known about the ocean that it remains a “final frontier” on the face of the Earth. Many ocean currents are truly global in extent, such as the Antarctic Circumpolar Current and the “conveyor belt” that connects the North Atlantic and North Pacific oceans by flows around the southern tips of Africa and South America. It has long been a dream of some oceanographers to supplement the very limited observational knowledge by reconstructing the currents of the world ocean from the first principles of physics on a computer. However, until very recently, the prospect of doing this was thwarted by the fact that fluctuating currents known as “mesoscale eddies” could not be explicitly included in the calculation.
Butman, Bradford; Bothner, Michael H.; Alexander, P. Soupy; Lightsom, Frances L.; Martini, Marinna A.; Gutierrez, Benjamin T.; Strahle, William S.
2004-01-01
This data report presents long-term oceanographic observations made in western Massachusetts Bay at two locations: (1) 42 deg 22.6' N., 70 deg 47.0' W. (Site A, 33 m water depth) from December 1989 through December 2002 (figure 1), and (2) 42 deg 9.8' N., 70 deg 38.4' W. (Site B, 21 m water depth) from October 1997 through December 2002. Site A is approximately 1 km south of the new ocean outfall that began discharging treated sewage effluent from the Boston metropolitan area into Massachusetts Bay on September 6, 2000. These long-term oceanographic observations have been collected by the U.S. Geological Survey (USGS) in partnership with the Massachusetts Water Resources Authority (MWRA) and with logistical support from the U.S. Coast Guard (USCG - http://www.uscg.mil). This report presents time series data through December 2002, updating a similar report that presented data through December 2000 (Butman and others, 2002). In addition, the Statistics and Mean Flow sections include some new plots and tables and the format of the report has been streamlined by combining yearly figures into single .pdfs. Figure 1 (PDF format) The long-term measurements are planned to continue at least through 2005. The long-term oceanographic observations at Sites A and B are part of a USGS study designed to understand the transport and long-term fate of sediments and associated contaminants in the Massachusetts bays. (See http://woodshole.er.usgs.gov/project-pages/bostonharbor/ and Butman and Bothner, 1997.) The long-term observations document seasonal and inter-annual changes in currents, hydrography, and suspended-matter concentration in western Massachusetts Bay, and the importance of infrequent catastrophic events, such as major storms or hurricanes, in sediment resuspension and transport. They also provide observations for testing numerical models of circulation. This data report presents a description of the field program and instrumentation, an overview of the data through summary plots and statistics, and the data in NetCDF and ASCII format for the period December 1989 through December 2002 for Site A and October 1997 through December 2002 for Site B. The objective of this report is to make the data available in digital form and to provide summary plots and statistics to facilitate browsing of the long-term data set.
NASA Astrophysics Data System (ADS)
McCann, M. P.; Gwiazda, R.; O'Reilly, T. C.; Maier, K. L.; Lundsten, E. M.; Parsons, D. R.; Paull, C. K.
2017-12-01
The Coordinated Canyon Experiment (CCE) in Monterey Submarine Canyon has produced a wealth of oceanographic measurements whose analysis will improve understanding of turbidity current processes. Exploration of this data set, consisting of over 60 parameters from 15 platforms, is facilitated by using the open source Spatial Temporal Oceanographic Query System (STOQS) software (https://github.com/stoqs/stoqs). The Monterey Bay Aquarium Research Institute (MBARI) originally developed STOQS to help manage and visualize upper water column oceanographic measurements, but the generality of its data model permits effective use for any kind of spatial/temporal measurement data. STOQS consists of a PostgreSQL database and server-side Python/Django software; the client-side is jQuery JavaScript supporting AJAX requests to update a single page web application. The User Interface (UI) is optimized to provide a quick overview of data in spatial and temporal dimensions, as well as in parameter, platform, and data value space. A user may zoom into any feature of interest and select it, initiating a filter operation that updates the UI with an overview of all the data in the new filtered selection. When details are desired, radio buttons and checkboxes are selected to generate a number of different types of visualizations. These include color-filled temporal section and line plots, parameter-parameter plots, 2D map plots, and interactive 3D spatial visualizations. The Extensible 3D (X3D) standard and X3DOM JavaScript library provide the technology for presenting animated 3D data directly within the web browser. Most of the oceanographic measurements from the CCE (e.g. mooring mounted ADCP and CTD data) are easily visualized using established methods. However, unified integration and multiparameter display of several concurrently deployed sensors across a network of platforms is a challenge we hope to solve. Moreover, STOQS also allows display of data from a new instrument - the Benthic Event Detector (BED). The BED records 50Hz samples of orientation and acceleration when it moves. These data are converted to the CF-NetCDF format and then loaded into a STOQS database. Using the Spatial-3D view a user may interact with a virtual playback of BED motions, giving new insight into submarine canyon sediment density flows.
NASA Astrophysics Data System (ADS)
Fritz-Endres, T.; Dekens, P.; Spero, H. J.; Fehrenbacher, J. S.; Spiess, V.; France-Lanord, C.
2016-12-01
Sediment cores from the Bay of Bengal present an opportunity to improve our understanding of the links between terrestrial and oceanographic climate variability. Foraminifera archive key proxies for reconstructing oceanographic conditions, but in Bengal fan sediments, fossils may have been transported via turbidity currents. Given the difference in SST and SSS variability in the southern (29.0±0.8°C; 33.9 ±0.3‰) and the northern Bay of Bengal (28.0±1.4°C; 31.6±0.8‰), it is important to determine the source of foraminifera to the sediment cores before attempting paleoceanographic reconstructions. We present paired Mg/Ca and δ18O data from single Globigerinoides sacculifer in mudline samples from three locations with differing oceanographic conditions. Two sites are from IODP Expedition 354 and one site is from the continental shelf. IODP Site U1454 (8.4°N, 85.5°E, 3721 m water depth) is near the modern active channel and more likely to be influenced by transport, while IODP site U1449 (8.4°N, 88.7°E, 3653 m water depth) is 200 km from channel activity and site 342KL (20.6°N, 90°E, 1256 m water depth) is on the continental shelf. The distribution of 70 to 80 Mg/Ca and δ18O data-points reflects the seasonal signal at the location foraminifera calcified. Mg/Ca and δ18O data from site U1449 (far from channel activity) have a distribution that most closely reflects the seasonal oceanographic conditions of the overlying water column. However, the distribution of G. sacculifer Mg/Ca and δ18O from site U1454 (near the active channel) has similarities to the distribution of the G. sacculifer Mg/Ca and δ18O data from the continental shelf. Our data suggest that foraminifera near the active channel are a mixture of shells from the overlying water column and shells transported from the northern Bay of Bengal. We suggest foraminifera can be used to reconstruct SST and δ18O in this complex depositional environment, but caution must be taken when the down-core lithology indicates regional turbidite activity and other evidence of sediment redeposition.
Legacy2Drupal: Conversion of an existing relational oceanographic database to a Drupal 7 CMS
NASA Astrophysics Data System (ADS)
Work, T. T.; Maffei, A. R.; Chandler, C. L.; Groman, R. C.
2011-12-01
Content Management Systems (CMSs) such as Drupal provide powerful features that can be of use to oceanographic (and other geo-science) data managers. However, in many instances, geo-science data management offices have already designed and implemented customized schemas for their metadata. The NSF funded Biological Chemical and Biological Data Management Office (BCO-DMO) has ported an existing relational database containing oceanographic metadata, along with an existing interface coded in Cold Fusion middleware, to a Drupal 7 Content Management System. This is an update on an effort described as a proof-of-concept in poster IN21B-1051, presented at AGU2009. The BCO-DMO project has translated all the existing database tables, input forms, website reports, and other features present in the existing system into Drupal CMS features. The replacement features are made possible by the use of Drupal content types, CCK node-reference fields, a custom theme, and a number of other supporting modules. This presentation describes the process used to migrate content in the original BCO-DMO metadata database to Drupal 7, some problems encountered during migration, and the modules used to migrate the content successfully. Strategic use of Drupal 7 CMS features that enable three separate but complementary interfaces to provide access to oceanographic research metadata will also be covered: 1) a Drupal 7-powered user front-end; 2) REST-ful JSON web services (providing a Mapserver interface to the metadata and data; and 3) a SPARQL interface to a semantic representation of the repository metadata (this feeding a new faceted search capability currently under development). The existing BCO-DMO ontology, developed in collaboration with Rensselaer Polytechnic Institute's Tetherless World Constellation, makes strategic use of pre-existing ontologies and will be used to drive semantically-enabled faceted search capabilities planned for the site. At this point, the use of semantic technologies included in the Drupal 7 core is anticipated. Using a public domain CMS as opposed to proprietary middleware, and taking advantage of the many features of Drupal 7 that are designed to support semantically-enabled interfaces will help prepare the BCO-DMO and other science data repositories for interoperability between systems that serve ecosystem research data.
Modeling the Distribution of Geodia Sponges and Sponge Grounds in the Northwest Atlantic
Knudby, Anders; Kenchington, Ellen; Murillo, Francisco Javier
2013-01-01
Deep-sea sponge grounds provide structurally complex habitat for fish and invertebrates and enhance local biodiversity. They are also vulnerable to bottom-contact fisheries and prime candidates for Vulnerable Marine Ecosystem designation and related conservation action. This study uses species distribution modeling, based on presence and absence observations of Geodia spp. and sponge grounds derived from research trawl catches, as well as spatially continuous data on the physical and biological ocean environment derived from satellite data and oceanographic models, to model the distribution of Geodia sponges and sponge grounds in the Northwest Atlantic. Most models produce excellent fits with validation data although fits are reduced when models are extrapolated to new areas, especially when oceanographic regimes differ between areas. Depth and minimum bottom salinity were important predictors in most models, and a Geodia spp. minimum bottom salinity tolerance threshold in the 34.3-34.8 psu range was hypothesized on the basis of model structure. The models indicated two currently unsampled regions within the study area, the deeper parts of Baffin Bay and the Newfoundland and Labrador slopes, where future sponge grounds are most likely to be found. PMID:24324768
NASA Astrophysics Data System (ADS)
Tang, Danling; Kawamura, Hiroshi; Oh, Im Sang; Baker, Joe
Harmful algal blooms (HABs) are truly global marine phenomena of increasing significance. Some HAB occurrences are different to observe because of their high spatial and temporal variability and their advection, once formed, by surface currents. A serious HAB occurred in the Bohai Sea during autumn 1998, causing the largest fisheries economic loss. The present study analyzes the formation, distribution, and advection of HAB using satellite SeaWiFS ocean color data and other oceanographic data. The results show that the bloom originated in the western coastal waters of the Bohai Sea in early September, and developed southeastward when sea surface temperature (SST) increased to 25 26 °C. The bloom with a high Chl-a concentration (6.5 mg m-3) in center portion covered an area of 60 × 65 km2. At the end of September, the bloom decayed when SST decreased to 22 23 °C. The HAB may have been initiated by a combination of the river discharge nutrients in the west coastal waters and the increase of SST; afterwards it may have been transported eastward by the local circulation that was enhanced by northwesterly winds in late September and early October.
NASA Astrophysics Data System (ADS)
Bressan, Lidia; Valentini, Andrea; Paccagnella, Tiziana; Montani, Andrea; Marsigli, Chiara; Stefania Tesini, Maria
2017-04-01
At the Hydro-meteo-climate service of the Regional environmental agency of Emilia-Romagna, Italy (Arpae-SIMC), the oceanographic numerical model AdriaROMS is used in the operational forecasting suite to compute sea level, temperature, salinity and 3-D current fields of the Adriatic Sea (northern Mediterranean Sea). In order to evaluate the performance of the sea-level forecast and to study different configurations of the ROMS model, two marine storms occurred on the Emilia Romagna coast during the winter 2015-2016 are investigated. The main focus of this study is to analyse the sensitivity of the model to the horizontal resolution and to the meteorological forcing. To this end, the model is run with two different configurations and with two horizontal grids at 1 and 2 km resolution. To study the influence of the meteorological forcing, the two storms have been reproduced by running ROMS in ensemble mode, forced by the 16-members of the meteorological ensemble COSMO-LEPS system. Possible optimizations of the model set-up are deduced by the comparison of the different run outputs.
Multiple states and hysteresis in a two-layer loop current type system
NASA Astrophysics Data System (ADS)
Kuehl, J.; Sheremet, V.
2017-12-01
Rotating table experiments are considered of a two-layer loop current type or gap-leaping system. Such experiments are representative of oceanic regions including the Kuroshio current crossing the Luzon Strait, the Gulf of Mexico Loop Current, the Northeast Chanel of the Gulf of Maine where Scotian shelf water leaps directly from Browns bank to Georges Bank and more. Systems such as these are known to admit two dominant states: leaping across the gap or penetrating into the gap forming a loop current. Which state the system will assume and when transitions between states will occur are open problems. We show that such systems admit multiple steady states with hysteresis when the strength of the current is varied. When the state of the system is viewed in a parameter space representing inertia and vorticity constraint, the system is found to be characterized by a cusp topology of solutions. The existence of such dynamics in two-layer quasi-geostrophic systems has significant implications for oceanographic predictability.
Palos Verdes Shelf oceanographic study; data report for observations December 2007–April 2008
Rosenberger, Kurt J.; Noble, Marlene A.; Sherwood, Christopher R.; Martini, Marinna M.; Ferreira, Joanne T.; Montgomery, Ellyn T.
2011-01-01
Beginning in 1997, the Environmental Protection Agency (EPA) defined a contaminated section of the Palos Verdes Shelf region in southern California as a Superfund Site, initiating a continuing investigation of this area. The investigation involved the EPA, the U.S. Geological Survey (USGS), Science Applications International Corporation (SAIC), Los Angeles County Sanitation Districts (LACSD) data, and other allied agencies. In mid-2007, the Palos Verdes Shelf project team identified the need for additional data on the sediment properties and oceanographic conditions at the Palos Verdes Superfund Site and deployed seven bottom platforms, three subsurface moorings, and three surface moorings on the shelf. This additional data was needed to support ongoing modeling and feasibility studies and to improve our ability to model the fate of the effluent-affected deposit over time. It provided more detail on the spatial variability and magnitude of resuspension of the deposit during multiple storms that are expected to transit the region during a winter season. The operation began in early December 2007 and ended in early April 2008. The goal was to measure the sediment response (threshold of resuspension, suspended-sediment concentrations, and suspended-sediment transport rates) to bed stresses associated with waves and currents. Other objectives included determining the structure of the bottom boundary layer (BBL) relating nearbed currents with those measured at 10 m above bottom (mab) and comparing those with the long-term data from the LACSD Acoustic Doppler Current Profiler (ADCP) deployments for nearbed current speed and direction. Low-profile tripods with high-frequency ADCPs co-located with two of the large tripods were selected for this goal. This report describes the data obtained during the field program, the instruments and data-processing procedures used, and the archive that contains the data sets that have passed our quality-assurance procedures.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France). Intergovernmental Oceanographic Commission.
The Intergovernmental Oceanographic Commission (IOC) functions within the United Nations Educational, Scientific, and Cultural Organization (Unesco) to promote scientific investigation into the nature and resources of the world's oceans. Summarized in this report are discussions that took place during the thirteenth session of the IOC Assembly.…
Stephanie Moore; Nathan J. Mantua; Jan A. Newton; Mitsuhiro Kawase; Mark J. Warner; Jonathan P. Kellogg
2008-01-01
Temporal and spatial patterns of variability in Puget Sound's oceanographic properties are determined using continuous vertical profile data from two long-term monitoring programs; monthly observations at 16 stations from 1993 to 2002, and biannual observations at 40 stations from 1998 to 2003. Climatological monthly means of temperature, salinity, and density...
NASA Technical Reports Server (NTRS)
Nichols, D. A.
1982-01-01
The problem of data integration in oceanography is discussed. Recommendations are made for technique development and evaluation, understanding requirements, and packaging techniques for speed, efficiency and ease of use. The primary satellite sensors of interest to oceanography are summarized. It is concluded that imaging type sensors make image processing an important tool for oceanographic studies.
On Predicting the Leeway and Drift of A Survival Suit Clad Person In-Water
1997-10-01
1977; Morgan 1978, Scobie and Thompson, 1979; Osmer, Edwards, and Breitler, 1982; and Nash and Willcox, 1985) on drifting objects. Leeway is defined...34, Woods Hole Oceanographic Institution, 26 PP. Scobie , R.W., and D.L. Thompson, 1979. "Life Raft Study", U.S. Coast Guard, Oceanographic Unit Technical
Oceanographic applications of laser technology
NASA Technical Reports Server (NTRS)
Hoge, F. E.
1988-01-01
Oceanographic activities with the Airborne Oceanographic Lidar (AOL) for the past several years have primarily been focussed on using active (laser induced pigment fluorescence) and concurrent passive ocean color spectra to improve existing ocean color algorithms for estimating primary production in the world's oceans. The most significant results were the development of a technique for selecting optimal passive wavelengths for recovering phytoplankton photopigment concentration and the application of this technique, termed active-passive correlation spectroscopy (APCS), to various forms of passive ocean color algorithms. Included in this activity is use of airborne laser and passive ocean color for development of advanced satellite ocean color sensors. Promising on-wavelength subsurface scattering layer measurements were recently obtained. A partial summary of these results are shown.
OCEAN-PC and a distributed network for ocean data
NASA Technical Reports Server (NTRS)
Mclain, Douglas R.
1992-01-01
The Intergovernmental Oceanographic Commission (IOC) wishes to develop an integrated software package for oceanographic data entry and access in developing countries. The software, called 'OCEAN-PC', would run on low cost PC microcomputers and would encourage and standardize: (1) entry of local ocean observations; (2) quality control of the local data; (3) merging local data with historical data; (4) improved display and analysis of the merged data; and (5) international data exchange. OCEAN-PC will link existing MS-DOS oceanographic programs and data sets with table-driven format conversions. Since many ocean data sets are now being distributed on optical discs (Compact Discs - Read Only Memory, CD-ROM, Mass et al. 1987), OCEAN-PC will emphasize access to CD-ROMs.
Oceanography in the next decade: Building new partnerships
NASA Technical Reports Server (NTRS)
1992-01-01
The field of oceanography has existed as a major scientific discipline in the United States since World War 2, largely funded by the federal government. In this report, the Ocean Studies Board documents the state of the field of oceanography and assesses the health of the partnership between the federal government and the academic oceanography community. The objectives are to document and discuss important trends in the human, physical, and fiscal resources available to oceanographers, especially academic oceanographers, over the last decade; to present the Ocean Studies Board's best assessment of scientific opportunities in physical oceanography, marine geochemistry, marine geology and geophysics, biological oceanography, and coastal oceanography during the upcoming decade; and to provide a blueprint for more productive partnerships between academic oceanographers and federal agencies.
Workshop on Satellite and In situ Observations for Climate Prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acker, J.G.; Busalacchi, A.
1995-02-01
Participants in this workshop, which convened in Venice, Italy, 6-8 May 1993, met to consider the current state of climate monitoring programs and instrumentation for the purpose of climatological prediction on short-term (seasonal to interannual) timescales. Data quality and coverage requirements for definition of oceanographic heat and momentum fluxes, scales of inter- and intra-annual variability, and land-ocean-atmosphere exchange processes were examined. Advantages and disadvantages of earth-based and spaceborne monitoring systems were considered, as were the structures for future monitoring networks, research programs, and modeling studies.
Basin-Wide Oceanographic Array Bridges the South Atlantic
NASA Astrophysics Data System (ADS)
Ansorge, I. J.; Baringer, M. O.; Campos, E. J. D.; Dong, S.; Fine, R. A.; Garzoli, S. L.; Goni, G.; Meinen, C. S.; Perez, R. C.; Piola, A. R.; Roberts, M. J.; Speich, S.; Sprintall, J.; Terre, T.; Van den Berg, M. A.
2014-02-01
The meridional overturning circulation (MOC) is a global system of surface, intermediate, and deep ocean currents. The MOC connects the surface layer of the ocean and the atmosphere with the huge reservoir of the deep sea and is the primary mechanism for transporting heat, freshwater, and carbon between ocean basins. Climate models show that past changes in the strength of the MOC were linked to historical climate variations. Further research suggests that the MOC will continue to modulate climate change scenarios on time scales ranging from decades to centuries [Latif et al., 2006].
Development of specifications for surface and subsurface oceanic environmental data
NASA Technical Reports Server (NTRS)
Wolff, P. M.
1976-01-01
The existing need for synoptic subsurface observations was demonstrated giving special attention to the requirements of meteorology. The current state of synoptic oceanographic observations was assessed; a preliminary design for the Basic Observational Network needed to fulfill the minimum needs of synoptic meteorology and oceanography was presented. There is an existing critical need for such a network in the support of atmospheric modeling and operational meteorological prediction, and through utilization of the regional water mass concept an adequate observational system can be designed which is realistic in terms of cost and effort.
What can earth tide measurements tell us about ocean tides or earth structure?
NASA Technical Reports Server (NTRS)
Baker, T. F.
1978-01-01
Current experimental problems in Earth tides are reviewed using comparisons of tidal gravity and tilt measurements in Europe with loading calculations are examples. The limitations of present day instrumentation and installation techniques are shown as well as some of the ways in which they can be improved. Many of the geophysical and oceanographic investigations that are possible with Earth tide measurements are discussed with emphasis on the percentage accuracies required in the measurements in order to obtain new information about Earth or its oceans.
Workshop on Satellite and In situ Observations for Climate Prediction
NASA Technical Reports Server (NTRS)
Acker, James G.; Busalacchi, Antonio
1995-01-01
Participants in this workshop, which convened in Venice, Italy, 6-8 May 1993, met to consider the current state of climate monitoring programs and instrumentation for the purpose of climatological prediction on short-term (seasonal to interannual) timescales. Data quality and coverage requirements for definition of oceanographic heat and momentum fluxes, scales of inter- and intra-annual variability, and land-ocean-atmosphere exchange processes were examined. Advantages and disadvantages of earth-based and spaceborne monitoring systems were considered, as were the structures for future monitoring networks, research programs, and modeling studies.
Current transport of leatherback sea turtles (Dermochelys coriacea) in the ocean.
Luschi, P; Sale, A; Mencacci, R; Hughes, G R; Lutjeharms, J R E; Papi, F
2003-11-07
While the long-distance movements of pelagic vertebrates are becoming known thanks to satellite telemetry, the factors determining their courses have hardly been investigated. We have analysed the effects of oceanographic factors on the post-nesting movements of three satellite-tracked leatherback turtles (Dermochelys coriacea) moving in the southwest Indian Ocean. By superimposing the turtle tracks on contemporaneous images of sea-surface temperatures and sea height anomalies, we show that currentrelated features dominate the shape of the reconstructed routes. After an initial offshore movement, turtles moved along straight routes when in the core of the current, or executed loops within eddies. Large parts of the routes were strikingly similar to those of surface drifters tracked in the same region. These findings document that long-lasting oceanic movements of marine turtles may be shaped by oceanic currents.
Current transport of leatherback sea turtles (Dermochelys coriacea) in the ocean.
Luschi, P; Sale, A; Mencacci, R; Hughes, G R; Lutjeharms, J R E; Papi, F
2003-01-01
While the long-distance movements of pelagic vertebrates are becoming known thanks to satellite telemetry, the factors determining their courses have hardly been investigated. We have analysed the effects of oceanographic factors on the post-nesting movements of three satellite-tracked leatherback turtles (Dermochelys coriacea) moving in the southwest Indian Ocean. By superimposing the turtle tracks on contemporaneous images of sea-surface temperatures and sea height anomalies, we show that currentrelated features dominate the shape of the reconstructed routes. After an initial offshore movement, turtles moved along straight routes when in the core of the current, or executed loops within eddies. Large parts of the routes were strikingly similar to those of surface drifters tracked in the same region. These findings document that long-lasting oceanic movements of marine turtles may be shaped by oceanic currents. PMID:14667360
Estimating Regions of Oceanographic Importance for Seabirds Using A-Spatial Data.
Humphries, Grant Richard Woodrow
2015-01-01
Advances in GPS tracking technologies have allowed for rapid assessment of important oceanographic regions for seabirds. This allows us to understand seabird distributions, and the characteristics which determine the success of populations. In many cases, quality GPS tracking data may not be available; however, long term population monitoring data may exist. In this study, a method to infer important oceanographic regions for seabirds will be presented using breeding sooty shearwaters as a case study. This method combines a popular machine learning algorithm (generalized boosted regression modeling), geographic information systems, long-term ecological data and open access oceanographic datasets. Time series of chick size and harvest index data derived from a long term dataset of Maori 'muttonbirder' diaries were obtained and used as response variables in a gridded spatial model. It was found that areas of the sub-Antarctic water region best capture the variation in the chick size data. Oceanographic features including wind speed and charnock (a derived variable representing ocean surface roughness) came out as top predictor variables in these models. Previously collected GPS data demonstrates that these regions are used as "flyways" by sooty shearwaters during the breeding season. It is therefore likely that wind speeds in these flyways affect the ability of sooty shearwaters to provision for their chicks due to changes in flight dynamics. This approach was designed to utilize machine learning methodology but can also be implemented with other statistical algorithms. Furthermore, these methods can be applied to any long term time series of population data to identify important regions for a species of interest.
Oceanographic scanner system design study, volume 1
NASA Technical Reports Server (NTRS)
1971-01-01
The design is reported of a dual mode multispectral scanner, capable of satisfying both overland and oceanographic requirements. A complete system description and performance summary of the scanner are given. In addition, subsystem and component descriptions and performance analyses are treated in individual sections. The design of the scanner, with minimum modifications, interfaces to the ERTS spacecraft and the ground data handling system.
Adaptive Oceanographic Sampling in a Coastal Environment Using Autonomous Gliding Vehicles
2003-08-01
cost autonomous vehicles with near-global range and modular sensor payload. Particular emphasis is placed on the development of adaptive sampling...environment. Secondary objectives include continued development of adaptive sampling strategies suitable for large fleets of slow-moving autonomous ... vehicles , and development and implementation of new oceanographic sensors and sampling methodologies. The main task completed was a complete redesign of
Autoregressive modeling for the spectral analysis of oceanographic data
NASA Technical Reports Server (NTRS)
Gangopadhyay, Avijit; Cornillon, Peter; Jackson, Leland B.
1989-01-01
Over the last decade there has been a dramatic increase in the number and volume of data sets useful for oceanographic studies. Many of these data sets consist of long temporal or spatial series derived from satellites and large-scale oceanographic experiments. These data sets are, however, often 'gappy' in space, irregular in time, and always of finite length. The conventional Fourier transform (FT) approach to the spectral analysis is thus often inapplicable, or where applicable, it provides questionable results. Here, through comparative analysis with the FT for different oceanographic data sets, the possibilities offered by autoregressive (AR) modeling to perform spectral analysis of gappy, finite-length series, are discussed. The applications demonstrate that as the length of the time series becomes shorter, the resolving power of the AR approach as compared with that of the FT improves. For the longest data sets examined here, 98 points, the AR method performed only slightly better than the FT, but for the very short ones, 17 points, the AR method showed a dramatic improvement over the FT. The application of the AR method to a gappy time series, although a secondary concern of this manuscript, further underlines the value of this approach.
NASA Astrophysics Data System (ADS)
Moazzam Khan, Muhammad
2014-05-01
Marked seasonality in fishing operation and catch composition was observed in the Northern Indian Ocean. These variations are more pronounced and noticeable in case of trawling for fish and shrimp as well as in the surface gillnetting for tuna and large pelagics. Although oceanographic conditions of the Northern Indian Ocean has been studied comprehensively, some facets of these are not well understood especially their relation with the fish distribution and abundance. Important oceanographic factors especially migration of oxygen minimum layer towards coastal areas after the cessation of South-West Monsoon seems to the most important factor responsible for the seasonal variation in the fishing intensity and species composition. Distribution and abundance of some of the commercially important marine animals especially billfishes was observed to be associated with the physical features of the area especially their abundance was noticed along continental margin and on the ridges in the Arabian Sea. The paper describes seasonal variation in abundance and catch composition of various fishing operations in the Indian Ocean and relates its to prevailing oceanographic conditions. Fishermen traditional knowledge about the seasonality of these conditions is also documented in the paper.
Federated provenance of oceanographic research cruises: from metadata to data
NASA Astrophysics Data System (ADS)
Thomas, Rob; Leadbetter, Adam; Shepherd, Adam
2016-04-01
The World Wide Web Consortium's Provenance Data Model and associated Semantic Web ontology (PROV-O) have created much interest in the Earth and Space Science Informatics community (Ma et al., 2014). Indeed, PROV-O has recently been posited as an upper ontology for the alignment of various data models (Cox, 2015). Similarly, PROV-O has been used as the building blocks of a data release lifecycle ontology (Leadbetter & Buck, 2015). In this presentation we show that the alignment between different local data descriptions of an oceanographic research cruise can be achieved through alignment with PROV-O and that descriptions of the funding bodies, organisations and researchers involved in a cruise and its associated data release lifecycle can be modelled within a PROV-O based environment. We show that, at a first-order, this approach is scalable by presenting results from three endpoints (the Biological and Chemical Oceanography Data Management Office at Woods Hole Oceanographic Institution, USA; the British Oceanographic Data Centre at the National Oceanography Centre, UK; and the Marine Institute, Ireland). Current advances in ontology engineering, provide pathways to resolving reasoning issues from varying perspectives on implementing PROV-O. This includes the use of the Information Object design pattern where such edge cases as research cruise scheduling efforts are considered. PROV-O describes only things which have happened, but the Information Object design pattern allows for the description of planned research cruises through its statement that the local data description is not the the entity itself (in this case the planned research cruise) and therefore the local data description itself can be described using the PROV-O model. In particular, we present the use of the data lifecycle ontology to show the connection between research cruise activities and their associated datasets, and the publication of those data sets online with Digital Object Identifiers and more formally in data journals. Use of the SPARQL 1.1 standard allows queries to be federated across these endpoints to create a distributed network of provenance documents. Future research directions will add further nodes to the federated network of oceanographic research cruise provenance to determine the true scalability of this approach, and will involve analysis of and possible evolution of the data release lifecycle ontology. References Nitin Arora et al., 2006. Information object design pattern for modeling domain specific knowledge. 1st ECOOP Workshop on Domain-Specific Program Development. Simon Cox, 2015. Pitfalls in alignment of observation models resolved using PROV as an upper ontology. Abstract IN33F-07 presented at the American Geophysical Union Fall Meeting, 14-18 December, San Francisco. Adam Leadbetter & Justin Buck, 2015. Where did my data layer come from?" The semantics of data release. Geophysical Research Abstracts 17, EGU2015-3746-1. Xiaogang Ma et al., 2014. Ontology engineering in provenance enablement for the National Climate Assessment. Environmental Modelling & Software 61, 191-205. http://dx.doi.org/10.1016/j.envsoft.2014.08.002
Storlazzi, Curt D.; Field, Michael E.; Presto, M. Katherine; Swarzenski, Peter W.; Logan, Joshua B.; Reiss, Thomas E.; Elfers, Timothy C.; Cochran, Susan A.; Torresan, Michael E.; Chezar, Hank
2012-01-01
Coral reef communities on the Island of Hawaii have been heavily affected by the construction of Kawaihae Harbor in the 1950s and by subsequent changes in land use in the adjacent watershed. Sedimentation and other forms of land-based pollution have led to declines in water quality and coral reef health over the past two decades (Tissot, 1998). Erosion mitigation efforts are underway on land, and there is a need to evaluate the impact of these actions on the adjacent coastal ecosystem. The Kohala Center and Kohala Watershed Partnership was awarded $2.69 million from the National Oceanographic and Atmospheric Administration’s (NOAA) Restoration Center as part of the American Recovery and Reinvestment Act of 2009 to stabilize soil and improve land-use practices in the Pelekane Bay watershed. The grant allowed the Kohala Watershed Partnership to implement various upland watershed management activities to reduce land-based sources of pollution into Pelekane Bay. However, a number of questions must be answered in order to: (1) evaluate the effectiveness of the terrestrial watershed remediation efforts; (2) understand the potential of the local marine ecosystem to recover; and (3) understand the potential threat that existing mud deposits in the bay pose to adjacent, relatively pristine coral reef ecosystems. The goal of this experiment was to help address these questions and establish a framework to evaluate the success of the Kohala Watershed Partnership restoration efforts. This research program will also provide resource managers with information relevant to other watershed restoration efforts currently being planned in neighboring watersheds. This project involved an interdisciplinary team of coral reef biologists from the University of Hawaii Coral Reef Assessment and Monitoring Program, who focused on the impact of sedimentation on the biota of Pelekane Bay, and a team of geologists and oceanographers from the U.S. Geological Survey (USGS), who focused on the circulation and sediment dynamics in Pelekane and Kawaihae Bays. The initial findings from the USGS research program are described in this report. These measurements support the ongoing studies being conducted as part of the USGS Coastal and Marine Geology Program’s Pacific Coral Reef Project to better understand the effect of geologic and oceanographic processes on coral reef systems.
Data Publication: A Partnership between Scientists, Data Managers and Librarians
NASA Astrophysics Data System (ADS)
Raymond, L.; Chandler, C.; Lowry, R.; Urban, E.; Moncoiffe, G.; Pissierssens, P.; Norton, C.; Miller, H.
2012-04-01
Current literature on the topic of data publication suggests that success is best achieved when there is a partnership between scientists, data managers, and librarians. The Marine Biological Laboratory/Woods Hole Oceanographic Institution (MBLWHOI) Library and the Biological and Chemical Oceanography Data Management Office (BCO-DMO) have developed tools and processes to automate the ingestion of metadata from BCO-DMO for deposit with datasets into the Institutional Repository (IR) Woods Hole Open Access Server (WHOAS). The system also incorporates functionality for BCO-DMO to request a Digital Object Identifier (DOI) from the Library. This partnership allows the Library to work with a trusted data repository to ensure high quality data while the data repository utilizes library services and is assured of a permanent archive of the copy of the data extracted from the repository database. The assignment of persistent identifiers enables accurate data citation. The Library can assign a DOI to appropriate datasets deposited in WHOAS. A primary activity is working with authors to deposit datasets associated with published articles. The DOI would ideally be assigned before submission and be included in the published paper so readers can link directly to the dataset, but DOIs are also being assigned to datasets related to articles after publication. WHOAS metadata records link the article to the datasets and the datasets to the article. The assignment of DOIs has enabled another important collaboration with Elsevier, publisher of educational and professional science journals. Elsevier can now link from articles in the Science Direct database to the datasets available from WHOAS that are related to that article. The data associated with the article are freely available from WHOAS and accompanied by a Dublin Core metadata record. In addition, the Library has worked with researchers to deposit datasets in WHOAS that are not appropriate for national, international, or domain specific data repositories. These datasets currently include audio, text and image files. This research is being conducted by a team of librarians, data managers and scientists that are collaborating with representatives from the Scientific Committee on Oceanic Research (SCOR) and the International Oceanographic Data and Information Exchange (IODE) of the Intergovernmental Oceanographic Commission (IOC). The goal is to identify best practices for tracking data provenance and clearly attributing credit to data collectors/providers.
NASA Astrophysics Data System (ADS)
Lo Bue, Nadia; Sgroi, Tiziana; Giovanetti, Gabriele; Marinaro, Giuditta; Embriaco, Davide; Beranzoli, Laura; Favali, Paolo
2015-04-01
In the framework of the European Research Infrastructure EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org), the cabled multidisciplinary seafloor observatory node NEMO-SN1 was deployed in the Western Ionian Sea (Southern Italy) at a depth of 2100 m, about 25 km off-shore Eastern Sicily, close to the Mt. Etna volcano system. The oceanographic payload mounted on this observatory was originally designed to monitor possible variations of the local hydrodynamic playing a crucial role on the redistribution of deep water in the Eastern Mediterranean Sea. In particular the Acoustic Doppler Current Profiler (ADCP RDI WorkHorse 600 kHz) was configured with the main aim to record the bottom dynamics, watching few meters of water column above the station (about 30 m). Surprisingly, this sensor offered a spectacular recording of the Mt.Etna pyroclastic activity occurred on 2013 which affected the ESE sector of the volcano. Although the ADCP sensor is commonly used to measure speed and direction of sea currents, it is more often used to monitor concentration suspended matter of controlled areas, such as rivers or coastal marine environments, by the analysis of the acoustic backscatter intensity. This standard condition entails some a-priori knowledge (i.e. suspended sediment concentration, particle size, echo intensity calibration) useful to well configure the sensors before starting its acquisition. However, in the case of Mt. Etna pyroclastic activity, due to the unexpected recording, these information were not available and it was necessary to work in a post-processing mode considering all acquired data. In fact, several different parameters contribute to complete the comprehension of the observed phenomenon: the ADCP acoustic wavelength able to indirectly provide information on the detectable particle size, the intensity of the explosive activity useful to define the starting energy of the volcanic system, the oceanographic local dynamics indispensable to know possible ash dispersion in seawater. This work aims to present a new perspective of observation for pyroclastic fallout in benthic seafloor areas using alternative sensors normally designed for other investigation such as the ADCP. Also, it highlights the possibility to optimize the instrumental resources used within the benthic observatories and opens new possibilities for the study of benthic processes, as volcanic ash sedimentation, through multiparametric analysis.
Stocks, J R; Gray, C A; Taylor, M D
2015-01-23
Latitudinal variation in the reproductive characteristics of a temperate marine herbivore, rock blackfish Girella elevata, was examined from three regions of the south-eastern Australian coast. Biological sampling covered 780 km of coastline, including the majority of the species distribution. The sampling range incorporated three distinct oceanographic regions of the East Australian Current, a poleward-flowing western boundary current of the Southern Pacific Gyre and climate-change hotspot. Girella elevata are a highly fecund, group synchronous (multiple batch)-spawner. Mean fork length (L F ) and age at maturity were greater for females than males within all regions, with both male and female G. elevata of the southern region maturing at a greater size and age than those from the central region. Estimates of batch fecundity (F B ) were greatest in the northern and southern regions, relative to the central region where growth rates were greatest. Significant positive relationships were observed between F B and L F , and F B and total fish mass. Gonado-somatic indices indicated latitudinal synchrony in spawning seasonality between G. elevata at higher latitudes, spawning in the late austral spring and summer. A late or prolonged spawning period is evident for G. elevata from the northern region. Juvenile recruitment to intertidal rock pools within the central and southern regions was synchronous with the spawning season, however, no juveniles were found within the northern region. The implications of latitudinal variation in reproductive characteristics are discussed in the context of climate and oceanographic conditions of south-east Australia. © 2015 The Fisheries Society of the British Isles.
Rodríguez-Zárate, Clara J; Sandoval-Castillo, Jonathan; van Sebille, Erik; Keane, Robert G; Rocha-Olivares, Axayácatl; Urteaga, Jose; Beheregaray, Luciano B
2018-05-16
Spatial and temporal scales at which processes modulate genetic diversity over the landscape are usually overlooked, impacting the design of conservation management practices for widely distributed species. We examine processes shaping population divergence in highly mobile species by re-assessing the case of panmixia in the iconic olive ridley turtle from the eastern Pacific. We implemented a biophysical model of connectivity and a seascape genetic analysis based on nuclear DNA variation of 634 samples collected from 27 nesting areas. Two genetically distinct populations largely isolated during reproductive migrations and mating were detected, each composed of multiple nesting sites linked by high connectivity. This pattern was strongly associated with a steep environmental gradient and also influenced by ocean currents. These findings relate to meso-scale features of a dynamic oceanographic interface in the eastern tropical Pacific (ETP) region, a scenario that possibly provides different cost-benefit solutions and selective pressures for sea turtles during both the mating and migration periods. We reject panmixia and propose a new paradigm for olive ridley turtles where reproductive isolation due to assortative mating is linked to its environment. Our study demonstrates the relevance of integrative approaches for assessing the role of environmental gradients and oceanographic currents as drivers of genetic differentiation in widely distributed marine species. This is relevant for the conservation management of species of highly mobile behaviour, and assists the planning and development of large-scale conservation strategies for the threatened olive ridley turtles in the ETP. © 2018 The Author(s).
Optimising Habitat-Based Models for Wide-Ranging Marine Predators: Scale Matters
NASA Astrophysics Data System (ADS)
Scales, K. L.; Hazen, E. L.; Jacox, M.; Edwards, C. A.; Bograd, S. J.
2016-12-01
Predicting the responses of marine top predators to dynamic oceanographic conditions requires habitat-based models that sufficiently capture environmental preferences. Spatial resolution and temporal averaging of environmental data layers is a key aspect of model construction. The utility of surfaces contemporaneous to animal movement (e.g. daily, weekly), versus synoptic products (monthly, seasonal, climatological) is currently under debate, as is the optimal spatial resolution for predictive products. Using movement simulations with built-in environmental preferences (correlated random walks, multi-state hidden Markov-type models) together with modeled (Regional Oceanographic Modeling System, ROMS) and remotely-sensed (MODIS-Aqua) datasets, we explored the effects of degrading environmental surfaces (3km - 1 degree, daily - climatological) on model inference. We simulated the movements of a hypothetical wide-ranging marine predator through the California Current system over a three month period (May-June-July), based on metrics derived from previously published blue whale Balaenoptera musculus tracking studies. Results indicate that models using seasonal or climatological data fields can overfit true environmental preferences, in both presence-absence and behaviour-based model formulations. Moreover, the effects of a degradation in spatial resolution are more pronounced when using temporally averaged fields than when using daily, weekly or monthly datasets. In addition, we observed a notable divergence between the `best' models selected using common methods (e.g. AUC, AICc) and those that most accurately reproduced built-in environmental preferences. These findings have important implications for conservation and management of marine mammals, seabirds, sharks, sea turtles and large teleost fish, particularly in implementing dynamic ocean management initiatives and in forecasting responses to future climate-mediated ecosystem change.
Optimising Habitat-Based Models for Wide-Ranging Marine Predators: Scale Matters
NASA Astrophysics Data System (ADS)
Scales, K. L.; Hazen, E. L.; Jacox, M.; Edwards, C. A.; Bograd, S. J.
2016-02-01
Predicting the responses of marine top predators to dynamic oceanographic conditions requires habitat-based models that sufficiently capture environmental preferences. Spatial resolution and temporal averaging of environmental data layers is a key aspect of model construction. The utility of surfaces contemporaneous to animal movement (e.g. daily, weekly), versus synoptic products (monthly, seasonal, climatological) is currently under debate, as is the optimal spatial resolution for predictive products. Using movement simulations with built-in environmental preferences (correlated random walks, multi-state hidden Markov-type models) together with modeled (Regional Oceanographic Modeling System, ROMS) and remotely-sensed (MODIS-Aqua) datasets, we explored the effects of degrading environmental surfaces (3km - 1 degree, daily - climatological) on model inference. We simulated the movements of a hypothetical wide-ranging marine predator through the California Current system over a three month period (May-June-July), based on metrics derived from previously published blue whale Balaenoptera musculus tracking studies. Results indicate that models using seasonal or climatological data fields can overfit true environmental preferences, in both presence-absence and behaviour-based model formulations. Moreover, the effects of a degradation in spatial resolution are more pronounced when using temporally averaged fields than when using daily, weekly or monthly datasets. In addition, we observed a notable divergence between the `best' models selected using common methods (e.g. AUC, AICc) and those that most accurately reproduced built-in environmental preferences. These findings have important implications for conservation and management of marine mammals, seabirds, sharks, sea turtles and large teleost fish, particularly in implementing dynamic ocean management initiatives and in forecasting responses to future climate-mediated ecosystem change.
NASA Astrophysics Data System (ADS)
Cotton, P. D.; Gommenginger, C.; Martin, A.; Marquez, J.; Burbidge, G.; Quilfen, Y.; Chapron, B.; Reppucci, A.; Buck, C.
2016-08-01
Ocean Surface Currents are one of the most important ocean properties for oceanographers and operators in the maritime domain. Improved monitoring of ocean currents is systematically the number one requirement that emerges from any science or end user requirement surveys.Wavemill is a novel hybrid interferometric SAR system first proposed by ESA/ESTEC [Buck, 2005]. It offers the possibility of generating two-dimensional wide swath, high resolution, high precision maps of surface current vectors and ocean topography [Buck et al., 2009]. Based on a single spacecraft, it avoids the difficulties of synchronisation and baseline estimation associated with other interferometric SAR systems based on two or more satellites (e.g. the "cartwheel" or "helix" concept).The Wavemill concept has developed steadily since its first inception in 2005. A number of Wavemill studies in recent years have gradually put together facts and figures to support the case for Wavemill as a possible space-borne mission.The Wavemill Product Assessment study (WaPA) aimed to define the scientific capabilities and limitations of a spaceborne Wavemill instrument in preparation for a possible submission of the Wavemill concept as a candidate Earth Explorer Core mission. The WaPA project team brought together expert scientists and engineers in the field of SAR imaging of ocean currents, and included the National Oceanography Centre (UK), Starlab (Spain), IFREMER (France) and Airbus Defence and Space (UK). Overall project management was provided by Satellite Oceanographic Consultants (UK). The approach taken included:- A review of SAR imaging of ocean currents in along-track interferometric mode to learn from previous experiments and modelling what key phenomena need to be accounted for to determine the true performance of a spaceborne Wavemill system- Validation of proposed Wavemill primary products based on Wavemill airborne proof-of-concept data and numerical simulations to determine the capabilities and limitations of a spaceborne Wavemill instrument for ocean current vector and sea surface height mapping.- An analysis of the potential for ocean wind vector retrieval from a spaceborne Wavemill instrument.- An investigation of possible secondary products from Wavemill relating to rivers, ocean/atmosphere interactions, ocean swell and cryospheric applications.An assessment of the synergy between Wavemill and ocean surface current products derived from other remote sensing techniques, accounting for the nature and variability of the measured properties, to identify any additional requirements on a future Wavemill mission.
Acoustically-Equipped Ocean Gliders for Environmental and Oceanographic Research
2015-09-30
and Oceanographic Research David K. Mellinger Oregon State University Hatfield Marine Science Center 2030 SE Marine Science Drive Newport, OR...www.bioacoustics.us LONG-TERM GOALS The long-term goal of this project is to establish acoustically-equipped gliders for use in research on marine ...funded research and proposed research. OBJECTIVES The Navy observes and studies marine mammals, both to better understand marine mammal
Autonomous & Adaptive Oceanographic Feature Tracking on Board Autonomous Underwater Vehicles
2015-02-01
44 3.6 Tracking the Marine ermocline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.6.1 ermocline Definition ...intelligent autonomy algorithms to adapt the vehicle’s motion to changes in the environment, effectively seeking out and tracking an oceanographic...interface, H is the mean water depth, and f is the Coriolis parameter (twice the earth’s angular velocity about its vertical axis) [38]. at is, the
Stephanie K. Moore; Nathan J. Mantua; Jonathan P. Kellogg; Jan A. Newton
2008-01-01
The influence of climate on Puget Sound oceanographic properties is investigated on seasonal to interannual timescales using continuous profile data at 16 stations from 1993 to 2002 and records of sea surface temperature (SST) and sea surface salinity (SSS) from 1951 to 2002. Principal components analyses of profile data identify indices representing 42%, 58%, and 56%...
2012-02-01
have been possible. We also thank Scot Birdwhistell in the Woods Hole Oceanographic Institution (WHOI) inductively coupled plasma mass spectrometry...Cobalt, Iron, and Manganese MIT/WHOI Joint Program in Oceanography/ Applied Ocean Science and Engineering Massachusetts Institute of Technology Woods Hole...by Abigail Emery Noble Massachusetts Institute of Technology Cambridge, Massachusetts 02139 and Woods Hole Oceanographic Institution Woods Hole
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France). Intergovernmental Oceanographic Commission.
The Intergovernmental Oceanographic Commission was organized by Unesco to promote scientific investigation with a view to learning about the nature and resources of the oceans through the concerted action of its members. This report contains a summary of the discussions that took place at the 14th session of the Commission. This includes the…
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France). Intergovernmental Oceanographic Commission.
The Intergovernmental Oceanographic Commission (IOC) functions within the United Nations Educational, Scientific, and Cultural Organization (Unesco) to promote scientific investigation into the nature and resources of the world's oceans. Summarized in this report are discussions that took place in both preparatory meetings and plenary sessions of…
Advanced study of global oceanographic requirements for EOS A/B: Appendix volume
NASA Technical Reports Server (NTRS)
1972-01-01
Tables and graphs are presented for a review of oceanographic studies using satellite-borne instruments. The topics considered include sensor requirements, error analysis for wind determination from glitter pattern measurements, coverage frequency plots, ground station rise and set times, a technique for reduction and analysis of ocean spectral data, rationale for the selection of a 2 PM descending orbit, and a priority analysis.
NASA Technical Reports Server (NTRS)
Barlier, Francois; Balmino, G.; Boucher, Claude; Willis, P.; Biancale, R.; Menard, Yves; Vincent, P.; Bethoux, J. P.; Exertier, P.; Pierron, F.
1991-01-01
The research project has two kinds of objectives. The first is focused on the regional validation of the altimeter, orbit, and mean sea surface; it will be performed in close cooperation with the local validation performed at Lampedusa/Lampione (Italy). The second deals with the geophysical and oceanographic research of interest in this area.
Teixeira, Sara; Assis, Jorge; Serrão, Ester A.; Gonçalves, Emanuel J.; Borges, Rita
2016-01-01
Adults of most marine benthic and demersal fish are site-attached, with the dispersal of their larval stages ensuring connectivity among populations. In this study we aimed to infer spatial and temporal variation in population connectivity and dispersal of a marine fish species, using genetic tools and comparing these with oceanographic transport. We focused on an intertidal rocky reef fish species, the shore clingfish Lepadogaster lepadogaster, along the southwest Iberian Peninsula, in 2011 and 2012. We predicted high levels of self-recruitment and distinct populations, due to short pelagic larval duration and because all its developmental stages have previously been found near adult habitats. Genetic analyses based on microsatellites countered our prediction and a biophysical dispersal model showed that oceanographic transport was a good explanation for the patterns observed. Adult sub-populations separated by up to 300 km of coastline displayed no genetic differentiation, revealing a single connected population with larvae potentially dispersing long distances over hundreds of km. Despite this, parentage analysis performed on recruits from one focal site within the Marine Park of Arrábida (Portugal), revealed self-recruitment levels of 2.5% and 7.7% in 2011 and 2012, respectively, suggesting that both long- and short-distance dispersal play an important role in the replenishment of these populations. Population differentiation and patterns of dispersal, which were highly variable between years, could be linked to the variability inherent in local oceanographic processes. Overall, our measures of connectivity based on genetic and oceanographic data highlight the relevance of long-distance dispersal in determining the degree of connectivity, even in species with short pelagic larval durations. PMID:27911952
Exploiting the Capabilities of NASA's Giovanni System for Oceanographic Education
NASA Technical Reports Server (NTRS)
Acker, James G.; Petrucio, Emil; Leptoukh, Gregory; Shen, Suhung
2007-01-01
The NASA Goddard Earth Science Data and Information Services Center (GES DISC) Giovanni system [GES DISC Interactive Online Visualization ANd aNalysis Infrastructure] has significant capabilities for oceanographic education and independent research utilizing ocean color radiometry data products. Giovanni allows Web-based data discovery and basic analyses, and can be used both for guided illustration of a variety of marine processes and phenomena, and for independent research investigations. Giovanni's capabilities are particularly suited for advanced secondary school science and undergraduate (college) education. This presentation will describe a variety of ways that Giovanni can be used for oceanographic education. Auxiliary information resources that can be utilized will also be described. Several testimonies of Giovanni usage for instruction will be provided, and a recent case history of Giovanni utilization for instruction and research at the undergraduate level is highlighted.
Global Temperature and Salinity Pilot Project
NASA Technical Reports Server (NTRS)
Searle, Ben
1992-01-01
Data exchange and data management programs have been evolving over many years. Within the international community there are two main programs to support the exchange, management and processing of real time and delayed mode data. The Intergovernmental Oceanographic Commission (IOC) operate the International Oceanographic Data and Information Exchange (IODE) program which coordinates the exchange of delayed mode data between national oceanographic data centers, World Data Centers and the user community. The Integrated Global Ocean Services System is a joint IOC/World Meteorological Organization (WMO) program for the exchange and management of real-time data. These two programs are complemented by mechanisms that have been established within scientific programs to exchange and manage project data sets. In particular TOGA and WOCE have identified a data management requirement and established the appropriate infrastructure to achieve this. Where GTSPP fits into this existing framework is discussed.
Persistent Identifiers for Field Deployments: A Missing Link in the Provenance Chain
NASA Astrophysics Data System (ADS)
Arko, R. A.; Ji, P.; Fils, D.; Shepherd, A.; Chandler, C. L.; Lehnert, K.
2016-12-01
Research in the geosciences is characterized by a wide range of complex and costly field deployments including oceanographic cruises, submersible dives, drilling expeditions, seismic networks, geodetic campaigns, moored arrays, aircraft flights, and satellite missions. Each deployment typically produces a mix of sensor and sample data, spanning a period from hours to decades, that ultimately yields a long tail of post-field products and publications. Publishing persistent, citable identifiers for field deployments will facilitate 1) preservation and reuse of the original field data, 2) reproducibility of the resulting publications, and 3) recognition for both the facilities that operate the platforms and the investigators who secure funding for the experiments. In the ocean domain, sharing unique identifiers for field deployments is a familiar practice. For example, the Biological and Chemical Oceanography Data Management Office (BCO-DMO) routinely links datasets to cruise identifiers published by the Rolling Deck to Repository (R2R) program. In recent years, facilities have started to publish formal/persistent identifiers, typically Digital Object Identifiers (DOIs), for field deployments including seismic networks, oceanographic cruises, and moored arrays. For example, the EarthChem Library (ECL) publishes a DOI for each dataset which, if it derived from an oceanographic research cruise on a US vessel, is linked to a DOI for the cruise published by R2R. Work is underway to create similar links for the IODP JOIDES Resolution Science Operator (JRSO) and the Continental Scientific Drilling Coordination Office (CSDCO). We present results and lessons learned including a draft schema for publishing field deployments as DataCite DOI records; current practice for linking these DOIs with related identifiers such as Open Researcher and Contributor IDs (ORCIDs), Open Funder Registry (OFR) codes, and International Geo Sample Numbers (IGSNs); and consideration of other identifier types for field deployments such as UUIDs and Handles.
NASA Astrophysics Data System (ADS)
Pinner, J. W., IV
2016-02-01
Data from shipboard oceanographic sensors are collected in various ASCii, binary, open and proprietary formats. Acquiring all of these formats using single, monolithic data acquisition system (DAS) can be cumbersome, complex and difficult to adapt for the ever changing suite of emerging oceanographic sensors. Another approach to the at-sea data acquisition challenge is to utilize multiple DAS software packages and corral the resulting data files with a ship-wide data management system. The Open Vessel Data Management project (OpenVDM) implements this second approach to ship-wide data management and over the last three years has successfully demonstrated it's ability to deliver a consistent cruise data package to scientists while reducing the workload placed on marine technicians. In addition to meeting the at-sea and post-cruise needs of scientists OpenVDM is helping vessel operators better adhere to the recommendations and best practices set forth by 3rd party data management and data quality groups such as R2R and SAMOS. OpenVDM also includes tools for supporting telepresence-enabled ocean research/exploration such as bandwidth-efficient ship-to-shore data transfers, shore-side data access, data visualization and near-real-time data quality tests and data statistics. OpenVDM is currently operating aboard three vessels. The R/V Endeavor, operated by the University of Rhode Island, is a regional-class UNOLS research vessel operating under the traditional NFS, P.I. driven model. The E/V Nautilus, operated by the Ocean Exploration Trust specializes in ROV-based, telepresence-enabled oceanographic research. The R/V Falkor operated by the Schmidt Ocean Institute is an ocean research platform focusing on cutting-edge technology development. These three vessels all have different missions, sensor suites and operating models yet all are able to leverage OpenVDM for managing their unique datasets and delivering a more consistent cruise data package to scientists and data archives.
Oceanography of Glacier Bay, Alaska: Implications for biological patterns in a glacial fjord estuary
Etherington, L.L.; Hooge, P.N.; Hooge, Elizabeth Ross; Hill, D.F.
2007-01-01
Alaska, U.S.A, is one of the few remaining locations in the world that has fjords that contain temperate idewater glaciers. Studying such estuarine systems provides vital information on how deglaciation affects oceanographic onditions of fjords and surrounding coastal waters. The oceanographic system of Glacier Bay, Alaska, is of particular interest ue to the rapid deglaciation of the Bay and the resulting changes in the estuarine environment, the relatively high oncentrations of marine mammals, seabirds, fishes, and invertebrates, and the Bay’s status as a national park, where ommercial fisheries are being phased out. We describe the first comprehensive broad-scale analysis of physical and iological oceanographic conditions within Glacier Bay based on CTD measurements at 24 stations from 1993 to 2002. easonal patterns of near-surface salinity, temperature, stratification, turbidity, and euphotic depth suggest that freshwater nput was highest in summer, emphasizing the critical role of glacier and snowmelt to this system. Strong and persistent tratification of surface waters driven by freshwater input occurred from spring through fall. After accounting for seasonal nd spatial variation, several of the external physical factors (i.e., air temperature, precipitation, day length) explained a large mount of variation in the physical properties of the surface waters. Spatial patterns of phytoplankton biomass varied hroughout the year and were related to stratification levels, euphotic depth, and day length. We observed hydrographic atterns indicative of strong competing forces influencing water column stability within Glacier Bay: high levels of freshwater ischarge promoted stratification in the upper fjord, while strong tidal currents over the Bay’s shallow entrance sill enhanced ertical mixing. Where these two processes met in the central deep basins there were optimal conditions of intermediate tratification, higher light levels, and potential nutrient renewal. These conditions were associated with high and sustained hlorophylla levels observed from spring through fall in these zones of the Bay and provide a framework for understanding he abundance patterns of higher trophic levels within this estuarine system.
NASA Astrophysics Data System (ADS)
Wren, J.; Toonen, R. J.
2016-02-01
As a result of climate change, scientists predict stronger, more frequent El Niño events in the future. These events in the Central Equatorial Pacific cause increased sea surface temperatures (SST), a depressed thermocline, and decreased primary production. The oceanographic effects in the Hawaiian Archipelago located in the Subtropical North Pacific, are not equally well understood, and have shown both increased and decreased SST and primary production during El Niño events. Marine larval fish development rates can be affected by factors such as food availability and temperature, thus oceanographic changes caused by El Niño can potentially alter larval dispersal patterns throughout the Hawaiian Archipelago, affecting regional population connectivity. Using a two dimensional Lagrangian particle dispersal model coupled with high resolution Hybrid Coordinate Ocean Model (HYCOM) currents for the Hawaiian Archipelago we are able to model annual settlement probabilities and self-recruitment, important metrics for understanding population dynamics and connectivity. Preliminary data comparing modeled dispersal during the 1997-98 El Niño with four years of normal state oceanographic conditions (2011-2014), showed an increase in total settlement during the El Niño years for the North Western Hawaiian Islands, and a decreased settlement success for the Main Hawaiian Islands. Self-recruitment across the archipelago was lower during El Niño and the distance the successful settlers traveled was greater, indicating that El Niño may be playing an important role in long distance dispersal and genetic exchange between distant sites not otherwise connected. We see a much greater connectivity between the Hawaiian Archipelago and Johnnston Atoll during the El Niño event, with a significant increase of larval exchange in both directions. Since these ecologically rare but extreme events can have a disproportionate influence on dispersal, it's important to understand how connectivity is affected in order to manage for diverse coral reefs in the future.
Oceanographic Influences on Ice Shelves and Drainage in the Amundsen Sea
NASA Astrophysics Data System (ADS)
Minzoni, R. T.; Anderson, J. B.; Majewski, W.; Yokoyama, Y.; Fernandez, R.; Jakobsson, M.
2016-12-01
Marine sediment cores collected during the IB OdenSouthern Ocean 2009-2010 cruise are used to reconstruct the Holocene history of the Cosgrove Ice Shelf, which today occupies Ferrero Bay, a large embayment of eastern Pine Island Bay. Detailed sedimentology, geochemistry, and micropaleontology of cores, in conjunction with subbottom profiles, reveal an unexpected history of recession. Presence of planktic foraminifera at the base of Kasten Core-15 suggests an episode of enhanced circulation beneath a large ice shelf that covered the Amundsen Sea during the Early Holocene, and relatively warm water incursion has been interpreted as a potential culprit for major recession and ice mass loss by 10.7 cal kyr BP from radiocarbon dating. Fine sediment deposition and low productivity throughout the Mid Holocene indicate long-lived stability of the Cosgrove Ice Shelf in Ferrero Bay, despite regional warming evident from ice core data and ice shelf loss in the Antarctic Peninsula. High productivity and diatom abundance signify opening of Ferrero Bay and recession of the Cosgrove Ice Shelf to its present day configuration by 2.0 cal kyr BP. This coincides with deglaciation of an island near Canisteo Peninsula according to published cosmogenic exposure ages. Presence of benthic foraminifera imply that warm deep water influx beneath the extended Cosgrove Ice Shelf was a mechanism for under-melting the ice shelf and destabilizing the grounding line. Major ice shelf recession may also entail continental ice mass loss from the eastern sector of the Amundsen Sea during the Late Holocene. Oceanographic forcing remains a key concern for the current stability of the Antarctic Ice Sheet, especially along the tidewater margins of West Antarctica. Ongoing work on diatom and foraminiferal assemblages of the Late Holocene in Ferrero Bay and other fjord settings will improve our understanding of recent oceanographic changes and their potential influence on ice shelves and outlet glaciers that contribute to the mass balance of the West Antarctic Ice Sheet.
Gulf of Mexico Air/Sea Interaction: Measurements and Initial Data Characterization
NASA Astrophysics Data System (ADS)
MacDonald, C.; Huang, C. H.; Roberts, P. T.; Bariteau, L.; Fairall, C. W.; Gibson, W.; Ray, A.
2011-12-01
Corporate, government, and university researchers collaborated to develop an atmospheric boundary layer environmental observations program on an offshore platform in the Gulf of Mexico. The primary goals of this project were to provide data to (1) improve our understanding of boundary layer processes and air-sea interaction over the Gulf of Mexico; (2) improve regional-scale meteorological and air quality modeling; and (3) provide a framework for advanced offshore measurements to support future needs such as emergency response, exploration and lease decisions, wind energy research and development, and meteorological and air quality forecasting. In October 2010, meteorological and oceanographic sensors were deployed for an extended period (approximately 12 months) on a Chevron service platform (ST 52B, 90.5W, 29N) to collect boundary layer and sea surface data sufficient to support these objectives. This project has significant importance given the large industrial presence in the Gulf, sizeable regional population nearby, and the recognized need for precise and timely pollutant forecasts. Observations from this project include surface meteorology; sodar marine boundary layer winds; microwave radiometer profiles of temperature, relative humidity, and liquid water; ceilometer cloud base heights; water temperature and current profiles; sea surface temperature; wave height statistics; downwelling solar and infrared radiation; and air-sea turbulent momentum and heat fluxes. This project resulted in the collection of an unprecedented set of boundary layer measurements over the Gulf of Mexico that capture the range of meteorological and oceanographic interactions and processes that occur over an entire year. This presentation will provide insight into the logistical and scientific issues associated with the deployment and operations of unique measurements in offshore areas and provide results from an initial data analysis of boundary layer processes over the Gulf of Mexico, with a special focus on the relationship among measured and modeled energy fluxes and other oceanographic and atmospheric conditions.
The Euro-Argo education web site: using Argo data to teach data analysis and marine science
NASA Astrophysics Data System (ADS)
Byfield, Valborg; Scheurle, Carolyn; Gould, John; Macama, Emina; King, Brian
2013-04-01
The Euro-Argo education website (www.euroargo-edu.org) aims to make Argo and its data accessible to a non-specialist audience. The site is centred on a selection of floats, which have been chosen because of the insight they provide into key oceanographic processes, the physical and biogeochemical characteristics of different ocean regions around the world, and the role of the ocean in the global climate system. The float selection is a vehicle for teaching data analysis skills, linking these to current topics in the ocean and climate sciences. Each float in the selection has its own page, which provides access to the float data, data plots, background information on the ocean region in which the float can be found, and questions to guide data interpretation. Hidden 'model answers' allow users to check their understanding by comparing their own answers to those provided. The interactive component of the site also includes a series of quizzes, designed to teach data interpretation skills. These start at a basic level and take the students step by step through the most common ways to plot oceanographic data in space and time. More general background information covers the main aspects of the Argo programme, its history and applications, and basic technical information about the floats and sensors. 'World Tour' pages linked to the float selection provide information about the main ocean regions and link information from the Argo programme to oceanographic information from other sources such as satellite observations. The site is primarily aimed at young people between 11 and 18 years of age. However experience from using selected material from the site during science open days shows that children as young as 8-9 and adults of all ages also enjoy the challenge of using and interpreting the Argo data in different contexts.
2006-09-01
locomotion. The final stage is a variable phase that may include subsequent propulsive strokes or simply coasting (Ahlborn et al ., 1997...from a simulated fast-start apparatus are (Ahlborn et al ., 1997). The apparatus included a preparatory phase and propulsive phase. The paper...Science in Oceanographic Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2006
Coastal Ocean Processes: A Science Prospectus
1992-04-01
Approved for public release; distribution unlimited Woods Hole Oceanographic Institution Woods Hole, MA 02543. _DTIC , 93-04231 MAR 0,2 1993...LEGIBLY ON BLACK AND WHITE MICROFICHE. WHOI-92-18 Coastal Ocean Processes: A Science Prospectus by KH. Brink Woods Hole Oceanographic Institution J.M...whole or in part is permitted for any purpose of the United States Government. This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France). Intergovernmental Oceanographic Commission.
The Intergovernmental Oceanographic Commission was organized by UNESCO to promote scientific investigation with a view to learning about the nature and resources of the oceans and disseminating this knowledge through the concerted action of its members. The report contains a summary of the discussions that took place at the 15th Session of the…
Oceanographic Remote Sensing; A Position Paper,
1979-01-26
The purpose of a Navy R&D remote sensing plan should be to set forth the requirements and direction of basic and exploratory research in satellite... remote sensing which supports the overall Navy oceanographic research and operational programs. The aim of the plan would be to outline the established...addressed. The plan should help serve as a single technology and program reference for implementation and planning of Navy related satellite remote
Three-Dimensional Shallow Water Acoustics
2016-03-30
Wooos HoLE OcEANOGRAPHIC INSTITUTION Applied Ocean Physics and Engineering Department March 30,2016 Dr. Kyle Becker Office ofNaval Research, Code...Naval Research Laboratory Grant and Contract Services (WHOI) AOPE Department Office (WHOI) MS#12 • Woods Hole , MA 02543 USA • 508.289.2230 • Fax...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Woods Hole Oceanographic Institu t ion 266 Woods
Integrated Modeling and Analysis of Physical Oceanographic and Acoustic Processes
2015-09-30
goal is to improve ocean physical state and acoustic state predictive capabilities. The goal fitting the scope of this project is the creation of... Project -scale objectives are to complete targeted studies of oceanographic processes in a few regimes, accompanied by studies of acoustic propagation...by the basic research efforts of this project . An additional objective is to develop improved computational tools for acoustics and for the
An orbiting multispectral scanner for overland and oceanographic applications.
NASA Technical Reports Server (NTRS)
Peacock, K.; Withrington, R. J.
1971-01-01
Description of the major features of a multispectral scanner designed to perform overland and oceanographic surveys from space. The instrument uses an image plane conical scanner and contains independent spectrometers for land and ocean applications. The overland spectrometer has a spatial resolution of 200 ft and has six spectral bands in the atmospheric windows between 0.5 and 2.4 microns. The oceanographic spectrometer has a spatial resolution of 1200 ft and possesses 24 spectral bands equally spaced and in registration over the wavelength range from 0.4 to 0.8 micron. A thermal band of 600-ft resolution is used with a spectral range from 10.5 to 12.6 microns. The swath width of the scan is 100 nautical miles from an altitude of 500 nautical miles. The system has two modes of operation which are selectable by ground command. The six bands of overland data plus the thermal band data can be transmitted, or the 24 bands of oceanographic data plus data from two of the overland bands and the thermal band can be transmitted. The performance is described by the minimum detectable reflectance difference and the effects of sun angle and target reflectivity variations are discussed. The sensitivity is related to the variation of the ocean reflectivity in the presence of chlorophyll and to typical agricultural targets.
NASA Astrophysics Data System (ADS)
Li, Y.; Jiang, Y.; Yang, C. P.; Armstrong, E. M.; Huang, T.; Moroni, D. F.; McGibbney, L. J.
2016-12-01
Big oceanographic data have been produced, archived and made available online, but finding the right data for scientific research and application development is still a significant challenge. A long-standing problem in data discovery is how to find the interrelationships between keywords and data, as well as the intrarelationships of the two individually. Most previous research attempted to solve this problem by building domain-specific ontology either manually or through automatic machine learning techniques. The former is costly, labor intensive and hard to keep up-to-date, while the latter is prone to noise and may be difficult for human to understand. Large-scale user behavior data modelling represents a largely untapped, unique, and valuable source for discovering semantic relationships among domain-specific vocabulary. In this article, we propose a search engine framework for mining and utilizing dataset relevancy from oceanographic dataset metadata, user behaviors, and existing ontology. The objective is to improve discovery accuracy of oceanographic data and reduce time for scientist to discover, download and reformat data for their projects. Experiments and a search example show that the proposed search engine helps both scientists and general users search with better ranking results, recommendation, and ontology navigation.
NASA Astrophysics Data System (ADS)
De Bruin, T.
2017-12-01
SeaDataCloud/SeaDataNet (SDC/SDN) is both a consortium and a data infrastructure as well as a (series of) European oceanographic data management project(s), allowing data providers to store data at a data centre of their choice (usually a type of National Oceanographic Data Center), while exposing and making the data available for download via a chain of interconnected data portals at local, regional, pan-European and global levels. SDC/SDN as an infrastructure connects over 100 data centers from 35 countries in and around Europe. The infrastructure has been operational since early 2009 and provides the user an overview of all available data as well as the possibility to download the data in an uniform format. This presentation will give a short introduction to the SDC/SDN infrastructure and describe how its development was based on sound data management principles. The emphasis will be on how the system is interconnected with other, non-discipline specific (metadata) portals such as the Group of Earth Observations System of Systems (GEOSS), allowing oceanographic data stored at a local level in a data centre to be exposed at a global level to a wide audience from various disciplines.
A Modeling Approach to Enhance Animal-Obtained Oceanographic Data Geo- Position
NASA Astrophysics Data System (ADS)
Tremblay, Y.; Robinson, P.; Weise, M. J.; Costa, D. P.
2006-12-01
Diving animals are increasingly being used as platforms to collect oceanographic data such as CTD profiles. Animal borne sensors provide an amazing amount of data that have to be spatially referenced. Because of technical limitations geo-position of these data mostly comes from the interpolation of locations obtained through the ARGOS positioning system. This system lacks spatio-temporal resolution compared to the Global Positioning System (GPS) and therefore, the positions of these oceanographic data are not well defined. A consequence of this is that many data collected in coastal regions are discarded, because many casts' records fell on land. Using modeling techniques, we propose a method to deal with this problem. The method is rather intuitive, and instead of deleting unreasonable or low-quality locations, it uses them by taking into account their lack of precision as a source of information. In a similar way, coastlines are used as sources of information, because marine animals do not travel over land. The method was evaluated using simultaneously obtained tracks with the Argos and GPS system. The tracks obtained from this method are considerably enhanced and allow a more accurate geo-reference of oceanographic data. In addition, the method provides a way to evaluate spatial errors for each cast that is not otherwise possible with classical filtering methods.
Drift trajectories of a floating human body simulated in a hydraulic model of Puget Sound.
Ebbesmeyer, C C; Haglund, W D
1994-01-01
After a young man jumped off a 221-foot (67 meters) high bridge, the drift of the body that beached 20 miles (32 km) away at Alki Point in Seattle, Washington was simulated with a hydraulic model. Simulations for the appropriate time period were performed using a small floating bead to represent the body in the hydraulic model at the University of Washington. Bead movements were videotaped and transferred to Computer Aided Drafting (AutoCAD) charts on a personal computer. Because of strong tidal currents in the narrow passage under the bridge (The Narrows near Tacoma, WA), small changes in the time of the jump (+/- 30 minutes) made large differences in the distance the body traveled (30 miles; 48 km). Hydraulic and other types of oceanographic models may be located by contacting technical experts known as physical oceanographers at local universities, and can be utilized to demonstrate trajectories of floating objects and the time required to arrive at selected locations. Potential applications for forensic death investigators include: to be able to set geographic and time limits for searches; determine potential origin of remains found floating or beached; and confirm and correlate information regarding entry into the water and sightings of remains.
Dao, Hoc Tan; Smith-Keune, Carolyn; Wolanski, Eric; Jones, Clive M.; Jerry, Dean R.
2015-01-01
Here we utilize a combination of genetic data, oceanographic data, and local ecological knowledge to assess connectivity patterns of the ornate spiny lobster Panulirus ornatus (Fabricius, 1798) in the South-East Asian archipelago from Vietnam to Australia. Partial mitochondrial DNA control region and 10 polymorphic microsatellites did not detect genetic structure of 216 wild P. ornatus samples from Australia, Indonesia and Vietnam. Analyses show no evidence for genetic differentiation among populations (mtDNA control region sequences ΦST = -0.008; microsatellite loci FST = 0.003). A lack of evidence for regional or localized mtDNA haplotype clusters, or geographic clusters of microsatellite genotypes, reveals a pattern of high gene flow in P. ornatus throughout the South-East Asian Archipelago. This lack of genetic structure may be due to the oceanography-driven connectivity of the pelagic lobster larvae between spawning grounds in Papua New Guinea, the Philippines and, possibly, Indonesia. The connectivity cycle necessitates three generations. The lack of genetic structure of P. ornatus population in the South-East Asian archipelago has important implications for the sustainable management of this lobster in that the species within the region needs to be managed as one genetic stock. PMID:25951344
Recent Advances in Bathymetric Surveying of Continental Shelf Regions Using Autonomous Vehicles
NASA Astrophysics Data System (ADS)
Holland, K. T.; Calantoni, J.; Slocum, D.
2016-02-01
Obtaining bathymetric observations within the continental shelf in areas closer to the shore is often time consuming and dangerous, especially when uncharted shoals and rocks present safety concerns to survey ships and launches. However, surveys in these regions are critically important to numerical simulation of oceanographic processes, as bathymetry serves as the bottom boundary condition in operational forecasting models. We will present recent progress in bathymetric surveying using both traditional vessels retrofitted for autonomous operations and relatively inexpensive, small team deployable, Autonomous Underwater Vehicles (AUV). Both systems include either high-resolution multibeam echo sounders or interferometric sidescan sonar sensors with integrated inertial navigation system capabilities consistent with present commercial-grade survey operations. The advantages and limitations of these two configurations employing both unmanned and autonomous strategies are compared using results from several recent survey operations. We will demonstrate how sensor data collected from unmanned platforms can augment or even replace traditional data collection technologies. Oceanographic observations (e.g., sound speed, temperature and currents) collected simultaneously with bathymetry using autonomous technologies provide additional opportunities for advanced data assimilation in numerical forecasts. Discussion focuses on our vision for unmanned and autonomous systems working in conjunction with manned or in-situ systems to optimally and simultaneously collect data in environmentally hostile or difficult to reach areas.
We must reach out to the public
NASA Astrophysics Data System (ADS)
Perfit, Michael; Fornari, Daniel J.
Faced with the current budget crisis, legislators and leaders of federal agencies are asking scientists to communicate why continued and even expanded funding of basic sciences is important to America. There have been repeated requests for oceanographers to communicate the importance of their science to the public at large and to legislators at both state and federal levels. It is often difficult, however, to find opportunities for public and legislative outreach.On March 17, 1996, Neal Lane, Director of the National Science Foundation, and Jerry Lewis (R.-Calif.), Chair of the House Appropriations Subcommittee for VA, HUD, and Independent Agencies, which oversees NSF, participated in a dive off the coast of California in the Deep Submergence Vehicle (DSV) Alvin. The dive was part an ongoing effort to improve science and operational systems on Alvin and to ensure that the submersible systems are ready for the next science program. It followed a 3-month shutdown of the facility imposed, in part, by budget cutbacks. The engineering dives are funded by the National Science Foundation, The U.S. Navy Office of Naval Research, and the National Oceanic and Atmospheric Administration through the Woods Hole Oceanographic Institution, the facility operator. In addition to testing out a new, integrated navigation software package for DSV operations, several vehicle systems and a new digital imaging system were tested.
Long-term oceanographic observations in Massachusetts Bay, 1989-2006
Butman, Bradford; Alexander, P. Soupy; Bothner, Michael H.; Borden, Jonathan; Casso, Michael A.; Gutierrez, Benjamin T.; Hastings, Mary E.; Lightsom, Frances L.; Martini, Marinna A.; Montgomery, Ellyn T.; Rendigs, Richard R.; Strahle, William S.
2009-01-01
This data report presents long-term oceanographic observations made in western Massachusetts Bay at long-term site A (LT-A) (42 deg 22.6' N., 70 deg 47.0' W.; nominal water depth 32 meters) from December 1989 through February 2006 and long-term site B (LT-B) (42 deg 9.8' N., 70 deg 38.4' W.; nominal water depth 22 meters) from October 1997 through February 2004 (fig. 1). The observations were collected as part of a U.S. Geological Survey (USGS) study designed to understand the transport and long-term fate of sediments and associated contaminants in Massachusetts Bay. The observations include time-series measurements of current, temperature, salinity, light transmission, pressure, oxygen, fluorescence, and sediment-trapping rate. About 160 separate mooring or tripod deployments were made on about 90 research cruises to collect these long-term observations. This report presents a description of the 16-year field program and the instrumentation used to make the measurements, an overview of the data set, more than 2,500 pages of statistics and plots that summarize the data, and the digital data in Network Common Data Form (NetCDF) format. This research was conducted by the USGS in cooperation with the Massachusetts Water Resources Authority and the U.S. Coast Guard.
Dao, Hoc Tan; Smith-Keune, Carolyn; Wolanski, Eric; Jones, Clive M; Jerry, Dean R
2015-01-01
Here we utilize a combination of genetic data, oceanographic data, and local ecological knowledge to assess connectivity patterns of the ornate spiny lobster Panulirus ornatus (Fabricius, 1798) in the South-East Asian archipelago from Vietnam to Australia. Partial mitochondrial DNA control region and 10 polymorphic microsatellites did not detect genetic structure of 216 wild P. ornatus samples from Australia, Indonesia and Vietnam. Analyses show no evidence for genetic differentiation among populations (mtDNA control region sequences ΦST = -0.008; microsatellite loci FST = 0.003). A lack of evidence for regional or localized mtDNA haplotype clusters, or geographic clusters of microsatellite genotypes, reveals a pattern of high gene flow in P. ornatus throughout the South-East Asian Archipelago. This lack of genetic structure may be due to the oceanography-driven connectivity of the pelagic lobster larvae between spawning grounds in Papua New Guinea, the Philippines and, possibly, Indonesia. The connectivity cycle necessitates three generations. The lack of genetic structure of P. ornatus population in the South-East Asian archipelago has important implications for the sustainable management of this lobster in that the species within the region needs to be managed as one genetic stock.
NASA Technical Reports Server (NTRS)
Chase, R.; Cote, C.; Davis, R. E.; Dugan, J.; Frame, D. D.; Halpern, D.; Kerut, E.; Kirk, R.; Mcgoldrick, L.; Mcwilliams, J. C.
1983-01-01
The present and future use of satellites to locate offshore platforms and relay data from in situ sensors to shore was examined. A system of the ARGOS type will satisfy the increasing demand for oceanographic information through data relay and platform location. The improved ship navigation provided by the Global Positioning System (GPS) will allow direct observation of currents from underway ships. Ocean systems are described and demand estimates on satellite systems are determined. The capabilities of the ARGOS system is assessed, including anticipated demand in the next decade.
Dickhudt, Patrick J.; Ganju, Neil K.; Montgomery, Ellyn T.
2015-08-28
The U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection, measured suspended-sediment concentrations, currents, waves, light attenuation, and a variety of other water-quality parameters in the summer of 2013 in Barnegat Bay-Little Egg Harbor, New Jersey. These measurements quantified light attenuation and sediment resuspension in three seagrass meadows. Data were acquired sequentially at three paired channel-shoal sites, as the equipment was moved from south to north in the estuary. Data were collected for approximately 3 weeks at each site.
1981-06-01
Temperature (°C) Section 6, 27-28 August 1979 35 (See figure 5.) Figure 12. XBT Temperature (°C) Section 7, 29-30 August 1979 36 (See figure 5.) Figure 13. XBT...dyn cm) of surface relative to 58 500 dbar, USNS WILKES, 18 August - 3 September 1979 Figure 35 . Dynamic Topography (dyn cm) of 500 dbar relative to...coast. The rise of the 140 C isotherm from 250 m at 180 nmi to 35 m at 10 nmi is an indication of the intense baroclinicity of the coastal current in
Documentation of the U.S. Geological Survey Oceanographic Time-Series Measurement Database
Montgomery, Ellyn T.; Martini, Marinna A.; Lightsom, Frances L.; Butman, Bradford
2008-01-02
This report describes the instrumentation and platforms used to make the measurements; the methods used to process, apply quality-control criteria, and archive the data; the data storage format, and how the data are released and distributed. The report also includes instructions on how to access the data from the online database at http://stellwagen.er.usgs.gov/. As of 2016, the database contains about 5,000 files, which may include observations of current velocity, wave statistics, ocean temperature, conductivity, pressure, and light transmission at one or more depths over some duration of time.
NASA Astrophysics Data System (ADS)
Piete, H.; Marié, L.; Marsset, B.; Gutscher, M.
2012-12-01
The recent development of the seismic oceanography technique has made possible the imaging of a variety of deep oceanographic structures (Holbrook et al., 2003); however, until now this method has remained ill suited for the study of shallow (<200m) thermohaline structures. This difficulty is partly due to the fact that both important seismic trace lengths and large offsets that characterize the acoustic receiver device (seismic streamer) cause significant signal attenuations through an induced antenna filter effect. Further difficulties are related to limitations of currently employed seismic sources, which do not conciliate 1- high power (essential to the imaging of weakly reflective structures in a noisy environment) and 2- spectral contents offering high vertical resolutions (relevant to the mapping of small vertical wavelength structures). In this study we defined and tested a new experimental seismic acquisition system capable of imaging the ~10 m thick seasonal thermocline on the western Brittany continental shelf. To accomplish this task, we pursued two complementary approaches: 1. Analysis of legacy seismic data (multi-channel seismic reflection profiles acquired on the East-Corsican margin, Bahamas Plateau and Gulf of Cadiz in various oceanographic environments) featuring reflectors at depths between 25 and 150 m, in order to identify and quantify the influence of acquisition parameters (seismic trace length, offsets, emission level and frequency content). 2. Incorporation of new oceanographic data acquired during the FROMVAR cruise (July 28th to August 10th 2010) on the western Brittany shelf in thermally stratified waters for use in the simulation of the seismic acquisition, in order to further define the optimal parameters for the system. Finally a 3D seismic system has emerged and was tested during the ASPEX scientific cruise led from June 17th to 19th 2012 across the western Brittany shelf. The device featured: i- four seismic streamers, each consisting of 6 traces at a spacing of 1.80 m; ii- a 1000 J SIG Sparker producing a 400 Hz signal with a 220 dB re 1μPa @1m level of emission, towed at a 8 m distance of the first seismic trace. This survey provided high lateral resolution images of the seasonal thermocline located at a 30 m depth with vertical displacements induced by internal waves. References Holbrook, W.S., Paramo, P., Pearse, S. and Schmitt, R.W., 2003. Thermohaline Fine Structure in an Oceanographic Front from Seismic Reflection Profiling. Science, 301(5634): 821.
An evaluation of ERTS data for oceanographic uses through Great Lakes studies
NASA Technical Reports Server (NTRS)
Strong, A. E. (Principal Investigator); Stumpf, H. G.
1974-01-01
The author has identified the following significant results. Prevailing wind direction on Lake Michigan is southwesterly, although during winter northwesterly stresses are common. Along the western shore the current favors a northward direction. ERTS-1 observations indicate that the southward-flowing current along the Michigan shoreline of the thumb is only reversed by southerly resultant wind stress. Along the Canadian shoreline, a northward current was observed north of Kettle Point. ERTS-1 data also reveal that a preferred southward-flowing current is found along the Detroit shoreline of Lake St. Clair. Eastward flow of surface water from the shallow western basin of Lake Erie into the middle basin is most obvious during northwesterly and northerly wind stresses. The reverse wind direction especially east and southeasterly, appear to hold the effluents from the Detroit and Maumee Rivers in the western basin. Across-lake winds from the north and south induce eddy-like circulation in surface waters of Lake Ontario. Counterclockwise alongshore flow persists in the western basin under most wind conditions.
NASA Astrophysics Data System (ADS)
Soloviev, A.; Dodge, R. E.; Proni, J.
2012-12-01
A long term ocean observing system was established on the Southeast Florida shelf near Ft. Lauderdale by the Nova Southeastern University Oceanographic Center (NSUOC) in late 1990s as a cooperative agreement between the NSU Oceanographic Center and USF College of Marine Science. The system has been supported and upgraded during a number of projects funded by the US federal government and private industries. Currently it consists of two ADCP moorings deployed at 240 m and 11 m isobath and coastal meteorological station and primarily serves to support the Office of Naval Research and other Federal agencies projects. During active observational phases, the area is monitored using the new generation of synthetic aperture radar (SAR) satellites (TerraSAR-X, Cosmo SkyMed, ALOS PALSAR, RADARSAT 2). The NSUOC Ocean observing system is a component of SECOORA, which has been integrating coastal and ocean observing data in the Southeast United States as a part of IOOS. In this paper we overview the results obtained during more than a decade of observations and discuss perspectives for expanded ocean observing on the Southeast Florida Shelf and between Cuba, Bahamas and US. Increased ocean observations are needed of the major western boundary current, known as the Loop Current in the Gulf of Mexico and the Florida Current in the Straits Florida. This ocean current occurs to the west and north of Cuba and along the southeast US. Observations will provide better understanding of the processes that maintain, and account for, the current variability and will be useful in myriad practical applications. A major application is the need to monitor the occurrence of, and to forecast entrainment, trajectories, and detrainment of, potential oil spills that may propagate from Cuban drilling sites located along the north coast of Cuba as well as from proposed drilling in the Bahamas. Such ocean observation information can be used as input for operational response models and result in best mitigation practices for an oil spill capable of significantly and adversely affecting US natural resources. The unique and valuable natural resources of the southeastern United States merit and need the best ocean observational system the scientific community can provide.
NASA Astrophysics Data System (ADS)
Kim, J.; Park, K.
2016-12-01
In order to evaluate the performance of operational forecast models in the Korea operational oceanographic system (KOOS) which has been developed by Korea Institute of Ocean Science and Technology (KIOST), a skill assessment (SA) tool has developed and provided multiple skill metrics including not only correlation and error skills by comparing predictions and observation but also pattern clustering with numerical models, satellite, and observation. The KOOS has produced 72 hours forecast information on atmospheric and hydrodynamic forecast variables of wind, pressure, current, tide, wave, temperature, and salinity at every 12 hours per day produced by operating numerical models such as WRF, ROMS, MOM5, WW-III, and SWAN and the SA has conducted to evaluate the forecasts. We have been operationally operated several kinds of numerical models such as WRF, ROMS, MOM5, MOHID, WW-III. Quantitative assessment of operational ocean forecast model is very important to provide accurate ocean forecast information not only to general public but also to support ocean-related problems. In this work, we propose a method of pattern clustering using machine learning method and GIS-based spatial analytics to evaluate spatial distribution of numerical models and spatial observation data such as satellite and HF radar. For the clustering, we use 10 or 15 years-long reanalysis data which was computed by the KOOS, ECMWF, and HYCOM to make best matching clusters which are classified physical meaning with time variation and then we compare it with forecast data. Moreover, for evaluating current, we develop extraction method of dominant flow and apply it to hydrodynamic models and HF radar's sea surface current data. By applying pattern clustering method, it allows more accurate and effective assessment of ocean forecast models' performance by comparing not only specific observation positions which are determined by observation stations but also spatio-temporal distribution of whole model areas. We believe that our proposed method will be very useful to examine and evaluate large amount of numerical modeling data as well as satellite data.
NASA Astrophysics Data System (ADS)
Federico, Ivan; Maicu, Francesco; Pinardi, Nadia; Lyubartsev, Vladyslav; Causio, Salvatore; Caporale, Claudio; Demarte, Maurizio; Falconieri, Alfredo; Lecci, Rita; Lacava, Teodosio; Lisi, Matteo; Sepp-Neves, Augusto; Lorenzetti, Giuliano; Manfe', Giorgia; Trotta, Francesco; Zaggia, Luca; Ciliberti, Stefania Angela; Fratianni, Claudia; Grandi, Alessandro
2017-04-01
The present work aims to investigate the thermohaline properties and the circulation of the Gulf of Taranto, which is a deep, semi-enclosed ocean area in the northern Ionian sea, encircled by two Italian peninsulas of southern Apulia and Calabria. Since few observations in the past have been reported in the Gulf of Taranto, it emerged the need of planning and implementing oceanographic cruises in this area, based on an innovative concept of MREA (Marine Rapid Environmental Assessment). The methodology was based on an optimal experimental strategy to collect definitive evidences on ocean mesoscales with a spatial-and-time synoptic coverage. The MREA surveys have been performed thanks to the synergies between Italian oceanographic research centers and the Italian Navy Hydrographic Institute. Starting from the experience and results of MREA14 (Pinardi et al., 2016), which have shown in the Gulf an anticyclonic circulation in Autumn (October 2014) and the presence of submesoscale structure, a new experiment (MREA16) was repeated in a different season (Summer, June-July 2016), evaluating possible changes in current circulation. Furthermore, the new sampling methodology was refined and strengthened integrating the classical CTD data collection with additional simultaneous measurements of currents by means of vessel-mounted ADCP. The geostrophic circulation pattern derived from the CTD objective-analysis mapping techniques has been verified with the ADCP measurements. Moreover, the analysis on circulation fields confirms the presence of possible submesoscale structures, which can be well solved by a high-resolution sampling scheme. The MREA investigation in Gulf of Taranto shows a large-scale gyre anticyclonically-oriented in Autumn (MREA14) and cyclonically-oriented in Summer (MREA16). This opposite circulation pattern is probably connected to (i) the impact of Western Adriatic Coastal Current (WACC), (ii) the effect of the Northern Ionian Sea outflow-inflow system in different seasons and (iii) the local atmospheric forcing.
Mapping Ocean Surface Topography with a Synthetic-Aperture Interferometry Radar
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng; Rodriguez, Ernesto
2006-01-01
We propose to apply the technique of synthetic aperture radar interferometry to the measurement of ocean surface topography at spatial resolution approaching 1 km. The measurement will have wide ranging applications in oceanography, hydrology. and marine geophysics. The oceanographic and related societal applications are briefly discussed in the paper. To meet the requirements for oceanographic applications, the instrument must be flown in an orbit with proper sampling of ocean tides.
Towards Mapping the Ocean Surface Topography at 1 km Resolution
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng; Rodriquez, Ernesto
2006-01-01
We propose to apply the technique of synthetic aperture radar interferometry to the measurement of ocean surface topography at spatial resolution approaching 1 km. The measurement will have wide ranging applications in oceanography, hydrology, and marine geophysics. The oceanographic and related societal applications are briefly discussed in the paper. To meet the requirements for oceanographic applications, the instrument must be flown in an orbit with proper sampling of ocean tides.
ERIC Educational Resources Information Center
Fofonoff, N. P.; Millard, R. C., Jr.
Algorithms for computation of fundamental properties of seawater, based on the practicality salinity scale (PSS-78) and the international equation of state for seawater (EOS-80), are compiled in the present report for implementing and standardizing computer programs for oceanographic data processing. Sample FORTRAN subprograms and tables are given…
2016-05-07
REPORT DOCUMENTATION PAGE I . ... ... .. . ,...,.., ............. OMB No. 0704-0188 The public reporting burden for this collection of...Student Support for Appl ication of Advanced Multi- Core Processor N00014-12-1-0298 Technologies to Oceanographic Research Sb. GRANT NUMBER Sc...communications protocols (i.e. UART, I2C, and SPI), through the , ’ . handing off of the data to the server APis. By providing a common set of tools
2014-09-30
partitioning between humpback and minke whales around the western Antarctic Peninsula. Marine Mammal Science. 25: 402-415. 11 Friedlaender, A. S., J. A... Humpback whales (Megaptera novaengliae). Marine Ecology Progress Series 395: 75-89. Watkins, J.L., and A.S. Brierley. 2002. Verification of acoustic... Whales to Acoustic Stimuli, Oceanographic Features, and Prey Availability Ari S. Friedlaender, PhD & Brandon L. Southall, PhD Southall Environmental
Seasat data applications in ocean industries
NASA Technical Reports Server (NTRS)
Montgomery, D. R.
1985-01-01
It is pointed out that the world population expansion and resulting shortages of food, minerals, and fuel have focused additional attention on the world's oceans. In this context, aspects of weather prediction and the monitoring/prediction of long-range climatic anomalies become more important. In spite of technological advances, the commercial ocean industry and the naval forces suffer now from inadequate data and forecast products related to the oceans. The Seasat Program and the planned Navy-Remote Oceanographic Satellite System (N-ROSS) represent major contributions to improved observational coverage and the processing needed to achieve better forecasts. The Seasat Program was initiated to evaluate the effectiveness of the remote sensing of oceanographic phenomena from a satellite platform. Possible oceanographic satellite applications are presented in a table, and the impact of Seasat data on industry sectors is discussed. Attention is given to offshore oil development, deep-ocean mining, fishing, and marine transportation.
A summary of selected early results from the ERTS-1 menhaden experiment
NASA Technical Reports Server (NTRS)
Stevenson, W. H. (Principal Investigator); Kemmerer, A. J.; Benigno, J. A.; Reese, G. B.; Minkler, F. C.
1973-01-01
The author has identified the following significant results. Imagery from ERTS-1 satellite was used in conjunction with aerial photographically-sensed menhaden distribution information, sea truth oceanographic measurements, and commercial fishing information from a 8685 square kilometer study area in the north-central portion of the Gulf of Mexico to demonstrate relationships between selected oceanographic parameters and menhaden distribution, ERTS-1 imagery and menhaden distribution, and ERTS-1 imagery and oceanographic parameters. ERTS-1, MSS band 5 imagery density levels correlated with photographically detected menhaden distribution patterns and could be explained based on sea truth Secchi disc transparency and water depth measurements. These two parameters, together with surface salinity, Forel-Ule color, and chlorophyll-a also were found to correlate significantly with menhaden distribution. Eight empirical models were developed which provided menhaden distribution predictions for the study area on combinations of Secchi disc transparency, water depth, surface salinity, and Forel-Ule color measurements.
Seeing the oceans in the shadow of Bergen values.
Hamblin, Jacob Darwin
2014-06-01
Although oceanographers such as Roger Revelle are typically associated with key indicators of anthropogenic change, he and other scientists at midcentury had very different scientific priorities and ways of seeing the oceans. How can we join the narrative of the triumph of mathematical, dynamic oceanography with the environmental narrative? Dynamic methods entailed a broad set of values that touched the professional lives of marine scientists in a variety of disciplines all over the world, for better or for worse. The present essay highlights three aspects of "Bergen values" in need of greater exploration by scholars. First, how did the dominance of Scandinavian outlooks influence scientific questions across the broad spectrum of oceanography? Second, did oceanographers' particular means of making the oceans legible through instrumentation challenge their ability to perceive the oceans differently? Third, given the immense quantity of data, was the historical legacy of the dynamic oceanographers more descriptive than they imagined?
Sentinel-3A Views Ocean Variability More Accurately at Finer Resolution
NASA Astrophysics Data System (ADS)
Heslop, E. E.; Sánchez-Román, A.; Pascual, A.; Rodríguez, D.; Reeve, K. A.; Faugère, Y.; Raynal, M.
2017-12-01
This is the first multiplatform evaluation involving data from the new Sentinel-3A altimeter. An experiment was undertaken in the Algerian Basin, employing an ocean glider and a ship mission, along the same track and synchronous with an overpass of the Sentinel-3A mission. This provided three independent views of the ocean velocity field, along a section that encompassed three different oceanographic regimes. The results demonstrate the capacity of Sentinel-3A to retrieve fine-scale oceanographic features ( 20 km). The intercomparison with in situ platforms showed a significant improvement, order 30% in resolution and 42% in velocity accuracy using a synthetic aperture radar mode with respect to lower-resolution mode of conventional altimetry. In addition, the three-platform view provided valuable insight into the variability of evolving oceanographic features, in an area of the Mediterranean that remains chronically under sampled.
Design document for the MOODS Data Management System (MDMS), version 1.0
NASA Technical Reports Server (NTRS)
1994-01-01
The MOODS Data Management System (MDMS) provides access to the Master Oceanographic Observation Data Set (MOODS) which is maintained by the Naval Oceanographic Office (NAVOCEANO). The MDMS incorporates database technology in providing seamless access to parameter (temperature, salinity, soundspeed) vs. depth observational profile data. The MDMS is an interactive software application with a graphical user interface (GUI) that supports user control of MDMS functional capabilities. The purpose of this document is to define and describe the structural framework and logical design of the software components/units which are integrated into the major computer software configuration item (CSCI) identified as MDMS, Version 1.0. The preliminary design is based on functional specifications and requirements identified in the governing Statement of Work prepared by the Naval Oceanographic Office (NAVOCEANO) and distributed as a request for proposal by the National Aeronautics and Space Administration (NASA).
Reply [to “Comment on ‘Operational oceanography: Shall we dance?’”
NASA Astrophysics Data System (ADS)
Mooers, Christopher N. K.
Stan Wilson and Muriel Cole have provided an instructive comment on my original essay (It was interesting to learn that they are performing ballet and not opera, and doing the jitterbug and tango and not the waltz and foxtrot, as could have been feared.)For example, they revealed that at least 1,317 NOAA employees (i.e., approximately 10% of their total workforce) are “operational oceanographers.” ( I would like to assume that they individually recognize their professional or functional identity) When taken together with Richard Spinrad's declared estimate of 2,800 “operational oceanographers” working for the Navy the United States has (neglecting any that may work for other agencies or the private sector) a minimum of 4,000 “operational oceanographers, ”which I believe the research and academic oceanographers will find surprisingly yet interestingly large.
NASA Astrophysics Data System (ADS)
Panitz, Sina; Salzmann, Ulrich; Risebrobakken, Bjørg; De Schepper, Stijn; Pound, Matthew J.; Haywood, Alan M.; Dolan, Aisling M.; Lunt, Daniel J.
2018-02-01
During the Pliocene Epoch, a stronger-than-present overturning circulation has been invoked to explain the enhanced warming in the Nordic Seas region in comparison to low to mid-latitude regions. While marine records are indicative of changes in the northward heat transport via the North Atlantic Current (NAC) during the Pliocene, the long-term terrestrial climate evolution and its driving mechanisms are poorly understood. We present the first two-million-year-long Pliocene pollen record for the Nordic Seas region from Ocean Drilling Program (ODP) Hole 642B, reflecting vegetation and climate in Arctic Norway, to assess the influence of oceanographic and atmospheric controls on Pliocene climate evolution. The vegetation record reveals a long-term cooling trend in northern Norway, which might be linked to a general decline in atmospheric CO2 concentrations over the studied interval, and climate oscillations primarily controlled by precession (23 kyr), obliquity (54 kyr) and eccentricity (100 kyr) forcing. In addition, the record identifies four major shifts in Pliocene vegetation and climate mainly controlled by changes in northward heat transport via the NAC. Cool temperate (warmer than present) conditions prevailed between 5.03-4.30 Ma, 3.90-3.47 Ma and 3.29-3.16 Ma and boreal (similar to present) conditions predominated between 4.30-3.90 Ma, 3.47-3.29 and after 3.16 Ma. A distinct decline in sediment and pollen accumulation rates at c. 4.65 Ma is probably linked to changes in ocean currents, marine productivity and atmospheric circulation. Climate model simulations suggest that changes in the strength of the Atlantic Meridional Overturning Circulation during the Early Pliocene could have affected atmospheric circulation in the Nordic Seas region, which would have affected the direction of pollen transport from Scandinavia to ODP Hole 642B.
Storlazzi, Curt D.; Presto, Katherine; Brown, Eric K.
2011-01-01
More than 2.2 million measurements of oceanographic forcing and the resulting water-column properties were made off U.S. National Park Service's Kalaupapa National Historical Park on the north shore of Molokai, Hawaii, between 2008 and 2010 to understand the role of oceanographic processes on the health and sustainability of the area's marine resources. The tides off the Kalaupapa Peninsula are mixed semidiurnal. The wave climate is dominated by two end-members: large northwest Pacific winter swell that directly impacts the study site, and smaller, shorter-period northeast trade-wind waves that have to refract around the peninsula, resulting in a more northerly direction before propagating over the study site. The currents primarily are alongshore and are faster at the surface than close to the seabed; large wave events, however, tend to drive flow in a more cross-shore orientation. The tidal currents flood to the north and ebb to the south. The waters off the peninsula appear to be a mix of cooler, more saline, deeper oceanic waters and shallow, warmer, lower-salinity nearshore waters, with intermittent injections of freshwater, generally during the winters. Overall, the turbidity levels were low, except during large wave events. The low overall turbidity levels and rapid return to pre-event background levels following the cessation of forcing suggest that there is little fine-grained material. Large wave events likely inhibit the settlement of fine-grained sediment at the site. A number of phenomena were observed that indicate the complexity of coastal circulation and water-column properties in the area and may help scientists and resource managers to better understand the implications of the processes on marine ecosystem health.
Operational Monitoring and Forecasting in Regional Seas: the Aegean Sea example
NASA Astrophysics Data System (ADS)
Nittis, K.; Perivoliotis, L.; Zervakis, V.; Papadopoulos, A.; Tziavos, C.
2003-04-01
The increasing economic activities in the coastal zone and the associated pressure on the marine environment have raised the interest on monitoring systems able to provide supporting information for its effective management and protection. Such an integrated monitoring, forecasting and information system is being developed during the past years in the Aegean Sea. Its main component is the POSEIDON network that provides real-time data for meteorological and surface oceanographic parameters (waves, currents, hydrological and biochemical data) from 11 fixed oceanographic buoys. The numerical forecasting system is composed by an ETA atmospheric model, a WAM wave model and a POM hydrodynamic model that provide every day 72 hours forecasts. The system is operational since May 2000 and its products are published through Internet while a sub-set is also available through cellular telephony. New type of observing platforms will be available in the near future through a number of EU funded research projects. The Mediterranean Moored Multi-sensor Array (M3A) that was developed for the needs of the Mediterranean Forecasting System and was tested during 2000-2001 will be operational in 2004 during the MFSTEP project. The M3A system incorporates sensors for optical and chemical measurements (Oxygen, Turbidity, Chlorophyll-a, Nutrients and PAR) in the euphotic zone (0-100m) together with sensors for physical parameters (Temperature, Salinity, Current speed and direction) at the 0-500m layer. A Ferry-Box system will also operate during 2004 in the southern Aegean Sea, providing surface data for physical and bio-chemical properties. The ongoing modeling efforts include coupling with larger scale circulation models of the Mediterranean, high-resolution downscaling to coastal areas of the Aegean Sea and development of multi-variate data assimilation methods.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Marine Sciences.
The present document covers activities carried out by and under the auspices of the Joint Panel on Oceanographic Tables and Standards (JPOTS) over the period of 1983-1986. The first part is the report of the Chairman of JPOTS on the activities of the Panel during the period 1983-1985. Two major topics were considered by the Panel: (1) the…
2013-09-30
Intergovernmental Oceanographic Commission (IOC) (of UNESCO ) and the International Hydrographic Organization (IHO), British Oceanographic Data... LA , USA, 27 Nov – 1 Dec 2007. [PT09] John S. Perkins and Eric I. Thorsos. Update on the reverberation modeling workshops. J. Acoust. Soc. Am...Undersea Research Centre, La Spezia, Italy, 2008. Conference held at Villa Marigola, Lerici, Italy, 9–12 September 2008. [ZAS10] Mario Zampolli
Letter exchange documents 50 years of progress in oceanography
NASA Astrophysics Data System (ADS)
Leipper, Dale F.; Lewis, John M.
During World War II the Scripps Institution of Oceanography (SIO) became involved in the oceanographic training of officers. This, combined with a rekindling of interest in the Pacific Ocean during and after the war, catapulted SIO in the late 1940s to a position of prominence in oceanographic education. The leader of the institution, both administratively and academically, was Harald Sverdrup (Figure 1). When he became director in 1936, only five graduate students were enrolled.
Salinity Variations of the Intermediate Oyashio Waters and Their Relation with the Lunar Nodal Cycle
NASA Astrophysics Data System (ADS)
Rogachev, K. A.; Shlyk, N. V.
2018-01-01
New oceanographic observations in the period 1990-2015 revealed significant salinity variations in the Oyashio Current. In the last 26 years, the salinity of the upper layer decreased by 0.2 PSU. The most rapid changes in salinity and temperature have been observed in the last five years. The time series of salinity measurements is characterized by the high-amplitude fluctuations synchronized with the lunar nodal cycle (18.6 years); i.e., high salinity is observed in the period of strong tidal currents. Modulation of diurnal tidal currents with the K1 and O1 periods in the lunar nodal cycle is significant [8, 9]. The amplitude was maximal in 1988 and 2006 and minimal in 1997 and 2015. The characteristics of tidal currents in the Oyashio Current and Sea of Okhotsk are considered based on available data of drifting buoys over the Kruzenshtern and Kashevarov banks. The amplitude of salinity variations synchronized with the lunar cycle is approximately 0.1 PSU; therefore, it has made a significant contribution to the salinity decrease in recent years.
NASA Astrophysics Data System (ADS)
Tsontos, V. M.; Huang, T.; Holt, B.
2015-12-01
The earth science enterprise increasingly relies on the integration and synthesis of multivariate datasets from diverse observational platforms. NASA's ocean salinity missions, that include Aquarius/SAC-D and the SPURS (Salinity Processes in the Upper Ocean Regional Study) field campaign, illustrate the value of integrated observations in support of studies on ocean circulation, the water cycle, and climate. However, the inherent heterogeneity of resulting data and the disparate, distributed systems that serve them complicates their effective utilization for both earth science research and applications. Key technical interoperability challenges include adherence to metadata and data format standards that are particularly acute for in-situ data and the lack of a unified metadata model facilitating archival and integration of both satellite and oceanographic field datasets. Here we report on efforts at the PO.DAAC, NASA's physical oceanographic data center, to extend our data management and distribution support capabilities for field campaign datasets such as those from SPURS. We also discuss value-added services, based on the integration of satellite and in-situ datasets, which are under development with a particular focus on DOMS. The distributed oceanographic matchup service (DOMS) implements a portable technical infrastructure and associated web services that will be broadly accessible via the PO.DAAC for the dynamic collocation of satellite and in-situ data, hosted by distributed data providers, in support of mission cal/val, science and operational applications.
Scale-dependent habitat use by a large free-ranging predator, the Mediterranean fin whale
NASA Astrophysics Data System (ADS)
Cotté, Cédric; Guinet, Christophe; Taupier-Letage, Isabelle; Mate, Bruce; Petiau, Estelle
2009-05-01
Since the heterogeneity of oceanographic conditions drives abundance, distribution, and availability of prey, it is essential to understand how foraging predators interact with their dynamic environment at various spatial and temporal scales. We examined the spatio-temporal relationships between oceanographic features and abundance of fin whales ( Balaenoptera physalus), the largest free-ranging predator in the Western Mediterranean Sea (WM), through two independent approaches. First, spatial modeling was used to estimate whale density, using waiting distance (the distance between detections) for fin whales along ferry routes across the WM, in relation to remotely sensed oceanographic parameters. At a large scale (basin and year), fin whales exhibited fidelity to the northern WM with a summer-aggregated and winter-dispersed pattern. At mesoscale (20-100 km), whales were found in colder, saltier (from an on-board system) and dynamic areas defined by steep altimetric and temperature gradients. Second, using an independent fin whale satellite tracking dataset, we showed that tracked whales were effectively preferentially located in favorable habitats, i.e. in areas of high predicted densities as identified by our previous model using oceanographic data contemporaneous to the tracking period. We suggest that the large-scale fidelity corresponds to temporally and spatially predictable habitat of whale favorite prey, the northern krill ( Meganyctiphanes norvegica), while mesoscale relationships are likely to identify areas of high prey concentration and availability.
NASA Astrophysics Data System (ADS)
Ichikawa, Kaoru; Akiyama, Hiroaki; Ebinuma, Takuji; Isoguchi, Osamu; Kimura, Noriaki; Kitazawa, Yukihito; Konda, Masanori; Kouguchi, Nobuyuki; Tamura, Hitoshi; Tomita, Hiroyuki; Yoshikawa, Yutaka; Waseda, Takuji
2016-04-01
There has been considerable interest in GNSS Reflectometry (GNSS-R) as a new remote-sensing method. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH. It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 200 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results obtained by the multi-sensor platform at observation towers, and preparation status of a ground station that will be supplied to receive CYGNSS data at Japan.
NASA Astrophysics Data System (ADS)
Medellín-Mora, Johanna; Escribano, Ruben; Schneider, Wolfgang
2016-03-01
A 10-year time series (2002-2012) at Station 18 off central/southern Chile allowed us to study variations in zooplankton along with interannual variability and trends in oceanographic conditions. We used an automated analysis program (ZooImage) to assess changes in the mesozooplankton size structure and the composition of the taxa throughout the entire community. Oceanographic conditions changed over the decade: the water column became less stratified, more saline, and colder; the mixed layer deepened; and the oxygen minimum zone became shallower during the second half of the time series (2008-2012) in comparison with the first period (2002-2007). Both the size structure and composition of the zooplankton were significantly associated with oceanographic changes. Taxonomic and size diversity of the zooplankton community increased to the more recent period. For the second period, small sized copepods (<1 mm) decreased in abundance, being replaced by larger sized (>1.5 mm) and medium size copepods (1-1.5 mm), whereas euphausiids, decapod larvae, appendicularian and ostracods increased their abundance during the second period. These findings indicated that the zooplankton community structure in this eastern boundary ecosystem was strongly influenced by variability of the upwelling process. Thus, climate-induced forcing of upwelling trends can alter the zooplankton community in this highly productive region with potential consequences for the ecosystem food web.
NASA Astrophysics Data System (ADS)
Smith, S. R.; Lopez, N.; Bourassa, M. A.; Rolph, J.; Briggs, K.
2012-12-01
The research vessel data center at the Florida State University routinely acquires, quality controls, and distributes underway surface meteorological and oceanographic observations from vessels. The activities of the center are coordinated by the Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative in partnership with the Rolling Deck to Repository (R2R) project. The data center evaluates the quality of the observations, collects essential metadata, provides data quality feedback to vessel operators, and ensures the long-term data preservation at the National Oceanographic Data Center. A description of the SAMOS data stewardship protocols will be provided, including dynamic web tools that ensure users can select the highest quality observations from over 30 vessels presently recruited to the SAMOS initiative. Research vessels provide underway observations at high-temporal frequency (1 min. sampling interval) that include navigational (position, course, heading, and speed), meteorological (air temperature, humidity, wind, surface pressure, radiation, rainfall), and oceanographic (surface sea temperature and salinity) samples. Recruited vessels collect a high concentration of data within the U.S. continental shelf and also frequently operate well outside routine shipping lanes, capturing observations in extreme ocean environments (Southern Ocean, Arctic, South Atlantic and Pacific). The unique quality and sampling locations of research vessel observations and there independence from many models and products (RV data are rarely distributed via normal marine weather reports) makes them ideal for validation studies. We will present comparisons between research vessel observations and model estimates of the sea surface temperature and salinity in the Gulf of Mexico. The analysis reveals an underestimation of the freshwater input to the Gulf from rivers, resulting in an overestimation of near coastal salinity in the model. Additional comparisons between surface atmospheric products derived from satellite observations and the underway research vessel observations will be shown. The strengths and limitations of research observations for validation studies will be highlighted through these case studies.
Geology and biology of Oceanographer submarine canyon.
Valentine, P.C.; Uzmann, J.R.; Cooper, R.A.
1980-01-01
Santonian beds more than 100 m thick are the oldest rocks collected from the canyon. Quaternary silty clay veneers the canyon walls in many places and is commonly burrowed by benthic organisms that cause extensive erosion of the canyon walls, especially in the depth zone (100-1300 m) inhabited by the crabs Geryon and Cancer. Bioerosion is minimal on high, near-vertical cliffs of sedimentary rock, in areas of continual sediment movement, and where the sea floor is paved by gravel. A thin layer of rippled, unconsolidated silt and sand is commonly present on the canyon walls and in the axis. Shelf sediments are transported from Georges Bank over the E rim and in the Canyon by the SW drift and storm currents; tidal currents and internal waves move the sediment downcanyon along the walls and axis.- from Authors
NASA Technical Reports Server (NTRS)
Frewing, K.
1980-01-01
Deep sea processes of flow-sediment interaction, particularly the role of high energy ocean bottom current events in forming the seafloor topography, transporting material, and mixing the bottom of the water column are examined. A series of observations at and near the sea bottom, in water depths of 4 to 5 km, in areas of the western North Atlantic where high energy current events occur, include site surveys and physical reconnaissance to identify suitable areas and positions, and one or more six month experiments to investigate temporal and spatial variations of high energy events within the boundary layer and their interaction with the seabed. Descriptions of proposed HEBBLE activities are included, with emphasis on technology transfer to the oceanographic community through design, fabrication, testing, and operation of an instrumented ocean bottom lander.
Armstrong, Brandy N.; Warner, John C.; List, Jeffrey H.; Martini, Marinna A.; Montgomery, Ellyn T.; Traykovski, Peter A.; Voulgaris, George
2015-01-01
An oceanographic field study during February through May 2014 investigated processes that control the sediment-transport dynamics along the western part of Fire Island, New York. This report describes the project background, field program, instrumentation configuration, and locations of the sensors deployed. The data collected, including meteorological observations, are presented as time-series plots for data visualization. Additionally, individual links to the database containing digital data files are available as part of this report.
Image masking using polygon fills and morphological transformations
NASA Technical Reports Server (NTRS)
Simpson, James J.
1992-01-01
Polygon-fill operations and morphological transformations are effective computational tools for the land-masking and coastline-correction preprocessing operations often applied to AVHRR data prior to oceanographic applications. These masking operations, in conjunction with cloud-screening techniques, can be used on such other oceanographically significant remote-sensing data as those of the Coastal Zone Color Scanner, GOES, and Landsat. The sensitivity of the methods to regional variations in atmospheric conditions and land-ocean temperature gradients is assessed for tropical, midlatitude, and high latitude regions.
NASA Technical Reports Server (NTRS)
1993-01-01
The Airborne Ocean Color Imager (AOCI) was developed by Daedalus Enterprises, Inc. for Ames Research Center under a Small Business Innovation Research (SBIR) contract as a simulator for an advanced oceanographic satellite instrument. The instrument measures water temperature and detects water color in nine wavelengths. Water color indicates chlorophyll content or phytoplankton. After EOCAP assistance and technical improvements, the AOCI was successfully commercialized by Daedalus Enterprises, Inc. One version provides commercial fishing fleets with information about fish locations, and the other is used for oceanographic research.
Shedding Light on the Sea: André Morel's Legacy to Optical Oceanography
NASA Astrophysics Data System (ADS)
Antoine, David; Babin, Marcel; Berthon, Jean-François; Bricaud, Annick; Gentili, Bernard; Loisel, Hubert; Maritorena, Stéphane; Stramski, Dariusz
2014-01-01
André Morel (1933-2012) was a prominent pioneer of modern optical oceanography, enabling significant advances in this field. Through his forward thinking and research over more than 40 years, he made key contributions that this field needed to grow and to reach its current status. This article first summarizes his career and then successively covers different aspects of optical oceanography where he made significant contributions, from fundamental work on optical properties of water and particles to global oceanographic applications using satellite ocean color observations. At the end, we share our views on André's legacy to our research field and scientific community.
Shedding light on the sea: André Morel's legacy to optical oceanography.
Antoine, David; Babin, Marcel; Berthon, Jean-François; Bricaud, Annick; Gentili, Bernard; Loisel, Hubert; Maritorena, Stéphane; Stramski, Dariusz
2014-01-01
André Morel (1933-2012) was a prominent pioneer of modern optical oceanography, enabling significant advances in this field. Through his forward thinking and research over more than 40 years, he made key contributions that this field needed to grow and to reach its current status. This article first summarizes his career and then successively covers different aspects of optical oceanography where he made significant contributions, from fundamental work on optical properties of water and particles to global oceanographic applications using satellite ocean color observations. At the end, we share our views on André's legacy to our research field and scientific community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malkus, W.V.R.; Thayer, M.
1978-11-01
This volume contains the manuscripts of research lectures by the eleven fellows of the summer program. Five of the lectures overlap significantly with the central summer theme of geomagnetism. The other six lectures cover a broad range of current G.F.D. topics from collective instability to strange attractors. Several of these research efforts are quite polished and probably will appear in journals soon. The middle half represent reports of sound progress on studies of thesis calibre. A few of the lectures report on only the very first consequences of a novel idea.
Researchers focus attention on coastal response to climate change
NASA Astrophysics Data System (ADS)
Anderson, John; Rodriguez, Antonio; Fletcher, Charles; Fitzgerald, Duncan
The world's population has been steadily migrating toward coastal cities, resulting in severe stress on coastal environments. But the most severe human impact on coastal regions may lie ahead as the rate of global sea-level rise accelerates and the impacts of global warming on coastal climates and oceanographic dynamics increase [Varekamp and Thomas, 1998; Hinrichsen, 1999; Goodwin et al., 2000]. Little is currently being done to forecast the impact of global climate change on coasts during the next century and beyond. Indeed, there are still many politicians, and even some scientists, who doubt that global change is a real threat to society.
Physical oceanographic investigation of Massachusetts and Cape Cod Bays
Geyer, W. Rockwell; Gardner, George B.; Brown, Wendell S.; Irish, James D.; Butman, Bradford; Loder, T.C.; Signell, Richard P.
1992-01-01
This physical oceanographic study of the Massachusetts Bays (fig. 1) was designed to provide for the first time a bay-wide description of the circulation and mixing processes on a seasonal basis. Most of the measurements were conducted between April 1990 and June 1991 and consisted of moored observations to study the current flow patterns (fig. 2), hydrographic surveys to document the changes in water properties (fig. 3), high-resolution surveys of velocity and water properties to provide information on the spatial variability of the flow, drifter deployments to measure the currents, and acquisition of satellite images to provide a bay-wide picture of the surface temperature and its spatial variability. A longterm objective of the Massachusetts Bays program is to develop an understanding of the transport of water, dissolved substances and particles throughout the bays. Because horizontal and vertical transport is important to biological, chemical, and geological processes in Massachusetts and Cape Cod Bays, this physical oceanographic study will have broad application and will improve the ability to manage and monitor the water and sediment quality of the Bays. Key results are:There is a marked seasonal variation in stratification in the bays, from well mixed conditions during the winter to strong stratification in the summertime. The stratification acts as a partial barrier to exchange between the surface waters and the deeper waters and causes the motion of the surface waters to be decoupled from the more sluggish flow of the deep waters. During much of the year, there is weak but persistent counterclockwise flow around the bays, made up of southwesterly flow past Cape Ann, southward flow along the western shore, and outflow north of Race Point. The data suggest that this residual flow pattern reverses in fall. Fluctuations caused by wind and density variations are typically larger than the long-term mean. With the exception of western Massachusetts Bay, flushing of the Bays is largely the result of the mean throughflow. Residence time estimates of the surface waters range from 20-45 days. The deeper water has a longer residence time, but its value is difficult to estimate. There is evidence that the deep waters in Stellwagen Basin are not renewed between the onset of stratification and the fall cooling period.Current measurements made near the new outfall site in western Massachusetts Bay suggest that water and material discharged there are not swept away in a consistent direction by a well-defined steady current but are mixed and transported by a variety of processes, including the action of tides, winds, and river inflow. One-day particle excursions are typically less than 10 km. The outfall is apparently located in a region to the west of the basin-wide residual flow pattern.Observations in western Massachusetts Bay, near the location of the future Boston sewage outfall, show that the surficial sediments are episodically resuspended from the seafloor during storms. The observations suggest onshore transport of suspended material during tranquil periods and episodic offshore and southerly alongshore transport of resuspended sediments during storms. The spatial complexity of the flow in the Massachusetts Bays is typical of nearshore areas that have irregular coastal shorelines and topography and currents that are forced locally by wind and river runoff as well as by the flow in adjacent regions. Numerical models are providing a mechanism to interpret the complex spatial flow patterns that cannot be completely resolved by field observations and to investigate key physical processes that control the physics of water and particle transport.
NASA Astrophysics Data System (ADS)
Wolanski, E.; Andutta, F.; Deleersnijder, E.; Li, Y.; Thomas, C. J.
2017-07-01
The 2015/16 ENSO event increased the temperature of waters surrounding northeast Australia to above 30 °C, with large patches of water reaching 32 °C, for over two months, which led to severe bleaching of corals of the Northern Great Barrier Reef (NGBR). This study provides evidence gained from remote-sensing data, oceanographic data and oceanographic modeling, that three factors caused this excessive heating, namely: 1) the shutdown of the North Queensland Coastal Current, which would otherwise have flushed and cooled the Northern Coral Sea and the NGBR through tidal mixing 2) the advection of warm (>30 °C) water from the Gulf of Carpentaria eastward through Torres Strait and then southward over the NGBR continental shelf, and 3) presumably local solar heating. The eastward flux of this warm water through Torres Strait was driven by a mean sea level difference on either side of the strait that in turn was controlled by the wind, which also generated the southward advection of this warm water onto the NGBR shelf. On the NGBR shelf, the residence time of this warm water was longer inshore than offshore, and this may explain the observed cross-shelf gradient of coral bleaching intensity. The fate of the Great Barrier Reef is thus controlled by the oceanography of surrounding seas.
Developing an Automated Method for Detection of Operationally Relevant Ocean Fronts and Eddies
NASA Astrophysics Data System (ADS)
Rogers-Cotrone, J. D.; Cadden, D. D. H.; Rivera, P.; Wynn, L. L.
2016-02-01
Since the early 90's, the U.S. Navy has utilized an observation-based process for identification of frontal systems and eddies. These Ocean Feature Assessments (OFA) rely on trained analysts to identify and position ocean features using satellite-observed sea surface temperatures. Meanwhile, as enhancements and expansion of the navy's Hybrid Coastal Ocean Model (HYCOM) and Regional Navy Coastal Ocean Model (RNCOM) domains have proceeded, the Naval Oceanographic Office (NAVO) has provided Tactical Oceanographic Feature Assessments (TOFA) that are based on data-validated model output but also rely on analyst identification of significant features. A recently completed project has migrated OFA production to the ArcGIS-based Acoustic Reach-back Cell Ocean Analysis Suite (ARCOAS), enabling use of additional observational datasets and significantly decreasing production time; however, it has highlighted inconsistencies inherent to this analyst-based identification process. Current efforts are focused on development of an automated method for detecting operationally significant fronts and eddies that integrates model output and observational data on a global scale. Previous attempts to employ techniques from the scientific community have been unable to meet the production tempo at NAVO. Thus, a system that incorporates existing techniques (Marr-Hildreth, Okubo-Weiss, etc.) with internally-developed feature identification methods (from model-derived physical and acoustic properties) is required. Ongoing expansions to the ARCOAS toolset have shown promising early results.
Alves, Tiago M; Kokinou, Eleni; Zodiatis, George
2014-09-15
This study combines bathymetric, geomorphological, geological data and oil spill predictions to model the impact of oil spills in two accident scenarios from offshore Crete, Eastern Mediterranean. The aim is to present a new three-step method of use by emergency teams and local authorities in the assessment of shoreline and offshore susceptibility to oil spills. The three-step method comprises: (1) real-time analyses of bathymetric, geomorphological, geological and oceanographic data; (2) oil dispersion simulations under known wind and sea current conditions; and (3) the compilation of final hazard maps based on information from (1) and (2) and on shoreline susceptibility data. The results in this paper show that zones of high to very-high susceptibility around the island of Crete are related to: (a) offshore bathymetric features, including the presence of offshore scarps and seamounts; (b) shoreline geology, and (c) the presence near the shore of sedimentary basins filled with unconsolidated deposits of high permeability. Oil spills, under particular weather and oceanographic conditions, may quickly spread and reach the shoreline 5-96 h after the initial accident. As a corollary of this work, we present the South Aegean region around Crete as a valid case-study for confined marine basins, narrow seaways, or interior seas around island groups. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Technical Reports Server (NTRS)
Glover, David M.; Wroblewski, J. S.; Mcclain, Charles R.
1994-01-01
A transition zone in phytoplankton concentration running across the North Pacific basin at 30 deg to 40 deg north latitude corresponds to a basin-wide front in surface chlorophyll observed in a composite of coastal zone color scanner (CZCS) images for May, June, and July 1979-1986. This transition zone with low chlorophyll to the south and higher chlorophyll to the north can be simulated by a simple model of the concentration of phytoplankton, zooplankton, and dissolved nutrient (nitrate) in the surface mixed layer of the ocean applied to the North Pacific basin for the climatological conditions during oceanographic springtime (May, June, and July). The model is initialized with a 1 deg x 1 deg gridded estimate of wintertime (February, March, and April) mixed layer nitrate concentrations calculated from an extensive nutrient database and a similarly gridded mixed layer depth data set. Comparison of model predictions with CZCS data provides a means of evaluating the dynamics of the transition zone. We conclude that in the North Pacific, away from major boundary currents and coastal upwelling zones, wintertime vertical mixing determines the total nutrient available to the plankton ecosystem in the spring. The transition zone seen in basin-scale CZCS images is a reflection of the geographic variation in the wintertime mixed layer depth and the nitracline, leading to a latitudinal gradient in phytoplankton chlorophyll.
Tidal Impacts on Oceanographic and Sea-ice Processes in the Southern Ocean
NASA Astrophysics Data System (ADS)
Padman, L.; Muench, R. D.; Howard, S.; Mueller, R.
2008-12-01
We review recent field and modeling results that demonstrate the importance of tides in establishing the oceanographic and sea-ice conditions in the boundary regions of the Southern Ocean. The tidal component dominates the total oceanic kinetic energy throughout much of the circum-Antarctic seas. This domination is especially pronounced over the continental slope and shelf including the sub-ice-shelf cavities. Tides provide most of the energy that forces diapycnal mixing under ice shelves and thereby contributes to basal melting. The resulting Ice Shelf Water is a significant component of the Antarctic Bottom Water (AABW) filling much of the deep global ocean. Tides exert significant divergent forcing on sea ice along glacial ice fronts and coastal regions, contributing to creation and maintenance of the coastal polynyas where much of the High Salinity Shelf Water component of AABW is formed. Additional tidally forced ice divergence along the shelf break and upper slope significantly impacts area-averaged ice growth and upper-ocean salinity. Tidally forced cross- slope advection, and mixing by the benthic stress associated with tidal currents along the shelf break and upper slope, strongly influence the paths, volume fluxes and hydrographic properties of benthic outflows of dense water leaving the continental shelf. These outflows provide primary source waters for the AABW. These results confirm that general ocean circulation and coupled ocean/ice/atmosphere climate models must incorporate the impacts of tides.
NASA Astrophysics Data System (ADS)
Silva, Nelson; Rojas, Nora; Fedele, Aldo
2009-07-01
Three sections are used to analyze the physical and chemical characteristics of the water masses in the eastern South Pacific and their distributions. Oceanographic data were taken from the SCORPIO (May-June 1967), PIQUERO (May-June 1969), and KRILL (June 1974) cruises. Vertical sections of temperature, salinity, σ θ, dissolved oxygen, nitrate, nitrite, phosphate, and silicate were used to analyze the water column structure. Five water masses were identified in the zone through T- S diagrams: Subantarctic Water, Subtropical Water, Equatorial Subsurface Water, Antarctic Intermediate Water, and Pacific Deep Water. Their proportions in the sea water mixture are calculated using the mixing triangle method. Vertical sections were used to describe the geographical distributions of the water mass cores in the upper 1500 m. Several characteristic oceanographic features in the study area were analyzed: the shallow salinity minimum displacement towards the equator, the equatorial subsurface salinity maximum associated with a dissolved oxygen minimum zone and a high nutrient content displacement towards the south, and the equatorward intermediate Antarctic salinity minimum associated with a dissolved oxygen maximum. The nitrate deficit generated in the denitrification area off Peru and northern Chile is proposed as a conservative chemical tracer for the Equatorial Subsurface Waters off the coast of Chile, south of 25°S.
Designing Extensible Data Management for Ocean Observatories, Platforms, and Devices
NASA Astrophysics Data System (ADS)
Graybeal, J.; Gomes, K.; McCann, M.; Schlining, B.; Schramm, R.; Wilkin, D.
2002-12-01
The Monterey Bay Aquarium Research Institute (MBARI) has been collecting science data for 15 years from all kinds of oceanographic instruments and systems, and is building a next-generation observing system, the MBARI Ocean Observing System (MOOS). To meet the data management requirements of the MOOS, the Institute began developing a flexible, extensible data management solution, the Shore Side Data System (SSDS). This data management system must address a wide variety of oceanographic instruments and data sources, including instruments and platforms of the future. Our data management solution will address all elements of the data management challenge, from ingest (including suitable pre-definition of metadata) through to access and visualization. Key to its success will be ease of use, and automatic incorporation of new data streams and data sets. The data will be of many different forms, and come from many different types of instruments. Instruments will be designed for fixed locations (as with moorings), changing locations (drifters and AUVs), and cruise-based sampling. Data from airplanes, satellites, models, and external archives must also be considered. Providing an architecture which allows data from these varied sources to be automatically archived and processed, yet readily accessed, is only possible with the best practices in metadata definition, software design, and re-use of third-party components. The current status of SSDS development will be presented, including lessons learned from our science users and from previous data management designs.
Montgomery, Ellyn T.; Ganju, Neil K.; Dickhudt, Patrick J.; Borden, Jonathan; Martini, Marinna A.; Brosnahan, Sandra M.
2015-01-01
Suspended-sediment transport is a critical element controlling the geomorphology of tidal wetland complexes. Wetlands rely on organic material and inorganic sediment deposition to maintain their elevation relative to sea level. The U.S. Geological Survey performed observational deployments to measure suspended-sediment concentration and water flow rates in the tidal channels of the wetlands in the Rachel Carson National Wildlife Refuge in Wells, Maine. The objective was to characterize the sediment-transport mechanisms that contribute to the net sediment budget of the wetland complex. We deployed a meteorological tower, optical turbidity sensors, and acoustic velocity meters at sites on Stephens Brook and the Ogunquit River between March 27 and December 9, 2013. This report presents the time-series oceanographic and atmospheric data collected during those field studies. The oceanographic parameters include water velocity, depth, turbidity, salinity, temperature, and pH. The atmospheric parameters include wind direction, speed, and gust; air temperature; air pressure; relative humidity; short wave radiation; and photosynthetically active radiation.
Sword, Shield and Buoys: A History of the NATO Sub-Committee on Oceanographic Research, 1959–19731
Turchetti, Simone
2012-01-01
In the late 1950s the North-Atlantic Treaty Organization (NATO) made a major effort to fund collaborative research between its member states. One of the first initiatives following the establishment of the alliance's Science Committee was the creation of a sub-group devoted to marine science: the Sub-committee on Oceanographic Research.This paper explores the history of this organization, charts its trajectory over the 13 years of its existence, and considers its activities in light of NATO's naval defence strategies. In particular it shows how the alliance's naval commands played a key role in the sub-committee's creation due to the importance of oceanographic research in the tracking of enemy submarines. The essay also scrutinizes the reasons behind the committee's dissolution, with a special focus on the changing landscape of scientific collaboration at NATO. The committee's fall maps onto a more profound shift in the alliance's research agenda, including the re-organization of defence research and the rise of environmentalism. PMID:23935209
Sword, Shield and Buoys: A History of the NATO Sub-Committee on Oceanographic Research, 1959-1973.
Turchetti, Simone
2012-08-01
In the late 1950s the North-Atlantic Treaty Organization (NATO) made a major effort to fund collaborative research between its member states. One of the first initiatives following the establishment of the alliance's Science Committee was the creation of a sub-group devoted to marine science: the Sub-committee on Oceanographic Research.This paper explores the history of this organization, charts its trajectory over the 13 years of its existence, and considers its activities in light of NATO's naval defence strategies. In particular it shows how the alliance's naval commands played a key role in the sub-committee's creation due to the importance of oceanographic research in the tracking of enemy submarines. The essay also scrutinizes the reasons behind the committee's dissolution, with a special focus on the changing landscape of scientific collaboration at NATO. The committee's fall maps onto a more profound shift in the alliance's research agenda, including the re-organization of defence research and the rise of environmentalism.
Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño
Barnard, Patrick L.; Hoover, Daniel; Hubbard, David M.; Snyder, Alex; Ludka, Bonnie C.; Allan, Jonathan; Kaminsky, George M.; Ruggiero, Peter; Gallien, Timu W.; Gabel, Laura; McCandless, Diana; Weiner, Heather M.; Cohn, Nicholas; Anderson, Dylan L.; Serafin, Katherine A.
2017-01-01
The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. However, a quantitative record of coastal impacts is spatially limited and temporally restricted to only the most recent events. Here we report on the oceanographic forcing and coastal response of the 2015–2016 El Niño, one of the strongest of the last 145 years. We show that winter wave energy equalled or exceeded measured historical maxima across the US West Coast, corresponding to anomalously large beach erosion across the region. Shorelines in many areas retreated beyond previously measured landward extremes, particularly along the sediment-starved California coast. PMID:28195580
NASA Technical Reports Server (NTRS)
1978-01-01
Research activities related to global weather, ocean/air interactions, and climate are reported. The global weather research is aimed at improving the assimilation of satellite-derived data in weather forecast models, developing analysis/forecast models that can more fully utilize satellite data, and developing new measures of forecast skill to properly assess the impact of satellite data on weather forecasting. The oceanographic research goal is to understand and model the processes that determine the general circulation of the oceans, focusing on those processes that affect sea surface temperature and oceanic heat storage, which are the oceanographic variables with the greatest influence on climate. The climate research objective is to support the development and effective utilization of space-acquired data systems in climate forecast models and to conduct sensitivity studies to determine the affect of lower boundary conditions on climate and predictability studies to determine which global climate features can be modeled either deterministically or statistically.
Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño
Barnard, Patrick; Hoover, Daniel J.; Hubbard, David M.; Snyder, Alexander; Ludka, Bonnie C.; Allan, Jonathan; Kaminsky, George M.; Ruggiero,; Gallien, Timu W.; Gabel, Laura; McCandless, Diana; Weiner, Heather M.; Cohn, Nicholas; Anderson, Dylan L.; Serafin, Katherine A.
2017-01-01
The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. However, a quantitative record of coastal impacts is spatially limited and temporally restricted to only the most recent events. Here we report on the oceanographic forcing and coastal response of the 2015–2016 El Niño, one of the strongest of the last 145 years. We show that winter wave energy equalled or exceeded measured historical maxima across the US West Coast, corresponding to anomalously large beach erosion across the region. Shorelines in many areas retreated beyond previously measured landward extremes, particularly along the sediment-starved California coast.
Extreme oceanographic forcing and coastal response due to the 2015-2016 El Niño.
Barnard, Patrick L; Hoover, Daniel; Hubbard, David M; Snyder, Alex; Ludka, Bonnie C; Allan, Jonathan; Kaminsky, George M; Ruggiero, Peter; Gallien, Timu W; Gabel, Laura; McCandless, Diana; Weiner, Heather M; Cohn, Nicholas; Anderson, Dylan L; Serafin, Katherine A
2017-02-14
The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. However, a quantitative record of coastal impacts is spatially limited and temporally restricted to only the most recent events. Here we report on the oceanographic forcing and coastal response of the 2015-2016 El Niño, one of the strongest of the last 145 years. We show that winter wave energy equalled or exceeded measured historical maxima across the US West Coast, corresponding to anomalously large beach erosion across the region. Shorelines in many areas retreated beyond previously measured landward extremes, particularly along the sediment-starved California coast.
NASA Astrophysics Data System (ADS)
Milzer, G.; Giraudeau, J.; Faust, J.; Knies, J.; Schmidt, S.; Rühlemann, C.
2012-04-01
The Trondheimfjord is located at the west coast of Mid-Norway and is characterized by local environmental and hydrological changes that are linked to regional oceanographic and atmospheric processes in the Norwegian Sea. The North Atlantic Current (NAC) and the Norwegian Coastal Current (NCC), two major northward flowing sea surface/intermediate currents, strongly contribute to the oceanography of the Norwegian Sea and thus, to the hydrological settings of the fjord. Instrumental records indicate that the renewal of the fjord water by Atlantic-derived water masses occurs twice a year and that bottom water temperature and salinity changes reflect NAC variability. Sedimentation rates in the fjord basin exceed several mm/yr. Hence, the Trondheimfjord is an ideal location for high resolution studies of important climate-sensitive parameters such as characteristics of Atlantic-derived waters, freshwater discharge and sedimentary patterns. We measured stable isotope ratios in tests of the benthic foraminifera Melonis barleanus from surface sediments of the Trondheimfjord; δ18O ratios vary according to circulation and stratification patterns in the fjord which are linked to the topography. Based on these surface sediment measurements, as well as previous sediment core studies (Milzer et al, unpublished), we assume that benthic δ18O ratios in sedimentary archives from the Trondheimfjord reflect ocean circulation changes in the Norwegian Sea. In order to examine to which extent physico-chemical characteristics of the prevailing water masses are affecting the benthic signal in the Trondheimfjord, and how these findings can be related to oceanographic changes in the Norwegian Sea, we analyze benthic δ18O ratios from three multi-cores distributed along the fjord axis. According to 210Pb and 137Cs chronology these multi-cores contain undisturbed sedimentary records for the last 10 to 50 years, with sedimentation rates ranging from 2.5 to 7 mm/yr. We perform this analysis by comparing our stable isotope data with instrumental time-series from hydrological stations in the fjord area and over the Norwegian margin. On a decadal scale the variability of the benthic δ18O signal concurs with the temperature and salinity variability of the bottom water of the Trondheimfjord measured at different stations along the fjord axis. On a multidecadal scale, benthic δ18O variability and the instrumental datasets show different patterns, and point out the peculiarity of each core location in terms of topographic and hydrological settings. In addition, we present dinocyst census counts on the same sedimentary archives as tracers of changes in water mass characteristics induced both by NAC ventilation of the Trondheimfjord and regional climate patterns. The results show characteristic dinocyst assemblages for estuaries including seasonal hydrological variations in the Trondheimfjord which result in changes of food availability as well as mixing of water masses in the fjord.
NASA Technical Reports Server (NTRS)
Mehra, Avichal; Anantharaj, Valentine; Payne, Steve; Kantha, Lakshmi
1996-01-01
This report documents an existing capability to produce operationally relevant products on sea level and currents from a tides/storm surge model for any coastal region around the world within 48 hours from the time of the request. The model is ready for transition to the Naval Oceanographic Office (NAVOCEANO) for potential contingency use anywhere around the world. A recent application to naval operations offshore Liberia illustrates this. Mississippi State University, in collaboration with the University of Colorado and NAVOCEANO, successfully deployed the Colorado University Rapidly Relocatable Nestable Tides and Storm Surge (CURReNTSS) model that predicts sea surface height, tidal currents and storm surge, and provided operational products on tidal sea level and currents in the littoral region off south-western coast of Africa. This report summarizes the results of this collaborative effort in an actual contingency use of the relocatable model, summarizes the lessons learned, and provides recommendations for further evaluation and transition of this modeling capability to operational use.
Mobility of maerl-siliciclastic mixtures: Impact of waves, currents and storm events
NASA Astrophysics Data System (ADS)
Joshi, Siddhi; Duffy, Garret Patrick; Brown, Colin
2017-04-01
Maerl beds are free-living, non-geniculate coralline algae habitats which form biogenic reefs with high micro-scale complexity supporting a diversity and abundance of rare epifauna and epiflora. These habitats are highly mobile in shallow marine environments where substantial maerl beds co-exist with siliciclastic sediment, exemplified by our study site of Galway Bay. Coupled hydrodynamic-wave-sediment transport models have been used to explore the transport patterns of maerl-siliciclastic sediment during calm summer conditions and severe winter storms. The sediment distribution is strongly influenced by storm waves even in water depths greater than 100 m. Maerl is present at the periphery of wave-induced residual current gyres during storm conditions. A combined wave-current Sediment Mobility Index during storm conditions shows correlation with multibeam backscatter and surficial sediment distribution. A combined wave-current Mobilization Frequency Index during storm conditions acts as a physical surrogate for the presence of maerl-siliciclastic mixtures in Galway Bay. Both indices can provide useful integrated oceanographic and sediment information to complement coupled numerical hydrodynamic, sediment transport and erosion-deposition models.
Inner-shelf ocean dynamics and seafloor morphologic changes during Hurricane Sandy
Warner, John C.; Schwab, William C.; List, Jeffrey; Safak, Ilgar; Liste, Maria; Baldwin, Wayne E.
2017-01-01
Hurricane Sandy was one of the most destructive hurricanes in US history, making landfall on the New Jersey coast on Oct 30, 2012. Storm impacts included several barrier island breaches, massive coastal erosion, and flooding. While changes to the subaerial landscape are relatively easily observed, storm-induced changes to the adjacent shoreface and inner continental shelf are more difficult to evaluate. These regions provide a framework for the coastal zone, are important for navigation, aggregate resources, marine ecosystems, and coastal evolution. Here we provide unprecedented perspective regarding regional inner continental shelf sediment dynamics based on both observations and numerical modeling over time scales associated with these types of large storm events. Oceanographic conditions and seafloor morphologic changes are evaluated using both a coupled atmospheric-ocean-wave-sediment numerical modeling system and observation analysis from a series of geologic surveys and oceanographic instrument deployments focused on a region offshore of Fire Island, NY. The geologic investigations conducted in 2011 and 2014 revealed lateral movement of sedimentary structures of distances up to 450 m and in water depths up to 30 m, and vertical changes in sediment thickness greater than 1 m in some locations. The modeling investigations utilize a system with grid refinement designed to simulate oceanographic conditions with progressively increasing resolutions for the entire US East Coast (5-km grid), the New York Bight (700-m grid), and offshore of Fire Island, NY (100-m grid), allowing larger scale dynamics to drive smaller scale coastal changes. Model results in the New York Bight identify maximum storm surge of up to 3 m, surface currents on the order of 2 ms-1 along the New Jersey coast, waves up to 8 m in height, and bottom stresses exceeding 10 Pa. Flow down the Hudson Shelf Valley is shown to result in convergent sediment transport and deposition along its axis. Modeled sediment redistribution along Fire Island showed erosion across the crests of inner shelf sand ridges and sedimentation in adjacent troughs, consistent with the geologic observations.
Implementing DOIs for Oceanographic Satellite Data at PO.DAAC
NASA Astrophysics Data System (ADS)
Hausman, J.; Tauer, E.; Chung, N.; Chen, C.; Moroni, D. F.
2013-12-01
The Physical Oceanographic Distributed Active Archive Center (PO.DAAC) is NASA's archive for physical oceanographic satellite data. It distributes over 500 datasets from gravity, ocean wind, sea surface topography, sea ice, ocean currents, salinity, and sea surface temperature satellite missions. A dataset is a collection of granules/files that share the same mission/project, versioning, processing level, spatial, and temporal characteristics. The large number of datasets is partially due to the number of satellite missions, but mostly because a single satellite mission typically has multiple versions or even temporal and spatial resolutions of data. As a result, a user might mistake one dataset for a different dataset from the same satellite mission. Due to the PO.DAAC'S vast variety and volume of data and growing requirements to report dataset usage, it has begun implementing DOIs for the datasets it archives and distributes. However, this was not as simple as registering a name for a DOI and providing a URL. Before implementing DOIs multiple questions needed to be answered. What are the sponsor and end-user expectations regarding DOIs? At what level does a DOI get assigned (dataset, file/granule)? Do all data get a DOI, or only selected data? How do we create a DOI? How do we create landing pages and manage them? What changes need to be made to the data archive, life cycle policy and web portal to accommodate DOIs? What if the data also exists at another archive and a DOI already exists? How is a DOI included if the data were obtained via a subsetting tool? How does a researcher or author provide a unique, definitive reference (standard citation) for a given dataset? This presentation will discuss how these questions were answered through changes in policy, process, and system design. Implementing DOIs is not a trivial undertaking, but as DOIs are rapidly becoming the de facto approach, it is worth the effort. Researchers have historically referenced the source satellite and data center (or archive), but scientific writings do not typically provide enough detail to point to a singular, uniquely identifiable dataset. DOIs provide the means to help researchers be precise in their data citations and provide needed clarity, standardization and permanence.
NASA Astrophysics Data System (ADS)
Ramos, Jaime A.; Isabel Fagundes, Ana; Xavier, José C.; Fidalgo, Vera; Ceia, Filipe R.; Medeiros, Renata; Paiva, Vitor H.
2015-10-01
Changes in oceanographic conditions, shaped by changes in large-scale atmospheric phenomena such as the North Atlantic Oscillation (NAO), alters the structure and functioning of marine ecosystems. Such signals are readily captured by marine top predators, given that their use of foraging habitats and diets change when the NAO changes. In this study we assessed sexual, seasonal and annual (2010/11-2012/13) differences in diet, trophic and isotopic niche (using δ15N and δ13C values of whole blood, 1st primary, 8th secondary and breast feathers), foraging locations and oceanographic variation within foraging areas for Macaronesian shearwaters' (Puffinus baroli) during two years of contrasting NAO values, and between two sub-tropical islands 330 km apart in the North Atlantic Ocean, Cima Islet and Selvagem Grande. These two locations provide contrasting oceanographic foraging regimes for the birds, because the second colony is much closer to the African coast (375 vs 650 km), and, therefore, to the upwelling area of the Canary Current. There was a marked environmental perturbation in 2010/2011, related with a negative NAO Index and lower marine productivity (lower concentration of Chlorophyll a). This event corresponded to the Macaronesian shearwaters feeding farther north and west, which was readily seen in change of both δ15N and δ13C values, and in a higher intake of cephalopods. Diet and stable isotopes did not differ between sexes. Regurgitation analysis indicate a dominance of cephalopods in both islands, but prey fish were important for Selvagem Grande in 2012 and cephalopods for Cima Islet in 2011. Both δ15N and δ13C values were significantly higher for Cima Islet than for Selvagem Grande, irrespective of year, season and tissue sampled. SIBER analysis showed smaller isotopic niches for the breeding period. Our study suggests that during years of poor environmental conditions Macaronesian shearwaters shift their foraging location to more pelagic waters, take more cephalopods and overall present a narrower isotopic niche.
Undergraduate Research From Start to Finish in a SEA Semester
NASA Astrophysics Data System (ADS)
Lavender, K.; Joyce, P.; Graziano, L.; Harris, S.; Jaroslow, G.; Lea, C.; Schell, J.; Witting, J.
2005-12-01
Undergraduates in the 12-week SEA Semester program at the Sea Education Association (SEA) carry out the entire scientific research process, from conception of a testable scientific question to final presentation of results from data they collect on a six-week research cruise. SEA is uniquely positioned to direct undergraduates in oceanography research projects as diverse as the students that propose them, from the curious non-science major to the student wishing to continue their research at their home institution (i.e. for a senior thesis project). Upon arrival at SEA''s campus in Woods Hole, MA, students are challenged to design a research project they will carry out at sea. They are guided by faculty in reading and discussing primary scientific literature, formulating a research question, and describing a specific data collection and analysis plan to be carried out at sea, culminating in a written research proposal that is defended orally. In developing their project students have access not only to the SEA faculty, but also to the many resources of the larger scientific community of Woods Hole. During the six-week sea component students participate in all aspects of data collection, analysis, and interpretation aboard one of SEA's state-of-the-art oceanographic research vessels. Before the end of the program each student presents their final results in both an oral presentation and a written research paper. The SEA Semester model gives students the opportunity to take complete ownership of a research project, and provides access to cutting-edge research capabilities both onshore and at sea. Examples of recent student research projects will be presented. SEA has been simultaneously developing its undergraduate research program and collecting an extensive historical oceanographic database since 1971. Students are encouraged to incorporate these data in long time series analysis projects, and data are also available to outside researchers. Collaborations with research scientists enhance the educational program, and provide opportunities for ship-of-opportunity sampling in remote locations. There are currently more than 7000 alumni of SEA Semester, and SEA alums are associated with all major centers of oceanographic research in the United States.
NASA Astrophysics Data System (ADS)
Scott, B. E.; Webb, A.; Palmer, M. R.; Embling, C. B.; Sharples, J.
2013-10-01
As we begin to manage our oceans in much more spatial detail we must understand a great deal more about oceanographic habitat preferences of marine mobile top predators. In this unique field study we test a hypothesis on the mechanisms defining mobile predator foraging habitat characteristics by comparing temporally and spatially detailed bio-physical oceanographic data from contrasting topographical locations. We contrast the foraging locations of two very different seabird species, gannets and storm petrels, by repeatedly sampling a bank and a nearby flat area over daily tidal cycles during spring and neap tides. The results suggest that storm petrels are linked to foraging in specific locations where internal waves are produced, which is mainly on banks. These locations can also include the presence of high biomass of chlorophyll. In contrast, the location where more gannets are foraging is significantly influenced by temporal variables with higher densities of foraging birds much more likely during the neap tide than times of spring tide. The foraging times of both species was influenced by differences between the vertical layers of the water column above and below the thermocline; via either vertical shear of horizontal currents or absolute differences in speed between layers. Higher densities of foraging gannets were significantly more likely to be found at ebb tides in both bank and flat regions however over the bank, the density of foraging gannets was higher when the differences in speed between the layers were at a maximum. Both gannets and storm petrels appear to be more likely to forage when wind direction is opposed to tidal direction. This detailed understanding links foraging behaviour to predictable spatial and temporal bio-physical vertical characteristics and thus can be immediately used to explain variance and increase certainty in past abundance and distributional surveys. These results also illuminate the types of variables that should be considered when assessing potential changes to the distribution and characteristics of habitats from increased anthropogenic disturbances such as large scale offshore wind, wave and tidal renewable deployments.
Physical Oceanographic Real-Time System (PORTS) (Invited)
NASA Astrophysics Data System (ADS)
Wright, D.
2013-12-01
The 1999 Assessment of U.S. Marine Transportation System report to Congress noted that the greatest safety concern voiced by the maritime community was the availability of timely, accurate, and reliable navigation information, including real time environment data. Real time oceanographic and meteorological data, along with other navigation tools, gives the mariner a good situational understanding of their often challenging operational environment, to make the best safety of life and property decisions. The National Oceanic and Atmospheric Administration's (NOAA) Physical Oceanographic Real Time System (PORTS) was developed in response to accidents like the Sunshine Skyway Bridge collision in Tampa, FL in 1980, where the lack of accurate, reliable and timely environmental conditions directly contributed to an accident that resulted in a high loss of life and property. Since that time, PORTS has expanded to over 20 locations around the country, and its capabilities have been continually expanded and improved as well. PORTS primary mission is to prevent maritime accidents. Preventing an accident from occurring is the most cost effective approach and the best way to avoid damage to the environment. When accidents do occur, PORTS data is used to improve the effectiveness of response efforts by providing input for trajectory models and real time conditions for response efforts. However, benefits derived from PORTS go well beyond navigation safety. Another large benefit to the local maritime community is potential efficiencies in optimizing use of the existing water column. PORTS provides information that can be used to make economic decisions to add or offload cargo to a vessel and/or to maintain or adjust transit schedules based upon availability of water depth, strength/timing of tidal currents, and other conditions. PORTS data also helps improve and validate local National Weather Service marine weather forecasts. There are many benefits beyond the local maritime community. PORTS data often proves critical when hurricanes or other severe weather events impact an area with the data helping inform the local emergency response infrastructure. PORTS data can also help support local habitat restoration efforts through improved tidal datums, frequency of inundation projections, and sea level trends.
NASA Astrophysics Data System (ADS)
Stroobant, M.; Locritani, M.; Marini, D.; Sabbadini, L.; Carmisciano, C.; Manzella, G.; Magaldi, M.; Aliani, S.
2012-04-01
DLTM is the Ligurian Region (north Italy) cluster of Centre of Excellence (CoE) in waterborne technologies, that involves about 120 enterprises - of which, more than 100 SMEs -, the University of Genoa, all the main National Research Centres dealing with maritime and marine technologies established in Liguria (CNR, INGV, ENEA-UTMAR), the NATO Undersea Research Centre (NURC) and the Experimental Centre of the Italian Navy (CSSN), the Bank, the Port Authority and the Chamber of Commerce of the city of La Spezia. Following its mission, DLTM has recently established three Collaborative Research Laboratories focused on: 1. Computational Fluid dynamics (CFD_Lab) 2. High Performance Computing (HPC_Lab) 3. Monitoring and Analysis of Marine Ecosystems (MARE_Lab). The main role of them is to improve the relationships among the research centres and the enterprises, encouraging a systematic networking approach and sharing of knowledge, data, services, tools and human resources. Two of the key objectives of Lab_MARE are the establishment of: - an integrated system of observation and sea forecasting; - a Regional Marine Instrument Centre (RMIC) for oceanographic and metereological instruments (assembled using 'shared' tools and facilities). Besides, an important and innovative research project has been recently submitted to the Italian Ministry for Education, University and Research (MIUR). This project, in agreement with the European Directives (COM2009 (544)), is aimed to develop a Management Information System (MIS) for oceanographic and meteorological data in the Mediterranean Sea. The availability of adequate HPC inside DLTM is, of course, an important asset for achieving useful results; for example, the Regional Ocean Modeling System (ROMS) model is currently running on a high-resolution mesh on the cluster to simulate and reproduce the circulation within the Ligurian Sea. ROMS outputs will have broad and multidisciplinary impacts because ocean circulation affects the dispersion of different substances like oil spills and other pollutants but also sediments, nutrients and larvae. This could be an important tool for the environmental preservation, prevention and remediation, by placing the bases for the integrated management of the ocean.
NASA Technical Reports Server (NTRS)
Kemmerer, A. J.; Benigno, J. A.
1973-01-01
The author has identified the following significant results. A feasibility study to demonstrate the potential of satellites for providing fisheries significant information was conducted in the Mississippi Sound and adjacent offshore waters. Attempts were made to relate satellite acquired imagery to selected oceanographic parameters and then to relate these parameters to aircraft remotely sensed distribution patterns of resident surface schooling fishes. Initial results suggest that this approach is valid and that the satellite acquired imagery may have important fisheries resource assessment implications.
NASA Technical Reports Server (NTRS)
Blanco, J.; Thomas, A.; Strub, T.; Carr, M.
2000-01-01
The evolution of oceanographic conditions in the upwelling region off northern Chile (18(sup o) - 24(sup o)S) betweeen 1996 and 1998 (including 1997-1998 El Nino) is presented using hydrographic measurements acquired on quarterly cruises of the Chilean Fisheries Institute, sea-surface temperature (SST), sea level, and wind speeds from Arica (18.5(sup o)S), Iquique (20.5(sup o)S), and Antofagasta (23.5(sup o)S), and a time series of vertical temperature profiles off Iquique.
2015-09-30
Jonas Teilmann Department of Bioscience Aarhus University Fredriksborgvej 399 DK-4000 Roskilde Denmark phone: +45 21424291 fax: +45 87 16 87 51...Mammal Research Unit (SMRU, www.smru.st-andrews.ac.uk), University of St. Andrews, Scotland. WORK COMPLETED The project developed a prototype CTD...temperature and depth components from that work along with the tag controller/transmitter etc, are all still valid. • The risk for building a new tag fall
Preface: Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics
NASA Astrophysics Data System (ADS)
Mancho, Ana M.; Hernández-García, Emilio; López, Cristóbal; Turiel, Antonio; Wiggins, Stephen; Pérez-Muñuzuri, Vicente
2018-02-01
The third edition of the international workshop Nonlinear Processes in Oceanic and Atmospheric Flows
was held at the Institute of Mathematical Sciences (ICMAT) in Madrid from 6 to 8 July 2016. The event gathered oceanographers, atmospheric scientists, physicists, and applied mathematicians sharing a common interest in the nonlinear dynamics of geophysical fluid flows. The philosophy of this meeting was to bring together researchers from a variety of backgrounds into an environment that favoured a vigorous discussion of concepts across different disciplines. The present Special Issue on Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics
contains selected contributions, mainly from attendants of the workshop, providing an updated perspective on modelling aspects of geophysical flows as well as issues on prediction and assimilation of observational data and novel tools for describing transport and mixing processes in these contexts. More details on these aspects are discussed in this preface.
NASA Technical Reports Server (NTRS)
Wilkins, G.
1979-01-01
The DUMAND (Deep Underwater Muon and Neutrino Detector) array, a hexagon 800 m on a side, 673 m high, and consisting of 22,698 sensor modules, is designed to detect neutrinos in the TeV range, hadronic cascades, muons and Cerenkov radiation. Its engineering, signal processing, and logistic aspects are considered, as are its optical detection (photomultiplier tubes) system and electronics. Geological and bottom current surveys were made at two proposed sites for the array (the Maui and Keahole Point basins of Hawaii), and a study of the steady-state response of a sensor string to current drag forces is reported. Biological interference with the DUMAND array, including mechanical entanglement by large animals, bioluminescence, and especially biofouling are considered, as well as the deployment, implantment and maintenance of the array.
NASA Technical Reports Server (NTRS)
Werdel, P. Jeremy
2012-01-01
Calibrating ocean color satellite instruments and validating their data products requires temporal and spatial abundances of high quality in situ oceanographic data. The Consortium for Ocean Leadership Ocean Observing Initiative (OOl) is currently implementing a distributed array of in-water sensors that could provide a significant contribution to future ocean color activities. This workshop will scope the optimal way to use and possibly supplement the planned OOl infrastructure to maximize its utility and relevance for calibration and validation activities that support existing and planned NASA ocean color missions. Here, I present the current state of the art of NASA validation of ocean color data products, with attention to autonomous time-series (e.g., the AERONET -OC network of above-water radiometers), and outline NASA needs for data quality assurance metrics and adherence to community-vetted data collection protocols
Hydroacoustic Applications in South Carolina: Technological Advancements in the Streamgaging Network
Shelton, John M.
2008-01-01
Until the 1990s, the U.S. Geological Survey (USGS) had been making streamflow measurements using the same type of equipment for more than 100 years. The Price AA current meter was developed by USGS engineers in 1896. Until recently, the majority of all streamflow measurements made by the USGS were made using this instrument. In the mid-1990s, a new technology emerged in the field of inland streamflow monitoring. The acoustic Doppler current profiler (ADCP), originally developed for oceanographic work, was adapted for inland streamflow measurements. This instrument is transforming the USGS streamgaging program. The ADCP transmits an acoustic pulse through the water column. A 'Doppler shift' is measured as the signal is reflected off of particles in the water, such as sediment and microorganisms. Based on the assumption that the particles in the water are traveling at the same velocity as the water itself, a water velocity is computed.
Towards the Complete Characterization of Marine-Terminating Glacier Outlet Systems
NASA Astrophysics Data System (ADS)
Mayer, L. A.; Jakobsson, M.; Mix, A. C.; Jerram, K.; Hogan, K.; Heffron, E.; Muenchow, A.
2016-12-01
The Petermann Glacier Experiment was aimed at understanding past variations in Petermann Glacier and their relationship to changes in climatic and oceanographic conditions. A critical component of the experiment was a comprehensive program conducted on the icebreaker Oden to map submarine glacial landforms, offering insight into past ice dynamics and establishing the overall geomorphological context of the region. Concurrent water-column mapping provided remarkable insight into modern glacial, oceanographic, and biological processes suggesting that a carefully designed experiment could provide a near-complete characterization of marine-terminating glacier outlet systems. Water-column mapping revealed seeps emanating from several seafloor regions. These features appeared along common depth zones and may represent fresh water emanating from a submerged aquifer; initial pore water analyses of cores also imply a fresh water flux into the fjord system. Water-column data also show a spatially consistent but variable distribution of a strong mid-water scattering layer, a biological response possibly tracing the inflow of Atlantic water into the fjord and enhanced by input from local outlet glaciers. The continuous nature of these acoustic records over 30 days offers a complete 4-D picture of the distribution of the scattering layer (and perhaps internal circulation patterns and water-mass interactions) with a spatial and temporal distribution far beyond that achievable by traditional oceanographic stations. Additional, higher-resolution water-column imaging around local outlet glaciers presents a clear picture of subglacial sediment-laden meltwater plumes. Thus in addition to the paleoceanographic information they provided, the acoustic systems deployed captured a 4D-view of many of the modern geological, oceanographic and ecological processes within and adjacent to the Petermann Glacier marine system. With the addition of seafloor and water-column sampling, long-term oceanographic moorings, a much more robust biological program (to understand what we are mapping in the water-column) and, the ability to extend our measurements under the ice sheet, we stand poised to truly characterize and hopefully understand the processes at work in front of marine-terminating outlet glaciers.
NASA Astrophysics Data System (ADS)
Monticelli, David; Ramos, Jaime A.; Catry, Teresa; Pedro, Patricia; Paiva, Vitor H.
2014-02-01
Most attempts to link seabirds and climate/oceanographic effects have concerned the Atlantic and Pacific Oceans with comparatively few studies in the tropical Indian Ocean. This paper examines the reproductive response of the lesser noddy Anous tenuirostris to temporal fluctuations in oceanographic and climatic conditions using 8 years of monitoring data from Aride Island (Seychelles), tropical Western Indian Ocean. We tested the hypothesis that breeding parameters (mean hatching date, mean egg size, hatching and fledging successes) and chick growth are influenced by local, seasonal oceanographic conditions as expressed by ocean primary productivity (surface chlorophyll-a concentrations; CC), sea surface temperature (SST) and wind speed. We also examined the relationship between lesser noddy breeding parameters and climate conditions recorded at the basin-wide scale of the Indian Ocean (Indian Ocean Dipole Mode Index, DMI). Our findings suggest that birds had a tendency to lay slightly larger eggs during breeding seasons (years) with higher CC during April-June (pre-laying, laying and incubation periods). Hatching date was positively related to SST in April-June, with the regression parameters suggesting that each 0.5 °C increase in SST meant a delay of approx.10 days in hatching date. A negative linear relationship was also apparent between hatching success and SST in June-August (hatching and chick-rearing periods), while the quadratic regression models detected a significant effect of wind speed in June-August on fledging success. Body mass increments of growing chicks averaged over 7-day periods were positively related with (2-week) lagged CC values and negatively related with (2-week) lagged SST values. No significant relationship between DMI and lesser noddy breeding parameters was found, but DMI indices were strongly correlated with local SST. Altogether, our results indicate that the reproduction of this top marine predator is dictated by fluctuations in local environmental conditions around the colony, while the effects of large-scale oceanographic processes (DMI) on our study population might be mediated by an effect on local SST.
Caso, Margarita; González-Abraham, Charlotte; Ezcurra, Exequiel
2007-01-01
Precipitation pulses are essential for the regeneration of drylands and have been shown to be related to oceanographic anomalies. However, whereas some studies report increased precipitation in drylands in northern Mexico during El Niño years, others report increased drought in the southern drylands. To elucidate the effect of oceanographic/atmospheric anomalies on moisture pulses along the whole Pacific coast of Mexico, we correlated the average Southern Oscillation Index values with total annual precipitation for 117 weather stations. We also analyzed this relationship for three separate rainfall signals: winter-spring, summer monsoon, and fall precipitation. The results showed a distinct but divergent seasonal pattern: El Niño events tend to bring increased rainfall in the Mexican northwest but tend to increase aridity in the ecosystems of the southern tropical Pacific slope. The analysis for the separated rainfall seasons showed that El Niño conditions produce a marked increase in winter rainfall above 22° latitude, whereas La Niña conditions tend to produce an increase in the summer monsoon-type rainfall that predominates in the tropical south. Because these dryland ecosystems are dependent on rainfall pulses for their renewal, understanding the complex effect of ocean conditions may be critical for their management in the future. Restoration ecology, grazing regimes, carrying capacities, fire risks, and continental runoff into the oceans could be predicted from oceanographic conditions. Monitoring the coupled atmosphere–ocean system may prove to be important in managing and mitigating the effects of large-scale climatic change on coastal drylands in the future. PMID:17563355
Michael, P E; Jahncke, J; Hyrenbach, K D
2016-01-01
At-sea surveys facilitate the study of the distribution and abundance of marine birds along standardized transects, in relation to changes in the local environmental conditions and large-scale oceanographic forcing. We analyzed the form and the intensity of black-footed albatross (Phoebastria nigripes: BFAL) spatial dispersion off central California, using five years (2004-2008) of vessel-based surveys of seven replicated survey lines. We related BFAL patchiness to local, regional and basin-wide oceanographic variability using two complementary approaches: a hypothesis-based model and an exploratory analysis. The former tested the strength and sign of hypothesized BFAL responses to environmental variability, within a hierarchical atmosphere-ocean context. The latter explored BFAL cross-correlations with atmospheric / oceanographic variables. While albatross dispersion was not significantly explained by the hierarchical model, the exploratory analysis revealed that aggregations were influenced by static (latitude, depth) and dynamic (wind speed, upwelling) environmental variables. Moreover, the largest BFAL patches occurred along the survey lines with the highest densities, and in association with shallow banks. In turn, the highest BFAL densities occurred during periods of negative Pacific Decadal Oscillation index values and low atmospheric pressure. The exploratory analyses suggest that BFAL dispersion is influenced by basin-wide, regional-scale and local environmental variability. Furthermore, the hypothesis-based model highlights that BFAL do not respond to oceanographic variability in a hierarchical fashion. Instead, their distributions shift more strongly in response to large-scale ocean-atmosphere forcing. Thus, interpreting local changes in BFAL abundance and dispersion requires considering diverse environmental forcing operating at multiple scales.
SeaView: bringing EarthCube to the Oceanographer
NASA Astrophysics Data System (ADS)
Stocks, K. I.; Diggs, S. C.; Arko, R. A.; Kinkade, D.; Shepherd, A.
2016-12-01
As new instrument types are developed, and new observational programs start, that support a growing community of "dry" oceanographers, the ability to find, access, and visualize existing data of interest becomes increasingly critical. Yet ocean data, when available, is are held in multiple data facilities, in different formats, and accessible through different pathways. This creates practical problems with integrating and working across different data sets. The SeaView project is building connections between the rich data resources in five major oceanographic data facilities - BCO-DMO, CCHDO, OBIS, OOI, and R2R* - creating a federated set of thematic data collections that are organized around common characteristics (geographic location, time, expedition, program, data type, etc.) and published online in Web Accessible Folders using standard file formats such as ODV and NetCDF. The work includes not simply reformatting data, but identifying and, where possible, addressing interoperability challenges: which common identifiers for core concepts can connect data across repositories, which terms a scientist may want to search that, if added to the data repositories, will increase discoverability; the presence of duplicate data across repositories, etc. We will present the data collections available to date, including data from the OOI Pioneer Array region, and seek scientists' input on the data types and formats they prefer, the tools they use to analyze and visualize data, and their specific recommendations for future data collections to support oceanographic science. * Biological and Chemical Oceanography Data Management Office (BCO-DMO), CLIVAR and Carbon Hydrographic Data Office (CCHDO), International Ocean Biogeographic Information System (iOBIS), Ocean Observatories Initiative (OOI), and Rolling Deck to Repository (R2R) Program.
Sjöqvist, C; Godhe, A; Jonsson, P R; Sundqvist, L; Kremp, A
2015-01-01
Drivers of population genetic structure are still poorly understood in marine micro-organisms. We exploited the North Sea–Baltic Sea transition for investigating the seascape genetics of a marine diatom, Skeletonema marinoi. Eight polymorphic microsatellite loci were analysed in 354 individuals from ten locations to analyse population structure of the species along a 1500-km-long salinity gradient ranging from 3 to 30 psu. To test for salinity adaptation, salinity reaction norms were determined for sets of strains originating from three different salinity regimes of the gradient. Modelled oceanographic connectivity was compared to directional relative migration by correlation analyses to examine oceanographic drivers. Population genetic analyses showed distinct genetic divergence of a low-salinity Baltic Sea population and a high-salinity North Sea population, coinciding with the most evident physical dispersal barrier in the area, the Danish Straits. Baltic Sea populations displayed reduced genetic diversity compared to North Sea populations. Growth optima of low salinity isolates were significantly lower than those of strains from higher native salinities, indicating local salinity adaptation. Although the North Sea–Baltic Sea transition was identified as a barrier to gene flow, migration between Baltic Sea and North Sea populations occurred. However, the presence of differentiated neutral markers on each side of the transition zone suggests that migrants are maladapted. It is concluded that local salinity adaptation, supported by oceanographic connectivity patterns creating an asymmetric migration pattern between the Baltic Sea and the North Sea, determines genetic differentiation patterns in the transition zone. PMID:25892181
Robards, Martin D.; Gray, Floyd; Piatt, John F.
2002-01-01
Dramatic changes in seabird and marine mammal stocks in the Gulf of Alaska have been linked to shifts in abundance and composition of forage fish stocks over the past 20 years. The relative value (e.g., size and condition of individual fish, abundance) of specific forage fish stocks to predators under temporally changing oceanographic regimes is also expected to vary. We inferred potential temporal responses in abundance, growth, and age structure of a key forage fish, sand lance, by studying across spatially different oceanographic regimes. Marked meso-scale differences in abundance, growth, and mortality existed in conjunction with these differing regimes. Growth rate within stocks (between years) was positively correlated with temperature. However, this relationship did not exist among stocks (locations) and differing growth rates were better correlated to marine productivity. Sand lance were least abundant and grew slowest at the warmest site (Chisik Island), an area of limited habitat and low food abundance. Abundance and growth of juvenile sand lance was highest at the coolest site (Barren Islands), an area of highly productive upwelled waters. Sand lance at two sites located oceanographically between the Barren Islands and Chisik Island (inner- and outer-Kachemak Bay) displayed correspondingly intermediate abundance and growth. Resident predators at these sites are presented with markedly different numbers and quality of this key prey species. Our results suggest that at the decadal scale, Gulf of Alaska forage fish such as sand lance are probably more profoundly affected by changes in abundance and quality of their planktonic food, than by temperature alone.
Use of a spacecraft borne altimeter for determining the mean sea surface and the geopotential
NASA Technical Reports Server (NTRS)
Kahn, W. D.; Bryan, J. W.
1972-01-01
An experiment is proposed to test a first generation spacecraft-borne radar altimeter's capability to measure the topography of the sea surface. The initial radar altimeter will have an instrumental error of one meter and an overall accuracy to two to five meters. This instrument will thus improve the accuracy of the geoid from the present 10 to 20 meters to better than 5 meters. In order to detect storm surges, tidal forces, and ocean currents, an altimeter with an overall accuracy of at least ?1 meter will be required. The overall accuracy of the initial radar altimeter will thus primarily provide geodetic information and possible oceanographic information such as sea state.
The Cadiz margin study off Spain: An introduction
Nelson, C.H.; Maldonado, A.
1999-01-01
The Cadiz continental margin of the northeastern Gulf of Cadiz off Spain was selected for a multidisciplinary project because of the interplay of complex tectonic history between the Iberian and African plates, sediment supply from multiple sources, and unique Mediterranean Gateway inflow and outflow currents. The nature of this complex margin, particularly during the last 5 million years, was investigated with emphasis on tectonic history, stratigraphic sequences, marine circulation, contourite depositional facies, geotechnical properties, geologic hazards, and human influences such as dispersal of river contaminants. This study provides an integrated view of the tectonic, sediment supply and oceanographic factors that control depositional processes and growth patterns of the Cadiz and similar modem and ancient continental margins.
Aceves-Medina, Gerardo; Saldierna-Martínez, Ricardo J; González, Enrique A
2003-06-01
The spawning season of the tonguefish Syacium ovale (Günter 1864) was determined by an analysis of the distribution of preflexion stage larvae in the Gulf of California. The larvae were collected during eight oceanographic surveys between 1984 and 1987. The spawning of this species starts in early summer and ends at the beginning of fall, with the highest reproductive activity in mid summer. The central and southern regions of the Gulf are the most important reproductive area. Spawning is associated with high sea surface temperatures and low plankton biomass, both of which are characteristics of the tropical current that invades the study area during summer.
New gravity map of the western Galicia margin: The Spanish exclusive economic zone project
NASA Astrophysics Data System (ADS)
Carbó, A.; Muñoz, A.; Druet, M.; Llanes, P.; Álvarez, J.
2004-12-01
Since 1995, the most intensive mapping of the seafloor off the Spanish coast has been carried out in the framework of the Spanish Exclusive Economic Zone Project (ZEEE). The main objectives of this project are to obtain improved multibeam bathymetric cartography of the areas off Spanish coastlines, and to perform a geophysical survey, well-suited with a 10-knot navigation velocity (some techniques requires lower navigation velocity). The geophysical survey includes gravity, geomagnetism, and low-penetration seismic techniques in order to infer the geological structure of the seafloor. Other oceanographic variables such as current, surface salinity, and temperature profiles, can be recorded without compromising this systematic survey effort.
NASA Astrophysics Data System (ADS)
Mazzini, A.; Akhmetzhanov, A.; Monteys, X.; Ivanov, M.
2012-06-01
The head of a canyon system extending along the western Porcupine Bank (west of Ireland) and which accommodates a large field of giant carbonate mounds was investigated during two cruises (INSS 2000 and TTR-13). Multibeam and sidescan sonar data (600-1,150 m water depth) suggest that the pre-existing seabed topography acts as a significant factor controlling mound distribution and shape. The mounds are concentrated along the edges of the canyon or are associated with a complex fault system traced around the canyon head, comprising escarpments up to 60 m high and several km long. The sampling for geochemical and petrographic analysis of numerous types of authigenic deposits was guided by sidescan sonar and video recordings. Calcite-cemented biogenic rubble was observed at the top and on the flanks of the carbonate mounds, being associated with both living and dead corals ( Lophelia pertusa, Madrepora oculata and occasional Desmophyllum cristagalli). This can plausibly be explained by dissolution of coral debris facilitated by strong currents along the mound tops and flanks. In turn, the dissolved carbon is recycled and precipitated as interstitial micrite. Calcite, dolomite and phosphatic hardgrounds were identified in samples from the escarpment framing the eastern part of the survey area. The laterally extensive phosphatic hardgrounds represent a novel discovery in the region, supplying hard substrata for the establishment of new coral colonies. Based on existing knowledge of regional oceanographic conditions, complemented with new CTD measurements, it is suggested that water column stratification, enhanced bottom currents, and upwelling facilitate the deposition of organic matter, followed by phosphatisation leading to the formation of phosphate-glauconite deposits. The occurrence of strong bottom currents was confirmed by means of video observations combined with acoustic and sampling data, providing circumstantial evidence of fine- to medium-grained sand. Evidently, slope breaks such as escarpments and deep-water canyon headwalls are important structural elements in the development of mature carbonate mounds induced by deep-water coral growth. Stable isotope data show no evidence of methane-derived carbon in the carbonates and lithified sediments of the Porcupine Bank Canyon mounds.
A variable resolution right TIN approach for gridded oceanographic data
NASA Astrophysics Data System (ADS)
Marks, David; Elmore, Paul; Blain, Cheryl Ann; Bourgeois, Brian; Petry, Frederick; Ferrini, Vicki
2017-12-01
Many oceanographic applications require multi resolution representation of gridded data such as for bathymetric data. Although triangular irregular networks (TINs) allow for variable resolution, they do not provide a gridded structure. Right TINs (RTINs) are compatible with a gridded structure. We explored the use of two approaches for RTINs termed top-down and bottom-up implementations. We illustrate why the latter is most appropriate for gridded data and describe for this technique how the data can be thinned. While both the top-down and bottom-up approaches accurately preserve the surface morphology of any given region, the top-down method of vertex placement can fail to match the actual vertex locations of the underlying grid in many instances, resulting in obscured topology/bathymetry. Finally we describe the use of the bottom-up approach and data thinning in two applications. The first is to provide thinned, variable resolution bathymetry data for tests of storm surge and inundation modeling, in particular hurricane Katrina. Secondly we consider the use of the approach for an application to an oceanographic data grid of 3-D ocean temperature.
Zeng, Lili; Wang, Dongxiao; Chen, Ju; Wang, Weiqiang; Chen, Rongyu
2016-04-26
In addition to the oceanographic data available for the South China Sea (SCS) from the World Ocean Database (WOD) and Array for Real-time Geostrophic Oceanography (Argo) floats, a suite of observations has been made by the South China Sea Institute of Oceanology (SCSIO) starting from the 1970s. Here, we assemble a SCS Physical Oceanographic Dataset (SCSPOD14) based on 51,392 validated temperature and salinity profiles collected from these three datasets for the period 1919-2014. A gridded dataset of climatological monthly mean temperature, salinity, and mixed and isothermal layer depth derived from an objective analysis of profiles is also presented. Comparisons with the World Ocean Atlas (WOA) and IFREMER/LOS Mixed Layer Depth Climatology confirm the reliability of the new dataset. This unique dataset offers an invaluable baseline perspective on the thermodynamic processes, spatial and temporal variability of water masses, and basin-scale and mesoscale oceanic structures in the SCS. We anticipate improvements and regular updates to this product as more observations become available from existing and future in situ networks.
NASA Astrophysics Data System (ADS)
Dallimore, A.; Enkin, R. J.; McKechnie, I.
2006-12-01
Along the west coast of Canada, our continuing studies of annually laminated marine sediments in anoxic fjords illustrate the changing environment as glaciers retreated from this area about 12 ka y BP. New data from mid-coastal British Columbia expands our knowledge of the interplay between climate and ocean dynamics in the northeastern Pacific Ocean, and defines the evolution of modern climate conditions as ice receded from the coast, followed by the establishment of modern oceanographic and climatic conditions about 6,000 ky BP. The Late Pleistocene and Holocene record also marks dramatic changes in sea level, climate, coastal oceanographic dynamics and glacial sedimentary source and transport, with implications for the possibility of early human migration routes and glacial refugia. Changes in pre-historical aboriginal settlement sites and food sources also give indications of a dynamic Holocene land and seascape as modern conditions became established. Excellent chronological control is provided by complementary yet independent dating methods including radiocarbon dates on both plants and shells, identification of the Mazama Ash, varve counting and paleomagnetic/paleosecular variation correlations.
Oceanography: the present and future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brewer, P.G.
This volume is the proceedings of a symposium held September 29 to October 2, 1980 at Woods Hole, Massachusetts, commemorating the 50th anniversary of the founding of the Woods Hole Oceanographic Institution. The book is the companion volume to ''Oceanography: the Past'' also published by Springer-Verlag. The papers are organized not by conventional disciplinary topics but by the ''scale'' of the oceanographic process: Part I, Small and Local Scale Oceanography; Part II, Regional Scale Oceanography; Part III, Global Scale Oceanography; and Part IV, The Human Scale. The articles presented, however, do not summarize such projects but give recognizable disciplinary summariesmore » and predictions in line with the subtitle of the book. In general, the articles are classed by this scale concept, although ''Shoreline Research'' by Pilkey and ''The Oceans Nearby'' by Murphy are better placed in the section The Human Scale and Bolin's ''Changing Global Biogeochemistry'' switched from The Human Scale to Global Scale as indicated by the title. This volume should be of value to marine geologists and geochemists, sedimentologists, and public-interest (environmental) geologists interested in oceanographic processes.« less
An inventory of Arctic Ocean data in the World Ocean Database
NASA Astrophysics Data System (ADS)
Zweng, Melissa M.; Boyer, Tim P.; Baranova, Olga K.; Reagan, James R.; Seidov, Dan; Smolyar, Igor V.
2018-03-01
The World Ocean Database (WOD) contains over 1.3 million oceanographic casts (where cast
refers to an oceanographic profile or set of profiles collected concurrently at more than one depth between the ocean surface and ocean bottom) collected in the Arctic Ocean basin and its surrounding marginal seas. The data, collected from 1849 to the present, come from many submitters and countries, and were collected using a variety of instruments and platforms. These data, along with the derived products World Ocean Atlas (WOA) and the Arctic Regional Climatologies, are exceptionally useful - the data are presented in a standardized, easy to use format and include metadata and quality control information. Collecting data in the Arctic Ocean is challenging, and coverage in space and time ranges from excellent to nearly non-existent. WOD continues to compile a comprehensive collection of Arctic Ocean profile data, ideal for oceanographic, environmental and climatic analyses (https://doi.org/10.7289/V54Q7S16).
Zeng, Lili; Wang, Dongxiao; Chen, Ju; Wang, Weiqiang; Chen, Rongyu
2016-01-01
In addition to the oceanographic data available for the South China Sea (SCS) from the World Ocean Database (WOD) and Array for Real-time Geostrophic Oceanography (Argo) floats, a suite of observations has been made by the South China Sea Institute of Oceanology (SCSIO) starting from the 1970s. Here, we assemble a SCS Physical Oceanographic Dataset (SCSPOD14) based on 51,392 validated temperature and salinity profiles collected from these three datasets for the period 1919–2014. A gridded dataset of climatological monthly mean temperature, salinity, and mixed and isothermal layer depth derived from an objective analysis of profiles is also presented. Comparisons with the World Ocean Atlas (WOA) and IFREMER/LOS Mixed Layer Depth Climatology confirm the reliability of the new dataset. This unique dataset offers an invaluable baseline perspective on the thermodynamic processes, spatial and temporal variability of water masses, and basin-scale and mesoscale oceanic structures in the SCS. We anticipate improvements and regular updates to this product as more observations become available from existing and future in situ networks. PMID:27116565
Influence of Wind Model Performance on Wave Forecasts of the Naval Oceanographic Office
NASA Astrophysics Data System (ADS)
Gay, P. S.; Edwards, K. L.
2017-12-01
Significant discrepancies between the Naval Oceanographic Office's significant wave height (SWH) predictions and observations have been noted in some model domains. The goal of this study is to evaluate these discrepancies and identify to what extent inaccuracies in the wind predictions may explain inaccuracies in SWH predictions. A one-year time series of data is evaluated at various locations in Southern California and eastern Florida. Correlations are generally quite good, ranging from 73% at Pendleton to 88% at both Santa Barbara, California, and Cape Canaveral, Florida. Correlations for month-long periods off Southern California drop off significantly in late spring through early autumn - less so off eastern Florida - likely due to weaker local wind seas and generally smaller SWH in addition to the influence of remotely-generated swell, which may not propagate accurately into and through the wave models. The results of this study suggest that it is likely that a change in meteorological and/or oceanographic conditions explains the change in model performance, partially as a result of a seasonal reduction in wind model performance in the summer months.
Stalder, Claudio; Vertino, Agostina; Rosso, Antonietta; Rüggeberg, Andres; Pirkenseer, Claudius; Spangenberg, Jorge E.; Spezzaferri, Silvia; Camozzi, Osvaldo; Rappo, Sacha; Hajdas, Irka
2015-01-01
Cold-water coral (CWC) ecosystems occur worldwide and play a major role in the ocean's carbonate budget and atmospheric CO2 balance since the Danian (~65 m.y. ago). However their temporal and spatial evolution against climatic and oceanographic variability is still unclear. For the first time, we combine the main macrofaunal components of a sediment core from a CWC mound of the Melilla Mounds Field in the Eastern Alboran Sea with the associated microfauna and we highlight the importance of foraminifera and ostracods as indicators of CWC mound evolution in the paleorecord. Abundances of macrofauna along the core reveal alternating periods dominated by distinct CWC taxa (mostly Lophelia pertusa, Madrepora oculata) that correspond to major shifts in foraminiferal and ostracod assemblages. The period dominated by M. oculata coincides with a period characterized by increased export of refractory organic matter to the seafloor and rather unstable oceanographic conditions at the benthic boundary layer with periodically decreased water energy and oxygenation, variable bottom water temperature/density and increased sediment flow. The microfaunal and geochemical data strongly suggest that M. oculata and in particular Dendrophylliidae show a higher tolerance to environmental changes than L. pertusa. Finally, we show evidence for sustained CWC growth during the Alleröd-Younger-Dryas in the Eastern Alboran Sea and that this period corresponds to stable benthic conditions with cold/dense and well oxygenated bottom waters, high fluxes of labile organic matter and relatively strong bottom currents PMID:26447699
Environmental responses of the Northeast Antarctic Peninsula to the Holocene climate variability
NASA Astrophysics Data System (ADS)
Barbara, Loïc.; Crosta, Xavier; Leventer, Amy; Schmidt, Sabine; Etourneau, Johan; Domack, Eugene; Massé, Guillaume
2016-01-01
In this study, we present a unique high-resolution Holocene record of oceanographic and climatic change based on analyses of diatom assemblages combined with biomarker data from a sediment core collected from the Vega Drift, eastern Antarctic Peninsula (EAP). These data add to the climate framework already established by high-resolution marine sedimentary records from the Palmer Deep, western Antarctic Peninsula (WAP). Heavy sea ice conditions and reduced primary productivity were observed prior to 7.4 ka B.P. in relation with the proximity of the glacial ice melt and calving. Subsequent Holocene oceanographic conditions were controlled by the interactions between the Westerlies-Antarctic Circumpolar Current (ACC)-Weddell Gyre dynamics. A warm period characterized by short seasonal sea ice duration associated with a southern shift of both ACC and Westerlies field persisted until 5 ka B.P. This warm episode was then followed by climate deterioration during the middle-to-late Holocene (5 to 1.9 ka B.P.) with a gradual increase in annual sea ice duration triggered by the expansion of the Weddell Gyre and a strong oceanic connection from the EAP to the WAP. Increase of benthic diatom species during this period was indicative of more summer/autumn storms, which was consistent with changes in synoptic atmospheric circulation and the establishment of low- to high-latitude teleconnections. Finally, the multicentennial scale variability of the Weddell Gyre intensity and storm frequency during the late Holocene appeared to be associated with the increased El Niño-Southern Oscillation frequency.
NASA Astrophysics Data System (ADS)
Droghei, Riccardo; Falcini, Federico; Martorelli, Eleonora; Salusti, Ettore; Sannino, Gianmaria; Santoleri, Rosalia; Chiocci, Francesco
2015-04-01
In the last decade joint marine geology and physical oceanography studies are demonstrating the inherited connection between deep-water sedimentary processes and dynamics of water masses in a fruitful exchange in which bedforms type and geometry highlight slow or periodic bottom current processes or event of and oceanography explains and predicts morphological and sedimentary pattern at the seafloor. We investigate the presence of an intriguing up-slope migrating and rotating sand waves observed off the north entrance of the Messina Strait by taking into account the main oceanographic process occurring in the Strait, namely the presence of tidal induced internal solitary waves (ISWs). We hypothesize that the observed deflected pattern of these sand waves is due to refraction of wave occurring at the LIW-MAW interface and that the motion of the grains is due to the increased particle velocity field during the passage of ISWs. We modeled their formations and compared the results with the observed geometries of the dune field. Our findings suggest an intrinsic relationship between the dune filed and the presence of internal solitary waves, and provide some insights about their dynamics and migration rate as in accordance with previous measurements and analysis. We believe that our work represents an innovative and promising link between the geological and oceanographic communities, and gives some insights on the role of ISWs on sedimentary process.
Geomorphology of the Iberian Continental Margin
NASA Astrophysics Data System (ADS)
Maestro, Adolfo; López-Martínez, Jerónimo; Llave, Estefanía; Bohoyo, Fernando; Acosta, Juan; Hernández-Molina, F. Javier; Muñoz, Araceli; Jané, Gloria
2013-08-01
The submarine features and processes around the Iberian Peninsula are the result of a complex and diverse geological and oceanographical setting. This paper presents an overview of the seafloor geomorphology of the Iberian Continental Margin and the adjacent abyssal plains. The study covers an area of approximately 2.3 million km2, including a 50 to 400 km wide band adjacent to the coastline. The main morphological characteristics of the seafloor features on the Iberian continental shelf, continental slope, continental rise and the surrounding abyssal plains are described. Individual seafloor features existing on the Iberian Margin have been classified into three main groups according to their origin: tectonic and/or volcanic, depositional and erosional. Major depositional and erosional features around the Iberian Margin developed in late Pleistocene-Holocene times and have been controlled by tectonic movements and eustatic fluctuations. The distribution of the geomorphological features is discussed in relation to their genetic processes and the evolution of the margin. The prevalence of one or several specific processes in certain areas reflects the dominant morphotectonic and oceanographic controlling factors. Sedimentary processes and the resulting depositional products are dominant on the Valencia-Catalán Margin and in the northern part of the Balearic Promontory. Strong tectonic control is observed in the geomorphology of the Betic and the Gulf of Cádiz margins. The role of bottom currents is especially evident throughout the Iberian Margin. The Galicia, Portuguese and Cantabrian margins show a predominance of erosional features and tectonically-controlled linear features related to faults.
NASA Astrophysics Data System (ADS)
Giorgioni, Martino; Weissert, Helmut; Bernasconi, Stefano M.; Hochuli, Peter A.; Keller, Christina E.; Coccioni, Rodolfo; Petrizzo, Maria Rose; Lukeneder, Alexander; Garcia, Therese I.
2015-03-01
During the mid-Cretaceous the Earth was characterized by peculiar climatic and oceanographic features, such as very high temperatures, smooth thermal meridional gradient, long-term rising sea level, and formation of oceanic gateways and seaways. At that time widespread deposition of micritic pelagic limestones, generally called chalk, occurred in deep pelagic settings as well as in epeiric seas, both at tropical and at high latitudes. The origin of such extensive chalk deposition in the mid-Cretaceous is a complex and still controversial issue, which involves the interaction of several different factors. In this work we address this topic from the paleoceanographic perspective, by investigating the contribution of major oceanic circulation changes. We characterize several stratigraphic sections from the Tethys and North Atlantic with litho-, bio-, and carbon isotope stratigraphy. Our data show a change between two different oceanic circulation modes happening in the Late Albian. The first is an unstable mode, with oceanographic conditions fluctuating frequently in response to rapid environmental and climatic changes, such as those driven by orbital forcing. The second mode is more stable, with better connection between the different oceanic basins, a more stable thermocline, more persistent current flow, better defined upwelling and downwelling areas, and a more balanced oceanic carbon reservoir. We propose that under the mid-Cretaceous paleogeographic and paleoclimatic conditions this change in oceanic circulation mode favored the beginning of chalk sedimentation in deep-water settings.
NASA Technical Reports Server (NTRS)
Wilson, W. S.
1981-01-01
It is pointed out that oceanographers have benefited from the space program mainly through the increased efficiency it has brought to ship operations. For example, the Transit navigation system has enabled oceanographers to compile detailed maps of sea-floor properties and to more accurately locate moored subsurface instrumentation. General descriptions are given of instruments used in satellite observations (altimeter, color scanner, infrared radiometer, microwave radiometer, scatterometer, synthetic aperture radar). It is pointed out that because of the large volume of data that satellite instruments generate, the development of algorithms for converting the data into a form expressed in geophysical units has become especially important.
NASA Technical Reports Server (NTRS)
Mccandless, S. W.; Miller, B. P.
1974-01-01
The SEASAT satellite system is planned as a user-oriented system for timely monitoring of global ocean dynamics and mapping the global ocean geoid. The satellite instrumentation and modular concept are discussed. Operational data capabilities will include oceanographic data services, direct satellite read-out to users, and conversational retrieval and analysis of stored data. A case-study technique, generalized through physical and econometric modeling, indicates potential economic benefit from SEASAT to users in the following areas: ship routing, iceberg reconnaissance, arctic operations, Alaska pipeline ship link, and off-shore oil production.
The winds of the comparison data set for the Seasat Gulf of Alaska Experiment
NASA Technical Reports Server (NTRS)
Pierson, W. J.; Peteherych, S.; Wilkerson, J. C.
1980-01-01
Ship and data buoy winds used for comparison in the validation of Seasat-derived winds are described in terms of the time series of hourly wind observations from the buoys and in terms of the techniques used to produce 20- and 30-min average winds from the ships. Attention is given to the comparison data, the synoptic scale wind, turbulence concepts, the data buoy winds, Ocean Weather Station PAPA, the oceanographer data, and the results from Ocean Station PAPA Ship Quadra and from the oceanographer. Sources of scatter in the comparison data are reviewed.
Regression techniques for oceanographic parameter retrieval using space-borne microwave radiometry
NASA Technical Reports Server (NTRS)
Hofer, R.; Njoku, E. G.
1981-01-01
Variations of conventional multiple regression techniques are applied to the problem of remote sensing of oceanographic parameters from space. The techniques are specifically adapted to the scanning multichannel microwave radiometer (SMRR) launched on the Seasat and Nimbus 7 satellites to determine ocean surface temperature, wind speed, and atmospheric water content. The retrievals are studied primarily from a theoretical viewpoint, to illustrate the retrieval error structure, the relative importances of different radiometer channels, and the tradeoffs between spatial resolution and retrieval accuracy. Comparisons between regressions using simulated and actual SMMR data are discussed; they show similar behavior.
NASA Astrophysics Data System (ADS)
Boehlert, George W.; Watson, William; Sun, L. Charles
1992-04-01
Ichthyoplankton and oceanographic sampling was conducted in November 1984 in waters surrounding Johnston Atoll (16°44'N, 169°32'W), a small, isolated atoll in the central Pacific Ocean. The typical flow pattern in this region is westward; the nearest island is in the Hawaiian Archipelago, 760 km away. Most collections were dominated by oceanic taxa. In the 0-50 m stratum, larval densities were relatively uniform horizontally, but densities down-current of the island tended to be higher, and fish eggs were concentrated there. In the 50-100 m stratum, larval abundance on the down-current side of the island was markedly higher than either up-current or farther down-current. Oceanic taxa did not display this pattern, while marked areas of very high abundance characterized the island-related taxa, the most abundant including the gobiid Eviota epiphanes and the apogonid Pseudamiops sp. Estimates of geostrophic flow indicate that the region down-current of the atoll was one of return flow associated with apparent mesoscale eddies or meanders north and west of the island. This region may serve as a down-current retention area for the pelagic larvae of island-related taxa and may facilitate recruitment back to the source populations.
Numerical modelling of the buoyant marine microplastics in the South-Eastern Baltic Sea
NASA Astrophysics Data System (ADS)
Bagaev, Andrei; Mizyuk, Artem; Chubarenko, Irina; Khatmullilna, Liliya
2017-04-01
Microplastics is a burning issue in the marine pollution science. Its sources, ways of propagation and final destiny pose a lot of questions to the modern oceanographers. Hence, a numerical model is an optimal tool for reconstruction of microplastics pathways and fate. Within the MARBLE project (lamp.ocean.ru), a model of Lagrangian particles transport was developed. It was tested coupled with oceanographic transport fields from the operational oceanography product of Copernicus Marine Monitoring Environment Service. Our model deals with two major types of microplastics such as microfibres and buoyant spheroidal particles. We are currently working to increase the grid resolution by means of the NEMO regional configuration for the south-eastern Baltic Sea. Several expeditions were organised to the three regions of the Baltic Sea (the Gotland, the Bornholm, and the Gdansk basins). Water samples from the surface and different water layers were collected, processed, and analysed by our team. A set of laboratory experiments was specifically designed to establish the settling velocity of particles of various shapes and densities. The analysis in question provided us with the understanding necessary for the model to reproduce the large-scale dynamics of microfibres. In the simulation, particles were spreading from the shore to the deep sea, slowly sinking to the bottom, while decreasing in quantity due to conditional sedimentation. Our model is expected to map out the microplastics life cycle and to account for its distribution patterns under the impact of wind and currents. For this purpose, we have already included the parameterization for the wind drag force applied to a particle. Initial results of numerical experiments seem to indicate the importance of proper implicit parameterization of the particle dynamics at the vertical solid boundary. Our suggested solutions to that problem will be presented at the EGU-2017. The MARBLE project is supported by Russian Science Foundation grant #15-17-10020.
NASA Astrophysics Data System (ADS)
Hopper, J. R.; Castro, C. F.; Knutz, P. C.; Funck, T.
2017-12-01
Seismic reflection data collected in the western Amundsen Basin as part of the Law of the Sea program for the Kingdom of Denmark show a uniform and continuous cover of sediments over oceanic basement. An interpretation of seismic facies units shows that the depositional history of the basin reflects changing tectonic, climatic, and oceanographic conditions throughout the Cenozoic. In this contribution, the Miocene to present history is summarized. Two distinct changes in the depositional environment are proposed, first in response to the development of a deep water connection between the Arctic and North Atlantic, and the second in response to the onset of perennial sea ice cover in the Arctic. In the early to mid-Miocene, a buildup of contourite deposits indicates a distinct change in sedimentation that is particularly well developed near the flank of the Lomonosov Ridge. It is suggested that this is a response to the opening of the Fram Strait and the establishment of geostrophic bottom currents that flowed from the Laptev Sea towards Greenland. These deposits are overlain by a seismic facies unit characterized by buried channels and erosional features. These include prominent basinward levee systems that suggest a channel morphology maintained by overbank deposition of muddy sediments carried by suspension currents periodically spilling over the channel pathway. These deposits indicate a change to a much higher energy environment that is proposed to be a response to brine formation associated with the onset of perennial sea ice cover in the Arctic Ocean. This interpretation implies that the development of extensive sea ice cover results in a significant change in the energy environment of the ocean that is reflected in the depositional and erosional patterns observed. The lack of similar high energy erosional features and the presence of contourite deposits throughout most of the Miocene may indicate the Arctic Ocean was relatively ice-free until the very latest Miocene.
NASA Astrophysics Data System (ADS)
Warner, J. C.; Sullivan, C.; Voulgaris, G.; Work, P.; Haas, K.; Hanes, D. M.
2004-12-01
Long Bay, South Carolina, is a heavily populated coastal region that supports a large tourism industry. Sand resources are important for both recreation and coastal habitat. Earlier geological framework studies have identified a large sand deposit oblique to the shoreline, oriented clockwise in the offshore direction. This sand feature is ~ 10 km long, 2 km wide, and in excess of 3m thick, possibly providing a source for beach nourishment material. Objectives of this study are to describe the physical processes that control the transport of sediment in Long Bay, specifically off the coast of Myrtle Beach, South Carolina. Specifically we seek to 1) measure and model the oceanographic circulation in the region, 2) identify the processes that maintain the presence of the offshore sand feature, 3) quantify the control that the shoal exerts on the nearshore through changes in wave energy propagation, and 4) identify consequences of removal of the offshore sand feature. Both observational and numerical experiments are used to study the oceanographic circulation and transport of sediment. The observational study is described in an accompanying poster and consists of eight sites that measured tides, surface waves, currents, salinity, temperature, suspended sediment concentrations, and bed forms from October 2003 to April 2004. Numerical modeling for circulation and sediment transport in the study region uses a new version of ROMS (v2.1) that now includes transport of multiple grain sizes, coupling of sediment transport to wave bottom boundary layer models, and evolution of the bottom morphology. The SWAN model is used to compute wave propagation. Results indicate that currents in the study area are strongly influenced by both tidal motion and wind driven setup / setdown. The presence of the offshore sand feature alters the residual flows in the region. Sediment transport is more significant during periods of sustained strong winds that generate local waves. Wind direction plays a key role in determining the direction and magnitude of sediment transport.
NASA Astrophysics Data System (ADS)
Storlazzi, C. D.; Cheriton, O. M.; Messina, A. M.; Biggs, T. W.
2018-06-01
Water circulation over coral reefs can determine the degree to which reef organisms are exposed to the overlying waters, so understanding circulation is necessary to interpret spatial patterns in coral health. Because coral reefs often have high geomorphic complexity, circulation patterns and the duration of exposure, or "local residence time" of a water parcel, can vary substantially over small distances. Different meteorologic and oceanographic forcings can further alter residence time patterns over reefs. Here, spatially dense Lagrangian surface current drifters and Eulerian current meters were used to characterize circulation patterns and resulting residence times over different regions of the reefs in Faga'alu Bay, American Samoa, during three distinct forcing periods: calm, strong winds, and large waves. Residence times varied among different geomorphic zones of the reef and were reflected in the spatially varying health of the corals across the embayment. The relatively healthy, seaward fringing reef consistently had the shortest residence times, as it was continually flushed by wave breaking at the reef crest, whereas the degraded, sheltered, leeward fringing reef consistently had the longest residence times, suggesting this area is more exposed to land-based sources of pollution. Strong wind forcing resulted in the longest residence times by pinning the water in the bay, whereas large wave forcing flushed the bay and resulted in the shortest residence times. The effect of these different forcings on residence times was fairly consistent across all reef geomorphic zones, with the shift from wind to wave forcing shortening mean residence times by approximately 50%. Although ecologically significant to the coral organisms in the nearshore reef zones, these shortened residence times were still 2-3 times longer than those associated with the seaward fringing reef across all forcing conditions, demonstrating how the geomorphology of a reef environment sets a first-order control on reef health.
Variability in oceanographic barriers to coral larval dispersal: Do currents shape biodiversity?
NASA Astrophysics Data System (ADS)
Thompson, D. M.; Kleypas, J.; Castruccio, F.; Curchitser, E. N.; Pinsky, M. L.; Jönsson, B.; Watson, J. R.
2018-07-01
The global center of marine biodiversity is located in the western tropical Pacific in a region known as the "Coral Triangle" (CT). This region is also considered the most threatened of all coral reef regions, because multiple impacts, including rising temperatures and coral bleaching, have already caused high mortality of reef corals over large portions of the CT. Larval dispersal and recruitment play a critical role in reef recovery after such disturbances, but our understanding of reproductive connectivity between reefs is limited by a paucity of observations. Oceanographic modeling can provide an economical and efficient way to augment our understanding of reef connectivity, particularly over an area as large as the CT, where marine ecosystem management has become a priority. This work combines daily averaged surface current velocity and direction from a Regional Ocean Modeling System developed for the CT region (CT-ROMS) with a Lagrangian particle tracking tool (TRACMASS) to investigate the probability of larval transport between reefs for a typical broadcasting coral. A 47-year historical simulation (1960-2006) was used to analyze the potential connectivity, the physical drivers of larval transport, and its variability following bi-annual spawning events in April and September. Potential connectivity between reefs was highly variable from year to year, emphasizing the need for long simulations. The results suggest that although reefs in this region are highly self-seeded, comparatively rare long-distance dispersal events may play a vital role in shaping regional patterns of reef biodiversity and recovery following disturbance. The spatial pattern of coral "subpopulations," which are based on the potential connectivity between reefs, agrees with observed regional-scale patterns of biodiversity, suggesting that the physical barriers to larval dispersal are a first-order driver of coral biodiversity in the CT region. These physical barriers persist through the 21st Century when the model is forced with the Community Earth System Model (CESM) RCP8.5 climate scenario, despite some regional changes in connectivity between reefs.
ROADNET: A Real-time Data Aware System for Earth, Oceanographic, and Environmental Applications
NASA Astrophysics Data System (ADS)
Vernon, F.; Hansen, T.; Lindquist, K.; Ludascher, B.; Orcutt, J.; Rajasekar, A.
2003-12-01
The Real-time Observatories, Application, and Data management Network (ROADNet) Program aims to develop an integrated, seamless, and transparent environmental information network that will deliver geophysical, oceanographic, hydrological, ecological, and physical data to a variety of users in real-time. ROADNet is a multidisciplinary, multinational partnership of researchers, policymakers, natural resource managers, educators, and students who aim to use the data to advance our understanding and management of coastal, ocean, riparian, and terrestrial Earth systems in Southern California, Mexico, and well off shore. To date, project activity and funding have focused on the design and deployment of network linkages and on the exploratory development of the real-time data management system. We are currently adapting powerful "Data Grid" technologies to the unique challenges associated with the management and manipulation of real-time data. Current "Grid" projects deal with static data files, and significant technical innovation is required to address fundamental problems of real-time data processing, integration, and distribution. The technologies developed through this research will create a system that dynamically adapt downstream processing, cataloging, and data access interfaces when sensors are added or removed from the system; provide for real-time processing and monitoring of data streams--detecting events, and triggering computations, sensor and logger modifications, and other actions; integrate heterogeneous data from multiple (signal) domains; and provide for large-scale archival and querying of "consolidated" data. The software tools which must be developed do not exist, although limited prototype systems are available. This research has implications for the success of large-scale NSF initiatives in the Earth sciences (EarthScope), ocean sciences (OOI- Ocean Observatories Initiative), biological sciences (NEON - National Ecological Observatory Network) and civil engineering (NEES - Network for Earthquake Engineering Simulation). Each of these large scale initiatives aims to collect real-time data from thousands of sensors, and each will require new technologies to process, manage, and communicate real-time multidisciplinary environmental data on regional, national, and global scales.
WHISPERS Project on the easternmost slope of the Ross Sea (Antarctica): preliminary results.
NASA Astrophysics Data System (ADS)
Olivo, E.; De Santis, L.; Bergamasco, A.; Colleoni, F.; Gales, J. A.; Florindo-Lopez, C.; Kim, S.; Kovacevic, V.; Rebesco, M.
2017-12-01
The advance and retreat of the West Antarctic Ice Sheet from the outer continental shelf and the oceanic circulation are the main causes of the depositional processes on the Ross Sea continental slope, at present time and during the most of the Cenozoic. Currently the Antarctic Bottom Water formation is directly linked to the relatively warm Circumpolar Deep Water that, encroaching the continental shelf, mixes with the colder Ross Sea Bottom Water. Detailed multibeam and geological surveys useful to locate and characterize peculiar morphological structures on the bottom are essential to study how the glacial and oceanographic processes interact with the seabed sediments. In the framework of the PNRA-WHISPERS project (XXXIIth Italian Antarctic expedition - January/March 2017), new multibeam bathymetric, sub-bottom chirp, were acquired from the easternmost margin of the Ross Sea, on the southeastern side of the Hayes Bank, usually covered by sea ice. We observed on the upper slope erosional features (incised gullies of likely glacial meltwater origin). A broad scar in the upper slope is characterized by an elongated SSW-NNE ridge (10 km long, 850-1200 m water depth, 2 km wide), that may be a remnants of previous glacial or debris flow deposits, eroded by meltwater outwash discharge at the beginning of grounding ice retreat and by RSBW cascading along the slope, as documented by Expandable Bathy-Thermograph and Acoustic Depth Current Profile data. Sub-bottom chirp profiles crossing this ridge show a very low amplitude reflective sea bed, supporting the hypothesis of its soft sediment nature, in good agreement with a very low acoustic velocity obtained by multichannel seismic data reprocessing. The occurrence of internal stratification on 2D multichannel seismic profiles would discount a gas-fluids related mud volcano origin. No sediment cores were collected, due to bad sea conditions and limited ship time, further data collection would be needed to fully understand the origin of such depositional feature and its relation with slope glacial and oceanographic processes.
NASA Astrophysics Data System (ADS)
Soares, Mário Luiz Gomes; Estrada, Gustavo Calderucio Duque; Fernandez, Viviane; Tognella, Mônica Maria Pereira
2012-04-01
The objective of the present study was to determine the exact location of the latitudinal limit of western South Atlantic mangroves, and to describe how these forests develop at this limit; as well as to analyze the potential responses of these communities to global warming. The study was carried out along the coast of Santa Catarina, Brazil. Specific studies on mangrove structure were carried out in the Santo Antônio Lagoon (28°28'34″S; 48°51'40″W). The coastline of Santa Catarina was surveyed for the occurrence of mangrove species. In the mangrove located at the southernmost distributional limit, the forest structure was characterized. Mean height and diameter, trunks density and basal area were calculated. Climatic and oceanographic factors controlling the occurrence and development of the mangrove forests at their latitudinal limit were analyzed, as well as the possible changes of this limit based on global warming scenarios. The results confirmed that the Santo Antônio Lagoon is the southern limit of the western South Atlantic mangroves. At this limit, the mangrove forests show a low degree of development, defined by low mean diameter and height, and high trunks density and trunks/tree ratio. The observed structural pattern and the local alternation of these forests with salt marsh species are typical of mangrove forests at their latitudinal limits. The absence of mangroves south of Laguna and forest structure at the latitudinal limit are controlled by rigorous climate and oceanographic characteristics. In response to the planetary warming process, we expect that mangroves will expand southward, as a consequence of an increase in air and ocean surface temperatures, a reduction in the incidence of frosts, an increased influence of the Brazil Current and a decreased influence of the Falkland Current, and the availability of sheltered estuarine systems for the establishment of new mangroves.
Automating Data Submission to a National Archive
NASA Astrophysics Data System (ADS)
Work, T. T.; Chandler, C. L.; Groman, R. C.; Allison, M. D.; Gegg, S. R.; Biological; Chemical Oceanography Data Management Office
2010-12-01
In late 2006, the U.S. National Science Foundation (NSF) funded the Biological and Chemical Oceanographic Data Management Office (BCO-DMO) at Woods Hole Oceanographic Institution (WHOI) to work closely with investigators to manage oceanographic data generated from their research projects. One of the final data management tasks is to ensure that the data are permanently archived at the U.S. National Oceanographic Data Center (NODC) or other appropriate national archiving facility. In the past, BCO-DMO submitted data to NODC as an email with attachments including a PDF file (a manually completed metadata record) and one or more data files. This method is no longer feasible given the rate at which data sets are contributed to BCO-DMO. Working with collaborators at NODC, a more streamlined and automated workflow was developed to keep up with the increased volume of data that must be archived at NODC. We will describe our new workflow; a semi-automated approach for contributing data to NODC that includes a Federal Geographic Data Committee (FGDC) compliant Extensible Markup Language (XML) metadata file accompanied by comma-delimited data files. The FGDC XML file is populated from information stored in a MySQL database. A crosswalk described by an Extensible Stylesheet Language Transformation (XSLT) is used to transform the XML formatted MySQL result set to a FGDC compliant XML metadata file. To ensure data integrity, the MD5 algorithm is used to generate a checksum and manifest of the files submitted to NODC for permanent archive. The revised system supports preparation of detailed, standards-compliant metadata that facilitate data sharing and enable accurate reuse of multidisciplinary information. The approach is generic enough to be adapted for use by other data management groups.
NASA Astrophysics Data System (ADS)
Maffei, A. R.; Chandler, C. L.; Work, T.; Allen, J.; Groman, R. C.; Fox, P. A.
2009-12-01
Content Management Systems (CMSs) provide powerful features that can be of use to oceanographic (and other geo-science) data managers. However, in many instances, geo-science data management offices have previously designed customized schemas for their metadata. The WHOI Ocean Informatics initiative and the NSF funded Biological Chemical and Biological Data Management Office (BCO-DMO) have jointly sponsored a project to port an existing, relational database containing oceanographic metadata, along with an existing interface coded in Cold Fusion middleware, to a Drupal6 Content Management System. The goal was to translate all the existing database tables, input forms, website reports, and other features present in the existing system to employ Drupal CMS features. The replacement features include Drupal content types, CCK node-reference fields, themes, RDB, SPARQL, workflow, and a number of other supporting modules. Strategic use of some Drupal6 CMS features enables three separate but complementary interfaces that provide access to oceanographic research metadata via the MySQL database: 1) a Drupal6-powered front-end; 2) a standard SQL port (used to provide a Mapserver interface to the metadata and data; and 3) a SPARQL port (feeding a new faceted search capability being developed). Future plans include the creation of science ontologies, by scientist/technologist teams, that will drive semantically-enabled faceted search capabilities planned for the site. Incorporation of semantic technologies included in the future Drupal 7 core release is also anticipated. Using a public domain CMS as opposed to proprietary middleware, and taking advantage of the many features of Drupal 6 that are designed to support semantically-enabled interfaces will help prepare the BCO-DMO database for interoperability with other ecosystem databases.
NASA Astrophysics Data System (ADS)
Pereira, M.; Coleman, D.; Donovan, S.; Sanders, R.; Gingras, A.; DeCiccio, A.; Bilbo, E.
2016-02-01
The University of Rhode Island's R/V Endeavor was recently equipped with a new satellite telecommunication system and a telepresence system to enable live ship-to-shore broadcasts and remote user participation through the Inner Space Center. The Rhode Island Endeavor Program, which provides state-funded ship time to support local oceanographic research and education, funded a 5-day cruise off the Rhode Island coast that involved a multidisciplinary team of scientists, engineers, students, educators and video producers. Using two remotely operated vehicle (ROV) systems, several dives were conducted to explore various shipwrecks including the German WWII submarine U-853. During the cruise, a team of URI ocean engineers supported ROV operations and performed engineering tests of a new manipulator. Colleagues from the United States Coast Guard Academy operated a small ROV to collect imagery and environmental data around the wreck sites. Additionally, a team of engineers and oceanographers from URI tested a new acoustic sound source and small acoustic receivers developed for a fish tracking experiment. The video producers worked closely with the participating scientists, students and two high school science teachers to communicate the oceanographic research during live educational broadcasts streamed into Rhode Island classrooms, to the public Internet, and directly to Rhode Island Public Television. This work contributed to increasing awareness of possible career pathways for the Rhode Island K-12 population, taught about active oceanographic research projects, and engaged the public in scientific adventures at sea. The interactive nature of the broadcasts included live responses to questions submitted online and live updates and feedback using social media tools. This project characterizes the power of telepresence and video broadcasting to engage diverse learners and exemplifies innovative ways to utilize social media and the Internet to draw a varied audience.
NASA Astrophysics Data System (ADS)
Scheffer, Annette; Trathan, Philip N.; Edmonston, Johnnie G.; Bost, Charles-André
2016-02-01
Investigating the responses of marine predators to environmental features is of key importance for understanding their foraging behaviour and reproductive success. In this study we examined the foraging behaviour of king penguins breeding at Kerguelen (southern Indian Ocean) in relation to oceanographic and bathymetric features within their foraging ambit. We used ARGOS and Global Positioning System tracking together with Time-Depth-Temperature-Recorders (TDR) to follow the at-sea movements of incubating and brooding king penguins. Combining the penguin behaviour with oceanographic data at the surface through satellite data and at depth through in-situ recordings by the TDRs enabled us to explore how these predators adjusted their horizontal and vertical foraging movements in response to their physical environment. Relating the observed behaviour and oceanographic patterns to local bathymetry lead to a comprehensive picture of the combined influence of bathymetry and meso-scale circulation on the foraging behaviour of king penguins. During both breeding stages king penguins foraged in the area to the south-east of Kerguelen, where they explored an influx of cold waters of southern origin interacting with the Kerguelen Plateau bathymetry. Foraging in the Polar Front and at the thermocline was associated with high prey capture rates. However, foraging trip orientation and water mass utilization suggested that bathymetrically entrained cold-water features provided the most favourable foraging locations. Our study explicitly reports the exploration of bathymetry-related oceanographic features by foraging king penguins. It confirms the presence of Areas of Ecological Significance for marine predators on the Kerguelen Plateau, and suggests the importance of further areas related to the cold-water flow along the shelf break of the Kerguelen Plateau.
NASA Astrophysics Data System (ADS)
Morales, Carmen E.; Anabalón, Valeria
2012-01-01
In the coastal system off Concepción, time series observations at a fixed station (St. 18) have shown strong seasonal changes in the oceanographic environment of the upper layer (<35 m depth), accompanied by large increases in phytoplankton biomass during the spring-summer upwelling season. These blooms, dominated by microplanktonic diatoms, have usually overshadowed the relevance of the smaller microbial components during upwelling. This study focuses on the variability of oceanographic conditions and their association with the structure of the planktonic community (size fractionated chlorophyll-a and microbial abundances) in the upper layer during the upwelling season, examining the extent to which St. 18 is representative of the coastal system off Concepción during springtime. For this purpose, data from three consecutive springs (2004, 2005, 2006) were compared, which included cruises for all years (8 stations around St. 18) as well as monthly sampling at St. 18. Most of the spatial (submesoscale) variability in chlorophyll-a and the microbial components was not significant, but data dispersion around mean values was high. Water column structure (temperature and salinity) in the upper layer explained a significant fraction (25-65%) of the spatial variability in most of the planktonic components; their responses to oceanographic variability were linear in some cases and non-linear in others. For the most part, St. 18 appears to adequately represent mean oceanographic conditions and the structure of planktonic communities in the coastal waters off Concepción during springtime, however spatial variability needs to be taken into account in the interpretations of temporal changes at this fixed station as well as in assessments of carbon flow within, and exportation processes from, this upwelling system.
Ontology Based Vocabulary Matching for Oceanographic Instruments
NASA Astrophysics Data System (ADS)
Chen, Yu; Shepherd, Adam; Chandler, Cyndy; Arko, Robert; Leadbetter, Adam
2014-05-01
Data integration act as the preliminary entry point as we enter the era of big data in many scientific domains. However the reusefulness of various dataset has met the hurdle due to different initial of interests of different parties, therefore different vocabularies in describing similar or semantically related concepts. In this scenario it is vital to devise an automatic or semi-supervised algorithm to facilitate the convergence of different vocabularies. The Ocean Data Interoperability Platform (ODIP) seeks to increase data sharing across scientific domains and international boundaries by providing a forum to harmonize diverse regional data systems. ODIP participants from the US include the Rolling Deck to Repository (R2R) program, whose mission is to capture, catalog, and describe the underway/environmental sensor data from US oceanographic research vessels and submit the data to public long-term archives. In an attempt to harmonize these regional data systems, especially vocabularies, R2R recognizes the value of the SeaDataNet vocabularies served by the NERC Vocabulary Server (NVS) hosted at the British Oceanographic Data Centre as a trusted, authoritative source for describing many oceanographic research concepts such as instrumentation. In this work, we make use of the semantic relations in the vocabularies served by NVS to build a Bayesian network and take advantage of the idea of entropy in evaluating the correlation between different concepts and keywords. The performance of the model is evaluated against matching instruments from R2R against the SeaDataNet instrument vocabularies based on calculated confidence scores in the instrument pairings. These pairings with their scores can then be analyzed for assertion growing the interoperability of the R2R vocabulary through its links to the SeaDataNet entities.
Research Experiences in Community College Science Programs
NASA Astrophysics Data System (ADS)
Beauregard, A.
2011-12-01
The benefits of student access to scientific research opportunities and the use of data in curriculum and student inquiry-driven approaches to teaching as effective tools in science instruction are compelling (i.e., Ledley, et al., 2008; Gawel & Greengrove, 2005; Macdonald, et al., 2005; Harnik & Ross. 2003). Unfortunately, these experiences are traditionally limited at community colleges due to heavy faculty teaching loads, a focus on teaching over research, and scarce departmental funds. Without such hands-on learning activities, instructors may find it difficult to stimulate excitement about science in their students, who are typically non-major and nontraditional. I present two different approaches for effectively incorporating research into the community college setting that each rely on partnerships with other institutions. The first of these is a more traditional approach for providing research experiences to undergraduate students, though such experiences are limited at community colleges, and involves student interns working on a research project under the supervision of a faculty member. Specifically, students participate in a water quality assessment study of two local bayous. Students work on different aspects of the project, including water sample collection, bio-assay incubation experiments, water quality sample analysis, and collection and identification of phytoplankton. Over the past four years, nine community college students, as well as two undergraduate students and four graduate students from the local four-year university have participated in this research project. Aligning student and faculty research provides community college students with the unique opportunity to participate in the process of active science and contribute to "real" scientific research. Because students are working in a local watershed, these field experiences provide a valuable "place-based" educational opportunity. The second approach links cutting-edge oceanographic research with my community college students by partnering with a research oceanographer. Through this partnership, students have had access to an active oceanographic researcher through classroom visits, use of data in curriculum, and research/cruise progress updates. With very little research activity currently going on at the community college, this "window" into scientific research is invaluable. Another important aspect of this project is the development of a summer internship program that has allowed four community college students to work directly with an oceanographer in her lab for ten weeks. This connection of community college students with world-class scientists in the field promotes better understanding of research and potentially may encourage more students to major in the sciences. In either approach, the interaction with scientists at different stages of their careers, from undergraduate and graduate students at universities to post docs and research scientists, also provides community college students with the opportunity to gain insight into possible career pathways. For both majors and non-majors, a key outcome of such experiences will be gaining experience in using inquiry and reasoning through the scientific method and becoming comfortable with data and technology.
NASA Astrophysics Data System (ADS)
Madricardo, Fantina; Foglini, Federica; Kruss, Aleksandra; Ferrarin, Christian; Pizzeghello, Nicola Marco; Murri, Chiara; Rossi, Monica; Bajo, Marco; Bellafiore, Debora; Campiani, Elisabetta; Fogarin, Stefano; Grande, Valentina; Janowski, Lukasz; Keppel, Erica; Leidi, Elisa; Lorenzetti, Giuliano; Maicu, Francesco; Maselli, Vittorio; Mercorella, Alessandra; Montereale Gavazzi, Giacomo; Minuzzo, Tiziano; Pellegrini, Claudio; Petrizzo, Antonio; Prampolini, Mariacristina; Remia, Alessandro; Rizzetto, Federica; Rovere, Marzia; Sarretta, Alessandro; Sigovini, Marco; Sinapi, Luigi; Umgiesser, Georg; Trincardi, Fabio
2017-09-01
Tidal channels are crucial for the functioning of wetlands, though their morphological properties, which are relevant for seafloor habitats and flow, have been understudied so far. Here, we release a dataset composed of Digital Terrain Models (DTMs) extracted from a total of 2,500 linear kilometres of high-resolution multibeam echosounder (MBES) data collected in 2013 covering the entire network of tidal channels and inlets of the Venice Lagoon, Italy. The dataset comprises also the backscatter (BS) data, which reflect the acoustic properties of the seafloor, and the tidal current fields simulated by means of a high-resolution three-dimensional unstructured hydrodynamic model. The DTMs and the current fields help define how morphological and benthic properties of tidal channels are affected by the action of currents. These data are of potential broad interest not only to geomorphologists, oceanographers and ecologists studying the morphology, hydrodynamics, sediment transport and benthic habitats of tidal environments, but also to coastal engineers and stakeholders for cost-effective monitoring and sustainable management of this peculiar shallow coastal system.
Madricardo, Fantina; Foglini, Federica; Kruss, Aleksandra; Ferrarin, Christian; Pizzeghello, Nicola Marco; Murri, Chiara; Rossi, Monica; Bajo, Marco; Bellafiore, Debora; Campiani, Elisabetta; Fogarin, Stefano; Grande, Valentina; Janowski, Lukasz; Keppel, Erica; Leidi, Elisa; Lorenzetti, Giuliano; Maicu, Francesco; Maselli, Vittorio; Mercorella, Alessandra; Montereale Gavazzi, Giacomo; Minuzzo, Tiziano; Pellegrini, Claudio; Petrizzo, Antonio; Prampolini, Mariacristina; Remia, Alessandro; Rizzetto, Federica; Rovere, Marzia; Sarretta, Alessandro; Sigovini, Marco; Sinapi, Luigi; Umgiesser, Georg; Trincardi, Fabio
2017-01-01
Tidal channels are crucial for the functioning of wetlands, though their morphological properties, which are relevant for seafloor habitats and flow, have been understudied so far. Here, we release a dataset composed of Digital Terrain Models (DTMs) extracted from a total of 2,500 linear kilometres of high-resolution multibeam echosounder (MBES) data collected in 2013 covering the entire network of tidal channels and inlets of the Venice Lagoon, Italy. The dataset comprises also the backscatter (BS) data, which reflect the acoustic properties of the seafloor, and the tidal current fields simulated by means of a high-resolution three-dimensional unstructured hydrodynamic model. The DTMs and the current fields help define how morphological and benthic properties of tidal channels are affected by the action of currents. These data are of potential broad interest not only to geomorphologists, oceanographers and ecologists studying the morphology, hydrodynamics, sediment transport and benthic habitats of tidal environments, but also to coastal engineers and stakeholders for cost-effective monitoring and sustainable management of this peculiar shallow coastal system. PMID:28872636
Madricardo, Fantina; Foglini, Federica; Kruss, Aleksandra; Ferrarin, Christian; Pizzeghello, Nicola Marco; Murri, Chiara; Rossi, Monica; Bajo, Marco; Bellafiore, Debora; Campiani, Elisabetta; Fogarin, Stefano; Grande, Valentina; Janowski, Lukasz; Keppel, Erica; Leidi, Elisa; Lorenzetti, Giuliano; Maicu, Francesco; Maselli, Vittorio; Mercorella, Alessandra; Montereale Gavazzi, Giacomo; Minuzzo, Tiziano; Pellegrini, Claudio; Petrizzo, Antonio; Prampolini, Mariacristina; Remia, Alessandro; Rizzetto, Federica; Rovere, Marzia; Sarretta, Alessandro; Sigovini, Marco; Sinapi, Luigi; Umgiesser, Georg; Trincardi, Fabio
2017-09-05
Tidal channels are crucial for the functioning of wetlands, though their morphological properties, which are relevant for seafloor habitats and flow, have been understudied so far. Here, we release a dataset composed of Digital Terrain Models (DTMs) extracted from a total of 2,500 linear kilometres of high-resolution multibeam echosounder (MBES) data collected in 2013 covering the entire network of tidal channels and inlets of the Venice Lagoon, Italy. The dataset comprises also the backscatter (BS) data, which reflect the acoustic properties of the seafloor, and the tidal current fields simulated by means of a high-resolution three-dimensional unstructured hydrodynamic model. The DTMs and the current fields help define how morphological and benthic properties of tidal channels are affected by the action of currents. These data are of potential broad interest not only to geomorphologists, oceanographers and ecologists studying the morphology, hydrodynamics, sediment transport and benthic habitats of tidal environments, but also to coastal engineers and stakeholders for cost-effective monitoring and sustainable management of this peculiar shallow coastal system.
The nepheloid bottom layer and water masses at the shelf break of the western Ross Sea
NASA Astrophysics Data System (ADS)
Capello, Marco; Budillon, Giorgio; Cutroneo, Laura; Tucci, Sergio
2009-06-01
In the austral summers of 2000/2001 and 2002/2003 the Italian CLIMA Project carried out two oceanographic cruises along the northwestern margin of the Ross Sea, where the Antarctic Bottom Water forms. Here there is an interaction between the water masses on the sea floor of the outer shelf and slope with a consequent evolution of benthic nepheloid layers and an increase in total particulate matter. We observed three different situations: (a) the presence of triads (bottom structures characterized by a concomitant jump in turbidity, temperature, and salinity data) and high re-suspension phenomena related to the presence of the Circumpolar Deep Water and its mixing with cold, salty shelf waters associated with gravity currents; (b) the absence of triads with high re-suspension, implying that when the gravity currents are no longer active the benthic nepheloid layer may persist until the suspended particles settle to the sea floor, suggesting that the turbidity data can be used to study recent gravity current events; and (c) the absence of turbidity and sediment re-suspension phenomena supports the theory that a steady situation had been re-established and the current interaction no longer occurred or had finished sometime before.
Decision support system for emergency management of oil spill accidents in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Liubartseva, Svitlana; Coppini, Giovanni; Pinardi, Nadia; De Dominicis, Michela; Lecci, Rita; Turrisi, Giuseppe; Cretì, Sergio; Martinelli, Sara; Agostini, Paola; Marra, Palmalisa; Palermo, Francesco
2016-08-01
This paper presents an innovative web-based decision support system to facilitate emergency management in the case of oil spill accidents, called WITOIL (Where Is The Oil). The system can be applied to create a forecast of oil spill events, evaluate uncertainty of the predictions, and calculate hazards based on historical meteo-oceanographic datasets. To compute the oil transport and transformation, WITOIL uses the MEDSLIK-II oil spill model forced by operational meteo-oceanographic services. Results of the modeling are visualized through Google Maps. A special application for Android is designed to provide mobile access for competent authorities, technical and scientific institutions, and citizens.
NASA Astrophysics Data System (ADS)
Rivai, A. A.; Siregar, V. P.; Agus, S. B.; Yasuma, H.
2018-03-01
One of the required information for sustainable fisheries management is about the habitat characteristics of a fish species. This information can be used to map the distribution of fish and map the potential fishing ground. This study aimed to analyze the habitat characteristics of small pelagic fishes (anchovy, squid, sardine and scads) which were mainly caught by lift net in Kepulauan Seribu waters. Research on habitat characteristics had been widely done, but the use of total suspended solid (TSS) parameters in this analysis is still lacking. TSS parameter which was extracted from Landsat 8 along with five other oceanographic parameters, CPUE data and location of fishing ground data from lift net fisheries in Kepulauan Seribu were included in this analysis. This analysis used Generalized Additive Models (GAMs) to evaluate the relationship between CPUE and oceanographic parameters. The results of the analysis showed that each fish species had different habitat characteristics. TSS and sea surface height had a great influence on the value of CPUE from each species. All the oceanographic parameters affected the CPUE of each species. This study demonstrated the effective use of GAMs to identify the essential habitat of a fish species.
NASA Astrophysics Data System (ADS)
Baker, K. S.; Chandler, C. L.
2008-12-01
Data management and informatics research are in a state of change in terms of data practices, information strategies, and roles. New ways of thinking about data and data management can facilitate interdisciplinary global ocean science. To meet contemporary expectations for local data use and reuse by a variety of audiences, collaborative strategies involving diverse teams of information professionals are developing. Such changes are fostering the growth of information infrastructures that support multi-scale sampling, data integration, and nascent networks of data repositories. In this retrospective, two examples of oceanographic projects incorporating data management in partnership with long-term science programs are reviewed: the Palmer Station Long-Term Ecological Research program (Palmer LTER) and the United States Joint Global Ocean Flux Study (US JGOFS). Lessons learned - short-term and long-term - from a decade of data management within these two communities will be presented. A conceptual framework called Ocean Informatics provides one example for managing the complexities inherent to sharing oceanographic data. Elements are discussed that address the economies-of-scale as well as the complexities-of-scale pertinent to a broad vision of information management and scientific research.
Applications of wireless sensor networks in marine environment monitoring: a survey.
Xu, Guobao; Shen, Weiming; Wang, Xianbin
2014-09-11
With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring.
NASA Astrophysics Data System (ADS)
Baker, Karen S.; Chandler, Cynthia L.
2008-09-01
Interdisciplinary global ocean science requires new ways of thinking about data and data management. With new data policies and growing technological capabilities, datasets of increasing variety and complexity are being made available digitally and data management is coming to be recognized as an integral part of scientific research. To meet the changing expectations of scientists collecting data and of data reuse by others, collaborative strategies involving diverse teams of information professionals are developing. These changes are stimulating the growth of information infrastructures that support multi-scale sampling, data repositories, and data integration. Two examples of oceanographic projects incorporating data management in partnership with science programs are discussed: the Palmer Station Long-Term Ecological Research program (Palmer LTER) and the United States Joint Global Ocean Flux Study (US JGOFS). Lessons learned from a decade of data management within these communities provide an experience base from which to develop information management strategies—short-term and long-term. Ocean Informatics provides one example of a conceptual framework for managing the complexities inherent to sharing oceanographic data. Elements are introduced that address the economies-of-scale and the complexities-of-scale pertinent to a broader vision of information management and scientific research.
Bottle appeal drifts across the Pacific
NASA Astrophysics Data System (ADS)
Ebbesmeyer, Curtis; Ingraham, W. James, Jr.; McKinnon, Richard; Okubo, Akira; Wang, Dong-Ping; Strickland, Richard; Willing, Peter
Pacific drift currents were used by a group of oceanographers to estimate the path of a drift bottle that was found on a beach of Barkley Sound in Vancouver Island by Richard Strickland on June 10, 1990. The Chinese rice wine bottle, which remained unopened until December 18, 1991, contained six leaflets, one appealing for the release of China's well-known dissident, Wei Jingsheng. The bottle was one of thousands set adrift as part of a propaganda effort from the islands of Quemoy and Matsu off mainland China shortly after Wei was sentenced in 1979 to 15 years in prison (see Figure 1 for locations). Wei was in poor health and still in prison when the bottle made its way across the Pacific Ocean.
Deconstructing the conveyor belt.
Lozier, M Susan
2010-06-18
For the past several decades, oceanographers have embraced the dominant paradigm that the ocean's meridional overturning circulation operates like a conveyor belt, transporting cold waters equatorward at depth and warm waters poleward at the surface. Within this paradigm, the conveyor, driven by changes in deepwater production at high latitudes, moves deep waters and their attendant properties continuously along western boundary currents and returns surface waters unimpeded to deepwater formation sites. A number of studies conducted over the past few years have challenged this paradigm by revealing the vital role of the ocean's eddy and wind fields in establishing the structure and variability of the ocean's overturning. Here, we review those studies and discuss how they have collectively changed our view of the simple conveyor-belt model.
Moving Controlled Vocabularies into the Semantic Web
NASA Astrophysics Data System (ADS)
Thomas, R.; Lowry, R. K.; Kokkinaki, A.
2015-12-01
One of the issues with legacy oceanographic data formats is that the only tool available for describing what a measurement is and how it was made is a single metadata tag known as the parameter code. The British Oceanographic Data Centre (BODC) has been supporting the international oceanographic community gain maximum benefit from this through a controlled vocabulary known as the BODC Parameter Usage Vocabulary (PUV). Over time this has grown to over 34,000 entries some of which have preferred labels with over 400 bytes of descriptive information detailing what was measured and how. A decade ago the BODC pioneered making this information available in a more useful form with the implementation of a prototype vocabulary server (NVS) that referenced each 'parameter code' as a URL. This developed into the current server (NVS V2) in which the parameter URL resolves into an RDF document based on the SKOS data model which includes a list of resource URLs mapped to the 'parameter'. For example the parameter code for a contaminant in biota, such as 'cadmium in Mytilus edulis', carries RDF triples leading to the entry for Mytilus edulis in the WoRMS and for cadmium in the ChEBI ontologies. By providing links into these external ontologies the information captured in a 1980s parameter code now conforms to the Linked Data paradigm of the Semantic Web, vastly increasing the descriptive information accessible to a user. This presentation will describe the next steps along the road to the Semantic Web with the development of a SPARQL end point1 to expose the PUV plus the 190 other controlled vocabularies held in NVS. Whilst this is ideal for those fluent in SPARQL, most users require something a little more user-friendly and so the NVS browser2 was developed over the end point to allow less technical users to query the vocabularies and navigate the NVS ontology. This tool integrates into an editor that allows vocabulary content to be manipulated by authorised users outside BODC. Having placed Linked Data tooling over a single SPARQL end point the obvious future development for this system is to support semantic interoperability outside NVS by the incorporation of federated SPARQL end points in the USA and Australia during the ODIP II project. 1https://vocab.nerc.ac.uk/sparql 2 https://www.bodc.ac.uk/data/codes_and_formats/vocabulary_search/
Hydrodynamic, non-photic modulation of biorhythms in the Norway lobster, Nephrops norvegicus (L.)
NASA Astrophysics Data System (ADS)
Aguzzi, J.; Puig, P.; Company, J. B.
2009-03-01
Data on biological rhythms of the Norway lobster Nephrops norvegicus (L.) are compared with new findings on inertial currents, a non-photic geophysical hydrodynamic fluctuation. Laboratory experiments on animal endogenous cardiac activity and locomotor rhythms using individuals from the middle slope (400-600 m depth) of the Mediterranean Sea revealed a consistent proportion of ultradian 18-h animals (20.6% and 12.0% of the studied cases for cardiac and locomotor tests, respectively). This characteristic, not reported in similar experiments with individuals from shallower depths (20-200 m) in the Atlantic Ocean, was initially considered meaningless from an ecological point of view. However, a close comparison with in situ oceanographic measurements over 1 year revealed a clear relationship between inertial current fluctuations and the observed 18-h behavioural and physiological rhythms. We propose a novel scenario involving potential non-photic (i.e. hydrodynamic) modulation of Nephrops biorhythms, and suggest that this may provide a paradigm for other benthic species in deep-water areas.
A case for redefining the boundaries of the Mesoamerican Reef Ecoregion
NASA Astrophysics Data System (ADS)
Chollett, Iliana; Garavelli, Lysel; Holstein, Daniel; Cherubin, Laurent; Fulton, Stuart; Box, Stephen J.
2017-12-01
The Mesoamerican Reef (MAR) is an interconnected system that supports the local economies of four countries through the provision of seafood and tourism. Considerable financial, research and management effort has been invested in this priority ecoregion, whose boundaries were defined more than 18 yr ago based on best available data on oceanographic patterns, reef and watershed distribution. The long-term persistence of the MAR depends, however, on ensuring that all of its constituent parts are appropriately managed, and the current boundaries may not respond to this need. Here we assess the suitability of the current boundaries of the MAR using information on physical environments and larval connectivity of three key species. Our research indicates the boundaries of the ecoregion require an adjustment, as the exclusion of key areas in eastern Honduras might jeopardize the persistence of the entire network of connected reefs, and areas in northern Yucatan belong to a different environmental regime and may require different management strategies.
Enhancing the capability of the research fleet.
NASA Astrophysics Data System (ADS)
Pinkel, R.
2012-12-01
While the performance and economics of our vessels and manned platforms are fixed by fundamental principles, their scientific capabilities can be considerably extended through the development of new technology. Potential future systems include multi-beam swath- mapping sonars for 3-D imaging of plankton patchiness, wire-guided profiling velocity sensors for establishing full-ocean-depth velocity profiles, shipboard HF radar (CODAR) for mapping energetic currents, and shipboard Doppler radar for mapping the surface wave spectrum. Research vessel users should have access to undersea gliders and autonomous aircraft as well as the current AUVs. In addition, the use of manned stable platforms in an observatory setting deserves further consideration. As well as providing an ideal mount for meteorological and oceanographic sensors, the platforms can provide electrical power and a "heavy lift" capability for sea floor and water column studies. Concerted community effort will be required to develop these new technologies, not all of which will be commercially viable. A strong academic technology base is necessary.
Sediment distribution and coastal processes in Cook Inlet, Alaska
NASA Technical Reports Server (NTRS)
Anderson, D. M.; Gatto, L. W.; Mckim, H. L.; Petrone, A.
1973-01-01
Regional hydrologic and oceanographic relationships in Cook Inlet, Alaska have been recognized from sequential ERTS-1 MSS imagery. Current patterns are visible in the inlet because of differential concentrations of suspended sediment. The circulation patterns within Cook Inlet are controlled primarily by the interaction between the semi-diurnal tides and the counter clockwise Alaska current. In general, heavily sediment laden water is seen to be confined to portions of the inlet north of the Forelands and west of Kalgin Island. Tongues of clear oceanic water are observed to enter the inlet through Kennedy Channel along the east shoreline in the vicinity of Cape Elizabeth. A recurring counterclockwise circulation pattern observed around Kalgin Island seems to result from the interplay of the northerly moving water along the east shore and the southerly moving, sediment laden, water along the west side of the inlet. Prominent, fresh water plumes, heavily laden with sediment are visible at the mouths of all major rivers. Relect plumes from as many as three tidal stages have been recognized.
NASA Astrophysics Data System (ADS)
Vieira, V. M. N. C. S.; Sahlée, E.; Jurus, P.; Clementi, E.; Pettersson, H.; Mateus, M.
2015-09-01
Earth-System and regional models, forecasting climate change and its impacts, simulate atmosphere-ocean gas exchanges using classical yet too simple generalizations relying on wind speed as the sole mediator while neglecting factors as sea-surface agitation, atmospheric stability, current drag with the bottom, rain and surfactants. These were proved fundamental for accurate estimates, particularly in the coastal ocean, where a significant part of the atmosphere-ocean greenhouse gas exchanges occurs. We include several of these factors in a customizable algorithm proposed for the basis of novel couplers of the atmospheric and oceanographic model components. We tested performances with measured and simulated data from the European coastal ocean, having found our algorithm to forecast greenhouse gas exchanges largely different from the forecasted by the generalization currently in use. Our algorithm allows calculus vectorization and parallel processing, improving computational speed roughly 12× in a single cpu core, an essential feature for Earth-System models applications.
TOPEX/POSEIDON joint verification plan
NASA Technical Reports Server (NTRS)
1992-01-01
TOPEX/POSEIDON is a satellite mission that will use altimetry to make precise measurements of sea level with the primary goal of studying global ocean circulation. The mission is jointly conducted by the United States' National Aeronautics and Space Administration (NASA) and the French space agency, Centre National d'Etudes Spatiales (CNES). The current plans call for a launch of the satellite in August 1992. The primary mission will last 3 years, and provisions were made to extend the mission for an additional 2 years. The mission was coordinated with a number of international oceanographic and meteorological programs, including the World Ocean Circulation Experiment and the Tropical Ocean and Global Atmosphere Program, both of which are sponsored by the World Climate Research Program. The observations of TOPEX/POSEIDON are timed to provide a global perspective for interpreting the in situ measurements collected by these programs and in turn will be combined with observations of other satellites to achieve a global, four-dimensional description of the circulation of the world's oceans. In the autumn of 1987, an international team of 38 Principal Investigators was selected to participate in the mission. These scientists have been working closely with the TOPEX/POSEIDON Project to refine the mission design and science plans. During the first 6 months after launch, a number of these investigators will join with the project to conduct a wide range of oceanographic and geophysical investigations using the TOPEX/POSEIDON data. The purpose of these investigations is to demonstrate the scientific utility of the mission to the international scientific community.
NASA Astrophysics Data System (ADS)
Wei, Guifeng; Tang, Danling; Wang, Sufen
Monitoring of spatial and temporal distribution of chlorophyll (Chl-a) concentrations in the aquatic milieu is always challenging and often interesting. However, the recent advancements in satellite digital data play a significant role in providing outstanding results for the marine environmental investigations. The present paper is aimed to review ‘remote sensing research in Chinese seas’ within the period of 24 years from 1978 to 2002. Owing to generalized distributional pattern, the Chl-a concentrations are recognized high towards northern Chinese seas than the southern. Moreover, the coastal waters, estuaries, and upwelling zones always exhibit relatively high Chl-a concentrations compared with offshore waters. On the basis of marine Chl-a estimates obtained from satellite and other field measured environmental parameters, we have further discussed on the applications of satellite remote sensing in the fields of harmful algal blooms (HABs), primary production and physical oceanographic currents of the regional seas. Concerned with studies of HABs, satellite remote sensing proved more advantageous than any other conventional methods for large-scale applications. Probably, it may be the only source of authentic information responsible for the evaluation of new research methodologies to detect HABs. At present, studies using remote sensing methods are mostly confined to observe algal bloom occurrences, hence, it is essential to coordinate the mechanism of marine ecological and oceanographic dynamic processes of HABs using satellite remote sensing data with in situ measurements of marine environmental parameters. The satellite remote sensing on marine environment and HABs is believed to have a great improvement with popular application of technology.
The Oceanographic Multipurpose Software Environment (OMUSE v1.0)
NASA Astrophysics Data System (ADS)
Pelupessy, Inti; van Werkhoven, Ben; van Elteren, Arjen; Viebahn, Jan; Candy, Adam; Portegies Zwart, Simon; Dijkstra, Henk
2017-08-01
In this paper we present the Oceanographic Multipurpose Software Environment (OMUSE). OMUSE aims to provide a homogeneous environment for existing or newly developed numerical ocean simulation codes, simplifying their use and deployment. In this way, numerical experiments that combine ocean models representing different physics or spanning different ranges of physical scales can be easily designed. Rapid development of simulation models is made possible through the creation of simple high-level scripts. The low-level core of the abstraction in OMUSE is designed to deploy these simulations efficiently on heterogeneous high-performance computing resources. Cross-verification of simulation models with different codes and numerical methods is facilitated by the unified interface that OMUSE provides. Reproducibility in numerical experiments is fostered by allowing complex numerical experiments to be expressed in portable scripts that conform to a common OMUSE interface. Here, we present the design of OMUSE as well as the modules and model components currently included, which range from a simple conceptual quasi-geostrophic solver to the global circulation model POP (Parallel Ocean Program). The uniform access to the codes' simulation state and the extensive automation of data transfer and conversion operations aids the implementation of model couplings. We discuss the types of couplings that can be implemented using OMUSE. We also present example applications that demonstrate the straightforward model initialization and the concurrent use of data analysis tools on a running model. We give examples of multiscale and multiphysics simulations by embedding a regional ocean model into a global ocean model and by coupling a surface wave propagation model with a coastal circulation model.
RIMPAC 08: Naval Oceanographic Office glider operations
NASA Astrophysics Data System (ADS)
Mahoney, Kevin L.; Grembowicz, Ken; Bricker, Bruce; Crossland, Steve; Bryant, Danielle; Torres, Marc; Giddings, Tom
2009-05-01
The Naval Oceanographic Office (NAVOCEANO) Glider Operations Center (GOC) supported its first joint-mission exercise during Rim of the Pacific (RIMPAC) 08, a multi-national naval exercise conducted during July 2008 near the Hawaiian Islands. NAVOCEANO personnel deployed four Seagliders from USNS SUMNER for Anti-submarine Warfare (ASW) operations and four Slocum gliders for Mine Warfare (MIW) operations. Each Seaglider was equipped with a Sea-Bird Electronics (SBE) 41cp CTD and Wet Labs, Inc. bb2fl ECO-puck optical sensor. The instrumentation suite on the Slocum gliders varied, but each Slocum glider had an SBE 41cp CTD combined with one of the following optical sensors: a Wet Labs, Inc. AUVb scattering sensor, a Wet Labs, Inc. bb3slo ECO-puck backscattering sensor, or a Satlantic, Inc. OCR radiometer. Using Iridium communications, the GOC had command and control of all eight gliders, with Department of Defense (DoD) personnel and DoD contractors serving as glider pilots. Raw glider data were transmitted each time a glider surfaced, and the subsequent data flow included processing, quality-control procedures, and the generation of operational and tactical products. The raw glider data were also sent to the Naval Research Laboratory at Stennis Space Center (NRLSSC) for fusion with satellite data and modeled data (currents, tides, etc.) to create optical forecasting, optical volume, and electro-optical identification (EOID) performance surface products. The glider-based products were delivered to the ASW and MIW Reach Back Cells for incorporation into METOC products and for dissemination to the Fleet. Based on the metrics presented in this paper, the inaugural joint-mission operation was a success.
Expanding OBIS beyond species occurrence data, with an extension for environmental data
NASA Astrophysics Data System (ADS)
Appeltans, W.; Provoost, P.; De Pooter, D.; Deneudt, K.; Goldstein, P.; Moncoiffe, G.; Rauch, S.; Nikolopoulou, S.; Van de Putte, A.; Vandepitte, L.; Wambiji, N.; Bailly, N.; Giorgetti, A.; Lewis, M.; Lipizer, M.; Mackay, K.; Roubicek, A.; Torres, C.; De Bruin, T.; Hernandez, F.
2016-02-01
The data collected for biological studies often include more than just biological parameters. Also observations on the habitat and additional physical and chemical measurements are collected to study the organisms in their environment, as may be details regarding the nature of the sampling or observation methods, equipment, and effort. These combined data are needed for the analysis of ecosystem functioning, ecological niche modelling, climate change, etc. However, scientists currently lack internationally agreed standards for managing and sharing these mixed datasets with their peers. If, at best, the data are not lost, the biological observations get often split from the physicochemical data and sent to different data repositories. In March 2015, the International Oceanographic Data and Information Exchange (IODE) Committee of UNESCO's Intergovernmental Oceanographic Commission has established a 2-year pilot project, involving 11 institutions from 10 countries in North-America, South-America, Europe, Africa and Australia. This project aims to develop procedures and guidelines for managing and sharing these mixed datasets, making sure that supporting measurements are curated and distributed alongside the species occurrence data. Moreover, it will investigate how these mixed datasets can flow to national, regional and global data repositories. Eventually, it will demonstrate the benefits of the approach for marine sciences, biological analysis and ecosystem modelling and will support the reproducibility of research. Here we will present a few case studies dealing with e.g. benthos and phytoplankton abundance and biomass data including sediment characteristics, water turbidity, temperature, salinity and dissolved oxygen, as well as biometric data and tracks of marine mammals holding CTD devices.
Late Quaternary transgressive large dunes on the sediment-starved Adriatic shelf
Correggiari, A.; Field, M.E.; Trincardi, F.
1996-01-01
The Adriatic epicontinental basin is a low-gradient shelf where the late-Quaternary transgressive systems tract (TST) is composed of thin parasequences of backbarrier, shoreface and offshore deposits. The facies and internal architecture of the late-Quaternary TST in the Adriatic epicontinental basin changed consistently from early transgression to late transgression reflecting: (1) fluctuations in the balance between sediment supply and accommodation increase, and (2) a progressive intensification of the oceanographic regime, driven by the transgressive widening of the basin to as much as seven times its lowstand extent. One of the consequences of this trend is that high-energy marine bedforms such as sand ridges and sand waves characterize only areas that were flooded close to the end of the late-Quaternary sea-level rise, when the wind fetch was maximum and bigger waves and stronger storm currents could form. We studied the morphology, sediment composition and sequence-stratigraphical setting of a field of asymmetric bedforms (typically 3 m high and 600 m in wavelength) in 20-24 m water depth offshore the Venice Lagoon in the sediment-starved North Adriatic shelf. The sand that forms these large dunes derived from a drowned transgressive coastal deposit reworked by marine processes. Early cementation took place over most of the dune crests limiting their activity and preventing their destruction. Both the formation and deactivation of this field of sand dunes occurred over a short time interval close to the turn-around point that separates the late-Quaternary sea-level rise and the following highstand and reflect rapid changes in the oceanographic regime of the basin.
Coastal oceanography sets the pace of rocky intertidal community dynamics.
Menge, B A; Lubchenco, J; Bracken, M E S; Chan, F; Foley, M M; Freidenburg, T L; Gaines, S D; Hudson, G; Krenz, C; Leslie, H; Menge, D N L; Russell, R; Webster, M S
2003-10-14
The structure of ecological communities reflects a tension among forces that alter populations. Marine ecologists previously emphasized control by locally operating forces (predation, competition, and disturbance), but newer studies suggest that inputs from large-scale oceanographically modulated subsidies (nutrients, particulates, and propagules) can strongly influence community structure and dynamics. On New Zealand rocky shores, the magnitude of such subsidies differs profoundly between contrasting oceanographic regimes. Community structure, and particularly the pace of community dynamics, differ dramatically between intermittent upwelling regimes compared with relatively persistent down-welling regimes. We suggest that subsidy rates are a key determinant of the intensity of species interactions, and thus of structure in marine systems, and perhaps also nonmarine communities.
NASA Astrophysics Data System (ADS)
Satyawan, I. A.
2018-03-01
The South China Sea is one of the hot-spot areas in the world. This area is claimed by China, Malaysia, Brunei, Taiwan, Vietnam and the Philippines. It also noted, the South China Sea is rich in biodiversity as well as oil and gas. On the other side, environmental degradation is still happening in the South China Sea due to the reluctance of surrounding states to conduct a preservation program and mitigating action on climate change effects. Joint Oceanographic Marine Scientific Research Expedition between Vietnam and the Philippines is a breakthrough to start collaboration actions as well as to conduct Science Diplomacy.
Development of underwater robotics
NASA Astrophysics Data System (ADS)
Nyrkov, A. P.; Zhilenkov, A. A.; Korotkov, V. V.; Sokolov, S. S.; Chernyi, S. G.
2017-01-01
In the scientific surroundings, the statements that Oceanographic researches are, in many aspects, more complex and challenging, even compared to space research are not rare. Now, in the middle of the second decade of the XXI century, there is no doubt that the study of the oceans has become an issue of global importance, covering economic, industrial, social, defense and many other activities and interests of the society in the modern world. We are seeing the necessity of expanding the boundaries of Oceanographic research, increasing the number of types and growth of quality of measurements in the water column as well as their systematization, increasing of the depths of research, which is caused by the growing necessity of sea bottom studies, etc.
Fisher-Pool, Pollyanna I; Lammers, Marc O; Gove, Jamison; Wong, Kevin B
2016-01-01
Chlorophyll is the basis for ecosystem productivity in most marine environments. We report on an ongoing effort to examine whether ambient sounds are tied to chlorophyll levels. We hypothesized that an increase in food-web available energy will be distributed across trophic levels, eventually reaching sound-producing animals and increasing acoustic levels. To test our hypothesis, we compared reef environments to explore links between soundscapes and chlorophyll a concentrations. The study sites resided in disparate oceanographic regimes that experienced substantially different oceanographic conditions. We anticipated that the results would show differing patterns of primary productivity between sites and therefore would be reflected in the soundscapes.
NASA Astrophysics Data System (ADS)
Haddock, Steven H. D.; Moline, Mark A.; Case, James F.
2010-01-01
Bioluminescence spans all oceanic dimensions and has evolved many times—from bacteria to fish—to powerfully influence behavioral and ecosystem dynamics. New methods and technology have brought great advances in understanding of the molecular basis of bioluminescence, its physiological control, and its significance in marine communities. Novel tools derived from understanding the chemistry of natural light-producing molecules have led to countless valuable applications, culminating recently in a related Nobel Prize. Marine organisms utilize bioluminescence for vital functions ranging from defense to reproduction. To understand these interactions and the distributions of luminous organisms, new instruments and platforms allow observations on individual to oceanographic scales. This review explores recent advances, including the chemical and molecular, phylogenetic and functional, community and oceanographic aspects of bioluminescence.
Numerical modelling for real-time forecasting of marine oil pollution and hazard assessment
NASA Astrophysics Data System (ADS)
De Dominicis, Michela; Pinardi, Nadia; Bruciaferri, Diego; Liubartseva, Svitlana
2015-04-01
Many factors affect the motion and transformation of oil at sea. The most relevant of these are the meteorological and marine conditions at the air-sea interface; the chemical characteristics of the oil; its initial volume and release rates; and, finally, the marine currents at different space scales and timescales. All these factors are interrelated and must be considered together to arrive at an accurate numerical representation of oil evolution and movement in seawater. The oil spill model code MEDSLIK-II is a freely available community model. By using a Lagrangian approach, MEDSLIK-II predicts the transport and diffusion of a surface oil slick governed by water currents, winds and waves, which are provided by operational oceanographic and meteorological models. In addition, the model simulates the oil transformations at sea: evaporation, spreading, dispersion, adhesion to coast and emulsification. The model results have been validated using surface drifters and oil slicks observed by satellite in different regions of the Mediterranean Sea. It is found that the forecast skill largely depends on the accuracy of the Eulerian ocean currents: the operational models give useful estimates of currents, but high-frequency (hourly) and high spatial resolution is required, and the Stokes drift velocity has to be often added, especially in coastal areas. MEDSLIK-II is today available at the Mediterranean scale allowing a possible support to oil spill emergencies. The model has been used during the Costa Concordia disaster, the partial sinking of the Italian cruise ship Costa Concordia when it ran aground at Isola del Giglio, Italy. MEDSLIK-II system was run to produce forecast scenarios of the possible oil spill from the Costa Concordia, to be delivered to the competent authorities, by using the currents provided every day by the operational ocean models available in the area. Moreover, MEDSLIK-II is part of the Mediterranean Decision Support System for Marine Safety (MEDESS4MS) system, which is an integrated operational multi-model oil spill prediction service, that can be used by different users to run simulations of oil spills at sea, even in real time, through a web portal. The MEDESS4MS system gathers different oil spill modelling systems and data from meteorological and ocean forecasting systems, as well as operational information on response equipment, together with environmental and socio-economic sensitivity maps. MEDSLIK-II has been also used to provide an assessment of hazard stemming from operational oil ship discharges in the Southern Adriatic and Northern Ionian (SANI) Seas. Operational pollution resulting from ships consists of a movable hazard with a magnitude that changes dynamically as a result of a number of external parameters varying in space and time (temperature, wind, sea currents). Simulations of oil releases have been performed with realistic oceanographic currents and the results show that the oil pollution hazard distribution has an inherent spatial and temporal variability related to the specific flow field variability.
Mendez, M; Subramaniam, A; Collins, T; Minton, G; Baldwin, R; Berggren, P; Särnblad, A; Amir, O A; Peddemors, V M; Karczmarski, L; Guissamulo, A; Rosenbaum, H C
2011-10-01
Genetic analyses of population structure can be placed in explicit environmental contexts if appropriate environmental data are available. Here, we use high-coverage and high-resolution oceanographic and genetic sequence data to assess population structure patterns and their potential environmental influences for humpback dolphins in the Western Indian Ocean. We analyzed mitochondrial DNA data from 94 dolphins from the coasts of South Africa, Mozambique, Tanzania and Oman, employing frequency-based and maximum-likelihood algorithms to assess population structure and migration patterns. The genetic data were combined with 13 years of remote sensing oceanographic data of variables known to influence cetacean dispersal and population structure. Our analyses show strong and highly significant genetic structure between all putative populations, except for those in South Africa and Mozambique. Interestingly, the oceanographic data display marked environmental heterogeneity between all sampling areas and a degree of overlap between South Africa and Mozambique. Our combined analyses therefore suggest the occurrence of genetically isolated populations of humpback dolphins in areas that are environmentally distinct. This study highlights the utility of molecular tools in combination with high-resolution and high-coverage environmental data to address questions not only pertaining to genetic population structure, but also to relevant ecological processes in marine species.
A planktonic diatom displays genetic structure over small spatial scales.
Sefbom, Josefin; Kremp, Anke; Rengefors, Karin; Jonsson, Per R; Sjöqvist, Conny; Godhe, Anna
2018-04-03
Marine planktonic microalgae have potentially global dispersal, yet reduced gene flow has been confirmed repeatedly for several species. Over larger distances (>200 km) geographic isolation and restricted oceanographic connectivity have been recognized as instrumental in driving population divergence. Here we investigated whether similar patterns, that is, structured populations governed by geographic isolation and/or oceanographic connectivity, can be observed at smaller (6-152 km) geographic scales. To test this we established 425 clonal cultures of the planktonic diatom Skeletonema marinoi collected from 11 locations in the Archipelago Sea (northern Baltic Sea). The region is characterized by a complex topography, entailing several mixing regions of which four were included in the sampling area. Using eight microsatellite markers and conventional F-statistics, significant genetic differentiation was observed between several sites. Moreover, Bayesian cluster analysis revealed the co-occurrence of two genetic groups spread throughout the area. However, geographic isolation and oceanographic connectivity could not explain the genetic patterns observed. Our data reveal hierarchical genetic structuring whereby despite high dispersal potential, significantly diverged populations have developed over small spatial scales. Our results suggest that biological characteristics and historical events may be more important in generating barriers to gene flow than physical barriers at small spatial scales. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Mendez, M; Subramaniam, A; Collins, T; Minton, G; Baldwin, R; Berggren, P; Särnblad, A; Amir, O A; Peddemors, V M; Karczmarski, L; Guissamulo, A; Rosenbaum, H C
2011-01-01
Genetic analyses of population structure can be placed in explicit environmental contexts if appropriate environmental data are available. Here, we use high-coverage and high-resolution oceanographic and genetic sequence data to assess population structure patterns and their potential environmental influences for humpback dolphins in the Western Indian Ocean. We analyzed mitochondrial DNA data from 94 dolphins from the coasts of South Africa, Mozambique, Tanzania and Oman, employing frequency-based and maximum-likelihood algorithms to assess population structure and migration patterns. The genetic data were combined with 13 years of remote sensing oceanographic data of variables known to influence cetacean dispersal and population structure. Our analyses show strong and highly significant genetic structure between all putative populations, except for those in South Africa and Mozambique. Interestingly, the oceanographic data display marked environmental heterogeneity between all sampling areas and a degree of overlap between South Africa and Mozambique. Our combined analyses therefore suggest the occurrence of genetically isolated populations of humpback dolphins in areas that are environmentally distinct. This study highlights the utility of molecular tools in combination with high-resolution and high-coverage environmental data to address questions not only pertaining to genetic population structure, but also to relevant ecological processes in marine species. PMID:21427750
NASA Astrophysics Data System (ADS)
Richman, Barbara T.
The new Board on Ocean Science and Policy (BOSP) (Eos, June 7, 1983, p. 402) met for the first time on May 4. John B. Slaughter, former director of the National Science Foundation and now chancellor of the University of Maryland in College Park, is the board's chairman. Other board members are D. James Baker, Jr. (University of Washington, Seattle); Kirk Bryan (Geophysical Fluid Dynamics Laboratory, Princeton University); John P. Craven (University of Hawaii); Charles L. Drake (Dartmouth College); Paul M. Fye (Woods Hole Oceanographic Institution); Edward D. Goldberg (Scripps Institution of Oceanography); G. Ross Heath (Oregon State University); Judith T. Kildow (Massachusetts Institute of Technology); John A. Knauss (University of Rhode Island); James J. McCarthy (Museum of Comparative Zoology, Harvard University); H. William Menard (Scripps Institution of Oceanography); C. Barry Raleigh (Lamont-Doherty Geological Observatory); Roger Revelle (University of California, San Diego); David A. Ross (Woods Hole Oceanographic Institution); Brian J. Rothschild (University of Maryland); William M. Sackett (University of South Florida); John H. Steele (Woods Hole Oceanographic Institution); and Carl Wunsch (MIT). Wallace Broecker (Lamont-Doherty Geological Observatory), an original board member, resigned after the first meeting. Broecker told Eos that combining the science and policy boards resulted in a new board whose mission is too broad. A new board member will be appointed in Broecker's place
Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey
Xu, Guobao; Shen, Weiming; Wang, Xianbin
2014-01-01
With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942
Advances in the Application of Surface Drifters.
Lumpkin, Rick; Özgökmen, Tamay; Centurioni, Luca
2017-01-03
Surface drifting buoys, or drifters, are used in oceanographic and climate research, oil spill tracking, weather forecasting, search and rescue operations, calibration and validation of velocities from high-frequency radar and from altimeters, iceberg tracking, and support of offshore drilling operations. In this review, we present a brief history of drifters, from the message in a bottle to the latest satellite-tracked, multisensor drifters. We discuss the different types of drifters currently used for research and operations as well as drifter designs in development. We conclude with a discussion of the various properties that can be observed with drifters, with heavy emphasis on a critical process that cannot adequately be observed by any other instrument: dispersion in the upper ocean, driven by turbulence at scales from waves through the submesoscale to the large-scale geostrophic eddies.
Charney's Influence on Modern Oceanography
NASA Astrophysics Data System (ADS)
Cane, M. A.
2017-12-01
In this talk I will review some of Jule Charney's impacts on current oceanographic research. He was of course a major seminal figure in geophysical fluid dynamics, an approach to understanding the atmosphere and oceans that has been thoroughly absorbed in contemporary thinking. In oceanography, his publications make vorticity dynamics the centerpiece of his analysis. Here I pursue two other aspects of his work. The first is to note that his 1955 paper "The Gulf Stream as an inertial boundary layer" appears to be the earliest numerical model in oceanography. The second is that his work on the equatorial undercurrent leads to a simplification of equatorial ocean structure that was exploited by Zebiak and Cane in their model for ENSO, and thus structures later views of how equatorial ocean dynamics influence sea surface temperature.
Exploring the erodibility of sediments and harmful algal blooms in the Gulf of Maine
Butman, Bradford; Dickhudt, Patrick J.; Keafer, Bruce A.
2012-01-01
Investigators at the U.S. Geological Survey (USGS) are cooperating with scientists at Woods Hole Oceanographic Institution (WHOI) to investigate harmful algal blooms along the New England coast in the Gulf of Maine. These blooms are caused by cysts of the dinoflagellate Alexandrium fundyense that overwinter in the bottom sediments and germinate in spring. Depending on conditions such as temperature, light, nutrient levels, and currents, these single-celled organismscan create a bloom along the coast, called ‘red tides.’Shellfish that have ingested these cells in sufficient concentration can become toxic to humans and require that the shellfisheries be closed. After the spring bloom, the organisms form cysts that sink to the sea floor and are sequestered in the bottom sediments over the winter.
USGS-WHOI-DPRI Coulomb Stress-Transfer Model for the January 12, 2010, MW=7.0 Haiti Earthquake
Lin, Jian; Stein, Ross S.; Sevilgen, Volkan; Toda, Shinji
2010-01-01
Using calculated stress changes to faults surrounding the January 12, 2010, rupture on the Enriquillo Fault, and the current (January 12 to 26, 2010) aftershock productivity, scientists from the U.S. Geological Survey (USGS), Woods Hole Oceanographic Institution (WHOI), and Disaster Prevention Research Institute, Kyoto University (DPRI) have made rough estimates of the chance of a magnitude (Mw)=7 earthquake occurring during January 27 to February 22, 2010, in Haiti. The probability of such a quake on the Port-au-Prince section of the Enriquillo Fault is about 2 percent, and the probability for the section to the west of the January 12, 2010, rupture is about 1 percent. The stress changes on the Septentrional Fault in northern Haiti are much smaller, although positive.
Collaborative Oceanographic Research Opportunities with Schmidt Ocean Institute
NASA Astrophysics Data System (ADS)
Zykov, V.
2014-12-01
Schmidt Ocean Institute (http://www.schmidtocean.org/) was founded by Dr. Eric Schmidt and Wendy Schmidt in 2009 to support frontier oceanographic research and exploration to expand the understanding of the world's oceans through technological advancement, intelligent, data-rich observation and analysis, and open sharing of information. Schmidt Ocean Institute operates a state-of-the-art globally capable research vessel Falkor (http://www.schmidtocean.org/story/show/47). After two years of scientific operations in the Atlantic Ocean, Gulf of Mexico, Caribbean, Eastern and Central Pacific, R/V Falkor is now preparing to support research in the Western Pacific and Eastern Indian Oceans in 2015 and 2016. As part of the long term research program development for Schmidt Ocean Institute, we aim to identify initiatives and projects that demonstrate strong alignment with our strategic interests. We focus on scientific opportunities that highlight effective use of innovative technologies to better understand the oceans, such as, for example, research enabled with remotely operated and autonomous vehicles, acoustics, in-situ sensing, telepresence, etc. Our technology-first approach to ocean science gave rise to infrastructure development initiatives, such as the development of a new full ocean depth Hybrid Remotely Operated Vehicle, new 6000m scientific Autonomous Underwater Vehicle, live HD video streaming from the ship to YouTube, shipboard high performance supercomputing, etc. We also support projects focusing on oceanographic technology research and development onboard R/V Falkor. We provide our collaborators with access to all of R/V Falkor's facilities and instrumentation in exchange for a commitment to make the resulting scientific data openly available to the international oceanographic community. This presentation aims to expand awareness about the interests and capabilities of Schmidt Ocean Institute and R/V Falkor among our scientific audiences and further develop the network of our research collaborations. We would also like to inform interested scientists and technology developers about our program development and proposal selection processes and explain how they can participate in future collaborations with Schmidt Ocean Institute.
NASA Astrophysics Data System (ADS)
Kitazawa, Y.; Ichikawa, K.; Akiyama, H.; Ebinuma, T.; Isoguchi, O.; Kimura, N.; Konda, M.; Kouguchi, N.; Tamura, H.; Tomita, H.; Yoshikawa, Y.; Waseda, T.
2016-12-01
Global Navigation Satellite Systems (GNSS), such as GPS is a system of satellites that provide autonomous geo-spatial positioning with global coverage. It allows small electronic receivers to determine their location to high precision using radio signals transmitted from satellites, GNSS reflectometry (GNSS-R) involves making measurements from the reflections from the Earth of navigation signals from GNSS satellites. Reflected signals from sea surface are considered that those are useful to observe sea state and sea surface height. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height). It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 150 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results, obtained by the multi-sensor platform at observation towers, suggest actual footprint sizes and identification of swell. Preparation status of a ground station which will be supplied to receive CYGNSS data at Japan, is also reported. Compatibility tests to CYGNSS data and refurbishment of the ground station were completed.
The Joy of Playing with Oceanographic Data
NASA Astrophysics Data System (ADS)
Smith, A. T.; Xing, Z.; Armstrong, E. M.; Thompson, C. K.; Huang, T.
2013-12-01
The web is no longer just an after thought. It is no longer just a presentation layer filled with HTML, CSS, JavaScript, Frameworks, 3D, and more. It has become the medium of our communication. It is the database of all databases. It is the computing platform of all platforms. It has transformed the way we do science. Web service is the de facto method for communication between machines over the web. Representational State Transfer (REST) has standardized the way we architect services and their interfaces. In the Earth Science domain, we are familiar with tools and services such as Open-Source Project for Network Data Access Protocol (OPeNDAP), Thematic Realtime Environmental Distributed Data Services (THREDDS), and Live Access Server (LAS). We are also familiar with various data formats such as NetCDF3/4, HDF4/5, GRIB, TIFF, etc. One of the challenges for the Earth Science community is accessing information within these data. There are community-accepted readers that our users can download and install. However, the Application Programming Interface (API) between these readers is not standardized, which leads to non-portable applications. Webification (w10n) is an emerging technology, developed at the Jet Propulsion Laboratory, which exploits the hierarchical nature of a science data artifact to assign a URL to each element within the artifact. (e.g. a granule file). By embracing standards such as JSON, XML, and HTML5 and predictable URL, w10n provides a simple interface that enables tool-builders and researchers to develop portable tools/applications to interact with artifacts of various formats. The NASA Physical Oceanographic Distributed Active Archive Center (PO.DAAC) is the designated data center for observational products relevant to the physical state of the ocean. Over the past year PO.DAAC has been evaluating w10n technology by webifying its archive holdings to provide simplified access to oceanographic science artifacts and as a service to enable future tools and services development. In this talk, we will focus on a w10n-based system called Distributed Oceanographic Webification Service (DOWS) being developed at PO.DAAC to provide a newer and simpler method for working with observational data artifacts. As a continued effort at PO.DAAC to provide better tools and services to visualize our data, the talk will discuss the latest in web-based data visualization tools/frameworks (such as d3.js, Three.js, Leaflet.js, and more) and techniques for working with webified oceanographic science data in both a 2D and 3D web approach.
Relationships between tuna catch and variable frequency oceanographic conditions
NASA Astrophysics Data System (ADS)
Ormaza-González, Franklin Isaac; Mora-Cervetto, Alejandra; María Bermúdez-Martínez, Raquel
2016-08-01
Skipjack (Katsuwunus pelamis), yellow fin (Thunnus albacares) and albacore (Thunnus alulunga) tunas landed in the Eastern Pacific Ocean (EPO) countries and Ecuador were correlated to the Indexes Oceanic El Niño (ONI) and Multivariate Enso Index (MEI). The temporal series 1983-2012, and 1977-1999 (warm Pacific Decadal Oscillation, PDO), and 2000-2012 (cold PDO) were analyzed. Linear correlation showed that at least 11 % of the total landings were associated with the MEI, with a slightly negative gradient from cold to warm conditions. When non-linear regression (n = 6), the R2 was higher up to 0.304 (MEI, r = 0.551). The correlation shows high spread from -0.5 to +0.5 for both MEI/ONI; the highest landings occurred at 0.34-0.45; both indexes suggested that at extreme values < -1.0 and > 1.1 total landings tend to decrease. Landings were associated up to 21.9 % (MEI) in 2000-2012, 1983-1999 rendered lower R2 (< 0.09); i.e., during cold PDO periods there was a higher association between landings and oceanographic conditions. For the non-linear regression (n = 6) a R2 of 0.374 (MEI) and 0.408 (ONI) were registered, for the 2000-2012, a higher R2 was observed in 1983-1999, 0.443 and 0.711 for MEI and ONI respectively, suggesting that is better to analyze split series (1983-1999, 2000-2012) than as a whole (1983-2012), due to noise produced by the transition from hot to cold PDOs. The highest landings were in the range -0.2 to 0.5 for MEI/ONI. The linear regression of skipjack landings in Ecuador gave an R2 of 0.140 (MEI) and 0.066 (ONI) and the non-linear were 0.440 and 0.183 respectively. Total landings in the EPO associated to oceanographic events of high and low frequencies could be used somehow as predictors of the high El Niño o La Niña. There is a clear evidence that tuna fish biomass are at higher levels when the PDO is on cold phase (2000-2030) and vice versa on warm phase (1980-1999). The analysis of the skipjack catch per unit effort (CPUE) on floating aggregating devices (FADs) suggests higher CPUE on FADs (around 20 mt set-1) when oceanographic indexes ONI/MEI are below -0.5. Findings of this work suggest that fishing and management of commercial fish must be analyzed under the light of oceanographic conditions.
A Framework for Integrating Oceanographic Data Repositories
NASA Astrophysics Data System (ADS)
Rozell, E.; Maffei, A. R.; Beaulieu, S. E.; Fox, P. A.
2010-12-01
Oceanographic research covers a broad range of science domains and requires a tremendous amount of cross-disciplinary collaboration. Advances in cyberinfrastructure are making it easier to share data across disciplines through the use of web services and community vocabularies. Best practices in the design of web services and vocabularies to support interoperability amongst science data repositories are only starting to emerge. Strategic design decisions in these areas are crucial to the creation of end-user data and application integration tools. We present S2S, a novel framework for deploying customizable user interfaces to support the search and analysis of data from multiple repositories. Our research methods follow the Semantic Web methodology and technology development process developed by Fox et al. This methodology stresses the importance of close scientist-technologist interactions when developing scientific use cases, keeping the project well scoped and ensuring the result meets a real scientific need. The S2S framework motivates the development of standardized web services with well-described parameters, as well as the integration of existing web services and applications in the search and analysis of data. S2S also encourages the use and development of community vocabularies and ontologies to support federated search and reduce the amount of domain expertise required in the data discovery process. S2S utilizes the Web Ontology Language (OWL) to describe the components of the framework, including web service parameters, and OpenSearch as a standard description for web services, particularly search services for oceanographic data repositories. We have created search services for an oceanographic metadata database, a large set of quality-controlled ocean profile measurements, and a biogeographic search service. S2S provides an application programming interface (API) that can be used to generate custom user interfaces, supporting data and application integration across these repositories and other web resources. Although initially targeted towards a general oceanographic audience, the S2S framework shows promise in many science domains, inspired in part by the broad disciplinary coverage of oceanography. This presentation will cover the challenges addressed by the S2S framework, the research methods used in its development, and the resulting architecture for the system. It will demonstrate how S2S is remarkably extensible, and can be generalized to many science domains. Given these characteristics, the framework can simplify the process of data discovery and analysis for the end user, and can help to shift the responsibility of search interface development away from data managers.
Investigation of the environmental change pattern of Japan
NASA Technical Reports Server (NTRS)
Maruyasu, T. (Principal Investigator)
1973-01-01
The author has identified the following significant results. ERTS-1 imagery clearly identifies the relationships between the status of erosion, effluent patterns affected by the coastal current, and the cultural construction activities. Simple photographic techniques can be used for detecting water mass distribution separately from cloud cover and also noise caused by reflected sunlight from wave surfaces. Polluted water does not diffuse continuously into the oceanic water, but forms masses in the water in the Kuroshio area. The polluted or turbid water in the area just north of the Tomogashima Channel, the south outlet of the Osaka Bay, shows that the northward tidal current runs in a clockwise eddy at the tidal period when the imagery was taken. Such an eddy-like pattern of tidal current had never been revealed by conventional oceanographic data. A front between an oceanic water mass and a polluted water mass runs in a NW-SE direction in the central part of the Osaka Bay. The patterns of turbid water discharged from the Kii River and Yoshino River show a northward tidal current in the North Kii Straits. The pattern of lighter turbid or polluted water located in the northwest region of the North Kii straits suggests the existence of a clockwise eddy in the straits.
Mendilaharsu, Milagros L.; dei Marcovaldi, Maria A. G.; Sacco, Alexander E.; Lopez, Gustave; Pires, Thais; Swimmer, Yonat
2017-01-01
In the South Atlantic Ocean, few data exist regarding the dispersal of young oceanic sea turtles. We characterized the movements of laboratory-reared yearling loggerhead turtles from Brazilian rookeries using novel telemetry techniques, testing for differences in dispersal during different periods of the sea turtle hatching season that correspond to seasonal changes in ocean currents. Oceanographic drifters deployed alongside satellite-tagged turtles allowed us to explore the mechanisms of dispersal (passive drift or active swimming). Early in the hatching season turtles transited south with strong southward currents. Late in the hatching season, when currents flowed in the opposite direction, turtles uniformly moved northwards across the Equator. However, the movement of individuals differed from what was predicted by surface currents alone. Swimming velocity inferred from track data and an ocean circulation model strongly suggest that turtles' swimming plays a role in maintaining their position within frontal zones seaward of the continental shelf. The long nesting season of adults and behaviour of post-hatchlings exposes young turtles to seasonally varying ocean conditions that lead some individuals further into the South Atlantic and others into the Northern Hemisphere. Such migratory route diversity may ultimately buffer the population against environmental changes or anthropologic threats, fostering population resiliency. PMID:29212722
Ocean array alters view of Atlantic conveyor
NASA Astrophysics Data System (ADS)
Kornei, Katherine
2018-02-01
Oceanographers have put a stethoscope on the coursing circulatory system of the Atlantic Ocean, and they have found a skittish pulse that's surprisingly strong in the waters east of Greenland—discoveries that should improve climate models. The powerful currents known as the Atlantic meridional overturning circulation (AMOC) are an engine in Earth's climate. The AMOC's shallower limbs—which include the Gulf Stream—move warm water from the tropics northward, warming Western Europe. In the north, the waters cool and sink, forming deeper limbs that transport the cold water back south—and sequester anthropogenic carbon in the process. Last week, at the American Geophysical Union's Ocean Sciences meeting, scientists presented the first data from an array of instruments moored in the subpolar North Atlantic, a $35 million, seven-nation project known as the Overturning in the Subpolar North Atlantic Program (OSNAP). Since 2004, researchers have gathered data from another array, at 26°N, stretching from Florida to Africa. But OSNAP is the first to monitor the circulation farther north, where a critical aspect of the overturning occurs. The observations reveal unexpected eddies and strong variability in the AMOC currents. They also show that the currents east of Greenland contribute the most to the total AMOC flow. Climate models, on the other hand, have emphasized the currents west of Greenland in the Labrador Sea.
NASA Astrophysics Data System (ADS)
Mayerle, R.; Al-Subhi, A.; Fernández Jaramillo, J.; Salama, A.; Bruss, G.; Zubier, K.; Runte, K.; Turki, A.; Hesse, K.; Jastania, H.; Ladwig, N.; Mudarris, M.
2016-04-01
This paper presents results of the development and application of a web-based information system, Jeddah CIS, for assisting decision makers in the management of Jeddah coastal waters, in Saudi Arabia. The system will support coastal planning, management of navigation and tackle pollution due to accidents. The system was developed primarily to nowcast in quasi-real time and to deliver short-term forecasts of water levels, current velocities and waves with high spatial and temporal resolution for the area near Jeddah. Therefor it will hasten response when adverse weather conditions prevail. The Jeddah-CIS integrates sensors transmitting in real time, meteorological, oceanographic and water quality parameters and operational models for flow and waves. It also provides interactive tools using advanced visualization techniques to facilitate dissemination of information. The system relies on open source software and has been designed to facilitate the integration of additional components for enhanced information processing, data evaluation and generation of higher water level, current velocity and wave for the general public. Jeddah-CIS has been operational since 2013. Extensions of the system to speed operations and improving the accuracy of the predictions to the public are currently underway.
NASA Astrophysics Data System (ADS)
Alves, Tiago M.; Kokinou, Eleni; Zodiatis, George; Radhakrishnan, Hari; Panagiotakis, Costas; Lardner, Robin
2016-11-01
We present new mathematical and geological models to assist civil protection authorities in the mitigation of potential oil spill accidents in the Eastern Mediterranean Sea. Oil spill simulations for 19 existing offshore wells were carried out based on novel and high resolution bathymetric, meteorological, oceanographic, and geomorphological data. The simulations show a trend for east and northeast movement of oil spills into the Levantine Basin, affecting the coastal areas of Israel, Lebanon and Syria. Oil slicks will reach the coast in 1 to 20 days, driven by the action of the winds, currents and waves. By applying a qualitative analysis, seabed morphology is for the first time related to the direction of the oil slick expansion, as it is able to alter the movement of sea currents. Specifically, the direction of the major axis of the oil spills, in most of the cases examined, is oriented according to the prevailing azimuth of bathymetric features. This work suggests that oil spills in the Eastern Mediterranean Sea should be mitigated in the very few hours after their onset, and before wind and currents disperse them. We explain that protocols should be prioritized between neighboring countries to mitigate any oil spills.
Alves, Tiago M; Kokinou, Eleni; Zodiatis, George; Radhakrishnan, Hari; Panagiotakis, Costas; Lardner, Robin
2016-11-10
We present new mathematical and geological models to assist civil protection authorities in the mitigation of potential oil spill accidents in the Eastern Mediterranean Sea. Oil spill simulations for 19 existing offshore wells were carried out based on novel and high resolution bathymetric, meteorological, oceanographic, and geomorphological data. The simulations show a trend for east and northeast movement of oil spills into the Levantine Basin, affecting the coastal areas of Israel, Lebanon and Syria. Oil slicks will reach the coast in 1 to 20 days, driven by the action of the winds, currents and waves. By applying a qualitative analysis, seabed morphology is for the first time related to the direction of the oil slick expansion, as it is able to alter the movement of sea currents. Specifically, the direction of the major axis of the oil spills, in most of the cases examined, is oriented according to the prevailing azimuth of bathymetric features. This work suggests that oil spills in the Eastern Mediterranean Sea should be mitigated in the very few hours after their onset, and before wind and currents disperse them. We explain that protocols should be prioritized between neighboring countries to mitigate any oil spills.
NASA Astrophysics Data System (ADS)
Lykiardopoulos, A.; Iona, A.; Lakes, V.; Batis, A.; Balopoulos, E.
2009-04-01
The development of new technologies for the aim of enhancing Web Applications with Dynamically data access was the starting point for Geospatial Web Applications to developed at the same time as well. By the means of these technologies the Web Applications embed the capability of presenting Geographical representations of the Geo Information. The induction in nowadays, of the state of the art technologies known as Web Services, enforce the Web Applications to have interoperability among them i.e. to be able to process requests from each other via a network. In particular throughout the Oceanographic Community, modern Geographical Information systems based on Geospatial Web Services are now developed or will be developed shortly in the near future, with capabilities of managing the information itself fully through Web Based Geographical Interfaces. The exploitation of HNODC Data Base, through a Web Based Application enhanced with Web Services by the use of open source tolls may be consider as an ideal case of such implementation. Hellenic National Oceanographic Data Center (HNODC) as a National Public Oceanographic Data provider and at the same time a member of the International Net of Oceanographic Data Centers( IOC/IODE), owns a very big volume of Data and Relevant information about the Marine Ecosystem. For the efficient management and exploitation of these Data, a relational Data Base has been constructed with a storage of over 300.000 station data concerning, physical, chemical and biological Oceanographic information. The development of a modern Web Application for the End User worldwide to be able to explore and navigate throughout HNODC data via the use of an interface with the capability of presenting Geographical representations of the Geo Information, is today a fact. The application is constituted with State of the art software components and tools such as: • Geospatial and no Spatial Web Services mechanisms • Geospatial open source tools for the creation of Dynamic Geographical Representations. • Communication protocols (messaging mechanisms) in all Layers such as XML and GML together with SOAP protocol via Apache/Axis. At the same time the application may interact with any other SOA application either in sending or receiving Geospatial Data through Geographical Layers, since it inherits the big advantage of interoperability between Web Services systems. Roughly the Architecture can denoted as follows: • At the back End Open source PostgreSQL DBMS stands as the data storage mechanism with more than one Data Base Schemas cause of the separation of the Geospatial Data and the non Geospatial Data. • UMN Map Server and Geoserver are the mechanisms for: Represent Geospatial Data via Web Map Service (WMS) Querying and Navigating in Geospatial and Meta Data Information via Web Feature Service (WFS) oAnd in the near future Transacting and processing new or existing Geospatial Data via Web Processing Service (WPS) • Map Bender, a geospatial portal site management software for OGC and OWS architectures acts as the integration module between the Geospatial Mechanisms. Mapbender comes with an embedded data model capable to manage interfaces for displaying, navigating and querying OGC compliant web map and feature services (WMS and transactional WFS). • Apache and Tomcat stand again as the Web Service middle Layers • Apache Axis with it's embedded implementation of the SOAP protocol ("Simple Object Access Protocol") acts as the No spatial data Mechanism of Web Services. These modules of the platform are still under development but their implementation will be fulfilled in the near future. • And a new Web user Interface for the end user based on enhanced and customized version of a MapBender GUI, a powerful Web Services client. For HNODC the interoperability of Web Services is the big advantage of the developed platform since it is capable to act in the future as provider and consumer of Web Services in both ways: • Either as data products provider for external SOA platforms. • Or as consumer of data products from external SOA platforms for new applications to be developed or for existing applications to be enhanced. A great paradigm of Data Managenet integration and dissemination via the use of such technologies is the European's Union Research Project Seadatanet, with the main objective to develop a standardized distributed system for managing and disseminating the large and diverse data sets and to enhance the currently existing infrastructures with Web Services Further more and when the technology of Web Processing Service (WPS), will be mature enough and applicable for development, the derived data products will be able to have any kind of GIS functionality for consumers across the network. From this point of view HNODC, joins the global scientific community by providing and consuming application Independent data products.
ERIC Educational Resources Information Center
Abel, Robert B.
1983-01-01
Discusses career opportunities in oceanography for chemists. These include opportunities related to food, physical oceanography, mining, drugs, and other areas. Educational background needed and degree program are considered. (JN)
Properties (CTD/profile data) Trawl Survey Data (including oceanographic profiles) Shiptrack Surface Properties (hull-mounted sensor data) Temperature & Salinity Anomalies (by region) Drifter Tracks eMOLT
Suttles, Steven E.; Ganju, Neil K.; Brosnahan, Sandra M.; Montgomery, Ellyn T.; Dickhudt, Patrick J.; Beudin, Alexis; Nowacki, Daniel J.; Martini, Marinna A.
2017-05-25
U.S. Geological Survey scientists and technical support staff measured oceanographic, waterquality, seabed-elevation-change, and meteorological parameters in Chincoteague Bay, Maryland and Virginia, during the period of August 13, 2014, to July 14, 2015, as part of the Estuarine Physical Response to Storms project (GS2–2D) supported by the Department of the Interior Hurricane Sandy recovery program. These measurements provide time series data that quantify the response and can be used to better understand the resilience of this back-barrier estuarine system to storms. The Assateague Island National Seashore (National Park Service) and the Chincoteague National Wildlife Refuge (U.S. Fish and Wildlife Service) are on the east side of Chincoteague Bay.
User's Manual for the Naval Interactive Data Analysis System-Climatologies (NIDAS-C), Version 2.0
NASA Technical Reports Server (NTRS)
Abbott, Clifton
1996-01-01
This technical note provides the user's manual for the NIDAS-C system developed for the naval oceanographic office. NIDAS-C operates using numerous oceanographic data categories stored in an installed version of the Naval Environmental Operational Nowcast System (NEONS), a relational database management system (rdbms) which employs the ORACLE proprietary rdbms engine. Data management, configuration, and control functions for the supporting rdbms are performed externally. NIDAS-C stores and retrieves data to/from the rdbms but exercises no direct internal control over the rdbms or its configuration. Data is also ingested into the rdbms, for use by NIDAS-C, by external data acquisition processes. The data categories employed by NIDAS-C are as follows: Bathymetry - ocean depth at
LANDSAT menhaden and thread herring resources investigation. [Gulf of Mexico
NASA Technical Reports Server (NTRS)
Kemmerer, A. J. (Principal Investigator); Brucks, J. T.; Butler, J. A.; Faller, K. H.; Holley, H. J.; Leming, T. D.; Savastano, K. J.; Vanselous, T. M.
1977-01-01
The author has identified the following significant results. The relationship between the distribution of menhaden and selected oceanographic parameters (water color, turbidity, and possibly chlorophyll concentrations) was established. Similar relationships for thread herring were not established nor were relationships relating to the abundance of either species. Use of aircraft and LANDSAT remote sensing instruments to measure or infer a set of basic oceanographic parameters was evaluated. Parameters which could be accurately inferred included surface water temperature, salinity, and color. Water turbidity (Secchi disk) was evaluated as marginally inferrable from the LANDSAT MSS data and chlorophyll-a concentrations as less than marginal. These evaluations considered the parameters only as experienced in the two test areas using available sensors and statistical techniques.
REGRESSION ANALYSIS OF SEA-SURFACE-TEMPERATURE PATTERNS FOR THE NORTH PACIFIC OCEAN.
SEA WATER, *SURFACE TEMPERATURE, *OCEANOGRAPHIC DATA, PACIFIC OCEAN, REGRESSION ANALYSIS , STATISTICAL ANALYSIS, UNDERWATER EQUIPMENT, DETECTION, UNDERWATER COMMUNICATIONS, DISTRIBUTION, THERMAL PROPERTIES, COMPUTERS.
ESA BRAT (Broadview Radar Altimetry Toolbox) and GUT (GOCE User Toolbox) toolboxes
NASA Astrophysics Data System (ADS)
Benveniste, J.; Ambrozio, A.; Restano, M.
2016-12-01
The Broadview Radar Altimetry Toolbox (BRAT) is a collection of tools designed to facilitate the processing of radar altimetry data from previous and current altimetry missions, including the upcoming Sentinel-3A L1 and L2 products. A tutorial is included providing plenty of use cases. BRAT's future release (4.0.0) is planned for September 2016. Based on the community feedback, the frontend has been further improved and simplified whereas the capability to use BRAT in conjunction with MATLAB/IDL or C/C++/Python/Fortran, allowing users to obtain desired data bypassing the data-formatting hassle, remains unchanged. Several kinds of computations can be done within BRAT involving the combination of data fields, that can be saved for future uses, either by using embedded formulas including those from oceanographic altimetry, or by implementing ad-hoc Python modules created by users to meet their needs. BRAT can also be used to quickly visualise data, or to translate data into other formats, e.g. from NetCDF to raster images. The GOCE User Toolbox (GUT) is a compilation of tools for the use and the analysis of GOCE gravity field models. It facilitates using, viewing and post-processing GOCE L2 data and allows gravity field data, in conjunction and consistently with any other auxiliary data set, to be pre-processed by beginners in gravity field processing, for oceanographic and hydrologic as well as for solid earth applications at both regional and global scales. Hence, GUT facilitates the extensive use of data acquired during GRACE and GOCE missions. In the current 3.0 version, GUT has been outfitted with a graphical user interface allowing users to visually program data processing workflows. Further enhancements aiming at facilitating the use of gradients, the anisotropic diffusive filtering, and the computation of Bouguer and isostatic gravity anomalies have been introduced. Packaged with GUT is also GUT's VCM (Variance-Covariance Matrix) tool for analysing GOCE's variance-covariance matrices. BRAT and GUT toolboxes can be freely downloaded, along with ancillary material, at https://earth.esa.int/brat and https://earth.esa.int/gut.
The BRAT and GUT Couple: Broadview Radar Altimetry and GOCE User Toolboxes
NASA Astrophysics Data System (ADS)
Benveniste, J.; Restano, M.; Ambrózio, A.
2017-12-01
The Broadview Radar Altimetry Toolbox (BRAT) is a collection of tools designed to facilitate the processing of radar altimetry data from previous and current altimetry missions, including Sentinel-3A L1 and L2 products. A tutorial is included providing plenty of use cases. BRAT's next release (4.2.0) is planned for October 2017. Based on the community feedback, the front-end has been further improved and simplified whereas the capability to use BRAT in conjunction with MATLAB/IDL or C/C++/Python/Fortran, allowing users to obtain desired data bypassing the data-formatting hassle, remains unchanged. Several kinds of computations can be done within BRAT involving the combination of data fields, that can be saved for future uses, either by using embedded formulas including those from oceanographic altimetry, or by implementing ad-hoc Python modules created by users to meet their needs. BRAT can also be used to quickly visualise data, or to translate data into other formats, e.g. from NetCDF to raster images. The GOCE User Toolbox (GUT) is a compilation of tools for the use and the analysis of GOCE gravity field models. It facilitates using, viewing and post-processing GOCE L2 data and allows gravity field data, in conjunction and consistently with any other auxiliary data set, to be pre-processed by beginners in gravity field processing, for oceanographic and hydrologic as well as for solid earth applications at both regional and global scales. Hence, GUT facilitates the extensive use of data acquired during GRACE and GOCE missions. In the current 3.1 version, GUT has been outfitted with a graphical user interface allowing users to visually program data processing workflows. Further enhancements aiming at facilitating the use of gradients, the anisotropic diffusive filtering, and the computation of Bouguer and isostatic gravity anomalies have been introduced. Packaged with GUT is also GUT's Variance-Covariance Matrix tool (VCM). BRAT and GUT toolboxes can be freely downloaded, along with ancillary material, at https://earth.esa.int/brat and https://earth.esa.int/gut.
Seafloor environments in Cape Cod Bay, a large coastal embayment
Knebel, H.J.; Rendigs, R. R.; List, J.H.; Signell, R.P.
1996-01-01
Cape Cod Bay is a glacial, semi-enclosed embayment that has a patchy distribution of modern seafloor sedimentary environments of erosion or nondeposition, deposition, and sediment reworking. Sidescan-sonar records and supplemental bathymetric, sedimentary, subbottom, and physical- oceanographic data indicate that the characteristics and distribution of these three categories of bottom environments are controlled by a combination of geologic and oceanographic processes that range from episodic to long-term and from regional to local. (1) Environments of erosion or nondeposition comprise exposares of bedrock, glacial drift, and coarse lag deposits that contain sediments (where present) ranging from boulder fields to gravelly coarse-to-medium sands. These environments are dominant on the shallow margins of the bay (water depths <30 m) where they reflect sediment resuspension, winnowing, and transport during modern northerly storms. (2) Environments of deposition are blanketed by fine-grained sediments ranging from muds to muddy fine sands. These environments are dominant across the floor of the central basin (water depths= 30-60 m) where fine- grained sediments (derived from regional and local sources and emplaced primarily during episodic wind- and density-driven flow) settle through the water column and accumulate under weak bottom currents during nonstorm conditions. (3) Environments of sediment reworking contain patches with diverse textures ranging from gravelly sands to muds. These environments occupy much of the transitional slopes between the margins and the basin floor and reflect a combination of erosion and deposition. The patchy distribution of sedimentary environments within the bay reflects not only regional changes in processes between the margins and the basin but local changes within each part of the bay as well. Small-scale patchiness is caused by local changes in the strengths of wave- and wind-driven currents and (on the margins) by local variations in the supply of fine-grained sediments. This study indicates areas within Cape Cod Bay where fine-grained sediments and associated contaminants are likely to be either moved or deposited. It also provides a guide to the locations and variability of benthic habitats.
Seafloor environments in Cape Cod Bay, a large coastal embayment
Knebel, H.J.; Rendigs, R. R.; List, J.H.; Signell, Richard P.
1996-01-01
Cape Cod Bay is a glacial, semi-enclosed embayment that has a patchy distribution of modern seafloor sedimentary environments of erosion or nondeposition, deposition, and sediment reworking. Sidescan-sonar records and supplemental bathymetric, sedimentary, subbottom, and physical-oceanographic data indicate that the characteristics and distribution of these three categories of bottom environments are controlled by a combination of geologic and oceanographic processes that range from episodic to long-term and from regional to local. (1) Environments of erosion or nondeposition comprise exposures of bedrock, glacial drift, and coarse lag deposits that contain sediments (where present) ranging from boulder fields to gravelly coarse-to-medium sands. These environments are dominant on the shallow margins of the bay (water depths < 30 m) where they reflect sediment resuspension, winnowing, and transport during modern northerly storms. (2) Environments of deposition are blanketed by fine-grained sediments ranging from muds to muddy fine sands. These environments are dominant across the floor of the central basin (water depths = 30–60 m) where fine-grained sediments (derived from regional and local sources and emplaced primarily during episodic wind- and density-driven flow) settle through the water column and accumulate under weak bottom currents during nonstorm conditions. (3) Environments of sediment reworking contain patches with diverse textures ranging from gravelly sands to muds. These environments occupy much of the transitional slopes between the margins and the basin floor and reflect a combination of erosion and deposition.The patchy distribution of sedimentary environments within the bay reflects not only regional changes in processes between the margins and the basin but local changes within each part of the bay as well. Small-scale patchiness is caused by local changes in the strengths of wave- and wind-driven currents and (on the margins) by local variations in the supply of fine-grained sediments.This study indicates areas within Cape Cod Bay where fine-grained sediments and associated contaminants are likely to be either moved or deposited. It also provides a guide to the locations and variability of benthic habitats.
Skill assessment of Korea operational oceanographic system (KOOS)
NASA Astrophysics Data System (ADS)
Kim, J.; Park, K.
2016-02-01
For the ocean forecast system in Korea, the Korea operational oceanographic system (KOOS) has been developed and pre-operated since 2009 by the Korea institute of ocean science and technology (KIOST) funded by the Korean government. KOOS provides real time information and forecasts for marine environmental conditions in order to support all kinds of activities in the sea. Furthermore, more significant purpose of the KOOS information is to response and support to maritime problems and accidents such as oil spill, red-tide, shipwreck, extraordinary wave, coastal inundation and so on. Accordingly, it is essential to evaluate prediction accuracy and efforts to improve accuracy. The forecast accuracy should meet or exceed target benchmarks before its products are approved for release to the public.In this paper, we conduct error quantification of the forecasts using skill assessment technique for judgement of the KOOS performance. Skill assessment statistics includes the measures of errors and correlations such as root-mean-square-error (RMSE), mean bias (MB), correlation coefficient (R), and index of agreement (IOA) and the frequency with which errors lie within specified limits termed the central frequency (CF).The KOOS provides 72-hour daily forecast data such as air pressure, wind, water elevation, currents, wave, water temperature, and salinity produced by meteorological and hydrodynamic numerical models of WRF, ROMS, MOM5, WAM, WW3, and MOHID. The skill assessment has been performed through comparison of model results with in-situ observation data (Figure 1) for the period from 1 July, 2010 to 31 March, 2015 in Table 1 and model errors have been quantified with skill scores and CF determined by acceptable criteria depending on predicted variables (Table 2). Moreover, we conducted quantitative evaluation of spatio-temporal pattern correlation between numerical models and observation data such as sea surface temperature (SST) and sea surface current produced by ocean sensor in satellites and high frequency (HF) radar, respectively. Those quantified errors can allow to objective assessment of the KOOS performance and used can reveal different aspects of model inefficiency. Based on these results, various model components are tested and developed in order to improve forecast accuracy.
NASA Astrophysics Data System (ADS)
Harris, C. K.; Overeem, I.; Hutton, E.; Moriarty, J.; Wiberg, P.
2016-12-01
Numerical models are increasingly used for both research and applied sciences, and it is important that we train students to run models and analyze model data. This is especially true within oceanographic sciences, many of which use hydrodynamic models to address oceanographic transport problems. These models, however, often require a fair amount of training and computer skills before a student can run the models and analyze the large data sets produced by the models. One example is the Regional Ocean Modeling System (ROMS), an open source, three-dimensional primitive equation hydrodynamic ocean model that uses a structured curvilinear horizontal grid. It currently has thousands of users worldwide, and the full model includes modules for sediment transport and biogeochemistry, and several options for turbulence closures and numerical schemes. Implementing ROMS can be challenging to students, however, in part because the code was designed to provide flexibility for the choice of model parameterizations and processes, and to run on a variety of High Performance Computing (HPC) platforms. To provide a more accessible tool for classroom use, we have modified an existing idealized ROMS implementation to be run on a High Performance Computer (HPC) via the WMT (Web Modeling Toolkit), and developed a series of lesson plans that explore sediment transport within the idealized model domain. This has addressed our goal to provide a relatively easy introduction to the numerical modeling process that can be used within upper level undergraduate and graduate classes to explore sediment transport on continental shelves. The model implementation includes wave forcing, along-shelf currents, a riverine source, and suspended sediment transport. The model calculates suspended transport and deposition of sediment delivered to the continental shelf by a riverine flood. Lesson plans lead the students through running the model on a remote HPC, modifying the standard model. The lesson plans also include instruction for visualizing the model output within Matlab and Panoply. The lesson plans have been used within graduate, undergraduate classrooms, as well as in clinics aimed at educators. Feedback from these exercises has been used to improve the lesson plans and model implementation.
NASA Astrophysics Data System (ADS)
Juniper, S. Kim; Sastri, Akash; Mihaly, Steven; Duke, Patrick; Else, Brent; Thomas, Helmuth; Miller, Lisa
2017-04-01
Marine pCO2 sensor technology has progressed to the point where months-long time series from remotely-deployed pCO2 sensors can be used to document seasonal and higher frequency variability in pCO2 and its relationship to oceanographic processes. Ocean Networks Canada recently deployed pCO2 sensors on two cabled platforms: a bottom-moored (400 m depth), vertical profiler at the edge of the northeast Pacific continental shelf off Vancouver Island, Canada, and a subtidal seafloor platform in the Canadian High Arctic (69˚ N) at Cambridge Bay, Nunavut. Both platforms streamed continuous data to a shore-based archive from Pro-Oceanus pCO2 sensors and other oceanographic instruments. The vertical profiler time series revealed substantial intrusions of corrosive (high CO2/low O2), saltier, colder water masses during the summertime upwelling season and during winter-time reversals of along-slope currents. Step-wise profiles during the downcast provided the most reliable pCO2 data, permitting the sensor to equilibrate to the broad range of pCO2 concentrations encountered over the 400 metre depth interval. The Arctic pCO2 sensor was deployed in August 2015. Reversing seasonal trends in pCO2 and dissolved oxygen values can be related to the changing balance of photosynthesis and respiration under sea ice, as influenced by irradiance. Correlation of pCO2 and dissolved oxygen sensor data and the collection of calibration samples have permitted evaluation of sensor performance in relation to operational conditions encountered in vertical profiling and lengthy exposure to subzero seawater.
NASA Astrophysics Data System (ADS)
Villate, Fernando; Uriarte, Ibon; Olivar, M. Pilar; Maynou, Francesc; Emelianov, Mikhail; Ameztoy, Iban
2014-11-01
The abundance, composition and mesoscale variability of the microplankton (53-200 μm) and the mesoplankton (0.2-2 mm) fractions in relation to oceanographic factors and phytoplankton biomass were compared off the Catalan coast (NW Mediterranean) during the summer stratification (June) and autumn mixing (November) periods in 2005. This work aims to determine whether the two plankton fractions that more contribute to fish larval diet respond to a common variable environment, and this study constitutes the first attempt to analyse, in parallel, the spatial structure of both fractions in this area. From June to November microplankton abundance increased mainly by the increase of dinoflagellates, tintinnids and radiolarians, and mesoplankton decreased due mainly to the decrease of long-horned dinoflagellates, cladocerans, doliolids and appendicularians. Plankton mesoscale variability in relation to environmental variables showed higher complexity in June, where environmental horizontal and vertical gradients were more marked than in November. In June, the major mode of variability of the microplankton was mainly accounted by the patchy distribution of several tintinnid species dominated by Rhabdonella spiralis associated to the subsurface phytoplankton biomass. The main mode of variability of the mesoplankton was related to the intrusion of the Ebro river plume and the related aggregation of doliolids and cladocerans, dominated by Evadne spinifera. In November, the major variability pattern in both fractions was a combination of inshore-offshore and eastern-western gradients in taxa distributions shaped mainly by the course of the Catalan Current along the shelf-break. Spatial differences in planktonic food pathways in each period are discussed on the basis of literature on plankton feeding habits and types, and on the diet of fish larvae of the main species from the same surveys.
Harland, Rex; Polovodova Asteman, Irina; Morley, Audrey; Morris, Angela; Harris, Anthony; Howe, John A
2016-05-01
The analyses of dinoflagellate cyst records, from the latest Quaternary sediments recovered from DSDP Core 610A taken on the Feni Ridge in the southern Rockall Trough, and part of core MD01-2461 on the continental margin of the Porcupine Seabight in the eastern North Atlantic Ocean, has provided evidence for significant oceanographic change encompassing the Last Glacial Maximum (LGM) and part of the Holocene. This together with other published records has led to a regional evaluation of oceanographic change in the eastern North Atlantic over the past 68 ka, based upon a distinctive dinoflagellate event ecostratigraphy. These changes reflect changes in the surface waters of the North Atlantic Current (NAC), and perhaps the deeper thermohaline Atlantic Meridional Overturning Circulation (AMOC), driving fundamental regime changes within the phytoplanktonic communities. Three distinctive dinoflagellate cyst associations based upon both factor and cluster analyses have been recognised. Associations characterised by Bitectatodinium tepikiense (between 61.1 ± 6.2 to 13.4 ± 1.1 ka BP), Nematosphaeropsis labyrinthus (between 10.5 ± 0.3 and 11.45 ± 0.8 ka. BP), and the cyst of Protoceratium reticulatum (between 8.5 ± 0.9 and 5.2 ± 1.3 ka. BP) indicate major change within the eastern North Atlantic oceanography. The transitions between these changes occur over a relatively short time span (c.1.5 ka), given our sampling resolution, and have the potential to be incorporated into an event stratigraphy through the latest Quaternary as recommended by the INTIMATE (INTegrating Ice core, MArine and TErrestrial records) group. The inclusion of a dinoflagellate cyst event stratigraphy would highlight changes within the phytoplankton of the North Atlantic Ocean as a fully glacial world changed to our present interglacial.
Hu, Zi-Min; Uwai, Shinya; Yu, Shen-Hui; Komatsu, Teruhisa; Ajisaka, Tetsuro; Duan, De-Lin
2011-09-01
Pleistocene glacial oscillations and associated tectonic processes are believed to have influenced the historical abundances and distribution of organisms in the Asia Northwest Pacific (ANP). Accumulating evidence indicates that factors shaping tempospatial population dynamics and distribution patterns of marine taxa vary with biogeographical latitude, pelagic behaviour and oceanographic regimes. To detect what kinds of historical and contemporary factors affected genetic connectivity, phylogeographic profiles of littoral macroalga Sargassum horneri in the ANP were analysed based on mitochondrial (Cox3) and chloroplast (rbcL) data sets. Five distinct clades were recovered. A strong signature of biogeographical structure was revealed (Φ(CT) = 0.487, P < 0.0001) derived from remarkable differentiation in clade distribution, as clade I is restricted to Chinese marginal seas (Yellow-Bohai Sea, East China Sea and South China Sea), whereas clades II-V are discontinuously scattered around the main Islands of Japan. Furthermore, two secondary contact regions were identified along the south Japan-Pacific coastline. This significant differentiation between the two basins may reflect historical glacial isolation in the northwestern Pacific, which is congruent with the estimates of clade divergence and demographic expansion during the late Quaternary low sea levels. Analysis of molecular variance and the population-pair statistic F(ST) also revealed significant genetic structural differences between Chinese marginal seas and the Japanese basin. This exceptional phylogeographic architecture in S. horneri, initially shaped by historical geographic isolation during the late Pleistocene ice age and physical biogeographical barriers, can be complicated by oceanographic regimes (ocean surface currents) and relocating behaviour such as oceanic drifting. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Long, J. W.; Dalyander, S.; Sherwood, C. R.; Thompson, D. M.; Plant, N. G.
2012-12-01
The Chandeleur Islands, situated off the coast of Louisiana in the Gulf of Mexico, comprise a sand-starved barrier island system that has been disintegrating over the last decade. The persistent sediment transport in this area is predominantly directed alongshore but overwash and inundation during storm conditions has fragmented the island and reduced the subaerial extent by almost 75% since 2001. From 2010-2011 a sand berm was constructed along the Gulf side of the island adding 20 million cubic yards of sediment to this barrier island system. The redistribution of this sediment, particularly whether it remains in the active system and progrades the barrier island, has been evaluated using a series of numerical models and an extensive set of in situ and remote sensing observations. We have developed a coupled numerical modeling system capable of simulating morphologic evolution of the sand berm and barrier island using observations and predictions of regional and nearshore oceanographic processes. A nested approach provides large scale oceanographic information to force island evolution in a series of smaller grids, including two nearshore domains that are designed to simulate (1) the persistent alongshore sediment transport O(months-years) and (2) the overwash and breaching of the island/berm due to cross-shore forcing driven by winter cold fronts and tropical storms (O(hours-days)). The coupled model is evaluated using the observations of waves, water levels, currents, and topographic/morphologic change. Modeled processes are then used to identify the dominant sediment transport pathways and quantify the role of alongshore and cross-shore sediment transport in evolving the barrier island over a range of temporal scales.
NASA Astrophysics Data System (ADS)
Peck, Victoria L.; Allen, Claire S.; Kender, Sev; McClymont, Erin L.; Hodgson, Dominic A.
2015-07-01
Recent intensification of wind-driven upwelling of warm upper circumpolar deep water (UCDW) has been linked to accelerated melting of West Antarctic ice shelves and glaciers. To better assess the long term relationship between UCDW upwelling and the stability of the West Antarctic Ice Sheet, we present a multi-proxy reconstruction of surface and bottom water conditions in Marguerite Bay, West Antarctic Peninsula (WAP), through the Holocene. A combination of sedimentological, diatom and foraminiferal records are, for the first time, presented together to infer a decline in UCDW influence within Marguerite Bay through the early to mid Holocene and the dominance of cyclic forcing in the late Holocene. Extensive glacial melt, limited sea ice and enhanced primary productivity between 9.7 and 7.0 ka BP is considered to be most consistent with persistent incursions of UCDW through Marguerite Trough. From 7.0 ka BP sea ice seasons increased and productivity decreased, suggesting that UCDW influence within Marguerite Bay waned, coincident with the equatorward migration of the Southern Hemisphere Westerly Winds (SWW). UCDW influence continued through the mid Holocene, and by 4.2 ka BP lengthy sea ice seasons persisted within Marguerite Bay. Intermittent melting and reforming of this sea ice within the late Holocene may be indicative of episodic incursions of UCDW into Marguerite Bay during this period. The cyclical changes in the oceanography within Marguerite Bay during the late Holocene is consistent with enhanced sensitively to ENSO forcing as opposed to the SWW-forcing that appears to have dominated the early to mid Holocene. Current measurements of the oceanography of the WAP continental shelf suggest that the system has now returned to the early Holocene-like oceanographic configuration reported here, which in both cases has been associated with rapid deglaciation.
NASA Astrophysics Data System (ADS)
Tang, D. L.; Kawamura, H.; Oh, I. S.; Baker, Joe
Harmful Algal Blooms (HABs) are truly global marine phenomena of increasing significance. Many HAB occurrences may have been not recorded because of their high spatial and temporal variability and of their advection, once formed, by surface currents. A serious HAB occurred in the Bohai Sea in autumn 1998, dominated by the species Ceratium furca sp, causing the largest fisheries economic loss recorded in that region. The present study traced the formation and advection of that HAB in September 1998 in the northern Bohai Sea by satellite SeaWiFS ocean color data and correlated the spatial and temporal changes with oceanographic data. The results show that the bloom originated in the coastal water in the west of the Bohai Sea in early September when sea surface temperature increased to 25-26 °C. The bloom biomass was shifted southeastward and intensified around the center portion of the sea in the mid September. The bloom covered an area of 60 x 65 km^2 with high Chl-a concentration (6.5 mg m-3) in the bloom center. At the end of September, the bloom decayed in the eastern Bohai Sea when water temperature decreased to 22-23 °C. Northeasterly winds were recorded in August and September, and northwesterly winds in late September, October and November. The HAB may have been initiated by a combination of the nutrients from river discharges in the coastal waters of the west of the Bohai Sea and the increase of water temperature; it may have been then advected eastward by the northern Bohai Sea circulation enhanced by northwesterly winds in late September-early October.
Oceanic migration and spawning of anguillid eels.
Tsukamoto, K
2009-06-01
Many aspects of the life histories of anguillid eels have been revealed in recent decades, but the spawning migrations of their silver eels in the open ocean still remains poorly understood. This paper overviews what is known about the migration and spawning of anguillid species in the ocean. The factors that determine exactly when anguillid eels will begin their migrations are not known, although environmental influences such as lunar cycle, rainfall and river discharge seem to affect their patterns of movement as they migrate towards the ocean. Once in the ocean on their way to the spawning area, silver eels probably migrate in the upper few hundred metres, while reproductive maturation continues. Although involvement of a magnetic sense or olfactory cues seems probable, how they navigate or what routes they take are still a matter of speculation. There are few landmarks in the open ocean to define their spawning areas, other than oceanographic or geological features such as oceanic fronts or seamounts in some cases. Spawning of silver eels in the ocean has never been observed, but artificially matured eels of several species have exhibited similar spawning behaviours in the laboratory. Recent collections of mature adults and newly spawned preleptocephali in the spawning area of the Japanese eel Anguilla japonica have shown that spawning occurs during new moon periods in the North Equatorial Current region near the West Mariana Ridge. These data, however, show that the latitude of the spawning events can change among months and years depending on oceanographic conditions. Changes in spawning location of this and other anguillid species may affect their larval transport and survival, and appear to have the potential to influence recruitment success. A greater understanding of the spawning migration and the choice of spawning locations by silver eels is needed to help conserve declining anguillid species.
Huff, David D; Lindley, Steven T; Wells, Brian K; Chai, Fei
2012-01-01
The green sturgeon (Acipenser medirostris), which is found in the eastern Pacific Ocean from Baja California to the Bering Sea, tends to be highly migratory, moving long distances among estuaries, spawning rivers, and distant coastal regions. Factors that determine the oceanic distribution of green sturgeon are unclear, but broad-scale physical conditions interacting with migration behavior may play an important role. We estimated the distribution of green sturgeon by modeling species-environment relationships using oceanographic and migration behavior covariates with maximum entropy modeling (MaxEnt) of species geographic distributions. The primary concentration of green sturgeon was estimated from approximately 41-51.5° N latitude in the coastal waters of Washington, Oregon, and Vancouver Island and in the vicinity of San Francisco and Monterey Bays from 36-37° N latitude. Unsuitably cold water temperatures in the far north and energetic efficiencies associated with prevailing water currents may provide the best explanation for the range-wide marine distribution of green sturgeon. Independent trawl records, fisheries observer records, and tagging studies corroborated our findings. However, our model also delineated patchily distributed habitat south of Monterey Bay, though there are few records of green sturgeon from this region. Green sturgeon are likely influenced by countervailing pressures governing their dispersal. They are behaviorally directed to revisit natal freshwater spawning rivers and persistent overwintering grounds in coastal marine habitats, yet they are likely physiologically bounded by abiotic and biotic environmental features. Impacts of human activities on green sturgeon or their habitat in coastal waters, such as bottom-disturbing trawl fisheries, may be minimized through marine spatial planning that makes use of high-quality species distribution information.
Antarctic Data Management as Part of the IPY Legacy
NASA Astrophysics Data System (ADS)
de Bruin, T.
2006-12-01
The Antarctic Treaty states that "scientific observations and results from Antarctica shall be exchanged and made freely available". Antarctica includes the Southern Ocean. In support of this, National Antarctic Data Centres (NADC) are being established to catalogue data sets and to provide information on data sets to scientists and others with interest in Antarctic science. The Joint Committee on Antarctic Data Management (JCADM) was established by the Scientific Committee on Antarctic Research (SCAR) and the Council of Managers of National Antarctic Programs (COMNAP). JCADM comprises representatives of the National Antarctic Data Centres. Currently 30 nations around the world are represented in JCADM. JCADM is responsible for the Antarctic Master Directory (AMD), the internationally accessible, web-based, searchable record of Antarctic and Southern Ocean data set descriptions. The AMD is directly integrated into the international Global Change Master Directory (GCMD) to help further merge Antarctic science into global science. The AMD is a resource for scientists to advertise the data they have collected and to search for data they may need. JCADM is the Antarctic component of the IPY Data Infrastructure, which is presently being developed. This presentation will give an overview of the organization of Antarctic and Southern Ocean data management with sections on the organizational structure of JCADM, contents of the Antarctic Master Directory, relationships to the SCAR Scientific Research Programmes (SRP) and IPY, international embedding and connections with discipline-based peer organizations like the International Oceanographic Data and Information Exchange Committee (IODE). It will focus primarily on the role that an existing infrastructure as JCADM, may play in the development of the IPY Data Infrastructure and will provide considerations for IPY data management, based on the experiences in Antarctic and oceanographic data management.
A High-Resolution Record of Holocene Climate Variability from a Western Canadian Coastal Inlet
NASA Astrophysics Data System (ADS)
Dallimore, A.; Thomson, R. E.; Enkin, R. J.; Kulikov, E. A.; Bertram, M. A.; Wright, C. A.; Southon, J. R.; Barrie, J. V.; Baker, J.; Pienitz, R.; Calvert, S. E.; Chang, A. S.; Pedersen, T. F.
2004-12-01
Conditions within the Pacific Ocean have a major effect on the climate of northwestern North America. High resolution records of present and past northeast Pacific climate are revealed in our multi-disciplinary study of annually laminated marine sediments from anoxic coastal inlets of British Columbia. Past climate conditions for the entire Holocene are recorded in the sediment record contained in a 40 meter, annually laminated marine sediment core taken in Effingham Inlet, on the west coast of Vancouver Island, British Columbia, from the French ship the Marion Dufresne, as part of the international IMAGES program. By combining our eight year continuous instrument record of modern coastal ocean dynamics and climate with high-resolution analysis of depositional processes, we have been able to develop proxy measurements of past climatic and oceanographic changes on annual to millennial time scales. Results indicate that regional climate has oscillated on a variety of time scales throughout the Holocene. At times, climatic change has been dramatically rapid. We are also developing digital methods for statistical time-series analyses of physical sediment properties through the Holocene in order to obtain a more objective quantitative approach for detecting cyclicity in our data. Results of the time series analysis of lamination thickness reveals statistically significant spectral peaks of climate scale variability at established decadal to century time scales. These in turn may be related to solar cycles and quasi-cyclical ocean processes such as the Pacific Decadal Oscillation. However, the annually laminated time series are periodically interrupted by massive mud intervals which are related to bottom currents and at times paleo-seismic events, illustrating the need for a full understanding of modern oceanographic and sedimentation processes, so an accurate proxy record of past climate can be established.
Example of activities of the MERCATOR-Océan Project : oil spill and yacht race
NASA Astrophysics Data System (ADS)
Toumazou, V.; Greiner, E.; Blanc, F.; Lellouche, J. M.; Nouel, L.
2003-04-01
MERCATOR-Ocean is the french group aiming at developing an operational capacity for global ocean analysis and forecasting monitoring, based on near-real-time assimilation of satellite and in situ ocean observations in three-dimensional ocean models. MERCATOR-Ocean is supported by the six major french agencies involved in oceanography : CNES (French Space Agency), CNRS (National Center for Scientific Research), IFREMER (French Institute of Research and Exploitation of the Sea), IRD (Research Institute for Development), Météo-France (French Meteorological Agency) and SHOM (Navy Hydrographic and Oceanographic Service) - with a strong engagement of their subsidiaries CERFACS (European Center for Research and Advanced Training in Scientific Computation) and CLS (Collecte Localisation Satellite) in the success of the project. Every week since January 17, 2001, MERCATOR provides the oceanographic community with a set of maps and data about the underlying variables of the ocean, such as velocity, salinity, temperature and sea level anomalies, which describe the ocean in all its dimensions, from instantaneous analysis to 2-week forecasts, from the sea surface to the sea floor. Since november 2002, MERCATOR-Ocean has been involved in two major events. Early november 2002, the project provided skippers of the Route du Rhum transatlantic yacht race with prevision of sea-surface currents. In the mean time, on Tuesday November 19, the oil tanker Prestige sank in the Atlantic off the Portuguese and Spanish coasts. Called upon from the outset, MERCATOR OCEAN began November 20 to provide analyses and forecasts for two weeks in the future for the state of the ocean in the area, both on the surface and at depth, to teams of specialists of the crisis unit coordinated by CEDRE. This talk details these recent activities and draws the main lines of MERCATOR-Ocean actuality and future.
NASA Astrophysics Data System (ADS)
Ahern, T. K.; Ekstrom, G.; Grobbelaer, M.; Trabant, C. M.; Van Fossen, M.; Stults, M.; Tsuboi, S.; Beaudoin, B. C.; Bondar, I.
2016-12-01
Seismology, by its very nature, requires sharing information across international boundaries and as such seismology evolved as a science that promotes free and open access to data. The International Federation of Digital Seismograph Networks (FDSN) has commission status within IASPEI and as such is the international standards body in our community. In the late 1980s a domain standard for exchanging seismological information was created and the SEED format is still the dominant domain standard. More recently the FDSN standardized web-service interfaces for key services used in our community. The standardization of these services also enabled the development of a federation of data centers. These federated centers, can be accessed through standard FDSN service calls. Client software exists that currently allows seamless and transparent access to all data managed at 14 globally distributed data centers on three continents with plans to expand this more broadly. IRIS is also involved in the EarthCube project funded by the US National Science Foundation. The GEOphysical Web Services (GeoWS) project extended the style of web services endorsed by the FDSN to interdisciplinary domains. IRIS worked with five data centers in other domains (Caltech, UCSD, Columbia University, UNAVCO and Unidata) to develop `similar' service-based interfaces to their data systems that were drawn from the oceanographic, atmospheric, and solid earth divisions within the NSF's geosciences directorate. Additionally IRIS developed GeoWS style web services for six additional data collections that included magnetic observations, field gravity measurements, superconducting gravimetry data, volcano monitoring data, tidal data, and oceanographic observations including those from cabled arrays in the ocean. This presentation will highlight the success the FDSN and GeoWS services have demonstrated within and beyond seismology as well as identifying some next steps being considered.
NASA Astrophysics Data System (ADS)
Skourup, Henriette; Farrell, Sinéad Louise; Hendricks, Stefan; Ricker, Robert; Armitage, Thomas W. K.; Ridout, Andy; Andersen, Ole Baltazar; Haas, Christian; Baker, Steven
2017-11-01
State-of-the-art Arctic Ocean mean sea surface (MSS) models and global geoid models (GGMs) are used to support sea ice freeboard estimation from satellite altimeters, as well as in oceanographic studies such as mapping sea level anomalies and mean dynamic ocean topography. However, errors in a given model in the high-frequency domain, primarily due to unresolved gravity features, can result in errors in the estimated along-track freeboard. These errors are exacerbated in areas with a sparse lead distribution in consolidated ice pack conditions. Additionally model errors can impact ocean geostrophic currents, derived from satellite altimeter data, while remaining biases in these models may impact longer-term, multisensor oceanographic time series of sea level change in the Arctic. This study focuses on an assessment of five state-of-the-art Arctic MSS models (UCL13/04 and DTU15/13/10) and a commonly used GGM (EGM2008). We describe errors due to unresolved gravity features, intersatellite biases, and remaining satellite orbit errors, and their impact on the derivation of sea ice freeboard. The latest MSS models, incorporating CryoSat-2 sea surface height measurements, show improved definition of gravity features, such as the Gakkel Ridge. The standard deviation between models ranges 0.03-0.25 m. The impact of remaining MSS/GGM errors on freeboard retrieval can reach several decimeters in parts of the Arctic. While the maximum observed freeboard difference found in the central Arctic was 0.59 m (UCL13 MSS minus EGM2008 GGM), the standard deviation in freeboard differences is 0.03-0.06 m.
Microhydrodynamics of flotation processes in the sea surface layer
NASA Astrophysics Data System (ADS)
Grammatika, Marianne; Zimmerman, William B.
2001-10-01
The uppermost surface of the ocean forms a peculiarly important ecosystem, the sea surface microlayer (SML). Comprising the top 1-1000 μm of the ocean surface, the SML concentrates many chemical substances, particularly those that are surface active. Important economically as a nursery for fish eggs and larvae, the SML unfortunately is also especially vulnerable to pollution. Contaminants that settle out from the air, have low solubility, or attach to floatable matter tend to accumulate in the SML. Bubbles contribute prominently to the dynamics of air-sea exchanges, playing an important role in geochemical cycling of material in the upper ocean and SML. In addition to the movement of bubbles, the development of a bubble cloud interrelates with the single particle dynamics of all other bubbles and particles. In the early sixties, several in situ oceanographic techniques revealed an "unbelievably immense" number of coastal bubbles of radius 15-300 μm. The spatial and temporal variation of bubble numbers were studied; acoustical oceanographers now use bubbles as tracers to determine ocean processes near the ocean surface. Sea state and rain noises have both been definitively ascribed to the radiation from huge numbers of infant micro bubbles [The Acoustic Bubble. Academic Press, San Diego]. Our research programme aims at constructing a hydrodynamic model for particle transport processes occurring at the microscale, in multi-phase flotation suspensions. Current research addresses bubble and floc microhydrodynamics as building blocks for a microscale transport model. This paper reviews sea surface transport processes in the microlayer and the lower atmosphere, and identifies those amenable to microhydrodynamic modelling and simulation. It presents preliminary simulation results including the multi-body hydrodynamic mobility functions for the modelling of "dynamic bubble filters" and floc suspensions. Hydrodynamic interactions versus spatial anisotropy and size of particle clouds are investigated.
Geology of the head of Lydonia Canyon, U.S. Atlantic outer continental shelf
Twichell, David C.
1983-01-01
The geology of the part of Lydonia Canyon shoreward of the continental shelf edge on the southern side of Georges Bank was mapped using high-resolution seismic-reflection and side-scan sonar techniques and surface sediment grab samples. The head of the canyon incises Pleistocene deltaic deposits and Miocene shallow marine strata. Medium sand containing some coarse sand and gravel covers the shelf except for a belt of very fine sand containing no gravel on either side of the canyon in water depths of 125–140 m. Gravel and boulders, presumably ice-rafted debris, cover the rim of the canyon. The canyon floor and canyon wall gullies are covered by coarse silt of Holocene age which is as much as 25 m thick, and Miocene and Pleistocene strata are exposed on the spurs between gullies. The Holocene sediment is restricted to the canyon shoreward of the shelf edge and has been winnowed from the shelf. Furrows cut in the shelf sands and ripples on the shelf and in the canyon suggest that sediment continues to be moved in this area. Sediment distribution, however, is inconsistent with that expected from the inferred westward sediment transport on the shelf. Either the fine-grained deposits on the shelf to either side of the canyon head are relict or there is a significant component of offshore transport around the canyon head.In the head of Oceanographer Canyon, only 40 km west of Lydonia Canyon, present conditions are strikingly different. The floor of Oceanographer Canyon is covered by sand waves, and their presence indicates active reworking of the bottom sediments by strong currents. The close proximity of the two canyons suggests that the relative importance of processes acting in canyons can be variable over short distances.
Oceanographic gradients and seabird prey community dynamics in glacial fjords
Arimitsu, Mayumi L.; Piatt, John F.; Madison, Erica N.; Conaway, Jeffrey S.; Hillgruber, N.
2012-01-01
Glacial fjord habitats are undergoing rapid change as a result of contemporary global warming, yet little is known about how glaciers influence marine ecosystems. These ecosystems provide important feeding, breeding and rearing grounds for a wide variety of marine organisms, including seabirds of management concern. To characterize ocean conditions and marine food webs near tidewater glaciers, we conducted monthly surveys of oceanographic variables, plankton, fish and seabirds in Kenai Fjords, Alaska, from June to August of 2007 and 2008. We also measured tidal current velocities near glacial features. We found high sediment load from glacial river runoff played a major role in structuring the fjord marine ecosystem. Submerged moraines (sills) isolated cool, fresh, stratified and silt-laden inner fjord habitats from oceanic influence. Near tidewater glaciers, surface layers of turbid glacial runoff limited availability of light to phytoplankton, but macrozooplankton were abundant in surface waters, perhaps due to the absence of a photic cue for diel migration. Fish and zooplankton community structure varied along an increasing temperature gradient throughout the summer. Acoustic measurements indicated that low density patches of fish and zooplankton were available in the surface waters near glacial river outflows. This is the foraging habitat occupied most by Kittlitz's murrelet (Brachyramphus brevirostris), a rare seabird that appears to be specialized for life in glacially influenced environments. Kittlitz's murrelets were associated with floating glacial ice, and they were more likely to occur near glaciers, in deeper water, and in areas with high acoustic backscatter. Kittlitz's murrelet at-sea distribution was limited to areas influenced by turbid glacial outflows, and where prey was concentrated near the surface in waters with low light penetration. Tidewater glaciers impart unique hydrographic characteristics that influence marine plankton and fish communities, and this has cascading effects on marine food webs in these ecosystems.
Robinson, Marci; Caballero, Rocio; Pohlman, Emily; Herbert, Timothy; Peck, Victoria; Dowsett, Harry
2008-01-01
The U.S. Geological Survey is conducting a long-term study of mid-Pliocene climatic and oceanographic conditions. One of the key elements of the study involves the use of quantitative composition of planktic foraminifer assemblages in conjunction with other proxies to constrain estimates of sea-surface temperature (SST) and to identify major oceanographic boundaries and water masses. Raw census data are made available as soon as possible after analysis through a series of reports that provide the basic data for future work. In this report we present raw census data (table 1) for planktic foraminifer assemblages in 14 samples from Ocean Drilling Program (ODP) Hole 677A. We also present alkenone unsaturation index (UK'37) analyses for 89 samples from ODP Hole 677A (table 2). ODP Hole 677A is located in the Panama basin, due west of Ecuador at 1?12.138'N., 83?44.220'W., in 3461.2 meters of water (fig. 1). A variety of statistical methods have been developed to transform foraminiferal census data in Pliocene sequences into quantitative estimates of Pliocene SST. Details of statistical techniques, taxonomic groupings, and oceanographic interpretations are presented in more formal publications (Dowsett and Poore, 1990, 1991; Dowsett, 1991, 2007a,b; Dowsett and Robinson, 1998, 2007; Dowsett and others, 1996, 1999).
Abecassis, Melanie; Polovina, Jeffrey; Baird, Robin W.; Copeland, Adrienne; Drazen, Jeffrey C.; Domokos, Reka; Oleson, Erin; Jia, Yanli; Schorr, Gregory S.; Webster, Daniel L.; Andrews, Russel D.
2015-01-01
Satellite tagging data for short-finned pilot whales (Globicephala macrorhynchus) and Blainville’s beaked whales (Mesoplodon densirostris) were used to identify core insular foraging regions off the Kona (west) Coast of Hawai‘i Island. Ship-based active acoustic surveys and oceanographic model output were used in generalized additive models (GAMs) and mixed models to characterize the oceanography of these regions and to examine relationships between whale density and the environment. The regions of highest density for pilot whales and Blainville’s beaked whales were located between the 1000 and 2500 m isobaths and the 250 and 2000 m isobaths, respectively. Both species were associated with slope waters, but given the topography of the area, the horizontal distribution of beaked whales was narrower and located in shallower waters than that of pilot whales. The key oceanographic parameters characterizing the foraging regions were bathymetry, temperature at depth, and a high density of midwater micronekton scattering at 70 kHz in 400–650 m depths that likely represent the island-associated deep mesopelagic boundary community and serve as prey for the prey of the whales. Thus, our results suggest that off the Kona Coast, and potentially around other main Hawaiian Islands, the deep mesopelagic boundary community is key to a food web that supports insular cetacean populations. PMID:26605917
Abecassis, Melanie; Polovina, Jeffrey; Baird, Robin W; Copeland, Adrienne; Drazen, Jeffrey C; Domokos, Reka; Oleson, Erin; Jia, Yanli; Schorr, Gregory S; Webster, Daniel L; Andrews, Russel D
2015-01-01
Satellite tagging data for short-finned pilot whales (Globicephala macrorhynchus) and Blainville's beaked whales (Mesoplodon densirostris) were used to identify core insular foraging regions off the Kona (west) Coast of Hawai'i Island. Ship-based active acoustic surveys and oceanographic model output were used in generalized additive models (GAMs) and mixed models to characterize the oceanography of these regions and to examine relationships between whale density and the environment. The regions of highest density for pilot whales and Blainville's beaked whales were located between the 1000 and 2500 m isobaths and the 250 and 2000 m isobaths, respectively. Both species were associated with slope waters, but given the topography of the area, the horizontal distribution of beaked whales was narrower and located in shallower waters than that of pilot whales. The key oceanographic parameters characterizing the foraging regions were bathymetry, temperature at depth, and a high density of midwater micronekton scattering at 70 kHz in 400-650 m depths that likely represent the island-associated deep mesopelagic boundary community and serve as prey for the prey of the whales. Thus, our results suggest that off the Kona Coast, and potentially around other main Hawaiian Islands, the deep mesopelagic boundary community is key to a food web that supports insular cetacean populations.
NASA Astrophysics Data System (ADS)
Rodriguez-Abudo, S.; Melendez, M.; Morell, J. M.; Padilla, A.; Salisbury, J.
2016-02-01
Time series of near-reef carbonate chemistry obtained through the National Coral Reef Monitoring Program (NCRMP) at La Parguera Marine Reserve, Puerto Rico exhibit seasonal and diurnal variations modulated by diverse processes including coral community metabolism, thermodynamics and hydrodynamics. While surface CO2 dynamics have been fairly well characterized with moored pCO2 efforts, detailed hydrodynamic information resulting from La Parguera's complex morphological, meteorological, and oceanographic processes is currently lacking. This project focuses on a one-month-long hydrodynamic assessment near a fore reef site located within 100 m of the NCRMP pCO2 buoy. Current profiles spanning 12 m of depth were resolved with a bottom-mounted ADCP. Preliminary results show that under no wind conditions, dominant currents are tidally driven and aligned with the reef channel. Depth-averaged currents exhibit diurnal and semidiurnal peaks, not inconsistent with tidal and wind forcing. The analysis also shows that at times surface current direction can differ from near-reef currents by as much as 200 degrees, suggesting a possible mismatch between carbonate chemistry resolved at the surface and that felt by the reef structure. Moreover, buoy measurements are potentially resolving carbonate chemistry from both, oceanic and inshore water masses. Our findings suggest that monitoring and potentially predicting near-reef CO2 dynamics require interdisciplinary expertise and integrated approaches. This project provides new insights into the effects of tidal and meteorological forcing on the carbonate chemistry of near-reef coral ecosystems.
The Gulf of Cádiz pelagic ecosystem: A review
NASA Astrophysics Data System (ADS)
García Lafuente, Jesús; Ruiz, Javier
2007-08-01
The Gulf of Cádiz, strategically situated between the North Atlantic Ocean and the Mediterranean Sea, has been the focus of attention of a few oceanographic studies dealing with the deep circulation in order to understand the dynamics of the dense plume of Mediterranean water. Much less attention has been paid to the surface pelagic layer which holds important living resources of commercial and ecological interest. This overview summarizes the recent advances that have been made concerning the regional oceanography of the northern half of this important basin from an interdisciplinary point of view. Probably the most relevant oceanographic feature of the basin is its strong seasonality, which is linked to the meteorologically-induced seasonality of the eastern boundary current system of the North Atlantic. The prominent cape Santa Maria divides the continental shelf off the southern Iberian Peninsula in two shelves of different shape that hold different oceanographic processes, which in turn determine the characteristics of the pelagic ecosystem. Mass and energy inputs from land as well as tidally-driven processes makes the wider eastern shelf be more productive while the narrower western shelf, cut by a sharp submarine canyon, is under the influence of the almost-permanent upwelling spot off cape San Vicente. Under easterlies, the west-going, warm coastal countercurrent that is observed in the eastern shelf may invade the western shelf thus connecting biologically both shelves in an east-to-west direction. Westerlies induce generalised upwelling off the southern Iberia Peninsula, which adds to the almost-permanent one off cape San Vicente and generates an upwelling jet that moves eastwards. Cape Santa Maria may deflect this flow by generating a cold filament that extends southward and diverts water from the western shelf to the open ocean. This pattern of circulation hampers the biological connection between shelves in the west-to-east direction, which is therefore less effective. The eastern shelf is prone to hold a cyclonic circulation cell during summer. This cell seems to be part of the reproductive strategy of fish species like anchovy with significant commercial interest in the region. The coupling between spawning and circulation is particularly beneficial under westerlies, when productivity in the eastern shelf is enhanced and the plankton is confined within the cyclonic cell. Easterlies favour oligotrophy and the westward export of plankton, which has an adverse effect on the recruitment and correlates low anchovy catches with periods of noticeable easterly intensity.