MULTIVARIATE CURVE RESOLUTION OF NMR SPECTROSCOPY METABONOMIC DATA
Sandia National Laboratories is working with the EPA to evaluate and develop mathematical tools for analysis of the collected NMR spectroscopy data. Initially, we have focused on the use of Multivariate Curve Resolution (MCR) also known as molecular factor analysis (MFA), a tech...
Saeidabadi, Mohammad Sadegh; Nili, Hassan; Dadras, Habibollah; Sharifiyazdi, Hassan; Connolly, Joanne; Valcanis, Mary; Raidal, Shane; Ghorashi, Seyed Ali
2017-06-01
Consumption of poultry products contaminated with Salmonella is one of the major causes of foodborne diseases worldwide and therefore detection and differentiation of Salmonella spp. in poultry is important. In this study, oligonucleotide primers were designed from hemD gene and a PCR followed by high-resolution melt (HRM) curve analysis was developed for rapid differentiation of Salmonella isolates. Amplicons of 228 bp were generated from 16 different Salmonella reference strains and from 65 clinical field isolates mainly from poultry farms. HRM curve analysis of the amplicons differentiated Salmonella isolates and analysis of the nucleotide sequence of the amplicons from selected isolates revealed that each melting curve profile was related to a unique DNA sequence. The relationship between reference strains and tested specimens was also evaluated using a mathematical model without visual interpretation of HRM curves. In addition, the potential of the PCR-HRM curve analysis was evaluated for genotyping of additional Salmonella isolates from different avian species. The findings indicate that PCR followed by HRM curve analysis provides a rapid and robust technique for genotyping of Salmonella isolates to determine the serovar/serotype.
Pietzka, Ariane T.; Stöger, Anna; Huhulescu, Steliana; Allerberger, Franz; Ruppitsch, Werner
2011-01-01
The ability to accurately track Listeria monocytogenes strains involved in outbreaks is essential for control and prevention of listeriosis. Because current typing techniques are time-consuming, cost-intensive, technically demanding, and difficult to standardize, we developed a rapid and cost-effective method for typing of L. monocytogenes. In all, 172 clinical L. monocytogenes isolates and 20 isolates from culture collections were typed by high-resolution melting (HRM) curve analysis of a specific locus of the internalin B gene (inlB). All obtained HRM curve profiles were verified by sequence analysis. The 192 tested L. monocytogenes isolates yielded 15 specific HRM curve profiles. Sequence analysis revealed that these 15 HRM curve profiles correspond to 18 distinct inlB sequence types. The HRM curve profiles obtained correlated with the five phylogenetic groups I.1, I.2, II.1, II.2, and III. Thus, HRM curve analysis constitutes an inexpensive assay and represents an improvement in typing relative to classical serotyping or multiplex PCR typing protocols. This method provides a rapid and powerful screening tool for simultaneous preliminary typing of up to 384 samples in approximately 2 hours. PMID:21227395
ERIC Educational Resources Information Center
Grung, Bjorn; Nodland, Egil; Forland, Geir Martin
2007-01-01
The analysis of the infrared spectra of an alcohol dissolved in carbon tetrachloride gives a better understanding of the various multivariate curve resolution methods. The resulting concentration profile is found to be very useful for calculating the degree of association and equilibrium constants of different compounds.
Hasiów-Jaroszewska, Beata; Komorowska, Beata
2013-10-01
Diagnostic methods distinguished different Pepino mosaic virus (PepMV) genotypes but the methods do not detect sequence variation in particular gene segments. The necrotic and non-necrotic isolates (pathotypes) of PepMV share a 99% sequence similarity. These isolates differ from each other at one nucleotide site in the triple gene block 3. In this study, a combination of real-time reverse transcription polymerase chain reaction and high resolution melting curve analysis of triple gene block 3 was developed for simultaneous detection and differentiation of PepMV pathotypes. The triple gene block 3 region carrying a transition A → G was amplified using two primer pairs from twelve virus isolates, and was subjected to high resolution melting curve analysis. The results showed two distinct melting curve profiles related to each pathotype. The results also indicated that the high resolution melting method could readily differentiate between necrotic and non-necrotic PepMV pathotypes. Copyright © 2013 Elsevier B.V. All rights reserved.
Kirkpatrick, Naomi C; Blacker, Hayley P; Woods, Wayne G; Gasser, Robin B; Noormohammadi, Amir H
2009-02-01
Coccidiosis is a significant disease of poultry caused by different species of Eimeria. Differentiation of Eimeria species is important for the quality control of the live attenuated Eimeria vaccines derived from monospecific lines of Eimeria spp. In this study, high-resolution melting (HRM) curve analysis of the amplicons generated from the second internal transcribed spacer of nuclear ribosomal DNA (ITS-2) was used to distinguish between seven pathogenic Eimeria species of chickens, and the results were compared with those obtained from the previously described technique, capillary electrophoresis. Using a series of known monospecific lines of Eimeria species, HRM curve analysis was shown to distinguish between Eimeria acervulina, Eimeria brunetti, Eimeria maxima, Eimeria mitis, Eimeria necatrix, Eimeria praecox and Eimeria tenella. Computerized analysis of the HRM curves and capillary electrophoresis profiles could detect the dominant species in several specimens containing different ratios of E. necatrix and E. maxima and of E. tenella and E. acervulina. The HRM curve analysis identified all of the mixtures as "variation" to the reference species, and also identified the minor species in some mixtures. Computerized HRM curve analysis also detected impurities in 21 possible different combinations of the seven Eimeria species. The PCR-based HRM curve analysis of the ITS-2 provides a powerful tool for the detection and identification of pure Eimeria species. The HRM curve analysis could also be used as a rapid tool in the quality assurance of Eimeria vaccine production to confirm the purity of the monospecific cell lines. The HRM curve analysis is rapid and reliable and can be performed in a single test tube in less than 3 h.
Steer, Penelope A.; Kirkpatrick, Naomi C.; O'Rourke, Denise; Noormohammadi, Amir H.
2009-01-01
Identification of fowl adenovirus (FAdV) serotypes is of importance in epidemiological studies of disease outbreaks and the adoption of vaccination strategies. In this study, real-time PCR and subsequent high-resolution melting (HRM)-curve analysis of three regions of the hexon gene were developed and assessed for their potential in differentiating 12 FAdV reference serotypes. The results were compared to previously described PCR and restriction enzyme analyses of the hexon gene. Both HRM-curve analysis of a 191-bp region of the hexon gene and restriction enzyme analysis failed to distinguish a number of serotypes used in this study. In addition, PCR of the region spanning nucleotides (nt) 144 to 1040 failed to amplify FAdV-5 in sufficient quantities for further analysis. However, HRM-curve analysis of the region spanning nt 301 to 890 proved a sensitive and specific method of differentiating all 12 serotypes. All melt curves were highly reproducible, and replicates of each serotype were correctly genotyped with a mean confidence value of more than 99% using normalized HRM curves. Sequencing analysis revealed that each profile was related to a unique sequence, with some sequences sharing greater than 94% identity. Melting-curve profiles were found to be related mainly to GC composition and distribution throughout the amplicons, regardless of sequence identity. The results presented in this study show that the closed-tube method of PCR and HRM-curve analysis provides an accurate, rapid, and robust genotyping technique for the identification of FAdV serotypes and can be used as a model for developing genotyping techniques for other pathogens. PMID:19036935
Zaboikin, Michail; Freter, Carl
2018-01-01
We describe a method for measuring genome editing efficiency from in silico analysis of high-resolution melt curve data. The melt curve data derived from amplicons of genome-edited or unmodified target sites were processed to remove the background fluorescent signal emanating from free fluorophore and then corrected for temperature-dependent quenching of fluorescence of double-stranded DNA-bound fluorophore. Corrected data were normalized and numerically differentiated to obtain the first derivatives of the melt curves. These were then mathematically modeled as a sum or superposition of minimal number of Gaussian components. Using Gaussian parameters determined by modeling of melt curve derivatives of unedited samples, we were able to model melt curve derivatives from genetically altered target sites where the mutant population could be accommodated using an additional Gaussian component. From this, the proportion contributed by the mutant component in the target region amplicon could be accurately determined. Mutant component computations compared well with the mutant frequency determination from next generation sequencing data. The results were also consistent with our earlier studies that used difference curve areas from high-resolution melt curves for determining the efficiency of genome-editing reagents. The advantage of the described method is that it does not require calibration curves to estimate proportion of mutants in amplicons of genome-edited target sites. PMID:29300734
Banowary, Banya; Dang, Van Tuan; Sarker, Subir; Connolly, Joanne H.; Chenu, Jeremy; Groves, Peter; Ayton, Michelle; Raidal, Shane; Devi, Aruna; Vanniasinkam, Thiru; Ghorashi, Seyed A.
2015-01-01
Campylobacter spp. are important causes of bacterial gastroenteritis in humans in developed countries. Among Campylobacter spp. Campylobacter jejuni (C. jejuni) and C. coli are the most common causes of human infection. In this study, a multiplex PCR (mPCR) and high resolution melt (HRM) curve analysis were optimized for simultaneous detection and differentiation of C. jejuni and C. coli isolates. A segment of the hippuricase gene (hipO) of C. jejuni and putative aspartokinase (asp) gene of C. coli were amplified from 26 Campylobacter isolates and amplicons were subjected to HRM curve analysis. The mPCR-HRM was able to differentiate between C. jejuni and C. coli species. All DNA amplicons generated by mPCR were sequenced. Analysis of the nucleotide sequences from each isolate revealed that the HRM curves were correlated with the nucleotide sequences of the amplicons. Minor variation in melting point temperatures of C. coli or C. jejuni isolates was also observed and enabled some intraspecies differentiation between C. coli and/or C. jejuni isolates. The potential of PCR-HRM curve analysis for the detection and speciation of Campylobacter in additional human clinical specimens and chicken swab samples was also confirmed. The sensitivity and specificity of the test were found to be 100% and 92%, respectively. The results indicated that mPCR followed by HRM curve analysis provides a rapid (8 hours) technique for differentiation between C. jejuni and C. coli isolates. PMID:26394042
Fang, Weijia; Xu, Nong; Jin, Dazhi; Chen, Yu; Chen, Xiaogang; Zheng, Yi; Shen, Hong; Yuan, Ying; Zheng, Shusen
2012-01-01
Dihydropyrimidine dehydrogenase is a key enzyme acting on the metabolic pathway of medications for gastric cancer. High-resolution melting curve technology, which was developed recently, can distinguish the wild-type dihydropyrimidine dehydrogenase gene from multiple polymorphisms by fluorescent quantitative polymerase chain reaction products in a direct and effective manner. T85C polymorphisms of dihydropyrimidine dehydrogenase in the peripheral blood of 112 Chinese gastric cancer patients were detected by real-time polymerase chain reaction combined with high-resolution melting curve technology. Primer design, along with the reaction system and conditions, was optimized based on the GenBank sequence. Seventy nine cases of wild-type (TT, [70.5%]), 29 cases of heterozygous (TC, [25.9%]), and 4 cases of homozygous mutant (CC, [3.6%]) were observed. The result was completely consistent with the results of the sequencing. Real-time polymerase chain reaction combined with high-resolution melting curve technology is a rapid, simple, reliable, direct-viewing, and convenient method for the detection and screening of polymorphisms.
Chemometrics-assisted chromatographic fingerprinting: An illicit methamphetamine case study.
Shekari, Nafiseh; Vosough, Maryam; Tabar Heidar, Kourosh
2017-03-01
The volatile chemical constituents in complex mixtures can be analyzed using gas chromatography with mass spectrometry. This analysis allows the tentative identification of diverse impurities of an illicit methamphetamine sample. The acquired two-dimensional data of liquid-liquid extraction was resolved by multivariate curve resolution alternating curve resolution to elucidate the embedded peaks effectively. This is the first report on the application of a curve resolution approach for chromatogram fingerprinting to identify particularly the embedded impurities of a drug of abuse. Indeed, the strong and broad peak of methamphetamine makes identifying the underlying peaks problematic and even impossible. Mathematical separation instead of conventional chromatographic approaches was performed in a way that trace components embedded in methamphetamine peak were successfully resolved. Comprehensive analysis of the chromatogram, using multivariate curve resolution, resulted in elution profiles and mass spectra for each pure compound. Impurities such as benzaldehyde, benzyl alcohol, benzene, propenyl methyl ketone, benzyl methyl ketone, amphetamine, N-benzyl-2-methylaziridine, phenethylamine, N,N,α-trimethylamine, phenethylamine, N,α,α-trimethylmethamphetamine, N-acetylmethamphetamine, N-formylmethamphetamine, and other chemicals were identified. A route-specific impurity, N-benzyl-2-methylaziridine, indicating a synthesis route based on ephedrine/pseudoephedrine was identified. Moreover, this is the first report on the detection of impurities such as phenethylamine, N,α,α-trimethylamine (a structurally related impurity), and clonitazene (as an adulterant) in an illicit methamphetamine sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tabelow, Karsten; König, Reinhard; Polzehl, Jörg
2016-01-01
Estimation of learning curves is ubiquitously based on proportions of correct responses within moving trial windows. Thereby, it is tacitly assumed that learning performance is constant within the moving windows, which, however, is often not the case. In the present study we demonstrate that violations of this assumption lead to systematic errors in the analysis of learning curves, and we explored the dependency of these errors on window size, different statistical models, and learning phase. To reduce these errors in the analysis of single-subject data as well as on the population level, we propose adequate statistical methods for the estimation of learning curves and the construction of confidence intervals, trial by trial. Applied to data from an avoidance learning experiment with rodents, these methods revealed performance changes occurring at multiple time scales within and across training sessions which were otherwise obscured in the conventional analysis. Our work shows that the proper assessment of the behavioral dynamics of learning at high temporal resolution can shed new light on specific learning processes, and, thus, allows to refine existing learning concepts. It further disambiguates the interpretation of neurophysiological signal changes recorded during training in relation to learning. PMID:27303809
Motegi, Hiromi; Tsuboi, Yuuri; Saga, Ayako; Kagami, Tomoko; Inoue, Maki; Toki, Hideaki; Minowa, Osamu; Noda, Tetsuo; Kikuchi, Jun
2015-11-04
There is an increasing need to use multivariate statistical methods for understanding biological functions, identifying the mechanisms of diseases, and exploring biomarkers. In addition to classical analyses such as hierarchical cluster analysis, principal component analysis, and partial least squares discriminant analysis, various multivariate strategies, including independent component analysis, non-negative matrix factorization, and multivariate curve resolution, have recently been proposed. However, determining the number of components is problematic. Despite the proposal of several different methods, no satisfactory approach has yet been reported. To resolve this problem, we implemented a new idea: classifying a component as "reliable" or "unreliable" based on the reproducibility of its appearance, regardless of the number of components in the calculation. Using the clustering method for classification, we applied this idea to multivariate curve resolution-alternating least squares (MCR-ALS). Comparisons between conventional and modified methods applied to proton nuclear magnetic resonance ((1)H-NMR) spectral datasets derived from known standard mixtures and biological mixtures (urine and feces of mice) revealed that more plausible results are obtained by the modified method. In particular, clusters containing little information were detected with reliability. This strategy, named "cluster-aided MCR-ALS," will facilitate the attainment of more reliable results in the metabolomics datasets.
Banowary, Banya; Dang, Van Tuan; Sarker, Subir; Connolly, Joanne H; Chenu, Jeremy; Groves, Peter; Raidal, Shane; Ghorashi, Seyed Ali
2018-03-01
Campylobacter infection is a common cause of bacterial gastroenteritis in humans and remains a significant global public health issue. The capability of two multiplex PCR (mPCR)-high-resolution melt (HRM) curve analysis methods (i.e., mPCR1-HRM and mPCR2-HRM) to detect and differentiate 24 poultry isolates and three reference strains of Campylobacter jejuni and Campylobacter coli was investigated. Campylobacter jejuni and C. coli were successfully differentiated in both assays, but the differentiation power of mPCR2-HRM targeting the cadF gene was found superior to that of mPCR1-HRM targeting the gpsA gene or a hypothetical protein gene. However, higher intraspecies variation within C. coli and C. jejuni isolates was detected in mPCR1-HRM when compared with mPCR2-HRM. Both assays were rapid and required minimum interpretation skills for discrimination between and within Campylobacter species when using HRM curve analysis software.
Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that inverting high-frequency surface-wave dispersion curves - by a pair of traces through cross-correlation with phase-shift scanning method and with the damped least-square method and the singular-value decomposition technique - can feasibly achieve a reliable pseudo-2D S-wave velocity section with relatively high horizontal resolution. ?? 2008 Elsevier B.V. All rights reserved.
Fayaz, Shima; Fard-Esfahani, Pezhman; Fard-Esfahani, Armaghan; Mostafavi, Ehsan; Meshkani, Reza; Mirmiranpour, Hossein; Khaghani, Shahnaz
2012-01-01
Homologous recombination (HR) is the major pathway for repairing double strand breaks (DSBs) in eukaryotes and XRCC2 is an essential component of the HR repair machinery. To evaluate the potential role of mutations in gene repair by HR in individuals susceptible to differentiated thyroid carcinoma (DTC) we used high resolution melting (HRM) analysis, a recently introduced method for detecting mutations, to examine the entire XRCC2 coding region in an Iranian population. HRM analysis was used to screen for mutations in three XRCC2 coding regions in 50 patients and 50 controls. There was no variation in the HRM curves obtained from the analysis of exons 1 and 2 in the case and control groups. In exon 3, an Arg188His polymorphism (rs3218536) was detected as a new melting curve group (OR: 1.46; 95%CI: 0.432–4.969; p = 0.38) compared with the normal melting curve. We also found a new Ser150Arg polymorphism in exon 3 of the control group. These findings suggest that genetic variations in the XRCC2 coding region have no potential effects on susceptibility to DTC. However, further studies with larger populations are required to confirm this conclusion. PMID:22481871
Hewson, Kylie; Noormohammadi, Amir H; Devlin, Joanne M; Mardani, Karim; Ignjatovic, Jagoda
2009-01-01
Infectious bronchitis virus (IBV) is a coronavirus that causes upper respiratory, renal and/or reproductive diseases with high morbidity in poultry. Classification of IBV is important for implementation of vaccination strategies to control the disease in commercial poultry. Currently, the lengthy process of sequence analysis of the IBV S1 gene is considered the gold standard for IBV strain identification, with a high nucleotide identity (e.g. > or =95%) indicating related strains. However, this gene has a high propensity to mutate and/or undergo recombination, and alone it may not be reliable for strain identification. A real-time polymerase chain reaction (RT-PCR) combined with high-resolution melt (HRM) curve analysis was developed based on the 3'UTR of IBV for rapid detection and classification of IBV from commercial poultry. HRM curves generated from 230 to 435-bp PCR products of several IBV strains were subjected to further analysis using a mathematical model also developed during this study. It was shown that a combination of HRM curve analysis and the mathematical model could reliably group 189 out of 190 comparisons of pairs of IBV strains in accordance with their 3'UTR and S1 gene identities. The newly developed RT-PCR/HRM curve analysis model could detect and rapidly identify novel and vaccine-related IBV strains, as confirmed by S1 gene and 3'UTR nucleotide sequences. This model is a rapid, reliable, accurate and non-subjective system for detection of IBVs in poultry flocks.
Analysis of Self-Associating Proteins by Singular Value Decomposition of Solution Scattering Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, Tim E.; Craig, Bruce A.; Kondrashkina, Elena
2008-07-08
We describe a method by which a single experiment can reveal both association model (pathway and constants) and low-resolution structures of a self-associating system. Small-angle scattering data are collected from solutions at a range of concentrations. These scattering data curves are mass-weighted linear combinations of the scattering from each oligomer. Singular value decomposition of the data yields a set of basis vectors from which the scattering curve for each oligomer is reconstructed using coefficients that depend on the association model. A search identifies the association pathway and constants that provide the best agreement between reconstructed and observed data. Using simulatedmore » data with realistic noise, our method finds the correct pathway and association constants. Depending on the simulation parameters, reconstructed curves for each oligomer differ from the ideal by 0.050.99% in median absolute relative deviation. The reconstructed scattering curves are fundamental to further analysis, including interatomic distance distribution calculation and low-resolution ab initio shape reconstruction of each oligomer in solution. This method can be applied to x-ray or neutron scattering data from small angles to moderate (or higher) resolution. Data can be taken under physiological conditions, or particular conditions (e.g., temperature) can be varied to extract fundamental association parameters ({Delta}H{sub ass}, S{sub ass}).« less
Kumar, Keshav
2017-11-01
Multivariate curve resolution alternating least square (MCR-ALS) analysis is the most commonly used curve resolution technique. The MCR-ALS model is fitted using the alternate least square (ALS) algorithm that needs initialisation of either contribution profiles or spectral profiles of each of the factor. The contribution profiles can be initialised using the evolve factor analysis; however, in principle, this approach requires that data must belong to the sequential process. The initialisation of the spectral profiles are usually carried out using the pure variable approach such as SIMPLISMA algorithm, this approach demands that each factor must have the pure variables in the data sets. Despite these limitations, the existing approaches have been quite a successful for initiating the MCR-ALS analysis. However, the present work proposes an alternate approach for the initialisation of the spectral variables by generating the random variables in the limits spanned by the maxima and minima of each spectral variable of the data set. The proposed approach does not require that there must be pure variables for each component of the multicomponent system or the concentration direction must follow the sequential process. The proposed approach is successfully validated using the excitation-emission matrix fluorescence data sets acquired for certain fluorophores with significant spectral overlap. The calculated contribution and spectral profiles of these fluorophores are found to correlate well with the experimental results. In summary, the present work proposes an alternate way to initiate the MCR-ALS analysis.
NASA Astrophysics Data System (ADS)
Barrineau, C. P.; Dobreva, I. D.; Bishop, M. P.; Houser, C.
2014-12-01
Aeolian systems are ideal natural laboratories for examining self-organization in patterned landscapes, as certain wind regimes generate certain morphologies. Topographic information and scale dependent analysis offer the opportunity to study such systems and characterize process-form relationships. A statistically based methodology for differentiating aeolian features would enable the quantitative association of certain surface characteristics with certain morphodynamic regimes. We conducted a multi-resolution analysis of LiDAR elevation data to assess scale-dependent morphometric variations in an aeolian landscape in South Texas. For each pixel, mean elevation values are calculated along concentric circles moving outward at 100-meter intervals (i.e. 500 m, 600 m, 700 m from pixel). The calculated average elevation values plotted against distance from the pixel of interest as curves are used to differentiate multi-scalar variations in elevation across the landscape. In this case, it is hypothesized these curves may be used to quantitatively differentiate certain morphometries from others like a spectral signature may be used to classify paved surfaces from natural vegetation, for example. After generating multi-resolution curves for all the pixels in a selected area of interest (AOI), a Principal Components Analysis is used to highlight commonalities and singularities between generated curves from pixels across the AOI. Our findings suggest that the resulting components could be used for identification of discrete aeolian features like open sands, trailing ridges and active dune crests, and, in particular, zones of deflation. This new approach to landscape characterization not only works to mitigate bias introduced when researchers must select training pixels for morphometric investigations, but can also reveal patterning in aeolian landscapes that would not be as obvious without quantitative characterization.
NASA Astrophysics Data System (ADS)
Xu, Si-Yao; Li, Zhuo
2014-04-01
Complete high-resolution light curves of GRB 080319B observed by Swift present an opportunity for detailed temporal analysis of prompt optical emission. With a two-component distribution of initial Lorentz factors, we simulate the dynamical process of shells being ejected from the central engine in the framework of the internal shock model. The emitted radiations are decomposed into different frequency ranges for a temporal correlation analysis between the light curves in different energy bands. The resulting prompt optical and gamma-ray emissions show similar temporal profiles, with both showing a superposition of a component with slow variability and a component with fast variability, except that the gamma-ray light curve is much more variable than its optical counterpart. The variability in the simulated light curves and the strong correlation with a time lag between the optical and gamma-ray emissions are in good agreement with observations of GRB 080319B. Our simulations suggest that the variations seen in the light curves stem from the temporal structure of the shells injected from the central engine of gamma-ray bursts. Future observations with high temporal resolution of prompt optical emission from GRBs, e.g., by UFFO-Pathfinder and SVOM-GWAC, will provide a useful tool for investigating the central engine activity.
NASA Technical Reports Server (NTRS)
Ioup, George E.; Ioup, Juliette W.
1991-01-01
The final report for work on the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution is presented. Papers and theses prepared during the research report period are included. Among all the research results reported, note should be made of the specific investigation of the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution. A methodology was developed to determine design and operation parameters for error minimization when deconvolution is included in data analysis. An error surface is plotted versus the signal-to-noise ratio (SNR) and all parameters of interest. Instrumental characteristics will determine a curve in this space. The SNR and parameter values which give the projection from the curve to the surface, corresponding to the smallest value for the error, are the optimum values. These values are constrained by the curve and so will not necessarily correspond to an absolute minimum in the error surface.
NASA Astrophysics Data System (ADS)
Petroselli, A.; Grimaldi, S.; Romano, N.
2012-12-01
The Soil Conservation Service - Curve Number (SCS-CN) method is a popular rainfall-runoff model widely used to estimate losses and direct runoff from a given rainfall event, but its use is not appropriate at sub-daily time resolution. To overcome this drawback, a mixed procedure, referred to as CN4GA (Curve Number for Green-Ampt), was recently developed including the Green-Ampt (GA) infiltration model and aiming to distribute in time the information provided by the SCS-CN method. The main concept of the proposed mixed procedure is to use the initial abstraction and the total volume given by the SCS-CN to calibrate the Green-Ampt soil hydraulic conductivity parameter. The procedure is here applied on a real case study and a sensitivity analysis concerning the remaining parameters is presented; results show that CN4GA approach is an ideal candidate for the rainfall excess analysis at sub-daily time resolution, in particular for ungauged basin lacking of discharge observations.
Hugelier, Siewert; Vitale, Raffaele; Ruckebusch, Cyril
2018-03-01
This article explores smoothing with edge-preserving properties as a spatial constraint for the resolution of hyperspectral images with multivariate curve resolution-alternating least squares (MCR-ALS). For each constrained component image (distribution map), irrelevant spatial details and noise are smoothed applying an L 1 - or L 0 -norm penalized least squares regression, highlighting in this way big changes in intensity of adjacent pixels. The feasibility of the constraint is demonstrated on three different case studies, in which the objects under investigation are spatially clearly defined, but have significant spectral overlap. This spectral overlap is detrimental for obtaining a good resolution and additional spatial information should be provided. The final results show that the spatial constraint enables better image (map) abstraction, artifact removal, and better interpretation of the results obtained, compared to a classical MCR-ALS analysis of hyperspectral images.
Ghorashi, Seyed A.; Kanci, Anna; Noormohammadi, Amir H.
2015-01-01
Pathogenicity and presentation of Mycoplasma gallisepticum (MG) infection may differ from one strain to another and this may have implications on control measures. Infection of individual birds with more than one MG strain has been reported. A PCR followed by high resolution melt (HRM) curve analysis has been developed in our laboratory and routinely used for detection and differentiation of MG strains. However the potential of this test for identification of MG strains in a mixed specimen has not been evaluated. In the present study, the capability of PCR-HRM curve analysis technique, targeting vlhA and pvpA genes was assessed for identification of individual MG strains in a mixed population. Different DNA ratios of two MG strains from 1 to 10-4 ng were tested with some generated conventional and normalized curves distinct from those of individual strains alone. Using genotype confidence percentages (GCP) generated from HRM curve analysis, it was found that vlhA PCR-HRM was more consistent than pvpA PCR-HRM for the detection of MG ts-11 vaccine strain mixed with any of the MG strains 6/85, F, S6 or a field isolate. The potential of vlhA PCR-HRM to detect mixed MG strains in a specimen was found to be primarily dependent on quantity and proportion of the target DNAs in the mixture. This is the first study examining the capacity of PCR-HRM technique for identification of individual MG strains in a mixed strain population. PMID:25970590
Omar, Jone; Olivares, Maitane; Amigo, José Manuel; Etxebarria, Nestor
2014-04-01
Comprehensive Two Dimensional Gas Chromatography - Mass Spectrometry (GC × GC/qMS) analysis of Cannabis sativa extracts shows a high complexity due to the large variety of terpenes and cannabinoids and to the fact that the complete resolution of the peaks is not straightforwardly achieved. In order to support the resolution of the co-eluted peaks in the sesquiterpene and the cannabinoid chromatographic region the combination of Multivariate Curve Resolution and Alternating Least Squares algorithms was satisfactorily applied. As a result, four co-eluting areas were totally resolved in the sesquiterpene region and one in the cannabinoid region in different samples of Cannabis sativa. The comparison of the mass spectral profiles obtained for each resolved peak with theoretical mass spectra allowed the identification of some of the co-eluted peaks. Finally, the classification of the studied samples was achieved based on the relative concentrations of the resolved peaks. Copyright © 2014 Elsevier B.V. All rights reserved.
De Luca, Michele; Ragno, Gaetano; Ioele, Giuseppina; Tauler, Romà
2014-07-21
An advanced and powerful chemometric approach is proposed for the analysis of incomplete multiset data obtained by fusion of hyphenated liquid chromatographic DAD/MS data with UV spectrophotometric data from acid-base titration and kinetic degradation experiments. Column- and row-wise augmented data blocks were combined and simultaneously processed by means of a new version of the multivariate curve resolution-alternating least squares (MCR-ALS) technique, including the simultaneous analysis of incomplete multiset data from different instrumental techniques. The proposed procedure was applied to the detailed study of the kinetic photodegradation process of the amiloride (AML) drug. All chemical species involved in the degradation and equilibrium reactions were resolved and the pH dependent kinetic pathway described. Copyright © 2014 Elsevier B.V. All rights reserved.
Gemperline, Paul J; Cash, Eric
2003-08-15
A new algorithm for self-modeling curve resolution (SMCR) that yields improved results by incorporating soft constraints is described. The method uses least squares penalty functions to implement constraints in an alternating least squares algorithm, including nonnegativity, unimodality, equality, and closure constraints. By using least squares penalty functions, soft constraints are formulated rather than hard constraints. Significant benefits are (obtained using soft constraints, especially in the form of fewer distortions due to noise in resolved profiles. Soft equality constraints can also be used to introduce incomplete or partial reference information into SMCR solutions. Four different examples demonstrating application of the new method are presented, including resolution of overlapped HPLC-DAD peaks, flow injection analysis data, and batch reaction data measured by UV/visible and near-infrared spectroscopy (NIR). Each example was selected to show one aspect of the significant advantages of soft constraints over traditionally used hard constraints. Incomplete or partial reference information into self-modeling curve resolution models is described. The method offers a substantial improvement in the ability to resolve time-dependent concentration profiles from mixture spectra recorded as a function of time.
Vajna, Balázs; Farkas, Attila; Pataki, Hajnalka; Zsigmond, Zsolt; Igricz, Tamás; Marosi, György
2012-01-27
Chemical imaging is a rapidly emerging analytical method in pharmaceutical technology. Due to the numerous chemometric solutions available, characterization of pharmaceutical samples with unknown components present has also become possible. This study compares the performance of current state-of-the-art curve resolution methods (multivariate curve resolution-alternating least squares, positive matrix factorization, simplex identification via split augmented Lagrangian and self-modelling mixture analysis) in the estimation of pure component spectra from Raman maps of differently manufactured pharmaceutical tablets. The batches of different technologies differ in the homogeneity level of the active ingredient, thus, the curve resolution methods are tested under different conditions. An empirical approach is shown to determine the number of components present in a sample. The chemometric algorithms are compared regarding the number of detected components, the quality of the resolved spectra and the accuracy of scores (spectral concentrations) compared to those calculated with classical least squares, using the true pure component (reference) spectra. It is demonstrated that using appropriate multivariate methods, Raman chemical imaging can be a useful tool in the non-invasive characterization of unknown (e.g. illegal or counterfeit) pharmaceutical products. Copyright © 2011 Elsevier B.V. All rights reserved.
Marro, M; Nieva, C; Sanz-Pamplona, R; Sierra, A
2014-09-01
In breast cancer the presence of cells undergoing the epithelial-to-mesenchymal transition is indicative of metastasis progression. Since metabolic features of breast tumour cells are critical in cancer progression and drug resistance, we hypothesized that the lipid content of malignant cells might be a useful indirect measure of cancer progression. In this study Multivariate Curve Resolution was applied to cellular Raman spectra to assess the metabolic composition of breast cancer cells undergoing the epithelial to mesenchymal transition. Multivariate Curve Resolution analysis led to the conclusion that this transition affects the lipid profile of cells, increasing tryptophan but maintaining a low fatty acid content in comparison with highly metastatic cells. Supporting those results, a Partial Least Square-Discriminant analysis was performed to test the ability of Raman spectroscopy to discriminate the initial steps of epithelial to mesenchymal transition in breast cancer cells. We achieved a high level of sensitivity and specificity, 94% and 100%, respectively. In conclusion, Raman microspectroscopy coupled with Multivariate Curve Resolution enables deconvolution and tracking of the molecular content of cancer cells during a biochemical process, being a powerful, rapid, reagent-free and non-invasive tool for identifying metabolic features of breast cancer cell aggressiveness at first stages of malignancy. Copyright © 2014 Elsevier B.V. All rights reserved.
Ruijter, Jan M; Pfaffl, Michael W; Zhao, Sheng; Spiess, Andrej N; Boggy, Gregory; Blom, Jochen; Rutledge, Robert G; Sisti, Davide; Lievens, Antoon; De Preter, Katleen; Derveaux, Stefaan; Hellemans, Jan; Vandesompele, Jo
2013-01-01
RNA transcripts such as mRNA or microRNA are frequently used as biomarkers to determine disease state or response to therapy. Reverse transcription (RT) in combination with quantitative PCR (qPCR) has become the method of choice to quantify small amounts of such RNA molecules. In parallel with the democratization of RT-qPCR and its increasing use in biomedical research or biomarker discovery, we witnessed a growth in the number of gene expression data analysis methods. Most of these methods are based on the principle that the position of the amplification curve with respect to the cycle-axis is a measure for the initial target quantity: the later the curve, the lower the target quantity. However, most methods differ in the mathematical algorithms used to determine this position, as well as in the way the efficiency of the PCR reaction (the fold increase of product per cycle) is determined and applied in the calculations. Moreover, there is dispute about whether the PCR efficiency is constant or continuously decreasing. Together this has lead to the development of different methods to analyze amplification curves. In published comparisons of these methods, available algorithms were typically applied in a restricted or outdated way, which does not do them justice. Therefore, we aimed at development of a framework for robust and unbiased assessment of curve analysis performance whereby various publicly available curve analysis methods were thoroughly compared using a previously published large clinical data set (Vermeulen et al., 2009) [11]. The original developers of these methods applied their algorithms and are co-author on this study. We assessed the curve analysis methods' impact on transcriptional biomarker identification in terms of expression level, statistical significance, and patient-classification accuracy. The concentration series per gene, together with data sets from unpublished technical performance experiments, were analyzed in order to assess the algorithms' precision, bias, and resolution. While large differences exist between methods when considering the technical performance experiments, most methods perform relatively well on the biomarker data. The data and the analysis results per method are made available to serve as benchmark for further development and evaluation of qPCR curve analysis methods (http://qPCRDataMethods.hfrc.nl). Copyright © 2012 Elsevier Inc. All rights reserved.
De Luca, Michele; Ioele, Giuseppina; Mas, Sílvia; Tauler, Romà; Ragno, Gaetano
2012-11-21
Amiloride photostability at different pH values was studied in depth by applying Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) to the UV spectrophotometric data from drug solutions exposed to stressing irradiation. Resolution of all degradation photoproducts was possible by simultaneous spectrophotometric analysis of kinetic photodegradation and acid-base titration experiments. Amiloride photodegradation showed to be strongly dependent on pH. Two hard modelling constraints were sequentially used in MCR-ALS for the unambiguous resolution of all the species involved in the photodegradation process. An amiloride acid-base system was defined by using the equilibrium constraint, and the photodegradation pathway was modelled taking into account the kinetic constraint. The simultaneous analysis of photodegradation and titration experiments revealed the presence of eight different species, which were differently distributed according to pH and time. Concentration profiles of all the species as well as their pure spectra were resolved and kinetic rate constants were estimated. The values of rate constants changed with pH and under alkaline conditions the degradation pathway and photoproducts also changed. These results were compared to those obtained by LC-MS analysis from drug photodegradation experiments. MS analysis allowed the identification of up to five species and showed the simultaneous presence of more than one acid-base equilibrium.
Dehghani, Mansoureh; Mohammadi, Mohammad Ali; Rostami, Sima; Shamsaddini, Saeedeh; Mirbadie, Seyed Reza; Harandi, Majid Fasihi
2016-07-01
Tapeworms of the genus Taenia include several species of important parasites with considerable medical and veterinary significance. Accurate identification of these species in dogs is the prerequisite of any prevention and control program. Here, we have applied an efficient method for differentiating four major Taeniid species in dogs, i.e., Taenia hydatigena, T. multiceps, T. ovis, and Echinococcus granulosus sensu stricto. High-resolution melting (HRM) analysis is simpler, less expensive, and faster technique than conventional DNA-based assays and enables us to detect PCR amplicons in a closed system. Metacestode samples were collected from local abattoirs from sheep. All the isolates had already been identified by PCR-sequencing, and their sequence data were deposited in the GenBank. Real-time PCR coupled with HRM analysis targeting mitochondrial cox1 and ITS1 genes was used to differentiate taeniid species. Distinct melting curves were obtained from ITS1 region enabling accurate differentiation of three Taenia species and E. granulosus in dogs. The HRM curves of Taenia species and E .granulosus were clearly separated at Tm of 85 to 87 °C. In addition, double-pick melting curves were produced in mixed infections. Cox1 melting curves were not decisive enough to distinguish four taeniids. In this work, the efficiency of HRM analysis to differentiate four major taeniid species in dogs has been demonstrated using ITS1 gene.
Can low-resolution airborne laser scanning data be used to model stream rating curves?
Lyon, Steve; Nathanson, Marcus; Lam, Norris; Dahlke, Helen; Rutzinger, Martin; Kean, Jason W.; Laudon, Hjalmar
2015-01-01
This pilot study explores the potential of using low-resolution (0.2 points/m2) airborne laser scanning (ALS)-derived elevation data to model stream rating curves. Rating curves, which allow the functional translation of stream water depth into discharge, making them integral to water resource monitoring efforts, were modeled using a physics-based approach that captures basic geometric measurements to establish flow resistance due to implicit channel roughness. We tested synthetically thinned high-resolution (more than 2 points/m2) ALS data as a proxy for low-resolution data at a point density equivalent to that obtained within most national-scale ALS strategies. Our results show that the errors incurred due to the effect of low-resolution versus high-resolution ALS data were less than those due to flow measurement and empirical rating curve fitting uncertainties. As such, although there likely are scale and technical limitations to consider, it is theoretically possible to generate rating curves in a river network from ALS data of the resolution anticipated within national-scale ALS schemes (at least for rivers with relatively simple geometries). This is promising, since generating rating curves from ALS scans would greatly enhance our ability to monitor streamflow by simplifying the overall effort required.
NASA Astrophysics Data System (ADS)
Weber, M. E.; Reichelt, L.; Kuhn, G.; Thurow, J. W.; Ricken, W.
2009-12-01
We present software-based tools for rapid and quantitative detection of sediment lamination. The BMPix tool extracts color and gray-scale curves from images at ultrahigh (pixel) resolution. The PEAK tool uses the gray-scale curve and performs, for the first time, fully automated counting of laminae based on three methods. The maximum count algorithm counts every bright peak of a couplet of two laminae (annual resolution) in a Gaussian smoothed gray-scale curve. The zero-crossing algorithm counts every positive and negative halfway-passage of the gray-scale curve through a wide moving average. Hence, the record is separated into bright and dark intervals (seasonal resolution). The same is true for the frequency truncation method, which uses Fourier transformation to decompose the gray-scale curve into its frequency components, before positive and negative passages are count. We applied the new methods successfully to tree rings and to well-dated and already manually counted marine varves from Saanich Inlet before we adopted the tools to rather complex marine laminae from the Antarctic continental margin. In combination with AMS14C dating, we found convincing evidence that the laminations from three Weddell Sea sites represent true varves that were deposited on sediment ridges over several millennia during the last glacial maximum (LGM). There are apparently two seasonal layers of terrigenous composition, a coarser-grained bright layer, and a finer-grained dark layer. The new tools offer several advantages over previous tools. The counting procedures are based on a moving average generated from gray-scale curves instead of manual counting. Hence, results are highly objective and rely on reproducible mathematical criteria. Since PEAK associates counts with a specific depth, the thickness of each year or each season is also measured which is an important prerequisite for later spectral analysis. Since all information required to conduct the analysis is displayed graphically, interactive optimization of the counting algorithms can be achieved quickly and conveniently.
Piqueras, Sara; Bedia, Carmen; Beleites, Claudia; Krafft, Christoph; Popp, Jürgen; Maeder, Marcel; Tauler, Romà; de Juan, Anna
2018-06-05
Data fusion of different imaging techniques allows a comprehensive description of chemical and biological systems. Yet, joining images acquired with different spectroscopic platforms is complex because of the different sample orientation and image spatial resolution. Whereas matching sample orientation is often solved by performing suitable affine transformations of rotation, translation, and scaling among images, the main difficulty in image fusion is preserving the spatial detail of the highest spatial resolution image during multitechnique image analysis. In this work, a special variant of the unmixing algorithm Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) for incomplete multisets is proposed to provide a solution for this kind of problem. This algorithm allows analyzing simultaneously images collected with different spectroscopic platforms without losing spatial resolution and ensuring spatial coherence among the images treated. The incomplete multiset structure concatenates images of the two platforms at the lowest spatial resolution with the image acquired with the highest spatial resolution. As a result, the constituents of the sample analyzed are defined by a single set of distribution maps, common to all platforms used and with the highest spatial resolution, and their related extended spectral signatures, covering the signals provided by each of the fused techniques. We demonstrate the potential of the new variant of MCR-ALS for multitechnique analysis on three case studies: (i) a model example of MIR and Raman images of pharmaceutical mixture, (ii) FT-IR and Raman images of palatine tonsil tissue, and (iii) mass spectrometry and Raman images of bean tissue.
Rao, Dan; Wu, Miaoli; Wang, Jing; Yuan, Wen; Zhu, Yujun; Cong, Feng; Xu, Fengjiao; Lian, Yuexiao; Huang, Bihong; Wu, Qiwen; Chen, Meili; Zhang, Yu; Huang, Ren; Guo, Pengju
2017-12-01
Murine parvovirus is one of the most prevalent infectious pathogens in mouse colonies. A specific primer pair targeting the VP2 gene of minute virus of mice (MVM) and mouse parvovirus (MPV) was utilized for high resolution melting (HRM) analysis. The resulting melting curves could distinguish these two virus strains and there was no detectable amplification of the other mouse pathogens which included rat parvovirus (KRV), ectromelia virus (ECT), mouse adenovirus (MAD), mouse cytomegalovirus (MCMV), polyoma virus (Poly), Helicobactor hepaticus (H. hepaticus) and Salmonella typhimurium (S. typhimurium). The detection limit of the standard was 10 copies/μL. This study showed that the PCR-HRM assay could be an alternative useful method with high specificity and sensitivity for differentiating murine parvovirus strains MVM and MPV. Copyright © 2017 Elsevier B.V. All rights reserved.
A Multi-Resolution Nonlinear Mapping Technique for Design and Analysis Applications
NASA Technical Reports Server (NTRS)
Phan, Minh Q.
1998-01-01
This report describes a nonlinear mapping technique where the unknown static or dynamic system is approximated by a sum of dimensionally increasing functions (one-dimensional curves, two-dimensional surfaces, etc.). These lower dimensional functions are synthesized from a set of multi-resolution basis functions, where the resolutions specify the level of details at which the nonlinear system is approximated. The basis functions also cause the parameter estimation step to become linear. This feature is taken advantage of to derive a systematic procedure to determine and eliminate basis functions that are less significant for the particular system under identification. The number of unknown parameters that must be estimated is thus reduced and compact models obtained. The lower dimensional functions (identified curves and surfaces) permit a kind of "visualization" into the complexity of the nonlinearity itself.
A Multi-Resolution Nonlinear Mapping Technique for Design and Analysis Application
NASA Technical Reports Server (NTRS)
Phan, Minh Q.
1997-01-01
This report describes a nonlinear mapping technique where the unknown static or dynamic system is approximated by a sum of dimensionally increasing functions (one-dimensional curves, two-dimensional surfaces, etc.). These lower dimensional functions are synthesized from a set of multi-resolution basis functions, where the resolutions specify the level of details at which the nonlinear system is approximated. The basis functions also cause the parameter estimation step to become linear. This feature is taken advantage of to derive a systematic procedure to determine and eliminate basis functions that are less significant for the particular system under identification. The number of unknown parameters that must be estimated is thus reduced and compact models obtained. The lower dimensional functions (identified curves and surfaces) permit a kind of "visualization" into the complexity of the nonlinearity itself.
Hydrological landscape analysis based on digital elevation data
NASA Astrophysics Data System (ADS)
Seibert, J.; McGlynn, B.; Grabs, T.; Jensco, K.
2008-12-01
Topography is a major factor controlling both hydrological and soil processes at the landscape scale. While this is well-accepted qualitatively, quantifying relationships between topography and spatial variations of hydrologically relevant variables at the landscape scale still remains a challenging research topic. In this presentation, we describe hydrological landscape analysis HLA) as a way to derive relevant topographic indicies to describe the spatial variations of hydrological variables at the landscape scale. We demonstrate our HLA approach with four high-resolution digital elevation models (DEMs) from Sweden, Switzerland and Montana (USA). To investigate scale effects HLA metrics, we compared DEMs of different resolutions. These LiDAR-derived DEMs of 3m, 10m, and 30m, resolution represent catchments of ~ 5 km2 ranging from low to high relief. A central feature of HLA is the flowpath-based analysis of topography and the separation of hillslopes, riparian areas, and the stream network. We included the following metrics: riparian area delineation, riparian buffer potential, separation of stream inflows into right and left bank components, travel time proxies based on flowpath distances and gradients to the channel, and as a hydrologic similarity to the hypsometric curve we suggest the distribution of elevations above the stream network (computed based on the location where a certain flow pathway enters the stream). Several of these indices depended clearly on DEM resolution, whereas this effect was minor for others. While the hypsometric curves all were S-shaped the 'hillslope-hypsometric curves' had the shape of a power function with exponents less than 1. In a similar way we separated flow pathway lengths and gradients between hillslopes and streams and compared a topographic travel time proxy, which was based on the integration of gradients along the flow pathways. Besides the comparison of HLA-metrics for different catchments and DEM resolutions we present examples from experimental catchments to illustrate how these metrics can be used to describe catchment scale hydrological processes and provide context for plot scale observations.
Microstructural analysis of aluminum high pressure die castings
NASA Astrophysics Data System (ADS)
David, Maria Diana
Microstructural analysis of aluminum high pressure die castings (HPDC) is challenging and time consuming. Automating the stereology method is an efficient way in obtaining quantitative data; however, validating the accuracy of this technique can also pose some challenges. In this research, a semi-automated algorithm to quantify microstructural features in aluminum HPDC was developed. Analysis was done near the casting surface where it exhibited fine microstructure. Optical and Secondary electron (SE) and backscatter electron (BSE) SEM images were taken to characterize the features in the casting. Image processing steps applied on SEM and optical micrographs included median and range filters, dilation, erosion, and a hole-closing function. Measurements were done on different image pixel resolutions that ranged from 3 to 35 pixel/μm. Pixel resolutions below 6 px/μm were too low for the algorithm to distinguish the phases from each other. At resolutions higher than 6 px/μm, the volume fraction of primary α-Al and the line intercept count curves plateaued. Within this range, comparable results were obtained validating the assumption that there is a range of image pixel resolution relative to the size of the casting features at which stereology measurements become independent of the image resolution. Volume fraction within this curve plateau was consistent with the manual measurements while the line intercept count was significantly higher using the computerized technique for all resolutions. This was attributed to the ragged edges of some primary α-Al; hence, the algorithm still needs some improvements. Further validation of the code using other castings or alloys with known phase amount and size may also be beneficial.
Skibiński, Robert; Komsta, Łukasz
2012-01-01
The photodegradation of moclobemide was studied in methanolic media. Ultra-HPLC (UHPLC)/MS/MS analysis proved decomposition to 4-chlorobenzamide as a major degradation product and small amounts of Ro 16-3177 (4-chloro-N-[2-[(2-hydroxyethyl)amino] ethyl]benzamide) and 2-[(4-chlorobenzylidene)amino]-N-[2-ethoxyethenyl]ethenamine. The methanolic solution was investigated spectrophotometrically in the UV region, registering the spectra during 30 min of degradation. Using reference spectra and a multivariate chemometric method (multivariate curve resolution-alternating least squares), the spectra were resolved and concentration profiles were obtained. The obtained results were in good agreement with a quantitative approach, with UHPLC-diode array detection as the reference method.
Feng, Xiao-Liang; He, Yun-biao; Liang, Yi-Zeng; Wang, Yu-Lin; Huang, Lan-Fang; Xie, Jian-Wei
2013-01-01
Gas chromatography-mass spectrometry and multivariate curve resolution were applied to the differential analysis of the volatile components in Agrimonia eupatoria specimens from different plant parts. After extracted with water distillation method, the volatile components in Agrimonia eupatoria from leaves and roots were detected by GC-MS. Then the qualitative and quantitative analysis of the volatile components in the main root of Agrimonia eupatoria was completed with the help of subwindow factor analysis resolving two-dimensional original data into mass spectra and chromatograms. 68 of 87 separated constituents in the total ion chromatogram of the volatile components were identified and quantified, accounting for about 87.03% of the total content. Then, the common peaks in leaf were extracted with orthogonal projection resolution method. Among the components determined, there were 52 components coexisting in the studied samples although the relative content of each component showed difference to some extent. The results showed a fair consistency in their GC-MS fingerprint. It was the first time to apply orthogonal projection method to compare different plant parts of Agrimonia eupatoria, and it reduced the burden of qualitative analysis as well as the subjectivity. The obtained results proved the combined approach powerful for the analysis of complex Agrimonia eupatoria samples. The developed method can be used to further study and quality control of Agrimonia eupatoria. PMID:24286016
Feng, Xiao-Liang; He, Yun-Biao; Liang, Yi-Zeng; Wang, Yu-Lin; Huang, Lan-Fang; Xie, Jian-Wei
2013-01-01
Gas chromatography-mass spectrometry and multivariate curve resolution were applied to the differential analysis of the volatile components in Agrimonia eupatoria specimens from different plant parts. After extracted with water distillation method, the volatile components in Agrimonia eupatoria from leaves and roots were detected by GC-MS. Then the qualitative and quantitative analysis of the volatile components in the main root of Agrimonia eupatoria was completed with the help of subwindow factor analysis resolving two-dimensional original data into mass spectra and chromatograms. 68 of 87 separated constituents in the total ion chromatogram of the volatile components were identified and quantified, accounting for about 87.03% of the total content. Then, the common peaks in leaf were extracted with orthogonal projection resolution method. Among the components determined, there were 52 components coexisting in the studied samples although the relative content of each component showed difference to some extent. The results showed a fair consistency in their GC-MS fingerprint. It was the first time to apply orthogonal projection method to compare different plant parts of Agrimonia eupatoria, and it reduced the burden of qualitative analysis as well as the subjectivity. The obtained results proved the combined approach powerful for the analysis of complex Agrimonia eupatoria samples. The developed method can be used to further study and quality control of Agrimonia eupatoria.
Estuarial fingerprinting through multidimensional fluorescence and multivariate analysis.
Hall, Gregory J; Clow, Kerin E; Kenny, Jonathan E
2005-10-01
As part of a strategy for preventing the introduction of aquatic nuisance species (ANS) to U.S. estuaries, ballast water exchange (BWE) regulations have been imposed. Enforcing these regulations requires a reliable method for determining the port of origin of water in the ballast tanks of ships entering U.S. waters. This study shows that a three-dimensional fluorescence fingerprinting technique, excitation emission matrix (EEM) spectroscopy, holds great promise as a ballast water analysis tool. In our technique, EEMs are analyzed by multivariate classification and curve resolution methods, such as N-way partial least squares Regression-discriminant analysis (NPLS-DA) and parallel factor analysis (PARAFAC). We demonstrate that classification techniques can be used to discriminate among sampling sites less than 10 miles apart, encompassing Boston Harbor and two tributaries in the Mystic River Watershed. To our knowledge, this work is the first to use multivariate analysis to classify water as to location of origin. Furthermore, it is shown that curve resolution can show seasonal features within the multidimensional fluorescence data sets, which correlate with difficulty in classification.
First results from stellar occultations in the "GAIA era"
NASA Astrophysics Data System (ADS)
Benedetti-Rossi, G.; Vieira-Martins, R.; Sicardy, B.
2017-09-01
Stellar occultation is a powerful technique to study distant solar system bodies. It allows high angular resolution of the occulting body from the analysis of a light curve acquired with high temporal resolution with uncertainties comparable as probes. In the "GAIA era", stellar occultations is now able to obtain even more impressive results such as the presence of atmosphere, rings and topographic features.
Fadel, Maya Abou; de Juan, Anna; Vezin, Hervé; Duponchel, Ludovic
2016-12-01
Electron paramagnetic resonance (EPR) spectroscopy is a powerful technique that is able to characterize radicals formed in kinetic reactions. However, spectral characterization of individual chemical species is often limited or even unmanageable due to the severe kinetic and spectral overlap among species in kinetic processes. Therefore, we applied, for the first time, multivariate curve resolution-alternating least squares (MCR-ALS) method to EPR time evolving data sets to model and characterize the different constituents in a kinetic reaction. Here we demonstrate the advantage of multivariate analysis in the investigation of radicals formed along the kinetic process of hydroxycoumarin in alkaline medium. Multiset analysis of several EPR-monitored kinetic experiments performed in different conditions revealed the individual paramagnetic centres as well as their kinetic profiles. The results obtained by MCR-ALS method demonstrate its prominent potential in analysis of EPR time evolved spectra. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamasaki, Hideki; Morita, Shigeaki
2018-05-01
Multivariate curve resolution (MCR) was applied to a hetero-spectrally combined dataset consisting of mid-infrared (MIR) and near-infrared (NIR) spectra collected during the isothermal curing reaction of an epoxy resin. An epoxy monomer, bisphenol A diglycidyl ether (BADGE), and a hardening agent, 4,4‧-diaminodiphenyl methane (DDM), were used for the reaction. The fundamental modes of the Nsbnd H and Osbnd H stretches were highly overlapped in the MIR region, while their first overtones could be independently identified in the NIR region. The concentration profiles obtained by MCR using the hetero-spectral combination showed good agreement with the results of calculations based on the Beer-Lambert law and the mass balance. The band assignments and absorption sites estimated by the analysis also showed good agreement with the results using two-dimensional (2D) hetero-correlation spectroscopy.
Yamasaki, Hideki; Morita, Shigeaki
2018-05-15
Multivariate curve resolution (MCR) was applied to a hetero-spectrally combined dataset consisting of mid-infrared (MIR) and near-infrared (NIR) spectra collected during the isothermal curing reaction of an epoxy resin. An epoxy monomer, bisphenol A diglycidyl ether (BADGE), and a hardening agent, 4,4'-diaminodiphenyl methane (DDM), were used for the reaction. The fundamental modes of the NH and OH stretches were highly overlapped in the MIR region, while their first overtones could be independently identified in the NIR region. The concentration profiles obtained by MCR using the hetero-spectral combination showed good agreement with the results of calculations based on the Beer-Lambert law and the mass balance. The band assignments and absorption sites estimated by the analysis also showed good agreement with the results using two-dimensional (2D) hetero-correlation spectroscopy. Copyright © 2017 Elsevier B.V. All rights reserved.
PMAnalyzer: a new web interface for bacterial growth curve analysis.
Cuevas, Daniel A; Edwards, Robert A
2017-06-15
Bacterial growth curves are essential representations for characterizing bacteria metabolism within a variety of media compositions. Using high-throughput, spectrophotometers capable of processing tens of 96-well plates, quantitative phenotypic information can be easily integrated into the current data structures that describe a bacterial organism. The PMAnalyzer pipeline performs a growth curve analysis to parameterize the unique features occurring within microtiter wells containing specific growth media sources. We have expanded the pipeline capabilities and provide a user-friendly, online implementation of this automated pipeline. PMAnalyzer version 2.0 provides fast automatic growth curve parameter analysis, growth identification and high resolution figures of sample-replicate growth curves and several statistical analyses. PMAnalyzer v2.0 can be found at https://edwards.sdsu.edu/pmanalyzer/ . Source code for the pipeline can be found on GitHub at https://github.com/dacuevas/PMAnalyzer . Source code for the online implementation can be found on GitHub at https://github.com/dacuevas/PMAnalyzerWeb . dcuevas08@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Rocking curve imaging of high quality sapphire crystals in backscattering geometry
Jafari, A.; European Synchrotron Radiation Facility; Univ. of Liege,; ...
2017-01-23
Here, we report on the characterization of high quality sapphire single crystals suitable for high-resolution X-ray optics at high energy. Investigations using rocking curve imaging reveal the crystals to be of uniformly good quality at the level of ~10 -4 in lattice parameter variations, deltad/d. But, investigations using backscattering rocking curve imaging with lattice spacing resolution of deltad/d ~ 5.10 -8 shows very diverse quality maps for all crystals. Our results highlight nearly ideal areas with edge length of 0.2-0.5 mm in most crystals, but a comparison of the back re ection peak positions shows that even neighboring ideal areasmore » exhibit a relative difference in the lattice parameters on the order of deltad/d = 10-20.10 -8; this is several times larger than the rocking curve width. Furthermore, the stress-strain analysis suggests that an extremely stringent limit on the strain at a level of ~100 kPa in the growth process is required in order to produce crystals with large areas of the quality required for X-ray optics at high energy.« less
Kuang, Cuifang; Ali, M Yakut; Hao, Xiang; Wang, Tingting; Liu, Xu
2010-10-01
In order to achieve a higher axial resolution for displacement measurement, a novel method is proposed based on total internal reflection filter and confocal microscope principle. A theoretical analysis of the basic measurement principles is presented. The analysis reveals that the proposed confocal detection scheme is effective in enhancing the resolution of nonlinearity of the reflectance curve greatly. In addition, a simple prototype system has been developed based on the theoretical analysis and a series of experiments have been performed under laboratory conditions to verify the system feasibility, accuracy, and stability. The experimental results demonstrate that the axial resolution in displacement measurements is better than 1 nm in a range of 200 nm which is threefold better than that can be achieved using the plane reflector.
Spatial resolution of a hard x-ray CCD detector.
Seely, John F; Pereira, Nino R; Weber, Bruce V; Schumer, Joseph W; Apruzese, John P; Hudson, Lawrence T; Szabo, Csilla I; Boyer, Craig N; Skirlo, Scott
2010-08-10
The spatial resolution of an x-ray CCD detector was determined from the widths of the tungsten x-ray lines in the spectrum formed by a crystal spectrometer in the 58 to 70 keV energy range. The detector had 20 microm pixel, 1700 by 1200 pixel format, and a CsI x-ray conversion scintillator. The spectral lines from a megavolt x-ray generator were focused on the spectrometer's Rowland circle by a curved transmission crystal. The line shapes were Lorentzian with an average width after removal of the natural and instrumental line widths of 95 microm (4.75 pixels). A high spatial frequency background, primarily resulting from scattered gamma rays, was removed from the spectral image by Fourier analysis. The spectral lines, having low spatial frequency in the direction perpendicular to the dispersion, were enhanced by partially removing the Lorentzian line shape and by fitting Lorentzian curves to broad unresolved spectral features. This demonstrates the ability to improve the spectral resolution of hard x-ray spectra that are recorded by a CCD detector with well-characterized intrinsic spatial resolution.
[The optimizing design and experiment for a MOEMS micro-mirror spectrometer].
Mo, Xiang-xia; Wen, Zhi-yu; Zhang, Zhi-hai; Guo, Yuan-jun
2011-12-01
A MOEMS micro-mirror spectrometer, which uses micro-mirror as a light switch so that spectrum can be detected by a single detector, has the advantages of transforming DC into AC, applying Hadamard transform optics without additional template, high pixel resolution and low cost. In this spectrometer, the vital problem is the conflict between the scales of slit and the light intensity. Hence, in order to improve the resolution of this spectrometer, the present paper gives the analysis of the new effects caused by micro structure, and optimal values of the key factors. Firstly, the effects of diffraction limitation, spatial sample rate and curved slit image on the resolution of the spectrum were proposed. Then, the results were simulated; the key values were tested on the micro mirror spectrometer. Finally, taking all these three effects into account, this micro system was optimized. With a scale of 70 mm x 130 mm, decreasing the height of the image at the plane of micro mirror can not diminish the influence of curved slit image in the spectrum; under the demand of spatial sample rate, the resolution must be twice over the pixel resolution; only if the width of the slit is 1.818 microm and the pixel resolution is 2.2786 microm can the spectrometer have the best performance.
Kumar, Joish Upendra; Kavitha, Y
2017-02-01
With the use of various surgical techniques, types of implants, the preoperative assessment of cochlear dimensions is becoming increasingly relevant prior to cochlear implantation. High resolution CISS protocol MRI gives a better assessment of membranous cochlea, cochlear nerve, and membranous labyrinth. Curved Multiplanar Reconstruction (MPR) algorithm provides better images that can be used for measuring dimensions of membranous cochlea. To ascertain the value of curved multiplanar reconstruction algorithm in high resolution 3-Dimensional T2 Weighted Gradient Echo Constructive Interference Steady State (3D T2W GRE CISS) imaging for accurate morphometry of membranous cochlea. Fourteen children underwent MRI for inner ear assessment. High resolution 3D T2W GRE CISS sequence was used to obtain images of cochlea. Curved MPR reconstruction algorithm was used to virtually uncoil the membranous cochlea on the volume images and cochlear measurements were done. Virtually uncoiled images of membranous cochlea of appropriate resolution were obtained from the volume data obtained from the high resolution 3D T2W GRE CISS images, after using curved MPR reconstruction algorithm mean membranous cochlear length in the children was 27.52 mm. Maximum apical turn diameter of membranous cochlea was 1.13 mm, mid turn diameter was 1.38 mm, basal turn diameter was 1.81 mm. Curved MPR reconstruction algorithm applied to CISS protocol images facilitates in getting appropriate quality images of membranous cochlea for accurate measurements.
Parastar, Hadi; Akvan, Nadia
2014-03-13
In the present contribution, a new combination of multivariate curve resolution-correlation optimized warping (MCR-COW) with trilinear parallel factor analysis (PARAFAC) is developed to exploit second-order advantage in complex chromatographic measurements. In MCR-COW, the complexity of the chromatographic data is reduced by arranging the data in a column-wise augmented matrix, analyzing using MCR bilinear model and aligning the resolved elution profiles using COW in a component-wise manner. The aligned chromatographic data is then decomposed using trilinear model of PARAFAC in order to exploit pure chromatographic and spectroscopic information. The performance of this strategy is evaluated using simulated and real high-performance liquid chromatography-diode array detection (HPLC-DAD) datasets. The obtained results showed that the MCR-COW can efficiently correct elution time shifts of target compounds that are completely overlapped by coeluted interferences in complex chromatographic data. In addition, the PARAFAC analysis of aligned chromatographic data has the advantage of unique decomposition of overlapped chromatographic peaks to identify and quantify the target compounds in the presence of interferences. Finally, to confirm the reliability of the proposed strategy, the performance of the MCR-COW-PARAFAC is compared with the frequently used methods of PARAFAC, COW-PARAFAC, multivariate curve resolution-alternating least squares (MCR-ALS), and MCR-COW-MCR. In general, in most of the cases the MCR-COW-PARAFAC showed an improvement in terms of lack of fit (LOF), relative error (RE) and spectral correlation coefficients in comparison to the PARAFAC, COW-PARAFAC, MCR-ALS and MCR-COW-MCR results. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sun Mo, E-mail: Sunmo.Kim@rmp.uhn.on.ca; Haider, Masoom A.; Jaffray, David A.
Purpose: A previously proposed method to reduce radiation dose to patient in dynamic contrast-enhanced (DCE) CT is enhanced by principal component analysis (PCA) filtering which improves the signal-to-noise ratio (SNR) of time-concentration curves in the DCE-CT study. The efficacy of the combined method to maintain the accuracy of kinetic parameter estimates at low temporal resolution is investigated with pixel-by-pixel kinetic analysis of DCE-CT data. Methods: The method is based on DCE-CT scanning performed with low temporal resolution to reduce the radiation dose to the patient. The arterial input function (AIF) with high temporal resolution can be generated with a coarselymore » sampled AIF through a previously published method of AIF estimation. To increase the SNR of time-concentration curves (tissue curves), first, a region-of-interest is segmented into squares composed of 3 × 3 pixels in size. Subsequently, the PCA filtering combined with a fraction of residual information criterion is applied to all the segmented squares for further improvement of their SNRs. The proposed method was applied to each DCE-CT data set of a cohort of 14 patients at varying levels of down-sampling. The kinetic analyses using the modified Tofts’ model and singular value decomposition method, then, were carried out for each of the down-sampling schemes between the intervals from 2 to 15 s. The results were compared with analyses done with the measured data in high temporal resolution (i.e., original scanning frequency) as the reference. Results: The patients’ AIFs were estimated to high accuracy based on the 11 orthonormal bases of arterial impulse responses established in the previous paper. In addition, noise in the images was effectively reduced by using five principal components of the tissue curves for filtering. Kinetic analyses using the proposed method showed superior results compared to those with down-sampling alone; they were able to maintain the accuracy in the quantitative histogram parameters of volume transfer constant [standard deviation (SD), 98th percentile, and range], rate constant (SD), blood volume fraction (mean, SD, 98th percentile, and range), and blood flow (mean, SD, median, 98th percentile, and range) for sampling intervals between 10 and 15 s. Conclusions: The proposed method of PCA filtering combined with the AIF estimation technique allows low frequency scanning for DCE-CT study to reduce patient radiation dose. The results indicate that the method is useful in pixel-by-pixel kinetic analysis of DCE-CT data for patients with cervical cancer.« less
Ryberg, Anna; Billström, Hanna; Hällgren, Anita; Nilsson, Lennart E.; Marklund, Britt-Inger; Olsson-Liljequist, Barbro; Schön, Thomas
2014-01-01
A single-tube method, ligation-mediated real-time PCR high-resolution melt analysis (LMqPCR HRMA), was modified for the rapid typing of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) pathogens. A 97% agreement (60/62 isolates) was achieved in comparison to pulsed-field gel electrophoresis (PFGE) results, which indicates that LMqPCR HRMA is a rapid and accurate screening tool for monitoring nosocomial outbreaks. PMID:25232168
Noothalapati, Hemanth; Sasaki, Takahiro; Kaino, Tomohiro; Kawamukai, Makoto; Ando, Masahiro; Hamaguchi, Hiro-o; Yamamoto, Tatsuyuki
2016-01-01
Fungal cell walls are medically important since they represent a drug target site for antifungal medication. So far there is no method to directly visualize structurally similar cell wall components such as α-glucan, β-glucan and mannan with high specificity, especially in a label-free manner. In this study, we have developed a Raman spectroscopy based molecular imaging method and combined multivariate curve resolution analysis to enable detection and visualization of multiple polysaccharide components simultaneously at the single cell level. Our results show that vegetative cell and ascus walls are made up of both α- and β-glucans while spore wall is exclusively made of α-glucan. Co-localization studies reveal the absence of mannans in ascus wall but are distributed primarily in spores. Such detailed picture is believed to further enhance our understanding of the dynamic spore wall architecture, eventually leading to advancements in drug discovery and development in the near future. PMID:27278218
NASA Astrophysics Data System (ADS)
Chen, Po-Hsiung; Shimada, Rintaro; Yabumoto, Sohshi; Okajima, Hajime; Ando, Masahiro; Chang, Chiou-Tzu; Lee, Li-Tzu; Wong, Yong-Kie; Chiou, Arthur; Hamaguchi, Hiro-O.
2016-01-01
We have developed an automatic and objective method for detecting human oral squamous cell carcinoma (OSCC) tissues with Raman microspectroscopy. We measure 196 independent Raman spectra from 196 different points of one oral tissue sample and globally analyze these spectra using a Multivariate Curve Resolution (MCR) analysis. Discrimination of OSCC tissues is automatically and objectively made by spectral matching comparison of the MCR decomposed Raman spectra and the standard Raman spectrum of keratin, a well-established molecular marker of OSCC. We use a total of 24 tissue samples, 10 OSCC and 10 normal tissues from the same 10 patients, 3 OSCC and 1 normal tissues from different patients. Following the newly developed protocol presented here, we have been able to detect OSCC tissues with 77 to 92% sensitivity (depending on how to define positivity) and 100% specificity. The present approach lends itself to a reliable clinical diagnosis of OSCC substantiated by the “molecular fingerprint” of keratin.
Ferreiro-González, Marta; Barbero, Gerardo F; Álvarez, José A; Ruiz, Antonio; Palma, Miguel; Ayuso, Jesús
2017-04-01
Adulteration of olive oil is not only a major economic fraud but can also have major health implications for consumers. In this study, a combination of visible spectroscopy with a novel multivariate curve resolution method (CR), principal component analysis (PCA) and linear discriminant analysis (LDA) is proposed for the authentication of virgin olive oil (VOO) samples. VOOs are well-known products with the typical properties of a two-component system due to the two main groups of compounds that contribute to the visible spectra (chlorophylls and carotenoids). Application of the proposed CR method to VOO samples provided the two pure-component spectra for the aforementioned families of compounds. A correlation study of the real spectra and the resolved component spectra was carried out for different types of oil samples (n=118). LDA using the correlation coefficients as variables to discriminate samples allowed the authentication of 95% of virgin olive oil samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Osechinskiy, Sergey; Kruggel, Frithjof
2009-01-01
The architectonic analysis of the human cerebral cortex is presently based on the examination of stained tissue sections. Recent progress in high-resolution magnetic resonance imaging (MRI) promotes the feasibility of an in vivo architectonic analysis. Since the exact relationship between the laminar fine-structure of a cortical MRI signal and histological cyto-and myeloarchitectonic staining patterns is not known, a quantitative study comparing high-resolution MRI to histological ground truth images is necessary for validating a future MRI based architectonic analysis. This communication describes an ongoing study comparing post mortem MR images to a myelin-stained histology of the brain cortex. After establishing a close spatial correspondence between histological sections and MRI using a slice-to-volume nonrigid registration algorithm, transcortical intensity profiles, extracted from both imaging modalities along curved trajectories of a Laplacian vector field, are compared via a cross-correlational analysis.
Rayleigh-wave mode separation by high-resolution linear radon transform
Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.
2009-01-01
Multichannel analysis of surface waves (MASW) method is an effective tool for obtaining vertical shear wave profiles from a single non-invasive measurement. One key step of the MASW method is generation of a dispersion image and extraction of a reliable dispersion curve from raw multichannel shot records. Because different Rayleigh-wave modes normally interfere with each other in the time and space domain, it is necessary to perform mode separation and reconstruction to increase the accuracy of phase velocities determined from a dispersion image. In this paper, we demonstrate the effectiveness of high-resolution linear Radon transform (LRT) as a means of separating and reconstructing multimode, dispersive Rayleigh-wave energy. We first introduce high-resolution LRT methods and Rayleigh-wave mode separation using high-resolution LRT. Next, we use synthetic data and a real-world example to demonstrate the effectiveness of Rayleigh-wave mode separation using high-resolution LRT. Our synthetic and real-world results demonstrate that (1) high-resolution LRT successfully separates and reconstructs multimode dispersive Rayleigh-wave energy with high resolution allowing the multimode energy to be more accurately determined. The horizontal resolution of the Rayleigh-wave method can be increased by extraction of dispersion curves from a pair of traces in the mode-separated shot gather and (2) multimode separation and reconstruction expand the usable frequency range of higher mode dispersive energy, which increases the depth of investigation and provides a means for accurately determining cut-off frequencies. ?? 2009 The Authors Journal compilation ?? 2009 RAS.
[Predictive factors of the outcomes of prenatal hydronephrosis.
Bragagnini, Paolo; Estors, Blanca; Delgado, Reyes; Rihuete, Miguel Ángel; Gracia, Jesús
2016-12-01
To determine prenatal and postnatal independent predictors of poor outcome, spontaneous resolution, or the need for surgery in patients with prenatal hydronephrosis. We performed a retrospective study of patients with prenatal hydronephrosis. The renal pelvis APD was measured in the third prenatal trimester ultrasound, as well as in the first and second postnatal ultrasound. Other variables were taken into account, both prenatal and postnatal. For statistical analysis we used Student t-test, chi-square test, survival analysis, logrank test, and ROC curves. We included 218 patients with 293 renal units (RU). Of these, 147/293 (50.2%) RU were operated. 76/293 (25.9%) RU had spontaneous resolution and other 76/293 (25.9%) RU had poor outcome. As risk factors for surgery we found low birth weight (OR 3.84; 95% CI 1.24-11.84), prematurity (OR 4.17; 95% CI 1.35-12.88), duplication (OR 4.99; 95% CI 2.21-11.23) and the presence of nephrourological underlying pathology (OR 53.54; 95% CI 26.23-109.27). For the non-spontaneous resolution, we found as risk factors the alterations of amniotic fluid volume (RR 1.46; 95% CI 1.33-1.60) as well as the underlying nephrourological pathology and duplication. In the poor outcome, we found as risk factors the alterations of amniotic fluid volume (OR 4.54; 95% CI 1.31-15.62), the presence of nephrourological pathology (OR 4.81 95% CI 2.60-8.89) and RU that was operated (OR 4.23, 95% CI 2.35-7.60). The APD of the renal pelvis in all three ultrasounds were reliable for surgery prediction (area under the curve 0.65; 0.82; 0.71) or spontaneous resolution (area under the curve 0.80; 0.91; 0.80), only the first postnatal ultrasound has predictive value in the poor outcome (area under the curve 0.73). The higher sensitivity and specificity of the APD as predictor value was on the first postnatal ultrasound, 14.60 mm for surgery; 11.35 mm for spontaneous resolution and 15.50 mm for poor outcome. The higher APD in the renal pelvis in any of the three ultrasounds, the greater the chances of surgery and failure of spontaneous resolution. The first postnatal ultrasound is the most reliable in predicting outcome of prenatal hydronephrosis. There are other factors to take into account to predict the outcomes of these patients.
Luo, Y.; Xia, J.; Miller, R.D.; Liu, J.; Xu, Y.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we image Rayleigh-wave dispersive energy and separate multimodes from a multichannel record by high-resolution linear Radon transform (LRT). We first introduce Rayleigh-wave dispersive energy imaging by high-resolution LRT. We then show the process of Rayleigh-wave mode separation. Results of synthetic and real-world examples demonstrate that (1) compared with slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50% (2) high-resolution LRT can successfully separate multimode dispersive energy of Rayleigh waves with high resolution; and (3) multimode separation and reconstruction expand frequency ranges of higher mode dispersive energy, which not only increases the investigation depth but also provides a means to accurately determine cut-off frequencies.
NASA Astrophysics Data System (ADS)
Marra, Francesco; Morin, Efrat
2015-12-01
Intensity-Duration-Frequency (IDF) curves are widely used in flood risk management because they provide an easy link between the characteristics of a rainfall event and the probability of its occurrence. Weather radars provide distributed rainfall estimates with high spatial and temporal resolutions and overcome the scarce representativeness of point-based rainfall for regions characterized by large gradients in rainfall climatology. This work explores the use of radar quantitative precipitation estimation (QPE) for the identification of IDF curves over a region with steep climatic transitions (Israel) using a unique radar data record (23 yr) and combined physical and empirical adjustment of the radar data. IDF relationships were derived by fitting a generalized extreme value distribution to the annual maximum series for durations of 20 min, 1 h and 4 h. Arid, semi-arid and Mediterranean climates were explored using 14 study cases. IDF curves derived from the study rain gauges were compared to those derived from radar and from nearby rain gauges characterized by similar climatology, taking into account the uncertainty linked with the fitting technique. Radar annual maxima and IDF curves were generally overestimated but in 70% of the cases (60% for a 100 yr return period), they lay within the rain gauge IDF confidence intervals. Overestimation tended to increase with return period, and this effect was enhanced in arid climates. This was mainly associated with radar estimation uncertainty, even if other effects, such as rain gauge temporal resolution, cannot be neglected. Climatological classification remained meaningful for the analysis of rainfall extremes and radar was able to discern climatology from rainfall frequency analysis.
Haeili, M; Fooladi, A I; Bostanabad, S Z; Sarokhalil, D D; Siavoshi, F; Feizabadi, M M
2014-01-01
Early detection of multidrug-resistant tuberculosis (MDR-TB) is essential to prevent its transmission in the community and initiate effective anti-TB treatment regimen. High-resolution melting curve (HRM) analysis was evaluated for rapid detection of resistance conferring mutations in rpoB and katG genes. We screened 95 Mycobacterium tuberculosis clinical isolates including 20 rifampin resistant (RIF-R), 21 isoniazid resistant (INH-R) and 54 fully susceptible (S) isolates determined by proportion method of drug susceptibility testing. Nineteen M. tuberculosis isolates with known drug susceptibility genotypes were used as references for the assay validation. The nucleotide sequences of the target regions rpoB and katG genes were determined to investigate the frequency and type of mutations and to confirm HRM results. HRM analysis of a 129-bp fragment of rpoB allowed correct identification of 19 of the 20 phenotypically RIF-R and all RIF-S isolates. All INH-S isolates generated wild-type HRM curves and 18 out of 21 INH-R isolates harboured any mutation in 109-bp fragment of katG exhibited mutant type HRM curves. However, 1 RIF-R and 3 INH-R isolates were falsely identified as susceptible which were confirmed for having no mutation in their target regions by sequencing. The main mutations involved in RIF and INH resistance were found at codons rpoB531 (60% of RIF-R isolates) and katG315 (85.7% of INH-R isolates), respectively. HRM was found to be a reliable, rapid and low cost method to characterise drug susceptibility of clinical TB isolates in resource-limited settings.
Cousins, Matthew M; Swan, David; Magaret, Craig A; Hoover, Donald R; Eshleman, Susan H
2012-01-01
HIV diversity may be a useful biomarker for discriminating between recent and non-recent HIV infection. The high resolution melting (HRM) diversity assay was developed to quantify HIV diversity in viral populations without sequencing. In this assay, HIV diversity is expressed as a single numeric HRM score that represents the width of a melting peak. HRM scores are highly associated with diversity measures obtained with next generation sequencing. In this report, a software package, the HRM Diversity Assay Analysis Tool (DivMelt), was developed to automate calculation of HRM scores from melting curve data. DivMelt uses computational algorithms to calculate HRM scores by identifying the start (T1) and end (T2) melting temperatures for a DNA sample and subtracting them (T2 - T1 = HRM score). DivMelt contains many user-supplied analysis parameters to allow analyses to be tailored to different contexts. DivMelt analysis options were optimized to discriminate between recent and non-recent HIV infection and to maximize HRM score reproducibility. HRM scores calculated using DivMelt were compared to HRM scores obtained using a manual method that is based on visual inspection of DNA melting curves. HRM scores generated with DivMelt agreed with manually generated HRM scores obtained from the same DNA melting data. Optimal parameters for discriminating between recent and non-recent HIV infection were identified. DivMelt provided greater discrimination between recent and non-recent HIV infection than the manual method. DivMelt provides a rapid, accurate method of determining HRM scores from melting curve data, facilitating use of the HRM diversity assay for large-scale studies.
Cousins, Matthew M.; Swan, David; Magaret, Craig A.; Hoover, Donald R.; Eshleman, Susan H.
2012-01-01
Background HIV diversity may be a useful biomarker for discriminating between recent and non-recent HIV infection. The high resolution melting (HRM) diversity assay was developed to quantify HIV diversity in viral populations without sequencing. In this assay, HIV diversity is expressed as a single numeric HRM score that represents the width of a melting peak. HRM scores are highly associated with diversity measures obtained with next generation sequencing. In this report, a software package, the HRM Diversity Assay Analysis Tool (DivMelt), was developed to automate calculation of HRM scores from melting curve data. Methods DivMelt uses computational algorithms to calculate HRM scores by identifying the start (T1) and end (T2) melting temperatures for a DNA sample and subtracting them (T2–T1 = HRM score). DivMelt contains many user-supplied analysis parameters to allow analyses to be tailored to different contexts. DivMelt analysis options were optimized to discriminate between recent and non-recent HIV infection and to maximize HRM score reproducibility. HRM scores calculated using DivMelt were compared to HRM scores obtained using a manual method that is based on visual inspection of DNA melting curves. Results HRM scores generated with DivMelt agreed with manually generated HRM scores obtained from the same DNA melting data. Optimal parameters for discriminating between recent and non-recent HIV infection were identified. DivMelt provided greater discrimination between recent and non-recent HIV infection than the manual method. Conclusion DivMelt provides a rapid, accurate method of determining HRM scores from melting curve data, facilitating use of the HRM diversity assay for large-scale studies. PMID:23240016
Hoseinpour, Fatemeh; Foroughi, Azadeh; Nomanpour, Bizhan; Nasab, Rezvan Sobhani
2017-07-01
Campylobacter jejuni and Campylobacter coli are the important food-born zoonotic pathogen, also are leading causes of human food borne illnesses worldwide. cadF gene is expressed in all C. jejuni and C. coli strains and mediates cell binding to the cell matrix protein, Fibronectin. High-resolution melting (HRM) analysis is emerging as an efficient and robust method for discriminating DNA sequence variants. The goal of this study was to apply HRM analysis to identification of C. jejuni and C. coli. A total of 100 samples were obtained from chicken in Kermanshah, Iran. HRM analysis based on cadF gene and Eva Green was developed to the identification of Campylobacter to the species level. Fifty-five of 100 samples were positive as campylobacter (7 C. jejuni, 29 C. coli, 16 mixes and 3 unknown). Minor variations were observed in melting point temperatures of C. coli or C. jejuni isolates and this variation can be used to the differentiation between C. coli or C. jejuni isolates. The results of this study indicated that HRM curve analysis can be a suitable technique and rapid technique for distinguishing between C. jejuni and C. coli isolates. Copyright © 2017 Elsevier Ltd. All rights reserved.
High resolution melting analysis to genotype the most common variants in the HFE gene.
Marotta, Roberta V; Turri, Olivia; Morandi, Antonella; Murano, Manuela; d'Eril, Gianlodovico Melzi; Biondi, Maria Luisa
2011-09-01
High resolution melting (HRM) analysis of PCR amplicons was recently introduced as a closed-tube, rapid, and inexpensive method of genotyping. This study evaluated this system as an option for detecting the three most common mutations in the HFE gene (C282Y, H63D, S65C), accounting for the main form of hereditary haemochromatosis. Ninety samples, previously screened by direct sequencing, and 27 controls were used. The analysis were performed on the Rotor Gene Q, using the commercial HRM mix containing the Eva Green dye (Qiagen). Specific primers allowed the amplification of the regions of interest in the HFE gene. Following amplification, a HRM analysis was conducted to detect DNA variants. The thermal denaturation profiles of the samples were compared with those of the controls. One hundred percent of heterozygous and homozygous samples were readily identified. Heterozygotes were easily identified because heteroduplexes altered the shape of the melting curves, but significant differences were also present in the melting curves of the homozygous carries compared with those of the wild-type subjects. HRM analysis is an appealing technology for HFE gene screening. It is a robust technique that can be widely adopted in diagnostic laboratories to facilitate gene mutation screening.
Rayleigh-wave dispersive energy imaging using a high-resolution linear radon transform
Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we propose to image Rayleigh-wave dispersive energy by high-resolution linear Radon transform (LRT). The shot gather is first transformed along the time direction to the frequency domain and then the Rayleigh-wave dispersive energy can be imaged by high-resolution LRT using a weighted preconditioned conjugate gradient algorithm. Synthetic data with a set of linear events are presented to show the process of generating dispersive energy. Results of synthetic and real-world examples demonstrate that, compared with the slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50%. ?? Birkhaueser 2008.
Parastar, Hadi; Radović, Jagoš R; Bayona, Josep M; Tauler, Roma
2013-07-01
Multivariate curve resolution-alternating least squares (MCR-ALS) analysis is proposed to solve chromatographic challenges during two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS) analysis of complex samples, such as crude oil extract. In view of the fact that the MCR-ALS method is based on the fulfillment of the bilinear model assumption, three-way and four-way GC × GC-TOFMS data are preferably arranged in a column-wise superaugmented data matrix in which mass-to-charge ratios (m/z) are in its columns and the elution times in the second and first chromatographic columns are in its rows. Since m/z values are common for all measured spectra in all second-column modulations, unavoidable chromatographic challenges such as retention time shifts within and between GC × GC-TOFMS experiments are properly handled. In addition, baseline/background contributions can be modeled by adding extra components to the MCR-ALS model. Another outstanding aspect of MCR-ALS analysis is its extreme flexibility to consider all samples (standards, unknowns, and replicates) in a single superaugmented data matrix, allowing joint analysis. In this way, resolution, identification, and quantification results can be simultaneously obtained in a very fast and reliable way. The potential of MCR-ALS analysis is demonstrated in GC × GC-TOFMS analysis of a North Sea crude oil extract sample with relative errors in estimated concentrations of target compounds below 6.0 % and relative standard deviations lower than 7.0 %. The results obtained, along with reasonable values for the lack of fit of the MCR-ALS model and high values of the reversed match factor in mass spectra similarity searches, confirm the reliability of the proposed strategy for GC × GC-TOFMS data analysis.
Investigation of skin structures based on infrared wave parameter indirect microscopic imaging
NASA Astrophysics Data System (ADS)
Zhao, Jun; Liu, Xuefeng; Xiong, Jichuan; Zhou, Lijuan
2017-02-01
Detailed imaging and analysis of skin structures are becoming increasingly important in modern healthcare and clinic diagnosis. Nanometer resolution imaging techniques such as SEM and AFM can cause harmful damage to the sample and cannot measure the whole skin structure from the very surface through epidermis, dermis to subcutaneous. Conventional optical microscopy has the highest imaging efficiency, flexibility in onsite applications and lowest cost in manufacturing and usage, but its image resolution is too low to be accepted for biomedical analysis. Infrared parameter indirect microscopic imaging (PIMI) uses an infrared laser as the light source due to its high transmission in skins. The polarization of optical wave through the skin sample was modulated while the variation of the optical field was observed at the imaging plane. The intensity variation curve of each pixel was fitted to extract the near field polarization parameters to form indirect images. During the through-skin light modulation and image retrieving process, the curve fitting removes the blurring scattering from neighboring pixels and keeps only the field variations related to local skin structures. By using the infrared PIMI, we can break the diffraction limit, bring the wide field optical image resolution to sub-200nm, in the meantime of taking advantage of high transmission of infrared waves in skin structures.
NASA Astrophysics Data System (ADS)
Zabelskii, D. V.; Vlasov, A. V.; Ryzhykau, Yu L.; Murugova, T. N.; Brennich, M.; Soloviov, D. V.; Ivankov, O. I.; Borshchevskiy, V. I.; Mishin, A. V.; Rogachev, A. V.; Round, A.; Dencher, N. A.; Büldt, G.; Gordeliy, V. I.; Kuklin, A. I.
2018-03-01
The method of small angle scattering (SAS) is widely used in the field of biophysical research of proteins in aqueous solutions. Obtaining low-resolution structure of proteins is still a highly valuable method despite the advances in high-resolution methods such as X-ray diffraction, cryo-EM etc. SAS offers the unique possibility to obtain structural information under conditions close to those of functional assays, i.e. in solution, without different additives, in the mg/mL concentration range. SAS method has a long history, but there are still many uncertainties related to data treatment. We compared 1D SAS profiles of apoferritin obtained by X-ray diffraction (XRD) and SAS methods. It is shown that SAS curves for X-ray diffraction crystallographic structure of apoferritin differ more significantly than it might be expected due to the resolution of the SAS instrument. Extrapolation to infinite dilution (EID) method does not sufficiently exclude dimerization and oligomerization effects and therefore could not guarantee total absence of dimers account in the final SAS curve. In this study, we show that EID SAXS, EID SANS and SEC-SAXS methods give complementary results and when they are used all together, it allows obtaining the most accurate results and high confidence from SAS data analysis of proteins.
Woksepp, Hanna; Ryberg, Anna; Billström, Hanna; Hällgren, Anita; Nilsson, Lennart E; Marklund, Britt-Inger; Olsson-Liljequist, Barbro; Schön, Thomas
2014-12-01
A single-tube method, ligation-mediated real-time PCR high-resolution melt analysis (LMqPCR HRMA), was modified for the rapid typing of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) pathogens. A 97% agreement (60/62 isolates) was achieved in comparison to pulsed-field gel electrophoresis (PFGE) results, which indicates that LMqPCR HRMA is a rapid and accurate screening tool for monitoring nosocomial outbreaks. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Reolon, David; Jacquot, Maxime; Verrier, Isabelle; Brun, Gérald; Veillas, Colette
2006-12-01
In this paper we propose group refractive index measurement with a spectral interferometric set-up using a broadband supercontinuum generated in an air-silica Microstructured Optical Fibre (MOF) pumped with a picosecond pulsed microchip laser. This source authorizes high fringes visibility for dispersion measurements by Spectroscopic Analysis of White Light Interferograms (SAWLI). Phase calculation is assumed by a wavelet transform procedure combined with a curve fit of the recorded channelled spectrum intensity. This approach provides high resolution and absolute group refractive index measurements along one line of the sample by recording a single 2D spectral interferogram without mechanical scanning.
Precipitation frequency analysis based on regional climate simulations in Central Alberta
NASA Astrophysics Data System (ADS)
Kuo, Chun-Chao; Gan, Thian Yew; Hanrahan, Janel L.
2014-03-01
A Regional Climate Model (RCM), MM5 (the Fifth Generation Pennsylvania State University/National Center for Atmospheric Research mesoscale model), is used to simulate summer precipitation in Central Alberta. MM5 was set up with a one-way, three-domain nested framework, with domain resolutions of 27, 9, and 3 km, respectively, and forced with ERA-Interim reanalysis data of ECMWF (European Centre for Medium-Range Weather Forecasts). The objective is to develop high resolution, grid-based Intensity-Duration-Frequency (IDF) curves based on the simulated annual maximums of precipitation (AMP) data for durations ranging from 15-min to 24-h. The performance of MM5 was assessed in terms of simulated rainfall intensity, precipitable water, and 2-m air temperature. Next, the grid-based IDF curves derived from MM5 were compared to IDF curves derived from six RCMs of the North American Regional Climate Change Assessment Program (NARCCAP) set up with 50-km grids, driven with NCEP-DOE (National Centers for Environmental Prediction-Department of Energy) Reanalysis II data, and regional IDF curves derived from observed rain gauge data (RG-IDF). The analyzed results indicate that 6-h simulated precipitable water and 2-m temperature agree well with the ERA-Interim reanalysis data. However, compared to RG-IDF curves, IDF curves based on simulated precipitation data of MM5 are overestimated especially for IDF curves of 2-year return period. In contract, IDF curves developed from NARCCAP data suffer from under-estimation and differ more from RG-IDF curves than the MM5 IDF curves. The over-estimation of IDF curves of MM5 was corrected by a quantile-based, bias correction method. By dynamically downscale the ERA-Interim and after bias correction, it is possible to develop IDF curves useful for regions with limited or no rain gauge data. This estimation process can be further extended to predict future grid-based IDF curves subjected to possible climate change impacts based on climate change projections of GCMs (general circulation models) of IPCC (Intergovernmental Panel on Climate Change).
Evaluation of a High Pressure Proportional Counter for the Detection of Radioactive Noble Gases
1987-01-01
Multiplication Curves Compared to Reconstructed Literature Curves .. .. ............ .81 6.4 Resolution .... . .. ......................... .... 90 v Figure...with 57 ~/57 energy resolution to 12% fwhm for Co photopeaks (-122 keV),sing argon fill gas at fifty atmospheres. Subsequent effects 0f a contami- nant...internal gas proportional counters for measuring low-level environmental radionuclides, resolutions to 27% fwhm and intrinsic efficiencies to 3 75
Smith, Joseph P; Smith, Frank C; Ottaway, Joshua; Krull-Davatzes, Alexandra E; Simonson, Bruce M; Glass, Billy P; Booksh, Karl S
2017-08-01
The high-pressure, α-PbO 2 -structured polymorph of titanium dioxide (TiO 2 -II) was recently identified in micrometer-sized grains recovered from four Neoarchean spherule layers deposited between ∼2.65 and ∼2.54 billion years ago. Several lines of evidence support the interpretation that these layers represent distal impact ejecta layers. The presence of shock-induced TiO 2 -II provides physical evidence to further support an impact origin for these spherule layers. Detailed characterization of the distribution of TiO 2 -II in these grains may be useful for correlating the layers, estimating the paleodistances of the layers from their source craters, and providing insight into the formation of the TiO 2 -II. Here we report the investigation of TiO 2 -II-bearing grains from these four spherule layers using multivariate curve resolution-alternating least squares (MCR-ALS) applied to Raman microspectroscopic mapping. Raman spectra provide evidence of grains consisting primarily of rutile (TiO 2 ) and TiO 2 -II, as shown by Raman bands at 174 cm -1 (TiO 2 -II), 426 cm -1 (TiO 2 -II), 443 cm -1 (rutile), and 610 cm -1 (rutile). Principal component analysis (PCA) yielded a predominantly three-phase system comprised of rutile, TiO 2 -II, and substrate-adhesive epoxy. Scanning electron microscopy (SEM) suggests heterogeneous grains containing polydispersed micrometer- and submicrometer-sized particles. Multivariate curve resolution-alternating least squares applied to the Raman microspectroscopic mapping yielded up to five distinct chemical components: three phases of TiO 2 (rutile, TiO 2 -II, and anatase), quartz (SiO 2 ), and substrate-adhesive epoxy. Spectral profiles and spatially resolved chemical maps of the pure chemical components were generated using MCR-ALS applied to the Raman microspectroscopic maps. The spatial resolution of the Raman microspectroscopic maps was enhanced in comparable, cost-effective analysis times by limiting spectral resolution and optimizing spectral acquisition parameters. Using the resolved spectra of TiO 2 -II generated from MCR-ALS analysis, a Raman spectrum for pure TiO 2 -II was estimated to further facilitate its identification.
Tulsiani, S M; Craig, S B; Graham, G C; Cobbold, R C; Dohnt, M F; Burns, M-A; Jansen, C C; Leung, L K-P; Field, H E; Smythe, L D
2010-07-01
High-resolution melt-curve analysis of random amplified polymorphic DNA (RAPD-HRM) is a novel technology that has emerged as a possible method to characterise leptospires to serovar level. RAPD-HRM has recently been used to measure intra-serovar convergence between strains of the same serovar as well as inter-serovar divergence between strains of different serovars. The results indicate that intra-serovar heterogeneity and inter-serovar homogeneity may limit the application of RAPD-HRM in routine diagnostics. They also indicate that genetic attenuation of aged, high-passage-number isolates could undermine the use of RAPD-HRM or any other molecular technology. Such genetic attenuation may account for a general decrease seen in titres of rabbit hyperimmune antibodies over time. Before RAPD-HRM can be further advanced as a routine diagnostic tool, strains more representative of the wild-type serovars of a given region need to be identified. Further, RAPD-HRM analysis of reference strains indicates that the routine renewal of reference collections, with new isolates, may be needed to maintain the genetic integrity of the collections.
Distefano, Gaetano; Caruso, Marco; La Malfa, Stefano; Gentile, Alessandra; Wu, Shu-Biao
2012-01-01
High resolution melting curve analysis (HRM) has been used as an efficient, accurate and cost-effective tool to detect single nucleotide polymorphisms (SNPs) or insertions or deletions (INDELs). However, its efficiency, accuracy and applicability to discriminate microsatellite polymorphism have not been extensively assessed. The traditional protocols used for SSR genotyping include PCR amplification of the DNA fragment and the separation of the fragments on electrophoresis-based platform. However, post-PCR handling processes are laborious and costly. Furthermore, SNPs present in the sequences flanking repeat motif cannot be detected by polyacrylamide-gel-electrophoresis based methods. In the present study, we compared the discriminating power of HRM with the traditional electrophoresis-based methods and provided a panel of primers for HRM genotyping in Citrus. The results showed that sixteen SSR markers produced distinct polymorphic melting curves among the Citrus spp investigated through HRM analysis. Among those, 10 showed more genotypes by HRM analysis than capillary electrophoresis owing to the presence of SNPs in the amplicons. For the SSR markers without SNPs present in the flanking region, HRM also gave distinct melting curves which detected same genotypes as were shown in capillary electrophoresis (CE) analysis. Moreover, HRM analysis allowed the discrimination of most of the 15 citrus genotypes and the resulting genetic distance analysis clustered them into three main branches. In conclusion, it has been approved that HRM is not only an efficient and cost-effective alternative of electrophoresis-based method for SSR markers, but also a method to uncover more polymorphisms contributed by SNPs present in SSRs. It was therefore suggested that the panel of SSR markers could be used in a variety of applications in the citrus biodiversity and breeding programs using HRM analysis. Furthermore, we speculate that the HRM analysis can be employed to analyse SSR markers in a wide range of applications in all other species.
Arase, Shuntaro; Horie, Kanta; Kato, Takashi; Noda, Akira; Mito, Yasuhiro; Takahashi, Masatoshi; Yanagisawa, Toshinobu
2016-10-21
Multivariate curve resolution-alternating least squares (MCR-ALS) method was investigated for its potential to accelerate pharmaceutical research and development. The fast and efficient separation of complex mixtures consisting of multiple components, including impurities as well as major drug substances, remains a challenging application for liquid chromatography in the field of pharmaceutical analysis. In this paper we suggest an integrated analysis algorithm functioning on a matrix of data generated from HPLC coupled with photo-diode array detector (HPLC-PDA) and consisting of the mathematical program for the developed multivariate curve resolution method using an expectation maximization (EM) algorithm with a bidirectional exponentially modified Gaussian (BEMG) model function as a constraint for chromatograms and numerous PDA spectra aligned with time axis. The algorithm provided less than ±1.0% error between true and separated peak area values at resolution (R s ) of 0.6 using simulation data for a three-component mixture with an elution order of a/b/c with similarity (a/b)=0.8410, (b/c)=0.9123 and (a/c)=0.9809 of spectra at peak apex. This software concept provides fast and robust separation analysis even when method development efforts fail to achieve complete separation of the target peaks. Additionally, this approach is potentially applicable to peak deconvolution, allowing quantitative analysis of co-eluted compounds having exactly the same molecular weight. This is complementary to the use of LC-MS to perform quantitative analysis on co-eluted compounds using selected ions to differentiate the proportion of response attributable to each compound. Copyright © 2016 Elsevier B.V. All rights reserved.
Fully integrated sub 100ps photon counting platform
NASA Astrophysics Data System (ADS)
Buckley, S. J.; Bellis, S. J.; Rosinger, P.; Jackson, J. C.
2007-02-01
Current state of the art high resolution counting modules, specifically designed for high timing resolution applications, are largely based on a computer card format. This has tended to result in a costly solution that is restricted to the computer it resides in. We describe a four channel timing module that interfaces to a computer via a USB port and operates with a resolution of less than 100 picoseconds. The core design of the system is an advanced field programmable gate array (FPGA) interfacing to a precision time interval measurement module, mass memory block and a high speed USB 2.0 serial data port. The FPGA design allows the module to operate in a number of modes allowing both continuous recording of photon events (time-tagging) and repetitive time binning. In time-tag mode the system reports, for each photon event, the high resolution time along with the chronological time (macro time) and the channel ID. The time-tags are uploaded in real time to a host computer via a high speed USB port allowing continuous storage to computer memory of up to 4 millions photons per second. In time-bin mode, binning is carried out with count rates up to 10 million photons per second. Each curve resides in a block of 128,000 time-bins each with a resolution programmable down to less than 100 picoseconds. Each bin has a limit of 65535 hits allowing autonomous curve recording until a bin reaches the maximum count or the system is commanded to halt. Due to the large memory storage, several curves/experiments can be stored in the system prior to uploading to the host computer for analysis. This makes this module ideal for integration into high timing resolution specific applications such as laser ranging and fluorescence lifetime imaging using techniques such as time correlated single photon counting (TCSPC).
Vajuvalli, Nithin N; Nayak, Krupa N; Geethanath, Sairam
2014-01-01
Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) is widely used in the diagnosis of cancer and is also a promising tool for monitoring tumor response to treatment. The Tofts model has become a standard for the analysis of DCE-MRI. The process of curve fitting employed in the Tofts equation to obtain the pharmacokinetic (PK) parameters is time-consuming for high resolution scans. Current work demonstrates a frequency-domain approach applied to the standard Tofts equation to speed-up the process of curve-fitting in order to obtain the pharmacokinetic parameters. The results obtained show that using the frequency domain approach, the process of curve fitting is computationally more efficient compared to the time-domain approach.
HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling.
Ross, C Wade; Prihodko, Lara; Anchang, Julius; Kumar, Sanath; Ji, Wenjie; Hanan, Niall P
2018-05-15
Hydrologic soil groups (HSGs) are a fundamental component of the USDA curve-number (CN) method for estimation of rainfall runoff; yet these data are not readily available in a format or spatial-resolution suitable for regional- and global-scale modeling applications. We developed a globally consistent, gridded dataset defining HSGs from soil texture, bedrock depth, and groundwater. The resulting data product-HYSOGs250m-represents runoff potential at 250 m spatial resolution. Our analysis indicates that the global distribution of soil is dominated by moderately high runoff potential, followed by moderately low, high, and low runoff potential. Low runoff potential, sandy soils are found primarily in parts of the Sahara and Arabian Deserts. High runoff potential soils occur predominantly within tropical and sub-tropical regions. No clear pattern could be discerned for moderately low runoff potential soils, as they occur in arid and humid environments and at both high and low elevations. Potential applications of this data include CN-based runoff modeling, flood risk assessment, and as a covariate for biogeographical analysis of vegetation distributions.
Jalali-Heravi, Mehdi; Moazeni-Pourasil, Roudabeh Sadat; Sereshti, Hassan
2015-03-01
In analysis of complex natural matrices by gas chromatography-mass spectrometry (GC-MS), many disturbing factors such as baseline drift, spectral background, homoscedastic and heteroscedastic noise, peak shape deformation (non-Gaussian peaks), low S/N ratio and co-elution (overlapped and/or embedded peaks) lead the researchers to handle them to serve time, money and experimental efforts. This study aimed to improve the GC-MS analysis of complex natural matrices utilizing multivariate curve resolution (MCR) methods. In addition, to assess the peak purity of the two-dimensional data, a method called variable size moving window-evolving factor analysis (VSMW-EFA) is introduced and examined. The proposed methodology was applied to the GC-MS analysis of Iranian Lavender essential oil, which resulted in extending the number of identified constituents from 56 to 143 components. It was found that the most abundant constituents of the Iranian Lavender essential oil are α-pinene (16.51%), camphor (10.20%), 1,8-cineole (9.50%), bornyl acetate (8.11%) and camphene (6.50%). This indicates that the Iranian type Lavender contains a relatively high percentage of α-pinene. Comparison of different types of Lavender essential oils showed the composition similarity between Iranian and Italian (Sardinia Island) Lavenders. Published by Elsevier B.V.
STR melting curve analysis as a genetic screening tool for crime scene samples.
Nguyen, Quang; McKinney, Jason; Johnson, Donald J; Roberts, Katherine A; Hardy, Winters R
2012-07-01
In this proof-of-concept study, high-resolution melt curve (HRMC) analysis was investigated as a postquantification screening tool to discriminate human CSF1PO and THO1 genotypes amplified with mini-STR primers in the presence of SYBR Green or LCGreen Plus dyes. A total of 12 CSF1PO and 11 HUMTHO1 genotypes were analyzed on the LightScanner HR96 and LS-32 systems and were correctly differentiated based upon their respective melt profiles. Short STR amplicon melt curves were affected by repeat number, and single-source and mixed DNA samples were additionally differentiated by the formation of heteroduplexes. Melting curves were shown to be unique and reproducible from DNA quantities ranging from 20 to 0.4 ng and distinguished identical from nonidentical genotypes from DNA derived from different biological fluids and compromised samples. Thus, a method is described which can assess both the quantity and the possible probative value of samples without full genotyping. 2012 American Academy of Forensic Sciences. Published 2012. This article is a U.S. Government work and is in the public domain in the U.S.A.
NASA Astrophysics Data System (ADS)
Gill, Andrew B.; Black, Richard T.; Bowden, David J.; Priest, Andrew N.; Graves, Martin J.; Lomas, David J.
2014-06-01
This study investigated the effect of temporal resolution on the dual-input pharmacokinetic (PK) modelling of dynamic contrast-enhanced MRI (DCE-MRI) data from normal volunteer livers and from patients with hepatocellular carcinoma. Eleven volunteers and five patients were examined at 3 T. Two sections, one optimized for the vascular input functions (VIF) and one for the tissue, were imaged within a single heart-beat (HB) using a saturation-recovery fast gradient echo sequence. The data was analysed using a dual-input single-compartment PK model. The VIFs and/or uptake curves were then temporally sub-sampled (at interval ▵t = [2-20] s) before being subject to the same PK analysis. Statistical comparisons of tumour and normal tissue PK parameter values using a 5% significance level gave rise to the same study results when temporally sub-sampling the VIFs to HB < ▵t <4 s. However, sub-sampling to ▵t > 4 s did adversely affect the statistical comparisons. Temporal sub-sampling of just the liver/tumour tissue uptake curves at ▵t ≤ 20 s, whilst using high temporal resolution VIFs, did not substantially affect PK parameter statistical comparisons. In conclusion, there is no practical advantage to be gained from acquiring very high temporal resolution hepatic DCE-MRI data. Instead the high temporal resolution could be usefully traded for increased spatial resolution or SNR.
Feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory.
Wang, Haoyu; Miao, Yanwei; Zhou, Kun; Yu, Yanming; Bao, Shanglian; He, Qiang; Dai, Yongming; Xuan, Stephanie Y; Tarabishy, Bisher; Ye, Yongquan; Hu, Jiani
2010-09-01
To investigate the feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory. Two experiments were designed to investigate the feasibility of using reference image based compressed sensing (RICS) technique in DCE-MRI of the breast. The first experiment examined the capability of RICS to faithfully reconstruct uptake curves using undersampled data sets extracted from fully sampled clinical breast DCE-MRI data. An average approach and an approach using motion estimation and motion compensation (ME/MC) were implemented to obtain reference images and to evaluate their efficacy in reducing motion related effects. The second experiment, an in vitro phantom study, tested the feasibility of RICS for improving temporal resolution without degrading the spatial resolution. For the uptake-curve reconstruction experiment, there was a high correlation between uptake curves reconstructed from fully sampled data by Fourier transform and from undersampled data by RICS, indicating high similarity between them. The mean Pearson correlation coefficients for RICS with the ME/MC approach and RICS with the average approach were 0.977 +/- 0.023 and 0.953 +/- 0.031, respectively. The comparisons of final reconstruction results between RICS with the average approach and RICS with the ME/MC approach suggested that the latter was superior to the former in reducing motion related effects. For the in vitro experiment, compared to the fully sampled method, RICS improved the temporal resolution by an acceleration factor of 10 without degrading the spatial resolution. The preliminary study demonstrates the feasibility of RICS for faithfully reconstructing uptake curves and improving temporal resolution of breast DCE-MRI without degrading the spatial resolution.
Results of Casting in Severe Curves in Infantile Scoliosis.
Stasikelis, Peter J; Carpenter, Ashley M
2018-04-01
Previous work has demonstrated best results for casting in infantile scoliosis when the curves are small and the child begins casting under 2 years of age. This study examines if casting can delay the need for growth friendly instrumentation in severe curves (50 to 106 degrees) and how the comorbidities of syrinx or genetic syndromes affected outcomes. All children undergoing casting for scoliosis at a single institution over an 8-year period were examined. Inclusion criteria included initial curve at first casting of ≥50 degrees, age ≤3 years at the start of casting, and a minimum follow-up of 3 years. Of 148 children undergoing casting during this period, 44 met our inclusion criteria. All children underwent magnetic resonance imaging. Ten children with a syrinx were identified. Ten children had known genetic syndromes (2 who also had a syrinx). The 26 children without these comorbidities were considered idiopathic. Curve magnitude ranged from 50 to 106 degrees. Nine of the 26 (35%) children in the children with idiopathic curves demonstrated resolution of their curves, while only 3 of the remaining 18 (17%) did. Of the children that did not have resolution of their curves, 14 were maintained over the entire follow-up period to within 15 degrees of their initial curve and 13 were improved 15 degrees or more. Only 5 children had an increase of 15 degrees or more over the follow-up period and 4 of these have undergone growth friendly instrumentation after a mean delay from initial cast of 71 months (range, 18 to 100 mo). This study demonstrates that even in severe curves, casting was effective in delaying instrumentation in all cases, and led to curve resolution of the curves in 12 of 44 children. Level III-case control study.
NASA Technical Reports Server (NTRS)
Hakim, M. B.; Muney, W. S.; Fowler, W. B.; Woodgate, B. E.
1988-01-01
A three-crystal laboratory X-ray spectrometer is used to measure the Bragg reflection from concave cylindrically curved crystals to be used in the high-resolution X-ray spectrometer of the NASA Advanced X-ray Astrophysics Facility (AXAF). The first two crystals, in the dispersive (1.1) arrangement, select a narrow collimated monochromatic beam in the Cu K-alpha(1) line at 1.5 A (8.1 keV), which illuminates the test crystal. The angular centroids of rocking curves measured along the surface provide a measure of the conformity of the crystal to the desired radius of curvature. Individual and combined rocking-curve widths and areas provide a measure of the resolution and efficiency at 1.54 A. The crystals analyzed included LiF(200), PET, and acid phthalates such as TAP.
Chemical speciation using high energy resolution PIXE spectroscopy in the tender X-ray range
NASA Astrophysics Data System (ADS)
Kavčič, Matjaž; Petric, Marko; Vogel-Mikuš, Katarina
2018-02-01
High energy resolution X-ray emission spectroscopy employing wavelength dispersive (WDS) crystal spectrometers can provide energy resolution on the level of core-hole lifetime broadening of the characteristic emission lines. While crystal spectrometers have been traditionally used in combination with electron excitation for major and minor element analysis, they have been rarely considered in proton induced X-ray emission (PIXE) trace element analysis mainly due to low detection efficiency. Compared to the simplest flat crystal WDS spectrometer the efficiency can be improved by employing cylindrically or even spherically curved crystals in combination with position sensitive X-ray detectors. When such spectrometer is coupled to MeV proton excitation, chemical bonding effects are revealed in the high energy resolution spectra yielding opportunity to extend the analytical capabilities of PIXE technique also towards chemical state analysis. In this contribution we will focus on the high energy resolution PIXE (HR-PIXE) spectroscopy in the tender X-ray range performed in our laboratory with our home-built tender X-ray emission spectrometer. Some general properties of high energy resolution PIXE spectroscopy in the tender X-ray range are presented followed by an example of sulfur speciation in biological tissue illustrating the capabilities as well as limitations of HR-PIXE method used for chemical speciation in the tender X-ray range.
Wu, Miaoli; Rao, Dan; Zhu, Yujun; Wang, Jing; Yuan, Wen; Zhang, Yu; Huang, Ren; Guo, Pengju
2017-04-01
Enterohepatic Helicobacter species (EHS) are widespread in rodent species around the world. Several studies have demonstrated that infection with EHS can interfere with the outcomes of animal experiments in cancer research and significantly influence the study results. Therefore, it is essential to establish a rapid detection and identification of EHS for biomedical research using laboratory rodents. Our study aimed to develop a rapid and sensitive method to detect and distinguish five enterohepatic Helicobacter species. Nested PCR followed by high-resolution melting curve analysis (HRM) was developed for identification of H. bilis, H. rodentium, H. muridarum, H. typhlonius, as well as H. hepaticus. To validate the accuracy of nested PCR-HRM analysis, quantitative real-time PCR methods for five different enterohepatic Helicobacter species were developed. A total of 50 cecal samples were tested using both nested PCR-HRM analysis and qPCR method. The nested PCR-HRM method could distinguish five enterohepatic Helicobacter species by different melting temperatures. The melting curve were characterized by peaks of 78.7 ± 0.12°C for H. rodentium, 80.51 ± 0.09°C for H. bilis, 81.6 ± 0.1°C for H. typhlonius, 82.11 ± 0.18°C for H. muridarum, and 82.95 ± 0.09°C for H. hepaticus. The nested PCR-HRM assay is a simple, rapid, and cost-effective assay. This assay could be a useful tool for molecular epidemiology study of enterohepatic Helicobacter infection and an attractive alternative for genotyping of enterohepatic Helicobacter species. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Cook, L. M.; Samaras, C.; McGinnis, S. A.
2017-12-01
Intensity-duration-frequency (IDF) curves are a common input to urban drainage design, and are used to represent extreme rainfall in a region. As rainfall patterns shift into a non-stationary regime as a result of climate change, these curves will need to be updated with future projections of extreme precipitation. Many regions have begun to update these curves to reflect the trends from downscaled climate models; however, few studies have compared the methods for doing so, as well as the uncertainty that results from the selection of the native grid scale and temporal resolution of the climate model. This study examines the variability in updated IDF curves for Pittsburgh using four different methods for adjusting gridded regional climate model (RCM) outputs into station scale precipitation extremes: (1) a simple change factor applied to observed return levels, (2) a naïve adjustment of stationary and non-stationary Generalized Extreme Value (GEV) distribution parameters, (3) a transfer function of the GEV parameters from the annual maximum series, and (4) kernel density distribution mapping bias correction of the RCM time series. Return level estimates (rainfall intensities) and confidence intervals from these methods for the 1-hour to 48-hour duration are tested for sensitivity to the underlying spatial and temporal resolution of the climate ensemble from the NA-CORDEX project, as well as, the future time period for updating. The first goal is to determine if uncertainty is highest for: (i) the downscaling method, (ii) the climate model resolution, (iii) the climate model simulation, (iv) the GEV parameters, or (v) the future time period examined. Initial results of the 6-hour, 10-year return level adjusted with the simple change factor method using four climate model simulations of two different spatial resolutions show that uncertainty is highest in the estimation of the GEV parameters. The second goal is to determine if complex downscaling methods and high-resolution climate models are necessary for updating, or if simpler methods and lower resolution climate models will suffice. The final results can be used to inform the most appropriate method and climate model resolutions to use for updating IDF curves for urban drainage design.
NASA Astrophysics Data System (ADS)
Gogorza, Claudia S. G.; Irurzun, María A.; Orgeira, María J.; Palermo, Pedro; Llera, María
2018-07-01
Paleomagnetic secular variations (PSV) give us information on the mechanisms of the geodynamo and can also be used for stratigraphic correlation on a regional scale. In this article we present a high-resolution paleomagnetic and rock magnetic study of two cores, LCTF1 and LCTF2, collected at Carmen Lake (Tierra del Fuego, Argentina). An analysis of rock magnetic data suggests that the remanence signal is carried by Titanomagnetite grains in stable pseudo single domain (PSD) state. Notwithstanding the special mechanism of sedimentary deposition, the sequence is characterised by good paleomagnetic properties and can be used to reconstruct a continuous stratigraphic record that provides high-resolution declination, inclination and relative paleointensity curves for the period 1000-4000 cal years BP. The constructed PSV curves are in very good agreement with the available records of Southern Argentina, implying very promising results in the construction of curve patterns for the region. A comparison of the records of southern Argentina with the most recent models available demonstrates that there is a noticeable lack of agreement, which is interpreted as the critical need to add more data from the southern hemisphere in the construction of the geomagnetic field models.
ERIC Educational Resources Information Center
Rodriguez-Rodriguez, Cristina; Amigo, Jose Manuel; Coello, Jordi; Maspoch, Santiago
2007-01-01
A spectrophotometric study of the acid-base equilibria of 8-hydroxyquinoline-5-sulfonic acid to describe the multivariate curve resolution-alternating least squares algorithm (MCR-ALS) is described. The algorithm provides a lot of information and hence is of great importance for the chemometrics research.
The previous paper [R.C. Henry, B.M. Kim, Extension of self-modeling curve resolution to mixtures of more than three components: Part 1. Finding the basic feasible region, Chemometrics and Intelligent Laboratory Systems 8 (1990) 205¯216] explained an extension ...
Bingga, Gali; Liu, Zhicheng; Zhang, Jianfeng; Zhu, Yujun; Lin, Lifeng; Ding, Shuangyang; Guo, Pengju
2014-01-01
A high resolution melting (HRM) curve method was developed to identify canine parvovirus type 2 (CPV-2) strains by nested PCR. Two sets of primers, CPV-426F/426R and CPV-87R/87F, were designed that amplified a 52 bp and 53 bp product from the viral VP2 capsid gene. The region amplified by CPV-426F/426R included the A4062G and T4064A mutations in CPV-2a, CPV-2b and CPV-2c. The region amplified by CPV-87F/87R included the A3045T mutation in the vaccine strains of CPV-2 and CPV-2a, CPV-2b and CPV-2c. Faecal samples were obtained from 30 dogs that were CPV antigen-positive. The DNA was isolated from the faecal samples and PCR-amplified using the two sets of primers, and genotyped by HRM curve analysis. The PCR-HRM assay was able to distinguish single nucleotide polymorphisms between CPV-2a, CPV-2b and CPV-2c using CPV-426F/426R. CPV-2a was distinguished from CPV-2b and CPV-2c by differences in the melting temperature. CPV-2b and CPV-2c could be distinguished based on the shape of the melting curve after generating heteroduplexes using a CPV-2b reference sample. The vaccine strains of CPV-2 were identified using CPV-87F/87R. Conventional methods for genotyping CPV strains are labor intensive, expensive or time consuming; the present PCR-based HRM assay might be an attractive alternative. Copyright © 2014 Elsevier Ltd. All rights reserved.
Automated frame selection process for high-resolution microendoscopy
NASA Astrophysics Data System (ADS)
Ishijima, Ayumu; Schwarz, Richard A.; Shin, Dongsuk; Mondrik, Sharon; Vigneswaran, Nadarajah; Gillenwater, Ann M.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca
2015-04-01
We developed an automated frame selection algorithm for high-resolution microendoscopy video sequences. The algorithm rapidly selects a representative frame with minimal motion artifact from a short video sequence, enabling fully automated image analysis at the point-of-care. The algorithm was evaluated by quantitative comparison of diagnostically relevant image features and diagnostic classification results obtained using automated frame selection versus manual frame selection. A data set consisting of video sequences collected in vivo from 100 oral sites and 167 esophageal sites was used in the analysis. The area under the receiver operating characteristic curve was 0.78 (automated selection) versus 0.82 (manual selection) for oral sites, and 0.93 (automated selection) versus 0.92 (manual selection) for esophageal sites. The implementation of fully automated high-resolution microendoscopy at the point-of-care has the potential to reduce the number of biopsies needed for accurate diagnosis of precancer and cancer in low-resource settings where there may be limited infrastructure and personnel for standard histologic analysis.
Słomka, Marcin; Sobalska-Kwapis, Marta; Wachulec, Monika; Bartosz, Grzegorz; Strapagiel, Dominik
2017-11-03
High resolution melting (HRM) is a convenient method for gene scanning as well as genotyping of individual and multiple single nucleotide polymorphisms (SNPs). This rapid, simple, closed-tube, homogenous, and cost-efficient approach has the capacity for high specificity and sensitivity, while allowing easy transition to high-throughput scale. In this paper, we provide examples from our laboratory practice of some problematic issues which can affect the performance and data analysis of HRM results, especially with regard to reference curve-based targeted genotyping. We present those examples in order of the typical experimental workflow, and discuss the crucial significance of the respective experimental errors and limitations for the quality and analysis of results. The experimental details which have a decisive impact on correct execution of a HRM genotyping experiment include type and quality of DNA source material, reproducibility of isolation method and template DNA preparation, primer and amplicon design, automation-derived preparation and pipetting inconsistencies, as well as physical limitations in melting curve distinction for alternative variants and careful selection of samples for validation by sequencing. We provide a case-by-case analysis and discussion of actual problems we encountered and solutions that should be taken into account by researchers newly attempting HRM genotyping, especially in a high-throughput setup.
Słomka, Marcin; Sobalska-Kwapis, Marta; Wachulec, Monika; Bartosz, Grzegorz
2017-01-01
High resolution melting (HRM) is a convenient method for gene scanning as well as genotyping of individual and multiple single nucleotide polymorphisms (SNPs). This rapid, simple, closed-tube, homogenous, and cost-efficient approach has the capacity for high specificity and sensitivity, while allowing easy transition to high-throughput scale. In this paper, we provide examples from our laboratory practice of some problematic issues which can affect the performance and data analysis of HRM results, especially with regard to reference curve-based targeted genotyping. We present those examples in order of the typical experimental workflow, and discuss the crucial significance of the respective experimental errors and limitations for the quality and analysis of results. The experimental details which have a decisive impact on correct execution of a HRM genotyping experiment include type and quality of DNA source material, reproducibility of isolation method and template DNA preparation, primer and amplicon design, automation-derived preparation and pipetting inconsistencies, as well as physical limitations in melting curve distinction for alternative variants and careful selection of samples for validation by sequencing. We provide a case-by-case analysis and discussion of actual problems we encountered and solutions that should be taken into account by researchers newly attempting HRM genotyping, especially in a high-throughput setup. PMID:29099791
NASA Astrophysics Data System (ADS)
Subasinghe, Dilini; Campbell-Brown, Margaret D.; Stokan, Edward
2016-04-01
Optical observations of faint meteors (10-7 < mass < 10-4 kg) were collected by the Canadian Automated Meteor Observatory between 2010 April and 2014 May. These high-resolution (metre scale) observations were combined with two-station light-curve observations and the meteoroid orbit to classify meteors and attempt to answer questions related to meteoroid fragmentation, strength, and light-curve shape. The F parameter was used to classify the meteor light-curve shape; the observed morphology was used to classify the fragmentation mode; and the Tisserand parameter described the origin of the meteoroid. We find that most meteor light curves are symmetric (mean F parameter 0.49), show long distinct trails (continuous fragmentation), and are cometary in origin. Meteors that show no obvious fragmentation (presumably single body objects) show mostly symmetric light curves, surprisingly, and this indicates that light-curve shape is not an indication of fragility or fragmentation behaviour. Approximately 90 per cent of meteors observed with high-resolution video cameras show some form of fragmentation. Our results also show, unexpectedly, that meteors which show negligible fragmentation are more often on high-inclination orbits (I > 60°) than low-inclination ones. We also find that dynamically asteroidal meteors fragment as often as dynamically cometary meteors, which may suggest mixing in the early Solar system, or contamination between the dynamic groups.
Electrofacies analysis for coal lithotype profiling based on high-resolution wireline log data
NASA Astrophysics Data System (ADS)
Roslin, A.; Esterle, J. S.
2016-06-01
The traditional approach to coal lithotype analysis is based on a visual characterisation of coal in core, mine or outcrop exposures. As not all wells are fully cored, the petroleum and coal mining industries increasingly use geophysical wireline logs for lithology interpretation.This study demonstrates a method for interpreting coal lithotypes from geophysical wireline logs, and in particular discriminating between bright or banded, and dull coal at similar densities to a decimetre level. The study explores the optimum combination of geophysical log suites for training the coal electrofacies interpretation, using neural network conception, and then propagating the results to wells with fewer wireline data. This approach is objective and has a recordable reproducibility and rule set.In addition to conventional gamma ray and density logs, laterolog resistivity, microresistivity and PEF data were used in the study. Array resistivity data from a compact micro imager (CMI tool) were processed into a single microresistivity curve and integrated with the conventional resistivity data in the cluster analysis. Microresistivity data were tested in the analysis to test the hypothesis that the improved vertical resolution of microresistivity curve can enhance the accuracy of the clustering analysis. The addition of PEF log allowed discrimination between low density bright to banded coal electrofacies and low density inertinite-rich dull electrofacies.The results of clustering analysis were validated statistically and the results of the electrofacies results were compared to manually derived coal lithotype logs.
Watanabe, Hiroshi; Nomura, Yoshikazu; Kuribayashi, Ami; Kurabayashi, Tohru
2018-02-01
We aimed to employ the Radia diagnostic software with the safety and efficacy of a new emerging dental X-ray modality (SEDENTEXCT) image quality (IQ) phantom in CT, and to evaluate its validity. The SEDENTEXCT IQ phantom and Radia diagnostic software were employed. The phantom was scanned using one medical full-body CT and two dentomaxillofacial cone beam CTs. The obtained images were imported to the Radia software, and the spatial resolution outputs were evaluated. The oversampling method was employed using our original wire phantom as a reference. The resultant modulation transfer function (MTF) curves were compared. The null hypothesis was that MTF curves generated using both methods would be in agreement. One-way analysis of variance tests were applied to the f50 and f10 values from the MTF curves. The f10 values were subjectively confirmed by observing the line pair modules. The Radia software reported the MTF curves on the xy-plane of the CT scans, but could not return f50 and f10 values on the z-axis. The null hypothesis concerning the reported MTF curves on the xy-plane was rejected. There were significant differences between the results of the Radia software and our reference method, except for f10 values in CS9300. These findings were consistent with our line pair observations. We evaluated the validity of the Radia software with the SEDENTEXCT IQ phantom. The data provided were semi-automatic, albeit with problems and statistically different from our reference. We hope the manufacturer will overcome these limitations.
Carballido-Gamio, Julio; Krug, Roland; Huber, Markus B; Hyun, Ben; Eckstein, Felix; Majumdar, Sharmila; Link, Thomas M
2009-02-01
In vivo assessment of trabecular bone microarchitecture could improve the prediction of fracture risk and the efficacy of osteoporosis treatment and prevention. Geodesic topological analysis (GTA) is introduced as a novel technique to quantify the trabecular bone microarchitecture from high-spatial resolution magnetic resonance (MR) images. Trabecular bone parameters that quantify the scale, topology, and anisotropy of the trabecular bone network in terms of its junctions are the result of GTA. The reproducibility of GTA was tested with in vivo images of human distal tibiae and radii (n = 6) at 1.5 Tesla; and its ability to discriminate between subjects with and without vertebral fracture was assessed with ex vivo images of human calcanei at 1.5 and 3.0 Tesla (n = 30). GTA parameters yielded an average reproducibility of 4.8%, and their individual areas under the curve (AUC) of the receiver operating characteristic curve analysis for fracture discrimination performed better at 3.0 than at 1.5 Tesla reaching values of up to 0.78 (p < 0.001). Logistic regression analysis demonstrated that fracture discrimination was improved by combining GTA parameters, and that GTA combined with bone mineral density (BMD) allow for better discrimination than BMD alone (AUC = 0.95; p < 0.001). Results indicate that GTA can substantially contribute in studies of osteoporosis involving imaging of the trabecular bone microarchitecture. Copyright 2009 Wiley-Liss, Inc.
Das, Shubhagata; Sarker, Subir; Ghorashi, Seyed Ali; Forwood, Jade K; Raidal, Shane R
2016-11-01
Beak and feather disease virus (BFDV) threatens a wide range of endangered psittacine birds worldwide. In this study, we assessed a novel PCR assay and genetic screening method using high-resolution melt (HRM) curve analysis for BFDV targeting the capsid (Cap) gene (HRM-Cap) alongside conventional PCR detection as well as a PCR method that targets a much smaller fragment of the virus genome in the replicase initiator protein (Rep) gene (HRM-Rep). Limits of detection, sensitivity, specificity and discriminatory power for differentiating BFDV sequences were compared. HRM-Cap had a high positive predictive value and could readily differentiate between a reference genotype and 17 other diverse BFDV genomes with more discriminatory power (genotype confidence percentage) than HRM-Rep. Melt curve profiles generated by HRM-Cap correlated with unique DNA sequence profiles for each individual test genome. The limit of detection of HRM-Cap was lower (2×10 -5 ng/reaction or 48 viral copies) than that for both HRM-Rep and conventional BFDV PCR which had similar sensitivity (2×10 -6 ng or 13 viral copies/reaction). However, when used in a diagnostic setting with 348 clinical samples there was strong agreement between HRM-Cap and conventional PCR (kappa=0.87, P<0.01, 98% specificity) and HRM-Cap demonstrated higher specificity (99.9%) than HRM-Rep (80.3%). Copyright © 2016 Elsevier B.V. All rights reserved.
Curved crystal x-ray optics for monochromatic imaging with a clinical source.
Bingölbali, Ayhan; MacDonald, C A
2009-04-01
Monochromatic x-ray imaging has been shown to increase contrast and reduce dose relative to conventional broadband imaging. However, clinical sources with very narrow energy bandwidth tend to have limited intensity and field of view. In this study, focused fan beam monochromatic radiation was obtained using doubly curved monochromator crystals. While these optics have been in use for microanalysis at synchrotron facilities for some time, this work is the first investigation of the potential application of curved crystal optics to clinical sources for medical imaging. The optics could be used with a variety of clinical sources for monochromatic slot scan imaging. The intensity was assessed and the resolution of the focused beam was measured using a knife-edge technique. A simulation model was developed and comparisons to the measured resolution were performed to verify the accuracy of the simulation to predict resolution for different conventional sources. A simple geometrical calculation was also developed. The measured, simulated, and calculated resolutions agreed well. Adequate resolution and intensity for mammography were predicted for appropriate source/optic combinations.
Boiret, Mathieu; de Juan, Anna; Gorretta, Nathalie; Ginot, Yves-Michel; Roger, Jean-Michel
2015-09-10
Raman chemical imaging provides chemical and spatial information about pharmaceutical drug product. By using resolution methods on acquired spectra, the objective is to calculate pure spectra and distribution maps of image compounds. With multivariate curve resolution-alternating least squares, constraints are used to improve the performance of the resolution and to decrease the ambiguity linked to the final solution. Non negativity and spatial local rank constraints have been identified as the most powerful constraints to be used. In this work, an alternative method to set local rank constraints is proposed. The method is based on orthogonal projections pretreatment. For each drug product compound, raw Raman spectra are orthogonally projected to a basis including all the variability from the formulation compounds other than the product of interest. Presence or absence of the compound of interest is obtained by observing the correlations between the orthogonal projected spectra and a pure spectrum orthogonally projected to the same basis. By selecting an appropriate threshold, maps of presence/absence of compounds can be set up for all the product compounds. This method appears as a powerful approach to identify a low dose compound within a pharmaceutical drug product. The maps of presence/absence of compounds can be used as local rank constraints in resolution methods, such as multivariate curve resolution-alternating least squares process in order to improve the resolution of the system. The method proposed is particularly suited for pharmaceutical systems, where the identity of all compounds in the formulations is known and, therefore, the space of interferences can be well defined. Copyright © 2015 Elsevier B.V. All rights reserved.
New Display-type Analyzer for Three-dimensional Fermi Surface Mapping and Atomic Orbital Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Nobuaki; Matsuda, Hiroyuki; Shigenai, Shin
2007-01-19
We have developed and installed a new Display-type ANAlyzer (DIANA) at Ritsumeikan SR center BL-7. We measured the angle-integrated energy distribution curve of poly-crystal gold and the photoelectron intensity angular distribution (PIAD) of HOPG to estimate the total energy resolution and to check the condition of the analyzer. The total energy resolution ({delta}E/E) is up to 0.78%, which is much higher than the old type. The PIAD of HOPG we obtained was the ring pattern as expected. Therefore, a detailed three-dimensional Fermi surface mapping and an analysis of the atomic orbitals constituting the electron energy bands are possible by combiningmore » them with a linearly polarized synchrotron radiation.« less
Image Analysis of a Negatively Curved Graphitic Sheet Model for Amorphous Carbon
NASA Astrophysics Data System (ADS)
Bursill, L. A.; Bourgeois, Laure N.
High-resolution electron micrographs are presented which show essentially curved single sheets of graphitic carbon. Image calculations are then presented for the random surface schwarzite-related model of Townsend et al. (Phys. Rev. Lett. 69, 921-924, 1992). Comparison with experimental images does not rule out the contention that such models, containing surfaces of negative curvature, may be useful for predicting some physical properties of specific forms of nanoporous carbon. Some difficulties of the model predictions, when compared with the experimental images, are pointed out. The range of application of this model, as well as competing models, is discussed briefly.
Ruckebusch, C; Vilmin, F; Coste, N; Huvenne, J P
2008-07-01
We evaluate the contribution made by multivariate curve resolution-alternating least squares (MCR-ALS) for resolving gel permeation chromatography-Fourier transform infrared (GPC-FT-IR) data collected on butadiene rubber (BR) and styrene butadiene rubber (SBR) blends in order to access in-depth knowledge of polymers along the molecular weight distribution (MWD). In the BR-SBR case, individual polymers differ in chemical composition but share almost the same MWD. Principal component analysis (PCA) gives a general overview of the data structure and attests to the feasibility of modeling blends as a binary system. MCR-ALS is then performed. It allows resolving the chromatographic coelution and validates the chosen methodology. For SBR-SBR blends, the problem is more challenging since the individual elastomers present the same chemical composition. Rank deficiency is detected from the PCA data structure analysis. MCR-ALS is thus performed on column-wise augmented matrices. It brings very useful insight into the composition of the analyzed blends. In particular, a weak change in the composition of individual SBR in the MWD's lowest mass region is revealed.
The estimation of probable maximum precipitation: the case of Catalonia.
Casas, M Carmen; Rodríguez, Raül; Nieto, Raquel; Redaño, Angel
2008-12-01
A brief overview of the different techniques used to estimate the probable maximum precipitation (PMP) is presented. As a particular case, the 1-day PMP over Catalonia has been calculated and mapped with a high spatial resolution. For this purpose, the annual maximum daily rainfall series from 145 pluviometric stations of the Instituto Nacional de Meteorología (Spanish Weather Service) in Catalonia have been analyzed. In order to obtain values of PMP, an enveloping frequency factor curve based on the actual rainfall data of stations in the region has been developed. This enveloping curve has been used to estimate 1-day PMP values of all the 145 stations. Applying the Cressman method, the spatial analysis of these values has been achieved. Monthly precipitation climatological data, obtained from the application of Geographic Information Systems techniques, have been used as the initial field for the analysis. The 1-day PMP at 1 km(2) spatial resolution over Catalonia has been objectively determined, varying from 200 to 550 mm. Structures with wavelength longer than approximately 35 km can be identified and, despite their general concordance, the obtained 1-day PMP spatial distribution shows remarkable differences compared to the annual mean precipitation arrangement over Catalonia.
Pellegrino Vidal, Rocío B; Ibañez, Gabriela A; Escandar, Graciela M
2017-03-07
For the first time, liquid chromatography-diode array detection (LC-DAD) and liquid-chromatography fluorescence detection (LC-FLD) second-order data, collected in a single chromatographic run, were fused and chemometrically processed for the quantitation of coeluting analytes. Two different experimental mixtures composed of fluorescent and nonfluorescent endocrine disruptors were analyzed. Adequate pretreatment of the matrices before their fusion was crucial to attain reliable results. Multivariate curve resolution-alternating least-squares (MCR-ALS) was applied to LC-DAD, LC-FLD, and fused LC-DAD-FLD data. Although different degrees of improvement are observed when comparing the fused matrix results in relation to those obtained using a single detector, clear benefits of data fusion are demonstrated through: (1) the obtained limits of detection in the ranges 2.1-24 ng mL -1 and 0.9-6.3 ng mL -1 for the two evaluated systems and (2) the low relative prediction errors, below 7% in all cases, indicating good recoveries and precision. The feasibility of fusing data and its advantages in the analysis of real samples was successfully assessed through the study of spiked tap, underground, and river water samples.
High resolution, monochromatic x-ray topography capability at CHESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finkelstein, K. D., E-mail: kdf1@cornell.edu; Pauling, A.; Brown, Z.
2016-07-27
CHESS has a monochromatic x-ray topography capability serving continually expanding user interest. The setup consists of a beam expanding monochromator, 6-circle diffactometer, and CHESS designed CMOS camera with real time sample-alignment capability. This provides rocking curve mapping with angle resolution as small as 2 µradians, spatial resolution to 3 microns, and field of view up to 7mm. Thus far the capability has been applied for: improving CVD-diamond growth, evaluating perfection of ultra-thin diamond membranes, correlating performance of diamond-based electronics with crystal defect structure, and defect analysis of single crystal silicon carbide. This paper describes our topography system, explains its capabilities,more » and presents experimental results from several applications.« less
High angular resolution at LBT
NASA Astrophysics Data System (ADS)
Conrad, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Davies, A. G.; Defrere, D.; de Kleer, K.; De Pater, I.; Hinz, P.; Hofmann, K. H.; La Camera, A.; Leisenring, J.; Kürster, M.; Rathbun, J. A.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J. R.; Veillet, C.; Weigelt, G.; Woodward, C. E.
2015-12-01
High angular resolution from ground-based observatories stands as a key technology for advancing planetary science. In the window between the angular resolution achievable with 8-10 meter class telescopes, and the 23-to-40 meter giants of the future, LBT provides a glimpse of what the next generation of instruments providing higher angular resolution will provide. We present first ever resolved images of an Io eruption site taken from the ground, images of Io's Loki Patera taken with Fizeau imaging at the 22.8 meter LBT [Conrad, et al., AJ, 2015]. We will also present preliminary analysis of two data sets acquired during the 2015 opposition: L-band fringes at Kurdalagon and an occultation of Loki and Pele by Europa (see figure). The light curves from this occultation will yield an order of magnitude improvement in spatial resolution along the path of ingress and egress. We will conclude by providing an overview of the overall benefit of recent and future advances in angular resolution for planetary science.
Histogram Curve Matching Approaches for Object-based Image Classification of Land Cover and Land Use
Toure, Sory I.; Stow, Douglas A.; Weeks, John R.; Kumar, Sunil
2013-01-01
The classification of image-objects is usually done using parametric statistical measures of central tendency and/or dispersion (e.g., mean or standard deviation). The objectives of this study were to analyze digital number histograms of image objects and evaluate classifications measures exploiting characteristic signatures of such histograms. Two histograms matching classifiers were evaluated and compared to the standard nearest neighbor to mean classifier. An ADS40 airborne multispectral image of San Diego, California was used for assessing the utility of curve matching classifiers in a geographic object-based image analysis (GEOBIA) approach. The classifications were performed with data sets having 0.5 m, 2.5 m, and 5 m spatial resolutions. Results show that histograms are reliable features for characterizing classes. Also, both histogram matching classifiers consistently performed better than the one based on the standard nearest neighbor to mean rule. The highest classification accuracies were produced with images having 2.5 m spatial resolution. PMID:24403648
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoupin, Stanislav; Antipov, Sergey; Butler, James E.
Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configurationmore » and data analysis using rocking-curve topography. In conclusion, the variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.« less
A stochastic conflict resolution model for trading pollutant discharge permits in river systems.
Niksokhan, Mohammad Hossein; Kerachian, Reza; Amin, Pedram
2009-07-01
This paper presents an efficient methodology for developing pollutant discharge permit trading in river systems considering the conflict of interests of involving decision-makers and the stakeholders. In this methodology, a trade-off curve between objectives is developed using a powerful and recently developed multi-objective genetic algorithm technique known as the Nondominated Sorting Genetic Algorithm-II (NSGA-II). The best non-dominated solution on the trade-off curve is defined using the Young conflict resolution theory, which considers the utility functions of decision makers and stakeholders of the system. These utility functions are related to the total treatment cost and a fuzzy risk of violating the water quality standards. The fuzzy risk is evaluated using the Monte Carlo analysis. Finally, an optimization model provides the trading discharge permit policies. The practical utility of the proposed methodology in decision-making is illustrated through a realistic example of the Zarjub River in the northern part of Iran.
Stoupin, Stanislav; Antipov, Sergey; Butler, James E; Kolyadin, Alexander V; Katrusha, Andrey
2016-09-01
Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configuration and data analysis using rocking-curve topography. The variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.
Kandelbauer, A; Kessler, W; Kessler, R W
2008-03-01
The laccase-catalysed transformation of indigo carmine (IC) with and without a redox active mediator was studied using online UV-visible spectroscopy. Deconvolution of the mixture spectra obtained during the reaction was performed on a model-free basis using multivariate curve resolution (MCR). Thereby, the time courses of educts, products, and reaction intermediates involved in the transformation were reconstructed without prior mechanistic assumptions. Furthermore, the spectral signature of a reactive intermediate which could not have been detected by a classical hard-modelling approach was extracted from the chemometric analysis. The findings suggest that the combined use of UV-visible spectroscopy and MCR may lead to unexpectedly deep mechanistic evidence otherwise buried in the experimental data. Thus, although rather an unspecific method, UV-visible spectroscopy can prove useful in the monitoring of chemical reactions when combined with MCR. This offers a wide range of chemists a cheap and readily available, highly sensitive tool for chemical reaction online monitoring.
NASA Astrophysics Data System (ADS)
Li, Qian; Tang, Yongjiao; Yan, Zhiwei; Zhang, Pudun
2017-06-01
Although multivariate curve resolution (MCR) has been applied to the analysis of Fourier transform infrared (FTIR) imaging, it is still problematic to determine the number of components. The reported methods at present tend to cause the components of low concentration missed. In this paper a new idea was proposed to resolve this problem. First, MCR calculation was repeated by increasing the number of components sequentially, then each retrieved pure spectrum of as-resulted MCR component was directly compared with a real-world pixel spectrum of the local high concentration in the corresponding MCR map. One component was affirmed only if the characteristic bands of the MCR component had been included in its pixel spectrum. This idea was applied to attenuated total reflection (ATR)/FTIR mapping for identifying the trace additives in blind polymer materials and satisfactory results were acquired. The successful demonstration of this novel approach opens up new possibilities for analyzing additives in polymer materials.
Stoupin, Stanislav; Antipov, Sergey; Butler, James E.; ...
2016-08-10
Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configurationmore » and data analysis using rocking-curve topography. In conclusion, the variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.« less
NASA Astrophysics Data System (ADS)
Liffner, Joel W.; Hewa, Guna A.; Peel, Murray C.
2018-05-01
Derivation of the hypsometric curve of a catchment, and properties relating to that curve, requires both use of topographical data (commonly in the form of a Digital Elevation Model - DEM), and the estimation of a functional representation of that curve. An early investigation into catchment hypsometry concluded 3rd order polynomials sufficiently describe the hypsometric curve, without the consideration of higher order polynomials, or the sensitivity of hypsometric properties relating to the curve. Another study concluded the hypsometric integral (HI) is robust against changes in DEM resolution, a conclusion drawn from a very limited sample size. Conclusions from these earlier studies have resulted in the adoption of methods deemed to be "sufficient" in subsequent studies, in addition to assumptions that the robustness of the HI extends to other hypsometric properties. This study investigates and demonstrates the sensitivity of hypsometric properties to DEM resolution, DEM type and polynomial order through assessing differences in hypsometric properties derived from 417 catchments and sub-catchments within South Australia. The sensitivity of hypsometric properties across DEM types and polynomial orders is found to be significant, which suggests careful consideration of the methods chosen to derive catchment hypsometric information is required.
Curved position-sensitive detector for X-ray crystallography
NASA Astrophysics Data System (ADS)
Izumi, T.
1980-11-01
A new curved position-sensitive proportional detector has been constructed for X-ray crystallography. A very hard steel wire 0.2 mm in diameter was used as a single anode wire. It was bent to a radius of 6.5 cm and was suspended elastically in a wide 160° 2θ angular aperture. An amplifier and ADC-per-cathode strip system was made in order to encode the position. The spatial resolution is better than 0.37 mm (fwhm) along the curved anode wire, and this value corresponds to an angular resolution of 0.28° in 2θ. It is shown that a thick hard anode wire is quite suitable for use as a curved position-sensitive detector.
Peng, Rong-fei; He, Jia-yao; Zhang, Zhan-xia
2002-02-01
The performances of a self-constructed visible AOTF spectrophotometer are presented. The wavelength calibration of AOTF1 and AOTF2 are performed with a didymium glass using a fourth-order polynomial curve fitting method. The absolute error of the peak position is usually less than 0.7 nm. Compared with the commercial UV1100 spectrophotometer, the scanning speed of the AOTF spectrophotometer is much more faster, but the resolution depends on the quality of AOTF. The absorption spectra and the calibration curves of copper sulfate and alizarin red obtained with AOTF1(Institute for Silicate, Shanghai China) and AOTF2 (Brimrose U.S.A) respectively are presented. Their corresponding correlation coefficients of the calibration curves are 0.9991 and 0.9990 respectively. Preliminary results show that the self-constructed AOTF spectrophotometer is feasible.
Hakimzadeh, Neda; Parastar, Hadi; Fattahi, Mohammad
2014-01-24
In this study, multivariate curve resolution (MCR) and multivariate classification methods are proposed to develop a new chemometric strategy for comprehensive analysis of high-performance liquid chromatography-diode array absorbance detection (HPLC-DAD) fingerprints of sixty Salvia reuterana samples from five different geographical regions. Different chromatographic problems occurred during HPLC-DAD analysis of S. reuterana samples, such as baseline/background contribution and noise, low signal-to-noise ratio (S/N), asymmetric peaks, elution time shifts, and peak overlap are handled using the proposed strategy. In this way, chromatographic fingerprints of sixty samples are properly segmented to ten common chromatographic regions using local rank analysis and then, the corresponding segments are column-wise augmented for subsequent MCR analysis. Extended multivariate curve resolution-alternating least squares (MCR-ALS) is used to obtain pure component profiles in each segment. In general, thirty-one chemical components were resolved using MCR-ALS in sixty S. reuterana samples and the lack of fit (LOF) values of MCR-ALS models were below 10.0% in all cases. Pure spectral profiles are considered for identification of chemical components by comparing their resolved spectra with the standard ones and twenty-four components out of thirty-one components were identified. Additionally, pure elution profiles are used to obtain relative concentrations of chemical components in different samples for multivariate classification analysis by principal component analysis (PCA) and k-nearest neighbors (kNN). Inspection of the PCA score plot (explaining 76.1% of variance accounted for three PCs) showed that S. reuterana samples belong to four clusters. The degree of class separation (DCS) which quantifies the distance separating clusters in relation to the scatter within each cluster is calculated for four clusters and it was in the range of 1.6-5.8. These results are then confirmed by kNN. In addition, according to the PCA loading plot and kNN dendrogram of thirty-one variables, five chemical constituents of luteolin-7-o-glucoside, salvianolic acid D, rosmarinic acid, lithospermic acid and trijuganone A are identified as the most important variables (i.e., chemical markers) for clusters discrimination. Finally, the effect of different chemical markers on samples differentiation is investigated using counter-propagation artificial neural network (CP-ANN) method. It is concluded that the proposed strategy can be successfully applied for comprehensive analysis of chromatographic fingerprints of complex natural samples. Copyright © 2013 Elsevier B.V. All rights reserved.
On the orbital period of the magnetic cataclysmic variable HU Aquarii
NASA Astrophysics Data System (ADS)
Vogel, J.; Schwope, A.; Schwarz, R.; Kanbach, G.; Dhillon, V. S.; Marsh, T. R.
2008-02-01
We present an analysis of ULTRACAM light curves of the magnetic cataclysmic variable HU Aquarii which were taken at the VLT in May 2005. Since the light curves were serendipitously obtained during a low state, they allowed us to determine the binary and the stellar parameters with high accuracy. The light curve was decomposed into the components originating from the accretion spot, the photosphere surrounding it and the white dwarf itself, which allowed us to extract the eclipse light curve for the pure white dwarf. Combined with high-time resolution observations with different instruments over a 12 year baseline it was possible to get exact eclipse timings of the white dwarf and thus establish a significant deviation from a linear ephemeris. If described by a quadratic term, the period decreases by -1.13×10-11 ss-1. Interpreting this change in period as a pure angular momentum loss (AML) effect, the rate of J˙ = -4.9×1035 erg is much too high to be explained by gravitational radiation alone.
Performance of RVGui sensor and Kodak Ektaspeed Plus film for proximal caries detection.
Abreu, M; Mol, A; Ludlow, J B
2001-03-01
A high-resolution charge-coupled device was used to compare the diagnostic performances obtained with Trophy's new RVGui sensor and Kodak Ektaspeed Plus film with respect to caries detection. Three acquisition modes of the Trophy RVGui sensor were compared with Kodak Ektaspeed Plus film. Images of the proximal surfaces of 40 extracted posterior teeth were evaluated by 6 observers. The presence or absence of caries was scored by means of a 5-point confidence scale. The actual caries status of each surface was determined through ground-section histology. Responses were evaluated by means of receiver operating characteristic analysis. Areas under receiver operating characteristic curves (A(Z)) were assessed through analysis of variance. The mean A(Z) scores were 0.85 for film, 0.84 for the high-resolution caries mode, and 0.82 for both the low resolution caries mode and the high-resolution periodontal mode. These differences were not statistically significant (P =.70). The differences among observers also were not statistically significant (P =.23). The performance of the RVGui sensor in high- and low-resolution modes for proximal caries detection is comparable to that of Ektaspeed Plus film.
Sakaridis, Ioannis; Ganopoulos, Ioannis; Madesis, Panagiotis; Tsaftaris, Athanasios; Argiriou, Anagnostis
2014-01-02
An outbreak situation of human listeriosis requires a fast and accurate protocol for typing Listeria monocytogenes . Existing techniques are either characterized by low discriminatory power or are laborious and require several days to give a final result. Polymerase chain reaction (PCR) coupled with high resolution melting (HRM) analysis was investigated in this study as an alternative tool for a rapid and precise genotyping of L. monocytogenes isolates. Fifty-five isolates of L. monocytogenes isolated from poultry carcasses and the environment of four slaughterhouses were typed by HRM analysis using two specific markers, internalin B and ssrA genes. The analysis of genotype confidence percentage of L. monocytogenes isolates produced by HRM analysis generated dendrograms with two major groups and several subgroups. Furthermore, the analysis of the HRM curves revealed that all L. monocytogenes isolates could easily be distinguished. In conclusion, HRM was proven to be a fast and powerful tool for genotyping isolates of L. monocytogenes .
Divergence identities in curved space-time a resolution of the stress-energy problem
NASA Astrophysics Data System (ADS)
Yilmaz, Hüseyin
1989-03-01
It is noted that the joint use of two basic differential identities in curved space-time, namely, 1) the Einstein-Hilbert identity (1915), and 2) the identity of P. Freud (1939), permits a viable alternative to general relativity and a resolution of the "field stress-energy" problem of the gravitational theory. (A tribute to Eugene P. Wigner's 1957 presidential address to the APS)
NASA Astrophysics Data System (ADS)
Yehia, Ali M.; Mohamed, Heba M.
2016-01-01
Three advanced chemmometric-assisted spectrophotometric methods namely; Concentration Residuals Augmented Classical Least Squares (CRACLS), Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis-Artificial Neural Networks (PCA-ANN) were developed, validated and benchmarked to PLS calibration; to resolve the severely overlapped spectra and simultaneously determine; Paracetamol (PAR), Guaifenesin (GUA) and Phenylephrine (PHE) in their ternary mixture and in presence of p-aminophenol (AP) the main degradation product and synthesis impurity of Paracetamol. The analytical performance of the proposed methods was described by percentage recoveries, root mean square error of calibration and standard error of prediction. The four multivariate calibration methods could be directly used without any preliminary separation step and successfully applied for pharmaceutical formulation analysis, showing no excipients' interference.
Large-Eddy Simulation of Turbulent Wall-Pressure Fluctuations
NASA Technical Reports Server (NTRS)
Singer, Bart A.
1996-01-01
Large-eddy simulations of a turbulent boundary layer with Reynolds number based on displacement thickness equal to 3500 were performed with two grid resolutions. The computations were continued for sufficient time to obtain frequency spectra with resolved frequencies that correspond to the most important structural frequencies on an aircraft fuselage. The turbulent stresses were adequately resolved with both resolutions. Detailed quantitative analysis of a variety of statistical quantities associated with the wall-pressure fluctuations revealed similar behavior for both simulations. The primary differences were associated with the lack of resolution of the high-frequency data in the coarse-grid calculation and the increased jitter (due to the lack of multiple realizations for averaging purposes) in the fine-grid calculation. A new curve fit was introduced to represent the spanwise coherence of the cross-spectral density.
Analysis of high resolution satellite data for cosmic gamma ray bursts
NASA Technical Reports Server (NTRS)
Imhof, W. L.; Nakano, G. H.; Reagan, J. B.
1976-01-01
Cosmic gamma ray bursts detected a germanium spectrometer on the low altitude satellite 1972-076B were surveyed. Several bursts with durations ranging from approximately 0.032 to 15 seconds were found and are tabulated. The frequency of occurrence/intensity distribution of these events was compared with the S to the -3/2 power curve of confirmed events. The longer duration events fall above the S to the -3/2 power curve of confirmed events, suggesting they are perhaps not all true cosmic gamma-ray bursts. The narrow duration events fall closely on the S to the -3/2 power curve. The survey also revealed several counting rate spikes, with durations comparable to confirmed gamma-ray bursts, which were shown to be of magnetospheric origin. Confirmation that energetic electrons were responsible for these bursts was achieved from analysis of all data from the complete payload of gamma-ray and energetic particle detectors on board the satellite. The analyses also revealed that the narrowness of the spikes was primarily spatial rather than temporal in character.
Investigation of FANCA gene in Fanconi anaemia patients in Iran
Saffar Moghadam, Ali Akbar; Mahjoubi, Frouzandeh; Reisi, Nahid; Vosough, Parvaneh
2016-01-01
Background & objectives: Fanconi anaemia (FA) is a syndrome with a predisposition to bone marrow failure, congenital anomalies and malignancies. It is characterized by cellular hypersensitivity to cross-linking agents such as mitomycin C (MMC). In the present study, a new approach was selected to investigate FANCA (Fanconi anaemia complementation group A) gene in patients clinically diagnosed with cellular hypersensitivity to DNA cross-linking agent MMC. Methods: Chromosomal breakage analysis was performed to prove the diagnosis of Fanconi anaemia in 318 families. Of these, 70 families had a positive result. Forty families agreed to molecular genetic testing. In total, there were 27 patients with unknown complementary types. Genomic DNA was extracted and total RNA was isolated from fresh whole blood of the patients. The first-strand cDNA was synthesized and the cDNA of each patient was then tested with 21 pairs of overlapping primers. High resolution melting curve analysis was used to screen FANCA, and LinReg software version 1.7 was utilized for analysis of expression. Results: In total, six sequence alterations were identified, which included two stop codons, two frames-shift mutations, one large deletion and one amino acid exchange. FANCA expression was downregulated in patients who had sequence alterations. Interpretation & conclusions: The results of the present study show that high resolution melting (HRM) curve analysis may be useful in the detection of sequence alteration. It is simpler and more costeffective than the multiplex ligation-dependent probe amplification (MLPA) procedure. PMID:27121516
Investigation of FANCA gene in Fanconi anaemia patients in Iran.
Moghadam, Ali Akbar Saffar; Mahjoubi, Frouzandeh; Reisi, Nahid; Vosough, Parvaneh
2016-02-01
Fanconi anaemia (FA) is a syndrome with a predisposition to bone marrow failure, congenital anomalies and malignancies. It is characterized by cellular hypersensitivity to cross-linking agents such as mitomycin C (MMC). In the present study, a new approach was selected to investigate FANCA (Fanconi anaemia complementation group A) gene in patients clinically diagnosed with cellular hypersensitivity to DNA cross-linking agent MMC. Chromosomal breakage analysis was performed to prove the diagnosis of Fanconi anaemia in 318 families. Of these, 70 families had a positive result. Forty families agreed to molecular genetic testing. In total, there were 27 patients with unknown complementary types. Genomic DNA was extracted and total RNA was isolated from fresh whole blood of the patients. The first-strand cDNA was synthesized and the cDNA of each patient was then tested with 21 pairs of overlapping primers. High resolution melting curve analysis was used to screen FANCA, and LinReg software version 1.7 was utilized for analysis of expression. In total, six sequence alterations were identified, which included two stop codons, two frames-shift mutations, one large deletion and one amino acid exchange. FANCA expression was downregulated in patients who had sequence alterations. The results of the present study show that high resolution melting (HRM) curve analysis may be useful in the detection of sequence alteration. It is simpler and more cost-effective than the multiplex ligation-dependent probe amplification (MLPA) procedure.
Garrido, M; Larrechi, M S; Rius, F X
2006-02-01
This study describes the combination of multivariate curve resolution-alternating least squares with a kinetic modeling strategy for obtaining the kinetic rate constants of a curing reaction of epoxy resins. The reaction between phenyl glycidyl ether and aniline is monitored by near-infrared spectroscopy under isothermal conditions for several initial molar ratios of the reagents. The data for all experiments, arranged in a column-wise augmented data matrix, are analyzed using multivariate curve resolution-alternating least squares. The concentration profiles recovered are fitted to a chemical model proposed for the reaction. The selection of the kinetic model is assisted by the information contained in the recovered concentration profiles. The nonlinear fitting provides the kinetic rate constants. The optimized rate constants are in agreement with values reported in the literature.
SEGMENTATION OF MITOCHONDRIA IN ELECTRON MICROSCOPY IMAGES USING ALGEBRAIC CURVES.
Seyedhosseini, Mojtaba; Ellisman, Mark H; Tasdizen, Tolga
2013-01-01
High-resolution microscopy techniques have been used to generate large volumes of data with enough details for understanding the complex structure of the nervous system. However, automatic techniques are required to segment cells and intracellular structures in these multi-terabyte datasets and make anatomical analysis possible on a large scale. We propose a fully automated method that exploits both shape information and regional statistics to segment irregularly shaped intracellular structures such as mitochondria in electron microscopy (EM) images. The main idea is to use algebraic curves to extract shape features together with texture features from image patches. Then, these powerful features are used to learn a random forest classifier, which can predict mitochondria locations precisely. Finally, the algebraic curves together with regional information are used to segment the mitochondria at the predicted locations. We demonstrate that our method outperforms the state-of-the-art algorithms in segmentation of mitochondria in EM images.
Besil, Natalia; Cesio, Verónica; Heinzen, Horacio; Fernandez-Alba, Amadeo R
2017-06-14
The matrix effects of ethyl acetate extracts from seven different citrus fruits on the determination of 80 pesticide residues using liquid chromatography coupled to high-resolution time-of-flight mass spectrometry (UHPLC-(ESI)-HR-TOF) at 4 GHz resolution mode were studied. Only 20% of the evaluated pesticides showed noticeable matrix effects (ME) due to coelution with natural products between t R = 3 and 11 min. Principal component analysis (PCA) of the detected coextractives grouped the mandarins and the orange varieties, but separated lemon, oranges, and mandarins from each other. Matrix effects were different among species but similar between varieties, forcing the determination of pesticide residues through matrix-matched calibration curves with the same fruit. Twenty-three natural products (synephrine, naringin, poncirin, glycosides of hesperitin, limonin, nomilin, and a few fatty acids, among others) were identified in the analyzed extracts. Twelve of the identified compounds coeluted with 28 of the pesticides under study, causing different matrix effects.
HS 0705+6700: a New Eclipsing sdB Binary
NASA Astrophysics Data System (ADS)
Drechsel, H.; Heber, U.; Napiwotzki, R.; Ostensen, R.; Solheim, J.-E.; Deetjen, J.; Schuh, S.
HS 0705+6700 is a newly discovered eclipsing sdB binary system consisting of an sdB primary and a cool secondary main sequence star. CCD photometry obtained in October and November 2000 with the 2.5m Nordic (NOT) telescope (La Palma, Tenerife) in the B passband and with the 2.2m Calar Alto telescope (CAFOS, R filter) yielded eclipse light curves with complete orbital phase coverage at high time resolution. A periodogram analysis of 12 primary minimum times distributed over the time span from October 2000 to March 2001 allowed to derive the following exact period and linear ephemeris: prim. min. = HJD 2451822.759782(22) + 0.09564665(39) ṡ E A total of 15 spectra taken with the 3.5m Calar Alto telescope (TWIN spectrograph) on March 11-12, 2001, were used to establish the radial velocity curve of the primary star (K1 = 85.8 km/s) , and to determine its basic atmospheric parameters (Teff = 29300 K, log g = 5.47). The B and R light curves were solved using our Wilson-Devinney based light curve analysis code MORO (Drechsel et al. 1995, A&A 294, 723). The best fit solution yielded exact system parameters consistent with the spectroscopic results. Detailed results will be published elsewhere (Drechsel et al. 2001, A&A, in preparation).
Sugár, István P; Zhai, Xiuhong; Boldyrev, Ivan A; Molotkovsky, Julian G; Brockman, Howard L; Brown, Rhoderick E
2010-01-01
Lipid lateral organization in binary-constituent monolayers consisting of fluorescent and nonfluorescent lipids has been investigated by acquiring multiple emission spectra during measurement of each force-area isotherm. The emission spectra reflect BODIPY-labeled lipid surface concentration and lateral mixing with different nonfluorescent lipid species. Using principal component analysis (PCA) each spectrum could be approximated as the linear combination of only two principal vectors. One point on a plane could be associated with each spectrum, where the coordinates of the point are the coefficients of the linear combination. Points belonging to the same lipid constituents and experimental conditions form a curve on the plane, where each point belongs to a different mole fraction. The location and shape of the curve reflects the lateral organization of the fluorescent lipid mixed with a specific nonfluorescent lipid. The method provides massive data compression that preserves and emphasizes key information pertaining to lipid distribution in different lipid monolayer phases. Collectively, the capacity of PCA for handling large spectral data sets, the nanoscale resolution afforded by the fluorescence signal, and the inherent versatility of monolayers for characterization of lipid lateral interactions enable significantly enhanced resolution of lipid lateral organizational changes induced by different lipid compositions.
van Blerk, G N; Leibach, L; Mabunda, A; Chapman, A; Louw, D
2011-01-01
A real-time PCR assay combined with a pre-enrichment step for the specific and rapid detection of Salmonella in water samples is described. Following amplification of the invA gene target, High Resolution Melt (HRM) curve analysis was used to discriminate between products formed and to positively identify invA amplification. The real-time PCR assay was evaluated for specificity and sensitivity. The assay displayed 100% specificity for Salmonella and combined with a 16-18 h non-selective pre-enrichment step, the assay proved to be highly sensitive with a detection limit of 1.0 CFU/ml for surface water samples. The detection assay also demonstrated a high intra-run and inter-run repeatability with very little variation in invA amplicon melting temperature. When applied to water samples received routinely by the laboratory, the assay showed the presence of Salmonella in particularly surface water and treated effluent samples. Using the HRM based assay, the time required for Salmonella detection was drastically shortened to less than 24 h compared to several days when using standard culturing methods. This assay provides a useful tool for routine water quality monitoring as well as for quick screening during disease outbreaks.
Dipping-interface mapping using mode-separated Rayleigh waves
Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Miller, R.D.; Liu, Q.
2009-01-01
Multichannel analysis of surface waves (MASW) method is a non-invasive geophysical technique that uses the dispersive characteristic of Rayleigh waves to estimate a vertical shear (S)-wave velocity profile. A pseudo-2D S-wave velocity section is constructed by aligning 1D S-wave velocity profiles at the midpoint of each receiver spread that are contoured using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. Based on the assumption that a dipping-layer model can be regarded as stepped flat layers, high-resolution linear Radon transform (LRT) has been proposed to image Rayleigh-wave dispersive energy and separate modes of Rayleigh waves from a multichannel record. With the mode-separation technique, therefore, a dispersion curve that possesses satisfactory accuracy can be calculated using a pair of consecutive traces within a mode-separated shot gather. In this study, using synthetic models containing a dipping layer with a slope of 5, 10, 15, 20, or 30 degrees and a real-world example, we assess the ability of using high-resolution LRT to image and separate fundamental-mode Rayleigh waves from raw surface-wave data and accuracy of dispersion curves generated by a pair of consecutive traces within a mode-separated shot gather. Results of synthetic and real-world examples demonstrate that a dipping interface with a slope smaller than 15 degrees can be successfully mapped by separated fundamental waves using high-resolution LRT. ?? Birkh??user Verlag, Basel 2009.
Multi-Scale Fractal Analysis of Image Texture and Pattern
NASA Technical Reports Server (NTRS)
Emerson, Charles W.
1998-01-01
Fractals embody important ideas of self-similarity, in which the spatial behavior or appearance of a system is largely independent of scale. Self-similarity is defined as a property of curves or surfaces where each part is indistinguishable from the whole, or where the form of the curve or surface is invariant with respect to scale. An ideal fractal (or monofractal) curve or surface has a constant dimension over all scales, although it may not be an integer value. This is in contrast to Euclidean or topological dimensions, where discrete one, two, and three dimensions describe curves, planes, and volumes. Theoretically, if the digital numbers of a remotely sensed image resemble an ideal fractal surface, then due to the self-similarity property, the fractal dimension of the image will not vary with scale and resolution. However, most geographical phenomena are not strictly self-similar at all scales, but they can often be modeled by a stochastic fractal in which the scaling and self-similarity properties of the fractal have inexact patterns that can be described by statistics. Stochastic fractal sets relax the monofractal self-similarity assumption and measure many scales and resolutions in order to represent the varying form of a phenomenon as a function of local variables across space. In image interpretation, pattern is defined as the overall spatial form of related features, and the repetition of certain forms is a characteristic pattern found in many cultural objects and some natural features. Texture is the visual impression of coarseness or smoothness caused by the variability or uniformity of image tone or color. A potential use of fractals concerns the analysis of image texture. In these situations it is commonly observed that the degree of roughness or inexactness in an image or surface is a function of scale and not of experimental technique. The fractal dimension of remote sensing data could yield quantitative insight on the spatial complexity and information content contained within these data. A software package known as the Image Characterization and Modeling System (ICAMS) was used to explore how fractal dimension is related to surface texture and pattern. The ICAMS software was verified using simulated images of ideal fractal surfaces with specified dimensions. The fractal dimension for areas of homogeneous land cover in the vicinity of Huntsville, Alabama was measured to investigate the relationship between texture and resolution for different land covers.
NASA Astrophysics Data System (ADS)
Norris, W.; J Q Farmer, C.
2017-12-01
Snow water equivalence (SWE) is a difficult metric to measure accurately over large spatial extents; snow-tell sites are too localized, and traditional remotely sensed brightness temperature data is at too coarse of a resolution to capture variation. The new Calibrated Enhanced-Resolution Brightness Temperature (CETB) data from the National Snow and Ice Data Center (NSIDC) offers remotely sensed brightness temperature data at an enhanced resolution of 3.125 km versus the original 25 km, which allows for large spatial extents to be analyzed with reduced uncertainty compared to the 25km product. While the 25km brightness temperature data has proved useful in past research — one group found decreasing trends in SWE outweighed increasing trends three to one in North America; other researchers used the data to incorporate winter conditions, like snow cover, into ecological zoning criterion — with the new 3.125 km data, it is possible to derive more accurate metrics for SWE, since we have far more spatial variability in measurements. Even with higher resolution data, using the 37 - 19 GHz frequencies to estimate SWE distorts the data during times of melt onset and accumulation onset. Past researchers employed statistical splines, while other successful attempts utilized non-parametric curve fitting to smooth out spikes distorting metrics. In this work, rather than using legacy curve fitting techniques, a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) was trained to perform curve fitting on the data. LSTM ANN have shown great promise in modeling time series data, and with almost 40 years of data available — 14,235 days — there is plenty of training data for the ANN. LSTM's are ideal for this type of time series analysis because they allow important trends to persist for long periods of time, but ignore short term fluctuations; since LSTM's have poor mid- to short-term memory, they are ideal for smoothing out the large spikes generated in the melt and accumulation onset seasons, while still capturing the overall trends in the data.
NASA Technical Reports Server (NTRS)
Moses, J. Daniel
1989-01-01
Three improvements in photographic x-ray imaging techniques for solar astronomy are presented. The testing and calibration of a new film processor was conducted; the resulting product will allow photometric development of sounding rocket flight film immediately upon recovery at the missile range. Two fine grained photographic films were calibrated and flight tested to provide alternative detector choices when the need for high resolution is greater than the need for high sensitivity. An analysis technique used to obtain the characteristic curve directly from photographs of UV solar spectra were applied to the analysis of soft x-ray photographic images. The resulting procedure provides a more complete and straightforward determination of the parameters describing the x-ray characteristic curve than previous techniques. These improvements fall into the category of refinements instead of revolutions, indicating the fundamental suitability of the photographic process for x-ray imaging in solar astronomy.
High-resolution melting-curve (HRM) analysis for C. meleagridis identification in stool samples.
Chelbi, Hanen; Essid, Rym; Jelassi, Refka; Bouzekri, Nesrine; Zidi, Ines; Ben Salah, Hamza; Mrad, Ilhem; Ben Sghaier, Ines; Abdelmalek, Rym; Aissa, Sameh; Bouratbine, Aida; Aoun, Karim
2018-02-01
Cryptosporidiosis represents a major public health problem. This infection, caused by a protozoan parasite of the genus Cryptosporidium, has been reported worldwide as a frequent cause of diarrhoea. In the immunocompetent host, the typical watery diarrhea can be self-limiting. However, it is severe and chronic, in the immunocompromised host and may cause death. Cryptosporidium spp. are coccidians, which complete their life cycle in both humans and animals. The two species C. hominis and C. parvum are the major cause of human infection. Compared to studies on C. hominis and C. parvum, only a few studies have developed methods to identify C. meleagridis. To develop a new real time PCR-coupled High resolution melting assay allowing the detection for C. meleagridis, in addition of the other dominant species (C. hominis and C. parvum). The polymorphic sequence on the dihydrofolate reductase gene (DHFR) of three species was sequenced to design primers pair and establish a sensitive real-time PCR coupled to a high-resolution melting-curve (HRM) analysis method, allowing the detection of Cryptosporidium sp. and discrimination between three prevalent species in Tunisia. We analyzed a collection of 42 archived human isolates of the three studied species. Real-time PCR coupled to HRM assay allowed detection of Cryptosporidium, using the new designed primers, and basing on melting profile, we can distinguish C. meleagridis species in addition to C. parvum and C. hominis. We developed a qPCR-HRM assay that allows Cryptosporidium genotyping. This method is sensitive and able to distinguish three Cryptosporidium species. Copyright © 2017. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, T.P.; Lamers, H.J.G.L.M.; Joseph, C.L.
1987-10-01
The balloon-borne ultraviolet stellar spectrometer payload has been used to obtain high-resolution data on interstellar absorption lines toward Zeta Per. The only lines clearly present in the 2150-2450 region were several Fe II features, which show double structure. The two velocity components were sufficiently well separated that it was possible to construct separate curves of growth to derive the Fe II column densities for the individual components. These column densities and the component velocity separation were then used to compute a realistic two-component curve of growth for the line of sight to Zeta Per, which was then used to reanalyzemore » existing ultraviolet data from Copernicus. The results were generally similar to an earlier two-component analysis of the Copernicus data, with the important exception that the silicon depletion increased from near zero to about 1 dex. This makes the Zeta Per depletion pattern quite similar to those derived for other reddened lines of sight, supporting the viewpoint that the general diffuse interstellar medium has a nearly constant pattern of depletions. 31 references.« less
Estimation of integral curves from high angular resolution diffusion imaging (HARDI) data.
Carmichael, Owen; Sakhanenko, Lyudmila
2015-05-15
We develop statistical methodology for a popular brain imaging technique HARDI based on the high order tensor model by Özarslan and Mareci [10]. We investigate how uncertainty in the imaging procedure propagates through all levels of the model: signals, tensor fields, vector fields, and fibers. We construct asymptotically normal estimators of the integral curves or fibers which allow us to trace the fibers together with confidence ellipsoids. The procedure is computationally intense as it blends linear algebra concepts from high order tensors with asymptotical statistical analysis. The theoretical results are illustrated on simulated and real datasets. This work generalizes the statistical methodology proposed for low angular resolution diffusion tensor imaging by Carmichael and Sakhanenko [3], to several fibers per voxel. It is also a pioneering statistical work on tractography from HARDI data. It avoids all the typical limitations of the deterministic tractography methods and it delivers the same information as probabilistic tractography methods. Our method is computationally cheap and it provides well-founded mathematical and statistical framework where diverse functionals on fibers, directions and tensors can be studied in a systematic and rigorous way.
Estimation of integral curves from high angular resolution diffusion imaging (HARDI) data
Carmichael, Owen; Sakhanenko, Lyudmila
2015-01-01
We develop statistical methodology for a popular brain imaging technique HARDI based on the high order tensor model by Özarslan and Mareci [10]. We investigate how uncertainty in the imaging procedure propagates through all levels of the model: signals, tensor fields, vector fields, and fibers. We construct asymptotically normal estimators of the integral curves or fibers which allow us to trace the fibers together with confidence ellipsoids. The procedure is computationally intense as it blends linear algebra concepts from high order tensors with asymptotical statistical analysis. The theoretical results are illustrated on simulated and real datasets. This work generalizes the statistical methodology proposed for low angular resolution diffusion tensor imaging by Carmichael and Sakhanenko [3], to several fibers per voxel. It is also a pioneering statistical work on tractography from HARDI data. It avoids all the typical limitations of the deterministic tractography methods and it delivers the same information as probabilistic tractography methods. Our method is computationally cheap and it provides well-founded mathematical and statistical framework where diverse functionals on fibers, directions and tensors can be studied in a systematic and rigorous way. PMID:25937674
Yehia, Ali M; Mohamed, Heba M
2016-01-05
Three advanced chemmometric-assisted spectrophotometric methods namely; Concentration Residuals Augmented Classical Least Squares (CRACLS), Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis-Artificial Neural Networks (PCA-ANN) were developed, validated and benchmarked to PLS calibration; to resolve the severely overlapped spectra and simultaneously determine; Paracetamol (PAR), Guaifenesin (GUA) and Phenylephrine (PHE) in their ternary mixture and in presence of p-aminophenol (AP) the main degradation product and synthesis impurity of Paracetamol. The analytical performance of the proposed methods was described by percentage recoveries, root mean square error of calibration and standard error of prediction. The four multivariate calibration methods could be directly used without any preliminary separation step and successfully applied for pharmaceutical formulation analysis, showing no excipients' interference. Copyright © 2015 Elsevier B.V. All rights reserved.
Spatial Resolution Characterization for QuickBird Image Products 2003-2004 Season
NASA Technical Reports Server (NTRS)
Blonski, Slawomir
2006-01-01
This presentation focuses on spatial resolution characterization for QuickBird panochromatic images in 2003-2004 and presents data measurements and analysis of SSC edge target deployment and edge response extraction and modeling. The results of the characterization are shown as values of the Modulation Transfer Function (MTF) at the Nyquist spatial frequency and as the Relative Edge Response (RER) components. The results show that RER is much less sensitive to accuracy of the curve fitting than the value of MTF at Nyquist frequency. Therefore, the RER/edge response slope is a more robust estimator of the digital image spatial resolution than the MTF. For the QuickBird panochromatic images, the RER is consistently equal to 0.5 for images processed with the Cubic Convolution resampling and to 0.8 for the MTF resampling.
He, Jia-yao; Peng, Rong-fei; Zhang, Zhan-xia
2002-02-01
A self-constructed visible spectrophotometer using an acousto-optic tunable filter(AOTF) as a dispersing element is described. Two different AOTFs (one from The Institute for Silicate (Shanghai, China) and the other from Brimrose(USA)) are tested. The software written with visual C++ and operated on a Window98 platform is an applied program with dual database and multi-windows. Four independent windows, namely scanning, quantitative, calibration and result are incorporated. The Fourier self-deconvolution algorithm is also incorporated to improve the spectral resolution. The wavelengths are calibrated using the polynomial curve fitting method. The spectra and calibration curves of soluble aniline blue and phenol red are presented to show the feasibility of the constructed spectrophotometer.
Sawall, Mathias; Kubis, Christoph; Börner, Armin; Selent, Detlef; Neymeyr, Klaus
2015-09-03
Modern computerized spectroscopic instrumentation can result in high volumes of spectroscopic data. Such accurate measurements rise special computational challenges for multivariate curve resolution techniques since pure component factorizations are often solved via constrained minimization problems. The computational costs for these calculations rapidly grow with an increased time or frequency resolution of the spectral measurements. The key idea of this paper is to define for the given high-dimensional spectroscopic data a sequence of coarsened subproblems with reduced resolutions. The multiresolution algorithm first computes a pure component factorization for the coarsest problem with the lowest resolution. Then the factorization results are used as initial values for the next problem with a higher resolution. Good initial values result in a fast solution on the next refined level. This procedure is repeated and finally a factorization is determined for the highest level of resolution. The described multiresolution approach allows a considerable convergence acceleration. The computational procedure is analyzed and is tested for experimental spectroscopic data from the rhodium-catalyzed hydroformylation together with various soft and hard models. Copyright © 2015 Elsevier B.V. All rights reserved.
Datasets on hub-height wind speed comparisons for wind farms in California.
Wang, Meina; Ullrich, Paul; Millstein, Dev
2018-08-01
This article includes the description of data information related to the research article entitled "The future of wind energy in California: Future projections with the Variable-Resolution CESM"[1], with reference number RENE_RENE-D-17-03392. Datasets from the Variable-Resolution CESM, Det Norske Veritas Germanischer Lloyd Virtual Met, MERRA-2, CFSR, NARR, ISD surface observations, and upper air sounding observations were used for calculating and comparing hub-height wind speed at multiple major wind farms across California. Information on hub-height wind speed interpolation and power curves at each wind farm sites are also presented. All datasets, except Det Norske Veritas Germanischer Lloyd Virtual Met, are publicly available for future analysis.
Binarity and Variable Stars in the Open Cluster NGC 2126
NASA Astrophysics Data System (ADS)
Chehlaeh, Nareemas; Mkrtichian, David; Kim, Seung-Lee; Lampens, Patricia; Komonjinda, Siramas; Kusakin, Anatoly; Glazunova, Ljudmila
2018-04-01
We present the results of an analysis of photometric time-series observations for NGC 2126 acquired at the Thai National Observatory (TNO) in Thailand and the Mount Lemmon Optical Astronomy Observatory (LOAO) in USA during the years 2004, 2013 and 2015. The main purpose is to search for new variable stars and to study the light curves of binary systems as well as the oscillation spectra of pulsating stars. NGC 2126 is an intermediate-age open cluster which has a population of stars inside the δ Scuti instability strip. Several variable stars are reported including three eclipsing binary stars, one of which is an eclipsing binary star with a pulsating component (V551 Aur). The Wilson-Devinney technique was used to analyze its light curves and to determine a new set of the system’s parameters. A frequency analysis of the eclipse-subtracted light curve was also performed. Eclipsing binaries which are members of open clusters are capable of delivering strong constraints on the cluster’s properties which are in turn useful for a pulsational analysis of their pulsating components. Therefore, high-resolution, high-quality spectra will be needed to derive accurate component radial velocities of the faint eclipsing binaries which are located in the field of NGC 2126. The new Devasthal Optical Telescope, suitably equipped, could in principle do this.
Marin, M S; Quintana, S; Leunda, M R; Recavarren, M; Pagnuco, I; Späth, E; Pérez, S; Odeón, A
2016-01-01
Bovine herpesvirus types 1 (BoHV-1) and 5 (BoHV-5) are antigenically and genetically similar. The aim of this study was to develop a simple and reliable one-step real time PCR assay with high resolution melting (HRM) analysis for the simultaneous detection and differentiation of BoHV-1 and BoHV-5. Optimization of assay conditions was performed with DNA from reference strains. Then, DNA from field isolates, clinical samples and tissue samples of experimentally infected animals were studied by real time PCR-HRM. An efficient amplification of real time PCR products was obtained, and a clear melting curve and appropriate melting peaks for both viruses were achieved in the HRM curve analysis for BoHV type identification. BoHV was identified in all of the isolates and clinical samples, and BoHV types were properly differentiated. Furthermore, viral DNA was detected in 12/18 and 7/18 samples from BoHV-1- and BoHV-5-infected calves, respectively. Real time PCR-HRM achieved a higher sensitivity compared with virus isolation or conventional PCR. In this study, HRM was used as a novel procedure. This method provides rapid, sensitive, specific and simultaneous detection of bovine alpha-herpesviruses DNA. Thus, this technique is an excellent tool for diagnosis, research and epidemiological studies of these viruses in cattle. Copyright © 2015 Elsevier B.V. All rights reserved.
Atomic Force Microscopy for Soil Analysis
NASA Astrophysics Data System (ADS)
gazze, andrea; doerr, stefan; dudley, ed; hallin, ingrid; matthews, peter; quinn, gerry; van keulen, geertje; francis, lewis
2016-04-01
Atomic Force Microscopy (AFM) is a high-resolution surface-sensitive technique, which provides 3-dimensional topographical information and material properties of both stiff and soft samples in their natural environments. Traditionally AFM has been applied to samples with low roughness: hence its use for soil analysis has been very limited so far. Here we report the optimization settings required for a standardization of high-resolution and artefact-free analysis of natural soil with AFM: soil immobilization, AFM probe selection, artefact recognition and minimization. Beyond topography, AFM can be used in a spectroscopic mode to evaluate nanomechanical properties, such as soil viscosity, stiffness, and deformation. In this regards, Bruker PeakForce-Quantitative NanoMechanical (QNM) AFM provides a fast and convenient way to extract physical properties from AFM force curves in real-time to obtain soil nanomechanical properties. Here we show for the first time the ability of AFM to describe the topography of natural soil at nanometre resolution, with observation of micro-components, such as clays, and of nano-structures, possibly of biotic origin, the visualization of which would prove difficult with other instrumentations. Finally, nanomechanical profiling has been applied to different wettability states in soil and the respective physical patterns are discussed.
Design of airborne imaging spectrometer based on curved prism
NASA Astrophysics Data System (ADS)
Nie, Yunfeng; Xiangli, Bin; Zhou, Jinsong; Wei, Xiaoxiao
2011-11-01
A novel moderate-resolution imaging spectrometer spreading from visible wavelength to near infrared wavelength range with a spectral resolution of 10 nm, which combines curved prisms with the Offner configuration, is introduced. Compared to conventional imaging spectrometers based on dispersive prism or diffractive grating, this design possesses characteristics of small size, compact structure, low mass as well as little spectral line curve (smile) and spectral band curve (keystone or frown). Besides, the usage of compound curved prisms with two or more different materials can greatly reduce the nonlinearity inevitably brought by prismatic dispersion. The utilization ratio of light radiation is much higher than imaging spectrometer of the same type based on combination of diffractive grating and concentric optics. In this paper, the Seidel aberration theory of curved prism and the optical principles of Offner configuration are illuminated firstly. Then the optical design layout of the spectrometer is presented, and the performance evaluation of this design, including spot diagram and MTF, is analyzed. To step further, several types of telescope matching this system are provided. This work provides an innovational perspective upon optical system design of airborne spectral imagers; therefore, it can offer theoretic guide for imaging spectrometer of the same kind.
Abildgaard, Anders; Tovbjerg, Sara K; Giltay, Axel; Detemmerman, Liselot; Nissen, Peter H
2018-03-26
The lactase persistence phenotype is controlled by a regulatory enhancer region upstream of the Lactase (LCT) gene. In northern Europe, specifically the -13910C > T variant has been associated with lactase persistence whereas other persistence variants, e.g. -13907C > G and -13915 T > G, have been identified in Africa and the Middle East. The aim of the present study was to compare a previously developed high resolution melting assay (HRM) with a novel method based on loop-mediated isothermal amplification and melting curve analysis (LAMP-MC) with both whole blood and DNA as input material. To evaluate the LAMP-MC method, we used 100 whole blood samples and 93 DNA samples in a two tiered study. First, we studied the ability of the LAMP-MC method to produce specific melting curves for several variants of the LCT enhancer region. Next, we performed a blinded comparison between the LAMP-MC method and our existing HRM method with clinical samples of unknown genotype. The LAMP-MC method produced specific melting curves for the variants at position -13909, -13910, -13913 whereas the -13907C > G and -13915 T > G variants produced indistinguishable melting profiles. The LAMP-MC assay is a simple method for lactase persistence genotyping and compares well with our existing HRM method. Copyright © 2018. Published by Elsevier B.V.
Hydropower potential mapping in mountain basins by high-resolution hydrological and GIS analysis
NASA Astrophysics Data System (ADS)
Claps, P.; Gallo, E.; Ganora, D.; Laio, F.; Masoero, A.
2013-12-01
Even in regions with mature hydropower development, needs for stable renewable power sources suggest to revise plans of exploitation of water resources, in compliance to the framework of international and national environmental regulations. This goal requires high-resolution hydrological analysis, that allows to : i) comply with the effects of existing hydropower plants or of other types of water withdrawals; ii) to assist the planner to figure out potential of new plants with still high marginal efficiency; iii) to assist the regulator in the process of comparing projects based on different solutions and different underlying hydrologic estimation methods. Flow duration curves (FDC) are the tool usually adopted to represent water availability and variability for hydropower purposes. They are usually determined in ungauged basins by means of regional statistical analysis. For this study, a 'spatially smooth' regional estimation method (SSEM) has been developed for FDC estimation, with some evolutions from a previous version: i) the method keeps the estimates of mean annual runoff congruent in the confluences by considering only raster-summable explanatory variables; ii) the presence of existing reservoirs and hydropower plants is taken into account by restoring the ';natural' statistics of the curve. The SSEM reconstructs the the FDC in ungauged basins using its L-moments from regressions on geomorphoclimatic descriptors. Relations are obtained on more than 100 gauged basins located in Northwestern Italy. To support the assessment of residual hydropower potential on two specific mountain watersheds the model has been applied extensively (Hi-Res) by mapping the estimated mean flow for each pixel of a DEM-derived river network raster model. 25000 sections were then identified over the network extracted from a 50m-resolution DTM. Spatial algorithms and data management were developed using Free&OpenSource Software (FOSS) (GRASS GIS and PostgreSQL/PostGIS), with the spatial database required to store perimeters and other descriptors needed for the hydrological estimation. Specific efforts have been devoted to spatial representation of the available potential using different flow-(elevation drop) relations for each pixel (along-river path, straight within floating window, in-valley constrained, etc.). This representation expands the information content and the domain of application of the classical hydrodynamic curve ( elevation-drop/ contributing area). Specific and abrupt changes due to existing plants are then clearly represented to provide a complete picture of the available potential for planning and regulation purposes.
Bester, Rachelle; Jooste, Anna E C; Maree, Hans J; Burger, Johan T
2012-09-27
Grapevine leafroll-associated virus 3 (GLRaV-3) is the main contributing agent of leafroll disease worldwide. Four of the six GLRaV-3 variant groups known have been found in South Africa, but their individual contribution to leafroll disease is unknown. In order to study the pathogenesis of leafroll disease, a sensitive and accurate diagnostic assay is required that can detect different variant groups of GLRaV-3. In this study, a one-step real-time RT-PCR, followed by high-resolution melting (HRM) curve analysis for the simultaneous detection and identification of GLRaV-3 variants of groups I, II, III and VI, was developed. A melting point confidence interval for each variant group was calculated to include at least 90% of all melting points observed. A multiplex RT-PCR protocol was developed to these four variant groups in order to assess the efficacy of the real-time RT-PCR HRM assay. A universal primer set for GLRaV-3 targeting the heat shock protein 70 homologue (Hsp70h) gene of GLRaV-3 was designed that is able to detect GLRaV-3 variant groups I, II, III and VI and differentiate between them with high-resolution melting curve analysis. The real-time RT-PCR HRM and the multiplex RT-PCR were optimized using 121 GLRaV-3 positive samples. Due to a considerable variation in melting profile observed within each GLRaV-3 group, a confidence interval of above 90% was calculated for each variant group, based on the range and distribution of melting points. The intervals of groups I and II could not be distinguished and a 95% joint confidence interval was calculated for simultaneous detection of group I and II variants. An additional primer pair targeting GLRaV-3 ORF1a was developed that can be used in a subsequent real-time RT-PCR HRM to differentiate between variants of groups I and II. Additionally, the multiplex RT-PCR successfully validated 94.64% of the infections detected with the real-time RT-PCR HRM. The real-time RT-PCR HRM provides a sensitive, automated and rapid tool to detect and differentiate different variant groups in order to study the epidemiology of leafroll disease.
High-resolution mapping of yield curve shape and evolution for high porosity sandstones
NASA Astrophysics Data System (ADS)
Bedford, J. D.; Faulkner, D.; Wheeler, J.; Leclere, H.
2017-12-01
The onset of permanent inelastic deformation for porous rock is typically defined by a yield curve plotted in P-Q space, where P is the effective mean stress and Q is the differential stress. Sandstones usually have broadly elliptical shaped yield curves, with the low pressure side of the ellipse associated with localized brittle faulting (dilation) and the high pressure side with distributed ductile deformation (compaction). However recent works have shown that these curves might not be perfectly elliptical and that significant evolution in shape occurs with continued deformation. We therefore use a novel stress-probing methodology to map in high-resolution the yield curve shape for Boise and Idaho Gray sandstones (36-38% porosity) and also investigate curve evolution with increasing deformation. The data reveal yield curves with a much flatter geometry than previously recorded for porous sandstone and that the compactive side of the curve is partly comprised of a near vertical limb. The yield curve evolution is found to be strongly dependent on the nature of inelastic strain. Samples that were compacted under a deviatoric load, with a component of inelastic shear strain, were found to have yield curves with peaks that are approximately 50% higher than similar porosity samples that were hydrostatically compacted (i.e. purely volumetric strain). The difference in yield curve evolution along the different loading paths is attributed to mechanical anisotropy that develops during deviatoric loading by the closure of preferentially orientated fractures. Increased shear strain also leads to the formation of a plateau at the peak of the yield curve as samples deform along the deviatoric loading path. These results have important implications for understanding how the strength of porous rock evolves along different stress paths, including during fluid extraction from hydrocarbon reservoirs where the stress state is rarely isotropic.
NASA Astrophysics Data System (ADS)
Suaniti, Ni Made; Manurung, Manuntun
2016-03-01
Gas Chromatography-Mass Spectrometry is used to separate two and more compounds and identify fragment ion specific of biomarker ethanol such as palmitic acid ethyl ester (PAEE), as one of the fatty acid ethyl esters as early detection through conyugated reaction. This study aims to calibrate ethyl palmitate and develop analysis with oleate acid. This methode can be used analysis ethanol and its chemistry biomarker in ethanol sub-acute consumption as analytical forensic toxicology. The result show that ethanol level in urine rats Wistar were 9.21 and decreased 6.59 ppm after 48 hours consumption. Calibration curve of ethyl palmitate was y = 0.2035 x + 1.0465 and R2 = 0.9886. Resolution between ethyl palmitate and oleate were >1.5 as good separation with fragment ion specific was 88 and the retention time was 18 minutes.
High-Resolution Melting (HRM) of Hypervariable Mitochondrial DNA Regions for Forensic Science.
Dos Santos Rocha, Alípio; de Amorim, Isis Salviano Soares; Simão, Tatiana de Almeida; da Fonseca, Adenilson de Souza; Garrido, Rodrigo Grazinoli; Mencalha, Andre Luiz
2018-03-01
Forensic strategies commonly are proceeding by analysis of short tandem repeats (STRs); however, new additional strategies have been proposed for forensic science. Thus, this article standardized the high-resolution melting (HRM) of DNA for forensic analyzes. For HRM, mitochondrial DNA (mtDNA) from eight individuals were extracted from mucosa swabs by DNAzol reagent, samples were amplified by PCR and submitted to HRM analysis to identify differences in hypervariable (HV) regions I and II. To confirm HRM, all PCR products were DNA sequencing. The data suggest that is possible discriminate DNA from different samples by HRM curves. Also, uncommon dual-dissociation was identified in a single PCR product, increasing HRM analyzes by evaluation of melting peaks. Thus, HRM is accurate and useful to screening small differences in HVI and HVII regions from mtDNA and increase the efficiency of laboratory routines based on forensic genetics. © 2017 American Academy of Forensic Sciences.
Processing grounded-wire TEM signal in time-frequency-pseudo-seismic domain: A new paradigm
NASA Astrophysics Data System (ADS)
Khan, M. Y.; Xue, G. Q.; Chen, W.; Huasen, Z.
2017-12-01
Grounded-wire TEM has received great attention in mineral, hydrocarbon and hydrogeological investigations for the last several years. Conventionally, TEM soundings have been presented as apparent resistivity curves as function of time. With development of sophisticated computational algorithms, it became possible to extract more realistic geoelectric information by applying inversion programs to 1-D & 3-D problems. Here, we analyze grounded-wire TEM data by carrying out analysis in time, frequency and pseudo-seismic domain supported by borehole information. At first, H, K, A & Q type geoelectric models are processed using a proven inversion program (1-D Occam inversion). Second, time-to-frequency transformation is conducted from TEM ρa(t) curves to magneto telluric MT ρa(f) curves for the same models based on all-time apparent resistivity curves. Third, 1-D Bostick's algorithm was applied to the transformed resistivity. Finally, EM diffusion field is transformed into propagating wave field obeying the standard wave equation using wavelet transformation technique and constructed pseudo-seismic section. The transformed seismic-like wave indicates that some reflection and refraction phenomena appear when the EM wave field interacts with geoelectric interface at different depth intervals due to contrast in resistivity. The resolution of the transformed TEM data is significantly improved in comparison to apparent resistivity plots. A case study illustrates the successful hydrogeophysical application of proposed approach in recovering water-filled mined-out area in a coal field located in Ye county, Henan province, China. The results support the introduction of pseudo-seismic imaging technology in short-offset version of TEM which can also be an useful aid if integrated with seismic reflection technique to explore possibilities for high resolution EM imaging in future.
NASA Astrophysics Data System (ADS)
Mendonça, João M.; Malik, Matej; Demory, Brice-Olivier; Heng, Kevin
2018-04-01
Recently acquired Hubble and Spitzer phase curves of the short-period hot Jupiter WASP-43b make it an ideal target for confronting theory with data. On the observational front, we re-analyze the 3.6 and 4.5 μm Spitzer phase curves and demonstrate that our improved analysis better removes residual red noise due to intra-pixel sensitivity, which leads to greater fluxes emanating from the nightside of WASP-43b, thus reducing the tension between theory and data. On the theoretical front, we construct cloud-free and cloudy atmospheres of WASP-43b using our Global Circulation Model (GCM), THOR, which solves the non-hydrostatic Euler equations (compared to GCMs that typically solve the hydrostatic primitive equations). The cloud-free atmosphere produces a reasonable fit to the dayside emission spectrum. The multi-phase emission spectra constrain the cloud deck to be confined to the nightside and have a finite cloud-top pressure. The multi-wavelength phase curves are naturally consistent with our cloudy atmospheres, except for the 4.5 μm phase curve, which requires the presence of enhanced carbon dioxide in the atmosphere of WASP-43b. Multi-phase emission spectra at higher spectral resolution, as may be obtained using the James Webb Space Telescope, and a reflected-light phase curve at visible wavelengths would further constrain the properties of clouds in WASP-43b.
Hermeneutics of differential calculus in eighteenth-century northern Germany.
Blanco, Mónica
2008-01-01
This paper applies comparative textbook analysis to studying the mathematical development of differential calculus in northern German states during the eighteenth century. It begins with describing how the four textbooks analyzed presented the foundations of calculus and continues with assessing the influence each of these foundational approaches exerted on the resolution of problems, such as the determination of tangents and extreme values, and even on the choice of coordinates for both algebraic and transcendental curves.
Search for Type Ia supernova NUV-optical subclasses
NASA Astrophysics Data System (ADS)
Cinabro, David; Scolnic, Daniel; Kessler, Richard; Li, Ashley; Miller, Jake
2017-04-01
In response to a recently reported observation of evidence for two classes of Type Ia supernovae (SNe Ia) distinguished by their brightness in the rest-frame near-ultraviolet (NUV), we search for the phenomenon in publicly available light-curve data. We use the SNANA supernova analysis package to simulate SN Ia light curves in the Sloan Digital Sky Survey (SDSS) Supernova Search and the Supernova Legacy Survey (SNLS) with a model of two distinct ultraviolet classes of SNe Ia and a conventional model with a single broad distribution of SN-Ia ultraviolet brightnesses. We compare simulated distributions of rest-frame colours with these two models to those observed in 158 SNe Ia in the SDSS and SNLS data. The SNLS sample of 99 SNe Ia is in clearly better agreement with a model with one class of SN Ia light curves and shows no evidence for distinct NUV sub-classes. The SDSS sample of 59 SNe Ia with poorer colour resolution does not distinguish between the two models.
Ten years in the library: new data confirm paleontological patterns
NASA Technical Reports Server (NTRS)
Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)
1993-01-01
A comparison is made between compilations of times of origination and extinction of fossil marine animal families published in 1982 and 1992. As a result of ten years of library research, half of the information in the compendia has changed: families have been added and deleted, low-resolution stratigraphic data been improved, and intervals of origination and extinction have been altered. Despite these changes, apparent macroevolutionary patterns for the entire marine fauna have remained constant. Diversity curves compiled from the two data bases are very similar, with a goodness-of-fit of 99%; the principal difference is that the 1992 curve averages 13% higher than the older curve. Both numbers and percentages of origination and extinction also match well, with fits ranging from 83% to 95%. All major events of radiation and extinction are identical. Therefore, errors in large paleontological data bases and arbitrariness of included taxa are not necessarily impediments to the analysis of pattern in the fossil record, so long as the data are sufficiently numerous.
Akiyama, Hiroshi; Nakamura, Fumi; Yamada, Chihiro; Nakamura, Kosuke; Nakajima, Osamu; Kawakami, Hiroshi; Harikai, Naoki; Furui, Satoshi; Kitta, Kazumi; Teshima, Reiko
2009-11-01
To screen for unauthorized genetically modified organisms (GMO) in the various crops, we developed a multiplex real-time polymerase chain reaction high-resolution melting-curve analysis method for the simultaneous qualitative detection of 35S promoter sequence of cauliflower mosaic virus (35SP) and the nopaline synthase terminator (NOST) in several crops. We selected suitable primer sets for the simultaneous detection of 35SP and NOST and designed the primer set for the detection of spiked ColE1 plasmid to evaluate the validity of the polymerase chain reaction (PCR) analyses. In addition, we optimized the multiplex PCR conditions using the designed primer sets and EvaGreen as an intercalating dye. The contamination of unauthorized GMO with single copy similar to NK603 maize can be detected as low as 0.1% in a maize sample. Furthermore, we showed that the present method would be applicable in identifying GMO in various crops and foods like authorized GM soybean, authorized GM potato, the biscuit which is contaminated with GM soybeans and the rice which is contaminated with unauthorized GM rice. We consider this method to be a simple and reliable assay for screening for unauthorized GMO in crops and the processing food products.
Thong, Kwai Lin
2014-01-01
The increased Salmonella resistance to quinolones and fluoroquinolones is a public health concern in the Southeast Asian region. The objective of this study is to develop a high resolution melt curve (HRM) assay to rapidly screen for mutations in quinolone-resistant determining region (QRDR) of gyrase and topoisomerase IV genes. DNA sequencing was performed on 62 Salmonella strains to identify mutations in the QRDR of gyrA, gyrB, parC, and parE genes. Mutations were detected in QRDR of gyrA (n = 52; S83F, S83Y, S83I, D87G, D87Y, and D87N) and parE (n = 1; M438I). Salmonella strains with mutations within QRDR of gyrA are generally more resistant to nalidixic acid (MIC 16 > 256 μg/mL). Mutations were uncommon within the QRDR of gyrB, parC, and parE genes. In the HRM assay, mutants can be distinguished from the wild-type strains based on the transition of melt curves, which is more prominent when the profiles are displayed in difference plot. In conclusion, HRM analysis allows for rapid screening for mutations at the QRDRs of gyrase and topoisomerase IV genes in Salmonella. This assay markedly reduced the sequencing effort involved in mutational studies of quinolone-resistance genes. PMID:25371903
Ngoi, Soo Tein; Thong, Kwai Lin
2014-01-01
The increased Salmonella resistance to quinolones and fluoroquinolones is a public health concern in the Southeast Asian region. The objective of this study is to develop a high resolution melt curve (HRM) assay to rapidly screen for mutations in quinolone-resistant determining region (QRDR) of gyrase and topoisomerase IV genes. DNA sequencing was performed on 62 Salmonella strains to identify mutations in the QRDR of gyrA, gyrB, parC, and parE genes. Mutations were detected in QRDR of gyrA (n = 52; S83F, S83Y, S83I, D87G, D87Y, and D87N) and parE (n = 1; M438I). Salmonella strains with mutations within QRDR of gyrA are generally more resistant to nalidixic acid (MIC 16 > 256 μg/mL). Mutations were uncommon within the QRDR of gyrB, parC, and parE genes. In the HRM assay, mutants can be distinguished from the wild-type strains based on the transition of melt curves, which is more prominent when the profiles are displayed in difference plot. In conclusion, HRM analysis allows for rapid screening for mutations at the QRDRs of gyrase and topoisomerase IV genes in Salmonella. This assay markedly reduced the sequencing effort involved in mutational studies of quinolone-resistance genes.
Calibration of Fuji BAS-SR type imaging plate as high spatial resolution x-ray radiography recorder
NASA Astrophysics Data System (ADS)
Yan, Ji; Zheng, Jianhua; Zhang, Xing; Chen, Li; Wei, Minxi
2017-05-01
Image Plates as x-ray recorder have advantages including reusable, high dynamic range, large active area, and so on. In this work, Fuji BAS-SR type image plate combined with BAS-5000 scanner is calibrated. The fade rates of Image Plates has been measured using x-ray diffractometric in different room temperature; the spectral response of Image Plates has been measured using 241Am radioactive sealed source and fitting with linear model; the spatial resolution of Image Plates has been measured using micro-focus x-ray tube. The results show that Image Plates has an exponent decade curve and double absorption edge response curve. The spatial resolution of Image Plates with 25μ/50μ scanner resolution is 6.5lp/mm, 11.9lp/mm respectively and gold grid radiography is collected with 80lp/mm spatial resolution using SR-type Image Plates. BAS-SR type Image Plates can do high spatial resolution and quantitative radiographic works. It can be widely used in High energy density physics (HEDP), inertial confinement fusion (ICF) and laboratory astronomy physics.
NASA Astrophysics Data System (ADS)
Weber, M. E.; Reichelt, L.; Kuhn, G.; Pfeiffer, M.; Korff, B.; Thurow, J.; Ricken, W.
2010-03-01
We present tools for rapid and quantitative detection of sediment lamination. The BMPix tool extracts color and gray scale curves from images at pixel resolution. The PEAK tool uses the gray scale curve and performs, for the first time, fully automated counting of laminae based on three methods. The maximum count algorithm counts every bright peak of a couplet of two laminae (annual resolution) in a smoothed curve. The zero-crossing algorithm counts every positive and negative halfway passage of the curve through a wide moving average, separating the record into bright and dark intervals (seasonal resolution). The same is true for the frequency truncation method, which uses Fourier transformation to decompose the curve into its frequency components before counting positive and negative passages. The algorithms are available at doi:10.1594/PANGAEA.729700. We applied the new methods successfully to tree rings, to well-dated and already manually counted marine varves from Saanich Inlet, and to marine laminae from the Antarctic continental margin. In combination with AMS14C dating, we found convincing evidence that laminations in Weddell Sea sites represent varves, deposited continuously over several millennia during the last glacial maximum. The new tools offer several advantages over previous methods. The counting procedures are based on a moving average generated from gray scale curves instead of manual counting. Hence, results are highly objective and rely on reproducible mathematical criteria. Also, the PEAK tool measures the thickness of each year or season. Since all information required is displayed graphically, interactive optimization of the counting algorithms can be achieved quickly and conveniently.
Timing Analysis with INTEGRAL: Comparing Different Reconstruction Algorithms
NASA Technical Reports Server (NTRS)
Grinberg, V.; Kreykenboehm, I.; Fuerst, F.; Wilms, J.; Pottschmidt, K.; Bel, M. Cadolle; Rodriquez, J.; Marcu, D. M.; Suchy, S.; Markowitz, A.;
2010-01-01
INTEGRAL is one of the few instruments capable of detecting X-rays above 20keV. It is therefore in principle well suited for studying X-ray variability in this regime. Because INTEGRAL uses coded mask instruments for imaging, the reconstruction of light curves of X-ray sources is highly non-trivial. We present results from the comparison of two commonly employed algorithms, which primarily measure flux from mask deconvolution (ii-lc-extract) and from calculating the pixel illuminated fraction (ii-light). Both methods agree well for timescales above about 10 s, the highest time resolution for which image reconstruction is possible. For higher time resolution, ii-light produces meaningful results, although the overall variance of the lightcurves is not preserved.
Anderson, Elizabeth S; Nelson, David A; Kreft, Heather; Nelson, Peggy B; Oxenham, Andrew J
2011-07-01
Spectral ripple discrimination thresholds were measured in 15 cochlear-implant users with broadband (350-5600 Hz) and octave-band noise stimuli. The results were compared with spatial tuning curve (STC) bandwidths previously obtained from the same subjects. Spatial tuning curve bandwidths did not correlate significantly with broadband spectral ripple discrimination thresholds but did correlate significantly with ripple discrimination thresholds when the rippled noise was confined to an octave-wide passband, centered on the STC's probe electrode frequency allocation. Ripple discrimination thresholds were also measured for octave-band stimuli in four contiguous octaves, with center frequencies from 500 Hz to 4000 Hz. Substantial variations in thresholds with center frequency were found in individuals, but no general trends of increasing or decreasing resolution from apex to base were observed in the pooled data. Neither ripple nor STC measures correlated consistently with speech measures in noise and quiet in the sample of subjects in this study. Overall, the results suggest that spectral ripple discrimination measures provide a reasonable measure of spectral resolution that correlates well with more direct, but more time-consuming, measures of spectral resolution, but that such measures do not always provide a clear and robust predictor of performance in speech perception tasks. © 2011 Acoustical Society of America
Anderson, Elizabeth S.; Nelson, David A.; Kreft, Heather; Nelson, Peggy B.; Oxenham, Andrew J.
2011-01-01
Spectral ripple discrimination thresholds were measured in 15 cochlear-implant users with broadband (350–5600 Hz) and octave-band noise stimuli. The results were compared with spatial tuning curve (STC) bandwidths previously obtained from the same subjects. Spatial tuning curve bandwidths did not correlate significantly with broadband spectral ripple discrimination thresholds but did correlate significantly with ripple discrimination thresholds when the rippled noise was confined to an octave-wide passband, centered on the STC’s probe electrode frequency allocation. Ripple discrimination thresholds were also measured for octave-band stimuli in four contiguous octaves, with center frequencies from 500 Hz to 4000 Hz. Substantial variations in thresholds with center frequency were found in individuals, but no general trends of increasing or decreasing resolution from apex to base were observed in the pooled data. Neither ripple nor STC measures correlated consistently with speech measures in noise and quiet in the sample of subjects in this study. Overall, the results suggest that spectral ripple discrimination measures provide a reasonable measure of spectral resolution that correlates well with more direct, but more time-consuming, measures of spectral resolution, but that such measures do not always provide a clear and robust predictor of performance in speech perception tasks. PMID:21786905
NASA Astrophysics Data System (ADS)
Losekamm, M. J.; Milde, M.; Pöschl, T.; Greenwald, D.; Paul, S.
2017-02-01
Traditional radiation detectors can either measure the total radiation dose omnidirectionally (dosimeters), or determine the incoming particles characteristics within a narrow field of view (spectrometers). Instantaneous measurements of anisotropic fluxes thus require several detectors, resulting in bulky setups. The Multi-purpose Active-target Particle Telescope (MAPT), employing a new detection principle, is designed to measure particle fluxes omnidirectionally and be simultaneously a dosimeter and spectrometer. It consists of an active core of scintillating fibers whose light output is measured by silicon photomultipliers, and fits into a cube with an edge length of 10 cm. It identifies particles using extended Bragg curve spectroscopy, with sensitivity to charged particles with kinetic energies above 25 MeV. MAPT's unique layout results in a geometrical acceptance of approximately 800 cm2 sr and an angular resolution of less than 6°, which can be improved by track-fitting procedures. In a beam test of a simplified prototype, the energy resolution was found to be less than 1 MeV for protons with energies between 30 and 70 MeV. Possible applications of MAPT include the monitoring of radiation environments in spacecraft and beam monitoring in medical facilities.
Garrido, M; Larrechi, M S; Rius, F X
2007-03-07
This paper reports the validation of the results obtained by combining near infrared spectroscopy and multivariate curve resolution-alternating least squares (MCR-ALS) and using high performance liquid chromatography as a reference method, for the model reaction of phenylglycidylether (PGE) and aniline. The results are obtained as concentration profiles over the reaction time. The trueness of the proposed method has been evaluated in terms of lack of bias. The joint test for the intercept and the slope showed that there were no significant differences between the profiles calculated spectroscopically and the ones obtained experimentally by means of the chromatographic reference method at an overall level of confidence of 5%. The uncertainty of the results was estimated by using information derived from the process of assessment of trueness. Such operational aspects as the cost and availability of instrumentation and the length and cost of the analysis were evaluated. The method proposed is a good way of monitoring the reactions of epoxy resins, and it adequately shows how the species concentration varies over time.
Maggio, Rubén M; Damiani, Patricia C; Olivieri, Alejandro C
2011-01-30
Liquid chromatographic-diode array detection data recorded for aqueous mixtures of 11 pesticides show the combined presence of strongly coeluting peaks, distortions in the time dimension between experimental runs, and the presence of potential interferents not modeled by the calibration phase in certain test samples. Due to the complexity of these phenomena, data were processed by a second-order multivariate algorithm based on multivariate curve resolution and alternating least-squares, which allows one to successfully model both the spectral and retention time behavior for all sample constituents. This led to the accurate quantitation of all analytes in a set of validation samples: aldicarb sulfoxide, oxamyl, aldicarb sulfone, methomyl, 3-hydroxy-carbofuran, aldicarb, propoxur, carbofuran, carbaryl, 1-naphthol and methiocarb. Limits of detection in the range 0.1-2 μg mL(-1) were obtained. Additionally, the second-order advantage for several analytes was achieved in samples containing several uncalibrated interferences. The limits of detection for all analytes were decreased by solid phase pre-concentration to values compatible to those officially recommended, i.e., in the order of 5 ng mL(-1). Copyright © 2010 Elsevier B.V. All rights reserved.
Group Velocity Dispersion Curves from Wigner-Ville Distributions
NASA Astrophysics Data System (ADS)
Lloyd, Simon; Bokelmann, Goetz; Sucic, Victor
2013-04-01
With the widespread adoption of ambient noise tomography, and the increasing number of local earthquakes recorded worldwide due to dense seismic networks and many very dense temporary experiments, we consider it worthwhile to evaluate alternative Methods to measure surface wave group velocity dispersions curves. Moreover, the increased computing power of even a simple desktop computer makes it feasible to routinely use methods other than the typically employed multiple filtering technique (MFT). To that end we perform tests with synthetic and observed seismograms using the Wigner-Ville distribution (WVD) frequency time analysis, and compare dispersion curves measured with WVD and MFT with each other. Initial results suggest WVD to be at least as good as MFT at measuring dispersion, albeit at a greater computational expense. We therefore need to investigate if, and under which circumstances, WVD yields better dispersion curves than MFT, before considering routinely applying the method. As both MFT and WVD generally work well for teleseismic events and at longer periods, we explore how well the WVD method performs at shorter periods and for local events with smaller epicentral distances. Such dispersion information could potentially be beneficial for improving velocity structure resolution within the crust.
Using SDO/AIA to Understand the Thermal Evolution of Solar Prominence Formation
NASA Astrophysics Data System (ADS)
Viall, Nicholeen; M.; Kucera, Therese T.; Karpen, Judith
2016-10-01
In this study, we investigate prominence formation using time series analysis of Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA) data. We investigate the thermal properties of forming prominences by analyzing observed light curves using the same technique that we have already successfully applied to active regions to diagnose heating and cooling cycles. This technique tracks the thermal evolution using emission formed at different temperatures, made possible by AIA's different wavebands and high time resolution. We also compute the predicted light curves in the same SDO/AIA channels of a hydrodynamic model of thermal nonequilibrium formation of prominence material, an evaporation-condensation model. In these models of prominence formation, heating at the foot-points of sheared coronal flux-tubes results in evaporation of material of a few MK into the corona followed by catastrophic cooling of the hot material to form cool ( 10,000 K) prominence material. We demonstrate that the SDO/AIA light curves for flux tubes undergoing thermal nonequilibrium vary at different locations along the flux tube, especially in the region where the condensate forms, and we compare the predicted light curves with those observed. Supported by NASA's Living with a Star program.
Chatzidimopoulos, Michael; Ganopoulos, Ioannis; Vellios, Evangelos; Madesis, Panagiotis; Tsaftaris, Athanasios; Pappas, Athanassios C
2014-11-01
A rapid, high-resolution melting (HRM) analysis protocol was developed to detect sequence variations associated with resistance to the QoIs, benzimidazoles and dicarboximides in Botrytis cinerea airborne inoculum. HRM analysis was applied directly in fungal DNA collected from air samplers with selective medium. Three and five different genotypes were detected and classified according to their melting profiles in BenA and bos1 genes associated with resistance to benzimidazoles and dicarboximides, respectively. The sensitivity of the methodology was evident in the case of the QoIs, where genotypes varying either by a single nucleotide polymorphism or an additional 1205-bp intron were separated accurately with a single pair of primers. The developed two-step protocol was completed in 82 min and showed reduced variation in the melting curves' formation. HRM analysis rapidly detected the major mutations found in greenhouse strains providing accurate data for successfully controlling grey mould. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Turnbull, S. J.
2017-12-01
Within the US Army Corps of Engineers (USACE), reservoirs are typically operated according to a rule curve that specifies target water levels based on the time of year. The rule curve is intended to maximize flood protection by specifying releases of water before the dominant rainfall period for a region. While some operating allowances are permissible, generally the rule curve elevations must be maintained. While this operational approach provides for the required flood control purpose, it may not result in optimal reservoir operations for multi-use impoundments. In the Russian River Valley of California a multi-agency research effort called Forecast-Informed Reservoir Operations (FIRO) is assessing the application of forecast weather and streamflow predictions to potentially enhance the operation of reservoirs in the watershed. The focus of the study has been on Lake Mendocino, a USACE project important for flood control, water supply, power generation and ecological flows. As part of this effort the Engineer Research and Development Center is assessing the ability of utilizing the physics based, distributed watershed model Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model to simulate stream flows, reservoir stages, and discharges while being driven by weather forecast products. A key question in this application is the effect of watershed model resolution on forecasted stream flows. To help resolve this question, GSSHA models of multiple grid resolutions, 30, 50, and 270m, were developed for the upper Russian River, which includes Lake Mendocino. The models were derived from common inputs: DEM, soils, land use, stream network, reservoir characteristics, and specified inflows and discharges. All the models were calibrated in both event and continuous simulation mode using measured precipitation gages and then driven with the West-WRF atmospheric model in prediction mode to assess the ability of the model to function in short term, less than one week, forecasting mode. In this presentation we will discuss the effect the grid resolution has model development, parameter assignment, streamflow prediction and forecasting capability utilizing the West-WRF forecast hydro-meteorology.
van Ditmarsch, Dave; Xavier, João B
2011-06-17
Online spectrophotometric measurements allow monitoring dynamic biological processes with high-time resolution. Contrastingly, numerous other methods require laborious treatment of samples and can only be carried out offline. Integrating both types of measurement would allow analyzing biological processes more comprehensively. A typical example of this problem is acquiring quantitative data on rhamnolipid secretion by the opportunistic pathogen Pseudomonas aeruginosa. P. aeruginosa cell growth can be measured by optical density (OD600) and gene expression can be measured using reporter fusions with a fluorescent protein, allowing high time resolution monitoring. However, measuring the secreted rhamnolipid biosurfactants requires laborious sample processing, which makes this an offline measurement. Here, we propose a method to integrate growth curve data with endpoint measurements of secreted metabolites that is inspired by a model of exponential cell growth. If serial diluting an inoculum gives reproducible time series shifted in time, then time series of endpoint measurements can be reconstructed using calculated time shifts between dilutions. We illustrate the method using measured rhamnolipid secretion by P. aeruginosa as endpoint measurements and we integrate these measurements with high-resolution growth curves measured by OD600 and expression of rhamnolipid synthesis genes monitored using a reporter fusion. Two-fold serial dilution allowed integrating rhamnolipid measurements at a ~0.4 h-1 frequency with high-time resolved data measured at a 6 h-1 frequency. We show how this simple method can be used in combination with mutants lacking specific genes in the rhamnolipid synthesis or quorum sensing regulation to acquire rich dynamic data on P. aeruginosa virulence regulation. Additionally, the linear relation between the ratio of inocula and the time-shift between curves produces high-precision measurements of maximum specific growth rates, which were determined with a precision of ~5.4%. Growth curve synchronization allows integration of rich time-resolved data with endpoint measurements to produce time-resolved quantitative measurements. Such data can be valuable to unveil the dynamic regulation of virulence in P. aeruginosa. More generally, growth curve synchronization can be applied to many biological systems thus helping to overcome a key obstacle in dynamic regulation: the scarceness of quantitative time-resolved data.
NASA Astrophysics Data System (ADS)
Chambion, Bertrand; Gaschet, Christophe; Behaghel, Thibault; Vandeneynde, Aurélie; Caplet, Stéphane; Gétin, Stéphane; Henry, David; Hugot, Emmanuel; Jahn, Wilfried; Lombardo, Simona; Ferrari, Marc
2018-02-01
Over the recent years, a huge interest has grown for curved electronics, particularly for opto-electronics systems. Curved sensors help the correction of off-axis aberrations, such as Petzval Field Curvature, astigmatism, and bring significant optical and size benefits for imaging systems. In this paper, we first describe advantages of curved sensor and associated packaging process applied on a 1/1.8'' format 1.3Mpx global shutter CMOS sensor (Teledyne EV76C560) into its standard ceramic package with a spherical radius of curvature Rc=65mm and 55mm. The mechanical limits of the die are discussed (Finite Element Modelling and experimental), and electro-optical performances are investigated. Then, based on the monocentric optical architecture, we proposed a new design, compact and with a high resolution, developed specifically for a curved image sensor including optical optimization, tolerances, assembly and optical tests. Finally, a functional prototype is presented through a benchmark approach and compared to an existing standard optical system with same performances and a x2.5 reduction of length. The finality of this work was a functional prototype demonstration on the CEA-LETI during Photonics West 2018 conference. All these experiments and optical results demonstrate the feasibility and high performances of systems with curved sensors.
Aluas, Mihaela; Filip, Claudiu
2005-05-01
A novel approach for solid-state NMR characterization of cross-linking in polymer blends from the analysis of (1)H-(13)C polarization transfer dynamics is introduced. It extends the model of residual dipolar couplings under permanent cross-linking, typically used to describe (1)H transverse relaxation techniques, by considering a more realistic distribution of the order parameter along a polymer chain in rubbers. Based on a systematic numerical analysis, the extended model was shown to accurately reproduce all the characteristic features of the cross-polarization curves measured on such materials. This is particularly important for investigating blends of great technological potential, like thermoplastic elastomers, where (13)C high-resolution techniques, such as CP-MAS, are indispensable to selectively investigate structural and dynamical properties of the desired component. The validity of the new approach was demonstrated using the example of the CP build-up curves measured on a well resolved EPDM resonance line in a series of EPDM/PP blends.
Hashad, Doaa I; Elsayed, Eman T; Helmy, Tamer A; Elawady, Samier M
2017-11-01
Septic acute kidney injury (AKI) is a prevalent complication in intensive care units with an increased incidence of complications. The aim of the present study was to assess the use of high-resolution melting curve (HRM) analysis in investigating whether the genetic polymorphisms; -308 G/A of tumor necrosis factor-α (TNF-α), and -1082 G /A of Interleukin-10 (IL-10) genes may predispose patients diagnosed with severe sepsis to the development of AKI. One hundred and fifty patients with severe sepsis participated in the present study; only sixty-six developed AKI. Both polymorphisms were studied using HRM analysis. The low producer genotype of both studied polymorphism of TNF-α and IL-10 genes was associated with AKI. Using logistic regression analysis, the low producer genotypes remained an independent risk factor for AKI. A statistically significant difference was detected between both studied groups as regards the low producer genotype in both TNF-α (-308 G/A) and interleukin-10 (IL-10) (-1082 G/A) polymorphisms being prevalent in patients developing AKI. Principle conclusions: The low producer genotypes of both TNF-α (-308 G/A) and IL-10 (-1082 G/A) polymorphisms could be considered a risk factor for the development of AKI in critically ill patients with severe sepsis, thus management technique implemented for this category should be modulated rescuing this sector of patients from the grave deterioration to acute kidney injury. Using HRM for genotyping proved to be a highly efficient, simple, cost-effective genotyping technique that is most appropriate for the routine study of large-scale samples.
Papavasileiou, Antonios; Madesis, Panagiotis B; Karaoglanidis, George S
2016-09-01
Brown rot is a devastating disease of stone fruit caused by Monilinia spp. Among these species, Monilinia fructicola is a quarantine pathogen in Europe but has recently been detected in several European countries. Identification of brown rot agents relies on morphological differences or use of molecular methods requiring fungal isolation. The current study was initiated to develop and validate a high-resolution melting (HRM) method for the identification of the Monilinia spp. and for the detection of M. fructicola among other brown rot pathogens. Based on the sequence of the cytb intron from M. laxa, M. fructicola, M. fructigena, M. mumecola, M. linhartiana, and M. yunnanensis isolates originating from several countries, a pair of universal primers for species identification and a pair of primers specific to M. fructicola were designed. The specificity of the primers was verified to ensure against cross-reaction with other fungal species. The melting curve analysis using the universal primers generated six different HRM curve profiles, each one specific for each species. Τhe HRM analysis primers specific to M. fructicola amplified a 120-bp region with a distinct melt profile corresponding to the presence of M. fructicola, regardless of the presence of other species. HRM analysis can be a useful tool for rapid identification and differentiation of the six Monilinia spp. using a single primer pair. This novel assay has the potential for simultaneous identification and differentiation of the closely related Monilinia spp. as well as for the differentiation of M. fructicola from other common pathogens or saprophytes that may occur on the diseased fruit.
Peláez Sánchez, Ronald G.; Quintero, Juan Álvaro López; Pereira, Martha María; Agudelo-Flórez, Piedad
2017-01-01
It is important to identify the circulating Leptospira agent to enhance the performance of serodiagnostic tests by incorporating specific antigens of native species, develop vaccines that take into account the species/serovars circulating in different regions, and optimize prevention and control strategies. The objectives of this study were to develop a polymerase chain reaction (PCR)–high-resolution melting (HRM) assay for differentiating between species of the genus Leptospira and to verify its usefulness in identifying unknown samples to species level. A set of primers from the initial region of the 16S ribosomal gene was designed to detect and differentiate the 22 species of Leptospira. Eleven reference strains were used as controls to establish the reference species and differential melting curves. Twenty-five Colombian Leptospira isolates were studied to evaluate the usefulness of the PCR–HRM assay in identifying unknown samples to species level. This identification was confirmed by sequencing and phylogenetic analysis of the 16S ribosomal gene. Eleven Leptospira species were successfully identified, except for Leptospira meyeri/Leptospira yanagawae because the sequences were 100% identical. The 25 isolates from humans, animals, and environmental water sources were identified as Leptospira santarosai (twelve), Leptospira interrogans (nine), and L. meyeri/L. yanagawae (four). The species verification was 100% concordant between PCR–HRM and phylogenetic analysis of the 16S ribosomal gene. The PCR–HRM assay designed in this study is a useful tool for identifying Leptospira species from isolates. PMID:28500802
High-resolution monochromatic x-ray imaging system based on spherically bent crystals.
Aglitskiy, Y; Lehecka, T; Obenschain, S; Bodner, S; Pawley, C; Gerber, K; Sethian, J; Brown, C M; Seely, J; Feldman, U; Holland, G
1998-08-01
We have developed an improved x-ray imaging system based on spherically curved crystals. It is designed and used for diagnostics of targets ablatively accelerated by the Nike KrF laser. A spherically curved quartz crystal (d = .?, R = mm) has been used to produce monochromatic backlit images with the He-like Si resonance line (1865 eV) as the source of radiation. The spatial resolution of the x-ray optical system is 1.7 mum in selected places and 2-3 mum over a larger area. Time-resolved backlit monochromatic images of polystyrene planar targets driven by the Nike facility have been obtained with a spatial resolution of 2.5 mum in selected places and 5 mum over the focal spot of the Nike laser.
VizieR Online Data Catalog: Praesepe members with K2 light curve data (Rebull+, 2017)
NASA Astrophysics Data System (ADS)
Rebull, L. M.; Stauffer, J. R.; Hillenbrand, L. A.; Cody, A. M.; Bouvier, J.; Soderblom, D. R.; Pinsonneault, M.; Hebb, L.
2017-11-01
Praesepe members and candidate members were observed in K2 Campaign 5, which lasted for 75 days between 2015 April and October. We obtained high resolution spectra for several of the anomalously slowly rotating stars and all of the objects with odd light curves (Section 4.3) using the Keck HIRES spectrograph. The observations were taken on one of 2016 October 14, December 22, December 26, or 2017 January 13, UT, and cover the wavelength range roughly 4800-9200Å at a spectral resolution of R~45000. (10 data files).
Trötzmüller, Martin; Triebl, Alexander; Ajsic, Amra; Hartler, Jürgen; Köfeler, Harald; Regittnig, Werner
2017-11-21
Multiple-tracer approaches for investigating glucose metabolism in humans usually involve the administration of stable and radioactive glucose tracers and the subsequent determination of tracer enrichments in sampled blood. When using conventional, low-resolution mass spectrometry (LRMS), the number of spectral interferences rises rapidly with the number of stable tracers employed. Thus, in LRMS, both computational effort and statistical uncertainties associated with the correction for spectral interferences limit the number of stable tracers that can be simultaneously employed (usually two). Here we show that these limitations can be overcome by applying high-resolution mass spectrometry (HRMS). The HRMS method presented is based on the use of an Orbitrap mass spectrometer operated at a mass resolution of 100 000 to allow electrospray-generated ions of the deprotonated glucose molecules to be monitored at their exact masses. The tracer enrichment determination in blood plasma is demonstrated for several triple combinations of 13 C- and 2 H-labeled glucose tracers (e.g., [1- 2 H 1 ]-, [6,6- 2 H 2 ]-, [1,6- 13 C 2 ]glucose). For each combination it is shown that ions arising from 2 H-labeled tracers are completely differentiated from those arising from 13 C-labeled tracers, thereby allowing the enrichment of a tracer to be simply calculated from the observed ion intensities using a standard curve with curve parameters unaffected by the presence of other tracers. For each tracer, the HRMS method exhibits low limits of detection and good repeatability in the tested 0.1-15.0% enrichment range. Additionally, due to short sample preparation and analysis times, the method is well-suited for high-throughput determination of multiple glucose tracer enrichments in plasma samples.
Improving PET spatial resolution and detectability for prostate cancer imaging
NASA Astrophysics Data System (ADS)
Bal, H.; Guerin, L.; Casey, M. E.; Conti, M.; Eriksson, L.; Michel, C.; Fanti, S.; Pettinato, C.; Adler, S.; Choyke, P.
2014-08-01
Prostate cancer, one of the most common forms of cancer among men, can benefit from recent improvements in positron emission tomography (PET) technology. In particular, better spatial resolution, lower noise and higher detectability of small lesions could be greatly beneficial for early diagnosis and could provide a strong support for guiding biopsy and surgery. In this article, the impact of improved PET instrumentation with superior spatial resolution and high sensitivity are discussed, together with the latest development in PET technology: resolution recovery and time-of-flight reconstruction. Using simulated cancer lesions, inserted in clinical PET images obtained with conventional protocols, we show that visual identification of the lesions and detectability via numerical observers can already be improved using state of the art PET reconstruction methods. This was achieved using both resolution recovery and time-of-flight reconstruction, and a high resolution image with 2 mm pixel size. Channelized Hotelling numerical observers showed an increase in the area under the LROC curve from 0.52 to 0.58. In addition, a relationship between the simulated input activity and the area under the LROC curve showed that the minimum detectable activity was reduced by more than 23%.
Sub-micron materials characterization using near-field optics
NASA Astrophysics Data System (ADS)
Blodgett, David Wesley
1998-12-01
High-resolution sub-surface materials characterization and inspection are critical in the microelectronics and thin films industries. To this end, a technique is described that couples the bulk property measurement capabilities of high-frequency ultrasound with the high-resolution surface imaging capabilities of the near-field optical microscope. Sensing bulk microstructure variations in the material, such as grain boundaries, requires a detection footprint smaller than the variation itself. The near-field optical microscope, with the ability to exceed the diffraction limit in optical resolution, meets this requirement. Two apertureless near-field optical microscopes, on-axis and off-axis illumination, have been designed and built. Near-field and far-field approach curves for both microscopes are presented. The sensitivity of the near-field approach curve was 8.3 muV/nm. Resolution studies for the near-field microscope indicate optical resolutions on the order of 50 nm, which exceeds the diffraction limit. The near-field microscope has been adapted to detect both contact-transducer-generated and laser-generated ultrasound. The successful detection of high-frequency ultrasound with the near-field optical microscope demonstrates the potential of this technique.
Koenigkam-Santos, Marcel; Optazaite, Elzbieta; Sommer, Gregor; Safi, Seyer; Heussel, Claus Peter; Kauczor, Hans-Ulrich; Puderbach, Michael
2015-01-01
To propose a technique for evaluation of pulmonary lesions using contrast-enhanced MRI; to assess morphological patterns of enhancement and correlate quantitative analysis with histopathology. Thirty-six patients were prospectively studied. Volumetric-interpolated T1W images were obtained during consecutive breath holds after bolus triggered contrast injection. Volume coverage of first three acquisitions was limited (higher temporal resolution) and last acquisition obtained at 4th min. Two radiologists individually evaluated the patterns of enhancement. Region-of-interest-based signal intensity (SI)-time curves were created to assess quantitative parameters. Readers agreed moderately to substantially concerning lesions' enhancement pattern. SI-time curves could be created for all lesions. In comparison to benign, malignant lesions showed higher values of maximum enhancement, early peak, slope and 4th min enhancement. Early peak >15% showed 100% sensitivity to detect malignancy, maximum enhancement >40% showed 100% specificity. The proposed technique is robust, simple to perform and can be applied in clinical scenario. It allows visual evaluation of enhancement pattern/progression together with creation of SI-time curves and assessment of derived quantitative parameters. Perfusion analysis was highly sensitive to detect malignancy, in accordance to what is recommended by most recent guidelines on imaging evaluation of pulmonary lesions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Zhang, Wentao; Liu, Guodong; Meng, Jianqiao; Zhao, Lin; Liu, Haiyun; Dong, Xiaoli; Lu, Wei; Wen, J S; Xu, Z J; Gu, G D; Sasagawa, T; Wang, Guiling; Zhu, Yong; Zhang, Hongbo; Zhou, Yong; Wang, Xiaoyang; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X J
2008-07-04
Laser-based angle-resolved photoemission spectroscopy measurements have been carried out on the high energy electron dynamics in Bi2Sr2CaCu2O8 high temperature superconductor. Our superhigh resolution data, momentum-dependent measurements, and complete analysis provide important information to judge the nature of the high energy dispersion and kink. Our results rule out the possibility that the high energy dispersion from the momentum distribution curve (MDC) may represent the true bare band as believed in previous studies. We also rule out the possibility that the high energy kink represents electron coupling with some high energy modes as proposed before. Through detailed MDC and energy distribution curve analyses, we propose that the high energy MDC dispersion may not represent intrinsic band structure.
Beyramysoltan, Samira; Abdollahi, Hamid; Rajkó, Róbert
2014-05-27
Analytical self-modeling curve resolution (SMCR) methods resolve data sets to a range of feasible solutions using only non-negative constraints. The Lawton-Sylvestre method was the first direct method to analyze a two-component system. It was generalized as a Borgen plot for determining the feasible regions in three-component systems. It seems that a geometrical view is required for considering curve resolution methods, because the complicated (only algebraic) conceptions caused a stop in the general study of Borgen's work for 20 years. Rajkó and István revised and elucidated the principles of existing theory in SMCR methods and subsequently introduced computational geometry tools for developing an algorithm to draw Borgen plots in three-component systems. These developments are theoretical inventions and the formulations are not always able to be given in close form or regularized formalism, especially for geometric descriptions, that is why several algorithms should have been developed and provided for even the theoretical deductions and determinations. In this study, analytical SMCR methods are revised and described using simple concepts. The details of a drawing algorithm for a developmental type of Borgen plot are given. Additionally, for the first time in the literature, equality and unimodality constraints are successfully implemented in the Lawton-Sylvestre method. To this end, a new state-of-the-art procedure is proposed to impose equality constraint in Borgen plots. Two- and three-component HPLC-DAD data set were simulated and analyzed by the new analytical curve resolution methods with and without additional constraints. Detailed descriptions and explanations are given based on the obtained abstract spaces. Copyright © 2014 Elsevier B.V. All rights reserved.
Hyperspectral stimulated emission depletion microscopy and methods of use thereof
Timlin, Jerilyn A; Aaron, Jesse S
2014-04-01
A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").
High-resolution Behavioral Economic Analysis of Cigarette Demand to Inform Tax Policy
MacKillop, James; Few, Lauren R.; Murphy, James G.; Wier, Lauren M.; Acker, John; Murphy, Cara; Stojek, Monika; Carrigan, Maureen; Chaloupka, Frank
2012-01-01
Aims Novel methods in behavioral economics permit the systematic assessment of the relationship between cigarette consumption and price. Toward informing tax policy, the goals of this study were to conduct a high-resolution analysis of cigarette demand in a large sample of adult smokers and to use the data to estimate the effects of tax increases in ten U.S. States. Design In-person descriptive survey assessment. Setting Academic departments at three universities. Participants Adult daily smokers (i.e., 5+ cigarettes/day; 18+ years old; ≥8th grade education); N = 1056. Measurements Estimated cigarette demand, demographics, expired carbon monoxide. Findings The cigarette demand curve exhibited highly variable levels of price sensitivity, especially in the form of ‘left-digit effects’ (i.e., very high price sensitivity as pack prices transitioned from one whole number to the next; e.g., $5.80-$6/pack). A $1 tax increase in the ten states was projected to reduce the economic burden of smoking by an average of $531M (range: $93.6M-$976.5M) and increase gross tax revenue by an average of 162% (range: 114%- 247%). Conclusions Tobacco price sensitivity is nonlinear across the demand curve and in particular for pack-level left-digit price transitions. Tax increases in U.S. states with similar price and tax rates to the sample are projected to result in substantial decreases in smoking-related costs and substantial increases in tax revenues. PMID:22845784
High-resolution behavioral economic analysis of cigarette demand to inform tax policy.
MacKillop, James; Few, Lauren R; Murphy, James G; Wier, Lauren M; Acker, John; Murphy, Cara; Stojek, Monika; Carrigan, Maureen; Chaloupka, Frank
2012-12-01
Novel methods in behavioral economics permit the systematic assessment of the relationship between cigarette consumption and price. Towards informing tax policy, the goals of this study were to conduct a high-resolution analysis of cigarette demand in a large sample of adult smokers and to use the data to estimate the effects of tax increases in 10 US States. In-person descriptive survey assessment. Academic departments at three universities. Adult daily smokers (i.e. more than five cigarettes/day; 18+ years old; ≥8th grade education); n = 1056. Estimated cigarette demand, demographics, expired carbon monoxide. The cigarette demand curve exhibited highly variable levels of price sensitivity, especially in the form of 'left-digit effects' (i.e. very high price sensitivity as pack prices transitioned from one whole number to the next; e.g. $5.80-6/pack). A $1 tax increase in the 10 states was projected to reduce the economic burden of smoking by an average of $530.6 million (range: $93.6-976.5 million) and increase gross tax revenue by an average of 162% (range: 114-247%). Tobacco price sensitivity is non-linear across the demand curve and in particular for pack-level left-digit price transitions. Tax increases in US states with similar price and tax rates to the sample are projected to result in substantial decreases in smoking-related costs and substantial increases in tax revenues. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.
Ma, Junxiu; Qi, Juan; Gao, Xinyu; Yan, Chunhua; Zhang, Tianlong; Tang, Hongsheng
2017-01-01
3,5-Diamino-1,2,4-triazole (DAT) became a significant energetic materials intermediate, and the study of its reaction mechanism has fundamental significance in chemistry. The aim of this study is to investigate the ability of online attenuated total reflection infrared (ATR-IR) spectroscopy combined with the novel approach of hybrid hard- and soft-modelling multivariate curve resolution-alternating least squares (HS-MCR) analysis to monitor and detect changes in structural properties of compound during 3,5-diamino-1,2,4-triazole (DAT) synthesis processes. The subspace comparison method (SCM) was used to obtain the principal components number, and then the pure IR spectra of each substance were obtained by independent component analysis (ICA) and HS-MCR. The extent of rotation ambiguity was estimated from the band boundaries of feasible solutions calculated using the MCR-BANDS procedure. There were five principal components including two intermediates in the process in the results. The reaction rate constants of DAT formation reaction were also obtained by HS-MCR. HS-MCR was used to analyze spectroscopy data in chemical synthesis process, which not only increase the information domain but also reduce the ambiguities of the obtained results. This study provides the theoretical basis for the optimization of synthesis process and technology of energetic materials and provides a strong technical support of research and development of energy material with extraordinary damage effects. PMID:28386512
SU-E-T-96: Energy Dependence of the New GafChromic- EBT3 Film's Dose Response-Curve.
Chiu-Tsao, S; Massillon-Jl, G; Domingo-Muñoz, I; Chan, M
2012-06-01
To study and compare the dose response curves of the new GafChromic EBT3 film for megavoltage and kilovoltage x-ray beams, with different spatial resolution. Two sets of EBT3 films (lot#A101711-02) were exposed to each x-ray beam (6MV, 15MV and 50kV) at 8 dose values (50-3200cGy). The megavoltage beams were calibrated per AAPM TG-51 protocol while the kilovoltage beam was calibrated following the TG-61 using an ionization chamber calibrated at NIST. Each film piece was scanned three consecutive times in the center of Epson 10000XL flatbed scanner in transmission mode, landscape orientation, 48-bit color at two separate spatial resolutions of 75 and 300 dpi. The data were analyzed using ImageJ and, for each scanned image, a region of interest (ROI) of 2×2cm 2 at the field center was selected to obtain the mean pixel value with its standard deviation in the ROI. For each energy, dose value and spatial resolution, the average netOD and its associated uncertainty were determined. The Student's t-test was performed to evaluate the statistical differences between the netOD/dose values of the three energy modalities, with different color channels and spatial resolutions. The dose response curves for the three energy modalities were compared in three color channels with 75 and 300dpi. Weak energy dependence was found. For doses above 100cGy, no statistical differences were observed between 6 and 15MV beams, regardless of spatial resolution. However, statistical differences were observed between 50kV and the megavoltage beams. The degree of energy dependence (from MV to 50kV) was found to be function of color channel, dose level and spatial resolution. The dose response curves for GafChromic EBT3 films were found to be weakly dependent on the energy of the photon beams from 6MV to 50kV. The degree of energy dependence varies with color channel, dose and spatial resolution. GafChromic EBT3 films were supplied by Ashland Corp. This work was partially supported by DGAPA-UNAM grant IN102610 and Conacyt Mexico grant 127409. © 2012 American Association of Physicists in Medicine.
Ishihara, Takashi; Kadoya, Toshihiko; Yamamoto, Shuichi
2007-08-24
We applied the model described in our previous paper to the rapid scale-up in the ion exchange chromatography of proteins, in which linear flow velocity, column length and gradient slope were changed. We carried out linear gradient elution experiments, and obtained data for the peak salt concentration and peak width. From these data, the plate height (HETP) was calculated as a function of the mobile phase velocity and iso-resolution curve (the separation time and elution volume relationship for the same resolution) was calculated. The scale-up chromatography conditions were determined by the iso-resolution curve. The scale-up of the linear gradient elution from 5 to 100mL and 2.5L column sizes was performed both by the separation of beta-lactoglobulin A and beta-lactoglobulin B with anion-exchange chromatography and by the purification of a recombinant protein with cation-exchange chromatography. Resolution, recovery and purity were examined in order to verify the proposed method.
NASA Astrophysics Data System (ADS)
Matsuzawa, H.; Yoshizawa, K.
2017-12-01
Recent high-density broad-band seismic networks allow us to construct improved 3-D upper mantle models with unprecedented horizontal resolution using surface waves. Such dispersion measurements have been primarily based on the analysis of fundamental mode. Higher-mode information can be of help in enhancing vertical resolution of 3-D models, but their dispersion analysis is intrinsically difficult, since wave-packets of several modes are overlapped each other in an observed seismogram. In this study, we measure phase dispersion of multi-mode surface waves with an array-based analysis. Our method is modeled on a one-dimensional frequency-wavenumber method originally developed by Nolet (1975, GRL), which can be applied to a set of broadband seismic records observed in a linear array along a great circle path. Through this analysis, we can obtain a spectrogram in c-T (phase speed - period) domain, which is characterized by mode-branch dispersion curves and relative spectral powers for each mode. Synthetic experiments indicate that we can separate the modal contribution using a long linear array with typical array length of about 2000 to 4000 km. The method is applied to a large data set from USArray using nearly 400 seismic events in 2007 - 2014 with Mw 6.5 or greater. Our phase-speed maps for the fundamental-mode Love and Rayleigh waves and the first higher-mode Rayleigh waves match well with the earlier models. The phase speed maps reflect typical large-scale features of regional seismic structure in North America, but smaller-scale variations are less constrained in our model, since our measured phase speeds represent path-average features over a long path (about a few thousands kilometers). Our multi-mode dispersion measurements can also be used for the extraction of mode-branch waveforms for the first a few modes. This can be done by applying a narrow filter around the dispersion curves of a target mode in c-T spectrogram. The mode-branch waveforms can then be reconstructed based on a linear Radon transform (e.g., Luo et al., 2015, GJI). Synthetic experiments suggest that we can successfully retrieve the mode-branch waveforms for several mode branches, which can be used in the secondary analysis for constraining local-scale heterogeneity with enhanced depth resolution.
Cao, Weidong; Bean, Brian; Corey, Scott; Coursey, Johnathan S; Hasson, Kenton C; Inoue, Hiroshi; Isano, Taisuke; Kanderian, Sami; Lane, Ben; Liang, Hongye; Murphy, Brian; Owen, Greg; Shinoda, Nobuhiko; Zeng, Shulin; Knight, Ivor T
2016-06-01
We report the development of an automated genetic analyzer for human sample testing based on microfluidic rapid polymerase chain reaction (PCR) with high-resolution melting analysis (HRMA). The integrated DNA microfluidic cartridge was used on a platform designed with a robotic pipettor system that works by sequentially picking up different test solutions from a 384-well plate, mixing them in the tips, and delivering mixed fluids to the DNA cartridge. A novel image feedback flow control system based on a Canon 5D Mark II digital camera was developed for controlling fluid movement through a complex microfluidic branching network without the use of valves. The same camera was used for measuring the high-resolution melt curve of DNA amplicons that were generated in the microfluidic chip. Owing to fast heating and cooling as well as sensitive temperature measurement in the microfluidic channels, the time frame for PCR and HRMA was dramatically reduced from hours to minutes. Preliminary testing results demonstrated that rapid serial PCR and HRMA are possible while still achieving high data quality that is suitable for human sample testing. © 2015 Society for Laboratory Automation and Screening.
Modi, Hitesh N; Suh, Seung-Woo; Yang, Jae-Hyuk; Hong, Jae-Young; Venkatesh, Kp; Muzaffar, Nasir
2010-11-04
Child with mild scoliosis is always a subject of interest for most orthopaedic surgeons regarding progression. Literature described Hueter-Volkmann theory regarding disc and vertebral wedging, and muscular imbalance for the progression of adolescent idiopathic scoliosis. However, many authors reported spontaneous resolution of curves also without any reason for that and the rate of resolution reported is almost 25%. Purpose of this study was to question the role of paraspinal muscle tuning/balancing mechanism, especially in patients with idiopathic scoliosis with early mild curve, for spontaneous regression or progression as well as changing pattern of curves. An observational study of serial radiograms in 169 idiopathic scoliosis children (with minimum follow-up one year) was carried. All children with Cobb angle < 25° and who were diagnosed for the first time were selected. As a sign of immaturity at the time of diagnosis, all children had Risser sign 0. No treatment was given to entire study group. Children were divided in three groups at final follow-up: Group A, B and C as children with regression, no change and progression of their curves, respectively. Additionally changes in the pattern of curve were also noted. Average age was 9.2 years at first visit and 10.11 years at final follow-up with an average follow-up of 21 months. 32.5% (55/169), 41.4% (70/169) and 26% (44/169) children exhibited regression, no change and progression in their curves, respectively. 46.1% of children (78/169) showed changing pattern of their curves during the follow-up visits before it settled down to final curve. Comparing final fate of curve with side of curve and number of curves it did not show any relationship (p > 0.05) in our study population. Possible reason for changing patterns could be better explained by the tuning/balancing mechanism of spinal column that makes an effort to balance the spine and result into spontaneous regression or prevent further progression of curve. If this which we called as "tuning/balancing mechanism" fails, curve will ultimately progress.
Vosough, Maryam; Mohamedian, Hadi; Salemi, Amir; Baheri, Tahmineh
2015-02-01
In the present study, a simple strategy based on solid-phase extraction (SPE) with a cation exchange sorbent (Finisterre SCX) followed by fast high-performance liquid chromatography (HPLC) with diode array detection coupled with chemometrics tools has been proposed for the determination of methamphetamine and pseudoephedrine in ground water and river water. At first, the HPLC and SPE conditions were optimized and the analytical performance of the method was determined. In the case of ground water, determination of analytes was successfully performed through univariate calibration curves. For river water sample, multivariate curve resolution and alternating least squares was implemented and the second-order advantage was achieved in samples containing uncalibrated interferences and uncorrected background signals. The calibration curves showed good linearity (r(2) > 0.994).The limits of detection for pseudoephedrine and methamphetamine were 0.06 and 0.08 μg/L and the average recovery values were 104.7 and 102.3% in river water, respectively. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Multi-Band Light Curves from Two-Dimensional Simulations of Gamma-Ray Burst Afterglows
NASA Astrophysics Data System (ADS)
MacFadyen, Andrew
2010-01-01
The dynamics of gamma-ray burst outflows is inherently multi-dimensional. 1.) We present high resolution two-dimensional relativistic hydrodynamics simulations of GRBs in the afterglow phase using adaptive mesh refinement (AMR). Using standard synchrotron radiation models, we compute multi-band light curves, from the radio to X-ray, directly from the 2D hydrodynamics simulation data. We will present on-axis light curves for both constant density and wind media. We will also present off-axis light curves relevant for searches for orphan afterglows. We find that jet breaks are smoothed due to both off-axis viewing and wind media effects. 2.) Non-thermal radiation mechanisms in GRB afterglows require substantial magnetic field strengths. In turbulence driven by shear instabilities in relativistic magnetized gas, we demonstrate that magnetic field is naturally amplified to half a percent of the total energy (epsilon B = 0.005). We will show high resolution three dimensional relativistic MHD simulations of this process as well as particle in cell (PIC) simulations of mildly relativistic collisionless shocks.
Stellar occultation spikes as probes of atmospheric structure and composition. [for Jupiter
NASA Technical Reports Server (NTRS)
Elliot, J. L.; Veverka, J.
1976-01-01
The characteristics of spikes observed in occultation light curves of Beta Scorpii by Jupiter are discussed in terms of the gravity-gradient model. The occultation of Beta Sco by Jupiter on May 13, 1971, is reviewed, and the gravity-gradient model is defined as an isothermal atmosphere of constant composition in which the refractivity is a function only of the radial coordinate from the center of refraction, which is assumed to lie parallel to the local gravity gradient. The derivation of the occultation light curve in terms of the atmosphere, the angular diameter of the occulted star, and the occultation geometry is outlined. It is shown that analysis of the light-curve spikes can yield the He/H2 concentration ratio in a well-mixed atmosphere, information on fine-scale atmospheric structure, high-resolution images of the occulted star, and information on ray crossing. Observational limits are placed on the magnitude of horizontal refractivity gradients, and it is concluded that the spikes are the result of local atmospheric density variations: atmospheric layers, density waves, or turbulence.
High resolution melt curve analysis based on methylation status for human semen identification.
Fachet, Caitlyn; Quarino, Lawrence; Karnas, K Joy
2017-03-01
A high resolution melt curve assay to differentiate semen from blood, saliva, urine, and vaginal fluid based on methylation status at the Dapper Isoform 1 (DACT1) gene was developed. Stains made from blood, saliva, urine, semen, and vaginal fluid were obtained from volunteers and DNA was isolated using either organic extraction (saliva, urine, and vaginal fluid) or Chelex ® 100 extraction (blood and semen). Extracts were then subjected to bisulfite modification in order to convert unmethylated cytosines to uracil, consequently creating sequences whose amplicons have melt curves that vary depending on their initial methylation status. When primers designed to amplify the promoter region of the DACT1 gene were used, DNA from semen samples was distinguishable from other fluids by a having a statistically significant lower melting temperature. The assay was found to be sperm-significant since semen from a vasectomized man produced a melting temperature similar to the non-semen body fluids. Blood and semen stains stored up to 5 months and tested at various intervals showed little variation in melt temperature indicating the methylation status was stable during the course of the study. The assay is a more viable method for forensic science practice than most molecular-based methods for body fluid stain identification since it is time efficient and utilizes instrumentation common to forensic biology laboratories. In addition, the assay is advantageous over traditional presumptive chemical methods for body fluid identification since results are confirmatory and the assay offers the possibility of multiplexing which may test for multiple body fluids simultaneously.
Riches, S F; Payne, G S; Morgan, V A; Dearnaley, D; Morgan, S; Partridge, M; Livni, N; Ogden, C; deSouza, N M
2015-05-01
The objectives are determine the optimal combination of MR parameters for discriminating tumour within the prostate using linear discriminant analysis (LDA) and to compare model accuracy with that of an experienced radiologist. Multiparameter MRIs in 24 patients before prostatectomy were acquired. Tumour outlines from whole-mount histology, T2-defined peripheral zone (PZ), and central gland (CG) were superimposed onto slice-matched parametric maps. T2, Apparent Diffusion Coefficient, initial area under the gadolinium curve, vascular parameters (K(trans),Kep,Ve), and (choline+polyamines+creatine)/citrate were compared between tumour and non-tumour tissues. Receiver operating characteristic (ROC) curves determined sensitivity and specificity at spectroscopic voxel resolution and per lesion, and LDA determined the optimal multiparametric model for identifying tumours. Accuracy was compared with an expert observer. Tumours were significantly different from PZ and CG for all parameters (all p < 0.001). Area under the ROC curve for discriminating tumour from non-tumour was significantly greater (p < 0.001) for the multiparametric model than for individual parameters; at 90 % specificity, sensitivity was 41 % (MRSI voxel resolution) and 59 % per lesion. At this specificity, an expert observer achieved 28 % and 49 % sensitivity, respectively. The model was more accurate when parameters from all techniques were included and performed better than an expert observer evaluating these data. • The combined model increases diagnostic accuracy in prostate cancer compared with individual parameters • The optimal combined model includes parameters from diffusion, spectroscopy, perfusion, and anatominal MRI • The computed model improves tumour detection compared to an expert viewing parametric maps.
Surface inspection system for carriage parts
NASA Astrophysics Data System (ADS)
Denkena, Berend; Acker, Wolfram
2006-04-01
Quality standards are very high in carriage manufacturing, due to the fact, that the visual quality impression is highly relevant for the purchase decision for the customer. In carriage parts even very small dents can be visible on the varnished and polished surface by observing reflections. The industrial demands are to detect these form errors on the unvarnished part. In order to meet the requirements, a stripe projection system for automatic recognition of waviness and form errors is introduced1. It bases on a modified stripe projection method using a high resolution line scan camera. Particular emphasis is put on achieving a short measuring time and a high resolution in depth, aiming at a reliable automatic recognition of dents and waviness of 10 μm on large curved surfaces of approximately 1 m width. The resulting point cloud needs to be filtered in order to detect dents. Therefore a spatial filtering technique is used. This works well on smoothly curved surfaces, if frequency parameters are well defined. On more complex parts like mudguards the method is restricted by the fact that frequencies near the define dent frequencies occur within the surface as well. To allow analysis of complex parts, the system is currently extended by including 3D CAD models into the process of inspection. For smoothly curved surfaces, the measuring speed of the prototype is mainly limited by the amount of light produced by the stripe projector. For complex surfaces the measuring speed is limited by the time consuming matching process. Currently, the development focuses on the improvement of the measuring speed.
Kamel, Katarzyna A; Kroc, Magdalena; Święcicki, Wojciech
2015-01-01
Sequence tagged site (STS) markers are valuable tools for genetic and physical mapping that can be successfully used in comparative analyses among related species. Current challenges for molecular markers genotyping in plants include the lack of fast, sensitive and inexpensive methods suitable for sequence variant detection. In contrast, high resolution melting (HRM) is a simple and high-throughput assay, which has been widely applied in sequence polymorphism identification as well as in the studies of genetic variability and genotyping. The present study is the first attempt to use the HRM analysis to genotype STS markers in narrow-leafed lupin (Lupinus angustifolius L.). The sensitivity and utility of this method was confirmed by the sequence polymorphism detection based on melting curve profiles in the parental genotypes and progeny of the narrow-leafed lupin mapping population. Application of different approaches, including amplicon size and a simulated heterozygote analysis, has allowed for successful genetic mapping of 16 new STS markers in the narrow-leafed lupin genome.
Grünhut, Marcos; Garrido, Mariano; Centurión, Maria E; Fernández Band, Beatriz S
2010-07-12
A combination of kinetic spectroscopic monitoring and multivariate curve resolution-alternating least squares (MCR-ALS) was proposed for the enzymatic determination of levodopa (LVD) and carbidopa (CBD) in pharmaceuticals. The enzymatic reaction process was carried out in a reverse stopped-flow injection system and monitored by UV-vis spectroscopy. The spectra (292-600 nm) were recorded throughout the reaction and were analyzed by multivariate curve resolution-alternating least squares. A small calibration matrix containing nine mixtures was used in the model construction. Additionally, to evaluate the prediction ability of the model, a set with six validation mixtures was used. The lack of fit obtained was 4.3%, the explained variance 99.8% and the overall prediction error 5.5%. Tablets of commercial samples were analyzed and the results were validated by pharmacopeia method (high performance liquid chromatography). No significant differences were found (alpha=0.05) between the reference values and the ones obtained with the proposed method. It is important to note that a unique chemometric model made it possible to determine both analytes simultaneously. Copyright 2010 Elsevier B.V. All rights reserved.
Anthwal, Divya; Gupta, Rakesh Kumar; Bhalla, Manpreet; Bhatnagar, Shinjini
2017-01-01
ABSTRACT Drug-resistant tuberculosis (TB) is a major threat to TB control worldwide. Globally, only 40% of the 340,000 notified TB patients estimated to have multidrug-resistant-TB (MDR-TB) were detected in 2015. This study was carried out to evaluate the utility of high-resolution melt curve analysis (HRM) for the rapid and direct detection of MDR-TB in Mycobacterium tuberculosis in sputum samples. A reference plasmid library was first generated of the most frequently observed mutations in the resistance-determining regions of rpoB, katG, and an inhA promoter and used as positive controls in HRM. The assay was first validated in 25 MDR M. tuberculosis clinical isolates. The assay was evaluated on DNA isolated from 99 M. tuberculosis culture-positive sputum samples that included 84 smear-negative sputum samples, using DNA sequencing as gold standard. Mutants were discriminated from the wild type by comparing melting-curve patterns with those of control plasmids using HRM software. Rifampin (RIF) and isoniazid (INH) monoresistance were detected in 11 and 21 specimens, respectively, by HRM. Six samples were classified as MDR-TB by sequencing, one of which was missed by HRM. The HRM-RIF, INH-katG, and INH-inhA assays had 89% (95% confidence interval [CI], 52, 100%), 85% (95% CI, 62, 97%), and 100% (95% CI, 74, 100%) sensitivity, respectively, in smear-negative samples, while all assays had 100% sensitivity in smear-positive samples. All assays had 100% specificity. Concordance of 97% to 100% (κ value, 0.9 to 1) was noted between sequencing and HRM. Heteroresistance was observed in 5 of 99 samples by sequencing. In conclusion, the HRM assay was a cost-effective (Indian rupee [INR]400/US$6), rapid, and closed-tube method for the direct detection of MDR-TB in sputum, especially for direct smear-negative cases. PMID:28330890
Optical system analysis for the ground based EXVM
NASA Technical Reports Server (NTRS)
Hillman, L. W.; Chipman, R. A.; Smith, M. H.
1993-01-01
The MSFC's Experimental Vector Magnetograph (EXVM) is an instrument that observes a 4.4 x 8.8 arcmin field of the sun. The transverse and longitudinal components of the surface magnetic field and the line-of-sight velocities of the photospheric gases can be determined from polarimetric and spectral analysis of the 525.02 nm absorption line of Fe 1. The EXVM has been breadboarded and tested in the laboratory. The optics of the EXVM were tested with a point-diffraction (Smartt) interferometer. The 12 inch Cassegrain telescope was found to have 0.20 waves RMS (at 525.02 nm) of aberration. The post-telescope relay optics were nearly diffraction limited on-axis and had about one wave of primary coma as the predominant aberration at full-field. From theoretical modulation transfer function (MTF) curves of known aberrations, it was concluded that the EXVM should attain a maximum spatial resolution of about 0.5 arcseconds. A resolution test target indicated maximum angular resolutions better than 0.6 arcsec on-axis and 0.7 arcsec at full-field-of-view. A 2D inch heliostat (sun-tracking mirror) was used to direct sunlight into the lab and into the EXVM. Solar images obtained were limited by atmospheric seeing effects. During brief moments of good seeing, angular resolutions of about 1 arcsecond were realized with the EXVM.
Extracting transient Rayleigh wave and its application in detecting quality of highway roadbed
Liu, J.; Xia, J.; Luo, Y.; Li, X.; Xu, S.; ,
2004-01-01
This paper first explains the tau-p mapping method of extracting Rayleigh waves (LR waves) from field shot gathers. It also explains a mathematical model of physical character parameters of quality of high-grade roads. This paper then discusses an algorithm of computing dispersion curves using adjacent channels. Shear velocity and physical character parameters are obtained by inversion of dispersion curves. The algorithm using adjacent channels to calculating dispersion curves eliminates average effects that exist by using multi-channels to obtain dispersion curves so that it improves longitudinal and transverse resolution of LR waves and precision of non-invasive detection, and also broadens its application fields. By analysis of modeling results of detached computation of the ground roll and real examples of detecting density and pressure strength of a high-grade roadbed, and by comparison of shallow seismic image method with borehole cores, we concluded that: 1 the abnormal scale and configuration obtained by LR waves are mostly the same as the result of shallow seismic image method; 2 an average relative error of density obtained from LR waves inversion is 1.6% comparing with borehole coring; 3 transient LR waves in detecting density and pressure strength of a high-grade roadbed is feasible and effective.
Statistical analysis of tiny SXR flares observed by SphinX
NASA Astrophysics Data System (ADS)
Gryciuk, Magdalena; Siarkowski, Marek; Sylwester, Janusz; Kepa, Anna; Gburek, Szymon; Mrozek, Tomasz; Podgórski, Piotr
2015-08-01
The Solar Photometer in X-rays (SphinX) was designed to observe soft X-ray solar emission in the energy range between ~1 keV and 15 keV with the resolution better than 0.5 keV. The instrument operated from February until November 2009 aboard CORONAS-Photon satellite, during the phase of exceptionally low minimum of solar activity. Here we use SphinX data for analysis of micro-flares and brightenings. Despite a very low activity more than a thousand small X-ray events have been recognized by semi-automatic inspection of SphinX light curves. A catalogue of temporal and physical characteristics of these events is shown and discussed and results of the statistical analysis of the catalogue data are presented.
ITA, a portable program for the interactive analysis of data from tracer experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootton, R.; Ashley, K.
ITA is a portable program for analyzing data from tracer experiments, most of the mathematical and graphical work being carried out by subroutines from the NAG and DASL libraries. The program can be used in batch or interactive mode, commands being typed in an English-like language, in free format. Data can be entered from a terminal keyboard or read from a file, and can be validated by printing or plotting them. Erroneous values can be corrected by appropriate editing. Analysis can involve elementary statistics, multiple-isotope crossover corrections, convolution or deconvolution, polyexponential curve-fitting, spline interpolation and/or compartmental analysis. On those installationsmore » with the appropriate hardware, high-resolution graphs can be drawn.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farjam, Reza; Tsien, Christina I.; Lawrence, Theodore S.
Purpose: To develop a pharmacokinetic modelfree framework to analyze the dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data for assessment of response of brain metastases to radiation therapy. Methods: Twenty patients with 45 analyzable brain metastases had MRI scans prior to whole brain radiation therapy (WBRT) and at the end of the 2-week therapy. The volumetric DCE images covering the whole brain were acquired on a 3T scanner with approximately 5 s temporal resolution and a total scan time of about 3 min. DCE curves from all voxels of the 45 brain metastases were normalized and then temporally aligned. Amore » DCE matrix that is constructed from the aligned DCE curves of all voxels of the 45 lesions obtained prior to WBRT is processed by principal component analysis to generate the principal components (PCs). Then, the projection coefficient maps prior to and at the end of WBRT are created for each lesion. Next, a pattern recognition technique, based upon fuzzy-c-means clustering, is used to delineate the tumor subvolumes relating to the value of the significant projection coefficients. The relationship between changes in different tumor subvolumes and treatment response was evaluated to differentiate responsive from stable and progressive tumors. Performance of the PC-defined tumor subvolume was also evaluated by receiver operating characteristic (ROC) analysis in prediction of nonresponsive lesions and compared with physiological-defined tumor subvolumes. Results: The projection coefficient maps of the first three PCs contain almost all response-related information in DCE curves of brain metastases. The first projection coefficient, related to the area under DCE curves, is the major component to determine response while the third one has a complimentary role. In ROC analysis, the area under curve of 0.88 ± 0.05 and 0.86 ± 0.06 were achieved for the PC-defined and physiological-defined tumor subvolume in response assessment. Conclusions: The PC-defined subvolume of a brain metastasis could predict tumor response to therapy similar to the physiological-defined one, while the former is determined more rapidly for clinical decision-making support.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farjam, Reza; Tsien, Christina I.; Lawrence, Theodore S.
2014-01-15
Purpose: To develop a pharmacokinetic modelfree framework to analyze the dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data for assessment of response of brain metastases to radiation therapy. Methods: Twenty patients with 45 analyzable brain metastases had MRI scans prior to whole brain radiation therapy (WBRT) and at the end of the 2-week therapy. The volumetric DCE images covering the whole brain were acquired on a 3T scanner with approximately 5 s temporal resolution and a total scan time of about 3 min. DCE curves from all voxels of the 45 brain metastases were normalized and then temporally aligned. Amore » DCE matrix that is constructed from the aligned DCE curves of all voxels of the 45 lesions obtained prior to WBRT is processed by principal component analysis to generate the principal components (PCs). Then, the projection coefficient maps prior to and at the end of WBRT are created for each lesion. Next, a pattern recognition technique, based upon fuzzy-c-means clustering, is used to delineate the tumor subvolumes relating to the value of the significant projection coefficients. The relationship between changes in different tumor subvolumes and treatment response was evaluated to differentiate responsive from stable and progressive tumors. Performance of the PC-defined tumor subvolume was also evaluated by receiver operating characteristic (ROC) analysis in prediction of nonresponsive lesions and compared with physiological-defined tumor subvolumes. Results: The projection coefficient maps of the first three PCs contain almost all response-related information in DCE curves of brain metastases. The first projection coefficient, related to the area under DCE curves, is the major component to determine response while the third one has a complimentary role. In ROC analysis, the area under curve of 0.88 ± 0.05 and 0.86 ± 0.06 were achieved for the PC-defined and physiological-defined tumor subvolume in response assessment. Conclusions: The PC-defined subvolume of a brain metastasis could predict tumor response to therapy similar to the physiological-defined one, while the former is determined more rapidly for clinical decision-making support.« less
Ngui, Romano; Lim, Yvonne A. L.; Chua, Kek Heng
2012-01-01
Background Hookworm infections are still endemic in low and middle income tropical countries with greater impact on the socioeconomic and public health of the bottom billion of the world's poorest people. In this study, a real-time polymerase chain reaction (PCR) coupled with high resolution melting-curve (HRM) analysis was evaluated for an accurate, rapid and sensitive tool for species identification focusing on the five human hookworm species. Methods Real-time PCR coupled with HRM analysis targeting the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA as the genetic marker was used to identify and distinguish hookworm species in human samples. Unique and distinct characteristics of HRM patterns were produced for each of the five hookworm species. The melting curves were characterized by peaks of 79.24±0.05°C and 83.00±0.04°C for Necator americanus, 79.12±0.10°C for Ancylostoma duodenale, 79.40±0.10°C for Ancylostoma ceylanicum, 79.63±0.05°C for Ancylostoma caninum and 79.70±0.14°C for Ancylostoma braziliense. An evaluation of the method's sensitivity and specificity revealed that this assay was able to detect as low as 0.01 ng/µl hookworm DNA and amplification was only recorded for hookworm positive samples. Conclusion The HRM assay developed in this study is a rapid and straightforward method for the diagnosis, identification and discrimination of five human hookworms. This assay is simple compared to other probe-based genotyping methods as it does not require multiplexing, DNA sequencing or post-PCR processing. Therefore, this method offers a new alternative for rapid detection of human hookworm species. PMID:22844538
White, Helen E; Hall, Victoria J; Cross, Nicholas C P
2007-11-01
Angelman syndrome (AS) and Prader-Willi syndrome (PWS) are 2 distinct neurodevelopmental disorders caused primarily by deficiency of specific parental contributions at an imprinted domain within the chromosomal region 15q11.2-13. Lack of paternal contribution results in PWS either by paternal deletion (approximately 70%) or maternal uniparental disomy (UPD) (approximately 25%). Most cases of AS result from the lack of a maternal contribution from this same region, by maternal deletion (70%) or paternal UPD (approximately 5%). Analysis of allelic methylation differences at the small nuclear ribonucleoprotein polypeptide N (SNRPN) locus differentiates the maternally and paternally inherited chromosome 15 and can be used as a diagnostic test for AS and PWS. Methylation-sensitive high-resolution melting-curve analysis (MS-HRM) using the DNA binding dye EvaGreen was used to analyze methylation differences at the SNRPN locus in anonymized DNA samples from individuals with PWS (n = 39) or AS (n = 31) and from healthy control individuals (n = 95). Results from the MS-HRM assay were compared to those obtained by use of a methylation-specific PCR (MSP) protocol that is used commonly in diagnostic practice. With the MS-HRM assay 97.6% of samples were unambiguously assigned to the 3 diagnostic categories (AS, PWS, normal) by use of automated calling with an 80% confidence percentage threshold, and the failure rate was 0.6%. One PWS sample showed a discordant result for the MS-HRM assay compared to MSP data. MS-HRM is a simple, rapid, and robust method for screening methylation differences at the SNRPN locus and could be used as a diagnostic screen for PWS and AS.
2011-01-01
Background The gene CHEK2 encodes a checkpoint kinase playing a key role in the DNA damage pathway. Though CHEK2 has been identified as an intermediate breast cancer susceptibility gene, only a small proportion of high-risk families have been explained by genetic variants located in its coding region. Alteration in gene expression regulation provides a potential mechanism for generating disease susceptibility. The detection of differential allelic expression (DAE) represents a sensitive assay to direct the search for a functional sequence variant within the transcriptional regulatory elements of a candidate gene. We aimed to assess whether CHEK2 was subject to DAE in lymphoblastoid cell lines (LCLs) from high-risk breast cancer patients for whom no mutation in BRCA1 or BRCA2 had been identified. Methods We implemented an assay based on high-resolution melting (HRM) curve analysis and developed an analysis tool for DAE assessment. Results We observed allelic expression imbalance in 4 of the 41 LCLs examined. All four were carriers of the truncating mutation 1100delC. We confirmed previous findings that this mutation induces non-sense mediated mRNA decay. In our series, we ruled out the possibility of a functional sequence variant located in the promoter region or in a regulatory element of CHEK2 that would lead to DAE in the transcriptional regulatory milieu of freely proliferating LCLs. Conclusions Our results support that HRM is a sensitive and accurate method for DAE assessment. This approach would be of great interest for high-throughput mutation screening projects aiming to identify genes carrying functional regulatory polymorphisms. PMID:21569354
2009-11-25
34Nanoindentation Stress-Strain Curves of Plasma Enhanced Chemical Vapor Deposited Silicon Oxide Thin Films," Thin Solid Films, 516 (8) (2008) 1941-1951. 9. S...1604. 5. Z. Cao* and X. Zhang, "Measurement of Stress-Strain Curves of PECVD Silicon Oxide Thin Films by Means of Nanoindentation," in Processing...Microsystems (Transducers ), Lyon, France, June 10-14, 2007. 9. Z. Cao* and X. Zhang, “Measurement of Stress-strain Curves of PECVD Silicon Oxide
In situ X-ray diffraction analysis of (CF x) n batteries: signal extraction by multivariate analysis
Rodriguez, Mark A.; Keenan, Michael R.; Nagasubramanian, Ganesan
2007-11-10
In this study, (CF x) n cathode reaction during discharge has been investigated using in situ X-ray diffraction (XRD). Mathematical treatment of the in situ XRD data set was performed using multivariate curve resolution with alternating least squares (MCR–ALS), a technique of multivariate analysis. MCR–ALS analysis successfully separated the relatively weak XRD signal intensity due to the chemical reaction from the other inert cell component signals. The resulting dynamic reaction component revealed the loss of (CF x) n cathode signal together with the simultaneous appearance of LiF by-product intensity. Careful examination of the XRD data set revealed an additional dynamicmore » component which may be associated with the formation of an intermediate compound during the discharge process.« less
Chen, Neng; Pinsky, Benjamin A.; Lee, Betty P.; Lin, Min; Schrijver, Iris
2011-01-01
Oseltamivir (Tamiflu), an oral neuraminidase inhibitor, has been widely used to treat pandemic 2009 (H1N1) influenza A. Although a majority of 2009 (H1N1) influenza A virus remains oseltamivir susceptible, the threat of resistance due to the His275Tyr mutation is highlighted by the limitations of alternative therapies and the potential for rapid, global fixation of this mutation in the circulating influenza A virus population. In order to better understand the emergence of resistance, we developed a rare-variant-sensitive high-resolution melting-curve analysis method (RVS-HRM) that is able to detect the His275Tyr oseltamivir resistance mutation to 0.5% in a background of susceptible virus. We applied RVS-HRM to clinical specimens from patients who developed oseltamivir resistance and demonstrated the ultrasensitive detection of influenza A virus N1 neuraminidase quasispecies. Interestingly, we were unable to detect the oseltamivir resistance mutation in pretreatment samples, suggesting that resistant virus does not reach even this very low detection threshold until exposed to selective drug pressure. Thus, patients naive to oseltamivir are most likely to be susceptible when this drug is used as a first-line treatment modality. PMID:21543559
Highway extraction from high resolution aerial photography using a geometric active contour model
NASA Astrophysics Data System (ADS)
Niu, Xutong
Highway extraction and vehicle detection are two of the most important steps in traffic-flow analysis from multi-frame aerial photographs. The traditional method of deriving traffic flow trajectories relies on manual vehicle counting from a sequence of aerial photographs, which is tedious and time-consuming. This research presents a new framework for semi-automatic highway extraction. The basis of the new framework is an improved geometric active contour (GAC) model. This novel model seeks to minimize an objective function that transforms a problem of propagation of regular curves into an optimization problem. The implementation of curve propagation is based on level set theory. By using an implicit representation of a two-dimensional curve, a level set approach can be used to deal with topological changes naturally, and the output is unaffected by different initial positions of the curve. However, the original GAC model, on which the new model is based, only incorporates boundary information into the curve propagation process. An error-producing phenomenon called leakage is inevitable wherever there is an uncertain weak edge. In this research, region-based information is added as a constraint into the original GAC model, thereby, giving this proposed method the ability of integrating both boundary and region-based information during the curve propagation. Adding the region-based constraint eliminates the leakage problem. This dissertation applies the proposed augmented GAC model to the problem of highway extraction from high-resolution aerial photography. First, an optimized stopping criterion is designed and used in the implementation of the GAC model. It effectively saves processing time and computations. Second, a seed point propagation framework is designed and implemented. This framework incorporates highway extraction, tracking, and linking into one procedure. A seed point is usually placed at an end node of highway segments close to the boundary of the image or at a position where possible blocking may occur, such as at an overpass bridge or near vehicle crowds. These seed points can be automatically propagated throughout the entire highway network. During the process, road center points are also extracted, which introduces a search direction for solving possible blocking problems. This new framework has been successfully applied to highway network extraction from a large orthophoto mosaic. In the process, vehicles on the highway extracted from mosaic were detected with an 83% success rate.
Almeida, Mariana R; Correa, Deleon N; Zacca, Jorge J; Logrado, Lucio Paulo Lima; Poppi, Ronei J
2015-02-20
The aim of this study was to develop a methodology using Raman hyperspectral imaging and chemometric methods for identification of pre- and post-blast explosive residues on banknote surfaces. The explosives studied were of military, commercial and propellant uses. After the acquisition of the hyperspectral imaging, independent component analysis (ICA) was applied to extract the pure spectra and the distribution of the corresponding image constituents. The performance of the methodology was evaluated by the explained variance and the lack of fit of the models, by comparing the ICA recovered spectra with the reference spectra using correlation coefficients and by the presence of rotational ambiguity in the ICA solutions. The methodology was applied to forensic samples to solve an automated teller machine explosion case. Independent component analysis proved to be a suitable method of resolving curves, achieving equivalent performance with the multivariate curve resolution with alternating least squares (MCR-ALS) method. At low concentrations, MCR-ALS presents some limitations, as it did not provide the correct solution. The detection limit of the methodology presented in this study was 50 μg cm(-2). Copyright © 2014 Elsevier B.V. All rights reserved.
Ilev, Ilko; Waynant, Ronald; Gannot, Israel; Gandjbakhche, Amir
2007-09-01
A novel fiber-optic confocal approach for ultrahigh depth-resolution (
Quadrupole mass filter: design and performance for operation in stability zone 3.
Syed, Sarfaraz U A H; Hogan, Thomas J; Antony Joseph, Mariya J; Maher, Simon; Taylor, Stephen
2013-10-01
The predicted performance of a quadrupole mass filter (QMF) operating in Mathieu stability zone 3 is described in detail using computer simulations. The investigation considers the factors that limit the ultimate maximum resolution (Rmax) and percentage transmission (%Tx), which can be obtained for a given QMF for a particular scan line of operation. The performance curve (i.e., the resolution (R) versus number (N) of radio frequency (rf) cycles experienced by the ions in the mass filter) has been modeled for the upper and lower tip of stability zone 3. The saturation behavior of the performance curve observed in practice for zone 3 is explained. Furthermore, new design equations are presented by examining the intersection of the scan line with stability zone 3. Resolution versus transmission characteristics of stability zones 1 and 3 are compared and the dependence of performance for zones 1 and 3 is related to particular instrument operating parameters.
A posteriori noise estimation in variable data sets. With applications to spectra and light curves
NASA Astrophysics Data System (ADS)
Czesla, S.; Molle, T.; Schmitt, J. H. M. M.
2018-01-01
Most physical data sets contain a stochastic contribution produced by measurement noise or other random sources along with the signal. Usually, neither the signal nor the noise are accurately known prior to the measurement so that both have to be estimated a posteriori. We have studied a procedure to estimate the standard deviation of the stochastic contribution assuming normality and independence, requiring a sufficiently well-sampled data set to yield reliable results. This procedure is based on estimating the standard deviation in a sample of weighted sums of arbitrarily sampled data points and is identical to the so-called DER_SNR algorithm for specific parameter settings. To demonstrate the applicability of our procedure, we present applications to synthetic data, high-resolution spectra, and a large sample of space-based light curves and, finally, give guidelines to apply the procedure in situation not explicitly considered here to promote its adoption in data analysis.
Wang, Bo; Hallmark, Shauna; Savolainen, Peter; Dong, Jing
2017-12-01
Prior research has shown the probability of a crash occurring on horizontal curves to be significantly higher than on similar tangent segments, and a disproportionally higher number of curve-related crashes occurred in rural areas. Challenges arise when analyzing the safety of horizontal curves due to imprecision in integrating information as to the temporal and spatial characteristics of each crash with specific curves. The second Strategic Highway Research Program(SHRP 2) conducted a large-scale naturalistic driving study (NDS),which provides a unique opportunity to better understand the contributing factors leading to crash or near-crash events. This study utilizes high-resolution behavioral data from the NDS to identify factors associated with 108 safety critical events (i.e., crashes or near-crashes) on rural two-lane curves. A case-control approach is utilized wherein these events are compared to 216 normal, baseline-driving events. The variables examined in this study include driver demographic characteristics, details of the traffic environment and roadway geometry, as well as driver behaviors such as in-vehicle distractions. Logistic regression models are estimated to discern those factors affecting the likelihood of a driver being crash-involved. These factors include high-risk behaviors, such as speeding and visual distractions, as well as curve design elements and other roadway characteristics such as pavement surface conditions. This paper successfully integrated driver behavior, vehicle characteristics, and roadway environments into the same model. Logistic regression model was found to be an effective way to investigate crash risks using naturalistic driving data. This paper revealed a number of contributing factors to crashes on rural two-lane curves, which has important implications in traffic safety policy and curve geometry design. This paper also discussed limitations and lessons learned from working with the SHRP 2 NDS data. It will benefit future researchers who work with similar type of data. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.
Microstructural evolution and micromechanical properties of gamma-irradiated Au ball bonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusoff, Wan Yusmawati Wan, E-mail: yusmawati@upnm.edu.my; Ismail, Roslina, E-mail: roslina.ismail@ukm.my; Jalar, Azman, E-mail: azmn@ukm.my
2014-07-01
The effect of gamma radiation on the mechanical and structural properties of gold ball bonds was investigated. Gold wires from thermosonic wire bonding were exposed to gamma rays from a Cobalt-60 source at a low dose (5 Gy). The load–depth curve of nanoindentation for the irradiated gold wire bond has an apparent staircase shape during loading compared to the as-received sample. The hardness of the specimens calculated from the nanoindentation shows an increase in value from 0.91 to 1.09 GPa for specimens after exposure. The reduced elastic modulus for irradiated specimens significantly increased as well, with values from 75.18 tomore » 98.55 GPa. The change in intrinsic properties due to gamma radiation was investigated using dual-focused ion beam and high-resolution transmission electron microscope analysis. The dual-focused ion beam and high-resolution transmission electron microscope images confirmed the changes in grain structure and the presence of dislocations. The scanning electron microscope micrographs of focused ion beam cross sections showed that the grain structure of the gold became elongated and smaller after exposure to gamma rays. Meanwhile, high-resolution transmission electron microscopy provided evidence that gamma radiation induced dislocation of the atomic arrangement. - Highlights: • Nanoindentation technique provides a detailed characterisation of Au ball bond. • P–h curve of irradiated Au ball bond shows an apparent pop-in event. • Hardness and reduced modulus increased after exposure. • Elongated and smaller grain structure in irradiated specimens • Prevalent presence of dislocations in the atomic arrangement.« less
NASA Astrophysics Data System (ADS)
Fan, Zhijian; Jóni, Bertalan; Xie, Lei; Ribárik, Gábor; Ungár, Tamás
2018-04-01
Specimens of cold-rolled zirconium were tensile-deformed along the rolling (RD) and the transverse (TD) directions. The stress-strain curves revealed a strong texture dependence. High resolution X-ray line profile analysis was used to determine the prevailing active slip-systems in the specimens with different textures. The reflections in the X-ray diffraction patterns were separated into two groups. One group corresponds to the major and the other group to the random texture component, respectively. The dislocation densities, the subgrain size and the prevailing active slip-systems were evaluated by using the convolutional multiple whole profile (CMWP) procedure. These microstructure parameters were evaluated separately in the two groups of reflections corresponding to the two different texture components. Significant differences were found in both, the evolution of dislocation densities and the development of the fractions of and
Persistent homology and non-Gaussianity
NASA Astrophysics Data System (ADS)
Cole, Alex; Shiu, Gary
2018-03-01
In this paper, we introduce the topological persistence diagram as a statistic for Cosmic Microwave Background (CMB) temperature anisotropy maps. A central concept in 'Topological Data Analysis' (TDA), the idea of persistence is to represent a data set by a family of topological spaces. One then examines how long topological features 'persist' as the family of spaces is traversed. We compute persistence diagrams for simulated CMB temperature anisotropy maps featuring various levels of primordial non-Gaussianity of local type. Postponing the analysis of observational effects, we show that persistence diagrams are more sensitive to local non-Gaussianity than previous topological statistics including the genus and Betti number curves, and can constrain Δ fNLloc= 35.8 at the 68% confidence level on the simulation set, compared to Δ fNLloc= 60.6 for the Betti number curves. Given the resolution of our simulations, we expect applying persistence diagrams to observational data will give constraints competitive with those of the Minkowski Functionals. This is the first in a series of papers where we plan to apply TDA to different shapes of non-Gaussianity in the CMB and Large Scale Structure.
NASA Astrophysics Data System (ADS)
Morin, Efrat; Marra, Francesco; Peleg, Nadav; Mei, Yiwen; Anagnostou, Emmanouil N.
2017-04-01
Rainfall frequency analysis is used to quantify the probability of occurrence of extreme rainfall and is traditionally based on rain gauge records. The limited spatial coverage of rain gauges is insufficient to sample the spatiotemporal variability of extreme rainfall and to provide the areal information required by management and design applications. Conversely, remote sensing instruments, even if quantitative uncertain, offer coverage and spatiotemporal detail that allow overcoming these issues. In recent years, remote sensing datasets began to be used for frequency analyses, taking advantage of increased record lengths and quantitative adjustments of the data. However, the studies so far made use of concepts and techniques developed for rain gauge (i.e. point or multiple-point) data and have been validated by comparison with gauge-derived analyses. These procedures add further sources of uncertainty and prevent from isolating between data and methodological uncertainties and from fully exploiting the available information. In this study, we step out of the gauge-centered concept presenting a direct comparison between at-site Intensity-Duration-Frequency (IDF) curves derived from different remote sensing datasets on corresponding spatial scales, temporal resolutions and records. We analyzed 16 years of homogeneously corrected and gauge-adjusted C-Band weather radar estimates, high-resolution CMORPH and gauge-adjusted high-resolution CMORPH over the Eastern Mediterranean. Results of this study include: (a) good spatial correlation between radar and satellite IDFs ( 0.7 for 2-5 years return period); (b) consistent correlation and dispersion in the raw and gauge adjusted CMORPH; (c) bias is almost uniform with return period for 12-24 h durations; (d) radar identifies thicker tail distributions than CMORPH and the tail of the distributions depends on the spatial and temporal scales. These results demonstrate the potential of remote sensing datasets for rainfall frequency analysis for management (e.g. warning and early-warning systems) and design (e.g. sewer design, large scale drainage planning)
Robust estimation of pulse wave transit time using group delay.
Meloni, Antonella; Zymeski, Heather; Pepe, Alessia; Lombardi, Massimo; Wood, John C
2014-03-01
To evaluate the efficiency of a novel transit time (Δt) estimation method from cardiovascular magnetic resonance flow curves. Flow curves were estimated from phase contrast images of 30 patients. Our method (TT-GD: transit time group delay) operates in the frequency domain and models the ascending aortic waveform as an input passing through a discrete-component "filter," producing the observed descending aortic waveform. The GD of the filter represents the average time delay (Δt) across individual frequency bands of the input. This method was compared with two previously described time-domain methods: TT-point using the half-maximum of the curves and TT-wave using cross-correlation. High temporal resolution flow images were studied at multiple downsampling rates to study the impact of differences in temporal resolution. Mean Δts obtained with the three methods were comparable. The TT-GD method was the most robust to reduced temporal resolution. While the TT-GD and the TT-wave produced comparable results for velocity and flow waveforms, the TT-point resulted in significant shorter Δts when calculated from velocity waveforms (difference: 1.8±2.7 msec; coefficient of variability: 8.7%). The TT-GD method was the most reproducible, with an intraobserver variability of 3.4% and an interobserver variability of 3.7%. Compared to the traditional TT-point and TT-wave methods, the TT-GD approach was more robust to the choice of temporal resolution, waveform type, and observer. Copyright © 2013 Wiley Periodicals, Inc.
High-Resolution Melting Analysis for Rapid Detection of Sequence Type 131 Escherichia coli.
Harrison, Lucas B; Hanson, Nancy D
2017-06-01
Escherichia coli isolates belonging to the sequence type 131 (ST131) clonal complex have been associated with the global distribution of fluoroquinolone and β-lactam resistance. Whole-genome sequencing and multilocus sequence typing identify sequence type but are expensive when evaluating large numbers of samples. This study was designed to develop a cost-effective screening tool using high-resolution melting (HRM) analysis to differentiate ST131 from non-ST131 E. coli in large sample populations in the absence of sequence analysis. The method was optimized using DNA from 12 E. coli isolates. Singleplex PCR was performed using 10 ng of DNA, Type-it HRM buffer, and multilocus sequence typing primers and was followed by multiplex PCR. The amplicon sizes ranged from 630 to 737 bp. Melt temperature peaks were determined by performing HRM analysis at 0.1°C resolution from 50 to 95°C on a Rotor-Gene Q 5-plex HRM system. Derivative melt curves were compared between sequence types and analyzed by principal component analysis. A blinded study of 191 E. coli isolates of ST131 and unknown sequence types validated this methodology. This methodology returned 99.2% specificity (124 true negatives and 1 false positive) and 100% sensitivity (66 true positives and 0 false negatives). This HRM methodology distinguishes ST131 from non-ST131 E. coli without sequence analysis. The analysis can be accomplished in about 3 h in any laboratory with an HRM-capable instrument and principal component analysis software. Therefore, this assay is a fast and cost-effective alternative to sequencing-based ST131 identification. Copyright © 2017 Harrison and Hanson.
Photometric study of the eclipsing binary GR Bootis
NASA Astrophysics Data System (ADS)
Zhang, Z. L.; Zhang, Y. P.; Fu, J. N.; Xue, H. F.
2016-07-01
We present CCD photometry and low-resolution spectra of the eclipsing binary GR Boo. A new ephemeris is determined based on all the available times of the minimum light. The period analysis reveals that the orbital period is decreasing with a rate of dP / dt = - 2.05 ×10-10 d yr-1 . A photometric analysis for the obtained light curves is performed with the Wilson-Devinney Differential Correction program for the first time. The photometric solutions confirm the W UMa-type nature of the binary system. The mass ratio turns out to be q = 0.985 ± 0.001 . The evolutionary status and physical nature of the binary system are briefly discussed.
Luo, Y.; Xu, Y.; Liu, Q.; Xia, J.
2008-01-01
In recent years, multichannel analysis of surface waves (MASW) has been increasingly used for obtaining vertical shear-wave velocity profiles within near-surface materials. MASW uses a multichannel recording approach to capture the time-variant, full-seismic wavefield where dispersive surface waves can be used to estimate near-surface S-wave velocity. The technique consists of (1) acquisition of broadband, high-frequency ground roll using a multichannel recording system; (2) efficient and accurate algorithms that allow the extraction and analysis of 1D Rayleigh-wave dispersion curves; (3) stable and efficient inversion algorithms for estimating S-wave velocity profiles; and (4) construction of the 2D S-wave velocity field map.
Measurement of the refractive index of hemoglobin solutions for a continuous spectral region
Wang, Jin; Deng, Zhichao; Wang, Xiaowan; Ye, Qing; Zhou, Wenyuan; Mei, Jianchun; Zhang, Chunping; Tian, Jianguo
2015-01-01
Determination of the refractive index of hemoglobin solutions over a wide wavelength range remains challenging. A famous detour approach is the Kramers-Kronig (KK) analysis which can resolve the real part of complex refractive index from the imaginary part. However, KK analysis is limited by the contradiction between the requirement of semi-infinite frequency range and limited measured range. In this paper, based on the Multi-curve fitting method (MFM), continuous refractive index dispersion (CRID) of oxygenated and deoxygenated hemoglobin solutions are measured using a homemade symmetrical arm-linked apparatus in the continuous wavelength range with spectral resolution of about 0.259nm. A novel method to obtain the CRID is proposed. PMID:26203379
Weide, Tobias; Guschin, Viktor; Becker, Wolfgang; Koelle, Sabine; Maier, Simon; Seidelt, Stephan
2015-01-01
The analysis of tar, mostly characterized as polycyclic aromatic hydrocarbons (PAHs), describes a topic that has been researched for years. An online analysis of tar in the gas stream in particular is needed to characterize the tar conversion or formation in the biomass gasification process. The online analysis in the gas is carried out with ultraviolet-visible (UV-Vis) spectroscopy (190-720 nm). This online analysis is performed with a measuring cell developed by the Fraunhofer Institute for Chemical Technology (ICT). To this day, online tar measurements using UV-Vis spectroscopy have not been carried out in detail. Therefore, PAHs are analyzed as follows. The measurements are split into different steps. The first step to prove the online method is to vaporize single tar substances. These experiments show that a qualitative analysis of PAHs in the gas stream with the used measurement setup is possible. Furthermore, it is shown that the method provides very exact results, so that a differentiation of various PAHs is possible. The next step is to vaporize a PAH mixture. This step consists of vaporizing five pure substances almost simultaneously. The interpretation of the resulting data is made using a chemometric interpretation method, the multivariate curve resolution (MCR). The verification of the calculated results is the main aim of this experiment. It has been shown that the tar mixture can be analyzed qualitatively and quantitatively (in arbitrary units) in detail using the MCR. Finally it is the main goal of this paper to show the first steps in the applicability of the UV-Vis spectroscopy and the measurement setup on online tar analysis in view of characterizing the biomass gasification process. Due to that, the gasification plant (at the laboratory scale), developed and constructed by the Fraunhofer ICT, has been used to vaporize these substances. Using this gasification plant for the experiments enables the usage of the measurement setup also for the spectroscopic analysis of the tar formation during the biomass gasification.
NASA Astrophysics Data System (ADS)
Syrejshchikova, T. I.; Gryzunov, Yu. A.; Smolina, N. V.; Komar, A. A.; Uzbekov, M. G.; Misionzhnik, E. J.; Maksimova, N. M.
2010-05-01
The efficiency of the therapy of psychiatric diseases is estimated using the fluorescence measurements of the conformational changes of human serum albumin in the course of medical treatment. The fluorescence decay curves of the CAPIDAN probe (N-carboxyphenylimide of the dimethylaminonaphthalic acid) in the blood serum are measured. The probe is specifically bound to the albumin drug binding sites and exhibits fluorescence as a reporter ligand. A variation in the conformation of the albumin molecule substantially affects the CAPIDAN fluorescence decay curve on the subnanosecond time scale. A subnanosecond pulsed laser or a Pico-Quant LED excitation source and a fast photon detector with a time resolution of about 50 ps are used for the kinetic measurements. The blood sera of ten patients suffering from depression and treated at the Institute of Psychiatry were preliminary clinically tested. Blood for analysis was taken from each patient prior to the treatment and on the third week of treatment. For ten patients, the analysis of the fluorescence decay curves of the probe in the blood serum using the three-exponential fitting shows that the difference between the amplitudes of the decay function corresponding to the long-lived (9 ns) fluorescence of the probe prior to and after the therapeutic procedure reliably differs from zero at a significance level of 1% ( p < 0.01).
Policy makers need to understand how land cover change alters storm water regimes, yet existing methods do not fully utilize newly available datasets to quantify storm water changes at a landscape-scale. Here, we use high-resolution, remotely-sensed land cover, imperviousness, an...
The effect of flow data resolution on sediment yield estimation and channel design
NASA Astrophysics Data System (ADS)
Rosburg, Tyler T.; Nelson, Peter A.; Sholtes, Joel S.; Bledsoe, Brian P.
2016-07-01
The decision to use either daily-averaged or sub-daily streamflow records has the potential to impact the calculation of sediment transport metrics and stream channel design. Using bedload and suspended load sediment transport measurements collected at 138 sites across the United States, we calculated the effective discharge, sediment yield, and half-load discharge using sediment rating curves over long time periods (median record length = 24 years) with both daily-averaged and sub-daily streamflow records. A comparison of sediment transport metrics calculated with both daily-average and sub-daily stream flow data at each site showed that daily-averaged flow data do not adequately represent the magnitude of high stream flows at hydrologically flashy sites. Daily-average stream flow data cause an underestimation of sediment transport and sediment yield (including the half-load discharge) at flashy sites. The degree of underestimation was correlated with the level of flashiness and the exponent of the sediment rating curve. No consistent relationship between the use of either daily-average or sub-daily streamflow data and the resultant effective discharge was found. When used in channel design, computed sediment transport metrics may have errors due to flow data resolution, which can propagate into design slope calculations which, if implemented, could lead to unwanted aggradation or degradation in the design channel. This analysis illustrates the importance of using sub-daily flow data in the calculation of sediment yield in urbanizing or otherwise flashy watersheds. Furthermore, this analysis provides practical charts for estimating and correcting these types of underestimation errors commonly incurred in sediment yield calculations.
Pohlit, Merlin; Eibisch, Paul; Akbari, Maryam; Porrati, Fabrizio; Huth, Michael; Müller, Jens
2016-11-01
Alongside the development of artificially created magnetic nanostructures, micro-Hall magnetometry has proven to be a versatile tool to obtain high-resolution hysteresis loop data and access dynamical properties. Here we explore the application of First Order Reversal Curves (FORC)-a technique well-established in the field of paleomagnetism for studying grain-size and interaction effects in magnetic rocks-to individual and dipolar-coupled arrays of magnetic nanostructures using micro-Hall sensors. A proof-of-principle experiment performed on a macroscopic piece of a floppy disk as a reference sample well known in the literature demonstrates that the FORC diagrams obtained by magnetic stray field measurements using home-built magnetometers are in good agreement with magnetization data obtained by a commercial vibrating sample magnetometer. We discuss in detail the FORC diagrams and their interpretation of three different representative magnetic systems, prepared by the direct-write Focused Electron Beam Induced Deposition (FEBID) technique: (1) an isolated Co-nanoisland showing a simple square-shaped hysteresis loop, (2) a more complex CoFe-alloy nanoisland exhibiting a wasp-waist-type hysteresis, and (3) a cluster of interacting Co-nanoislands. Our findings reveal that the combination of FORC and micro-Hall magnetometry is a promising tool to investigate complex magnetization reversal processes within individual or small ensembles of nanomagnets grown by FEBID or other fabrication methods. The method provides sub-μm spatial resolution and bridges the gap of FORC analysis, commonly used for studying macroscopic samples and rather large arrays, to studies of small ensembles of interacting nanoparticles with the high moment sensitivity inherent to micro-Hall magnetometry.
Ohshima, Chihiro; Takahashi, Hajime; Iwakawa, Ai; Kuda, Takashi; Kimura, Bon
2017-07-17
Listeria monocytogenes, which is responsible for causing food poisoning known as listeriosis, infects humans and animals. Widely distributed in the environment, this bacterium is known to contaminate food products after being transmitted to factories via raw materials. To minimize the contamination of products by food pathogens, it is critical to identify and eliminate factory entry routes and pathways for the causative bacteria. High resolution melting analysis (HRMA) is a method that takes advantage of differences in DNA sequences and PCR product lengths that are reflected by the disassociation temperature. Through our research, we have developed a multiple locus variable-number tandem repeat analysis (MLVA) using HRMA as a simple and rapid method to differentiate L. monocytogenes isolates. While evaluating our developed method, the ability of MLVA-HRMA, MLVA using capillary electrophoresis, and multilocus sequence typing (MLST) was compared for their ability to discriminate between strains. The MLVA-HRMA method displayed greater discriminatory ability than MLST and MLVA using capillary electrophoresis, suggesting that the variation in the number of repeat units, along with mutations within the DNA sequence, was accurately reflected by the melting curve of HRMA. Rather than relying on DNA sequence analysis or high-resolution electrophoresis, the MLVA-HRMA method employs the same process as PCR until the analysis step, suggesting a combination of speed and simplicity. The result of MLVA-HRMA method is able to be shared between different laboratories. There are high expectations that this method will be adopted for regular inspections at food processing facilities in the near future. Copyright © 2017. Published by Elsevier B.V.
de Godoy, Luiz Antonio Fonseca; Hantao, Leandro Wang; Pedroso, Marcio Pozzobon; Poppi, Ronei Jesus; Augusto, Fabio
2011-08-05
The use of multivariate curve resolution (MCR) to build multivariate quantitative models using data obtained from comprehensive two-dimensional gas chromatography with flame ionization detection (GC×GC-FID) is presented and evaluated. The MCR algorithm presents some important features, such as second order advantage and the recovery of the instrumental response for each pure component after optimization by an alternating least squares (ALS) procedure. A model to quantify the essential oil of rosemary was built using a calibration set containing only known concentrations of the essential oil and cereal alcohol as solvent. A calibration curve correlating the concentration of the essential oil of rosemary and the instrumental response obtained from the MCR-ALS algorithm was obtained, and this calibration model was applied to predict the concentration of the oil in complex samples (mixtures of the essential oil, pineapple essence and commercial perfume). The values of the root mean square error of prediction (RMSEP) and of the root mean square error of the percentage deviation (RMSPD) obtained were 0.4% (v/v) and 7.2%, respectively. Additionally, a second model was built and used to evaluate the accuracy of the method. A model to quantify the essential oil of lemon grass was built and its concentration was predicted in the validation set and real perfume samples. The RMSEP and RMSPD obtained were 0.5% (v/v) and 6.9%, respectively, and the concentration of the essential oil of lemon grass in perfume agreed to the value informed by the manufacturer. The result indicates that the MCR algorithm is adequate to resolve the target chromatogram from the complex sample and to build multivariate models of GC×GC-FID data. Copyright © 2011 Elsevier B.V. All rights reserved.
A simple vibrating sample magnetometer for macroscopic samples
NASA Astrophysics Data System (ADS)
Lopez-Dominguez, V.; Quesada, A.; Guzmán-Mínguez, J. C.; Moreno, L.; Lere, M.; Spottorno, J.; Giacomone, F.; Fernández, J. F.; Hernando, A.; García, M. A.
2018-03-01
We here present a simple model of a vibrating sample magnetometer (VSM). The system allows recording magnetization curves at room temperature with a resolution of the order of 0.01 emu and is appropriated for macroscopic samples. The setup can be mounted with different configurations depending on the requirements of the sample to be measured (mass, saturation magnetization, saturation field, etc.). We also include here examples of curves obtained with our setup and comparison curves measured with a standard commercial VSM that confirms the reliability of our device.
VizieR Online Data Catalog: SB 290 radial velocity curve (Geier+, 2013)
NASA Astrophysics Data System (ADS)
Geier, S.; Heber, U.; Heuser, C.; Classen, L.; O'Toole, S. J.; Edelmann, H.
2013-08-01
Thanks to its brightness, SB 290 has been monitored by planetary transit surveys. An excellent white light curve taken from May 2006 to December 2007 was downloaded from the SuperWASP Public archive. The light curve consists of no fewer than 10192 single measurements. Time-resolved medium-resolution spectroscopy (R~=4000, λ=3500-5100Å) was obtained in the course of the MUCHFUSS project. One dataset consisting of 19 spectra was taken with the ISIS spectrograph mounted at the WHT in August 2009. (1 data file).
NASA Technical Reports Server (NTRS)
Davis, D. S.; Larson, H. P.; Hofmann, R.
1986-01-01
A near-infrared (1.8 to 3.5) microns extinction curve for the Orion molecular cloud is presented. The curve is derived from high-resolution spectra of the Orion H2 source recorded from the Kuiper Airborne Observatory. The data reveal that the Orion extinction law is indistinguishable from a 1/lambda form in the near-infrared, except for strongly enhanced extinction near a wavelength of about 3 microns. The implications of these results, in the context of current interstellar grain models, are discussed.
Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars
NASA Astrophysics Data System (ADS)
Britavskiy, Nikolay; Pancino, Elena; Romano, Donatella; Tsymbal, Vadim
2015-08-01
We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a Least Squares Deconvolution (LSD) of the line profiles in order to analyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (± 1 km/s) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 km/s even with a low number of high-resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.
Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars
NASA Astrophysics Data System (ADS)
Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Cacciari, C.; Clementini, C.
2016-05-01
We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a least squares deconvolution (LSD) of the line profiles in order to an- alyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (+- 2 kms^-1) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 kms^-1 even with a low number of high- resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.
A compact 45 kV curve tracer with picoampere current measurement capability.
Sullivan, W W; Mauch, D; Bullick, A; Hettler, C; Neuber, A; Dickens, J
2013-03-01
This paper discusses a compact high voltage curve tracer for high voltage semiconductor device characterization. The system sources up to 3 mA at up to 45 kV in dc conditions. It measures from 328 V to 60 kV with 15 V resolution and from 9.4 pA to 4 mA with 100 fA minimum resolution. Control software for the system is written in Microsoft Visual C# and features real-time measurement control and IV plotting, arc-protection and detection, an electrically isolated universal serial bus interface, and easy data exporting capabilities. The system has survived numerous catastrophic high voltage device-under-test arcing failures with no loss of measurement capability or system damage. Overall sweep times are typically under 2 min, and the curve tracer system was used to characterize the blocking performance of high voltage ceramic capacitors, high voltage silicon carbide photoconductive semiconductor switches, and high voltage coaxial cable.
2016-01-01
The function of bioenergetic membranes is strongly influenced by the spatial arrangement of their constituent membrane proteins. Atomic force microscopy (AFM) can be used to probe protein organization at high resolution, allowing individual proteins to be identified. However, previous AFM studies of biological membranes have typically required that curved membranes are ruptured and flattened during sample preparation, with the possibility of disruption of the native protein arrangement or loss of proteins. Imaging native, curved membranes requires minimal tip–sample interaction in both lateral and vertical directions. Here, long-range tip–sample interactions are reduced by optimizing the imaging buffer. Tapping mode AFM with high-resonance-frequency small and soft cantilevers, in combination with a high-speed AFM, reduces the forces due to feedback error and enables application of an average imaging force of tens of piconewtons. Using this approach, we have imaged the membrane organization of intact vesicular bacterial photosynthetic “organelles”, chromatophores. Despite the highly curved nature of the chromatophore membrane and lack of direct support, the resolution was sufficient to identify the photosystem complexes and quantify their arrangement in the native state. Successive imaging showed the proteins remain surprisingly static, with minimal rotation or translation over several-minute time scales. High-order assemblies of RC-LH1-PufX complexes are observed, and intact ATPases are successfully imaged. The methods developed here are likely to be applicable to a broad range of protein-rich vesicles or curved membrane systems, which are an almost ubiquitous feature of native organelles. PMID:28114766
NASA Astrophysics Data System (ADS)
Ritschel, Christoph; Ulbrich, Uwe; Névir, Peter; Rust, Henning W.
2017-12-01
For several hydrological modelling tasks, precipitation time series with a high (i.e. sub-daily) resolution are indispensable. The data are, however, not always available, and thus model simulations are used to compensate. A canonical class of stochastic models for sub-daily precipitation are Poisson cluster processes, with the original Bartlett-Lewis (OBL) model as a prominent representative. The OBL model has been shown to well reproduce certain characteristics found in observations. Our focus is on intensity-duration-frequency (IDF) relationships, which are of particular interest in risk assessment. Based on a high-resolution precipitation time series (5 min) from Berlin-Dahlem, OBL model parameters are estimated and IDF curves are obtained on the one hand directly from the observations and on the other hand from OBL model simulations. Comparing the resulting IDF curves suggests that the OBL model is able to reproduce the main features of IDF statistics across several durations but cannot capture rare events (here an event with a return period larger than 1000 years on the hourly timescale). In this paper, IDF curves are estimated based on a parametric model for the duration dependence of the scale parameter in the generalized extreme value distribution; this allows us to obtain a consistent set of curves over all durations. We use the OBL model to investigate the validity of this approach based on simulated long time series.
Nesakumar, Noel; Baskar, Chanthini; Kesavan, Srinivasan; Rayappan, John Bosco Balaguru; Alwarappan, Subbiah
2018-05-22
The moisture content of beetroot varies during long-term cold storage. In this work, we propose a strategy to identify the moisture content and age of beetroot using principal component analysis coupled Fourier transform infrared spectroscopy (FTIR). Frequent FTIR measurements were recorded directly from the beetroot sample surface over a period of 34 days for analysing its moisture content employing attenuated total reflectance in the spectral ranges of 2614-4000 and 1465-1853 cm -1 with a spectral resolution of 8 cm -1 . In order to estimate the transmittance peak height (T p ) and area under the transmittance curve [Formula: see text] over the spectral ranges of 2614-4000 and 1465-1853 cm -1 , Gaussian curve fitting algorithm was performed on FTIR data. Principal component and nonlinear regression analyses were utilized for FTIR data analysis. Score plot over the ranges of 2614-4000 and 1465-1853 cm -1 allowed beetroot quality discrimination. Beetroot quality predictive models were developed by employing biphasic dose response function. Validation experiment results confirmed that the accuracy of the beetroot quality predictive model reached 97.5%. This research work proves that FTIR spectroscopy in combination with principal component analysis and beetroot quality predictive models could serve as an effective tool for discriminating moisture content in fresh, half and completely spoiled stages of beetroot samples and for providing status alerts.
Pecavar, Verena; Blaschitz, Marion; Hufnagl, Peter; Zeinzinger, Josef; Fiedler, Anita; Allerberger, Franz; Maass, Matthias; Indra, Alexander
2012-06-01
Clostridium difficile, a Gram-positive, spore-forming, anaerobic bacterium, is the main causative agent of hospital-acquired diarrhoea worldwide. In addition to metronidazole and vancomycin, rifaximin, a rifamycin derivative, is a promising antibiotic for the treatment of recurring C. difficile infections (CDI). However, exposure of C. difficile to this antibiotic has led to the development of rifaximin-resistance due to point mutations in the β-subunit of the RNA polymerase (rpoB) gene. In the present study, 348 C. difficile strains with known PCR-ribotypes were investigated for respective single nucleotide polymorphisms (SNPs) within the proposed rpoB hot-spot region by using high-resolution melting (HRM) analysis. This method allows the detection of SNPs by comparing the altered melting behaviour of dsDNA with that of wild-type DNA. Discrimination between wild-type and mutant strains was enhanced by creating heteroduplexes by mixing sample DNA with wild-type DNA, leading to characteristic melting curve shapes from samples containing SNPs in the respective rpoB section. In the present study, we were able to identify 16 different rpoB sequence-types (ST) by sequencing analysis of a 325 bp fragment. The 16 PCR STs displayed a total of 24 different SNPs. Fifteen of these 24 SNPs were located within the proposed 151 bp SNP hot-spot region, resulting in 11 different HRM curve profiles (CP). Eleven SNPs (seven of which were within the proposed hot-spot region) led to amino acid substitutions associated with reduced susceptibility to rifaximin and 13 SNPs (eight of which were within the hot-spot region) were synonymous. This investigation clearly demonstrates that HRM analysis of the proposed SNP hot-spot region in the rpoB gene of C. difficile is a fast and cost-effective method for the identification of C. difficile samples with reduced susceptibility to rifaximin and even allows simultaneous SNP subtyping of the respective C. difficile isolates.
Lohse, Christian; Bassett, Danielle S; Lim, Kelvin O; Carlson, Jean M
2014-10-01
Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.
Walsh, Alex J.; Sharick, Joe T.; Skala, Melissa C.; Beier, Hope T.
2016-01-01
Time-correlated single photon counting (TCSPC) enables acquisition of fluorescence lifetime decays with high temporal resolution within the fluorescence decay. However, many thousands of photons per pixel are required for accurate lifetime decay curve representation, instrument response deconvolution, and lifetime estimation, particularly for two-component lifetimes. TCSPC imaging speed is inherently limited due to the single photon per laser pulse nature and low fluorescence event efficiencies (<10%) required to reduce bias towards short lifetimes. Here, simulated fluorescence lifetime decays are analyzed by SPCImage and SLIM Curve software to determine the limiting lifetime parameters and photon requirements of fluorescence lifetime decays that can be accurately fit. Data analysis techniques to improve fitting accuracy for low photon count data were evaluated. Temporal binning of the decays from 256 time bins to 42 time bins significantly (p<0.0001) improved fit accuracy in SPCImage and enabled accurate fits with low photon counts (as low as 700 photons/decay), a 6-fold reduction in required photons and therefore improvement in imaging speed. Additionally, reducing the number of free parameters in the fitting algorithm by fixing the lifetimes to known values significantly reduced the lifetime component error from 27.3% to 3.2% in SPCImage (p<0.0001) and from 50.6% to 4.2% in SLIM Curve (p<0.0001). Analysis of nicotinamide adenine dinucleotide–lactate dehydrogenase (NADH-LDH) solutions confirmed temporal binning of TCSPC data and a reduced number of free parameters improves exponential decay fit accuracy in SPCImage. Altogether, temporal binning (in SPCImage) and reduced free parameters are data analysis techniques that enable accurate lifetime estimation from low photon count data and enable TCSPC imaging speeds up to 6x and 300x faster, respectively, than traditional TCSPC analysis. PMID:27446663
Méndez-Vilas, A; Gallardo-Moreno, A M; Calzado-Montero, R; González-Martín, M L
2008-05-01
AFM probing of microbial cells in liquid environments usually requires them to be physically or chemically attached to a solid surface. The fixation mechanisms may influence the nanomechanical characterization done by force curve mapping using an AFM. To study the response of a microbial cell surface to this kind of local measurement this study attempts to overcome the problem associated to the uncertainties introduced by the different fixation treatments by analysing the surface of Staphylococcus epidermidis cells naturally (non-artificially mediated) immobilised on a glass support surface. The particularities of this natural bacterial fixation process for AFM surface analysis are discussed in terms of theoretical predictions of the XDLVO model applied to the systems bacteria/support substratum and bacteria/AFM tip immersed in water. In this sense, in the first part of this study the conditions for adequate natural fixation of three S. epidermidis strains have been analyzed by taking into account the geometries of the bacterium, substrate and tip. In the second part, bacteria are probed without the risk of any possible artefacts due to the mechanical or chemical fixation procedures. Forces measured over the successfully adhered cells have (directly) shown that the untreated bacterial surface suffers from a combination of both reversible and non-reversible deformations during acquisition of force curves all taken under the same operational conditions. This is revealed directly through high-resolution tapping-mode imaging of the bacterial surface immediately following force curve mapping. The results agree with the two different types of force curves that were repeatedly obtained. Interestingly, one type of these force curves suggests that the AFM tip is breaking (rather than pushing) the cell surface during acquisition of the force curve. In this case, adhesive peaks were always observed, suggesting a mechanical origin of the measured pull-off forces. The other type of force curves shows no adhesive peaks and exhibits juxtaposing of approaching and retraction curves, reflecting elastic deformations.
Resonant inelastic X-ray scattering spectrometer with 25meV resolution at the Cu K -edge
Ketenoglu, Didem; Harder, Manuel; Klementiev, Konstantin; ...
2015-06-27
An unparalleled resolution is reported with an inelastic X-ray scattering instrument at the CuK-edge. Based on a segmented concave analyzer, featuring single-crystal quartz (SiO 2) pixels, the spectrometer delivers a resolution near 25meV (FWHM) at 8981eV. Besides the quartz analyzer, the performance of the spectrometer relies on a four-bounce Si(553) high-resolution monochromator and focusing Kirkpatrick–Baez optics. The measured resolution agrees with the ray-tracing simulation of an ideal spectrometer. The performance of the spectrometer is demonstrated by reproducing the phonon dispersion curve of a beryllium single-crystal.
Comet P/Halley 1910, 1986: An objective-prism study
NASA Technical Reports Server (NTRS)
Carsenty, U.; Bus, E. S.; Wyckoff, S.; Lutz, B.
1986-01-01
V. M. Slipher of the Lowell Obs. collected a large amount of spectroscopic data during the 1910 apparition of Halley's comet. Three of his post perihelion objective-prism plates were selected, digitized, and subjected to modern digital data reduction procedures. Some of the important steps in the analysis where: (1) Density to intensity conversion for which was used 1910 slit spectra of Fe-arc lamp on similar plates (Sigma) and derived an average characteristic curve; (2) Flux calibration using the fact that during the period June 2 to 7 1910 P/Halley was very close (angular distance) to the bright star Alpha Sex (A0III, V-4.49), and the spectra of both star and comet were recorded on the same plates. The flux distribution of Alpha Sex was assumed to be similar to that of the standard star 58 Aql and derived a sensitivity curve for the system; (3) Atmospheric extinction using the standard curve for the Lowell Obs.; (4) Solar continuum subtraction using the standard solar spectrum binned to the spectral resolution. An example of a flux-calibrated spectrum of the coma (integrated over 87,000km) before the subtraction of solar continuum is presented.
TH-EF-207A-04: A Dynamic Contrast Enhanced Cone Beam CT Technique for Evaluation of Renal Functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Z; Shi, J; Yang, Y
Purpose: To develop a simple but robust method for the early detection and evaluation of renal functions using dynamic contrast enhanced cone beam CT technique. Methods: Experiments were performed on an integrated imaging and radiation research platform developed by our lab. Animals (n=3) were anesthetized with 20uL Ketamine/Xylazine cocktail, and then received 200uL injection of iodinated contrast agent Iopamidol via tail vein. Cone beam CT was acquired following contrast injection once per minute and up to 25 minutes. The cone beam CT was reconstructed with a dimension of 300×300×800 voxels of 130×130×130um voxel resolution. The middle kidney slices in themore » transvers and coronal planes were selected for image analysis. A double exponential function was used to fit the contrast enhanced signal intensity versus the time after contrast injection. Both pixel-based and region of interest (ROI)-based curve fitting were performed. Four parameters obtained from the curve fitting, namely the amplitude and flow constant for both contrast wash in and wash out phases, were investigated for further analysis. Results: Robust curve fitting was demonstrated for both pixel based (with R{sup 2}>0.8 for >85% pixels within the kidney contour) and ROI based (R{sup 2}>0.9 for all regions) analysis. Three different functional regions: renal pelvis, medulla and cortex, were clearly differentiated in the functional parameter map in the pixel based analysis. ROI based analysis showed the half-life T1/2 for contrast wash in and wash out phases were 0.98±0.15 and 17.04±7.16, 0.63±0.07 and 17.88±4.51, and 1.48±0.40 and 10.79±3.88 minutes for the renal pelvis, medulla and cortex, respectively. Conclusion: A robust method based on dynamic contrast enhanced cone beam CT and double exponential curve fitting has been developed to analyze the renal functions for different functional regions. Future study will be performed to investigate the sensitivity of this technique in the detection of radiation induced kidney dysfunction.« less
Curved crystals for high-resolution focusing of X and gamma rays through a Laue lens
NASA Astrophysics Data System (ADS)
Guidi, Vincenzo; Bellucci, Valerio; Camattari, Riccardo; Neri, Ilaria
2013-08-01
Crystals with curved diffracting planes have been investigated as high-efficiency optical components for the realization of a Laue lens for satellite-borne experiments in astrophysics. At Sensor and Semiconductor Laboratory (Ferrara, Italy) a research and development plan to implement Si and Ge curved crystals by surface grooving technique has been undertaken. The method of surface grooving allows obtaining Si and Ge curved crystals with self-standing curvature, i.e., with no need for external bending device, which is a mandatory issue in satellite-borne experiments. Si and Ge grooved crystals have been characterized by X-ray diffraction at ESRF and ILL to prove their functionality for a high-reflectivity Laue lens.
High resolution SAW elastography for ex-vivo porcine skin specimen
NASA Astrophysics Data System (ADS)
Zhou, Kanheng; Feng, Kairui; Wang, Mingkai; Jamera, Tanatswa; Li, Chunhui; Huang, Zhihong
2018-02-01
Surface acoustic wave (SAW) elastography has been proven to be a non-invasive, non-destructive method for accurately characterizing tissue elastic properties. Current SAW elastography technique tracks generated surface acoustic wave impulse point by point which are a few millimeters away. Thus, reconstructed elastography has low lateral resolution. To improve the lateral resolution of current SAW elastography, a new method was proposed in this research. A M-B scan mode, high spatial resolution phase sensitive optical coherence tomography (PhS-OCT) system was employed to track the ultrasonically induced SAW impulse. Ex-vivo porcine skin specimen was tested using this proposed method. A 2D fast Fourier transform based algorithm was applied to process the acquired data for estimating the surface acoustic wave dispersion curve and its corresponding penetration depth. Then, the ex-vivo porcine skin elastogram was established by relating the surface acoustic wave dispersion curve and its corresponding penetration depth. The result from the proposed method shows higher lateral resolution than that from current SAW elastography technique, and the approximated skin elastogram could also distinguish the different layers in the skin specimen, i.e. epidermis, dermis and fat layer. This proposed SAW elastography technique may have a large potential to be widely applied in clinical use for skin disease diagnosis and treatment monitoring.
NASA Astrophysics Data System (ADS)
Liu, Shuyi; Shiotari, Akitoshi; Baugh, Delroy; Wolf, Martin; Kumagai, Takashi
2018-05-01
Molecular hydrogen in a scanning tunneling microscope (STM) junction has been found to enhance the lateral spatial resolution of the STM imaging, referred to as scanning tunneling hydrogen microscopy (STHM). Here we report atomic resolution imaging of 2- and 3-monolayer (ML) thick ZnO layers epitaxially grown on Ag(111) using STHM. The enhanced resolution can be obtained at a relatively large tip to surface distance and resolves a more defective structure exhibiting dislocation defects for 3-ML-thick ZnO than for 2 ML. In order to elucidate the enhanced imaging mechanism, the electric and mechanical properties of the hydrogen molecular junction (HMJ) are investigated by a combination of STM and atomic force microscopy. It is found that the HMJ shows multiple kinklike features in the tip to surface distance dependence of the conductance and frequency shift curves, which are absent in a hydrogen-free junction. Based on a simple modeling, we propose that the junction contains several hydrogen molecules and sequential squeezing of the molecules out of the junction results in the kinklike features in the conductance and frequency shift curves. The model also qualitatively reproduces the enhanced resolution image of the ZnO films.
NASA Astrophysics Data System (ADS)
de Jong, M. T.; Clark, J. F.; Neira, N. M.; Fisher, A. T.; Wheat, C. G.
2015-12-01
We present results from a gas tracer injection experiment in the ocean crust on the eastern flank of the Juan de Fuca Ridge, in an area of hydrothermal circulation. Sulfur hexafluoride (SF6) tracer was injected in Hole 1362B in 2010, during IODP Expedition 327. Fluid samples were subsequently collected from a borehole observatory (CORK) installed in this hole and similar CORKs in three additional holes (1026B, 1362A, and 1301A), located 300 to 500 m away. This array of holes is located on 3.5 My old seafloor, as an array oriented subparallel to the Endeavor Segment of Juan de Fuca Ridge. Borehole fluid samples were collected in copper coils using osmotic pumps. In addition to pumps at seafloor wellheads, downhole sampling pumps were installed in the perforated casing in the upper ocean crust. These downhole samplers were intended to produce a high-resolution continuous record of tracer concentrations, including records from the first year after tracer injection in Holes 1362A and 1362B. In contrast, wellhead samplers were not installed on these CORKs holes until 2011, and wellhead records from all CORKs have a record gap of up to one year, because of a delayed expedition in 2012. The downhole samples were recovered with the submersible Alvin in August 2014. SF6 concentrations in downhole samples recovered in 2014 are generally consistent with data obtained from wellhead samples. Of particular interest are the results from Hole 1362B, where a seafloor valve was opened and closed during various recovery expeditions. High resolution tracer curves produced from the 1362B downhole samples confirm that these operations produced an SF6 breakthrough curve corresponding to a classic push-pull test used to evaluate contaminant field locations in terrestrial setting. Complete analyses of downhole samples from these CORKs are expected to produce high-resolution breakthrough curves that will allow more precise analysis and modeling of hydrothermal flow in the study area.
Noakes, Kimberley F.; Bissett, Ian P.; Pullan, Andrew J.; Cheng, Leo K.
2014-01-01
Three anatomically realistic meshes, suitable for finite element analysis, of the pelvic floor and anal canal regions have been developed to provide a framework with which to examine the mechanics, via finite element analysis of normal function within the pelvic floor. Two cadaver-based meshes were produced using the Visible Human Project (male and female) cryosection data sets, and a third mesh was produced based on MR image data from a live subject. The Visible Man (VM) mesh included 10 different pelvic structures while the Visible Woman and MRI meshes contained 14 and 13 structures respectively. Each image set was digitized and then finite element meshes were created using an iterative fitting procedure with smoothing constraints calculated from ‘L’-curves. These weights produced accurate geometric meshes of each pelvic structure with average Root Mean Square (RMS) fitting errors of less than 1.15 mm. The Visible Human cadaveric data provided high resolution images, however, the cadaveric meshes lacked the normal dynamic form of living tissue and suffered from artifacts related to postmortem changes. The lower resolution MRI mesh was able to accurately portray structure of the living subject and paves the way for dynamic, functional modeling. PMID:18317929
Structural Analysis of MoS2 and other 2D layered materials using LEEM/LEED-I(V) and STM
NASA Astrophysics Data System (ADS)
Grady, Maxwell; Dai, Zhongwei; Jin, Wencan; Dadap, Jerry; Osgood, Richard; Sadowski, Jerzy; Pohl, Karsten
Layered two-dimensional materials, such as molybdenum disulfide, MoS2, are of interest for the development of many types of novel electronic devices. To fully understand the interfaces between these new materials, the atomic reconstructions at their surfaces must be understood. Low Energy Electron Microscopy and Diffraction, LEEM/ μLEED, present a unique method for rapid material characterization in real space and reciprocal space with high resolution. Here we present a study of the surface structure of 2H-MoS2 using μLEED intensity-voltage analysis. To aid this analysis, software is under development to automate the procedure of extracting I(V) curves from LEEM and LEED data. When matched with computational modeling, this data provides information with angstrom level resolution concerning the three dimensional atomic positions. We demonstrate that the surface structure of bulk MoS2 is distinct from the bulk crystal structure and exhibits a smaller surface relaxation at 320K compared to previous results at 95K. Furthermore, suspended monolayer samples exhibit large interlayer relaxations compared to the bulk surface termination. Further techniques for refining layer thickness determination are under development.
Development of a new family of normalized modulus reduction and material damping curves
NASA Astrophysics Data System (ADS)
Darendeli, Mehmet Baris
2001-12-01
As part of various research projects [including the SRS (Savannah River Site) Project AA891070, EPRI (Electric Power Research Institute) Project 3302, and ROSRINE (Resolution of Site Response Issues from the Northridge Earthquake) Project], numerous geotechnical sites were drilled and sampled. Intact soil samples over a depth range of several hundred meters were recovered from 20 of these sites. These soil samples were tested in the laboratory at The University of Texas at Austin (UTA) to characterize the materials dynamically. The presence of a database accumulated from testing these intact specimens motivated a re-evaluation of empirical curves employed in the state of practice. The weaknesses of empirical curves reported in the literature were identified and the necessity of developing an improved set of empirical curves was recognized. This study focused on developing the empirical framework that can be used to generate normalized modulus reduction and material damping curves. This framework is composed of simple equations, which incorporate the key parameters that control nonlinear soil behavior. The data collected over the past decade at The University of Texas at Austin are statistically analyzed using First-order, Second-moment Bayesian Method (FSBM). The effects of various parameters (such as confining pressure and soil plasticity) on dynamic soil properties are evaluated and quantified within this framework. One of the most important aspects of this study is estimating not only the mean values of the empirical curves but also estimating the uncertainty associated with these values. This study provides the opportunity to handle uncertainty in the empirical estimates of dynamic soil properties within the probabilistic seismic hazard analysis framework. A refinement in site-specific probabilistic seismic hazard assessment is expected to materialize in the near future by incorporating the results of this study into state of practice.
NASA Astrophysics Data System (ADS)
Witek, M.; van der Lee, S.; Kang, T. S.; Chang, S. J.; Ning, J.; Ning, S.
2017-12-01
We have measured Rayleigh wave group velocity dispersion curves from one year of station-pair cross-correlations of continuous vertical-component broadband data from 1082 seismic stations in regional networks across China, Korea, Taiwan, and Japan for the year 2011. We use the measurements to map local dispersion anomalies for periods in the range 6-40 s. We combined our ambient noise data set with the earthquake group velocity data set of Ma et al. (2014), and then applied agglomerative hierarchical clustering to the localized dispersion curves. We find that the dispersion curves naturally organize themselves into distinct tectonic regions. For our distribution of interstation distances, only 8 distinct regions need to be defined. Additional clusters reduce the overall data misfit by increasingly smaller amounts. The size and number of clusters needed to suitably predict the data may give an indication of the resolving power of the data set. The regions that emerge from the cluster analysis include Tibet, the Sea of Japan, the South China Block and the Korean peninsula, the Ordos and Yangtze cratons, and Mesozoic rift basins such as the Songliao, Bohai Bay and Ulleung basins. We also performed a traditional inversion for 3D S-velocity structure, and the resulting model fits the data as well as the 8-cluster model, while both models fit the earthquake data and ambient noise data better than the LITHO1.0 model of Pasyanos et al. (2014). Our 3D model of the crust and upper mantle confirms many of the features seen in previous studies of the region, most notably the lithospheric thinning going from west to east and low velocity zones in the crust on the Tibetan periphery. We conclude that cluster analysis is able to greatly reduce the dimensionality of surface wave dispersion data, in the sense that a data set of over half a million dispersion curves is sufficiently predicted by appropriately averaging over a relatively small set of distinct tectonic regions. The resulting clustered model objectively quantifies the more intuitive ways in which we usually tend to interpret tomographic models.
NASA Astrophysics Data System (ADS)
Jiang, Shyh-Biau; Yeh, Tse-Liang; Chen, Li-Wu; Liu, Jann-Yenq; Yu, Ming-Hsuan; Huang, Yu-Qin; Chiang, Chen-Kiang; Chou, Chung-Jen
2018-05-01
In this study, we construct a photomultiplier calibration system. This calibration system can help scientists measuring and establishing the characteristic curve of the photon count versus light intensity. The system uses an innovative 10-fold optical attenuator to enable an optical power meter to calibrate photomultiplier tubes which have the resolution being much greater than that of the optical power meter. A simulation is firstly conducted to validate the feasibility of the system, and then the system construction, including optical design, circuit design, and software algorithm, is realized. The simulation generally agrees with measurement data of the constructed system, which are further used to establish the characteristic curve of the photon count versus light intensity.
Spectroscopy of bright Algol-type semi-detached close binary system HU Tauri (HR 1471)
NASA Astrophysics Data System (ADS)
Parthasarathy, M.
2018-01-01
Radial velocities of the primary component (B8V) of HU Tauri derived from the photographic spectra obtained during January 1974 to December 1974 and spectroscopic orbital elements from the analysis of the radial velocity curve of the B8V primary are given. The H line of the late type secondary component is clearly detected on the photographic spectra taken around the quadratures and radial velocities of the secondary component are derived. The radial velocity semi amplitudes of the primary (K) and secondary (K) are found to be 60 km/sec and 234 km/sec respectively. The mass ratio M/M = K/K is found to be 0.2564. The detection of the H line of the secondary is confirmed from the high resolution spectra that I obtained during 1981 and 1983 at quadratures using the 2.1-m McDonald observatory Otto Struve reflector telescope and high resolution coude Reticon spectrograph.
Factors influencing the QMF resolution for operation in stability zones 1 and 3.
Syed, Sarfaraz U A H; Hogan, Thomas; Gibson, John; Taylor, Stephen
2012-05-01
This study uses a computer model to simulate a quadrupole mass filter (QMF) instrument under different operating conditions for Mathieu stability zones 1 and 3. The investigation considers the factors that limit the maximum resolution (R(max)), which can be obtained for a given QMF for a particular value of scan line. Previously, QMF resolution (R) has been found to be dependent on number (N) of radio frequency (rf) cycles experienced by the ions in the mass filter, according to R = N(n)/K, where n and K are the constants. However, this expression does not predict the limit to QMF resolution observed in practice and is true only for the linear regions of the performance curve for QMF operation in zone 1 and zone 3 of the stability diagram. Here we model the saturated regions of the performance curve for QMF operation in zone 1 according to R = q(1 - 2c(N))/∆q, where c is a constant and ∆q is the width of the intersection of the operating scan line with the stability zone 1, measured at q-axis of the Mathieu stability diagram. Also by careful calculations of the detail of the stability tip of zone 1, the following relationship was established between R(max) and percentage U/V ratio: R(max) = q/(0.9330-0.00933U/V). For QMF operation in zone 3 the expression R = a - bc(N) simulates well the linear and saturated regions of the performance curve for a range of operational conditions, where a, b, and c are constants.
Inversion of high frequency surface waves with fundamental and higher modes
Xia, J.; Miller, R.D.; Park, C.B.; Tian, G.
2003-01-01
The phase velocity of Rayleigh-waves of a layered earth model is a function of frequency and four groups of earth parameters: compressional (P)-wave velocity, shear (S)-wave velocity, density, and thickness of layers. For the fundamental mode of Rayleigh waves, analysis of the Jacobian matrix for high frequencies (2-40 Hz) provides a measure of dispersion curve sensitivity to earth model parameters. S-wave velocities are the dominant influence of the four earth model parameters. This thesis is true for higher modes of high frequency Rayleigh waves as well. Our numerical modeling by analysis of the Jacobian matrix supports at least two quite exciting higher mode properties. First, for fundamental and higher mode Rayleigh wave data with the same wavelength, higher modes can "see" deeper than the fundamental mode. Second, higher mode data can increase the resolution of the inverted S-wave velocities. Real world examples show that the inversion process can be stabilized and resolution of the S-wave velocity model can be improved when simultaneously inverting the fundamental and higher mode data. ?? 2002 Elsevier Science B.V. All rights reserved.
Gholami, S; Bordbar, A K; Akvan, N; Parastar, H; Fani, N; Gretskaya, N M; Bezuglov, V V; Haertlé, T
2015-12-01
A computational approach to predict the main binding modes of two adrenalin derivatives, arachidonoyl adrenalin (AA-AD) and arachidonoyl noradrenalin (AA-NOR) with the β-lactoglubuline (BLG) as a nano-milk protein carrier is presented and assessed by comparison to the UV-Vis absorption spectroscopic data using chemometric analysis. Analysis of the spectral data matrices by using the multivariate curve resolution-alternating least squares (MCR-ALS) algorithm led to the pure concentration calculation and spectral profiles resolution of the chemical constituents and the apparent equilibrium constants computation. The negative values of entropy and enthalpy changes for both compound indicated the essential role of hydrogen bonding and van der Waals interactions as main driving forces in stabilizing protein-ligand complex. Computational studies predicted that both derivatives are situated in the calyx pose and remained in that pose during the whole time of simulation with no any significant protein structural changes which pointed that the BLG could be considered as a suitable carrier for these catecholamine compounds. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Voeikov, Vladimir L.; Kondakov, Sergey E.; Buravleva, Ekaterina; Kaganovsky, Isaak; Reznikov, Mikhail
2000-05-01
An automatic device for high-temporal resolution of the process of red blood sedimentation was designed. The position of the boundary between red blood and plasma may be registered each 30 sec in several pipettes simultaneously with +/- 10 mkm precision. Fractional rates of the boundary movement are deduced with high accuracy. Data are processed by a PC and presented as velocity-time curves (ESR-grams) and the curves describing time evolution of the boundary position. Several unexpected phenomena in the process of red blood sedimentation have been revealed. Upward fast movements of the boundary up to 1 mm were noted. In patients' blood sets of 5 - 10 milliHz oscillations of sedimentation rate were usually developing at early stages of blood sedimentation. In non-diluted healthy donors' blood high amplitude periodic oscillations were either absent, or were emerging only after blood resided in pipettes for several hours. When blood was diluted to a certain degree with physiological saline or with own plasma long-term low frequency (1 - 3 milliHz) rate oscillations regularly appeared. Non-trivial dependence of patterns of ESR-grams on diluting of blood with own plasma or saline was observed. Thus, non-linear dynamic behavior of living blood has been revealed due to application of the principles of the system of technical vision for the detailed analysis of red blood sedimentation kinetics.
Koch, Cosima; Posch, Andreas E; Goicoechea, Héctor C; Herwig, Christoph; Lendl, Bernhard
2014-01-07
This paper presents the quantification of Penicillin V and phenoxyacetic acid, a precursor, inline during Pencillium chrysogenum fermentations by FTIR spectroscopy and partial least squares (PLS) regression and multivariate curve resolution - alternating least squares (MCR-ALS). First, the applicability of an attenuated total reflection FTIR fiber optic probe was assessed offline by measuring standards of the analytes of interest and investigating matrix effects of the fermentation broth. Then measurements were performed inline during four fed-batch fermentations with online HPLC for the determination of Penicillin V and phenoxyacetic acid as reference analysis. PLS and MCR-ALS models were built using these data and validated by comparison of single analyte spectra with the selectivity ratio of the PLS models and the extracted spectral traces of the MCR-ALS models, respectively. The achieved root mean square errors of cross-validation for the PLS regressions were 0.22 g L(-1) for Penicillin V and 0.32 g L(-1) for phenoxyacetic acid and the root mean square errors of prediction for MCR-ALS were 0.23 g L(-1) for Penicillin V and 0.15 g L(-1) for phenoxyacetic acid. A general work-flow for building and assessing chemometric regression models for the quantification of multiple analytes in bioprocesses by FTIR spectroscopy is given. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Pérez, Rocío L; Escandar, Graciela M
2014-07-04
Following the green analytical chemistry principles, an efficient strategy involving second-order data provided by liquid chromatography (LC) with diode array detection (DAD) was applied for the simultaneous determination of estriol, 17β-estradiol, 17α-ethinylestradiol and estrone in natural water samples. After a simple pre-concentration step, LC-DAD matrix data were rapidly obtained (in less than 5 min) with a chromatographic system operating isocratically. Applying a second-order calibration algorithm based on multivariate curve resolution with alternating least-squares (MCR-ALS), successful resolution was achieved in the presence of sample constituents that strongly coelute with the analytes. The flexibility of this multivariate model allowed the quantification of the four estrogens in tap, mineral, underground and river water samples. Limits of detection in the range between 3 and 13 ng L(-1), and relative prediction errors from 2 to 11% were achieved. Copyright © 2014 Elsevier B.V. All rights reserved.
Characteristics of Kodak Insight, an F-speed intraoral film.
Ludlow, J B; Platin, E; Mol, A
2001-01-01
This study reports film speed, contrast, exposure latitude, resolution, and response to processing solution depletion of Kodak Insight intraoral film. Densitometric curves were generated by using International Standards Organization protocol. Additional curves were generated for Ultra-speed, Ektaspeed Plus, and Insight films developed in progressively depleted processing solutions. Eight observers viewed images of a resolution test tool for maximum resolution assessment. Images of an aluminum step-wedge were reviewed to determine useful exposure latitude. Insight's sensitivity in fresh automatic processor solutions places it in the F-speed group. An average gradient of 1.8 was found with all film types. Insight provided 93% of the useful exposure latitude of Ektaspeed Plus film. Insight maintained contrast in progressively depleted processing solutions. Like Ektaspeed Plus, Insight was able to resolve at least 20 line-pairs per millimeter. Under International Standards Organization conditions, Insight required only 77% of the exposure of Ektaspeed Plus film. Insight film provided stable contrast in depleted processing solutions.
Alcaráz, Mirta R; Vera-Candioti, Luciana; Culzoni, María J; Goicoechea, Héctor C
2014-04-01
This paper presents the development of a capillary electrophoresis method with diode array detector coupled to multivariate curve resolution-alternating least squares (MCR-ALS) to conduct the resolution and quantitation of a mixture of six quinolones in the presence of several unexpected components. Overlapping of time profiles between analytes and water matrix interferences were mathematically solved by data modeling with the well-known MCR-ALS algorithm. With the aim of overcoming the drawback originated by two compounds with similar spectra, a special strategy was implemented to model the complete electropherogram instead of dividing the data in the region as usually performed in previous works. The method was first applied to quantitate analytes in standard mixtures which were randomly prepared in ultrapure water. Then, tap water samples spiked with several interferences were analyzed. Recoveries between 76.7 and 125 % and limits of detection between 5 and 18 μg L(-1) were achieved.
Samaras, Anastasios; Madesis, Panagiotis; Karaoglanidis, George S
2016-01-01
Botrytis cinerea , is a high risk pathogen for fungicide resistance development. Pathogen' resistance to SDHIs is associated with several mutations in sdh gene. The diversity of mutations and their differential effect on cross-resistance patterns among SDHIs and the fitness of resistant strains necessitate the availability of a tool for their rapid identification. This study was initiated to develop and validate a high-resolution melting (HRM) analysis for the identification of P225H/F/L//T, N230I, and H272L/R/Y mutations. Based on the sequence of sdh B subunit of resistant and sensitive isolates, a universal primer pair was designed. The specificity of the HRM analysis primers was verified to ensure against the cross-reaction with other fungal species and its sensitivity was evaluated using concentrations of known amounts of mutant's DNA. The melting curve analysis generated nine distinct curve profiles, enabling the discrimination of all the four mutations located at codon 225, the N230I mutation, the three mutations located in codon 272, and the non-mutated isolates (isolates of wild-type sensitivity). Similar results were obtained when DNA was extracted directly from artificially inoculated strawberry fruit. The method was validated by monitoring the presence of sdh B mutations in samples of naturally infected strawberry fruits and stone fruit rootstock seedling plants showing damping-off symptoms. HRM analysis data were compared with a standard PIRA-PCR technique and an absolute agreement was observed suggesting that in both populations the H272R mutation was the predominant one, while H272Y, N230I, and P225H were detected in lower frequencies. The results of the study suggest that HRM analysis can be a useful tool for sensate, accurate, and rapid identification of several sdh B mutations in B. cinerea and it is expected to contribute in routine fungicide resistance monitoring or assessments of the effectiveness of anti-resistance strategies implemented in crops heavily treated with botryticides.
Samaras, Anastasios; Madesis, Panagiotis; Karaoglanidis, George S.
2016-01-01
Botrytis cinerea, is a high risk pathogen for fungicide resistance development. Pathogen’ resistance to SDHIs is associated with several mutations in sdh gene. The diversity of mutations and their differential effect on cross-resistance patterns among SDHIs and the fitness of resistant strains necessitate the availability of a tool for their rapid identification. This study was initiated to develop and validate a high-resolution melting (HRM) analysis for the identification of P225H/F/L//T, N230I, and H272L/R/Y mutations. Based on the sequence of sdhB subunit of resistant and sensitive isolates, a universal primer pair was designed. The specificity of the HRM analysis primers was verified to ensure against the cross-reaction with other fungal species and its sensitivity was evaluated using concentrations of known amounts of mutant’s DNA. The melting curve analysis generated nine distinct curve profiles, enabling the discrimination of all the four mutations located at codon 225, the N230I mutation, the three mutations located in codon 272, and the non-mutated isolates (isolates of wild-type sensitivity). Similar results were obtained when DNA was extracted directly from artificially inoculated strawberry fruit. The method was validated by monitoring the presence of sdhB mutations in samples of naturally infected strawberry fruits and stone fruit rootstock seedling plants showing damping-off symptoms. HRM analysis data were compared with a standard PIRA–PCR technique and an absolute agreement was observed suggesting that in both populations the H272R mutation was the predominant one, while H272Y, N230I, and P225H were detected in lower frequencies. The results of the study suggest that HRM analysis can be a useful tool for sensate, accurate, and rapid identification of several sdhB mutations in B. cinerea and it is expected to contribute in routine fungicide resistance monitoring or assessments of the effectiveness of anti-resistance strategies implemented in crops heavily treated with botryticides. PMID:27895633
Kummalue, Tanawan; Chuphrom, Anchalee; Sukpanichanant, Sanya; Pongpruttipan, Tawatchai; Sukpanichanant, Sathien
2010-05-19
Malignant lymphoma, especially non-Hodgkin lymphoma, is one of the most common hematologic malignancies in Thailand. The diagnosis of malignant lymphoma is often problematic, especially in early stages of the disease. Detection of antigen receptor gene rearrangement including T cell receptor (TCR) and immunoglobulin heavy chain (IgH) by polymerase chain reaction followed by heteroduplex has currently become standard whereas fluorescent fragment analysis (GeneScan) has been used for confirmation test. In this study, three techniques had been compared: thermocycler polymerase chain reaction (PCR) followed by heteroduplex and polyacrylamide gel electrophoresis, GeneScan analysis, and real time PCR with High Resolution Melting curve analysis (HRM). The comparison was carried out with DNA extracted from paraffin embedded tissues diagnosed as B- cell non-Hodgkin lymphoma. Specific PCR primers sequences for IgH gene variable region 3, including fluorescence labeled IgH primers were used and results were compared with HRM. In conclusion, the detection IgH gene rearrangement by HRM in the LightCycler System showed potential for distinguishing monoclonality from polyclonality in B-cell non-Hodgkin lymphoma. Malignant lymphoma, especially non-Hodgkin lymphoma, is one of the most common hematologic malignancies in Thailand. The incidence rate as reported by Ministry of Public Health is 3.1 per 100,000 population in female whereas the rate in male is 4.5 per 100,000 population 1. At Siriraj Hospital, the new cases diagnosed as malignant lymphoma were 214.6 cases/year 2. The diagnosis of malignant lymphoma is often problematic, especially in early stages of the disease. Therefore, detection of antigen receptor gene rearrangement including T cell receptor (TCR) and immunoglobulin heavy chain (IgH) by polymerase chain reaction (PCR) assay has recently become a standard laboratory test for discrimination of reactive from malignant clonal lymphoproliferation 34. Analyzing DNA extracted from formalin-fixed, paraffin-embedded tissues by multiplex PCR techniques is more rapid, accurate and highly sensitive. Measuring the size of the amplicon from PCR analysis could be used to diagnose malignant lymphoma with monoclonal pattern showing specific and distinct bands detected on acrylamide gel electrophoresis. However, this technique has some limitations and some patients might require a further confirmation test such as GeneScan or fragment analysis 56.GeneScan technique or fragment analysis reflects size and peak of DNA by using capillary gel electrophoresis. This technique is highly sensitive and can detect 0.5-1% of clonal lymphoid cells. It measures the amplicons by using various fluorescently labeled primers at forward or reverse sides and a specific size standard. Using a Genetic Analyzer machine and GeneMapper software (Applied Bioscience, USA), the monoclonal pattern revealed one single, sharp and high peak at the specific size corresponding to acrylamide gel pattern, whereas the polyclonal pattern showed multiple and small peak condensed at the same size standard. This technique is the most sensitive and accurate technique; however, it usually requires high technical experience and is also of high cost 7. Therefore, rapid and more cost effective technique are being sought.LightCycler PCR performs the diagnostic detection of amplicon via melting curve analysis within 2 hours with the use of a specific dye 89. This dye consists of two types: one known as SYBR-Green I which is non specific and the other named as High Resolution Melting analysis (HRM) which is highly sensitive, more accurate and stable. Several reports demonstrated that this new instrument combined with DNA intercalating dyes can be used to discriminate sequence changes in PCR amplicon without manual handling of PCR product 1011. Therefore, current investigations using melting curve analysis are being developed 1213.In this study, three different techniques were compared to evaluate the suitability of LightCycler PCR with HRM as the clonal diagnostic tool for IgH gene rearrangement in B-cell non-Hogdkin lymphoma, i.e. thermocycler PCR followed by heteroduplex analysis and PAGE, GeneScan analysis and LightCycler PCR with HRM.
Towards real-time thermometry using simultaneous multislice MRI
NASA Astrophysics Data System (ADS)
Borman, P. T. S.; Bos, C.; de Boorder, T.; Raaymakers, B. W.; Moonen, C. T. W.; Crijns, S. P. M.
2016-09-01
MR-guided thermal therapies, such as high-intensity focused ultrasound (MRgHIFU) and laser-induced thermal therapy (MRgLITT) are increasingly being applied in oncology and neurology. MRI is used for guidance since it can measure temperature noninvasively based on the proton resonance frequency shift (PRFS). For therapy guidance using PRFS thermometry, high temporal resolution and large spatial coverage are desirable. We propose to use the parallel imaging technique simultaneous multislice (SMS) in combination with controlled aliasing (CAIPIRINHA) to accelerate the acquisition. We compare this with the sensitivity encoding (SENSE) acceleration technique. Two experiments were performed to validate that SMS can be used to increase the spatial coverage or the temporal resolution. The first was performed in agar gel using LITT heating and a gradient-echo sequence with echo-planar imaging (EPI), and the second was performed in bovine muscle using HIFU heating and a gradient-echo sequence without EPI. In both experiments temperature curves from an unaccelerated scan and from SMS, SENSE, and SENSE/SMS accelerated scans were compared. The precision was quantified by a standard deviation analysis of scans without heating. Both experiments showed a good agreement between the temperature curves obtained from the unaccelerated, and SMS accelerated scans, confirming that accuracy was maintained during SMS acceleration. The standard deviations of the temperature measurements obtained with SMS were significantly smaller than when SENSE was used, implying that SMS allows for higher acceleration. In the LITT and HIFU experiments SMS factors up to 4 and 3 were reached, respectively, with a loss of precision of less than a factor of 3. Based on these results we conclude that SMS acceleration of PRFS thermometry is a valuable addition to SENSE, because it allows for a higher temporal resolution or bigger spatial coverage, with a higher precision.
NASA Astrophysics Data System (ADS)
Swain, Pradyumna; Mark, David
2004-09-01
The emergence of curved CCD detectors as individual devices or as contoured mosaics assembled to match the curved focal planes of astronomical telescopes and terrestrial stereo panoramic cameras represents a major optical design advancement that greatly enhances the scientific potential of such instruments. In altering the primary detection surface within the telescope"s optical instrumentation system from flat to curved, and conforming the applied CCD"s shape precisely to the contour of the telescope"s curved focal plane, a major increase in the amount of transmittable light at various wavelengths through the system is achieved. This in turn enables multi-spectral ultra-sensitive imaging with much greater spatial resolution necessary for large and very large telescope applications, including those involving infrared image acquisition and spectroscopy, conducted over very wide fields of view. For earth-based and space-borne optical telescopes, the advent of curved CCD"s as the principle detectors provides a simplification of the telescope"s adjoining optics, reducing the number of optical elements and the occurrence of optical aberrations associated with large corrective optics used to conform to flat detectors. New astronomical experiments may be devised in the presence of curved CCD applications, in conjunction with large format cameras and curved mosaics, including three dimensional imaging spectroscopy conducted over multiple wavelengths simultaneously, wide field real-time stereoscopic tracking of remote objects within the solar system at high resolution, and deep field survey mapping of distant objects such as galaxies with much greater multi-band spatial precision over larger sky regions. Terrestrial stereo panoramic cameras equipped with arrays of curved CCD"s joined with associative wide field optics will require less optical glass and no mechanically moving parts to maintain continuous proper stereo convergence over wider perspective viewing fields than their flat CCD counterparts, lightening the cameras and enabling faster scanning and 3D integration of objects moving within a planetary terrain environment. Preliminary experiments conducted at the Sarnoff Corporation indicate the feasibility of curved CCD imagers with acceptable electro-optic integrity. Currently, we are in the process of evaluating the electro-optic performance of a curved wafer scale CCD imager. Detailed ray trace modeling and experimental electro-optical data performance obtained from the curved imager will be presented at the conference.
Detection of somatic mutations by high-resolution DNA melting (HRM) analysis in multiple cancers.
Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S; Garcia-Closas, Montserrat; Sherman, Mark E; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P; Khan, Javed; Chanock, Stephen
2011-01-17
Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.
Detection of Somatic Mutations by High-Resolution DNA Melting (HRM) Analysis in Multiple Cancers
Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S.; Garcia-Closas, Montserrat; Sherman, Mark E.; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P.; Khan, Javed; Chanock, Stephen
2011-01-01
Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples. PMID:21264207
Ca2+ block and flickering both contribute to the negative slope of the IV curve in BK channels.
Schroeder, Indra; Thiel, Gerhard; Hansen, Ulf-Peter
2013-04-01
Single-channel current-voltage (IV) curves of human large-conductance, voltage- and Ca(2+)-activated K(+) (BK) channels are quite linear in 150 mM KCl. In the presence of Ca(2+) and/or Mg(2+), they show a negative slope conductance at high positive potentials. This is generally explained by a Ca(2+)/Mg(2+) block as by Geng et al. (2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210955) in this issue. Here, we basically support this finding but add a refinement: the analysis of the open-channel noise by means of β distributions reveals what would be found if measurements were done with an amplifier of sufficient temporal resolution (10 MHz), namely that the block by 2.5 mM Ca(2+) and 2.5 mM Mg(2+) per se would only cause a saturating curve up to +160 mV. Further bending down requires the involvement of a second process related to flickering in the microsecond range. This flickering is hardly affected by the presence or absence of Ca(2+)/Mg(2+). In contrast to the experiments reported here, previous experiments in BK channels (Schroeder and Hansen. 2007. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.200709802) showed saturating IV curves already in the absence of Ca(2+)/Mg(2+). The reason for this discrepancy could not be identified so far. However, the flickering component was very similar in the old and new experiments, regardless of the occurrence of noncanonical IV curves.
Cavity Opto-Mechanics using an Optically Levitated Nanosphere
2010-01-19
curve ) as a function of cavity finesseF≡ πc∕κL, assuming negligible gas collisions and subject to the constraints 2ζ, Ωm∕κ, Ωm∕ωm < 1∕2 and optimized...over detuning δ2. For low cavity fi- nesse the cooling is nearly limited by sideband resolution ( ~nf ;min, red curve ), and the ground-state regime hnf i...input light for each of the two systems (denoted A, B), given by X ðjÞþ;in ¼ Figure 2. A) Mean phonon number hnf i (black curve ) versus cavity
Luminosity-velocity diagrams for Virgo Cluster spirals. I - Inner rotation curves
NASA Technical Reports Server (NTRS)
Woods, David; Fahlman, Gregory G.; Madore, Barry F.
1990-01-01
Optical rotation curves are presented for the innermost portions of nine spiral galaxies in the Virgo Cluster. The emission-line (H-alpha and forbidden N II) velocity data are to be used in combination with new CCD photometry to construct luminosity-velocity diagrams, in a continuing investigation of an apparent initial linear branch and its potential as a distance indicator. Compared to recent H I data, the present optical rotation curves generally show systematically steeper inner gradients. This effect is ascribed to the poorer resolution of the H I data and/or to holes in the gas distribution.
Wang, Weilan; Zijlstra, Ruurd T; Gänzle, Michael G
2017-05-15
Diagnosis of enterotoxigenic E. coli (ETEC) associated diarrhea is complicated by the diversity of E.coli virulence factors. This study developed a multiplex quantitative PCR assay based on high-resolution melting curves analysis (HRM-qPCR) to identify and quantify genes encoding five ETEC fimbriae related to diarrhea in swine, i.e. K99, F41, F18, F6 and K88. Five fimbriae expressed by ETEC were amplified in multiple HRM-qPCR reactions to allow simultaneous identification and quantification of five target genes. The assay was calibrated to allow quantification of the most abundant target gene, and validated by analysis of 30 samples obtained from piglets with diarrhea and healthy controls, and comparison to standard qPCR detection. The five amplicons with melting temperatures (Tm) ranging from 74.7 ± 0.06 to 80.5 ± 0.15 °C were well-separated by HRM-qPCR. The area of amplicons under the melting peak correlated linearly to the proportion of the template in the calibration mixture if the proportion exceeded 4.8% (K88) or <1% (all other amplicons). The suitability of the method was evaluated using 30 samples from weaned pigs aged 6-7 weeks; 14 of these animals suffered from diarrhea in consequence of poor sanitary conditions. Genes encoding fimbriae and enterotoxins were quantified by HRM-qPCR and/or qPCR. The multiplex HRM-qPCR allowed accurate analysis when the total gene copy number of targets was more than 1 × 10 5 / g wet feces and the HRM curves were able to simultaneously distinguish fimbriae genes in the fecal samples. The relative quantification of the most abundant F18 based on melting peak area was highly correlated (P < 0.001; r 2 = 0.956) with that of individual qPCR result but the correlation for less abundant fimbriae was much lower. The multiplex HRM assay identifies ETEC virulence factors specifically and efficiently. It correctly indicated the predominant fimbriae type and additionally provides information of presence/ absence of other fimbriae types and it could find broad applications for pathogen diagnosis.
Exploring connectivity with large-scale Granger causality on resting-state functional MRI.
DSouza, Adora M; Abidin, Anas Z; Leistritz, Lutz; Wismüller, Axel
2017-08-01
Large-scale Granger causality (lsGC) is a recently developed, resting-state functional MRI (fMRI) connectivity analysis approach that estimates multivariate voxel-resolution connectivity. Unlike most commonly used multivariate approaches, which establish coarse-resolution connectivity by aggregating voxel time-series avoiding an underdetermined problem, lsGC estimates voxel-resolution, fine-grained connectivity by incorporating an embedded dimension reduction. We investigate application of lsGC on realistic fMRI simulations, modeling smoothing of neuronal activity by the hemodynamic response function and repetition time (TR), and empirical resting-state fMRI data. Subsequently, functional subnetworks are extracted from lsGC connectivity measures for both datasets and validated quantitatively. We also provide guidelines to select lsGC free parameters. Results indicate that lsGC reliably recovers underlying network structure with area under receiver operator characteristic curve (AUC) of 0.93 at TR=1.5s for a 10-min session of fMRI simulations. Furthermore, subnetworks of closely interacting modules are recovered from the aforementioned lsGC networks. Results on empirical resting-state fMRI data demonstrate recovery of visual and motor cortex in close agreement with spatial maps obtained from (i) visuo-motor fMRI stimulation task-sequence (Accuracy=0.76) and (ii) independent component analysis (ICA) of resting-state fMRI (Accuracy=0.86). Compared with conventional Granger causality approach (AUC=0.75), lsGC produces better network recovery on fMRI simulations. Furthermore, it cannot recover functional subnetworks from empirical fMRI data, since quantifying voxel-resolution connectivity is not possible as consequence of encountering an underdetermined problem. Functional network recovery from fMRI data suggests that lsGC gives useful insight into connectivity patterns from resting-state fMRI at a multivariate voxel-resolution. Copyright © 2017 Elsevier B.V. All rights reserved.
Miniature curved artificial compound eyes
Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L’Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A.; Franceschini, Nicolas
2013-01-01
In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories. PMID:23690574
Novel methods for parameter-based analysis of myocardial tissue in MR images
NASA Astrophysics Data System (ADS)
Hennemuth, A.; Behrens, S.; Kuehnel, C.; Oeltze, S.; Konrad, O.; Peitgen, H.-O.
2007-03-01
The analysis of myocardial tissue with contrast-enhanced MR yields multiple parameters, which can be used to classify the examined tissue. Perfusion images are often distorted by motion, while late enhancement images are acquired with a different size and resolution. Therefore, it is common to reduce the analysis to a visual inspection, or to the examination of parameters related to the 17-segment-model proposed by the American Heart Association (AHA). As this simplification comes along with a considerable loss of information, our purpose is to provide methods for a more accurate analysis regarding topological and functional tissue features. In order to achieve this, we implemented registration methods for the motion correction of the perfusion sequence and the matching of the late enhancement information onto the perfusion image and vice versa. For the motion corrected perfusion sequence, vector images containing the voxel enhancement curves' semi-quantitative parameters are derived. The resulting vector images are combined with the late enhancement information and form the basis for the tissue examination. For the exploration of data we propose different modes: the inspection of the enhancement curves and parameter distribution in areas automatically segmented using the late enhancement information, the inspection of regions segmented in parameter space by user defined threshold intervals and the topological comparison of regions segmented with different settings. Results showed a more accurate detection of distorted regions in comparison to the AHA-model-based evaluation.
Xu, Fei-Fan; Chen, Jin-Hong; Leung, Gilberto Ka Kit; Hao, Shu-Yu; Xu, Long; Hou, Zong-Gang; Mao, Xiang; Shi, Guang-Zhi; Li, Jing-Sheng; Liu, Bai-Yun
2014-01-01
Post-operative volume of subdural fluid is considered to correlate with recurrence in chronic subdural haematoma (CSDH). Information on the applications of computer-assisted volumetric analysis in patients with CSDHs is lacking. To investigate the relationship between haematoma recurrence and longitudinal changes in subdural fluid volume using CT volumetric analysis. Fifty-four patients harbouring 64 CSDHs were studied prospectively. The association between recurrence rate and CT findings were investigated. Eleven patients (20.4%) experienced post-operative recurrence. Higher pre-operative (over 120 ml) and/or pre-discharge subdural fluid volumes (over 22 ml) were significantly associated with recurrence; the probability of non-recurrence for values below these thresholds were 92.7% and 95.2%, respectively. CSDHs with larger pre-operative (over 15.1 mm) and/or residual (over 11.7 mm) widths also had significantly increased recurrence rates. Bilateral CSDHs were not found to be more likely to recur in this series. On receiver-operating characteristic curve, the areas under curve for the magnitude of changes in subdural fluid volume were greater than a single time-point measure of either width or volume of the subdural fluid cavity. Close imaging follow-up is important for CSDH patients for recurrence prediction. Using quantitative CT volumetric analysis, strong evidence was provided that changes in the residual fluid volume during the 'self-resolution' period can be used as significantly radiological predictors of recurrence.
Jones, Drew R; Wu, Zhiping; Chauhan, Dharminder; Anderson, Kenneth C; Peng, Junmin
2014-04-01
Global metabolomics relies on highly reproducible and sensitive detection of a wide range of metabolites in biological samples. Here we report the optimization of metabolome analysis by nanoflow ultraperformance liquid chromatography coupled to high-resolution orbitrap mass spectrometry. Reliable peak features were extracted from the LC-MS runs based on mandatory detection in duplicates and additional noise filtering according to blank injections. The run-to-run variation in peak area showed a median of 14%, and the false discovery rate during a mock comparison was evaluated. To maximize the number of peak features identified, we systematically characterized the effect of sample loading amount, gradient length, and MS resolution. The number of features initially rose and later reached a plateau as a function of sample amount, fitting a hyperbolic curve. Longer gradients improved unique feature detection in part by time-resolving isobaric species. Increasing the MS resolution up to 120000 also aided in the differentiation of near isobaric metabolites, but higher MS resolution reduced the data acquisition rate and conferred no benefits, as predicted from a theoretical simulation of possible metabolites. Moreover, a biphasic LC gradient allowed even distribution of peak features across the elution, yielding markedly more peak features than the linear gradient. Using this robust nUPLC-HRMS platform, we were able to consistently analyze ~6500 metabolite features in a single 60 min gradient from 2 mg of yeast, equivalent to ~50 million cells. We applied this optimized method in a case study of drug (bortezomib) resistant and drug-sensitive multiple myeloma cells. Overall, 18% of metabolite features were matched to KEGG identifiers, enabling pathway enrichment analysis. Principal component analysis and heat map data correctly clustered isogenic phenotypes, highlighting the potential for hundreds of small molecule biomarkers of cancer drug resistance.
Epitaxial Fe(1-x)Gax/GaAs structures via electrochemistry for spintronics applications
NASA Astrophysics Data System (ADS)
Reddy, K. Sai Madhukar; Maqableh, Mazin M.; Stadler, Bethanie J. H.
2012-04-01
In this study, thin films of Fe83Ga17 (a giant magnetostrictive alloy) were grown on single-crystalline n-GaAs (001) and polycrystalline brass substrates via electrochemical synthesis from ferrous and gallium sulfate electrolytes. Extensive structural characterization using microdiffraction, high-resolution ω - 2θ, and rocking-curve analysis revealed that the films grown on GaAs(001) are highly textured with ⟨001⟩ orientation along the substrate normal, and the texture improved further upon annealing at 300 °C for 2 h in N2 environment. On the contrary, films grown on brass substrates exhibited ⟨011⟩ preferred orientation. Rocking-curve analysis done on Fe83Ga17/GaAs structures further confirmed that the ⟨001⟩ texture in the Fe83Ga17 thin film is a result of epitaxial nucleation and growth. The non-linear current-voltage plot obtained for the Fe-Ga/GaAs Schottky contacts was characteristic of tunneling injection, and showed improved behavior with annealing. Thus, this study demonstrates the feasibility of fabricating spintronic devices that incorporate highly magnetostrictive Fe(1-x)Gax thin films grown epitaxially via electrochemistry.
Determination of Diethyl Phthalate and Polyhexamethylene Guanidine in Surrogate Alcohol from Russia
Monakhova, Yulia B.; Kuballa, Thomas; Leitz, Jenny; Lachenmeier, Dirk W.
2011-01-01
Analytical methods based on spectroscopic techniques were developed and validated for the determination of diethyl phthalate (DEP) and polyhexamethylene guanidine (PHMG), which may occur in unrecorded alcohol. Analysis for PHMG was based on UV-VIS spectrophotometry after derivatization with Eosin Y and 1H NMR spectroscopy of the DMSO extract. Analysis of DEP was performed with direct UV-VIS and 1H NMR methods. Multivariate curve resolution and spectra computation methods were used to confirm the presence of PHMG and DEP in the investigated beverages. Of 22 analysed alcohol samples, two contained DEP or PHMG. 1H NMR analysis also revealed the presence of signals of hawthorn extract in three medicinal alcohols used as surrogate alcohol. The simple and cheap UV-VIS methods can be used for rapid screening of surrogate alcohol samples for impurities, while 1H NMR is recommended for specific confirmatory analysis if required. PMID:21647285
Determination of diethyl phthalate and polyhexamethylene guanidine in surrogate alcohol from Russia.
Monakhova, Yulia B; Kuballa, Thomas; Leitz, Jenny; Lachenmeier, Dirk W
2011-01-01
Analytical methods based on spectroscopic techniques were developed and validated for the determination of diethyl phthalate (DEP) and polyhexamethylene guanidine (PHMG), which may occur in unrecorded alcohol. Analysis for PHMG was based on UV-VIS spectrophotometry after derivatization with Eosin Y and (1)H NMR spectroscopy of the DMSO extract. Analysis of DEP was performed with direct UV-VIS and (1)H NMR methods. Multivariate curve resolution and spectra computation methods were used to confirm the presence of PHMG and DEP in the investigated beverages. Of 22 analysed alcohol samples, two contained DEP or PHMG. (1)H NMR analysis also revealed the presence of signals of hawthorn extract in three medicinal alcohols used as surrogate alcohol. The simple and cheap UV-VIS methods can be used for rapid screening of surrogate alcohol samples for impurities, while (1)H NMR is recommended for specific confirmatory analysis if required.
Thakar, Sumit; Sivaraju, Laxminadh; Jacob, Kuruthukulangara S; Arun, Aditya Atal; Aryan, Saritha; Mohan, Dilip; Sai Kiran, Narayanam Anantha; Hegde, Alangar S
2018-01-01
OBJECTIVE Although various predictors of postoperative outcome have been previously identified in patients with Chiari malformation Type I (CMI) with syringomyelia, there is no known algorithm for predicting a multifactorial outcome measure in this widely studied disorder. Using one of the largest preoperative variable arrays used so far in CMI research, the authors attempted to generate a formula for predicting postoperative outcome. METHODS Data from the clinical records of 82 symptomatic adult patients with CMI and altered hindbrain CSF flow who were managed with foramen magnum decompression, C-1 laminectomy, and duraplasty over an 8-year period were collected and analyzed. Various preoperative clinical and radiological variables in the 57 patients who formed the study cohort were assessed in a bivariate analysis to determine their ability to predict clinical outcome (as measured on the Chicago Chiari Outcome Scale [CCOS]) and the resolution of syrinx at the last follow-up. The variables that were significant in the bivariate analysis were further analyzed in a multiple linear regression analysis. Different regression models were tested, and the model with the best prediction of CCOS was identified and internally validated in a subcohort of 25 patients. RESULTS There was no correlation between CCOS score and syrinx resolution (p = 0.24) at a mean ± SD follow-up of 40.29 ± 10.36 months. Multiple linear regression analysis revealed that the presence of gait instability, obex position, and the M-line-fourth ventricle vertex (FVV) distance correlated with CCOS score, while the presence of motor deficits was associated with poor syrinx resolution (p ≤ 0.05). The algorithm generated from the regression model demonstrated good diagnostic accuracy (area under curve 0.81), with a score of more than 128 points demonstrating 100% specificity for clinical improvement (CCOS score of 11 or greater). The model had excellent reliability (κ = 0.85) and was validated with fair accuracy in the validation cohort (area under the curve 0.75). CONCLUSIONS The presence of gait imbalance and motor deficits independently predict worse clinical and radiological outcomes, respectively, after decompressive surgery for CMI with altered hindbrain CSF flow. Caudal displacement of the obex and a shorter M-line-FVV distance correlated with good CCOS scores, indicating that patients with a greater degree of hindbrain pathology respond better to surgery. The proposed points-based algorithm has good predictive value for postoperative multifactorial outcome in these patients.
Abbas, S M; Bissett, I P; Parry, B R
2007-04-01
Adhesions are the leading cause of small bowel obstruction. Identification of patients who require surgery is difficult. This review analyses the role of Gastrografin as a diagnostic and therapeutic agent in the management of adhesive small bowel obstruction. A systematic search of Medline, Embase and Cochrane databases was performed to identify studies of the use of Gastrografin in adhesive small bowel obstruction. Studies that addressed the diagnostic role of water-soluble contrast agent were appraised, and data presented as sensitivity, specificity, and positive and negative likelihood ratios. Results were pooled and a summary receiver-operator characteristic (ROC) curve was constructed. A meta-analysis of the data from six therapeutic studies was performed using the Mantel-Haenszel test and both fixed- and random-effect models. The appearance of water-soluble contrast agent in the colon on an abdominal radiograph within 24 h of its administration predicted resolution of obstruction with a pooled sensitivity of 97 per cent and specificity of 96 per cent. The area under the summary ROC curve was 0.98. Water-soluble contrast agent did not reduce the need for surgical intervention (odds ratio 0.81, P = 0.300), but it did reduce the length of hospital stay for patients who did not require surgery compared with placebo (weighted mean difference--1.84 days; P < 0.001). Published data strongly support the use of water-soluble contrast medium as a predictive test for non-operative resolution of adhesive small bowel obstruction. Although Gastrografin does not reduce the need for operation, it appears to shorten the hospital stay for those who do not require surgery.
NASA Astrophysics Data System (ADS)
Pohlit, Merlin; Eibisch, Paul; Akbari, Maryam; Porrati, Fabrizio; Huth, Michael; Müller, Jens
2016-11-01
Alongside the development of artificially created magnetic nanostructures, micro-Hall magnetometry has proven to be a versatile tool to obtain high-resolution hysteresis loop data and access dynamical properties. Here we explore the application of First Order Reversal Curves (FORC)—a technique well-established in the field of paleomagnetism for studying grain-size and interaction effects in magnetic rocks—to individual and dipolar-coupled arrays of magnetic nanostructures using micro-Hall sensors. A proof-of-principle experiment performed on a macroscopic piece of a floppy disk as a reference sample well known in the literature demonstrates that the FORC diagrams obtained by magnetic stray field measurements using home-built magnetometers are in good agreement with magnetization data obtained by a commercial vibrating sample magnetometer. We discuss in detail the FORC diagrams and their interpretation of three different representative magnetic systems, prepared by the direct-write Focused Electron Beam Induced Deposition (FEBID) technique: (1) an isolated Co-nanoisland showing a simple square-shaped hysteresis loop, (2) a more complex CoFe-alloy nanoisland exhibiting a wasp-waist-type hysteresis, and (3) a cluster of interacting Co-nanoislands. Our findings reveal that the combination of FORC and micro-Hall magnetometry is a promising tool to investigate complex magnetization reversal processes within individual or small ensembles of nanomagnets grown by FEBID or other fabrication methods. The method provides sub-μm spatial resolution and bridges the gap of FORC analysis, commonly used for studying macroscopic samples and rather large arrays, to studies of small ensembles of interacting nanoparticles with the high moment sensitivity inherent to micro-Hall magnetometry.
Quantitative analysis of NMR spectra with chemometrics
NASA Astrophysics Data System (ADS)
Winning, H.; Larsen, F. H.; Bro, R.; Engelsen, S. B.
2008-01-01
The number of applications of chemometrics to series of NMR spectra is rapidly increasing due to an emerging interest for quantitative NMR spectroscopy e.g. in the pharmaceutical and food industries. This paper gives an analysis of advantages and limitations of applying the two most common chemometric procedures, Principal Component Analysis (PCA) and Multivariate Curve Resolution (MCR), to a designed set of 231 simple alcohol mixture (propanol, butanol and pentanol) 1H 400 MHz spectra. The study clearly demonstrates that the major advantage of chemometrics is the visualisation of larger data structures which adds a new exploratory dimension to NMR research. While robustness and powerful data visualisation and exploration are the main qualities of the PCA method, the study demonstrates that the bilinear MCR method is an even more powerful method for resolving pure component NMR spectra from mixtures when certain conditions are met.
NASA Astrophysics Data System (ADS)
Pamuk, Eren; Önsen, Funda; Turan, Seçil
2014-05-01
Shear-wave velocity is so critical parameter for evaluating the dynamic behaviour of soil in the subsurface investigations. Multichannel Analysis of Surface Waves (MASW) is a popular method to utilize shear-wave velocity in shallow depth surveys. This method uses the dispersive properties of shear-waves for imaging the subsurface layers. In MASW method, firstly data are acquired multichannel field records (or shot gathers), then dispersion curves are extracted. Finally, these dispersion curves are inverted to obtain one dimension (1D) Vs depth profiles. Reliable and accurate results of evaluating shear wave velocity depends on dispersion curves. Therefore, determination of basic mode dispersion curve is very important. In this study, MASW measurements were carried out different types of spread and various offsets to obtain better results in İzmir, Turkey. The types of spread were selected as pairs geophone group of spread, increase spread and constant interval spread. The data were collected in the Campus of Tinaztepe, Dokuz Eylul University, Izmir (Buca). 24 channel Geometrix Geode seismic instruments, 4.5 Hz low frequency receiver (geophone) and sledge hammer (8kg) as an energy source were used in this study. The data were collected with forward shots. MASW measurements were applied different profiles and their lengths were 24 m. Geophone intervals were selected 1 m in the constant interval spread and offsets were selected respectively 1, 4, 8, 12, 24 m in all spreads. In the first stage of this study, the measurements, which were taken in these offsets, were compared between each other in all spreads. The results show that higher resolution dispersion curves were observed at 1 m, 2 m and 4 m offsets. In the other offsets (8, 12, 24 m), distinguishability between basic and higher modes dispersion curves became difficult. In the second stage of this study, obtained dispersion curves of different spread were compared to all spread type of MASW survey.
[Changes of Forest Canopy Spectral Reflectance with Seasons in Lang Ya Mountains].
Li, Wei-tao; Peng, Dao-li; Zhang, Yan; Wu, Jian; Chen, Tai-sheng
2015-08-01
The physiological mechanism and ecological structure of forest trees can change with the changes of years. In a certain extent, the changes were expressed through the canopy spectral features. The mastery of changing rules about spectral characteristics of trees over the years is benefit to remote sensing interpretation and provide scientific basis for the classification of different trees. The study adopted high-resolution spectrometer to measure the canopy spectral characteristics for seven major deciduous trees and seven evergreen trees to gain the spectrum curve of four different ages and calculate the first derivative curve. The analysis of changing rules about spectral characteristics of different deciduous trees and evergreen trees and the comparison of changes about spectrum of various trees in the visible and infrared band could find the best year and best band for identification of trees. The results showed that the canopy spectral reflectance of deciduous and evergreen trees increases with the increase of age. And the spectral changes of two species were most obvious in the near infrared band.
Kalia, Vivek; Fritz, Benjamin; Johnson, Rory; Gilson, Wesley D; Raithel, Esther; Fritz, Jan
2017-09-01
To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p < 0.001), whereas 3D images had substantially less partial volume, chemical shift and no pulsatile-flow artifacts (p < 0.001). Oblique and curved planar 3D images resulted in mildly-to-substantially improved visualization of joints, spring, bifurcate, syndesmotic, collateral and sinus tarsi ligaments, and tendons (p < 0.001, respectively). 3D TSE MRI with CAIPIRINHA acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. • High-resolution 3D TSE MRI improves visualization of ankle structures. • Limitations of current 3D TSE MRI include long scan times. • 3D CAIPIRINHA SPACE allows now a fourfold-accelerated data acquisition. • 3D CAIPIRINHA SPACE enables high-spatial-resolution ankle MRI within 10 min. • 10-min 3D CAIPIRINHA SPACE produces equal-or-better quality than 20-min 2D TSE.
Pérez-Báez, Wendy; García-Latorre, Ethel A; Maldonado-Martínez, Héctor Aquiles; Coronado-Martínez, Iris; Flores-García, Leonardo; Taja-Chayeb, Lucía
2017-10-01
Treatment in metastatic colorectal cancer (mCRC) has expanded with monoclonal antibodies targeting epidermal growth factor receptor, but is restricted to patients with a wild-type (WT) KRAS mutational status. The most sensitive assays for KRAS mutation detection in formalin-fixed paraffin embedded (FFPE) tissues are based on real-time PCR. Among them, high resolution melting analysis (HRMA), is a simple, fast, highly sensitive, specific and cost-effective method, proposed as adjunct for KRAS mutation detection. However the method to categorize WT vs mutant sequences in HRMA is not clearly specified in available studies, besides the impact of FFPE artifacts on HRMA performance hasn't been addressed either. Avowedly adequate samples from 104 consecutive mCRC patients were tested for KRAS mutations by Therascreen™ (FDA Validated test), HRMA, and HRMA with UDG pre-treatment to reverse FFPE fixation artifacts. Comparisons of KRAS status allocation among the three methods were done. Focusing on HRMA as screening test, ROC curve analyses were performed for HRMA and HMRA-UDG against Therascreen™, in order to evaluate their discriminative power and to determine the threshold of profile concordance between WT control and sample for KRAS status determination. Comparing HRMA and HRMA-UDG against Therascreen™ as surrogate gold standard, sensitivity was 1 for both HRMA and HRMA-UDG; and specificity and positive predictive values were respectively 0.838 and 0.939; and 0.777 and 0.913. As evaluated by the McNemar test, HRMA-UDG allocated samples to a WT/mutated genotype in a significatively different way from HRMA (p > 0.001). On the other hand HRMA-UDG did not differ from Therascreen™ (p = 0.125). ROC-curve analysis showed a significant discriminative power for both HRMA and HRMA-UDG against Therascreen™ (respectively, AUC of 0.978, p > 0.0001, CI 95% 0.957-0.999; and AUC of 0.98, p > 0.0001, CI 95% 0.000-1.0). For HRMA as a screening tool, the best threshold (degree of concordance between sample curves and WT control) was attained at 92.14% for HRMA (specificity of 0.887), and at 92.55% for HRMA-UDG (specificity of 0.952). HRMA is a highly sensitive method for KRAS mutation detection, with apparently adequate and statistically significant discriminative power. FFPE sample fixation artifacts have an impact on HRMA results, so for HRMA on FFPE samples pre-treatment with UDG should be strongly suggested. The choice of the threshold for melting curve concordance has also great impact on HRMA performance. A threshold of 93% or greater might be adequate if using HRMA as a screening tool. Further validation of this threshold is required. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lascu, I.; Harrison, R. J.
2016-12-01
First-order reversal curve (FORC) diagrams are a powerful method to characterise the hysteresis properties of magnetic grain ensembles. Methods of processing, analysis and simulation of FORC diagrams have developed rapidly over the past few years, dramatically expanding their utility within rock magnetic research. Here we announce the latest release of FORCinel (Version 3.0), which integrates many of these developments into a unified, user-friendly package running within Igor Pro (www.wavemetrics.com). FORCinel v. 3.0 can be downloaded from https://wserv4.esc.cam.ac.uk/nanopaleomag/. The release will be accompanied by a series of video tutorials outlining each of the new features, including: i) improved work flow, with unified smoothing approach; ii) increased processing speed using multiple processors; iii) control of output resolution, enabling large datasets (> 500 FORCs) to be smoothed in a matter of seconds; iv) load, process, analyse and average multiple FORC diagrams; v) load and process non-gridded data and data acquired on non-PMC systems; vi) improved method for exploring optimal smoothing parameters; vii) interactive and un-doable data-pretreatments; viii) automated detection and removal of measurement outliers; ix) improved interactive method for the generation and optimisation of colour scales; x) full integration with FORCem1 - supervised quantitative unmixing of FORC diagrams using principle component analysis (PCA); xi) full integration with FORCulator2 - micromagnetic simulation of FORC diagrams; xiii) simulate TRM acquisition using the kinetic Monte Carlo simulation algorithm of Shcherbakov3. 1. Lascu, I., Harrison, R.J., Li, Y., Muraszko, J.R., Channell, J.E.T., Piotrowski, A.M., Hodell, D.A., 2015. Magnetic unmixing of first-order reversal curve diagrams using principal component analysis. Geochemistry, Geophys. Geosystems 16, 2900-2915. 2. Harrison, R.J., Lascu, I., 2014. FORCulator: A micromagnetic tool for simulating first-order reversal curve diagrams. Geochemistry Geophys. Geosystems 15, 4671-4691. 3. Shcherbakov, V.P., Lamash, B.E., Sycheva, N.K., 1995. Monte-Carlo modelling of thermoremanence acquisition in interacting single-domain grains. Phys. Earth Planet. Inter. 87, 197-211.
Hancewicz, Thomas M; Xiao, Chunhong; Zhang, Shuliang; Misra, Manoj
2013-12-01
In vivo confocal Raman spectroscopy has become the measurement technique of choice for skin health and skin care related communities as a way of measuring functional chemistry aspects of skin that are key indicators for care and treatment of various skin conditions. Chief among these techniques are stratum corneum water content, a critical health indicator for severe skin condition related to dryness, and natural moisturizing factor components that are associated with skin protection and barrier health. In addition, in vivo Raman spectroscopy has proven to be a rapid and effective method for quantifying component penetration in skin for topically applied skin care formulations. The benefit of such a capability is that noninvasive analytical chemistry can be performed in vivo in a clinical setting, significantly simplifying studies aimed at evaluating product performance. This presumes, however, that the data and analysis methods used are compatible and appropriate for the intended purpose. The standard analysis method used by most researchers for in vivo Raman data is ordinary least squares (OLS) regression. The focus of work described in this paper is the applicability of OLS for in vivo Raman analysis with particular attention given to use for non-ideal data that often violate the inherent limitations and deficiencies associated with proper application of OLS. We then describe a newly developed in vivo Raman spectroscopic analysis methodology called multivariate curve resolution-augmented ordinary least squares (MCR-OLS), a relatively simple route to addressing many of the issues with OLS. The method is compared with the standard OLS method using the same in vivo Raman data set and using both qualitative and quantitative comparisons based on model fit error, adherence to known data constraints, and performance against calibration samples. A clear improvement is shown in each comparison for MCR-OLS over standard OLS, thus supporting the premise that the MCR-OLS method is better suited for general-purpose multicomponent analysis of in vivo Raman spectral data. This suggests that the methodology is more readily adaptable to a wide range of component systems and is thus more generally applicable than standard OLS.
Differentiation of BHV-1 isolates from vaccine virus by high-resolution melting analysis.
Ostertag-Hill, Claire; Fang, Liang; Izume, Satoko; Lee, Megan; Reed, Aimee; Jin, Ling
2015-02-16
An efficacious bovine herpesvirus type-1 (BHV-1) vaccine has been used for many years. However, in the past few years, abortion and respiratory diseases have occurred after administration of the modified live vaccine. To investigate whether BHV-1 isolates from disease outbreaks are identical to those of the vaccines used, selected regions of the BHV-1 genome were investigated by high-resolution melting (HRM) analysis and PCR-DNA sequencing. When a target region within the thymidine kinase (TK) gene was examined by HRM analysis, 6 out of the 11 isolates from abortion cases and 22 out of the 25 isolates from bovine respiratory disease (BRD) cases had different melting curves compared to the vaccine virus. Surprisingly, when a conserved region within the US6 gene that encodes glycoprotein D (gD) was examined by HRM analysis, 5 out of the 11 abortion isolates and 18 out of the 23 BRD isolates had different melting curves from the vaccine virus. To determine whether SNPs within the coding regions of glycoprotein E (gE) and TK genes can be used to differentiate the isolates from the vaccine virus, PCR-DNA sequencing was used to examine these SNPs in all the isolates. This revealed that only 1 out of 11 of the abortion isolates and 4 out of 24 of the BRD isolates are different in the target region of gE from the vaccine virus, while 5 out of 11 abortion isolates and 4 out of 22 BRD isolates are different in the target region of TK from the vaccine virus. No DNA sequence differences were observed in glycoprotein G (gG) region between disease and vaccine isolates. Our study demonstrated that many disease isolates had genetic differences from the vaccine virus in regions examined by HRM and PCR-DNA sequencing analysis. In addition, many isolates contained more than one type of mutation and were composed of mixed variants. Our study suggests that a mixture of variants were present in isolates collected post-vaccination. HRM is a rapid diagnostic method that can be used for rapid differentiation of clinical isolates from vaccine strains. Copyright © 2014 Elsevier B.V. All rights reserved.
Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program.
Afouxenidis, D; Polymeris, G S; Tsirliganis, N C; Kitis, G
2012-05-01
This paper exploits the possibility of using commercial software for thermoluminescence and optically stimulated luminescence curve deconvolution analysis. The widely used software package Microsoft Excel, with the Solver utility has been used to perform deconvolution analysis to both experimental and reference glow curves resulted from the GLOw Curve ANalysis INtercomparison project. The simple interface of this programme combined with the powerful Solver utility, allows the analysis of complex stimulated luminescence curves into their components and the evaluation of the associated luminescence parameters.
Electro-mechanical coupling of semiconductor film grown on stainless steel by oxidation
NASA Astrophysics Data System (ADS)
Lin, M. C.; Wang, G.; Guo, L. Q.; Qiao, L. J.; Volinsky, Alex A.
2013-09-01
Electro-mechanical coupling phenomenon in oxidation film on stainless steel has been discovered by using current-sensing atomic force microscopy, along with the I-V curves measurements. The oxidation films exhibit either ohmic, n-type, or p-type semiconductor properties, according to the obtained I-V curves. This technique allows characterizing oxidation films with high spatial resolution. Semiconductor properties of oxidation films must be considered as additional stress corrosion cracking mechanisms.
Evapotranspiration Controls Imposed by Soil Moisture: A Spatial Analysis across the United States
NASA Astrophysics Data System (ADS)
Rigden, A. J.; Tuttle, S. E.; Salvucci, G.
2014-12-01
We spatially analyze the control over evapotranspiration (ET) imposed by soil moisture across the United States using daily estimates of satellite-derived soil moisture and data-driven ET over a nine-year period (June 2002-June 2011) at 305 locations. The soil moisture data are developed using 0.25-degree resolution satellite observations from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), where the 9-year time series for each 0.25-degree pixel was selected from three potential algorithms (VUA-NASA, U. Montana, & NASA) based on the maximum mutual information between soil moisture and precipitation (Tuttle & Salvucci (2014), Remote Sens Environ, 114: 207-222). The ET data are developed independent of soil moisture using an emergent relationship between the diurnal cycle of the relative humidity profile and ET. The emergent relation is that the vertical variance of the relative humidity profile is less than what would occur for increased or decreased ET rates, suggesting that land-atmosphere feedback processes minimize this variance (Salvucci and Gentine (2013), PNAS, 110(16): 6287-6291). The key advantage of using this approach to estimate ET is that no measurements of surface limiting factors (soil moisture, leaf area, canopy conductance) are required; instead, ET is estimated from meteorological data measured at 305 common weather stations that are approximately uniformly distributed across the United States. The combination of these two independent datasets allows for a unique spatial analysis of the control on ET imposed by the availability of soil moisture. We fit evaporation efficiency curves across the United States at each of the 305 sites during the summertime (May-June-July-August-September). Spatial patterns are visualized by mapping optimal curve fitting coefficients across the Unites States. An analysis of efficiency curves and their spatial patterns will be presented.
Shahid, Muhammad A.; Markham, Philip F.; Marenda, Marc S.; Agnew-Crumpton, Rebecca; Noormohammadi, Amir H.
2014-01-01
Temperature-sensitive (ts +) vaccine strain MS-H is the only live attenuated M. synoviae vaccine commercially available for use in poultry. With increasing use of this vaccine to control M. synoviae infections, differentiation of MS-H from field M. synoviae strains and from rarely occurring non-temperature-sensitive (ts –) MS-H revertants has become important, especially in countries where local strains are indistinguishable from MS-H by sequence analysis of variable lipoprotein haemagglutinin (vlhA) gene. Single nucleotide polymorphisms (SNPs) in the obg of MS-H have been found to associate with ts phenotype. In this study, four PCRs followed by high-resolution melting (HRM)-curve analysis of the regions encompassing these SNPs were developed and evaluated for their potential to differentiate MS-H from 36 M. synoviae strains/isolates. The nested-obg PCR-HRM differentiated ts + MS-H vaccine not only from field M. synoviae strains/isolates but also from ts – MS-H revertants. The mean genotype confidence percentages, 96.9±3.4 and 8.8±11.2 for ts + and ts – strains, respectively, demonstrated high differentiating power of the nested-obg PCR-HRM. Using a combination of nested-obg and obg-F3R3 PCR-HRM, 97% of the isolates/strains were typed according to their ts phenotype with all MS-H isolates typed as MS-H. A set of respiratory swabs from MS-H vaccinated specific pathogen free chickens and M. synoviae infected commercial chicken flocks were tested using obg PCR-HRM system and results were consistent with those of vlhA genotyping. The PCR-HRM system developed in this study, proved to be a rapid and reliable tool using pure M. synoviae cultures as well as direct clinical specimens. PMID:24643035
A search for life on earth at 100 meter resolution.
NASA Technical Reports Server (NTRS)
Sagan, C.; Wallace, D.
1971-01-01
Study of several thousand photos indicating that about 0.01 of Gemini and Apollo photographs of the earth at 100 m resolution reveal signs of life - rectangular arrays due to human agricultural and urban territoriality, roads, canals, jet contrails, and industrial pollution. Potential false positives - e.g., dunes, sand bars, jetstream clouds - abound. A curve is derived for the detectivity of contemporary life on earth, in a plot of ground resolution versus global coverage. A comparable biology on Mars would not have been detected by all observations of Mars through Mariner 7.
Simultaneous dual-color fluorescence microscope: a characterization study.
Li, Zheng; Chen, Xiaodong; Ren, Liqiang; Song, Jie; Li, Yuhua; Zheng, Bin; Liu, Hong
2013-01-01
High spatial resolution and geometric accuracy is crucial for chromosomal analysis of clinical cytogenetic applications. High resolution and rapid simultaneous acquisition of multiple fluorescent wavelengths can be achieved by utilizing concurrent imaging with multiple detectors. However, such class of microscopic systems functions differently from traditional fluorescence microscopes. To develop a practical characterization framework to assess and optimize the performance of a high resolution and dual-color fluorescence microscope designed for clinical chromosomal analysis. A dual-band microscopic imaging system utilizes a dichroic mirror, two sets of specially selected optical filters, and two detectors to simultaneously acquire two fluorescent wavelengths. The system's geometric distortion, linearity, the modulation transfer function, and the dual detectors' alignment were characterized. Experiment results show that the geometric distortion at lens periphery is less than 1%. Both fluorescent channels show linear signal responses, but there exists discrepancy between the two due to the detectors' non-uniform response ratio to different wavelengths. In terms of the spatial resolution, the two contrast transfer function curves trend agreeably with the spatial frequency. The alignment measurement allows quantitatively assessing the cameras' alignment. A result image of adjusted alignment is demonstrated to show the reduced discrepancy by using the alignment measurement method. In this paper, we present a system characterization study and its methods for a specially designed imaging system for clinical cytogenetic applications. The presented characterization methods are not only unique to this dual-color imaging system but also applicable to evaluation and optimization of other similar multi-color microscopic image systems for improving their clinical utilities for future cytogenetic applications.
Smith, Joseph P; Smith, Frank C; Booksh, Karl S
2017-08-21
The search for evidence of extant or past life on Mars is a primary objective of both the upcoming Mars 2020 rover (NASA) and ExoMars 2020 rover (ESA/Roscosmos) missions. This search will involve the detection and identification of organic molecules and/or carbonaceous material within the Martian surface environment. For the first time on a mission to Mars, the scientific payload for each rover will include a Raman spectrometer, an instrument well-suited for this search. Hematite (α-Fe 2 O 3 ) is a widespread mineral on the Martian surface. The 2LO Raman band of hematite and the Raman D-band of carbonaceous material show spectral overlap, leading to the potential misidentification of hematite as carbonaceous material. Here we report the ability to spatially and spectrally differentiate carbonaceous material from hematite using multivariate curve resolution-alternating least squares (MCR-ALS) applied to Raman microspectroscopic mapping under both 532 nm and 785 nm excitation. For this study, a sample comprised of hematite, carbonaceous material, and substrate-adhesive epoxy in spatially distinct domains was constructed. Principal component analysis (PCA) reveals that both 532 nm and 785 nm excitation produce representative three-phase systems of hematite, carbonaceous material, and substrate-adhesive epoxy in the analyzed sample. MCR-ALS with Raman microspectroscopic mapping using both 532 nm and 785 nm excitation was able to resolve hematite, carbonaceous material, and substrate-adhesive epoxy by generating spatially-resolved chemical maps and corresponding Raman spectra of these spatially distinct chemical species. Moreover, MCR-ALS applied to the combinatorial data sets of 532 nm and 785 nm excitation, which contain hematite and carbonaceous material within the same locations, was able to resolve hematite, carbonaceous material, and substrate-adhesive epoxy. Using multivariate analysis with Raman microspectroscopic mapping, 785 nm excitation more effectively resolved hematite, carbonaceous material, and substrate-adhesive epoxy as compared to 532 nm excitation. To our knowledge, this is the first report of multivariate analysis methods, namely MCR-ALS, with Raman microspectroscopic mapping being employed to differentiate carbonaceous material from hematite. We have therefore provided an analytical methodology useful for the search for extant or past life on the surface of Mars.
Fast dynamic ventilation MRI of hyperpolarized 129Xe using spiral imaging
Matin, Tahreema N.; Mcintyre, Anthony; Burns, Brian; Schulte, Rolf F.; Gleeson, Fergus V.; Bulte, Daniel
2017-01-01
Purpose To develop and optimize a rapid dynamic hyperpolarized 129Xe ventilation (DXeV) MRI protocol and investigate the feasibility of capturing pulmonary signal‐time curves in human lungs. Theory and Methods Spiral k‐space trajectories were designed with the number of interleaves N int = 1, 2, 4, and 8 corresponding to voxel sizes of 8 mm, 5 mm, 4 mm, and 2.5 mm, respectively, for field of view = 15 cm. DXeV images were acquired from a gas‐flow phantom to investigate the ability of N int = 1, 2, 4, and 8 to capture signal‐time curves. A finite element model was constructed to investigate gas‐flow dynamics corroborating the experimental signal‐time curves. DXeV images were also carried out in six subjects (three healthy and three chronic obstructive pulmonary disease subjects). Results DXeV images and numerical modelling of signal‐time curves permitted the quantification of temporal and spatial resolutions for different numbers of spiral interleaves. The two‐interleaved spiral (N int = 2) was found to be the most time‐efficient to obtain DXeV images and signal‐time curves of whole lungs with a temporal resolution of 624 ms for 13 slices. Signal‐time curves were well matched in three healthy volunteers. The Spearman's correlations of chronic obstructive pulmonary disease subjects were statistically different from three healthy subjects (P < 0.05). Conclusion The N int = 2 spiral demonstrates the successful acquisition of DXeV images and signal‐time curves in healthy subjects and chronic obstructive pulmonary disease patients. Magn Reson Med 79:2597–2606, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28921655
Study of X-ray photoionized Fe plasma and comparisons with astrophysical modeling codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foord, M E; Heeter, R F; Chung, H
The charge state distributions of Fe, Na and F are determined in a photoionized laboratory plasma using high resolution x-ray spectroscopy. Independent measurements of the density and radiation flux indicate the ionization parameter {zeta} in the plasma reaches values {zeta} = 20-25 erg cm s{sup -1} under near steady-state conditions. A curve-of-growth analysis, which includes the effects of velocity gradients in a one-dimensional expanding plasma, fits the observed line opacities. Absorption lines are tabulated in the wavelength region 8-17 {angstrom}. Initial comparisons with a number of astrophysical x-ray photoionization models show reasonable agreement.
GERLUMPH Data Release 2: 2.5 Billion Simulated Microlensing Light Curves
NASA Astrophysics Data System (ADS)
Vernardos, G.; Fluke, C. J.; Bate, N. F.; Croton, D.; Vohl, D.
2015-04-01
In the upcoming synoptic all-sky survey era of astronomy, thousands of new multiply imaged quasars are expected to be discovered and monitored regularly. Light curves from the images of gravitationally lensed quasars are further affected by superimposed variability due to microlensing. In order to disentangle the microlensing from the intrinsic variability of the light curves, the time delays between the multiple images have to be accurately measured. The resulting microlensing light curves can then be analyzed to reveal information about the background source, such as the size of the quasar accretion disk. In this paper we present the most extensive and coherent collection of simulated microlensing light curves; we have generated \\gt 2.5 billion light curves using the GERLUMPH high resolution microlensing magnification maps. Our simulations can be used to train algorithms to measure lensed quasar time delays, plan future monitoring campaigns, and study light curve properties throughout parameter space. Our data are openly available to the community and are complemented by online eResearch tools, located at http://gerlumph.swin.edu.au.
Creation of three-dimensional craniofacial standards from CBCT images
NASA Astrophysics Data System (ADS)
Subramanyan, Krishna; Palomo, Martin; Hans, Mark
2006-03-01
Low-dose three-dimensional Cone Beam Computed Tomography (CBCT) is becoming increasingly popular in the clinical practice of dental medicine. Two-dimensional Bolton Standards of dentofacial development are routinely used to identify deviations from normal craniofacial anatomy. With the advent of CBCT three dimensional imaging, we propose a set of methods to extend these 2D Bolton Standards to anatomically correct surface based 3D standards to allow analysis of morphometric changes seen in craniofacial complex. To create 3D surface standards, we have implemented series of steps. 1) Converting bi-plane 2D tracings into set of splines 2) Converting the 2D splines curves from bi-plane projection into 3D space curves 3) Creating labeled template of facial and skeletal shapes and 4) Creating 3D average surface Bolton standards. We have used datasets from patients scanned with Hitachi MercuRay CBCT scanner providing high resolution and isotropic CT volume images, digitized Bolton Standards from age 3 to 18 years of lateral and frontal male, female and average tracings and converted them into facial and skeletal 3D space curves. This new 3D standard will help in assessing shape variations due to aging in young population and provide reference to correct facial anomalies in dental medicine.
Macià, Dídac; Pujol, Jesus; Blanco-Hinojo, Laura; Martínez-Vilavella, Gerard; Martín-Santos, Rocío; Deus, Joan
2018-06-01
There is ample evidence from basic research in neuroscience of the importance of local corticocortical networks. Millimetric resolution is achievable with current functional magnetic resonance imaging (fMRI) scanners and sequences, and consequently a number of "local" activity similarity measures have been defined to describe patterns of segregation and integration at this spatial scale. We have introduced the use of IsoDistant Average Correlation (IDAC), easily defined as the average fMRI temporal correlation of a given voxel with other voxels placed at increasingly separated isodistant intervals, to characterize the curve of local fMRI signal similarities. IDAC curves can be statistically compared using parametric multivariate statistics. Furthermore, by using red-green-blue color coding to display jointly IDAC values belonging to three different distance lags, IDAC curves can also be displayed as multidistance IDAC maps. We applied IDAC analysis to a sample of 41 subjects scanned under two different conditions, a resting state and an auditory-visual continuous stimulation. Multidistance IDAC mapping was able to discriminate between gross anatomofunctional cortical areas and, moreover, was sensitive to modulation between the two brain conditions in areas known to activate and deactivate during audiovisual tasks. Unlike previous fMRI local similarity measures already in use, our approach draws special attention to the continuous smooth pattern of local functional connectivity.
Galactic Astronomy in the Ultraviolet
NASA Astrophysics Data System (ADS)
Rastorguev, A. S.; Sachkov, M. E.; Zabolotskikh, M. V.
2017-12-01
We propose a number of prospective observational programs for the ultraviolet space observatory WSO-UV, which seem to be of great importance to modern galactic astronomy. The programs include the search for binary Cepheids; the search and detailed photometric study and the analysis of radial distribution of UV-bright stars in globular clusters ("blue stragglers", blue horizontal-branch stars, RR Lyrae variables, white dwarfs, and stars with UV excesses); the investigation of stellar content and kinematics of young open clusters and associations; the study of spectral energy distribution in hot stars, including calculation of the extinction curves in the UV, optical and NIR; and accurate definition of the relations between the UV-colors and effective temperature. The high angular resolution of the observatory allows accurate astrometric measurements of stellar proper motions and their kinematic analysis.
The Cenozoic seawater 87Sr/86Sr curve: Data review and implications for correlation of marine strata
NASA Astrophysics Data System (ADS)
Koepnick, R. B.; Denison, R. E.; Dahl, D. A.
1988-12-01
The strontium isotopic ratio (87Sr/86Sr) in seawater changes slowly over geologic time. This variation is caused by changes in the relative contribution of Sr from various isotopically distinct sources within the crust. The most important of these are high-ratio sialic rocks from continents and low-ratio mafic volcanic and mafic intrusive rocks from continental margins and ocean basins. A plot of Sr isotope ratio versus age for Phanerozoic marine samples produces a curve exhibiting many episodes of increasing and decreasing values. This variation can be used as a basis for temporal correlation of marine carbonate, sulfate, and phosphate sediments. Temporal correlations can be made between high-latitude and low-latitude sequences, deepwater and shallow-water sequences, and normal-marine and restricted-marine (hypersaline/hyposaline) sequences. Satisfactory biostratigraphic correlations between such sequences are often hampered by either the absence of age-diagnostic fossils or by the provinciality of faunal and floral assemblages. Rapid change that took place in the 87Sr/86Sr of seawater during most of the Cenozoic makes this era particularly well suited for precise temporal correlation. The seawater curve for the Cenozoic is subdivided into three segments: Quaternary to mid-Miocene, mid-Miocene to late Eocene, and late Eocene to early Paleocene. The mid-Miocene to late Eocene curve segment exhibits a particularly steep slope, making this a promising interval for high-resolution stratigraphic correlation. Although current data generally support the present configuration of the seawater curve, some revision of the curve is probably required in the vicinity of the Oligocene-Eocene boundary. Establishment of the general configuration of the seawater curve for the Cenozoic has promoted efforts to refine the curve on the basis of construction of detailed Sr isotope profiles within individual stratigraphic sequences. A Sr isotope profile at Deep Sea Drilling Project (DSDP) site 590B suggests a complex Neogene seawater curve characterized by minor slope changes in the Pliocene and Miocene. These slope changes are not specifically identified in the seawater curve constructed from multilocation data. On the basis of this more complex curve, and in the absence of diagenetic complications, the ultimate Neogene stratigraphic resolution is estimated to range from 0.1 to 2 million years. Both the verification and the general stratigraphic applicability of this more complex Neogene curve are largely dependent on the degree of preservation of the original seawater ratio in marine samples.
NASA Astrophysics Data System (ADS)
Rabidas, Rinku; Midya, Abhishek; Chakraborty, Jayasree; Sadhu, Anup; Arif, Wasim
2018-02-01
In this paper, Curvelet based local attributes, Curvelet-Local configuration pattern (C-LCP), is introduced for the characterization of mammographic masses as benign or malignant. Amid different anomalies such as micro- calcification, bilateral asymmetry, architectural distortion, and masses, the reason for targeting the mass lesions is due to their variation in shape, size, and margin which makes the diagnosis a challenging task. Being efficient in classification, multi-resolution property of the Curvelet transform is exploited and local information is extracted from the coefficients of each subband using Local configuration pattern (LCP). The microscopic measures in concatenation with the local textural information provide more discriminating capability than individual. The measures embody the magnitude information along with the pixel-wise relationships among the neighboring pixels. The performance analysis is conducted with 200 mammograms of the DDSM database containing 100 mass cases of each benign and malignant. The optimal set of features is acquired via stepwise logistic regression method and the classification is carried out with Fisher linear discriminant analysis. The best area under the receiver operating characteristic curve and accuracy of 0.95 and 87.55% are achieved with the proposed method, which is further compared with some of the state-of-the-art competing methods.
NASA Astrophysics Data System (ADS)
Rasa, Ehsan; Foglia, Laura; Mackay, Douglas M.; Scow, Kate M.
2013-11-01
Conservative tracer experiments can provide information useful for characterizing various subsurface transport properties. This study examines the effectiveness of three different types of transport observations for sensitivity analysis and parameter estimation of a three-dimensional site-specific groundwater flow and transport model: conservative tracer breakthrough curves (BTCs), first temporal moments of BTCs ( m 1), and tracer cumulative mass discharge ( M d) through control planes combined with hydraulic head observations ( h). High-resolution data obtained from a 410-day controlled field experiment at Vandenberg Air Force Base, California (USA), have been used. In this experiment, bromide was injected to create two adjacent plumes monitored at six different transects (perpendicular to groundwater flow) with a total of 162 monitoring wells. A total of 133 different observations of transient hydraulic head, 1,158 of BTC concentration, 23 of first moment, and 36 of mass discharge were used for sensitivity analysis and parameter estimation of nine flow and transport parameters. The importance of each group of transport observations in estimating these parameters was evaluated using sensitivity analysis, and five out of nine parameters were calibrated against these data. Results showed the advantages of using temporal moment of conservative tracer BTCs and mass discharge as observations for inverse modeling.
Safa, Ahmad Hosseini; Harandi, Majid Fasihi; Tajaddini, Mohammadhasan; Rostami-Nejad, Mohammad; Mohtashami-Pour, Mehdi; Pestehchian, Nader
2016-07-22
High-resolution melting (HRM) is a reliable and sensitive scanning method to detect variation in DNA sequences. We used this method to better understand the epidemiology and transmission of Echinococcus granulosus. We tested the use of HRM to discriminate the genotypes of E. granulosus and E. canadensis. One hundred forty-one hydatid cysts were collected from slaughtered animals in different parts of Isfahan-Iran in 2013. After DNA extraction, the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene was amplified using PCR coupled with the HRM curve. The result of HRM analysis using partial the sequences of cox1 gene revealed that 93, 35, and 2 isolates were identified as G1, G3, and G6 genotypes, respectively. A single nucleotide polymorphism (SNP) was found in locus 9867 of the cox1 gene. This is a critical locus for the differentiation between the G6 and G7 genotypes. In the phylogenic tree, the sample with a SNP was located between the G6 and G7 genotypes, which suggest that this isolate has a G6/G7 genotype. The HRM analysis developed in the present study provides a powerful technique for molecular and epidemiological studies on echinococcosis in humans and animals.
A Curved Image-Plate Detector System for High-Resolution Synchrotron X-ray Diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarin, P.; Haggerty, R; Yoon, W
2009-01-01
The developed curved image plate (CIP) is a one-dimensional detector which simultaneously records high-resolution X-ray diffraction (XRD) patterns over a 38.7 2{theta} range. In addition, an on-site reader enables rapid extraction, transfer and storage of X-ray intensity information in {le}30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X-ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate,more » regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X-ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high-temperature XRD.« less
Research of X-ray curved crystals analyzer
NASA Astrophysics Data System (ADS)
Xiao, Shali; Xong, Xian-cai; Qian, Jia-yu; Zhong, Xian-xin; Yan, Guo-hong; Liu, Zhong-li; Ding, Yong-kun
2005-08-01
X-ray spectrograph has long been used as a means of diagnosing conditions of laser-produced plasmas, as information concerning both the temperature and density can be extracted from the emitted radiation. For the measurement of X-ray lines in the energy range of 0.6-6 keV, A curved crystal X-ray spectrometer of reflection type elliptical geometry is required. In order to obtain both high resolution and collection efficiency the elliptical geometry is more advantageous than the flat configurations. Elliptical curved crystals spectrograph with a relatively wide spectral range are of particular use for deducing electron temperatures by measurement of the ratios of lines associated with different charge states. Curved crystals analyzer was designed and manufactured for use on an experiment to investigate the properties of laser produced plasmas. The spectrograph has 1350mm focal length and for these measurements, utilized PET, LIF, KAP and MICA crystal bent onto an elliptical substrate. This crystal analyzer covers the Bragg angel range from 30 to 67.5. The analyzer based on elliptically geometrical principle, which has self-focusing characteristics. The experiment was carried out on Shanghai Shengguang-II Facility and aimed to investigate the characteristics of a high density plasma. Experimental results using Curved crystal analyzer are described which show spectrum of Ti, Au laser-plasma. The focusing crystal analyzer clearly gave an increase in sensitivity over a flat crystal. Spectra showing the main resonance line were recorded with X-ray CCD and with laser energies 150J laser wavelength 350nm. The calculated wavelength resolution is about 500-1000.
NASA Astrophysics Data System (ADS)
Ombadi, Mohammed; Nguyen, Phu; Sorooshian, Soroosh
2017-12-01
Intensity Duration Frequency (IDF) curves are essential for the resilient design of infrastructures. Since their earlier development, IDF relationships have been derived using precipitation records from rainfall gauge stations. However, with the recent advancement in satellite observation of precipitation which provides near global coverage and high spatiotemporal resolution, it is worthy of attention to investigate the validity of utilizing the relatively short record length of satellite rainfall to generate robust IDF relationships. These satellite-based IDF can address the paucity of such information in the developing countries. Few studies have used satellite precipitation data in IDF development but mainly focused on merging satellite and gauge precipitation. In this study, however, IDF have been derived solely from satellite observations using PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record). The unique PERSIANN-CDR attributes of high spatial resolution (0.25°×0.25°), daily temporal resolution and a record dating back to 1983 allow for the investigation at fine resolution. The results are compared over most of the contiguous United States against NOAA Atlas 14. The impact of using different methods of sampling, distribution estimators and regionalization in the resulting relationships is investigated. Main challenges to estimate robust and accurate IDF from satellite observations are also highlighted.
Marine04 Marine radiocarbon age calibration, 26 ? 0 ka BP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughen, K; Baille, M; Bard, E
2004-11-01
New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally ratified to replace the terrestrial and marine components of IntCal98. The new calibration datasets extend an additional 2000 years, from 0-26 ka cal BP (Before Present, 0 cal BP = AD 1950), and provide much higher resolution, greater precision and more detailed structure than IntCal98. For the Marine04 curve, dendrochronologically dated tree-ring samples, converted with a box-diffusion model to marine mixed-layer ages, cover the period from 0-10.5 ka cal BP. Beyond 10.5 ka cal BP, high-resolution marine data become available from foraminifera in varved sediments and U/Th-dated corals.more » The marine records are corrected with site-specific {sup 14}C reservoir age information to provide a single global marine mixed-layer calibration from 10.5-26.0 ka cal BP. A substantial enhancement relative to IntCal98 is the introduction of a random walk model, which takes into account the uncertainty in both the calendar age and the radiocarbon age to calculate the underlying calibration curve. The marine datasets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed here. The tree-ring datasets, sources of uncertainty, and regional offsets are presented in detail in a companion paper by Reimer et al.« less
Manga Vectorization and Manipulation with Procedural Simple Screentone.
Yao, Chih-Yuan; Hung, Shih-Hsuan; Li, Guo-Wei; Chen, I-Yu; Adhitya, Reza; Lai, Yu-Chi
2017-02-01
Manga are a popular artistic form around the world, and artists use simple line drawing and screentone to create all kinds of interesting productions. Vectorization is helpful to digitally reproduce these elements for proper content and intention delivery on electronic devices. Therefore, this study aims at transforming scanned Manga to a vector representation for interactive manipulation and real-time rendering with arbitrary resolution. Our system first decomposes the patch into rough Manga elements including possible borders and shading regions using adaptive binarization and screentone detector. We classify detected screentone into simple and complex patterns: our system extracts simple screentone properties for refining screentone borders, estimating lighting, compensating missing strokes inside screentone regions, and later resolution independently rendering with our procedural shaders. Our system treats the others as complex screentone areas and vectorizes them with our proposed line tracer which aims at locating boundaries of all shading regions and polishing all shading borders with the curve-based Gaussian refiner. A user can lay down simple scribbles to cluster Manga elements intuitively for the formation of semantic components, and our system vectorizes these components into shading meshes along with embedded Bézier curves as a unified foundation for consistent manipulation including pattern manipulation, deformation, and lighting addition. Our system can real-time and resolution independently render the shading regions with our procedural shaders and drawing borders with the curve-based shader. For Manga manipulation, the proposed vector representation can be not only magnified without artifacts but also deformed easily to generate interesting results.
NASA Astrophysics Data System (ADS)
Sun, Jiwen; Wei, Ling; Fu, Danying
2002-01-01
resolution and wide swath. In order to assure its high optical precision smoothly passing the rigorous dynamic load of launch, it should be of high structural rigidity. Therefore, a careful study of the dynamic features of the camera structure should be performed. Pro/E. An interference examination is performed on the precise CAD model of the camera for mending the structural design. for the first time in China, and the analysis of structural dynamic of the camera is accomplished by applying the structural analysis code PATRAN and NASTRAN. The main research programs include: 1) the comparative calculation of modes analysis of the critical structure of the camera is achieved by using 4 nodes and 10 nodes tetrahedral elements respectively, so as to confirm the most reasonable general model; 2) through the modes analysis of the camera from several cases, the inherent frequencies and modes are obtained and further the rationality of the structural design of the camera is proved; 3) the static analysis of the camera under self gravity and overloads is completed and the relevant deformation and stress distributions are gained; 4) the response calculation of sine vibration of the camera is completed and the corresponding response curve and maximum acceleration response with corresponding frequencies are obtained. software technique is accurate and efficient. sensitivity, the dynamic design and engineering optimization of the critical structure of the camera are discussed. fundamental technology in design of forecoming space optical instruments.
Sun, Junying; Bingga, Gali; Liu, Zhicheng; Zhang, Chunhong; Shen, Haiyan; Guo, Pengju; Zhang, Jianfeng
2018-06-01
Differentiation of classical strains and highly pathogenic strains of porcine reproductive and respiratory syndrome virus is crucial for effective vaccination programs and epidemiological studies. We used nested PCR and high resolution melting curve analysis with unlabeled probe to distinguish between the classical and the highly pathogenic strains of this virus. Two sets of primers and a 20 bp unlabeled probe were designed from the NSP3 gene. The unlabeled probe included two mutations specific for the classical and highly pathogenic strains of the virus. An additional primer set from the NSP2 gene of the highly pathogenic vaccine strain JXA1-R was used to detect its exclusive single nucleotide polymorphism. We tested 107 clinical samples, 21 clinical samples were positive for PRRSV (consistent with conventional PCR assay), among them four were positive for the classical strain with the remainder 17 for the highly pathogenic strain. Around 10 °C difference between probe melting temperatures showed the high discriminatory power of this method. Among highly pathogenic positive samples, three samples were determined as positive for JXA1-R vaccine-related strain with a 95% genotype confidence percentage. All these genotyping results using the high resolution melting curve assay were confirmed with DNA sequencing. This unlabeled probe method provides an alternative means to differentiate the classical strains from the highly pathogenic porcine reproductive and respiratory syndrome virus strains rapidly and accurately. Copyright © 2018. Published by Elsevier Ltd.
Zarghani, Maryam; Parastar, Hadi
2017-11-17
The objective of the present work is development of joint approximate diagonalization of eigenmatrices (JADE) as a member of independent component analysis (ICA) family, for the analysis of gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) data to address incomplete separation problem occurred during the analysis of complex sample matrices. In this regard, simulated GC-MS and GC×GC-MS data sets with different number of components, different degree of overlap and noise were evaluated. In the case of simultaneous analysis of multiple samples, column-wise augmentation for GC-MS and column-wise super-augmentation for GC×GC-MS was used before JADE analysis. The performance of JADE was evaluated in terms of statistical parameters of lack of fit (LOF), mutual information (MI) and Amari index as well as analytical figures of merit (AFOMs) obtained from calibration curves. In addition, the area of feasible solutions (AFSs) was calculated by two different approaches of MCR-BANDs and polygon inflation algorithm (FACPACK). Furthermore, JADE performance was compared with multivariate curve resolution-alternating least squares (MCR-ALS) and other ICA algorithms of mean-field ICA (MFICA) and mutual information least dependent component analysis (MILCA). In all cases, JADE could successfully resolve the elution and spectral profiles in GC-MS and GC×GC-MS data with acceptable statistical and calibration parameters and their solutions were in AFSs. To check the applicability of JADE in real cases, JADE was used for resolution and quantification of phenanthrene and anthracene in aromatic fraction of heavy fuel oil (HFO) analyzed by GC×GC-MS. Surprisingly, pure elution and spectral profiles of target compounds were properly resolved in the presence of baseline and interferences using JADE. Once more, the performance of JADE was compared with MCR-ALS in real case. On this matter, the mutual information (MI) values were 1.01 and 1.13 for resolved profiles by JADE and MCR-ALS, respectively. In addition, LOD values (μg/mL) were respectively 1.36 and 1.24 for phenanthrene and 1.26 and 1.09 for anthracene using MCR-ALS and JADE which showed outperformance of JADE over MCR-ALS. Copyright © 2017 Elsevier B.V. All rights reserved.
Okumura, Miwa; Ota, Takamasa; Kainuma, Kazuhisa; Sayre, James W.; McNitt-Gray, Michael; Katada, Kazuhiro
2008-01-01
Objective. For the multislice CT (MSCT) systems with a larger number of detector rows, it is essential to employ dose-reduction techniques. As reported in previous studies, edge-preserving adaptive image filters, which selectively eliminate only the noise elements that are increased when the radiation dose is reduced without affecting the sharpness of images, have been developed. In the present study, we employed receiver operating characteristic (ROC) analysis to assess the effects of the quantum denoising system (QDS), which is an edge-preserving adaptive filter that we have developed, on low-contrast resolution, and to evaluate to what degree the radiation dose can be reduced while maintaining acceptable low-contrast resolution. Materials and Methods. The low-contrast phantoms (Catphan 412) were scanned at various tube current settings, and ROC analysis was then performed for the groups of images obtained with/without the use of QDS at each tube current to determine whether or not a target could be identified. The tube current settings for which the area under the ROC curve (Az value) was approximately 0.7 were determined for both groups of images with/without the use of QDS. Then, the radiation dose reduction ratio when QDS was used was calculated by converting the determined tube current to the radiation dose. Results. The use of the QDS edge-preserving adaptive image filter allowed the radiation dose to be reduced by up to 38%. Conclusion. The QDS was found to be useful for reducing the radiation dose without affecting the low-contrast resolution in MSCT studies. PMID:19043565
Yuan, Zuo-Fei; Lin, Shu; Molden, Rosalynn C.; Cao, Xing-Jun; Bhanu, Natarajan V.; Wang, Xiaoshi; Sidoli, Simone; Liu, Shichong; Garcia, Benjamin A.
2015-01-01
Histone post-translational modifications contribute to chromatin function through their chemical properties which influence chromatin structure and their ability to recruit chromatin interacting proteins. Nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry (nanoLC-MS/MS) has emerged as the most suitable technology for global histone modification analysis because of the high sensitivity and the high mass accuracy of this approach that provides confident identification. However, analysis of histones with this method is even more challenging because of the large number and variety of isobaric histone peptides and the high dynamic range of histone peptide abundances. Here, we introduce EpiProfile, a software tool that discriminates isobaric histone peptides using the distinguishing fragment ions in their tandem mass spectra and extracts the chromatographic area under the curve using previous knowledge about peptide retention time. The accuracy of EpiProfile was evaluated by analysis of mixtures containing different ratios of synthetic histone peptides. In addition to label-free quantification of histone peptides, EpiProfile is flexible and can quantify different types of isotopically labeled histone peptides. EpiProfile is unique in generating layouts (i.e. relative retention time) of histone peptides when compared with manual quantification of the data and other programs (such as Skyline), filling the need of an automatic and freely available tool to quantify labeled and non-labeled modified histone peptides. In summary, EpiProfile is a valuable nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry-based quantification tool for histone peptides, which can also be adapted to analyze nonhistone protein samples. PMID:25805797
Darwish, Hany W; Bakheit, Ahmed H; Abdelhameed, Ali S
2016-03-01
Simultaneous spectrophotometric analysis of a multi-component dosage form of olmesartan, amlodipine and hydrochlorothiazide used for the treatment of hypertension has been carried out using various chemometric methods. Multivariate calibration methods include classical least squares (CLS) executed by net analyte processing (NAP-CLS), orthogonal signal correction (OSC-CLS) and direct orthogonal signal correction (DOSC-CLS) in addition to multivariate curve resolution-alternating least squares (MCR-ALS). Results demonstrated the efficiency of the proposed methods as quantitative tools of analysis as well as their qualitative capability. The three analytes were determined precisely using the aforementioned methods in an external data set and in a dosage form after optimization of experimental conditions. Finally, the efficiency of the models was validated via comparison with the partial least squares (PLS) method in terms of accuracy and precision.
Efficient geometric rectification techniques for spectral analysis algorithm
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Pang, S. S.; Curlander, J. C.
1992-01-01
The spectral analysis algorithm is a viable technique for processing synthetic aperture radar (SAR) data in near real time throughput rates by trading the image resolution. One major challenge of the spectral analysis algorithm is that the output image, often referred to as the range-Doppler image, is represented in the iso-range and iso-Doppler lines, a curved grid format. This phenomenon is known to be the fanshape effect. Therefore, resampling is required to convert the range-Doppler image into a rectangular grid format before the individual images can be overlaid together to form seamless multi-look strip imagery. An efficient algorithm for geometric rectification of the range-Doppler image is presented. The proposed algorithm, realized in two one-dimensional resampling steps, takes into consideration the fanshape phenomenon of the range-Doppler image as well as the high squint angle and updates of the cross-track and along-track Doppler parameters. No ground reference points are required.
de Babos, Diego Victor; Bechlin, Marcos André; Barros, Ariane Isis; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta; de Oliveira, Silvana Ruella
2016-05-15
A new method is proposed for the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS), employing direct solid sample analysis (DSS) and internal standardization (IS). Cobalt was used as internal standard to minimize matrix effects during Ni determinations, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9937. The performance of the method was checked by analysis of six plant certified reference materials, and the results for Mo and Ni were in agreement with the certified values (95% confidence level, t-test). Analysis was made of different types of plant materials used as renewable sources of energy, including sugarcane leaves, banana tree fiber, soybean straw, coffee pods, orange bagasse, peanut hulls, and sugarcane bagasse. The concentrations found for Mo and Ni ranged from 0.08 to 0.63 ng mg(-1) and from 0.41 to 6.92 ng mg(-1), respectively. Precision (RSD) varied from 2.1% to 11% for Mo and from 3.7% to 10% for Ni. Limits of quantification of 0.055 and 0.074 ng were obtained for Mo and Ni, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Automatic Extraction of High-Resolution Rainfall Series from Rainfall Strip Charts
NASA Astrophysics Data System (ADS)
Saa-Requejo, Antonio; Valencia, Jose Luis; Garrido, Alberto; Tarquis, Ana M.
2015-04-01
Soil erosion is a complex phenomenon involving the detachment and transport of soil particles, storage and runoff of rainwater, and infiltration. The relative magnitude and importance of these processes depends on a host of factors, including climate, soil, topography, cropping and land management practices among others. Most models for soil erosion or hydrological processes need an accurate storm characterization. However, this data are not always available and in some cases indirect models are generated to fill this gap. In Spain, the rain intensity data known for time periods less than 24 hours back to 1924 and many studies are limited by it. In many cases this data is stored in rainfall strip charts in the meteorological stations but haven't been transfer in a numerical form. To overcome this deficiency in the raw data a process of information extraction from large amounts of rainfall strip charts is implemented by means of computer software. The method has been developed that largely automates the intensive-labour extraction work based on van Piggelen et al. (2011). The method consists of the following five basic steps: 1) scanning the charts to high-resolution digital images, 2) manually and visually registering relevant meta information from charts and pre-processing, 3) applying automatic curve extraction software in a batch process to determine the coordinates of cumulative rainfall lines on the images (main step), 4) post processing the curves that were not correctly determined in step 3, and 5) aggregating the cumulative rainfall in pixel coordinates to the desired time resolution. A colour detection procedure is introduced that automatically separates the background of the charts and rolls from the grid and subsequently the rainfall curve. The rainfall curve is detected by minimization of a cost function. Some utilities have been added to improve the previous work and automates some auxiliary processes: readjust the bands properly, merge bands when those have been scanned in two parts, detect and cut the borders of bands not used (demanded by the software). Also some variations in which colour system is tried basing in HUE or RGB colour have been included. Thanks to apply this digitization rainfall strip charts 209 station-years of three locations in the centre of Spain have been transformed to long-term rainfall time series with 5-min resolution. References van Piggelen, H.E., T. Brandsma, H. Manders, and J. F. Lichtenauer, 2011: Automatic Curve Extraction for Digitizing Rainfall Strip Charts. J. Atmos. Oceanic Technol., 28, 891-906. Acknowledgements Financial support for this research by DURERO Project (Env.C1.3913442) is greatly appreciated.
Wang, Diya; Xiao, Mengnan; Hu, Hong; Zhang, Yu; Su, Zhe; Xu, Shanshan; Zong, Yujin; Wan, Mingxi
2018-03-01
This study aimed to develop a focal microvascular contrast-enhanced ultrasonic parametric perfusion imaging (PPI) scheme to overcome the tradeoff between the resolution, contrast, and accuracy of focal PPI in the tumor. Its resolution was limited by the low signal-to-clutter ratio (SCR) of time-intensity-curves (TICs) induced by multiple limitations, which deteriorated the accuracy and contrast of focal PPI. The scheme was verified by the in-vivo perfusion experiments. Single-pixel TICs were first extracted to ensure PPI with the highest resolution. The SCR of focal TICs in the tumor was improved using respiratory motion compensation combined with detrended fluctuation analysis. The entire and focal PPIs of six perfusion parameters were then accurately created after filtrating the valid TICs and targeted perfusion parameters. Compared with those of the conventional PPIs, the axial and lateral resolutions of focal PPIs were improved by 30.29% (p < .05) and 32.77% (p < .05), respectively; the average contrast and accuracy evaluated by SCR improved by 7.24 ± 4.90 dB (p < .05) and 5.18 ± 1.28 dB (p < .05), respectively. The edge, morphostructure, inhomogeneous hyper-enhanced distribution, and ring-like perfusion features in intratumoral microvessel were accurately distinguished and highlighted by the focal PPIs. The developed focal PPI can assist clinicians in making confirmed diagnoses and in providing appropriate therapeutic strategies for liver tumor. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Synovec, R.E.; Johnson, E.L.; Bahowick, T.J.
1990-08-01
This paper describes a new technique for data analysis in chromatography, based on taking the point-by-point ratio of sequential chromatograms that have been base line corrected. This ratio chromatogram provides a robust means for the identification and the quantitation of analytes. In addition, the appearance of an interferent is made highly visible, even when it coelutes with desired analytes. For quantitative analysis, the region of the ratio chromatogram corresponding to the pure elution of an analyte is identified and is used to calculate a ratio value equal to the ratio of concentrations of the analyte in sequential injections. For themore » ratio value calculation, a variance-weighted average is used, which compensates for the varying signal-to-noise ratio. This ratio value, or equivalently the percent change in concentration, is the basis of a chromatographic standard addition method and an algorithm to monitor analyte concentration in a process stream. In the case of overlapped peaks, a spiking procedure is used to calculate both the original concentration of an analyte and its signal contribution to the original chromatogram. Thus, quantitation and curve resolution may be performed simultaneously, without peak modeling or curve fitting. These concepts are demonstrated by using data from ion chromatography, but the technique should be applicable to all chromatographic techniques.« less
Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy
2014-01-01
Background The primary cell wall of fruits and vegetables is a structure mainly composed of polysaccharides (pectins, hemicelluloses, cellulose). Polysaccharides are assembled into a network and linked together. It is thought that the percentage of components and of plant cell wall has an important influence on mechanical properties of fruits and vegetables. Results In this study the Raman microspectroscopy technique was introduced to the visualization of the distribution of polysaccharides in cell wall of fruit. The methodology of the sample preparation, the measurement using Raman microscope and multivariate image analysis are discussed. Single band imaging (for preliminary analysis) and multivariate image analysis methods (principal component analysis and multivariate curve resolution) were used for the identification and localization of the components in the primary cell wall. Conclusions Raman microspectroscopy supported by multivariate image analysis methods is useful in distinguishing cellulose and pectins in the cell wall in tomatoes. It presents how the localization of biopolymers was possible with minimally prepared samples. PMID:24917885
Elsherief, Samia M.; Zayet, Mohamed K.; Hamouda, Ibrahim M.
2013-01-01
Cone beam computed tomography is a 3-dimensional high resolution imaging method. The purpose of this study was to compare the effects of 3 different NiTi rotary instruments used to prepare curved root canals on the final shape of the curved canals and total amount of root canal transportation by using cone-beam computed tomography. A total of 81 mesial root canals from 42 extracted human mandibular molars, with a curvature ranging from 15 to 45 degrees, were selected. Canals were randomly divided into 3 groups of 27 each. After preparation with Protaper, Revo-S and Hero Shaper, the amount of transportation and centering ability that occurred were assessed by using cone beam computed tomography. Utilizing pre- and post-instrumentation radiographs, straightening of the canal curvatures was determined with a computer image analysis program. Canals were metrically assessed for changes (surface area, changes in curvature and transportation) during canal preparation by using software SimPlant; instrument failures were also recorded. Mean total widths and outer and inner width measurements were determined on each central canal path and differences were statistically analyzed. The results showed that all instruments maintained the original canal curvature well with no significant differences between the different files (P = 0.226). During preparation there was failure of only one file (the protaper group). In conclusion, under the conditions of this study, all instruments maintained the original canal curvature well and were safe to use. Areas of uninstrumented root canal wall were left in all regions using the various systems. PMID:23885273
NASA Astrophysics Data System (ADS)
Xia, Jianghai
2014-04-01
This overview article gives a picture of multichannel analysis of high-frequency surface (Rayleigh and Love) waves developed mainly by research scientists at the Kansas Geological Survey, the University of Kansas and China University of Geosciences (Wuhan) during the last eighteen years by discussing dispersion imaging techniques, inversion systems, and real-world examples. Shear (S)-wave velocities of near-surface materials can be derived from inverting the dispersive phase velocities of high-frequency surface waves. Multichannel analysis of surface waves—MASW used phase information of high-frequency Rayleigh waves recorded on vertical component geophones to determine near-surface S-wave velocities. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that inversion with higher modes and the fundamental mode simultaneously can increase model resolution and an investigation depth. Multichannel analysis of Love waves—MALW used phase information of high-frequency Love waves recorded on horizontal (perpendicular to the direction of wave propagation) component geophones to determine S-wave velocities of shallow materials. Because of independence of compressional (P)-wave velocity, the MALW method has some attractive advantages, such as 1) Love-wave dispersion curves are simpler than Rayleigh wave's; 2) dispersion images of Love-wave energy have a higher signal to noise ratio and more focused than those generated from Rayleigh waves; and 3) inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves.
Liu, Guo-hua; Rajendran, Narasimmalu; Amemiya, Takashi; Itoh, Kiminori
2011-11-01
A rapid approach based on two-dimensional DNA gel electrophroesis (2-DGE) mapping with selective primer pairs was employed to analyze bacterial community structure in sediments from upstream, midstream and downstream of Sagami River in Japan. The 2-DGE maps indicated that Alpha- and Delta-proteobacteria were major bacterial populations in the upstream and midstream sediments. Further bacterial community structure analysis showed that richness proportion of Alpha- and Delta-proteobacterial groups reflected a trend toward decreasing from the upstream to downstream sediments. The biomass proportion of bacterial populations in the midstream sediment showed a significantly difference from that in the other sediments, suggesting that there may be an environmental pressure on the midstream bacterial community. Lorenz curves, together with Gini coefficients were successfully applied to the 2-DGE mapping data for resolving evenness of bacterial populations, and showed that the plotted curve from high-resolution 2-DGE mapping became less linear and more an exponential function than that of the 1-DGE methods such as chain length analysis and denaturing gradient gel electrophoresis, suggesting that the 2-DGE mapping may achieve a more detailed evaluation of bacterial community. In conclusion, the 2-DGE mapping combined with the selective primer pairs enables bacterial community structure analysis in river sediment and thus it can also monitor sediment pollution based on the change of bacterial community structure.
Automated detection of arterial input function in DSC perfusion MRI in a stroke rat model
NASA Astrophysics Data System (ADS)
Yeh, M.-Y.; Lee, T.-H.; Yang, S.-T.; Kuo, H.-H.; Chyi, T.-K.; Liu, H.-L.
2009-05-01
Quantitative cerebral blood flow (CBF) estimation requires deconvolution of the tissue concentration time curves with an arterial input function (AIF). However, image-based determination of AIF in rodent is challenged due to limited spatial resolution. We evaluated the feasibility of quantitative analysis using automated AIF detection and compared the results with commonly applied semi-quantitative analysis. Permanent occlusion of bilateral or unilateral common carotid artery was used to induce cerebral ischemia in rats. The image using dynamic susceptibility contrast method was performed on a 3-T magnetic resonance scanner with a spin-echo echo-planar-image sequence (TR/TE = 700/80 ms, FOV = 41 mm, matrix = 64, 3 slices, SW = 2 mm), starting from 7 s prior to contrast injection (1.2 ml/kg) at four different time points. For quantitative analysis, CBF was calculated by the AIF which was obtained from 10 voxels with greatest contrast enhancement after deconvolution. For semi-quantitative analysis, relative CBF was estimated by the integral divided by the first moment of the relaxivity time curves. We observed if the AIFs obtained in the three different ROIs (whole brain, hemisphere without lesion and hemisphere with lesion) were similar, the CBF ratios (lesion/normal) between quantitative and semi-quantitative analyses might have a similar trend at different operative time points. If the AIFs were different, the CBF ratios might be different. We concluded that using local maximum one can define proper AIF without knowing the anatomical location of arteries in a stroke rat model.
Manufacturing complexity analysis
NASA Technical Reports Server (NTRS)
Delionback, L. M.
1977-01-01
The analysis of the complexity of a typical system is presented. Starting with the subsystems of an example system, the step-by-step procedure for analysis of the complexity of an overall system is given. The learning curves for the various subsystems are determined as well as the concurrent numbers of relevant design parameters. Then trend curves are plotted for the learning curve slopes versus the various design-oriented parameters, e.g. number of parts versus slope of learning curve, or number of fasteners versus slope of learning curve, etc. Representative cuts are taken from each trend curve, and a figure-of-merit analysis is made for each of the subsystems. Based on these values, a characteristic curve is plotted which is indicative of the complexity of the particular subsystem. Each such characteristic curve is based on a universe of trend curve data taken from data points observed for the subsystem in question. Thus, a characteristic curve is developed for each of the subsystems in the overall system.
Steer, P A; O'Rourke, D; Ghorashi, S A; Noormohammadi, A H
2011-05-01
Fowl adenoviruses (FAdVs) cause inclusion body hepatitis (IBH) in chickens. In this study, clinical cases of IBH from Australian broiler flocks were screened for the presence and genotype of FAdVs. Twenty-six IBH cases from commercial poultry farms were screened. Polymerase chain reaction (PCR) coupled with high-resolution melt (HRM) curve analysis (PCR/HRM genotyping) was used to determine the presence and genotype of FAdVs. For comparison, field isolates were also assessed by virus microneutralisation and nucleotide sequence analysis of the hexon loop 1 (Hex L1) gene. PCR detection of chicken anaemia virus (CAV) and infectious bursal disease virus (IBDV) was also employed. FAdV-8b and FAdV-11 were identified in 13 cases each. In one case, FAdV-1 was also identified. Cross-neutralisation was observed between the FAdV-11 field strain and the reference FAdV-2 and 11 antisera, a result also seen with the type 2 and 11 reference FAdVs. Field strains 1 and 8b were neutralised only by their respective type antisera. The FAdV-8b field strain was identical to the Australian FAdV vaccine strain (type 8b) in the Hex L1 region. The Hex L1 sequence of the FAdV-11 field strain had the highest identity to FAdV-11 (93.2%) and FAdV-2 (92.7%) reference strains. In the five cases tested for CAV and IBDV, neither virus was detected. The evidence suggested the presence of sufficient antibodies against CAV and IBD in the parent flocks and there was no indication of immunosuppression caused by these viruses. These results indicate that PCR/HRM genotyping is a reliable diagnostic method for FAdV identification and is more rapid than virus neutralisation and direct sequence analysis. Furthermore, they suggest that IBH in Australian broiler flocks is a primary disease resulting from two alternative FAdV strains from different species. © 2011 The Authors. Australian Veterinary Journal © 2011 Australian Veterinary Association.
High-Throughput Genome Editing and Phenotyping Facilitated by High Resolution Melting Curve Analysis
Thomas, Holly R.; Percival, Stefanie M.; Yoder, Bradley K.; Parant, John M.
2014-01-01
With the goal to generate and characterize the phenotypes of null alleles in all genes within an organism and the recent advances in custom nucleases, genome editing limitations have moved from mutation generation to mutation detection. We previously demonstrated that High Resolution Melting (HRM) analysis is a rapid and efficient means of genotyping known zebrafish mutants. Here we establish optimized conditions for HRM based detection of novel mutant alleles. Using these conditions, we demonstrate that HRM is highly efficient at mutation detection across multiple genome editing platforms (ZFNs, TALENs, and CRISPRs); we observed nuclease generated HRM positive targeting in 1 of 6 (16%) open pool derived ZFNs, 14 of 23 (60%) TALENs, and 58 of 77 (75%) CRISPR nucleases. Successful targeting, based on HRM of G0 embryos correlates well with successful germline transmission (46 of 47 nucleases); yet, surprisingly mutations in the somatic tail DNA weakly correlate with mutations in the germline F1 progeny DNA. This suggests that analysis of G0 tail DNA is a good indicator of the efficiency of the nuclease, but not necessarily a good indicator of germline alleles that will be present in the F1s. However, we demonstrate that small amplicon HRM curve profiles of F1 progeny DNA can be used to differentiate between specific mutant alleles, facilitating rare allele identification and isolation; and that HRM is a powerful technique for screening possible off-target mutations that may be generated by the nucleases. Our data suggest that micro-homology based alternative NHEJ repair is primarily utilized in the generation of CRISPR mutant alleles and allows us to predict likelihood of generating a null allele. Lastly, we demonstrate that HRM can be used to quickly distinguish genotype-phenotype correlations within F1 embryos derived from G0 intercrosses. Together these data indicate that custom nucleases, in conjunction with the ease and speed of HRM, will facilitate future high-throughput mutation generation and analysis needed to establish mutants in all genes of an organism. PMID:25503746
2017-01-01
The objective of this study was to standardize the high-resolution melting method for identification and discrimination of Toxoplasma gondii, Sarcocystis spp., Neospora spp., and Cryptosporidium spp. by amplification of 18S ribosomal DNA (rDNA) using a single primer pair. The analyses were performed on individual reactions (containing DNA from a single species of a protozoan), on duplex reactions (containing DNA from two species of protozoa in each reaction), and on a multiplex reaction (containing DNA of four parasites in a single reaction). The proposed method allowed us to identify and discriminate the four species by analyzing the derivative, normalized, and difference melting curves, with high reproducibility among and within the experiments, as demonstrated by low coefficients of variation (less than 2.2% and 2.0%, respectively). This is the first study where this method is used for discrimination of these four species of protozoa in a single reaction. PMID:28346485
NASA Technical Reports Server (NTRS)
Wang, Ten-See
1993-01-01
The objective of this study is to benchmark a four-engine clustered nozzle base flowfield with a computational fluid dynamics (CFD) model. The CFD model is a pressure based, viscous flow formulation. An adaptive upwind scheme is employed for the spatial discretization. The upwind scheme is based on second and fourth order central differencing with adaptive artificial dissipation. Qualitative base flow features such as the reverse jet, wall jet, recompression shock, and plume-plume impingement have been captured. The computed quantitative flow properties such as the radial base pressure distribution, model centerline Mach number and static pressure variation, and base pressure characteristic curve agreed reasonably well with those of the measurement. Parametric study on the effect of grid resolution, turbulence model, inlet boundary condition and difference scheme on convective terms has been performed. The results showed that grid resolution and turbulence model are two primary factors that influence the accuracy of the base flowfield prediction.
High resolution x-ray diffraction analysis of annealed low-temperature gallium arsenide
NASA Astrophysics Data System (ADS)
Matyi, R. J.; Melloch, M. R.; Woodall, J. M.
1992-05-01
High resolution x-ray diffraction methods have been used to characterize GaAs grown at low substrate temperatures by molecular beam epitaxy and to examine the effects of post-growth annealing on the structure of the layers. Double crystal rocking curves from the as-deposited epitaxial layer show well-defined interference fringes, indicating a high level of structural perfection despite the presence of excess arsenic. Annealing at temperatures from 700 to 900 °C resulted in a decrease in the perpendicular lattice mismatch between the GaAs grown at low temperature and the substrate from 0.133% to 0.016% and a decrease (but not total elimination) of the visibility of the interference fringes. Triple-crystal diffraction scans around the 004 point in reciprocal space exhibited an increase in the apparent mosaic spread of the epitaxial layer with increasing anneal temperature. The observations are explained in terms of the growth of arsenic precipitates in the epitaxial layer.
A new comparison of hyperspectral anomaly detection algorithms for real-time applications
NASA Astrophysics Data System (ADS)
Díaz, María.; López, Sebastián.; Sarmiento, Roberto
2016-10-01
Due to the high spectral resolution that remotely sensed hyperspectral images provide, there has been an increasing interest in anomaly detection. The aim of anomaly detection is to stand over pixels whose spectral signature differs significantly from the background spectra. Basically, anomaly detectors mark pixels with a certain score, considering as anomalies those whose scores are higher than a threshold. Receiver Operating Characteristic (ROC) curves have been widely used as an assessment measure in order to compare the performance of different algorithms. ROC curves are graphical plots which illustrate the trade- off between false positive and true positive rates. However, they are limited in order to make deep comparisons due to the fact that they discard relevant factors required in real-time applications such as run times, costs of misclassification and the competence to mark anomalies with high scores. This last fact is fundamental in anomaly detection in order to distinguish them easily from the background without any posterior processing. An extensive set of simulations have been made using different anomaly detection algorithms, comparing their performances and efficiencies using several extra metrics in order to complement ROC curves analysis. Results support our proposal and demonstrate that ROC curves do not provide a good visualization of detection performances for themselves. Moreover, a figure of merit has been proposed in this paper which encompasses in a single global metric all the measures yielded for the proposed additional metrics. Therefore, this figure, named Detection Efficiency (DE), takes into account several crucial types of performance assessment that ROC curves do not consider. Results demonstrate that algorithms with the best detection performances according to ROC curves do not have the highest DE values. Consequently, the recommendation of using extra measures to properly evaluate performances have been supported and justified by the conclusions drawn from the simulations.
Vickers, Andrew J; Cronin, Angel M; Elkin, Elena B; Gonen, Mithat
2008-01-01
Background Decision curve analysis is a novel method for evaluating diagnostic tests, prediction models and molecular markers. It combines the mathematical simplicity of accuracy measures, such as sensitivity and specificity, with the clinical applicability of decision analytic approaches. Most critically, decision curve analysis can be applied directly to a data set, and does not require the sort of external data on costs, benefits and preferences typically required by traditional decision analytic techniques. Methods In this paper we present several extensions to decision curve analysis including correction for overfit, confidence intervals, application to censored data (including competing risk) and calculation of decision curves directly from predicted probabilities. All of these extensions are based on straightforward methods that have previously been described in the literature for application to analogous statistical techniques. Results Simulation studies showed that repeated 10-fold crossvalidation provided the best method for correcting a decision curve for overfit. The method for applying decision curves to censored data had little bias and coverage was excellent; for competing risk, decision curves were appropriately affected by the incidence of the competing risk and the association between the competing risk and the predictor of interest. Calculation of decision curves directly from predicted probabilities led to a smoothing of the decision curve. Conclusion Decision curve analysis can be easily extended to many of the applications common to performance measures for prediction models. Software to implement decision curve analysis is provided. PMID:19036144
Vickers, Andrew J; Cronin, Angel M; Elkin, Elena B; Gonen, Mithat
2008-11-26
Decision curve analysis is a novel method for evaluating diagnostic tests, prediction models and molecular markers. It combines the mathematical simplicity of accuracy measures, such as sensitivity and specificity, with the clinical applicability of decision analytic approaches. Most critically, decision curve analysis can be applied directly to a data set, and does not require the sort of external data on costs, benefits and preferences typically required by traditional decision analytic techniques. In this paper we present several extensions to decision curve analysis including correction for overfit, confidence intervals, application to censored data (including competing risk) and calculation of decision curves directly from predicted probabilities. All of these extensions are based on straightforward methods that have previously been described in the literature for application to analogous statistical techniques. Simulation studies showed that repeated 10-fold crossvalidation provided the best method for correcting a decision curve for overfit. The method for applying decision curves to censored data had little bias and coverage was excellent; for competing risk, decision curves were appropriately affected by the incidence of the competing risk and the association between the competing risk and the predictor of interest. Calculation of decision curves directly from predicted probabilities led to a smoothing of the decision curve. Decision curve analysis can be easily extended to many of the applications common to performance measures for prediction models. Software to implement decision curve analysis is provided.
Synthetic aperture radar range - Azimuth ambiguity design and constraints
NASA Technical Reports Server (NTRS)
Mehlis, J. G.
1980-01-01
Problems concerning the design of a system for mapping a planetary surface with a synthetic aperture radar (SAR) are considered. Given an ambiguity level, resolution, and swath width, the problems are related to the determination of optimum antenna apertures and the most suitable pulse repetition frequency (PRF). From the set of normalized azimuth ambiguity ratio curves, the designer can arrive at the azimuth antenna length, and from the sets of normalized range ambiguity ratio curves, he can arrive at the range aperture length or pulse repetition frequency. A procedure based on this design method is shown in an example. The normalized curves provide results for a SAR using a uniformly or cosine weighted rectangular antenna aperture.
Oral water soluble contrast for the management of adhesive small bowel obstruction.
Abbas, S; Bissett, I P; Parry, B R
2007-07-18
Adhesions are the leading cause of small bowel obstruction. Gastrografin transit time may allow for the selection of appropriate patients for non-operative management. Some studies have shown when the contrast does not reach the colon after a designated time it indicates complete intestinal obstruction that is unlikely to resolve with conservative treatment. When the contrast does reach the large bowel, it indicates partial obstruction and patients are likely to respond to conservative treatment. Other studies have suggested that the administration of water-soluble contrast is therapeutic in resolving the obstruction. To determine the reliability of water-soluble contrast media and serial abdominal radiographs in predicting the success of conservative treatment in patients admitted with adhesive small bowel obstruction.Furthermore, to determine the efficacy and safety of water-soluble contrast media in reducing the need for surgical intervention and reducing hospital stay in adhesive small bowel obstruction. The search was conducted using MESH terms: ''Intestinal obstruction'', ''water-soluble contrast'', "Adhesions" and "Gastrografin". The later combined with the Cochrane Collaboration highly sensitive search strategy for identifying randomised controlled trials and controlled clinical trials. 1. Prospective studies were included to evaluate the diagnostic potential of water-soluble contrast in adhesive small bowel obstruction.2. Randomised clinical trials were selected to evaluate the therapeutic role. 1. Studies that addressed the diagnostic role of water-soluble contrast were critically appraised and data presented as sensitivities, specificities and positive and negative likelihood ratios. Results were pooled and summary ROC curve was constructed.2. A meta-analysis of the data from therapeutic studies was performed using the Mantel -Henszel test using both the fixed effect and random effect models. The appearance of water-soluble contrast in the colon on an abdominal X ray within 24 hours of its administration predicts resolution of an adhesive small bowel obstruction with a pooled sensitivity of 0.97, specificity of 0.96. The area under the curve of the summary ROC curve is 0.98. Six randomised studies dealing with the therapeutic role of gastrografin were included in the review, water-soluble contrast did not reduce the need for surgical intervention (OR 0.81, p = 0.3). Meta-analysis of four of the included studies showed that water-soluble contrast did reduce hospital stay compared with placebo (WMD= - 1.83) P<0.001. Published literature strongly supports the use of water-soluble contrast as a predictive test for non-operative resolution of adhesive small bowel obstruction. Although Gastrografin does not cause resolution of small bowel obstruction there is strong evidence that it reduces hospital stay in those not requiring surgery.
Osathanunkul, Maslin; Suwannapoom, Chatmongkon; Khamyong, Nuttaluck; Pintakum, Danupol; Lamphun, Santisuk Na; Triwitayakorn, Kanokporn; Osathanunkul, Kitisak; Madesis, Panagiotis
2016-01-01
Andrographis paniculata Nees is a medicinal plant with multiple pharmacological properties. It has been used over many centuries as a household remedy. A. paniculata products sold on the markets are in processed forms so it is difficult to authenticate. Therefore buying the herbal products poses a high-risk of acquiring counterfeited, substituted and/or adulterated products. Due to these issues, a reliable method to authenticate products is needed. High resolution melting analysis coupled with DNA barcoding (Bar-HRM) was applied to detect adulteration in commercial herbal products. The rbcL barcode was selected to use in primers design for HRM analysis to produce standard melting profile of A. paniculata species. DNA of the tested commercial products was isolated and their melting profiles were then generated and compared with the standard A. paniculata. The melting profiles of the rbcL amplicons of the three closely related herbal species (A. paniculata, Acanthus ebracteatus and Rhinacanthus nasutus) are clearly separated so that they can be distinguished by the developed method. The method was then used to authenticate commercial herbal products. HRM curves of all 10 samples tested are similar to A. paniculata which indicated that all tested products were contained the correct species as labeled. The method described in this study has been proved to be useful in aiding identification and/or authenticating A. paniculata. This Bar-HRM analysis has allowed us easily to determine the A. paniculata species in herbal products on the markets even they are in processed forms. We propose the use of DNA barcoding combined with High Resolution Melting analysis for authenticating of Andrographis paniculata products.The developed method can be used regardless of the type of the DNA template (fresh or dried tissue, leaf, and stem).rbcL region was chosen for the analysis and work well with our samplesWe can easily determine the A. paniculata species in herbal products tested. Abbreviations used: bp: Base pair, Tm: Melting temperature.
SNIa detection in the SNLS photometric analysis using Morphological Component Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Möller, A.; Ruhlmann-Kleider, V.; Neveu, J.
2015-04-01
Detection of supernovae (SNe) and, more generally, of transient events in large surveys can provide numerous false detections. In the case of a deferred processing of survey images, this implies reconstructing complete light curves for all detections, requiring sizable processing time and resources. Optimizing the detection of transient events is thus an important issue for both present and future surveys. We present here the optimization done in the SuperNova Legacy Survey (SNLS) for the 5-year data deferred photometric analysis. In this analysis, detections are derived from stacks of subtracted images with one stack per lunation. The 3-year analysis provided 300,000more » detections dominated by signals of bright objects that were not perfectly subtracted. Allowing these artifacts to be detected leads not only to a waste of resources but also to possible signal coordinate contamination. We developed a subtracted image stack treatment to reduce the number of non SN-like events using morphological component analysis. This technique exploits the morphological diversity of objects to be detected to extract the signal of interest. At the level of our subtraction stacks, SN-like events are rather circular objects while most spurious detections exhibit different shapes. A two-step procedure was necessary to have a proper evaluation of the noise in the subtracted image stacks and thus a reliable signal extraction. We also set up a new detection strategy to obtain coordinates with good resolution for the extracted signal. SNIa Monte-Carlo (MC) generated images were used to study detection efficiency and coordinate resolution. When tested on SNLS 3-year data this procedure decreases the number of detections by a factor of two, while losing only 10% of SN-like events, almost all faint ones. MC results show that SNIa detection efficiency is equivalent to that of the original method for bright events, while the coordinate resolution is improved.« less
cyclostratigraphy, sequence stratigraphy and organic matter accumulation mechanism
NASA Astrophysics Data System (ADS)
Cong, F.; Li, J.
2016-12-01
The first member of Maokou Formation of Sichuan basin is composed of well preserved carbonate ramp couplets of limestone and marlstone/shale. It acts as one of the potential shale gas source rock, and is suitable for time-series analysis. We conducted time-series analysis to identify high-frequency sequences, reconstruct high-resolution sedimentation rate, estimate detailed primary productivity for the first time in the study intervals and discuss organic matter accumulation mechanism of source rock under sequence stratigraphic framework.Using the theory of cyclostratigraphy and sequence stratigraphy, the high-frequency sequences of one outcrop profile and one drilling well are identified. Two third-order sequences and eight fourth-order sequences are distinguished on outcrop profile based on the cycle stacking patterns. For drilling well, sequence boundary and four system tracts is distinguished by "integrated prediction error filter analysis" (INPEFA) of Gamma-ray logging data, and eight fourth-order sequences is identified by 405ka long eccentricity curve in depth domain which is quantified and filtered by integrated analysis of MTM spectral analysis, evolutive harmonic analysis (EHA), evolutive average spectral misfit (eASM) and band-pass filtering. It suggests that high-frequency sequences correlate well with Milankovitch orbital signals recorded in sediments, and it is applicable to use cyclostratigraphy theory in dividing high-frequency(4-6 orders) sequence stratigraphy.High-resolution sedimentation rate is reconstructed through the study interval by tracking the highly statistically significant short eccentricity component (123ka) revealed by EHA. Based on sedimentation rate, measured TOC and density data, the burial flux, delivery flux and primary productivity of organic carbon was estimated. By integrating redox proxies, we can discuss the controls on organic matter accumulation by primary production and preservation under the high-resolution sequence stratigraphic framework. Results show that high average organic carbon contents in the study interval are mainly attributed to high primary production. The results also show a good correlation between high organic carbon accumulation and intervals of transgression.
NASA Astrophysics Data System (ADS)
Metzger, Robert; Riper, Kenneth Van; Lasche, George
2017-09-01
A new method for analysis of uranium and radium in soils by gamma spectroscopy has been developed using VRF ("Visual RobFit") which, unlike traditional peak-search techniques, fits full-spectrum nuclide shapes with non-linear least-squares minimization of the chi-squared statistic. Gamma efficiency curves were developed for a 500 mL Marinelli beaker geometry as a function of soil density using MCNP. Collected spectra were then analyzed using the MCNP-generated efficiency curves and VRF to deconvolute the 90 keV peak complex of uranium and obtain 238U and 235U activities. 226Ra activity was determined either from the radon daughters if the equilibrium status is known, or directly from the deconvoluted 186 keV line. 228Ra values were determined from the 228Ac daughter activity. The method was validated by analysis of radium, thorium and uranium soil standards and by inter-comparison with other methods for radium in soils. The method allows for a rapid determination of whether a sample has been impacted by a man-made activity by comparison of the uranium and radium concentrations to those that would be expected from a natural equilibrium state.
Probing the atmosphere of a sub-Jovian planet orbiting a cool dwarf
NASA Astrophysics Data System (ADS)
Sedaghati, Elyar; Boffin, Henri M. J.; Delrez, Laetitia; Gillon, Michaël; Csizmadia, Szilard; Smith, Alexis M. S.; Rauer, Heike
2017-07-01
We derive the 0.01-μm binned transmission spectrum, between 0.74 and 1.0 μm, of WASP-80b from low-resolution spectra obtained with the Focal Reducer and low-dispersion Spectrograph 2 instrument attached to ESO's Very Large Telescope. The combination of the fact that WASP-80 is an active star, together with instrumental and telluric factors, introduces correlated noise in the observed transit light curves, which we treat quantitatively using Gaussian processes. Comparison of our results together with those from previous studies to theoretically calculated models reveals an equilibrium temperature in agreement with the previously measured value of 825 K, and a subsolar metallicity, as well as an atmosphere depleted of molecular species with absorption bands in the infrared (≫5σ). Our transmission spectrum alone shows evidence for additional absorption from the potassium core and wing, whereby its presence is detected from analysis of narrow 0.003 μm bin light curves (≫5σ). Further observations with visible and near-ultraviolet filters will be required to expand this spectrum and provide more in-depth knowledge of the atmosphere. These detections are only made possible through an instrument-dependent baseline model and a careful analysis of systematics in the data.
Rauma, Matias; Isaksson, Tina S; Johanson, Gunnar
2006-10-01
Potential health hazards of dermal exposure, variability in reported dermal absorption rates and potential losses from the skin by evaporation indicate a need for a simple, inexpensive and standardized procedure to measure dermal absorption and desorption of chemical substances. The aim of this study was to explore the possibility to measure dermal absorption and desorption of volatile chemicals using a new gravimetric technique, namely thermal gravimetric analysis (TGA), and trypsinated stratum corneum from pig. Changes in skin weight were readily detected before, during and after exposure to vapours of water, 2-propanol, methanol and toluene. The shape and height of the weight curves differed between the four chemicals, reflecting differences in diffusivity and partial pressure and skin:air partitioning, respectively. As the skin weight is highly sensitive to the partial pressure of volatile chemicals, including water, this technique requires carefully controlled conditions with respect to air flow, temperature, chemical vapour generation and humidity. This new technique may help in the assessment of dermal uptake of volatile chemicals. Only a small piece of skin is needed and skin integrity is not necessary, facilitating the use of human samples. The high resolution weight-time curves obtained may also help to elucidate the characteristics of absorption, desorption and diffusion of chemicals in skin.
Arnold, Benjamin F; van der Laan, Mark J; Hubbard, Alan E; Steel, Cathy; Kubofcik, Joseph; Hamlin, Katy L; Moss, Delynn M; Nutman, Thomas B; Priest, Jeffrey W; Lammie, Patrick J
2017-05-01
Serological antibody levels are a sensitive marker of pathogen exposure, and advances in multiplex assays have created enormous potential for large-scale, integrated infectious disease surveillance. Most methods to analyze antibody measurements reduce quantitative antibody levels to seropositive and seronegative groups, but this can be difficult for many pathogens and may provide lower resolution information than quantitative levels. Analysis methods have predominantly maintained a single disease focus, yet integrated surveillance platforms would benefit from methodologies that work across diverse pathogens included in multiplex assays. We developed an approach to measure changes in transmission from quantitative antibody levels that can be applied to diverse pathogens of global importance. We compared age-dependent immunoglobulin G curves in repeated cross-sectional surveys between populations with differences in transmission for multiple pathogens, including: lymphatic filariasis (Wuchereria bancrofti) measured before and after mass drug administration on Mauke, Cook Islands, malaria (Plasmodium falciparum) before and after a combined insecticide and mass drug administration intervention in the Garki project, Nigeria, and enteric protozoans (Cryptosporidium parvum, Giardia intestinalis, Entamoeba histolytica), bacteria (enterotoxigenic Escherichia coli, Salmonella spp.), and viruses (norovirus groups I and II) in children living in Haiti and the USA. Age-dependent antibody curves fit with ensemble machine learning followed a characteristic shape across pathogens that aligned with predictions from basic mechanisms of humoral immunity. Differences in pathogen transmission led to shifts in fitted antibody curves that were remarkably consistent across pathogens, assays, and populations. Mean antibody levels correlated strongly with traditional measures of transmission intensity, such as the entomological inoculation rate for P. falciparum (Spearman's rho = 0.75). In both high- and low transmission settings, mean antibody curves revealed changes in population mean antibody levels that were masked by seroprevalence measures because changes took place above or below the seropositivity cutoff. Age-dependent antibody curves and summary means provided a robust and sensitive measure of changes in transmission, with greatest sensitivity among young children. The method generalizes to pathogens that can be measured in high-throughput, multiplex serological assays, and scales to surveillance activities that require high spatiotemporal resolution. Our results suggest quantitative antibody levels will be particularly useful to measure differences in exposure for pathogens that elicit a transient antibody response or for monitoring populations with very high- or very low transmission, when seroprevalence is less informative. The approach represents a new opportunity to conduct integrated serological surveillance for neglected tropical diseases, malaria, and other infectious diseases with well-defined antigen targets.
van der Laan, Mark J.; Hubbard, Alan E.; Steel, Cathy; Kubofcik, Joseph; Hamlin, Katy L.; Moss, Delynn M.; Nutman, Thomas B.; Priest, Jeffrey W.; Lammie, Patrick J.
2017-01-01
Background Serological antibody levels are a sensitive marker of pathogen exposure, and advances in multiplex assays have created enormous potential for large-scale, integrated infectious disease surveillance. Most methods to analyze antibody measurements reduce quantitative antibody levels to seropositive and seronegative groups, but this can be difficult for many pathogens and may provide lower resolution information than quantitative levels. Analysis methods have predominantly maintained a single disease focus, yet integrated surveillance platforms would benefit from methodologies that work across diverse pathogens included in multiplex assays. Methods/Principal findings We developed an approach to measure changes in transmission from quantitative antibody levels that can be applied to diverse pathogens of global importance. We compared age-dependent immunoglobulin G curves in repeated cross-sectional surveys between populations with differences in transmission for multiple pathogens, including: lymphatic filariasis (Wuchereria bancrofti) measured before and after mass drug administration on Mauke, Cook Islands, malaria (Plasmodium falciparum) before and after a combined insecticide and mass drug administration intervention in the Garki project, Nigeria, and enteric protozoans (Cryptosporidium parvum, Giardia intestinalis, Entamoeba histolytica), bacteria (enterotoxigenic Escherichia coli, Salmonella spp.), and viruses (norovirus groups I and II) in children living in Haiti and the USA. Age-dependent antibody curves fit with ensemble machine learning followed a characteristic shape across pathogens that aligned with predictions from basic mechanisms of humoral immunity. Differences in pathogen transmission led to shifts in fitted antibody curves that were remarkably consistent across pathogens, assays, and populations. Mean antibody levels correlated strongly with traditional measures of transmission intensity, such as the entomological inoculation rate for P. falciparum (Spearman’s rho = 0.75). In both high- and low transmission settings, mean antibody curves revealed changes in population mean antibody levels that were masked by seroprevalence measures because changes took place above or below the seropositivity cutoff. Conclusions/Significance Age-dependent antibody curves and summary means provided a robust and sensitive measure of changes in transmission, with greatest sensitivity among young children. The method generalizes to pathogens that can be measured in high-throughput, multiplex serological assays, and scales to surveillance activities that require high spatiotemporal resolution. Our results suggest quantitative antibody levels will be particularly useful to measure differences in exposure for pathogens that elicit a transient antibody response or for monitoring populations with very high- or very low transmission, when seroprevalence is less informative. The approach represents a new opportunity to conduct integrated serological surveillance for neglected tropical diseases, malaria, and other infectious diseases with well-defined antigen targets. PMID:28542223
Milky Way Kinematics. II. A Uniform Inner Galaxy H I Terminal Velocity Curve
NASA Astrophysics Data System (ADS)
McClure-Griffiths, N. M.; Dickey, John M.
2016-11-01
Using atomic hydrogen (H I) data from the VLA Galactic Plane Survey, we measure the H I terminal velocity as a function of longitude for the first quadrant of the Milky Way. We use these data, together with our previous work on the fourth Galactic quadrant, to produce a densely sampled, uniformly measured, rotation curve of the northern and southern Milky Way between 3 {kpc}\\lt R\\lt 8 {kpc}. We determine a new joint rotation curve fit for the first and fourth quadrants, which is consistent with the fit we published in McClure-Griffiths & Dickey and can be used for estimating kinematic distances interior to the solar circle. Structure in the rotation curves is now exquisitely well defined, showing significant velocity structure on lengths of ˜200 pc, which is much greater than the spatial resolution of the rotation curve. Furthermore, the shape of the rotation curves for the first and fourth quadrants, even after subtraction of a circular rotation fit shows a surprising degree of correlation with a roughly sinusoidal pattern between 4.2\\lt R\\lt 7 kpc.
Impact of fitting algorithms on errors of parameter estimates in dynamic contrast-enhanced MRI
NASA Astrophysics Data System (ADS)
Debus, C.; Floca, R.; Nörenberg, D.; Abdollahi, A.; Ingrisch, M.
2017-12-01
Parameter estimation in dynamic contrast-enhanced MRI (DCE MRI) is usually performed by non-linear least square (NLLS) fitting of a pharmacokinetic model to a measured concentration-time curve. The two-compartment exchange model (2CXM) describes the compartments ‘plasma’ and ‘interstitial volume’ and their exchange in terms of plasma flow and capillary permeability. The model function can be defined by either a system of two coupled differential equations or a closed-form analytical solution. The aim of this study was to compare these two representations in terms of accuracy, robustness and computation speed, depending on parameter combination and temporal sampling. The impact on parameter estimation errors was investigated by fitting the 2CXM to simulated concentration-time curves. Parameter combinations representing five tissue types were used, together with two arterial input functions, a measured and a theoretical population based one, to generate 4D concentration images at three different temporal resolutions. Images were fitted by NLLS techniques, where the sum of squared residuals was calculated by either numeric integration with the Runge-Kutta method or convolution. Furthermore two example cases, a prostate carcinoma and a glioblastoma multiforme patient, were analyzed in order to investigate the validity of our findings in real patient data. The convolution approach yields improved results in precision and robustness of determined parameters. Precision and stability are limited in curves with low blood flow. The model parameter ve shows great instability and little reliability in all cases. Decreased temporal resolution results in significant errors for the differential equation approach in several curve types. The convolution excelled in computational speed by three orders of magnitude. Uncertainties in parameter estimation at low temporal resolution cannot be compensated by usage of the differential equations. Fitting with the convolution approach is superior in computational time, with better stability and accuracy at the same time.
Tang, Yongjiao; Jing, Nan; Zhang, Pudun
2015-11-01
A series of chlorobutyl rubber/polyamide-12 (CIIR/PA-12) blends compatibilized by different amounts of maleic anhydride (MAH) grafted polypropylene (PP-g-MAH) were investigated by attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) mapping. Multivariate curve resolution (MCR) was used to process the FT-IR images. Both the spectra of pure components in the blends and their concentration distributions in a micro-region were acquired. Our results demonstrated that the blend with 15 parts per hundred rubber PP-g-MAH showed the best miscibility. An amide interphase and an imide interphase were inferred by analyzing the spectra of MCR component 3 of the blends with and without PP-g-MAH, respectively. Correspondingly, two different compatibilizing mechanisms were proposed for these blends.
NASA Astrophysics Data System (ADS)
Damay, Nicolas; Forgez, Christophe; Bichat, Marie-Pierre; Friedrich, Guy
2016-11-01
The entropy-variation of a battery is responsible for heat generation or consumption during operation and its prior measurement is mandatory for developing a thermal model. It is generally done through the potentiometric method which is considered as a reference. However, it requires several days or weeks to get a look-up table with a 5 or 10% SoC (State of Charge) resolution. In this study, a calorimetric method based on the inversion of a thermal model is proposed for the fast estimation of a nearly continuous curve of entropy-variation. This is achieved by separating the heats produced while charging and discharging the battery. The entropy-variation is then deduced from the extracted entropic heat. The proposed method is validated by comparing the results obtained with several current rates to measurements made with the potentiometric method.
NASA Technical Reports Server (NTRS)
Wang, Ten-See
1993-01-01
The objective of this study is to benchmark a four-engine clustered nozzle base flowfield with a computational fluid dynamics (CFD) model. The CFD model is a three-dimensional pressure-based, viscous flow formulation. An adaptive upwind scheme is employed for the spatial discretization. The upwind scheme is based on second and fourth order central differencing with adaptive artificial dissipation. Qualitative base flow features such as the reverse jet, wall jet, recompression shock, and plume-plume impingement have been captured. The computed quantitative flow properties such as the radial base pressure distribution, model centerline Mach number and static pressure variation, and base pressure characteristic curve agreed reasonably well with those of the measurement. Parametric study on the effect of grid resolution, turbulence model, inlet boundary condition and difference scheme on convective terms has been performed. The results showed that grid resolution had a strong influence on the accuracy of the base flowfield prediction.
A Hough Transform Global Probabilistic Approach to Multiple-Subject Diffusion MRI Tractography
Aganj, Iman; Lenglet, Christophe; Jahanshad, Neda; Yacoub, Essa; Harel, Noam; Thompson, Paul M.; Sapiro, Guillermo
2011-01-01
A global probabilistic fiber tracking approach based on the voting process provided by the Hough transform is introduced in this work. The proposed framework tests candidate 3D curves in the volume, assigning to each one a score computed from the diffusion images, and then selects the curves with the highest scores as the potential anatomical connections. The algorithm avoids local minima by performing an exhaustive search at the desired resolution. The technique is easily extended to multiple subjects, considering a single representative volume where the registered high-angular resolution diffusion images (HARDI) from all the subjects are non-linearly combined, thereby obtaining population-representative tracts. The tractography algorithm is run only once for the multiple subjects, and no tract alignment is necessary. We present experimental results on HARDI volumes, ranging from simulated and 1.5T physical phantoms to 7T and 4T human brain and 7T monkey brain datasets. PMID:21376655
Recession curve analysis for groundwater levels: case study in Latvia
NASA Astrophysics Data System (ADS)
Gailuma, A.; Vītola, I.; Abramenko, K.; Lauva, D.; Vircavs, V.; Veinbergs, A.; Dimanta, Z.
2012-04-01
Recession curve analysis is powerful and effective analysis technique in many research areas related with hydrogeology where observations have to be made, such as water filtration and absorption of moisture, irrigation and drainage, planning of hydroelectric power production and chemical leaching (elution of chemical substances) as well as in other areas. The analysis of the surface runoff hydrograph`s recession curves, which is performed to conceive the after-effects of interaction of precipitation and surface runoff, has approved in practice. The same method for analysis of hydrograph`s recession curves can be applied for the observations of the groundwater levels. There are manually prepared hydrograph for analysis of recession curves for observation wells (MG2, BG2 and AG1) in agricultural monitoring sites in Latvia. Within this study from the available monitoring data of groundwater levels were extracted data of declining periods, splitted by month. The drop-down curves were manually (by changing the date) moved together, until to find the best match, thereby obtaining monthly drop-down curves, representing each month separately. Monthly curves were combined and manually joined, for obtaining characterizing drop-down curves of the year for each well. Within the process of decreased recession curve analysis, from the initial curve was cut out upward areas, leaving only the drops of the curve, consequently, the curve is transformed more closely to the groundwater flow, trying to take out the impact of rain or drought periods from the curve. Respectively, the drop-down curve is part of the data, collected with hydrograph, where data with the discharge dominates, without considering impact of precipitation. Using the recession curve analysis theory, ready tool "A Visual Basic Spreadsheet Macro for Recession Curve Analysis" was used for selection of data and logarithmic functions matching (K. Posavec et.al., GROUND WATER 44, no. 5: 764-767, 2006), as well as functions were developed by manual processing of data. For displaying data the mathematical model of data equalization was used, finding the corresponding or closest logarithmic function of the recession for the graph. Obtained recession curves were similar but not identical. With full knowledge of the fluctuations of ground water level, it is possible to indirectly (without taking soil samples) determine the filtration coefficient: more rapid decline in the recession curve correspond for the better filtration conditions. This research could be very useful in construction planning, road constructions, agriculture etc. Acknowledgments The authors gratefully acknowledge the funding from ESF Project "Establishment of interdisciplinary scientist group and modeling system for groundwater research" (Agreement No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060EF7)
Analysis of Voyager spectra of the beta Cephei star nu Eridani
NASA Technical Reports Server (NTRS)
Porri, A.; Stalio, R.; Ali, B.; Polidan, R. S.; Morossi, C.
1994-01-01
Voyager 500-1700 A spectrophotometric observations of the beta Cephei star nu Eri are presented and discussed. The Voyager observations were obtained in 1981 and cover six pulsation cycles of the star. These data are supplemented with a set of nine International Ultraviolet Explorer (IUE) SWP high-resolution observations covering one, earlier epoch, pulsation cycle. Light curves are derived from the Voyager data at 1055 and 1425 A. These light curves are found to be consistent in both shape and period with published optical curves. The 1055 A light curve also exhibits a phenomenon not seen in the optical curves: a small but highly significant systematic increase in the flux of the maximum light phases while maintaining a constant minimum light level over the interval of observation. Substantially larger errors in the longer wavelength data preclude discussion of this phenomenon in the 1425 A light curve. Examination of the far-UV continuum in nu Eri during this period shows that the color temperature is lower for the brighter maxima. Analysis of the far-UV continuum at maximum and minimum light yields an effective temperature difference between these two phases of 2200 + or - 750 K. Spectroscopically, three prominent features are seen in the Voyager data: a feature at 985 A mostly due to a blend of C III 977 A, H I Ly gamma 972 A, and N III 990 A; a feature at 1030 A due to H I Ly beta 1026 A and C II 1037 A; and the Si IV resonance doublet near 1400 A. A comparison of the 912-1700 A spectral region in nu Eri with a set of standard, i.e., nonpulsating stars, shows that nu Eri closely resembles the standard both in continuum shape and spectral line strengths with the possible exception of a slight flux excess between 912 and 975 A. The equivalent width of the 985 A feature is shown to vary in strength over the pulsation cycle in antiphase with the light curve and variations seen in the C IV 1548-1551 lines from the IUE data. This behavior of the 985 A feature is most likely caused by variations in the strength of the Ly gamma component of the blend. Comparisons are also made between nu Eri and the only other beta Cephei star studied in the far-UV, BW Vul, with the most notable differences between the two stars being the much larger delta(T(sub eff)) for BW Vul and the almost total absence of abnormalities in observed spectrum of nu Eri.
Bayesian Inference and Application of Robust Growth Curve Models Using Student's "t" Distribution
ERIC Educational Resources Information Center
Zhang, Zhiyong; Lai, Keke; Lu, Zhenqiu; Tong, Xin
2013-01-01
Despite the widespread popularity of growth curve analysis, few studies have investigated robust growth curve models. In this article, the "t" distribution is applied to model heavy-tailed data and contaminated normal data with outliers for growth curve analysis. The derived robust growth curve models are estimated through Bayesian…
Belgacem, O; Pittenauer, E; Openshaw, M E; Hart, P J; Bowdler, A; Allmaier, G
2016-02-15
For the last two decades, curved field reflectron technology has been used in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometers, assisting in the generation of post-source-decay (PSD) or collision-induced dissociation (CID) without decelerating precursor ions, producing true high-energy CID spectra. The result was the generation of product ion mass spectra with product ions typical of high-energy (10 keV and beyond) collision processes. The disadvantage of this approach was the lack of resolution in CID spectra resulting from the excess laser energy deposition used to generate those MS/MS spectra. The work presented in this study overcomes this limitation and includes comprehensive examples of high-energy and high-resolution CID MALDI-MS/MS spectra of biomolecules. The devices used in this study are TOF/RTOF instruments equipped with a high-vacuum MALDI ion source. High-resolution and high-energy CID spectra result from the use of axial spatial distribution focusing (ASDF) in combination with curved field reflectron technology. A CID spectrum of the P14 R1 peptide exhibits product ion resolution in excess of 10,000 (FWHM) but at the same time yields typical high-energy product ions such as w- and [y-2]-type ion series. High-energy CID spectra of lipids, exemplified by a glycerophospholipid and triglyceride, demonstrate C-C backbone fragmentation elucidating the presence of a hydroxyl group in addition to double-bond positioning. A complex high mannose carbohydrate (Man)8 (GlcNAc)2 was also studied at 20 keV collision energy and revealed further high-energy product ions with very high resolution, allowing unambiguous detection and characterization of cross-ring cleavage-related ions. This is the first comprehensive study using a MALDI-TOF/RTOF instrument equipped with a curved field reflectron and an ASDF device prior to the reflectron. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd.
Quality evaluation of pansharpened hyperspectral images generated using multispectral images
NASA Astrophysics Data System (ADS)
Matsuoka, Masayuki; Yoshioka, Hiroki
2012-11-01
Hyperspectral remote sensing can provide a smooth spectral curve of a target by using a set of higher spectral resolution detectors. The spatial resolution of the hyperspectral images, however, is generally much lower than that of multispectral images due to the lower energy of incident radiation. Pansharpening is an image-fusion technique that generates higher spatial resolution multispectral images by combining lower resolution multispectral images with higher resolution panchromatic images. In this study, higher resolution hyperspectral images were generated by pansharpening of simulated lower hyperspectral and higher multispectral data. Spectral and spatial qualities of pansharpened images, then, were accessed in relation to the spectral bands of multispectral images. Airborne hyperspectral data of AVIRIS was used in this study, and it was pansharpened using six methods. Quantitative evaluations of pansharpened image are achieved using two frequently used indices, ERGAS, and the Q index.
NASA Astrophysics Data System (ADS)
Gentile, G.; Famaey, B.; de Blok, W. J. G.
2011-03-01
We present an analysis of 12 high-resolution galactic rotation curves from The HI Nearby Galaxy Survey (THINGS) in the context of modified Newtonian dynamics (MOND). These rotation curves were selected to be the most reliable for mass modelling, and they are the highest quality rotation curves currently available for a sample of galaxies spanning a wide range of luminosities. We fit the rotation curves with the "simple" and "standard" interpolating functions of MOND, and we find that the "simple" function yields better results. We also redetermine the value of a0, and find a median value very close to the one determined in previous studies, a0 = (1.22 ± 0.33) × 10-8 cm s-2. Leaving the distance as a free parameter within the uncertainty of its best independently determined value leads to excellent quality fits for 75% of the sample. Among the three exceptions, two are also known to give relatively poor fits in Newtonian dynamics plus dark matter. The remaining case (NGC 3198) presents some tension between the observations and the MOND fit, which might, however, be explained by the presence of non-circular motions, by a small distance, or by a value of a0 at the lower end of our best-fit interval, 0.9 × 10-8 cm s-2. The best-fit stellar M/L ratios are generally in remarkable agreement with the predictions of stellar population synthesis models. We also show that the narrow range of gravitational accelerations found to be generated by dark matter in galaxies is consistent with the narrow range of additional gravity predicted by MOND.
Koh, Dong-Wan; Park, Jae-Woong; Lim, Jung-Hoon; Yea, Myeong-Jai; Bang, Dae-Young
2018-02-01
A novel, rapid, simultaneous analysis method for five sugars (fructose, glucose, sucrose, maltose, and lactose) and eight sugar alcohols (erythritol, xylitol, sorbitol, mannitol, inositol, maltitol, lactitol, and isomalt) was developed using UPLC-ELSD, without derivatization. The analysis conditions, including the gradient conditions, modifier concentration and column length, were optimized. Thirteen sugars and sugar alcohols were separated well and the resolution of their peaks was above 1.0. Their optimum analysis condition can be analyzed within 15min. Standard curves for sugars and sugar alcohols with concentrations of 5.0-0.1% and 2.0-0.05% are presented herein, and their correlation coefficients are found to be above 0.999 and the limit of detection (LOD) was around 0.006-0.018%. This novel analysis system can be used for foodstuffs such as candy, chewing gum, jelly, chocolate, processed chocolate products, and snacks containing 0.21-46.41% of sugars and sugar alcohols. Copyright © 2017 Elsevier Ltd. All rights reserved.
Study of jojoba oil aging by FTIR.
Le Dréau, Y; Dupuy, N; Gaydou, V; Joachim, J; Kister, J
2009-05-29
As the jojoba oil was used in cosmetic, pharmaceutical, dietetic food, animal feeding, lubrication, polishing and bio-diesel fields, it was important to study its aging at high temperature by oxidative process. In this work a FT-MIR methodology was developed for monitoring accelerate oxidative degradation of jojoba oils. Principal component analysis (PCA) was used to differentiate various samples according to their origin and obtaining process, and to differentiate oxidative conditions applied on oils. Two spectroscopic indices were calculated to report simply the oxidation phenomenon. Results were confirmed and deepened by multivariate curve resolution-alternative least square method (MCR-ALS). It allowed identifying chemical species produced or degraded during the thermal treatment according to a SIMPLISMA pretreatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barlow, B. N.; Dunlap, B. H.; Clemens, J. C.
We report the discovery of oscillations in the hot subdwarf B (sdB) star JL 166 from time-series photometry using the Goodman Spectrograph on the 4.1 m Southern Astrophysical Research Telescope. Previous spectroscopic and photometric observations place the star near the hot end of the empirical sdB instability strip and imply the presence of a cool companion. Amplitude spectra of the stellar light curve reveal at least 10 independent pulsation modes with periods ranging from 97 to 178 s and amplitudes from 0.9 to 4 mma. We adopt atmospheric parameters of T {sub eff} = 34,350 K and log g =more » 5.75 from a model atmosphere analysis of our time-averaged, medium-resolution spectrum.« less
NASA Astrophysics Data System (ADS)
Rivers, Thane D.
1992-06-01
An Automated Scanning Monochromator was developed using: an Acton Research Corporation (ARC) Monochromator, Ealing Photomultiplier Tube and a Macintosh PC in conjunction with LabVIEW software. The LabVIEW Virtual Instrument written to operate the ARC Monochromator is a mouse driven user friendly program developed for automated spectral data measurements. Resolution and sensitivity of the Automated Scanning Monochromator System were determined experimentally. The Automated monochromator was then used for spectral measurements of a Platinum Lamp. Additionally, the reflectivity curve for a BaSO4 coated screen has been measured. Reflectivity measurements indicate a large discrepancy with expected results. Further analysis of the reflectivity experiment is required for conclusive results.
Absolute Properties of the Eclipsing Binary Star BF Draconis
NASA Astrophysics Data System (ADS)
Lacy, Claud H. Sandberg; Torres, Guillermo; Fekel, Francis C.; Sabby, Jeffrey A.; Claret, Antonio
2012-06-01
BF Dra is now known to be an eccentric double-lined F6+F6 binary star with relatively deep (0.7 mag) partial eclipses. Previous studies of the system are improved with 7494 differential photometric observations from the URSA WebScope and 9700 from the NFO WebScope, 106 high-resolution spectroscopic observations from the Tennessee State University 2 m automatic spectroscopic telescope and the 1 m coudé-feed spectrometer at Kitt Peak National Observatory, and 31 accurate radial velocities from the CfA. Very accurate (better than 0.6%) masses and radii are determined from analysis of the two new light curves and four radial velocity curves. Theoretical models match the absolute properties of the stars at an age of about 2.72 Gyr and [Fe/H] = -0.17, and tidal theory correctly confirms that the orbit should still be eccentric. Our observations of BF Dra constrain the convective core overshooting parameter to be larger than about 0.13 Hp . We find, however, that standard tidal theory is unable to match the observed slow rotation rates of the components' surface layers.
Juhasz, E.; Muller, P.; Toth-Makk, A.; Hamor, T.; Farkas-Bulla, J.; Suto-Szentai, M.; Phillips, R.L.; Ricketts, B.
1996-01-01
Detailed sedimentological and paleontological analyses were carried out on more than 13,000 m of core from ten boreholes in the Late Neogene sediments of the Pannonian Basin, Hungary. These data provide the basis for determining the character of high-order depositional cycles and their stacking patterns. In the Late Neogene sediments of the Pannonian Basin there are two third-order sequences: the Late Miocene and the Pliocene ones. The Miocene sequence shows a regressive, upward-coarsening trend. There are four distinguishable sedimentary units in this sequence: the basal transgressive, the lower aggradational, the progradational and the upper aggradational units. The Pliocene sequence is also of aggradational character. The progradation does not coincide in time in the wells within the basin. The character of the relative water-level curves is similar throughout the basin but shows only very faint similarity to the sea-level curve. Therefore, it is unlikely that eustasy played any significant role in the pattern of basin filling. Rather, the dominant controls were the rapidly changing basin subsidence and high sedimentation rates, together with possible climatic factors.
Rehder, Sönke; Wu, Jian X; Laackmann, Julian; Moritz, Hans-Ulrich; Rantanen, Jukka; Rades, Thomas; Leopold, Claudia S
2013-01-23
The objective of this study was to monitor the amorphous-to-crystalline solid-state phase transformation kinetics of the model drug ibuprofen with spectroscopic methods during acoustic levitation. Chemical and physical information was obtained by real-time near infrared (NIRS) and Raman spectroscopy measurements. The recrystallisation kinetic parameters (overall recrystallisation rate constant β and the time needed to reach 50% of the equilibrated level t(50)), were determined using a multivariate curve resolution approach. The acoustic levitation device coupled with non-invasive spectroscopy enabled monitoring of the recrystallisation process of the difficult-to-handle (adhesive) amorphous sample. The application of multivariate curve resolution enabled isolation of the underlying pure spectra, which corresponded well with the reference spectra of amorphous and crystalline ibuprofen. The recrystallisation kinetic parameters were estimated from the recrystallisation profiles. While the empirical recrystallisation rate constant determined by NIR and Raman spectroscopy were comparable, the lag time for recrystallisation was significantly lower with Raman spectroscopy as compared to NIRS. This observation was explained by the high energy density of the Raman laser beam, which might have led to local heating effects of the sample and thus reduced the recrystallisation onset time. It was concluded that acoustic levitation with NIR and Raman spectroscopy combined with multivariate curve resolution allowed direct determination of the recrystallisation kinetics of amorphous drugs and thus is a promising technique for monitoring solid-state phase transformations of adhesive small-sized samples during the early phase of drug development. Copyright © 2012 Elsevier B.V. All rights reserved.
Spectroscopic Measurements of the Far-Ultraviolet Dust Attenuation Curve at z ˜ 3
NASA Astrophysics Data System (ADS)
Reddy, Naveen A.; Steidel, Charles C.; Pettini, Max; Bogosavljević, Milan
2016-09-01
We present the first spectroscopic measurements of the shape of the far-ultraviolet (far-UV; λ =950{--}1500 Å) dust attenuation curve at high redshift (z˜ 3). Our analysis employs rest-frame UV spectra of 933 galaxies at z˜ 3, 121 of which have very deep spectroscopic observations (≳ 7 hr) at λ =850{--}1300 \\mathring{{A}} , with the Low Resolution Imaging Spectrograph on the Keck Telescope. By using an iterative approach in which we calculate the ratios of composite spectra in different bins of continuum color excess, E(B-V), we derive a dust curve that implies a lower attenuation in the far-UV for a given E(B-V) than those obtained with standard attenuation curves. We demonstrate that the UV composite spectra of z˜ 3 galaxies can be modeled well by assuming our new attenuation curve, a high covering fraction of H I, and absorption from the Lyman-Werner bands of {{{H}}}2 with a small (≲ 20 % ) covering fraction. The low covering fraction of {{{H}}}2 relative to that of the {{H}} {{I}} and dust suggests that most of the dust in the ISM of typical galaxies at z˜ 3 is unrelated to the catalysis of {{{H}}}2, and is associated with other phases of the ISM (I.e., the ionized and neutral gas). The far-UV dust curve implies a factor of ≈ 2 lower dust attenuation of Lyman continuum (ionizing) photons relative to those inferred from the most commonly assumed attenuation curves for L* galaxies at z˜ 3. Our results may be utilized to assess the degree to which ionizing photons are attenuated in H II regions or, more generally, in the ionized or low column density (N({{H}} {{I}})≲ {10}17.2 cm-2) neutral ISM of high-redshift galaxies. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.
Culzoni, María J; Aucelio, Ricardo Q; Escandar, Graciela M
2012-08-31
Based on green analytical chemistry principles, an efficient approach was applied for the simultaneous determination of galantamine, a widely used cholinesterase inhibitor for the treatment of Alzheimer's disease, and its major metabolites in serum samples. After a simple serum deproteinization step, second-order data were rapidly obtained (less than 6 min) with a chromatographic system operating in the isocratic regime using ammonium acetate/acetonitrile (94:6) as mobile phase. Detection was made with a fast-scanning spectrofluorimeter, which allowed the efficient collection of data to obtain matrices of fluorescence intensity as a function of retention time and emission wavelength. Successful resolution was achieved in the presence of matrix interferences in serum samples using multivariate curve resolution-alternating least-squares (MCR-ALS). The developed approach allows the quantification of the analytes at levels found in treated patients, without the need of applying either preconcentration or extraction steps. Limits of detection in the range between 8 and 11 ng mL(-1), relative prediction errors from 7 to 12% and coefficients of variation from 4 to 7% were achieved. Copyright © 2012 Elsevier B.V. All rights reserved.
Richards, Selena; Miller, Robert; Gemperline, Paul
2008-02-01
An extension to the penalty alternating least squares (P-ALS) method, called multi-way penalty alternating least squares (NWAY P-ALS), is presented. Optionally, hard constraints (no deviation from predefined constraints) or soft constraints (small deviations from predefined constraints) were applied through the application of a row-wise penalty least squares function. NWAY P-ALS was applied to the multi-batch near-infrared (NIR) data acquired from the base catalyzed esterification reaction of acetic anhydride in order to resolve the concentration and spectral profiles of l-butanol with the reaction constituents. Application of the NWAY P-ALS approach resulted in the reduction of the number of active constraints at the solution point, while the batch column-wise augmentation allowed hard constraints in the spectral profiles and resolved rank deficiency problems of the measurement matrix. The results were compared with the multi-way multivariate curve resolution (MCR)-ALS results using hard and soft constraints to determine whether any advantages had been gained through using the weighted least squares function of NWAY P-ALS over the MCR-ALS resolution.
High-resolution clustered pinhole (131)Iodine SPECT imaging in mice.
van der Have, Frans; Ivashchenko, Oleksandra; Goorden, Marlies C; Ramakers, Ruud M; Beekman, Freek J
2016-08-01
High-resolution pre-clinical (131)I SPECT can facilitate development of new radioiodine therapies for cancer. To this end, it is important to limit resolution-degrading effects of pinhole edge penetration by the high-energy γ-photons of iodine. Here we introduce, optimize and validate (131)I SPECT performed with a dedicated high-energy clustered multi-pinhole collimator. A SPECT-CT system (VECTor/CT) with stationary gamma-detectors was equipped with a tungsten collimator with clustered pinholes. Images were reconstructed with pixel-based OSEM, using a dedicated (131)I system matrix that models the distance- and energy-dependent resolution and sensitivity of each pinhole, as well as the intrinsic detector blurring and variable depth of interaction in the detector. The system performance was characterized with phantoms and in vivo static and dynamic (131)I-NaI scans of mice. Reconstructed image resolution reached 0.6mm, while quantitative accuracy measured with a (131)I filled syringe reaches an accuracy of +3.6±3.5% of the gold standard value. In vivo mice scans illustrated a clear shape of the thyroid and biodistribution of (131)I within the animal. Pharmacokinetics of (131)I was assessed with 15-s time frames from the sequence of dynamic images and time-activity curves of (131)I-NaI. High-resolution quantitative and fast dynamic (131)I SPECT in mice is possible by means of a high-energy collimator and optimized system modeling. This enables analysis of (131)I uptake even within small organs in mice, which can be highly valuable for development and optimization of targeted cancer therapies. Copyright © 2016 Elsevier Inc. All rights reserved.
Fast dynamic ventilation MRI of hyperpolarized 129 Xe using spiral imaging.
Doganay, Ozkan; Matin, Tahreema N; Mcintyre, Anthony; Burns, Brian; Schulte, Rolf F; Gleeson, Fergus V; Bulte, Daniel
2018-05-01
To develop and optimize a rapid dynamic hyperpolarized 129 Xe ventilation (DXeV) MRI protocol and investigate the feasibility of capturing pulmonary signal-time curves in human lungs. Spiral k-space trajectories were designed with the number of interleaves N int = 1, 2, 4, and 8 corresponding to voxel sizes of 8 mm, 5 mm, 4 mm, and 2.5 mm, respectively, for field of view = 15 cm. DXeV images were acquired from a gas-flow phantom to investigate the ability of N int = 1, 2, 4, and 8 to capture signal-time curves. A finite element model was constructed to investigate gas-flow dynamics corroborating the experimental signal-time curves. DXeV images were also carried out in six subjects (three healthy and three chronic obstructive pulmonary disease subjects). DXeV images and numerical modelling of signal-time curves permitted the quantification of temporal and spatial resolutions for different numbers of spiral interleaves. The two-interleaved spiral (N int = 2) was found to be the most time-efficient to obtain DXeV images and signal-time curves of whole lungs with a temporal resolution of 624 ms for 13 slices. Signal-time curves were well matched in three healthy volunteers. The Spearman's correlations of chronic obstructive pulmonary disease subjects were statistically different from three healthy subjects (P < 0.05). The N int = 2 spiral demonstrates the successful acquisition of DXeV images and signal-time curves in healthy subjects and chronic obstructive pulmonary disease patients. Magn Reson Med 79:2597-2606, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Bayesian Non-Stationary Index Gauge Modeling of Gridded Precipitation Extremes
NASA Astrophysics Data System (ADS)
Verdin, A.; Bracken, C.; Caldwell, J.; Balaji, R.; Funk, C. C.
2017-12-01
We propose a Bayesian non-stationary model to generate watershed scale gridded estimates of extreme precipitation return levels. The Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) dataset is used to obtain gridded seasonal precipitation extremes over the Taylor Park watershed in Colorado for the period 1981-2016. For each year, grid cells within the Taylor Park watershed are aggregated to a representative "index gauge," which is input to the model. Precipitation-frequency curves for the index gauge are estimated for each year, using climate variables with significant teleconnections as proxies. Such proxies enable short-term forecasting of extremes for the upcoming season. Disaggregation ratios of the index gauge to the grid cells within the watershed are computed for each year and preserved to translate the index gauge precipitation-frequency curve to gridded precipitation-frequency maps for select return periods. Gridded precipitation-frequency maps are of the same spatial resolution as CHIRPS (0.05° x 0.05°). We verify that the disaggregation method preserves spatial coherency of extremes in the Taylor Park watershed. Validation of the index gauge extreme precipitation-frequency method consists of ensuring extreme value statistics are preserved on a grid cell basis. To this end, a non-stationary extreme precipitation-frequency analysis is performed on each grid cell individually, and the resulting frequency curves are compared to those produced by the index gauge disaggregation method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreozzi, J; Bruza, P; Saunders, S
Purpose: To investigate the viability of using Cherenkov imaging as a fast and robust method for quality assurance tests in the presence of a magnetic field, where other instruments can be limited. Methods: Water tank measurements were acquired from a clinically utilized adaptive magnetic resonance image guided radiation therapy (MR-IGRT) machine with three multileaf-collimator equipped 60Co sources. Cherenkov imaging used an intensified charge coupled device (ICCD) camera placed 3.5m from the treatment isocenter, looking down the bore of the 0.35T MRI into a water tank. Images were post-processed to make quantitative comparison between Cherenkov light intensity with both film andmore » treatment planning system predictions, in terms of percent depth dose curves as well as lateral beam profile measurements. A TG-119 commissioning test plan (C4: C-Shape) was imaged in real-time at 6.33 frames per second to investigate the temporal and spatial resolution of the Cherenkov imaging technique. Results: A .33mm/pixel Cherenkov image resolution was achieved across 1024×1024 pixels in this setup. Analysis of the Cherenkov image of a 10.5×10.5cm treatment beam in the water tank successfully measured the beam width at the depth of maximum dose within 1.2% of the film measurement at the same point. The percent depth dose curve for the same beam was on average within 2% of ionization chamber measurements for corresponding depths between 3–100mm. Cherenkov video of the TG-119 test plan provided qualitative agreement with the treatment planning system dose predictions, and a novel temporal verification of the treatment. Conclusions: Cherenkov imaging was successfully used to make QA measurements of percent depth dose curves and cross beam profiles of MRI-IGRT radiotherapy machines after only several seconds of beam-on time and data capture; both curves were extracted from the same data set. Video-rate imaging of a dynamic treatment plan provided new information regarding temporal dose deposition. This study has been funded by NIH grants R21EB17559 and R01CA109558, as well as Norris Cotton Cancer Center Pilot funding.« less
Resolution of a Low-Lying Placenta and Placenta Previa Diagnosed at the Midtrimester Anatomy Scan.
Durst, Jennifer K; Tuuli, Methodius G; Temming, Lorene A; Hamilton, Owen; Dicke, Jeffrey M
2018-02-05
To identify the incidence and resolution rates of a low-lying placenta or placenta previa and to assess the optimal time to perform follow-up ultrasonography (US) to assess for resolution. We conducted a retrospective cohort study of women with a diagnosis of a low-lying placenta or placenta previa at routine anatomic screening. Follow-up US examinations were reviewed to estimate the proportion of women who had resolution. A Kaplan-Meier survival curve was generated to estimate the median time to resolution. The distance of the placental edge from the internal cervical os was used to categorize the placenta as previa or low-lying (0.1-10 or ≥ 10-20 mm). A time-to-event analysis was used to estimate predictive factors and the time to resolution by distance from the os. A total of 1663 (8.7%) women had a diagnosis of a low-lying placenta or placenta previa. The cumulative resolution for women who completed 1 or more additional US examinations was 91.9% (95% confidence interval, 90.2%-93.3%). The median time to resolution was 10 (interquartile range [IQR], 7-13) weeks. The distance from the internal cervical os was known for 658 (51.0%) women. The probability of resolution was inversely proportional to the distance from the internal os: 99.5% (≥10-20 mm), 95.4% (0.1-10 mm), and 72.3% (placenta previa; P < .001). The median times to resolution were 9 (IQR, 7-12) weeks for 10 to 20 mm, 10 (IQR, 7-13) weeks for 0.1 to 10 mm, and 12 (IQR, 9-15) weeks for placenta previa (P = .0003, log rank test). A low-lying placenta or placenta previa diagnosed at the midtrimester anatomy survey resolves in most patients. Resolution is near universal in patients with an initial distance from the internal os of 10 mm or greater. © 2018 by the American Institute of Ultrasound in Medicine.
Morinha, Francisco; Travassos, Paulo; Seixas, Fernanda; Santos, Nuno; Sargo, Roberto; Sousa, Luís; Magalhães, Paula; Cabral, João A; Bastos, Estela
2013-05-01
High-resolution melting (HRM) analysis is a very attractive and flexible advanced post-PCR method with high sensitivity/specificity for simple, fast and cost-effective genotyping based on the detection of specific melting profiles of PCR products. Next generation real-time PCR systems, along with improved saturating DNA-binding dyes, enable the direct acquisition of HRM data after quantitative PCR. Melting behaviour is particularly influenced by the length, nucleotide sequence and GC content of the amplicons. This method is expanding rapidly in several research areas such as human genetics, reproductive biology, microbiology and ecology/conservation of wild populations. Here we have developed a successful HRM protocol for avian sex identification based on the amplification of sex-specific CHD1 fragments. The melting curve patterns allowed efficient sexual differentiation of 111 samples analysed (plucked feathers, muscle tissues, blood and oral cavity epithelial cells) of 14 bird species. In addition, we sequenced the amplified regions of the CHD1 gene and demonstrated the usefulness of this strategy for the genotype discrimination of various amplicons (CHD1Z and CHD1W), which have small size differences, ranging from 2 bp to 44 bp. The established methodology clearly revealed the advantages (e.g. closed-tube system, high sensitivity and rapidity) of a simple HRM assay for accurate sex differentiation of the species under study. The requirements, strengths and limitations of the method are addressed to provide a simple guide for its application in the field of molecular sexing of birds. The high sensitivity and resolution relative to previous real-time PCR methods makes HRM analysis an excellent approach for improving advanced molecular methods for bird sexing. © 2013 Blackwell Publishing Ltd.
High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation
NASA Technical Reports Server (NTRS)
Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)
2000-01-01
We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.
Using the weighted area under the net benefit curve for decision curve analysis.
Talluri, Rajesh; Shete, Sanjay
2016-07-18
Risk prediction models have been proposed for various diseases and are being improved as new predictors are identified. A major challenge is to determine whether the newly discovered predictors improve risk prediction. Decision curve analysis has been proposed as an alternative to the area under the curve and net reclassification index to evaluate the performance of prediction models in clinical scenarios. The decision curve computed using the net benefit can evaluate the predictive performance of risk models at a given or range of threshold probabilities. However, when the decision curves for 2 competing models cross in the range of interest, it is difficult to identify the best model as there is no readily available summary measure for evaluating the predictive performance. The key deterrent for using simple measures such as the area under the net benefit curve is the assumption that the threshold probabilities are uniformly distributed among patients. We propose a novel measure for performing decision curve analysis. The approach estimates the distribution of threshold probabilities without the need of additional data. Using the estimated distribution of threshold probabilities, the weighted area under the net benefit curve serves as the summary measure to compare risk prediction models in a range of interest. We compared 3 different approaches, the standard method, the area under the net benefit curve, and the weighted area under the net benefit curve. Type 1 error and power comparisons demonstrate that the weighted area under the net benefit curve has higher power compared to the other methods. Several simulation studies are presented to demonstrate the improvement in model comparison using the weighted area under the net benefit curve compared to the standard method. The proposed measure improves decision curve analysis by using the weighted area under the curve and thereby improves the power of the decision curve analysis to compare risk prediction models in a clinical scenario.
High resolution DNA melting analysis: an application for prenatal control of alpha-thalassemia.
Sirichotiyakul, Supatra; Wanapirak, Chanane; Saetung, Rattika; Sanguansermsri, Torpong
2010-04-01
To report the use of real-time gap-PCR using SYTO9 with high-resolution melting analysis (HRMA) in prenatal diagnosis of alpha-thalassemia 1. Real-time gap-PCR using SYTO9 with HRMA was performed in 33 DNA samples from chorionic villi sampling (8 normal, 16 heterozygous, and 9 homozygous) to determine the alpha-thalassemia 1 gene [normal and Southeast Asia (-SEA) allele]. The dissociation curve analysis in normal and - SEA allele gave a peak of T(m) at 91.80 +/- 0.14 degrees C and 88.67 +/- 0.08 degrees C, respectively. Normal genotype and homozygous alpha-thalassemia 1 showed a single peak of T(m) that corresponded to their alleles. The heterozygotes gave both peaks with higher normal peak and smaller - SEA peak. Thirty one samples showed consistent results with the conventional gap-PCR. Two samples with ambiguous results were confirmed to be maternal DNA contamination on real-time quantitative PCR and microsatellite assay. HRMA from both samples showed similar pattern to that of heterozygotes. However, they showed much smaller normal peak compared with the - SEA peak, which is in contrast to those of heterozygotes and can readily be distinguished. HRMA with SYTO9 is feasible for prenatal diagnosis of alpha-thalassemia. It had potential advantage of prompt detection maternal DNA contamination. Copyright (c) 2010 John Wiley & Sons, Ltd.
Pont, Laura; Benavente, Fernando; Jaumot, Joaquim; Tauler, Romà; Alberch, Jordi; Ginés, Silvia; Barbosa, José; Sanz-Nebot, Victoria
2016-03-01
In this work, an untargeted metabolomic approach based on sensitive analysis by on-line solid-phase extraction capillary electrophoresis mass spectrometry (SPE-CE-MS) in combination with multivariate data analysis is proposed as an efficient method for the identification of biomarkers of Huntington's disease (HD) progression in plasma. For this purpose, plasma samples from wild-type (wt) and HD (R6/1) mice of different ages (8, 12, and 30 weeks), were analyzed by C18 -SPE-CE-MS in order to obtain the characteristic electrophoretic profiles of low molecular mass compounds. Then, multivariate curve resolution alternating least squares (MCR-ALS) was applied to the multiple full scan MS datasets. This strategy permitted the resolution of a large number of metabolites being characterized by their electrophoretic peaks and their corresponding mass spectra. A total number of 29 compounds were relevant to discriminate between wt and HD plasma samples, as well as to follow-up the HD progression. The intracellular signaling was found to be the most affected metabolic pathway in HD mice after 12 weeks of birth, when mice already showed motor coordination deficiencies and cognitive decline. This fact agreed with the atrophy and dysfunction of specific neurons, loss of several types of receptors, and changed expression of neurotransmitters. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Marolf, Angela; Blaik, Margaret; Ackerman, Norman; Watson, Elizabeth; Gibson, Nicole; Thompson, Margret
2008-01-01
The role of digital imaging is increasing as these systems are becoming more affordable and accessible. Advantages of computed radiography compared with conventional film/screen combinations include improved contrast resolution and postprocessing capabilities. Computed radiography's spatial resolution is inferior to conventional radiography; however, this limitation is considered clinically insignificant. This study prospectively compared digital imaging and conventional radiography in detecting small volume pneumoperitoneum. Twenty cadaver dogs (15-30 kg) were injected with 0.25, 0.25, and 0.5 ml for 1 ml total of air intra-abdominally, and radiographed sequentially using computed and conventional radiographic technologies. Three radiologists independently evaluated the images, and receiver operating curve (ROC) analysis compared the two imaging modalities. There was no statistical difference between computed and conventional radiography in detecting free abdominal air, but overall computed radiography was relatively more sensitive based on ROC analysis. Computed radiographic images consistently and significantly demonstrated a minimal amount of 0.5 ml of free air based on ROC analysis. However, no minimal air amount was consistently or significantly detected with conventional film. Readers were more likely to detect free air on lateral computed images than the other projections, with no significant increased sensitivity between film/screen projections. Further studies are indicated to determine the differences or lack thereof between various digital imaging systems and conventional film/screen systems.
Model-independent Exoplanet Transit Spectroscopy
NASA Astrophysics Data System (ADS)
Aronson, Erik; Piskunov, Nikolai
2018-05-01
We propose a new data analysis method for obtaining transmission spectra of exoplanet atmospheres and brightness variation across the stellar disk from transit observations. The new method is capable of recovering exoplanet atmosphere absorption spectra and stellar specific intensities without relying on theoretical models of stars and planets. We simultaneously fit both stellar specific intensity and planetary radius directly to transit light curves. This allows stellar models to be removed from the data analysis. Furthermore, we use a data quality weighted filtering technique to achieve an optimal trade-off between spectral resolution and reconstruction fidelity homogenizing the signal-to-noise ratio across the wavelength range. Such an approach is more efficient than conventional data binning onto a low-resolution wavelength grid. We demonstrate that our analysis is capable of reproducing results achieved by using an explicit quadratic limb-darkening equation and that the filtering technique helps eliminate spurious spectral features in regions with strong telluric absorption. The method is applied to the VLT FORS2 observations of the exoplanets GJ 1214 b and WASP-49 b, and our results are in agreement with previous studies. Comparisons between obtained stellar specific intensity and numerical models indicates that the method is capable of accurately reconstructing the specific intensity. The proposed method enables more robust characterization of exoplanetary atmospheres by separating derivation of planetary transmission and stellar specific intensity spectra (that is model-independent) from chemical and physical interpretation.
Analysis and Recognition of Curve Type as The Basis of Object Recognition in Image
NASA Astrophysics Data System (ADS)
Nugraha, Nurma; Madenda, Sarifuddin; Indarti, Dina; Dewi Agushinta, R.; Ernastuti
2016-06-01
An object in an image when analyzed further will show the characteristics that distinguish one object with another object in an image. Characteristics that are used in object recognition in an image can be a color, shape, pattern, texture and spatial information that can be used to represent objects in the digital image. The method has recently been developed for image feature extraction on objects that share characteristics curve analysis (simple curve) and use the search feature of chain code object. This study will develop an algorithm analysis and the recognition of the type of curve as the basis for object recognition in images, with proposing addition of complex curve characteristics with maximum four branches that will be used for the process of object recognition in images. Definition of complex curve is the curve that has a point of intersection. By using some of the image of the edge detection, the algorithm was able to do the analysis and recognition of complex curve shape well.
Parastar, Hadi; Garreta-Lara, Elba; Campos, Bruno; Barata, Carlos; Lacorte, Silvia; Tauler, Roma
2018-06-01
The performances of gas chromatography with mass spectrometry and of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry are examined through the comparison of Daphnia magna metabolic profiles. Gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with mass spectrometry were used to compare the concentration changes of metabolites under saline conditions. In this regard, a chemometric strategy based on wavelet compression and multivariate curve resolution-alternating least squares is used to compare the performances of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry for the untargeted metabolic profiling of Daphnia magna in control and salinity-exposed samples. Examination of the results confirmed the outperformance of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry over gas chromatography with mass spectrometry for the detection of metabolites in D. magna samples. The peak areas of multivariate curve resolution-alternating least squares resolved elution profiles in every sample analyzed by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry were arranged in a new data matrix that was then modeled by partial least squares discriminant analysis. The control and salt-exposed daphnids samples were discriminated and the most relevant metabolites were estimated using variable importance in projection and selectivity ratio values. Salinity de-regulated 18 metabolites from metabolic pathways involved in protein translation, transmembrane cell transport, carbon metabolism, secondary metabolism, glycolysis, and osmoregulation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phenomapping of rangelands in South Africa using time series of RapidEye data
NASA Astrophysics Data System (ADS)
Parplies, André; Dubovyk, Olena; Tewes, Andreas; Mund, Jan-Peter; Schellberg, Jürgen
2016-12-01
Phenomapping is an approach which allows the derivation of spatial patterns of vegetation phenology and rangeland productivity based on time series of vegetation indices. In our study, we propose a new spatial mapping approach which combines phenometrics derived from high resolution (HR) satellite time series with spatial logistic regression modeling to discriminate land management systems in rangelands. From the RapidEye time series for selected rangelands in South Africa, we calculated bi-weekly noise reduced Normalized Difference Vegetation Index (NDVI) images. For the growing season of 20112012, we further derived principal phenology metrics such as start, end and length of growing season and related phenological variables such as amplitude, left derivative and small integral of the NDVI curve. We then mapped these phenometrics across two different tenure systems, communal and commercial, at the very detailed spatial resolution of 5 m. The result of a binary logistic regression (BLR) has shown that the amplitude and the left derivative of the NDVI curve were statistically significant. These indicators are useful to discriminate commercial from communal rangeland systems. We conclude that phenomapping combined with spatial modeling is a powerful tool that allows efficient aggregation of phenology and productivity metrics for spatially explicit analysis of the relationships of crop phenology with site conditions and management. This approach has particular potential for disaggregated and patchy environments such as in farming systems in semi-arid South Africa, where phenology varies considerably among and within years. Further, we see a strong perspective for phenomapping to support spatially explicit modelling of vegetation.
Li, Huimin; Yao, Liang; Jin, Penghui; Hu, Lidong; Li, Xiaofei; Guo, Tiankang; Yang, Kehu
2018-05-11
Neoadjuvant chemotherapy (NAC) has become an essential treatment for breast cancer. However, there is still no consensus on the best tool to evaluate pathological response to NAC. Two reviewers systematically searched Cochrane, PubMed, EMBASE, Web of Science, and CBM (last updated in February 2017) for eligible articles. We independently screened and selected studies that conformed to the inclusion criteria and extracted the requisite data. Pooled sensitivity, specificity, and the area under the SROC curve were calculated to estimate the diagnostic accuracy of magnetic resonance imaging (MRI) and positron emission computed tomography (PET/CT). And the relative DOR (RDOR) was used to compare accuracy for levels of the covariable. Thirteen studies involving 575 patients who underwent MRI and 618 who underwent PET/CT were included in our analysis. The pooled sensitivity and specificity of MRI were 0.88 (95% CI: 0.78-0.94) and 0.69 (95% CI: 0.51-0.83), respectively. The corresponding values for PET/CT were 0.77 (95% CI: 0.58-0.90) and 0.78 (95% CI: 0.63-0.88), respectively. The area under the SROC curve for MRI and PET/CT were 0.88 and 0.84, respectively. And the RDOR = 1.44 (95% CI, 0.46-4.47 P = 0.83). MRI had a higher sensitivity and PET/CT had a higher specificity in predicting the pathologic response after NAC in patients with breast cancer. According to the area under the SROC curve and anatomic discriminative resolution, MRI is the more suitable recommendation for predicting the pathologic response after NAC. Copyright © 2018 Elsevier Ltd. All rights reserved.
Aihara, Masamune; Yamamoto, Shigeru; Nishioka, Hiroko; Inoue, Yutaro; Hamano, Kimikazu; Oka, Masaaki; Mizukami, Yoichi
2012-06-15
G protein-coupled receptor 30/G protein estrogen receptor-1 (GPR30/GPER-1) is a novel membrane receptor for estrogen whose mRNA is expressed at high levels in estrogen-dependent cells such as breast cancer cell lines. However, mutations in GRP30 related to diseases remain unreported. To detect unknown mutations in the GPR30 open reading frame (ORF) quickly, the experimental conditions for high-resolution melting (HRM) analysis were examined for PCR primers, Taq polymerases, saturation DNA binding dyes, Mg(2+) concentration, and normalized temperatures. Nine known SNPs and 13 artificial point mutations within the GPR30 ORF, as well as single nucleotide variants in DNA extracted from subjects with breast cancers were tested under the optimal experimental conditions. The combination of Expand High Fidelity(PLUS) and SYTO9 in the presence of 2.0 mM MgCl(2) produced the best separation in melting curves of mutations in all regions of the GPR30 ORF. Under these experimental conditions, the mutations were clearly detected in both heterozygotes and homozygotes. HRM analysis of GPR30 using genomic DNA from subjects with breast cancers showed a novel single nucleotide variant, 111C>T in GPR30 and 4 known SNPs. The experimental conditions determined in this study for HRM analysis are useful for high throughput assays to detect unknown mutations within the GPR30 ORF. Copyright © 2012 Elsevier B.V. All rights reserved.
Chen, Ze-yong; Peng, Rong-fei; Zhang, Zhan-xia
2002-06-01
An atomic emission spectrometer based on acousto-optic tunable filter (AOTF) was self-constructed and was used to evaluate its practical use in atomic emission analysis. The AOTF used was of model TEAF5-0.36-0.52-S (Brimrose, USA) and the frequency of the direct digital RF synthesizer ranges from 100 MHz to 200 MHz. ICP and PMT were used as light source and detector respectively. The software, written in Visual C++ and running on the Windows 98 platform, is of an utility program system having two data banks and multiwindows. The wavelength calibration was performed with 14 emission lines of Ca, Y, Li, Eu, Sr and Ba using a tenth-order polynomial for line fitting method. The absolute error of the peak position was less than 0.1 nm, and the peak deviation was only 0.04 nm as the PMT varied from 337.5 V to 412.5 V. The scanning emission spectra and the calibration curves of Ba, Y, Eu, Sc and Sr are presented. Their average correlation coefficient was 0.9991 and their detection limits were in the range of 0.051 to 0.97 micrograms.mL-1 respectively. The detection limit can be improved under optimized operating conditions. However, the spectral resolution is only 2.1 nm at the wavelength of 488 nm. Evidently, this poor spectral resolution would restrict the application of AOTF in atomic emission spectral analysis, unless an enhancing techniques is integrated in it.
Alinoori, Amir Hossein; Masoum, Saeed
2018-05-22
A unique metal oxide semiconductor sensor (MOS) array detector with eight sensors was designed and fabricated in a PTFE chamber as an interface for coupling with multicapillary gas chromatography. This design consists of eight transfer lines with equal length between the multicapillary columns (MCC) and sensors. The deactivated capillary columns were passed through each transfer line and homemade flow splitter to distribute the same gas flow on each sensor. Using the eight ports flow splitter design helps us to equal the length of carrier gas path and flow for each sensor, minimizing the dead volume of the sensor's chamber and increasing chromatographic resolution. In addition to coupling of MCC to MOS array detector and other considerations in hardware design, modulation of MOS temperature was used to increase sensitivity and selectivity, and data analysis was enhanced with adapted Gaussian apodization factor analysis (GAFA) as a multivariate curve resolution algorithm. Continues air sampling and injecting system (CASI) design provides a fast and easily applied method for continues injection of air sample with no additional sample preparation. The analysis cycle time required for each run is less than 300 s. The high sample load and sharp injection with the fast separation by MCC decrease the peak widths and improve detection limits. This homemade customized instrument is an alternative to other time-consuming and expensive technologies for continuous monitoring of outgassing in air samples.
1998-06-22
micromirrors . Thus, an IFTS will produce a rich scientific legacy with tremendous potential for serendipity. Table 1 details the capabilities of an IFTS...maintain modulation efficiency. Curves are plotted for resolutions , 105, and 1064R 5 k/dk 5 10 assuming an 8 m diameter primary aperture and a beam splitter...passbands centered at 1.1, 1.3, 1.7, 2.3, and 3.6 mm. Colors are plotted from ; a triangle is plotted at every interval of unit redshift. These curves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gould, A.; Yee, J. C.; Pinsonneault, M. H.
The Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing light curve near the peak of an A {sub max} {approx} 265 high-magnification microlensing event. The deviations originally seemed consistent with expectations for a planetary companion to the principal lens. We combine long-term photometric monitoring with a previously published high-resolution spectrum taken near peak to demonstrate that this is an RS CVn variable, so that planetary microlensing is not required to explain the light-curve deviations. This is the first spectroscopically confirmed RS CVn star discovered in the Galactic bulge.
Rouleau, Etienne; Lefol, Cédrick; Bourdon, Violaine; Coulet, Florence; Noguchi, Tetsuro; Soubrier, Florent; Bièche, Ivan; Olschwang, Sylviane; Sobol, Hagay; Lidereau, Rosette
2009-06-01
Several techniques have been developed to screen mismatch repair (MMR) genes for deleterious mutations. Until now, two different techniques were required to screen for both point mutations and large rearrangements. For the first time, we propose a new approach, called "quantitative PCR (qPCR) high-resolution melting (HRM) curve analysis (qPCR-HRM)," which combines qPCR and HRM to obtain a rapid and cost-effective method suitable for testing a large series of samples. We designed PCR amplicons to scan the MLH1 gene using qPCR HRM. Seventy-six patients were fully scanned in replicate, including 14 wild-type patients and 62 patients with known mutations (57 point mutations and five rearrangements). To validate the detected mutations, we used sequencing and/or hybridization on a dedicated MLH1 array-comparative genomic hybridization (array-CGH). All point mutations and rearrangements detected by denaturing high-performance liquid chromatography (dHPLC)+multiplex ligation-dependent probe amplification (MLPA) were successfully detected by qPCR HRM. Three large rearrangements were characterized with the dedicated MLH1 array-CGH. One variant was detected with qPCR HRM in a wild-type patient and was located within the reverse primer. One variant was not detected with qPCR HRM or with dHPLC due to its proximity to a T-stretch. With qPCR HRM, prescreening for point mutations and large rearrangements are performed in one tube and in one step with a single machine, without the need for any automated sequencer in the prescreening process. In replicate, its reagent cost, sensitivity, and specificity are comparable to those of dHPLC+MLPA techniques. However, qPCR HRM outperformed the other techniques in terms of its rapidity and amount of data provided.
Zhu, Ling; Konsak, Barbara M; Olaogun, Olusola M; Agnew-Crumptona, Rebecca; Kanci, Anna; Marenda, Marc S; Browning, Glenn F; Noormohammadi, Amir H
2017-10-01
Mycoplasma synoviae (MS) is an economically important avian pathogen worldwide, causing subclinical respiratory tract infection and infectious synovitis in chickens and turkeys. A temperature-sensitive (ts + ) live attenuated vaccine MS-H, derived from the Australian field strain 86079/7NS, is now widely used in many countries to control the disease induced by MS. Differentiation of MS-H vaccine from field strains is crucial for monitoring vaccination programs in commercial poultry. Comparison of genomic sequences of MS-H and its parent strain revealed an adenine deletion at nucleotide position 468 of the MS-H oppF-1 gene. This mutation was shown to be unique to MS-H in further comparative analyses of oppF-1 genes of MS-H re-isolates and field strains from Australia and other countries. Based on this single nucleotide, a combination of nested PCR and high-resolution melting (HRM) curve analysis was used to evaluate its potential for use in differentiation of MS-H from field strains. The mean genotype confidence percentages of 99.27 and 48.20 for MS-H and field strains, respectively, demonstrated the high discriminative power of the newly developed assay (oppF PCR-HRM). A set of 13 tracheal swab samples collected from MS-H vaccinated specific pathogen free birds and commercial chicken flocks infected with MS were tested using the oppF PCR-HRM test and results were totally consistent with those obtained using vlhA genotyping. The nested-PCR HRM method established in this study proved to be a rapid, simple and cost effective tool for discriminating the MS-H vaccine strain from Australian and international strains in pure cultures and on tracheal swabs. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gu, H.; Zhou, Y.; Williams, C. A.
2016-12-01
Disturbance events are highly heterogeneous in space and time, impacting forest carbon dynamics and challenging the quantification and reporting of carbon stocks and flux. This study documents annual carbon stocks and fluxes from 1986 and 2010 mapped at 30-m resolution across southeastern US forests, characterizing how they respond to disturbances and ensuing regrowth. Forest inventory data (FIA) are used to parameterize a carbon cycle model (CASA) to represent post-disturbance carbon trajectories of carbon pools and fluxes for harvest, fire and bark beetle disturbances of varying severity and across forest types and site productivity settings. Time since disturbance at 30 meters is inferred from two remote-sensing data sources: disturbance year (NAFD, MTBS and ADS) and biomass (NBCD 2000) intersected with inventory-derived curves of biomass accumulation with stand age. All of these elements are combined to map carbon stocks and fluxes at a 30-m resolution for the year 2010, and to march backward in time for continuous, annual reporting. Results include maps of annual carbon stocks and fluxes for forests of the southeastern US, and analysis of spatio-temporal patterns of carbon sources/sinks at local and regional scales.
Nanometer-scale imaging and pore-scale fluid flow modeling inchalk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomutsa, Liviu; Silin, Dmitriy; Radmilovich, Velimir
2005-08-23
For many rocks of high economic interest such as chalk,diatomite, tight gas sands or coal, nanometer scale resolution is neededto resolve the 3D-pore structure, which controls the flow and trapping offluids in the rocks. Such resolutions cannot be achieved with existingtomographic technologies. A new 3D imaging method, based on serialsectioning and using the Focused Ion Beam (FIB) technology has beendeveloped. FIB allows for the milling of layers as thin as 10 nanometersby using accelerated Ga+ ions to sputter atoms from the sample surface.After each milling step, as a new surface is exposed, a 2D image of thissurface is generated. Next,more » the 2D images are stacked to reconstruct the3D pore or grain structure. Resolutions as high as 10 nm are achievableusing this technique. A new image processing method uses directmorphological analysis of the pore space to characterize thepetrophysical properties of diverse formations. In addition to estimationof the petrophysical properties (porosity, permeability, relativepermeability and capillary pressures), the method is used for simulationof fluid displacement processes, such as those encountered in variousimproved oil recovery (IOR) approaches. Computed with the new methodcapillary pressure curves are in good agreement with laboratory data. Themethod has also been applied for visualization of the fluid distributionat various saturations from the new FIB data.« less
NASA Astrophysics Data System (ADS)
Clarke, David W.; Boyle, John F.; Chiverrell, Richard C.; Lario, Javier; Plater, Andrew J.
2014-09-01
At present, limited understanding of mesoscale (years-decades-centuries) back-barrier lagoon, barrier estuary behaviour is a critical shortcoming for resource managers and decision makers. In this paper, high-resolution particle size analysis of a sediment core from an intermittently open and closed barrier estuary is utilised to reconstruct a history of back-barrier environmental change at mesoscale temporal resolution. Sediments from Pescadero Marsh, California, were analysed for their particle size distribution at consecutive 2-mm intervals down-core. Site selection, informed by a time series of maps and aerial photographs coupled with a robust core chronology, ensured that the particle size data primarily reflect changing hydrodynamics of the back-barrier area over the European-American era (1850 to the present). Following more traditional plotting of particle size data and summary statistics, and statistical analysis of particle size end-members, visual analysis and categorisation of particle size distribution curves (PSDCs) provide an effective basis for the identification of recurring modal sizes and subpopulations. These particle size windows (PSWs) are interpreted as reflecting different modes of sediment transport and deposition, i.e., suspension and saltation loads, the varying prominence of which is interpreted as being modified by barrier integrity. When considered together, the down-core mean particle size (MPS) trend and individual PSDCs offer considerable insight into mesoscale system behaviour at subannual resolution over multiple years. This behaviour is expressed in the recurrence of characteristic barrier estuarine environments (closed lagoon, tidal lagoon, tidal marsh, and open estuary) and the overall barrier regime, and their persistence over the last c. 150 years. Subannual and multiannual fluctuations in back-barrier environmental configuration are seen to be superimposed on a longer-term quasi-stable barrier regime, demonstrating the value of the applied methodology with regard to bridging the estuarine evolution (long-term, stratigraphic) and process (short-term, geomorphic) knowledge bases. The documented behaviour suggests a level of innate morphological resilience in the system over the long term despite episodic disturbance by high-energy storms. Such empirical demonstrations of resilient behaviour in coastal environments are rare at the mesoscale.
High-resolution optical polarimetric elastography for measuring the mechanical properties of tissue
NASA Astrophysics Data System (ADS)
Hudnut, Alexa W.; Armani, Andrea M.
2018-02-01
Traditionally, chemical and molecular markers have been the predominate method in diagnostics. Recently, alternate methods of determining tissue and disease characteristics have been proposed based on testing the mechanical behavior of biomaterials. Existing methods for performing elastography measurements, such as atomic force microscopy, compression testing, and ultrasound elastography, require either extensive sample processing or have poor resolution. In the present work, we demonstrate an optical polarimetric elastography device to characterize the mechanical properties of salmon skeletal muscle. A fiber-coupled 1550nm laser paired with an optical polarizer is used to create a fiber optic sensing region. By measuring the change in polarization from the initial state to the final state within the fiber sensing region with a polarimeter, the loading-unloading curves can be determined for the biomaterial. The device is used to characterize the difference between samples with a range of collagen membranes. The loading-unloading curves are used to determine the change in polarization phase and energy loss of the samples at 10%, 20% and 30% strain. As expected, the energy loss is a better metric for measuring the mechanical properties of the tissues because it incorporates the entire loading-unloading curve rather than a single point. Using this metric, it is demonstrated the device can repeatedly differentiate between the different membrane configurations.
Scanner observations of hot helium-carbon stars.
NASA Technical Reports Server (NTRS)
Fay, T.; Honeycutt, R. K.; Warren, W. H., Jr.
1973-01-01
Photoelectric spectral scans at 20 A resolution of four hot helium-carbon-rich stars have been reduced to fluxes and are presented in graphical form. Similar flux curves for several normal (hydrogen-rich) stars in the same temperature range are presented for comparison.
Matsumoto, Nariyoshi; Mori, Sayaka; Hasegawa, Hiroo; Sasaki, Daisuke; Mori, Hayato; Tsuruda, Kazuto; Imanishi, Daisuke; Imaizumi, Yoshitaka; Hata, Tomoko; Kaku, Norihito; Kosai, Kousuke; Uno, Naoki; Miyazaki, Yasushi; Yanagihara, Katsunori
2016-11-01
Recently, novel calreticulin (CALR) mutations were discovered in Janus kinase 2 (JAK2) non-mutated myelofibrosis (PMF) and essential thrombocythemia (ET) cases, with a frequency of 60-80%. We examined clinical correlations and CALR mutation frequency in our myeloproliferative neoplasms (MPN) cases, and introduce an effective test method for use in clinical practice. We examined 177 samples previously investigated for the JAK2 mutation for differential diagnosis of MPN. JAK2 and CALR mutations were analyzed using melting curve analysis and microchip electrophoresis, respectively. Next, we constructed a test for simultaneous screening of the JAK2 and CALR mutations utilizing high resolution melting (HRM). Among 99 MPN cases, 60 possessed the JAK2 mutation alone. Of the 39 MPN cases without the JAK2 mutation, 14 were positive for the CALR mutation, all of which were ET. Using our novel screening test for the JAK2 and CALR mutations by HRM, the concordance rate of conventional analysis with HRM was 96% for the JAK2 mutation and 95% for the CALR mutation. Our novel simultaneous screening test for the JAK2 and CALR gene mutations with HRM is useful for diagnosis of MPN. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NMR of thin layers using a meanderline surface coil
Cowgill, Donald F.
2001-01-01
A miniature meanderline sensor coil which extends the capabilities of nuclear magnetic resonance (NMR) to provide analysis of thin planar samples and surface layer geometries. The sensor coil allows standard NMR techniques to be used to examine thin planar (or curved) layers, extending NMRs utility to many problems of modern interest. This technique can be used to examine contact layers, non-destructively depth profile into films, or image multiple layers in a 3-dimensional sense. It lends itself to high resolution NMR techniques of magic angle spinning and thus can be used to examine the bonding and electronic structure in layered materials or to observe the chemistry associated with aging coatings. Coupling this sensor coil technology with an arrangement of small magnets will produce a penetrator probe for remote in-situ chemical analysis of groundwater or contaminant sediments. Alternatively, the sensor coil can be further miniaturized to provide sub-micron depth resolution within thin films or to orthoscopically examine living tissue. This thin-layer NMR technique using a stationary meanderline coil in a series-resonant circuit has been demonstrated and it has been determined that the flat meanderline geometry has about he same detection sensitivity as a solenoidal coil, but is specifically tailored to examine planar material layers, while avoiding signals from the bulk.
Michelacci, Valeria; Orsini, Massimiliano; Knijn, Arnold; Delannoy, Sabine; Fach, Patrick; Caprioli, Alfredo; Morabito, Stefano
2016-01-01
Shiga-toxin producing Escherichia coli (STEC) strains possess a large accessory genome composed of virulence genes existing in multiple allelic variants, which sometimes segregate with specific STEC subpopulations. We analyzed the allelic variability of 91 virulence genes of STEC by Real Time PCR followed by melting curves analysis in 713 E. coli strains including 358 STEC. The 91 genes investigated were located on the locus of enterocyte effacement (LEE), OI-57, and OI-122 pathogenicity islands and displayed a total of 476 alleles in the study population. The combinations of the 91 alleles of each strain were termed allelic signatures and used to perform cluster analyses. We termed such an approach High Resolution Virulence Allelic Profiling (HReVAP) and used it to investigate the phylogeny of STEC of multiple serogroups. The dendrograms obtained identified groups of STEC segregating approximately with the serogroups and allowed the identification of subpopulations within the single groups. The study of the allelic signatures provided further evidence of the coevolution of the LEE and OI-122, reflecting the occurrence of their acquisition through a single event. The HReVAP analysis represents a sensitive tool for studying the evolution of LEE-positive STEC. PMID:26941726
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathyalakshmi, R.; Bhagavannarayana, G.; Ramasamy, P.
L-(+)-Glutamic acid hydro bromide, an isomorphic salt of L-glutamic acid hydrochloride, was synthesized and the synthesis was confirmed using Fourier transform infrared analysis. Solubility of the material in water was determined. L-Glutamic acid hydro bromide crystals were grown by low temperature solution growth using the solvent evaporation technique. Single crystal X-ray diffraction studies were carried out and the cell parameters, atomic co-ordinates, bond lengths and bond angles were reported. High-resolution X-ray diffraction studies were carried out and good crystallinity for the grown crystal was observed from the diffraction curve. The grown crystals were subjected to dielectric studies. Ultraviolet-visible-near infrared spectralmore » analysis shows good optical transmission in the visible and infrared region of the grown crystals. The second harmonic generation efficiency of L-glutamic acid hydro bromide crystal was determined using the Kurtz powder test and it was found that it had efficiency comparable with that of the potassium di-hydrogen phosphate crystal.« less
Bousslimi, Nadia; Ben-Ayed, Soumaya; Ben-Abda, Imène; Aoun, Karim; Bouratbine, Aïda
2012-01-01
North African gundis (Ctenodactylus gundi) were trapped in the Leishmania (L.) tropica focus of cutaneous leishmaniasis, situated in southeast Tunisia and evaluated for Leishmania infection by real-time kinetoplast DNA polymerase chain reaction (PCR). Species identification was performed by internal transcribed spacer one (ITS1)-PCR-restriction fragment length polymorphism (RFLP) and high-resolution melting (HRM) analysis of the 7SL RNA gene. Real-time PCR on blood was positive in 6 of 13 (46.2%) tested gundis. Leishmania tropica was identified in five infected gundis and Leishmania major in one specimen. Alignments of the ITS-1 DNA sequences and 7S-HRM curves analysis indicated that similar genotypes were present in humans, a sandfly, and gundis from the same region suggesting a potential role of this rodent as reservoir host of L. tropica in southeast Tunisia. PMID:22665601
Katsarov, Plamen; Gergov, Georgi; Alin, Aylin; Pilicheva, Bissera; Al-Degs, Yahya; Simeonov, Vasil; Kassarova, Margarita
2018-03-01
The prediction power of partial least squares (PLS) and multivariate curve resolution-alternating least squares (MCR-ALS) methods have been studied for simultaneous quantitative analysis of the binary drug combination - doxylamine succinate and pyridoxine hydrochloride. Analysis of first-order UV overlapped spectra was performed using different PLS models - classical PLS1 and PLS2 as well as partial robust M-regression (PRM). These linear models were compared to MCR-ALS with equality and correlation constraints (MCR-ALS-CC). All techniques operated within the full spectral region and extracted maximum information for the drugs analysed. The developed chemometric methods were validated on external sample sets and were applied to the analyses of pharmaceutical formulations. The obtained statistical parameters were satisfactory for calibration and validation sets. All developed methods can be successfully applied for simultaneous spectrophotometric determination of doxylamine and pyridoxine both in laboratory-prepared mixtures and commercial dosage forms.
NASA Astrophysics Data System (ADS)
Gregory, Rebecca A.; Murray, Iain; Gear, Jonathan; Aldridge, Matthew D.; Levine, Daniel; Fowkes, Lucy; Waddington, Wendy A.; Chua, Sue; Flux, Glenn
2017-01-01
Iodine-123 mIBG imaging is widely regarded as a gold standard for diagnostic studies of neuroblastoma and adult neuroendocrine cancer although the optimal collimator for tumour imaging remains undetermined. Low-energy (LE) high-resolution (HR) collimators provide superior spatial resolution. However due to septal penetration of high-energy photons these provide poorer contrast than medium-energy (ME) general-purpose (GP) collimators. LEGP collimators improve count sensitivity. The aim of this study was to objectively compare the lesion detection efficiency of each collimator to determine the optimal collimator for diagnostic imaging. The septal penetration and sensitivity of each collimator was assessed. Planar images of the patient abdomen were simulated with static scans of a Liqui-Phil™ anthropomorphic phantom with lesion-shaped inserts, acquired with LE and ME collimators on 3 different manufacturers’ gamma camera systems (Skylight (Philips), Intevo (Siemens) and Discovery (GE)). Two-hundred normal and 200 single-lesion abnormal images were created for each collimator. A channelized Hotelling observer (CHO) was developed and validated to score the images for the likelihood of an abnormality. The areas under receiver-operator characteristic (ROC) curves, Az, created from the scores were used to quantify lesion detectability. The CHO ROC curves for the LEHR collimators were inferior to the GP curves for all cameras. The LEHR collimators resulted in statistically significantly smaller Azs (p < 0.05), of on average 0.891 ± 0.004, than for the MEGP collimators, 0.933 ± 0.004. In conclusion, the reduced background provided by MEGP collimators improved 123I mIBG image lesion detectability over LEHR collimators that provided better spatial resolution.
Fabrication and Characterization of Flexible Electrowetting on Dielectrics (EWOD) Microlens
Li, Chenhui; Jiang, Hongrui
2014-01-01
We present a flexible variable-focus converging microlens actuated by electrowetting on dielectric (EWOD). The microlens is made of two immiscible liquids and a soft polymer, polydimethylsiloxane (PDMS). Parylene intermediate layer is used to produce robust flexible electrode on PDMS. A low-temperature PDMS-compatible fabrication process has been developed to reduce the stress on the lens structure. The lens has been demonstrated to be able to conform to curved surfaces smoothly. The focal length of the microlens is 29–38 mm on a flat surface, and 31–41 mm on a curved surface, varying with the voltage applied. The resolving power of the microlens is 25.39 line pairs per mm by a 1951 United States Air Force (USAF) resolution chart and the lens aberrations are measured by a Shack-Hartmann wavefront sensor. The focal length behavior on a curved surface is discussed and for the current lens demonstrated the focal length is slightly longer on the curved surface as a result of the effect of the curved PDMS substrate. PMID:25360324
NASA Technical Reports Server (NTRS)
Fassnacht, Steven R.; Sexstone, Graham A.; Kashipazha, Amir H.; Lopez-Moreno, Juan Ignacio; Jasinski, Michael F.; Kampf, Stephanie K.; Von Thaden, Benjamin C.
2015-01-01
During the melting of a snowpack, snow water equivalent (SWE) can be correlated to snow-covered area (SCA) once snow-free areas appear, which is when SCA begins to decrease below 100%. This amount of SWE is called the threshold SWE. Daily SWE data from snow telemetry stations were related to SCA derived from moderate-resolution imaging spectro radiometer images to produce snow-cover depletion curves. The snow depletion curves were created for an 80,000 sq km domain across southern Wyoming and northern Colorado encompassing 54 snow telemetry stations. Eight yearly snow depletion curves were compared, and it is shown that the slope of each is a function of the amount of snow received. Snow-cover depletion curves were also derived for all the individual stations, for which the threshold SWE could be estimated from peak SWE and the topography around each station. A stations peak SWE was much more important than the main topographic variables that included location, elevation, slope, and modelled clear sky solar radiation. The threshold SWE mostly illustrated inter-annual consistency.
Musical experience sharpens human cochlear tuning.
Bidelman, Gavin M; Nelms, Caitlin; Bhagat, Shaum P
2016-05-01
The mammalian cochlea functions as a filter bank that performs a spectral, Fourier-like decomposition on the acoustic signal. While tuning can be compromised (e.g., broadened with hearing impairment), whether or not human cochlear frequency resolution can be sharpened through experiential factors (e.g., training or learning) has not yet been established. Previous studies have demonstrated sharper psychophysical tuning curves in trained musicians compared to nonmusicians, implying superior peripheral tuning. However, these findings are based on perceptual masking paradigms, and reflect engagement of the entire auditory system rather than cochlear tuning, per se. Here, by directly mapping physiological tuning curves from stimulus frequency otoacoustic emissions (SFOAEs)-cochlear emitted sounds-we show that estimates of human cochlear tuning in a high-frequency cochlear region (4 kHz) is further sharpened (by a factor of 1.5×) in musicians and improves with the number of years of their auditory training. These findings were corroborated by measurements of psychophysical tuning curves (PTCs) derived via simultaneous masking, which similarly showed sharper tuning in musicians. Comparisons between SFOAE and PTCs revealed closer correspondence between physiological and behavioral curves in musicians, indicating that tuning is also more consistent between different levels of auditory processing in trained ears. Our findings demonstrate an experience-dependent enhancement in the resolving power of the cochlear sensory epithelium and the spectral resolution of human hearing and provide a peripheral account for the auditory perceptual benefits observed in musicians. Both local and feedback (e.g., medial olivocochlear efferent) mechanisms are discussed as potential mechanisms for experience-dependent tuning. Copyright © 2016 Elsevier B.V. All rights reserved.
Ríos-Reina, Rocío; Morales, M Lourdes; García-González, Diego L; Amigo, José M; Callejón, Raquel M
2018-03-01
High-quality wine vinegars have been registered in Spain under protected designation of origin (PDO): "Vinagre de Jerez", "Vinagre de Condado de Huelva" and "Vinagre de Montilla-Moriles". The raw material, production and aging processes determine their quality and their aromatic composition. Vinegar volatile profile is usually analyzed by gas chromatography-mass spectrometry (GC-MS), being necessary a previous extraction step. Thus, three different sampling methods (Headspace solid phase microextraction "HS-SPME", Headspace stir bar sorptive extraction "HSSE" and Dynamic headspace extraction "DHS") were studied for the analysis of the volatile composition of Spanish PDO wine vinegars. Multivariate curve resolution (MCR) was used to solve chromatographic problems, improving the results obtained. Principal component analysis (PCA) showed that not all the sampling methods were equally suitable for the characterization and differentiation between PDOs and categories, being HSSE the technique that made able the best vinegar characterization. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optical analysis of electro-optical systems by MTF calculus
NASA Astrophysics Data System (ADS)
Barbarini, Elisa Signoreto; Dos Santos, Daniel, Jr.; Stefani, Mário Antonio; Yasuoka, Fátima Maria Mitsue; Castro Neto, Jarbas C.; Rodrigues, Evandro Luís Linhari
2011-08-01
One of the widely used methods for performance analysis of an optical system is the determination of the Modulation Transfer Function (MTF). The MTF represents a quantitative and direct measure of image quality, and, besides being an objective test, it can be used on concatenated optical system. This paper presents the application of software called SMTF (software modulation transfer function), built in C++ and Open CV platforms for MTF calculation on electro-optical system. Through this technique, it is possible to develop specific method to measure the real time performance of a digital fundus camera, an infrared sensor and an ophthalmological surgery microscope. Each optical instrument mentioned has a particular device to measure the MTF response, which is being developed. Then the MTF information assists the analysis of the optical system alignment, and also defines its resolution limit by the MTF graphic. The result obtained from the implemented software is compared with the theoretical MTF curve from the analyzed systems.
NASA Technical Reports Server (NTRS)
Tragardh, Elin; Schlegel, Todd T.; Carlsson, Marcus; Pettersson, Jonas; Nilsson, Klas; Pahlm, Olle
2007-01-01
Background: A previous study has shown that analysis of high-frequency QRS components (HF-QRS) is highly sensitive and reasonably specific for detecting reversible perfusion defects on myocardial perfusion imaging (MPI) scans during adenosine. The purpose of the present study was to try to reproduce those findings. Methods: 12-lead high-resolution electrocardiogram recordings were obtained from 100 patients before (baseline) and during adenosine Tc-99m-tetrofosmin MPI tests. HF-QRS were analyzed regarding morphology and changes in root mean square (RMS) voltages from before the adenosine infusion to peak infusion. Results: The best area under the curve (AUC) was found in supine patients (AUC=0.736) in a combination of morphology and RMS changes. None of the measurements, however, were statistically better than tossing a coin (AUC=0.5). Conclusion: Analysis of HF-QRS was not significantly better than tossing a coin for determining reversible perfusion defects on MPI scans.
Separation of distinct photoexcitation species in femtosecond transient absorption microscopy
Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; ...
2016-02-03
Femtosecond transient absorption microscopy is a novel chemical imaging capability with simultaneous high spatial and temporal resolution. Although several powerful data analysis approaches have been developed and successfully applied to separate distinct chemical species in such images, the application of such analysis to distinguish different photoexcited species is rare. In this paper, we demonstrate a combined approach based on phasor and linear decomposition analysis on a microscopic level that allows us to separate the contributions of both the excitons and free charge carriers in the observed transient absorption response of a composite organometallic lead halide perovskite film. We found spatialmore » regions where the transient absorption response was predominately a result of excitons and others where it was predominately due to charge carriers, and regions consisting of signals from both contributors. Lastly, quantitative decomposition of the transient absorption response curves further enabled us to reveal the relative contribution of each photoexcitation to the measured response at spatially resolved locations in the film.« less
Magnetic resonance imaging in laboratory petrophysical core analysis
NASA Astrophysics Data System (ADS)
Mitchell, J.; Chandrasekera, T. C.; Holland, D. J.; Gladden, L. F.; Fordham, E. J.
2013-05-01
Magnetic resonance imaging (MRI) is a well-known technique in medical diagnosis and materials science. In the more specialized arena of laboratory-scale petrophysical rock core analysis, the role of MRI has undergone a substantial change in focus over the last three decades. Initially, alongside the continual drive to exploit higher magnetic field strengths in MRI applications for medicine and chemistry, the same trend was followed in core analysis. However, the spatial resolution achievable in heterogeneous porous media is inherently limited due to the magnetic susceptibility contrast between solid and fluid. As a result, imaging resolution at the length-scale of typical pore diameters is not practical and so MRI of core-plugs has often been viewed as an inappropriate use of expensive magnetic resonance facilities. Recently, there has been a paradigm shift in the use of MRI in laboratory-scale core analysis. The focus is now on acquiring data in the laboratory that are directly comparable to data obtained from magnetic resonance well-logging tools (i.e., a common physics of measurement). To maintain consistency with well-logging instrumentation, it is desirable to measure distributions of transverse (T2) relaxation time-the industry-standard metric in well-logging-at the laboratory-scale. These T2 distributions can be spatially resolved over the length of a core-plug. The use of low-field magnets in the laboratory environment is optimal for core analysis not only because the magnetic field strength is closer to that of well-logging tools, but also because the magnetic susceptibility contrast is minimized, allowing the acquisition of quantitative image voxel (or pixel) intensities that are directly scalable to liquid volume. Beyond simple determination of macroscopic rock heterogeneity, it is possible to utilize the spatial resolution for monitoring forced displacement of oil by water or chemical agents, determining capillary pressure curves, and estimating wettability. The history of MRI in petrophysics is reviewed and future directions considered, including advanced data processing techniques such as compressed sensing reconstruction and Bayesian inference analysis of under-sampled data. Although this review focuses on rock core analysis, the techniques described are applicable in a wider context to porous media in general, such as cements, soils, ceramics, and catalytic materials.
Kinematics and mass modelling of M33: Hα observations
NASA Astrophysics Data System (ADS)
Kam, Z. S.; Carignan, C.; Chemin, L.; Amram, P.; Epinat, B.
2015-06-01
As part of a long-term project to revisit the kinematics and dynamics of the large disc galaxies of the Local Group, we present the first deep, wide-field (˜42 arcmin × 56 arcmin) 3D-spectroscopic survey of the ionized gas disc of Messier 33. Fabry-Perot interferometry has been used to map its Hα distribution and kinematics at unprecedented angular resolution (≲3 arcsec) and resolving power (˜12 600), with the 1.6 m telescope at the Observatoire du Mont Mégantic. The ionized gas distribution follows a complex, large-scale spiral structure, unsurprisingly coincident with the already-known spiral structures of the neutral and molecular gas discs. The kinematical analysis of the velocity field shows that the rotation centre of the Hα disc is distant from the photometric centre by ˜168 pc (sky-projected distance) and that the kinematical major-axis position angle and disc inclination are in excellent agreement with photometric values. The Hα rotation curve agrees very well with the H I rotation curves for 0 < R < 6.5 kpc, but the Hα velocities are 10-20 km s-1 higher for R > 6.5 kpc. The reason for this discrepancy is not well understood. The velocity dispersion profile is relatively flat around 16 km s-1, which is at the low end of velocity dispersions of nearby star-forming galactic discs. A strong relation is also found between the Hα velocity dispersion and the Hα intensity. Mass models were obtained using the Hα rotation curve but, as expected, the dark matter halo's parameters are not very well constrained since the optical rotation curve only extends out to 8 kpc.
Godoy-Caballero, María del Pilar; Culzoni, María Julia; Galeano-Díaz, Teresa; Acedo-Valenzuela, María Isabel
2013-02-06
This paper presents the development of a non-aqueous capillary electrophoresis method coupled to UV detection combined with multivariate curve resolution-alternating least-squares (MCR-ALS) to carry out the resolution and quantitation of a mixture of six phenolic acids in virgin olive oil samples. p-Coumaric, caffeic, ferulic, 3,4-dihydroxyphenylacetic, vanillic and 4-hydroxyphenilacetic acids have been the analytes under study. All of them present different absorption spectra and overlapped time profiles with the olive oil matrix interferences and between them. The modeling strategy involves the building of a single MCR-ALS model composed of matrices augmented in the temporal mode, namely spectra remain invariant while time profiles may change from sample to sample. So MCR-ALS was used to cope with the coeluting interferences, on accounting the second order advantage inherent to this algorithm which, in addition, is able to handle data sets deviating from trilinearity, like the data herein analyzed. The method was firstly applied to resolve standard mixtures of the analytes randomly prepared in 1-propanol and, secondly, in real virgin olive oil samples, getting recovery values near to 100% in all cases. The importance and novelty of this methodology relies on the combination of non-aqueous capillary electrophoresis second-order data and MCR-ALS algorithm which allows performing the resolution of these compounds simplifying the previous sample pretreatment stages. Copyright © 2012 Elsevier B.V. All rights reserved.
Domingo-Almenara, Xavier; Perera, Alexandre; Brezmes, Jesus
2016-11-25
Gas chromatography-mass spectrometry (GC-MS) produces large and complex datasets characterized by co-eluted compounds and at trace levels, and with a distinct compound ion-redundancy as a result of the high fragmentation by the electron impact ionization. Compounds in GC-MS can be resolved by taking advantage of the multivariate nature of GC-MS data by applying multivariate resolution methods. However, multivariate methods have to be applied in small regions of the chromatogram, and therefore chromatograms are segmented prior to the application of the algorithms. The automation of this segmentation process is a challenging task as it implies separating between informative data and noise from the chromatogram. This study demonstrates the capabilities of independent component analysis-orthogonal signal deconvolution (ICA-OSD) and multivariate curve resolution-alternating least squares (MCR-ALS) with an overlapping moving window implementation to avoid the typical hard chromatographic segmentation. Also, after being resolved, compounds are aligned across samples by an automated alignment algorithm. We evaluated the proposed methods through a quantitative analysis of GC-qTOF MS data from 25 serum samples. The quantitative performance of both moving window ICA-OSD and MCR-ALS-based implementations was compared with the quantification of 33 compounds by the XCMS package. Results shown that most of the R 2 coefficients of determination exhibited a high correlation (R 2 >0.90) in both ICA-OSD and MCR-ALS moving window-based approaches. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Tianhao; Li, Qian; Li, Lin; Zhou, Chuanqing
2016-10-01
Accuracy of photoacoustic signal is the crux on measurement of oxygen saturation in functional photoacoustic imaging, which is influenced by factors such as defocus of laser beam, curve shape of large vessels and nonlinear saturation effect of optical absorption in biological tissues. We apply Monte Carlo model to simulate energy deposition in tissues and obtain photoacoustic signals reaching a simulated focused surface detector to investigate corresponding influence of these factors. We also apply compensation on photoacoustic imaging of in vivo cat cerebral cortex blood vessels, in which signals from different lateral positions of vessels are corrected based on simulation results. And this process on photoacoustic images can improve the smoothness and accuracy of oxygen saturation results.
Improved Estimation of Electron Temperature from Rocket-borne Impedance Probes
NASA Astrophysics Data System (ADS)
Rowland, D. E.; Wolfinger, K.; Stamm, J. D.
2017-12-01
The impedance probe technique is a well known method for determining high accuracy measurements of electron number density in the Earth's ionosphere. We present analysis of impedance probe data from several sounding rockets at low, mid-, and auroral latitudes, including high cadence estimates of the electron temperature, derived from analytical fits to the antenna impedance curves. These estimates compare favorably with independent estimates from Langmuir Probes, but at much higher temporal and spatial resolution, providing a capability to resolve small-scale temperature fluctuations. We also present some considerations for the design of impedance probes, including assessment of the effects of resonance damping due to rocket motion, effects of wake and spin modulation, and aspect angle to the magnetic field.
The Role of Nonlinear Gradients in Parallel Imaging: A k-Space Based Analysis.
Galiana, Gigi; Stockmann, Jason P; Tam, Leo; Peters, Dana; Tagare, Hemant; Constable, R Todd
2012-09-01
Sequences that encode the spatial information of an object using nonlinear gradient fields are a new frontier in MRI, with potential to provide lower peripheral nerve stimulation, windowed fields of view, tailored spatially-varying resolution, curved slices that mirror physiological geometry, and, most importantly, very fast parallel imaging with multichannel coils. The acceleration for multichannel images is generally explained by the fact that curvilinear gradient isocontours better complement the azimuthal spatial encoding provided by typical receiver arrays. However, the details of this complementarity have been more difficult to specify. We present a simple and intuitive framework for describing the mechanics of image formation with nonlinear gradients, and we use this framework to review some the main classes of nonlinear encoding schemes.
Selection of a seventh spectral band for the LANDSAT-D thematic mapper
NASA Technical Reports Server (NTRS)
Holmes, Q. A. (Principal Investigator); Nuesch, D. R.
1978-01-01
The author has identified the following significant results. Each of the candidate bands were examined in terms of the feasibility of gathering high quality imagery from space while taking into account solar illumination, atmospheric attenuation, and the signal/noise ratio achievable within the TM sensor constraints. For the 2.2 micron region and the thermal IR region, inband signal values were calculated from representative spectral reflectance/emittance curves and a linear discriminant analysis was employed to predict classification accuracies. Based upon the substantial improvement (from 78 t0 92%) in discriminating zones of hydrothermally altered rocks from unaltered zones, over a broad range of observation conditions, a 2.08-2.35 micron spectral band having a ground resolution of 30 meters was recommended.
Ultraviolet observations of cool stars. V - The local density of interstellar matter
NASA Technical Reports Server (NTRS)
Mcclintock, W.; Henry, R. C.; Moos, H. W.; Linsky, J. L.
1976-01-01
A high-resolution Copernicus observation of the chromospheric Ly-alpha emission line of the nearby (3.3 pc) K dwarf epsilon Eri sets limits on the velocity, the velocity dispersion, and the density of atomic hydrogen in the local interstellar medium. Analysis shows that the interstellar Ly-alpha absorption is on the flat portion of the curve of growth. An upper limit of 0.12 per cu cm is derived for the atomic-hydrogen density. The value of this density is 0.08 (plus or minus 0.04 per cu cm if the velocity-dispersion parameter is 9 km/s, corresponding to a temperature of 5000 K. Also, the interstellar deuterium Ly-alpha line may be present in the spectrum.
Empirical solution of Green-Ampt equation using soil conservation service - curve number values
NASA Astrophysics Data System (ADS)
Grimaldi, S.; Petroselli, A.; Romano, N.
2012-09-01
The Soil Conservation Service - Curve Number (SCS-CN) method is a popular widely used rainfall-runoff model for quantifying the total stream-flow volume generated by storm rainfall, but its application is not appropriate for sub-daily resolutions. In order to overcome this drawback, the Green-Ampt (GA) infiltration equation is considered and an empirical solution is proposed and evaluated. The procedure, named CN4GA (Curve Number for Green-Ampt), aims to calibrate the Green-Ampt model parameters distributing in time the global information provided by the SCS-CN method. The proposed procedure is evaluated by analysing observed rainfall-runoff events; results show that CN4GA seems to provide better agreement with the observed hydrographs respect to the classic SCS-CN method.
On the analysis of time-of-flight spin-echo modulated dark-field imaging data
NASA Astrophysics Data System (ADS)
Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.; Tremsin, Anton S.; Habicht, Klaus; Strobl, Markus
2017-06-01
Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori decisions potentially limiting the information content that is extractable also a straightforward judgment of the data quality and information content is hindered. In contrast we propose a significantly simplified routine directly applied to the measured data, which does not only allow an immediate first assessment of data quality and delaying decisions on potentially information content limiting further reduction steps to a later and better informed state, but also, as results suggest, generally better analyses. In addition the method enables to drop the spatial resolution detector requirement for non-spatially resolved Spin-Echo Modulated Small Angle Neutron Scattering.
VizieR Online Data Catalog: NGC 362 variable V light curves (Rozyczka+, 2016)
NASA Astrophysics Data System (ADS)
Rozyczka, M.; Thompson, I. B.; Narloch, W.; Pych, W.; Schwarzenberg, A.
2018-04-01
Our paper is based on images acquired mainly with the 1.0-m Swope telescope and the 2048x3150 SITe3 camera. The field of view was 14.8x22.8 arcmin2 at a scale of 0.435 arcsec/pixel. Observations were obtained on 205 nights from July 7, 1997 to October 23, 2009. The same set of filters was used for all observations. A total of 3785 V-band images and 1123 B-band images were selected for analysis. The seeing ranged from 1.14" to 4.3" and 1.28" to 4.07" for V and B, respectively, with median values of 1.67" and 1.8". We also used 73 V-frames acquired in 2015 on Swope at the same resolution as before and with the same set of filters, but with the new E2V camera, and 270 frames acquired between 2001 and 2007 on the 2.5m du Pont telescope with a field of view 8.84x8.84arcmin2 at a resolution of 0.259arcsec/pixel. (5 data files).
Characterization of the geometry and topology of DNA pictured as a discrete collection of atoms
Olson, Wilma K.
2014-01-01
The structural and physical properties of DNA are closely related to its geometry and topology. The classical mathematical treatment of DNA geometry and topology in terms of ideal smooth space curves was not designed to characterize the spatial arrangements of atoms found in high-resolution and simulated double-helical structures. We present here new and rigorous numerical methods for the rapid and accurate assessment of the geometry and topology of double-helical DNA structures in terms of the constituent atoms. These methods are well designed for large DNA datasets obtained in detailed numerical simulations or determined experimentally at high-resolution. We illustrate the usefulness of our methodology by applying it to the analysis of three canonical double-helical DNA chains, a 65-bp minicircle obtained in recent molecular dynamics simulations, and a crystallographic array of protein-bound DNA duplexes. Although we focus on fully base-paired DNA structures, our methods can be extended to treat the geometry and topology of melted DNA structures as well as to characterize the folding of arbitrary molecules such as RNA and cyclic peptides. PMID:24791158
Multiscale modeling of metabolism, flows, and exchanges in heterogeneous organs
Bassingthwaighte, James B.; Raymond, Gary M.; Butterworth, Erik; Alessio, Adam; Caldwell, James H.
2010-01-01
Large-scale models accounting for the processes supporting metabolism and function in an organ or tissue with a marked heterogeneity of flows and metabolic rates are computationally complex and tedious to compute. Their use in the analysis of data from positron emission tomography (PET) and magnetic resonance imaging (MRI) requires model reduction since the data are composed of concentration–time curves from hundreds of regions of interest (ROI) within the organ. Within each ROI, one must account for blood flow, intracapillary gradients in concentrations, transmembrane transport, and intracellular reactions. Using modular design, we configured a whole organ model, GENTEX, to allow adaptive usage for multiple reacting molecular species while omitting computation of unused components. The temporal and spatial resolution and the number of species are adaptable and the numerical accuracy and computational speed is adjustable during optimization runs, which increases accuracy and spatial resolution as convergence approaches. An application to the interpretation of PET image sequences after intravenous injection of 13NH3 provides functional image maps of regional myocardial blood flows. PMID:20201893
Rousson, Valentin; Zumbrunn, Thomas
2011-06-22
Decision curve analysis has been introduced as a method to evaluate prediction models in terms of their clinical consequences if used for a binary classification of subjects into a group who should and into a group who should not be treated. The key concept for this type of evaluation is the "net benefit", a concept borrowed from utility theory. We recall the foundations of decision curve analysis and discuss some new aspects. First, we stress the formal distinction between the net benefit for the treated and for the untreated and define the concept of the "overall net benefit". Next, we revisit the important distinction between the concept of accuracy, as typically assessed using the Youden index and a receiver operating characteristic (ROC) analysis, and the concept of utility of a prediction model, as assessed using decision curve analysis. Finally, we provide an explicit implementation of decision curve analysis to be applied in the context of case-control studies. We show that the overall net benefit, which combines the net benefit for the treated and the untreated, is a natural alternative to the benefit achieved by a model, being invariant with respect to the coding of the outcome, and conveying a more comprehensive picture of the situation. Further, within the framework of decision curve analysis, we illustrate the important difference between the accuracy and the utility of a model, demonstrating how poor an accurate model may be in terms of its net benefit. Eventually, we expose that the application of decision curve analysis to case-control studies, where an accurate estimate of the true prevalence of a disease cannot be obtained from the data, is achieved with a few modifications to the original calculation procedure. We present several interrelated extensions to decision curve analysis that will both facilitate its interpretation and broaden its potential area of application.
2011-01-01
Background Decision curve analysis has been introduced as a method to evaluate prediction models in terms of their clinical consequences if used for a binary classification of subjects into a group who should and into a group who should not be treated. The key concept for this type of evaluation is the "net benefit", a concept borrowed from utility theory. Methods We recall the foundations of decision curve analysis and discuss some new aspects. First, we stress the formal distinction between the net benefit for the treated and for the untreated and define the concept of the "overall net benefit". Next, we revisit the important distinction between the concept of accuracy, as typically assessed using the Youden index and a receiver operating characteristic (ROC) analysis, and the concept of utility of a prediction model, as assessed using decision curve analysis. Finally, we provide an explicit implementation of decision curve analysis to be applied in the context of case-control studies. Results We show that the overall net benefit, which combines the net benefit for the treated and the untreated, is a natural alternative to the benefit achieved by a model, being invariant with respect to the coding of the outcome, and conveying a more comprehensive picture of the situation. Further, within the framework of decision curve analysis, we illustrate the important difference between the accuracy and the utility of a model, demonstrating how poor an accurate model may be in terms of its net benefit. Eventually, we expose that the application of decision curve analysis to case-control studies, where an accurate estimate of the true prevalence of a disease cannot be obtained from the data, is achieved with a few modifications to the original calculation procedure. Conclusions We present several interrelated extensions to decision curve analysis that will both facilitate its interpretation and broaden its potential area of application. PMID:21696604
Hydrologic Simulation in Mediterranean flood prone Watersheds using high-resolution quality data
NASA Astrophysics Data System (ADS)
Eirini Vozinaki, Anthi; Alexakis, Dimitrios; Pappa, Polixeni; Tsanis, Ioannis
2015-04-01
Flooding is a significant threat causing lots of inconveniencies in several societies, worldwide. The fact that the climatic change is already happening, increases the flooding risk, which is no longer a substantial menace to several societies and their economies. The improvement of spatial-resolution and accuracy of the topography and land use data due to remote sensing techniques could provide integrated flood inundation simulations. In this work hydrological analysis of several historic flood events in Mediterranean flood prone watersheds (island of Crete/Greece) takes place. Satellite images of high resolution are elaborated. A very high resolution (VHR) digital elevation model (DEM) is produced from a GeoEye-1 0.5-m-resolution satellite stereo pair and is used for floodplain management and mapping applications such as watershed delineation and river cross-section extraction. Sophisticated classification algorithms are implemented for improving Land Use/ Land Cover maps accuracy. In addition, soil maps are updated with means of Radar satellite images. The above high-resolution data are innovatively used to simulate and validate several historical flood events in Mediterranean watersheds, which have experienced severe flooding in the past. The hydrologic/hydraulic models used for flood inundation simulation in this work are HEC-HMS and HEC-RAS. The Natural Resource Conservation Service (NRCS) curve number (CN) approach is implemented to account for the effect of LULC and soil on the hydrologic response of the catchment. The use of high resolution data provides detailed validation results and results of high precision, accordingly. Furthermore, the meteorological forecasting data, which are also combined to the simulation model results, manage the development of an integrated flood forecasting and early warning system tool, which is capable of confronting or even preventing this imminent risk. The research reported in this paper was fully supported by the "ARISTEIA II" Action ("REINFORCE" program) of the "Operational Education and Life Long Learning programme" and is co-funded by the European Social Fund (ESF) and National Resources.
NASA Astrophysics Data System (ADS)
Polycarpou, Irene; Tsoumpas, Charalampos; King, Andrew P.; Marsden, Paul K.
2014-02-01
The aim of this study is to investigate the impact of respiratory motion correction and spatial resolution on lesion detectability in PET as a function of lesion size and tracer uptake. Real respiratory signals describing different breathing types are combined with a motion model formed from real dynamic MR data to simulate multiple dynamic PET datasets acquired from a continuously moving subject. Lung and liver lesions were simulated with diameters ranging from 6 to 12 mm and lesion to background ratio ranging from 3:1 to 6:1. Projection data for 6 and 3 mm PET scanner resolution were generated using analytic simulations and reconstructed without and with motion correction. Motion correction was achieved using motion compensated image reconstruction. The detectability performance was quantified by a receiver operating characteristic (ROC) analysis obtained using a channelized Hotelling observer and the area under the ROC curve (AUC) was calculated as the figure of merit. The results indicate that respiratory motion limits the detectability of lung and liver lesions, depending on the variation of the breathing cycle length and amplitude. Patients with large quiescent periods had a greater AUC than patients with regular breathing cycles and patients with long-term variability in respiratory cycle or higher motion amplitude. In addition, small (less than 10 mm diameter) or low contrast (3:1) lesions showed the greatest improvement in AUC as a result of applying motion correction. In particular, after applying motion correction the AUC is improved by up to 42% with current PET resolution (i.e. 6 mm) and up to 51% for higher PET resolution (i.e. 3 mm). Finally, the benefit of increasing the scanner resolution is small unless motion correction is applied. This investigation indicates high impact of respiratory motion correction on lesion detectability in PET and highlights the importance of motion correction in order to benefit from the increased resolution of future PET scanners.
A year of lava fountaining at Etna: Volumes from SEVIRI
NASA Astrophysics Data System (ADS)
Ganci, G.; Harris, A. J. L.; Del Negro, C.; Guehenneux, Y.; Cappello, A.; Labazuy, P.; Calvari, S.; Gouhier, M.
2012-03-01
We present a new method that uses cooling curves, apparent in high temporal resolution thermal data acquired by geostationary sensors, to estimate erupted volumes and mean output rates during short lava fountaining events. The 15 minute temporal resolution of the data allows phases of waxing and peak activity to be identified during short (150-to-810 minute-long) events. Cooling curves, which decay over 8-to-21 hour-periods following the fountaining event, can also be identified. Application to 19 fountaining events recorded at Etna by MSG's SEVIRI sensor between 10 January 2011 and 9 January 2012, yields a total erupted dense rock lava volume of ˜28 × 106 m3, with a maximum intensity of 227 m3 s-1 being obtained for the 12 August 2011 event. The time-averaged output over the year was 0.9 m3 s-1, this being the same as the rate that has characterized Etna's effusive activity for the last 40 years.
Pellegrino Vidal, Rocío B; Allegrini, Franco; Olivieri, Alejandro C
2018-03-20
Multivariate curve resolution-alternating least-squares (MCR-ALS) is the model of choice when dealing with some non-trilinear arrays, specifically when the data are of chromatographic origin. To drive the iterative procedure to chemically interpretable solutions, the use of constraints becomes essential. In this work, both simulated and experimental data have been analyzed by MCR-ALS, applying chemically reasonable constraints, and investigating the relationship between selectivity, analytical sensitivity (γ) and root mean square error of prediction (RMSEP). As the selectivity in the instrumental modes decreases, the estimated values for γ did not fully represent the predictive model capabilities, judged from the obtained RMSEP values. Since the available sensitivity expressions have been developed by error propagation theory in unconstrained systems, there is a need of developing new expressions or analytical indicators. They should not only consider the specific profiles retrieved by MCR-ALS, but also the constraints under which the latter ones have been obtained. Copyright © 2017 Elsevier B.V. All rights reserved.
Goicoechea, Héctor C; Olivieri, Alejandro C; Tauler, Romà
2010-03-01
Correlation constrained multivariate curve resolution-alternating least-squares is shown to be a feasible method for processing first-order instrumental data and achieve analyte quantitation in the presence of unexpected interferences. Both for simulated and experimental data sets, the proposed method could correctly retrieve the analyte and interference spectral profiles and perform accurate estimations of analyte concentrations in test samples. Since no information concerning the interferences was present in calibration samples, the proposed multivariate calibration approach including the correlation constraint facilitates the achievement of the so-called second-order advantage for the analyte of interest, which is known to be present for more complex higher-order richer instrumental data. The proposed method is tested using a simulated data set and two experimental data systems, one for the determination of ascorbic acid in powder juices using UV-visible absorption spectral data, and another for the determination of tetracycline in serum samples using fluorescence emission spectroscopy.
A Hough transform global probabilistic approach to multiple-subject diffusion MRI tractography.
Aganj, Iman; Lenglet, Christophe; Jahanshad, Neda; Yacoub, Essa; Harel, Noam; Thompson, Paul M; Sapiro, Guillermo
2011-08-01
A global probabilistic fiber tracking approach based on the voting process provided by the Hough transform is introduced in this work. The proposed framework tests candidate 3D curves in the volume, assigning to each one a score computed from the diffusion images, and then selects the curves with the highest scores as the potential anatomical connections. The algorithm avoids local minima by performing an exhaustive search at the desired resolution. The technique is easily extended to multiple subjects, considering a single representative volume where the registered high-angular resolution diffusion images (HARDI) from all the subjects are non-linearly combined, thereby obtaining population-representative tracts. The tractography algorithm is run only once for the multiple subjects, and no tract alignment is necessary. We present experimental results on HARDI volumes, ranging from simulated and 1.5T physical phantoms to 7T and 4T human brain and 7T monkey brain datasets. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallagher, Neal B.; Blake, Thomas A.; Gassman, Paul L.
2006-07-01
Multivariate curve resolution (MCR) is a powerful technique for extracting chemical information from measured spectra on complex mixtures. The difficulty with applying MCR to soil reflectance measurements is that light scattering artifacts can contribute much more variance to the measurements than the analyte(s) of interest. Two methods were integrated into a MCR decomposition to account for light scattering effects. Firstly, an extended mixture model using pure analyte spectra augmented with scattering ‘spectra’ was used for the measured spectra. And secondly, second derivative preprocessed spectra, which have higher selectivity than the unprocessed spectra, were included in a second block as amore » part of the decomposition. The conventional alternating least squares (ALS) algorithm was modified to simultaneously decompose the measured and second derivative spectra in a two-block decomposition. Equality constraints were also included to incorporate information about sampling conditions. The result was an MCR decomposition that provided interpretable spectra from soil reflectance measurements.« less
Beyramysoltan, Samira; Rajkó, Róbert; Abdollahi, Hamid
2013-08-12
The obtained results by soft modeling multivariate curve resolution methods often are not unique and are questionable because of rotational ambiguity. It means a range of feasible solutions equally fit experimental data and fulfill the constraints. Regarding to chemometric literature, a survey of useful constraints for the reduction of the rotational ambiguity is a big challenge for chemometrician. It is worth to study the effects of applying constraints on the reduction of rotational ambiguity, since it can help us to choose the useful constraints in order to impose in multivariate curve resolution methods for analyzing data sets. In this work, we have investigated the effect of equality constraint on decreasing of the rotational ambiguity. For calculation of all feasible solutions corresponding with known spectrum, a novel systematic grid search method based on Species-based Particle Swarm Optimization is proposed in a three-component system. Copyright © 2013 Elsevier B.V. All rights reserved.
Ni, Yongnian; Wei, Min; Kokot, Serge
2011-11-01
Interaction of isoprenaline (ISO) with calf-thymus DNA was studied by spectroscopic and electrochemical methods. The behavior of ISO was investigated at a glassy carbon electrode (GCE) by cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPSV); ISO was oxidized and an irreversible oxidation peak was observed. The binding constant K and the stoichiometric coefficient m of ISO with DNA were evaluated. Also, with the addition of DNA, hyperchromicity of the UV-vis absorption spectra of ISO was noted, while the fluorescence intensity decreased significantly. Multivariate curve resolution-alternating least squares (MCR-ALS) chemometrics method was applied to resolve the combined spectroscopic data matrix, which was obtained by the UV-vis and fluorescence methods. Pure spectra of ISO, DNA and ISO-DNA complex, and their concentration profiles were then successfully obtained. The results indicated that the ISO molecule intercalated into the base-pairs of DNA, and the complex of ISO-DNA was formed. Copyright © 2011 Elsevier B.V. All rights reserved.
Pulse height tests of a large diameter fast LaBr₃:Ce scintillation detector.
Naqvi, A A; Khiari, F Z; Maslehuddin, M; Gondal, M A; Al-Amoudi, O S B; Ukashat, M S; Ilyas, A M; Liadi, F A; Isab, A A; Khateeb-ur Rehman; Raashid, M; Dastageer, M A
2015-10-01
The pulse height response of a large diameter fast 100 mm × 100 mm LaBr3:Ce detector was measured for 0.1-10 MeV gamma-rays. The detector has a claimed time resolution of 608 ps for 511 keV gamma rays, but has relatively poor energy resolution due to the characteristics of its fast photomultiplier. The detector pulse height response was measured for gamma rays from cobalt, cesium, and bismuth radioisotope sources as well as prompt gamma rays from thermal neutron capture in water samples contaminated with mercury (3.1 wt%), boron (2.5 wt%), cadmium (0.25 wt%), chromium (52 wt%), and nickel (22 wt%) compounds. The energy resolution of the detector was determined from full width at half maximum (FWHM) of element-characteristic gamma ray peaks in the pulse height spectrum associated with the element present in the contaminated water sample. The measured energy resolution of the 100 mm × 100 mm detector varies from 12.7±0.2% to 1.9±0.1% for 0.1 to 10 MeV gamma rays, respectively. The graph showing the energy resolution ΔE/E(%) versus 1/√Eγ was fitted with a linear function to study the detector light collection from the slope of the curve. The slope of the present 100 mm × 100 mm detector is almost twice as large as the slope of a similar curve of previously published data for a 89 mm × 203 mm LaBr3:Ce detector. This indicates almost two times poorer light collection in the 100 mm × 100 mm detector as compared to the other detector. Copyright © 2015 Elsevier Ltd. All rights reserved.
García, M D Gil; Culzoni, M J; De Zan, M M; Valverde, R Santiago; Galera, M Martínez; Goicoechea, H C
2008-02-01
A new powerful algorithm (unfolded-partial least squares followed by residual bilinearization (U-PLS/RBL)) was applied for first time on second-order liquid chromatography with diode array detection (LC-DAD) data and compared with a well-known established method (multivariate curve resolution-alternating least squares (MCR-ALS)) for the simultaneous determination of eight tetracyclines (tetracycline, oxytetracycline, meclocycline, minocycline, metacycline, chlortetracycline, demeclocycline and doxycycline) in wastewaters. Tetracyclines were pre-concentrated using Oasis Max C18 cartridges and then separated on a Thermo Aquasil C18 (150 mm x 4.6mm, 5 microm) column. The whole method was validated using Milli-Q water samples and both univariate and multivariate analytical figures of merit were obtained. Additionally, two data pre-treatment were applied (baseline correction and piecewise direct standardization), which allowed to correct the effect of breakthrough and to reduce the total interferences retained after pre-concentration of wastewaters. The results showed that the eight tetracycline antibiotics can be successfully determined in wastewaters, the drawbacks due to matrix interferences being adequately handled and overcome by using U-PSL/RBL.
Monago-Maraña, Olga; Pérez, Rocío L; Escandar, Graciela M; Muñoz de la Peña, Arsenio; Galeano-Díaz, Teresa
2016-11-02
This work presents a strategy for quantitating polycyclic aromatic hydrocarbons (PAHs) in smoked paprika samples. For this, a liquid chromatographic method with fluorimetric detection (HPLC-FLD) was optimized. To resolve some interference co-eluting with the target analytes, the second-order multivariate curve resolution-alternating least-squares (MCR-ALS) algorithm has been employed combined with this liquid chromatographic method. Among the eight PAHs quantified (fluorene, phenanthrene, anthracene, pyrene, chrysene, benzo[a]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene) by HPLC-FLD, only in the case of fluorene, pyrene, and benzo[b]fluoranthene was it necessary to apply the second-order algorithm for their resolution. Limits of detection and quantitation were between 0.015 and 0.45 mg/kg and between 0.15 and 1.5 mg/kg, respectively. Good recovery results (>80%) for paprika were obtained via the complete extraction procedure, consisting of an extraction from the matrix and the cleanup of the extract by means of silica cartridges. Higher concentrations of chrysene, benzo[a]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene were found in the paprika samples, with respect to the maximal amounts allowed for other spices that are under European Regulation (EU) N° 2015/1933.
Methods of Technological Forecasting,
1977-05-01
Trend Extrapolation Progress Curve Analogy Trend Correlation Substitution Analysis or Substitution Growth Curves Envelope Curve Advances in the State of...the Art Technological Mapping Contextual Mapping Matrix Input-Output Analysis Mathematical Models Simulation Models Dynamic Modelling. CHAPTER IV...Generation Interaction between Needs and Possibilities Map of the Technological Future — (‘ross- Impact Matri x Discovery Matrix Morphological Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelms, Benjamin; Stambaugh, Cassandra; Hunt, Dylan
2015-08-15
Purpose: The authors designed data, methods, and metrics that can serve as a standard, independent of any software package, to evaluate dose-volume histogram (DVH) calculation accuracy and detect limitations. The authors use simple geometrical objects at different orientations combined with dose grids of varying spatial resolution with linear 1D dose gradients; when combined, ground truth DVH curves can be calculated analytically in closed form to serve as the absolute standards. Methods: DICOM RT structure sets containing a small sphere, cylinder, and cone were created programmatically with axial plane spacing varying from 0.2 to 3 mm. Cylinders and cones were modeledmore » in two different orientations with respect to the IEC 1217 Y axis. The contours were designed to stringently but methodically test voxelation methods required for DVH. Synthetic RT dose files were generated with 1D linear dose gradient and with grid resolution varying from 0.4 to 3 mm. Two commercial DVH algorithms—PINNACLE (Philips Radiation Oncology Systems) and PlanIQ (Sun Nuclear Corp.)—were tested against analytical values using custom, noncommercial analysis software. In Test 1, axial contour spacing was constant at 0.2 mm while dose grid resolution varied. In Tests 2 and 3, the dose grid resolution was matched to varying subsampled axial contours with spacing of 1, 2, and 3 mm, and difference analysis and metrics were employed: (1) histograms of the accuracy of various DVH parameters (total volume, D{sub max}, D{sub min}, and doses to % volume: D99, D95, D5, D1, D0.03 cm{sup 3}) and (2) volume errors extracted along the DVH curves were generated and summarized in tabular and graphical forms. Results: In Test 1, PINNACLE produced 52 deviations (15%) while PlanIQ produced 5 (1.5%). In Test 2, PINNACLE and PlanIQ differed from analytical by >3% in 93 (36%) and 18 (7%) times, respectively. Excluding D{sub min} and D{sub max} as least clinically relevant would result in 32 (15%) vs 5 (2%) scored deviations for PINNACLE vs PlanIQ in Test 1, while Test 2 would yield 53 (25%) vs 17 (8%). In Test 3, statistical analyses of volume errors extracted continuously along the curves show PINNACLE to have more errors and higher variability (relative to PlanIQ), primarily due to PINNACLE’s lack of sufficient 3D grid supersampling. Another major driver for PINNACLE errors is an inconsistency in implementation of the “end-capping”; the additional volume resulting from expanding superior and inferior contours halfway to the next slice is included in the total volume calculation, but dose voxels in this expanded volume are excluded from the DVH. PlanIQ had fewer deviations, and most were associated with a rotated cylinder modeled by rectangular axial contours; for coarser axial spacing, the limited number of cross-sectional rectangles hinders the ability to render the true structure volume. Conclusions: The method is applicable to any DVH-calculating software capable of importing DICOM RT structure set and dose objects (the authors’ examples are available for download). It includes a collection of tests that probe the design of the DVH algorithm, measure its accuracy, and identify failure modes. Merits and applicability of each test are discussed.« less
Applications of Fractal Analytical Techniques in the Estimation of Operational Scale
NASA Technical Reports Server (NTRS)
Emerson, Charles W.; Quattrochi, Dale A.
2000-01-01
The observational scale and the resolution of remotely sensed imagery are essential considerations in the interpretation process. Many atmospheric, hydrologic, and other natural and human-influenced spatial phenomena are inherently scale dependent and are governed by different physical processes at different spatial domains. This spatial and operational heterogeneity constrains the ability to compare interpretations of phenomena and processes observed in higher spatial resolution imagery to similar interpretations obtained from lower resolution imagery. This is a particularly acute problem, since longterm global change investigations will require high spatial resolution Earth Observing System (EOS), Landsat 7, or commercial satellite data to be combined with lower resolution imagery from older sensors such as Landsat TM and MSS. Fractal analysis is a useful technique for identifying the effects of scale changes on remotely sensed imagery. The fractal dimension of an image is a non-integer value between two and three which indicates the degree of complexity in the texture and shapes depicted in the image. A true fractal surface exhibits self-similarity, a property of curves or surfaces where each part is indistinguishable from the whole, or where the form of the curve or surface is invariant with respect to scale. Theoretically, if the digital numbers of a remotely sensed image resemble an ideal fractal surface, then due to the self-similarity property, the fractal dimension of the image will not vary with scale and resolution, and the slope of the fractal dimension-resolution relationship would be zero. Most geographical phenomena, however, are not self-similar at all scales, but they can be modeled by a stochastic fractal in which the scaling properties of the image exhibit patterns that can be described by statistics such as area-perimeter ratios and autocovariances. Stochastic fractal sets relax the self-similarity assumption and measure many scales and resolutions to represent the varying form of a phenomenon as the pixel size is increased in a convolution process. We have observed that for images of homogeneous land covers, the fractal dimension varies linearly with changes in resolution or pixel size over the range of past, current, and planned space-borne sensors. This relationship differs significantly in images of agricultural, urban, and forest land covers, with urban areas retaining the same level of complexity, forested areas growing smoother, and agricultural areas growing more complex as small pixels are aggregated into larger, mixed pixels. Images of scenes having a mixture of land covers have fractal dimensions that exhibit a non-linear, complex relationship to pixel size. Measuring the fractal dimension of a difference image derived from two images of the same area obtained on different dates showed that the fractal dimension increased steadily, then exhibited a sharp decrease at increasing levels of pixel aggregation. This breakpoint of the fractal dimension/resolution plot is related to the spatial domain or operational scale of the phenomenon exhibiting the predominant visible difference between the two images (in this case, mountain snow cover). The degree to which an image departs from a theoretical ideal fractal surface provides clues as to how much information is altered or lost in the processes of rescaling and rectification. The measured fractal dimension of complex, composite land covers such as urban areas also provides a useful textural index that can assist image classification of complex scenes.
Image-receptor performance: a comparison of Trophy RVG UI sensor and Kodak Ektaspeed Plus film.
Ludlow, J; Mol, A
2001-01-01
Objective. This study compares the physical characteristics of the RVG UI sensor (RVG) with Ektaspeed Plus film. Dose-response curves were generated for film and for each of 6 available RVG modes. An aluminum step-wedge was used to evaluate exposure latitude. Spatial resolution was assessed by using a line-pair test tool. Latitude and resolution were assessed by observers for both modalities. The RVG was further characterized by its modulation transfer function. Exposure latitude was equal for film and RVG in the periodontal mode. Other gray scale modes demonstrated much lower latitude. The average maximum resolution was 15.3 line-pairs per millimeter (lp/mm) for RVG in high-resolution mode, 10.5 lp/mm for RVG in low-resolution mode, and 20 lp/mm for film (P <.0001). Modulation transfer function measurements supported the subjective assessments. In periodontal mode, the RVG UI sensor demonstrates exposure latitude similar to that of Ektaspeed Plus film. Film images exhibit significantly higher spatial resolution than the RVG images acquired in high-resolution mode.
Development of allele-specific multiplex PCR to determine the length of poly-T in intron 8 of CFTR
Prada, Anne E.
2014-01-01
Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation analysis has been implemented for Cystic Fibrosis (CF) carrier screening, and molecular diagnosis of CF and congenital bilateral absence of the vas deferens (CBAVD). Although poly-T allele analysis in intron 8 of CFTR is required when a patient is positive for R117H, it is not recommended for routine carrier screening. Therefore, commercial kits for CFTR mutation analysis were designed either to mask the poly-T allele results, unless a patient is R117H positive, or to have the poly-T analysis as a standalone reflex test using the same commercial platform. There are other standalone assays developed to detect poly-T alleles, such as heteroduplex analysis, High Resolution Melting (HRM) curve analysis, allele-specific PCR (AS-PCR) and Sanger sequencing. In this report, we developed a simple and easy-to-implement multiplex AS-PCR assay using unlabeled standard length primers, which can be used as a reflex or standalone test for CFTR poly-T track analysis. Out of 115 human gDNA samples tested, results from our new AS-PCR matched to the previous known poly-T results or results from Sanger sequencing. PMID:25071991
NASA Astrophysics Data System (ADS)
Jin, Weidong; Zhang, Hao; Yuan, Ye; Yang, Yazhou; Shkuratov, Yuriy G.; Lucey, Paul G.; Kaydash, Vadim G.; Zhu, Meng-Hua; Xue, Bin; Di, Kaichang; Xu, Bin; Wan, Wenhui; Xiao, Long; Wang, Ziwei
2015-10-01
The panorama cameras onboard the Yutu Rover of the Chang'E-3 lunar mission acquired hundreds of high-resolution color images of the lunar surface and captured the first in situ lunar opposition effect (OE) since the Apollo era. We extracted the phase curve and the color ratio in three bands with the phase angle range from 2° to 141°. Photometric inversions using the Hapke model reveal that submicroscopic dusts are present in the landing area and both the coherent backscattering and the shadow hiding are responsible for the strong OE. Compared with spaceborne measurements, the grains in the landing site are brighter, more transparent, and appear to be better crystallized than the average maria basaltic grains. The results show that the phase-reddening effect appears to be present in the in situ phase curves. The current phase curve can be used as the ground-truth validations of any future spaceborne phase curve measurement over the landing site region.
Lund, Eric K; O'Connor, Patrick M; Loewen, Mark A; Jinnah, Zubair A
2016-01-01
The Upper Cretaceous (middle-late Campanian) Wahweap Formation of southern Utah contains the oldest diagnostic evidence of ceratopsids (to date, all centrosaurines) in North America, with a number of specimens recovered from throughout a unit that spans between 81 and 77 Ma. Only a single specimen has been formally named, Diabloceratops eatoni, from the lower middle member of the formation. Machairoceratops cronusi gen. et sp. nov., a new centrosaurine ceratopsid from the upper member of the Wahweap Formation, is here described based on cranial material representing a single individual recovered from a calcareous mudstone. The specimen consists of two curved and elongate orbital horncores, a left jugal, a nearly complete, slightly deformed braincase, the left squamosal, and a mostly complete parietal ornamented by posteriorly projected, anterodorsally curved, elongate spikes on either side of a midline embayment. The fan-shaped, stepped-squamosal is diagnostic of Centrosaurinae, however, this element differs from the rectangular squamosal in Diabloceratops. Machairoceratops also differs in the possession of two anterodorsally (rather than laterally) curved epiparietal ornamentations on either side of a midline embayment that are distinguished by a posteromedially-oriented sulcus along the entire length of the epiparietal. Additionally, the parietosquamosal frill is lacking any other epiossifications along its periphery. Machairoceratops shares a triangular (rather than round) frill and spike-like epiparietal loci (p1) ornamentation with the stratigraphically lower Diabloceratops. Both parsimony and Bayesian phylogenetic analyses place Machairoceratops as an early-branching centrosaurine. However, the parsimony-based analysis provides little resolution for the position of the new taxon, placing it in an unresolved polytomy with Diabloceratops. The resultant Bayesian topology yielded better resolution, aligning Machairoceratops as the definitive sister taxon to a clade formed by Diabloceratops and Albertaceratops. Considered together, both phylogenetic methods unequivocally place Machairoceratops as an early-branching centrosaurine, and given the biostratigraphic position of Machairoceratops, these details increase the known ceratopsid diversity from both the Wahweap Formation and the southern portion of Laramidia. Finally, the unique morphology of the parietal ornamentation highlights the evolutionary disparity of frill ornamentation near the base of Centrosaurinae.
NASA Astrophysics Data System (ADS)
Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry
2017-07-01
Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF of Schaap et al. (2001) applied to the SoilGrids1km data set of Hengl et al. (2014). The example data set is provided at a global resolution of 0.25° at https://doi.org/10.1594/PANGAEA.870605.
Analysis of uniformity of as prepared and irradiated S.I. GaAs radiation detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nava, F.; Vanni, P.; Canali, C.
1998-06-01
SI (semi-insulating) LEC (Liquid Encapsulated Czochralsky) GaAs (gallium arsenide) Schottky barrier detectors have been irradiated with high energy protons (24 GeV/c, fluence up to 16.45 {times} 10{sup 13} p/cm{sup 2}). The detectors have been characterized in terms of I/V curves, charge collection efficiency (cce) for incident 5.48 MeV {alpha}-, 2 MeV proton and minimum ionizing {beta}-particles and of cce maps by microprobe technique IBIC (Ion Beam Induced Charge). At the highest fluence a significant degradation of the electron and hole collection efficiencies and a remarkable improvement of the Full Width Half Maximum (FWHM) energy resolution have been measured with {alpha}-more » and proton particles. Furthermore, the reduction in the cce is greater than the one measured with {beta}-particles and the energy resolution worsens with increasing the applied bias, V{sub a}, above the voltage V{sub d} necessary to extend the electric field al the way to the ohmic contact. On the contrary, in the unirradiated detectors the charge collection efficiencies with {alpha}-, {beta}- and proton particles are quite similar and the energy resolution improves with increasing V{sub a} > V{sub d}. IBIC spectra and IBIC space maps obtained by scanning a focused (8 {micro}m{sup 2}) 2 MeV proton microbeam on front (Schottky) and back (ohmic) contacts, support the observed electric field dependence of the energy resolution both in unirradiated and most irradiated detectors. The results obtained let them explain the effect of the electric field strength and the plasma on the collection of the charge carriers and the FWHM energy resolution.« less
Cone penetration test for facies study: a review
NASA Astrophysics Data System (ADS)
Satriyo, N. A.; Soebowo, E.
2018-02-01
Engineering geology investigation through Cone Penetration Test (with pore-pressure measurements) approach is one of the most effective methods to find out sub surface layer. This method is generally used in Late Quaternary and typical deposit and can also be used for sedimentological purposes. CPTu and drilling core for high-resolution stratigraphy sub surface have been done in many research. These combined data can also be used to detail correlations of sub surface stratigraphy, to identify facies change and to determine the interpretation of sequence stratigraphy. The determination facies distribution research based on CPTu profile, which was included in quantitative data, is rarely done especially in Indonesia which has a different climate. Whereas drilling core description using grain size analysis will provide information on validation about physical lithology characteristics which are developed in research area. The interpretation is given using CPTu curve pattern and cone resistance parameter of CPTu’s data correlated with physical characteristics of drilling core. The cone resistance will provide the strength of the sediment layer which also gives the range of data between clay and sand. Finally, the review will show that each of developing facies characteristic provides a specific curve pattern and every sediment deposit facies can be determined by the transformation of CPTu curve profile. Despite the fact that the research using those methods are quite comprehensive, a review is presented on each of these methods related with the chronologic factor seen by the geological time and different characteristics sediment of different location.
Note: Focus error detection device for thermal expansion-recovery microscopy (ThERM).
Domené, E A; Martínez, O E
2013-01-01
An innovative focus error detection method is presented that is only sensitive to surface curvature variations, canceling both thermoreflectance and photodefelection effects. The detection scheme consists of an astigmatic probe laser and a four-quadrant detector. Nonlinear curve fitting of the defocusing signal allows the retrieval of a cutoff frequency, which only depends on the thermal diffusivity of the sample and the pump beam size. Therefore, a straightforward retrieval of the thermal diffusivity of the sample is possible with microscopic lateral resolution and high axial resolution (~100 pm).
Osathanunkul, Maslin; Suwannapoom, Chatmongkon; Khamyong, Nuttaluck; Pintakum, Danupol; Lamphun, Santisuk Na; Triwitayakorn, Kanokporn; Osathanunkul, Kitisak; Madesis, Panagiotis
2016-01-01
Background: Andrographis paniculata Nees is a medicinal plant with multiple pharmacological properties. It has been used over many centuries as a household remedy. A. paniculata products sold on the markets are in processed forms so it is difficult to authenticate. Therefore buying the herbal products poses a high-risk of acquiring counterfeited, substituted and/or adulterated products. Due to these issues, a reliable method to authenticate products is needed. Materials and Methods: High resolution melting analysis coupled with DNA barcoding (Bar-HRM) was applied to detect adulteration in commercial herbal products. The rbcL barcode was selected to use in primers design for HRM analysis to produce standard melting profile of A. paniculata species. DNA of the tested commercial products was isolated and their melting profiles were then generated and compared with the standard A. paniculata. Results: The melting profiles of the rbcL amplicons of the three closely related herbal species (A. paniculata, Acanthus ebracteatus and Rhinacanthus nasutus) are clearly separated so that they can be distinguished by the developed method. The method was then used to authenticate commercial herbal products. HRM curves of all 10 samples tested are similar to A. paniculata which indicated that all tested products were contained the correct species as labeled. Conclusion: The method described in this study has been proved to be useful in aiding identification and/or authenticating A. paniculata. This Bar-HRM analysis has allowed us easily to determine the A. paniculata species in herbal products on the markets even they are in processed forms. SUMMARY We propose the use of DNA barcoding combined with High Resolution Melting analysis for authenticating of Andrographis paniculata products.The developed method can be used regardless of the type of the DNA template (fresh or dried tissue, leaf, and stem).rbcL region was chosen for the analysis and work well with our samplesWe can easily determine the A. paniculata species in herbal products tested. Abbreviations used: bp: Base pair, Tm: Melting temperature PMID:27041863
NASA Astrophysics Data System (ADS)
Bobea, M.; Tweedie, J.; Bryan, I.; Bryan, Z.; Rice, A.; Dalmau, R.; Xie, J.; Collazo, R.; Sitar, Z.
2013-03-01
A high-resolution X-ray diffraction method with enhanced surface sensitivity has been used to investigate the effects of various polishing steps on the near-surface region of single crystal substrates. The method involves the study of a highly asymmetric reflection, observable under grazing incidence conditions. Analysis of rocking curve measurements and reciprocal space maps (RSMs) revealed subtle structural differences between the polished substrates. For aluminum nitride wafers, damage induced from diamond sawing and mechanical polishing was readily identifiable by on-axis rocking curves, but this method was unable to distinguish between sample surfaces subjected to various degrees of chemical mechanical polishing (CMP). To characterize sufficiently these surfaces, (10.3) RSMs were measured to provide both qualitative and quantitative information about the near-surface region. Two features present in the RSMs were utilized to quantitatively assess the polished wafers: the magnitude of the diffuse scatter in the omega-scans and the elongation of the crystal truncation rod. The method is able to distinguish between different degrees of CMP surface preparation and provides metrics to quantify subsurface damage after this polishing step.
Sensitive Fibre-Based Thermoluminescence Detectors for High Resolution In-Vivo Dosimetry
NASA Astrophysics Data System (ADS)
Ghomeishi, Mostafa; Mahdiraji, G. Amouzad; Adikan, F. R. Mahamd; Ung, N. M.; Bradley, D. A.
2015-08-01
With interest in the potential of optical fibres as the basis of next-generation thermoluminescence dosimeters (TLDs), the development of suitable forms of material and their fabrication has become a fast-growing endeavour. Present study focuses on three types of Ge-doped optical fibres with different structural arrangements and/or shapes, namely conventional cylindrical fibre, capillary fibre, and flat fibre, all fabricated using the same optical fibre preform. For doses from 0.5 to 8 Gy, obtained at electron and photon energies, standard thermoluminescence (TL) characteristics of the optical fibres have been the subject of detailed investigation. The results show that in collapsing the capillary fibre into a flat shape, the TL yield is increased by a factor of 5.5, the yield being also some 3.2 times greater than that of the conventional cylindrical fibre fabricated from the same perform. This suggests a means of production of suitably sensitive TLD for in-vivo dosimeter applications. Addressing the associated defects generating luminescence from each of the optical fibres, the study encompasses analysis of the TL glow curves, with computerized glow curve deconvolution (CGCD) and 2nd order kinetics.
Sensitive Fibre-Based Thermoluminescence Detectors for High Resolution In-Vivo Dosimetry.
Ghomeishi, Mostafa; Mahdiraji, G Amouzad; Adikan, F R Mahamd; Ung, N M; Bradley, D A
2015-08-28
With interest in the potential of optical fibres as the basis of next-generation thermoluminescence dosimeters (TLDs), the development of suitable forms of material and their fabrication has become a fast-growing endeavour. Present study focuses on three types of Ge-doped optical fibres with different structural arrangements and/or shapes, namely conventional cylindrical fibre, capillary fibre, and flat fibre, all fabricated using the same optical fibre preform. For doses from 0.5 to 8 Gy, obtained at electron and photon energies, standard thermoluminescence (TL) characteristics of the optical fibres have been the subject of detailed investigation. The results show that in collapsing the capillary fibre into a flat shape, the TL yield is increased by a factor of 5.5, the yield being also some 3.2 times greater than that of the conventional cylindrical fibre fabricated from the same perform. This suggests a means of production of suitably sensitive TLD for in-vivo dosimeter applications. Addressing the associated defects generating luminescence from each of the optical fibres, the study encompasses analysis of the TL glow curves, with computerized glow curve deconvolution (CGCD) and 2(nd) order kinetics.
Sensitive Fibre-Based Thermoluminescence Detectors for High Resolution In-Vivo Dosimetry
Ghomeishi, Mostafa; Mahdiraji, G. Amouzad; Adikan, F. R. Mahamd; Ung, N. M.; Bradley, D. A.
2015-01-01
With interest in the potential of optical fibres as the basis of next-generation thermoluminescence dosimeters (TLDs), the development of suitable forms of material and their fabrication has become a fast-growing endeavour. Present study focuses on three types of Ge-doped optical fibres with different structural arrangements and/or shapes, namely conventional cylindrical fibre, capillary fibre, and flat fibre, all fabricated using the same optical fibre preform. For doses from 0.5 to 8 Gy, obtained at electron and photon energies, standard thermoluminescence (TL) characteristics of the optical fibres have been the subject of detailed investigation. The results show that in collapsing the capillary fibre into a flat shape, the TL yield is increased by a factor of 5.5, the yield being also some 3.2 times greater than that of the conventional cylindrical fibre fabricated from the same perform. This suggests a means of production of suitably sensitive TLD for in-vivo dosimeter applications. Addressing the associated defects generating luminescence from each of the optical fibres, the study encompasses analysis of the TL glow curves, with computerized glow curve deconvolution (CGCD) and 2nd order kinetics. PMID:26314683
Crespo De Cabrera, S.; Sliter, W.V.; Jarvis, I.
1999-01-01
An integrated foraminiferal biostratigraphy and chemostratigraphy is presented for the Lower to Upper Cretaceous Querecual Formation exposed on Chimana Grande Island, Eastern Venezuela. The formation consists of >450 m alternating foraminiferal and organic-rich carbonates and laminated mudrocks, and is considered the main hydrocarbon source rock for the eastern Venezuela Basin. Biostratigraphic resolution within the Querecual Formation is poor, due to a paucity of keeled planktonic foraminifera and impoverished benthic faunas. Deposition occurred in a bathyal environment, with dysaerobic or anoxic bottom waters resulting from high rates of surface productivity associated with an upwelling environment. Biostratigraphic evidence indicates that the Querecual Formation ranges from the upper Albian Rotalipora ticinensis Zone to the Santonian Dicarinella asymetrica Zone. Iron and Al contents fall through the Albian-Cenomanian indicating a progressive decrease in the detrital supply, driven by rising eustatic sea level. A Ca profile demonstrates variations in carbonate production and dissolution. High total organic carbon (TOC) intervals occur in the upper Albian to mid-Cenomanian and Turonian, and high Ba/Al and Si/Al ratios characterize mid-Cenomanian and younger sediments. Variations in these elements primarily reflect changes in marine productivity, but are also affected by diagenetic processes. A stable carbon isotope curve established from analysis of organic matter (??13Corg) correlates well with published ??13C curves for carbonates from England and Italy. The Cenomanian/Turonian boundary cannot be identified using planktonic foraminifera, because key taxa are absent, but the base of the Turonian is clearly indicated by a sharp fall in ??13C immediately above a major positive excursion. The bottom of the Coniacian is placed below a ??13C minimum, towards the base of the Dicarinella concavata Zone. Combined with the foraminiferal data, the isotopic data enable much improved stratigraphic resolution compared to previous investigations of the formation.
NASA Astrophysics Data System (ADS)
Aminzadeh, Mohammad; Eslami, Abbas; Kia, Reza; Aleeshah, Roghayeh
2017-10-01
Diquaternarization of dipyrido-[2,3-a:2‧,3‧-c]-phenazine,(dppz) and its analogous dipyrido-[2,3-a:2‧,3‧-c]-dimethylphenazine,(dppx) using 1,3-dibromopropane afford new water-soluble derivatives of phenazine, propylene-bipyridyldiylium-phenazine (1) and propylene-bipyridyldiylium-dimethylphenazine (2). The compounds have been characterized by means of FT-IR, NMR, elemental analysis and conductometric measurements and their structure were determined by X-ray crystallography. The experimental studies on the compounds have been accompanied computationally by Density Functional Theory (DFT) calculations. The DNA binding properties of both compounds to calf thymus DNA (ctDNA) were investigated by UV-Vis absorption and emission methods. The expanded UV-Vis spectral data matrix was analyzed by multivariate curve resolution-alternating least squares (MCR-ALS) technique to obtain the concentration profile and pure spectra of all reaction species which existed in the interaction procedure. Multivariate curve resolution may help us to give a better understanding of the 1(Cl)2-ctDNA and 2(Cl)2-ctDNA interaction mechanism. The results suggest that both compounds bind tightly to DNA through intercalation mechanism and the DNA binding affinity of 2 is slightly lower than that of 1 due to steric hindrance of the methyl group. Also, thermal denaturation studies reveal that these compounds show strong affinity for binding with calf thymus DNA. The thermodynamic parameters of the DNA binding process were obtained from the temperature dependence of the binding constants and the results showed that binding of both compounds to DNA is an enthalpically driven process that is in agreement with proposed DNA intercalation capability of these compounds.
NASA Astrophysics Data System (ADS)
Bernal, T.; Fernández-Hernández, L. M.; Matos, T.; Rodríguez-Meza, M. A.
2018-04-01
Cold dark matter (CDM) has shown to be an excellent candidate for the dark matter (DM) of the Universe at large scales; however, it presents some challenges at the galactic level. The scalar field dark matter (SFDM), also called fuzzy, wave, Bose-Einstein condensate, or ultralight axion DM, is identical to CDM at cosmological scales but different at the galactic ones. SFDM forms core haloes, it has a natural cut-off in its matter power spectrum, and it predicts well-formed galaxies at high redshifts. In this work we reproduce the rotation curves of high-resolution low surface brightness (LSB) and SPARC galaxies with two SFDM profiles: (1) the soliton+NFW profile in the fuzzy DM (FDM) model, arising empirically from cosmological simulations of real, non-interacting scalar field (SF) at zero temperature, and (2) the multistate SFDM (mSFDM) profile, an exact solution to the Einstein-Klein-Gordon equations for a real, self-interacting SF, with finite temperature into the SF potential, introducing several quantum states as a realistic model for an SFDM halo. From the fits with the soliton+NFW profile, we obtained for the boson mass 0.212 < mψ/(10-23 eV/c2) < 27.0 and for the core radius 0.326 < rc/kpc < 8.96. From the combined analysis with the LSB galaxies, we obtained mψ = 0.554 × 10-23 eV, a result in tension with the severe cosmological constraints. Also, we show the analytical mSFDM model fits the observations as well as or better than the empirical soliton+NFW profile, and it reproduces naturally the wiggles present in some galaxies, being a theoretically motivated framework additional or alternative to the FDM profile.
A Bayesian Approach to Period Searching in Solar Coronal Loops
NASA Astrophysics Data System (ADS)
Scherrer, Bryan; McKenzie, David
2017-03-01
We have applied a Bayesian generalized Lomb-Scargle period searching algorithm to movies of coronal loop images obtained with the Hinode X-ray Telescope (XRT) to search for evidence of periodicities that would indicate resonant heating of the loops. The algorithm makes as its only assumption that there is a single sinusoidal signal within each light curve of the data. Both the amplitudes and noise are taken as free parameters. It is argued that this procedure should be used alongside Fourier and wavelet analyses to more accurately extract periodic intensity modulations in coronal loops. The data analyzed are from XRT Observation Program #129C: “MHD Wave Heating (Thin Filters),” which occurred during 2006 November 13 and focused on active region 10293, which included coronal loops. The first data set spans approximately 10 min with an average cadence of 2 s, 2″ per pixel resolution, and used the Al-mesh analysis filter. The second data set spans approximately 4 min with a 3 s average cadence, 1″ per pixel resolution, and used the Al-poly analysis filter. The final data set spans approximately 22 min at a 6 s average cadence, and used the Al-poly analysis filter. In total, 55 periods of sinusoidal coronal loop oscillations between 5.5 and 59.6 s are discussed, supporting proposals in the literature that resonant absorption of magnetic waves is a viable mechanism for depositing energy in the corona.
Woksepp, Hanna; Jernberg, Cecilia; Tärnberg, Maria; Ryberg, Anna; Brolund, Alma; Nordvall, Michaela; Olsson-Liljequist, Barbro; Wisell, Karin Tegmark; Monstein, Hans-Jürg; Nilsson, Lennart E.; Schön, Thomas
2011-01-01
Methods for the confirmation of nosocomial outbreaks of bacterial pathogens are complex, expensive, and time-consuming. Recently, a method based on ligation-mediated PCR (LM/PCR) using a low denaturation temperature which produces specific melting-profile patterns of DNA products has been described. Our objective was to further develop this method for real-time PCR and high-resolution melting analysis (HRM) in a single-tube system optimized in order to achieve results within 1 day. Following the optimization of LM/PCR for real-time PCR and HRM (LM/HRM), the method was applied for a nosocomial outbreak of extended-spectrum-beta-lactamase (ESBL)-producing and ST131-associated Escherichia coli isolates (n = 15) and control isolates (n = 29), including four previous clusters. The results from LM/HRM were compared to results from pulsed-field gel electrophoresis (PFGE), which served as the gold standard. All isolates from the nosocomial outbreak clustered by LM/HRM, which was confirmed by gel electrophoresis of the LM/PCR products and PFGE. Control isolates that clustered by LM/PCR (n = 4) but not by PFGE were resolved by confirmatory gel electrophoresis. We conclude that LM/HRM is a rapid method for the detection of nosocomial outbreaks of bacterial infections caused by ESBL-producing E. coli strains. It allows the analysis of isolates in a single-tube system within a day, and the discriminatory power is comparable to that of PFGE. PMID:21956981
Woksepp, Hanna; Jernberg, Cecilia; Tärnberg, Maria; Ryberg, Anna; Brolund, Alma; Nordvall, Michaela; Olsson-Liljequist, Barbro; Wisell, Karin Tegmark; Monstein, Hans-Jürg; Nilsson, Lennart E; Schön, Thomas
2011-12-01
Methods for the confirmation of nosocomial outbreaks of bacterial pathogens are complex, expensive, and time-consuming. Recently, a method based on ligation-mediated PCR (LM/PCR) using a low denaturation temperature which produces specific melting-profile patterns of DNA products has been described. Our objective was to further develop this method for real-time PCR and high-resolution melting analysis (HRM) in a single-tube system optimized in order to achieve results within 1 day. Following the optimization of LM/PCR for real-time PCR and HRM (LM/HRM), the method was applied for a nosocomial outbreak of extended-spectrum-beta-lactamase (ESBL)-producing and ST131-associated Escherichia coli isolates (n = 15) and control isolates (n = 29), including four previous clusters. The results from LM/HRM were compared to results from pulsed-field gel electrophoresis (PFGE), which served as the gold standard. All isolates from the nosocomial outbreak clustered by LM/HRM, which was confirmed by gel electrophoresis of the LM/PCR products and PFGE. Control isolates that clustered by LM/PCR (n = 4) but not by PFGE were resolved by confirmatory gel electrophoresis. We conclude that LM/HRM is a rapid method for the detection of nosocomial outbreaks of bacterial infections caused by ESBL-producing E. coli strains. It allows the analysis of isolates in a single-tube system within a day, and the discriminatory power is comparable to that of PFGE.
A Bayesian Approach to Period Searching in Solar Coronal Loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherrer, Bryan; McKenzie, David
2017-03-01
We have applied a Bayesian generalized Lomb–Scargle period searching algorithm to movies of coronal loop images obtained with the Hinode X-ray Telescope (XRT) to search for evidence of periodicities that would indicate resonant heating of the loops. The algorithm makes as its only assumption that there is a single sinusoidal signal within each light curve of the data. Both the amplitudes and noise are taken as free parameters. It is argued that this procedure should be used alongside Fourier and wavelet analyses to more accurately extract periodic intensity modulations in coronal loops. The data analyzed are from XRT Observation Programmore » 129C: “MHD Wave Heating (Thin Filters),” which occurred during 2006 November 13 and focused on active region 10293, which included coronal loops. The first data set spans approximately 10 min with an average cadence of 2 s, 2″ per pixel resolution, and used the Al-mesh analysis filter. The second data set spans approximately 4 min with a 3 s average cadence, 1″ per pixel resolution, and used the Al-poly analysis filter. The final data set spans approximately 22 min at a 6 s average cadence, and used the Al-poly analysis filter. In total, 55 periods of sinusoidal coronal loop oscillations between 5.5 and 59.6 s are discussed, supporting proposals in the literature that resonant absorption of magnetic waves is a viable mechanism for depositing energy in the corona.« less
Hosseini-Safa, Ahmad; Mohag Hegh, Mohammad Ali; Pestechian, Nader; Ganji, Maryam; Mohammadi, Rasoul; Mahmoudi Lamouki, Reza; Rostami-Nejad, Mohammad
2016-12-01
The present study was aimed to evaluate E. granulosus genotypes isolated from goats using HRM analysis in Isfahan province. Cystic echincoccosis, so-called hydatidosis, is widespread infection caused by the larval stage of Echinococcus granulosus . This is an important zoonotic disease worldwide, especially in the developing countries such as Iran. To date, molecular studies mainly based on the mitochondrial DNA sequences have identified distinct genotypes termed G1-G10 which can differ in some characteristics such as the growth and infectivity to different intermediate hosts or the survival rate in the definitive hosts that are important for the development of control strategies. From August to December 2014, 1341 goats were investigated and hydatid cysts were collected from the liver and lungs of 43 infected goats in Isfahan province abattoirs, Isfahan, Iran. Total genomic DNA was extracted from each sample, amplified for the presence of polymorphism of mitochondrial gene coding for cytochrome c oxidase subunit 1 (CO1), using high resolution melting curve (HRM) method. the results of HRM analysis using the sequence of CO1 gene for 43 Echinococcus granulosus isolates from goats showed 31, 2 and 10 isolates were identified as G1, G2, and G3 genotypes, respectively. G1 is the predominant genotype in the isolated goat samples in Isfahan province, and the presence of G2 strain was reported for the first time in goat in Iran.
Hatae, Ryusuke; Yoshimoto, Koji; Kuga, Daisuke; Akagi, Yojiro; Murata, Hideki; Suzuki, Satoshi O.; Mizoguchi, Masahiro; Iihara, Koji
2016-01-01
High resolution melting (HRM) is a simple and rapid method for screening mutations. It offers various advantages for clinical diagnostic applications. Conventional HRM analysis often yields equivocal results, especially for surgically obtained tissues. We attempted to improve HRM analyses for more effective applications to clinical diagnostics. HRM analyses were performed for IDH1R132 and IDH2R172 mutations in 192 clinical glioma samples in duplicate and these results were compared with sequencing results. BRAFV600E mutations were analyzed in 52 additional brain tumor samples. The melting profiles were used for differential calculus analyses. Negative second derivative plots revealed additional peaks derived from heteroduplexes in PCR products that contained mutations; this enabled unequivocal visual discrimination of the mutations. We further developed a numerical expression, the HRM-mutation index (MI), to quantify the heteroduplex-derived peak of the mutational curves. Using this expression, all IDH1 mutation statuses matched those ascertained by sequencing, with the exception of three samples. These discordant results were all derived from the misinterpretation of sequencing data. The effectiveness of our approach was further validated by analyses of IDH2R172 and BRAFV600E mutations. The present analytical method enabled an unequivocal and objective HRM analysis and is suitable for reliable mutation scanning in surgically obtained glioma tissues. This approach could facilitate molecular diagnostics in clinical environments. PMID:27529619
Multiscale sampling of plant diversity: Effects of minimum mapping unit size
Stohlgren, T.J.; Chong, G.W.; Kalkhan, M.A.; Schell, L.D.
1997-01-01
Only a small portion of any landscape can be sampled for vascular plant diversity because of constraints of cost (salaries, travel time between sites, etc.). Often, the investigator decides to reduce the cost of creating a vegetation map by increasing the minimum mapping unit (MMU), and/or by reducing the number of vegetation classes to be considered. Questions arise about what information is sacrificed when map resolution is decreased. We compared plant diversity patterns from vegetation maps made with 100-ha, 50-ha, 2-ha, and 0.02-ha MMUs in a 754-ha study area in Rocky Mountain National Park, Colorado, United States, using four 0.025-ha and 21 0.1-ha multiscale vegetation plots. We developed and tested species-log(area) curves, correcting the curves for within-vegetation type heterogeneity with Jaccard's coefficients. Total species richness in the study area was estimated from vegetation maps at each resolution (MMU), based on the corrected species-area curves, total area of the vegetation type, and species overlap among vegetation types. With the 0.02-ha MMU, six vegetation types were recovered, resulting in an estimated 552 species (95% CI = 520-583 species) in the 754-ha study area (330 plant species were observed in the 25 plots). With the 2-ha MMU, five vegetation types were recognized, resulting in an estimated 473 species for the study area. With the 50-ha MMU, 439 plant species were estimated for the four vegetation types recognized in the study area. With the 100-ha MMU, only three vegetation types were recognized, resulting in an estimated 341 plant species for the study area. Locally rare species and keystone ecosystems (areas of high or unique plant diversity) were missed at the 2-ha, 50-ha, and 100-ha scales. To evaluate the effects of minimum mapping unit size requires: (1) an initial stratification of homogeneous, heterogeneous, and rare habitat types; and (2) an evaluation of within-type and between-type heterogeneity generated by environmental gradients and other factors. We suggest that at least some portions of vegetation maps created at a coarser level of resolution be validated at a higher level of resolution.
Zianni, Michael R; Nikbakhtzadeh, Mahmood R; Jackson, Bryan T; Panescu, Jenny; Foster, Woodbridge A
2013-04-01
There is a need for more cost-effective options to more accurately discriminate among members of the Anopheles gambiae complex, particularly An. gambiae and Anopheles arabiensis. These species are morphologically indistinguishable in the adult stage, have overlapping distributions, but are behaviorally and ecologically different, yet both are efficient vectors of malaria in equatorial Africa. The method described here, High-Resolution Melt (HRM) analysis, takes advantage of minute differences in DNA melting characteristics, depending on the number of incongruent single nucleotide polymorphisms in an intragenic spacer region of the X-chromosome-based ribosomal DNA. The two species in question differ by an average of 13 single-nucleotide polymorphisms giving widely divergent melting curves. A real-time PCR system, Bio-Rad CFX96, was used in combination with a dsDNA-specific dye, EvaGreen, to detect and measure the melting properties of the amplicon generated from leg-extracted DNA of selected mosquitoes. Results with seven individuals from pure colonies of known species, as well as 10 field-captured individuals unambiguously identified by DNA sequencing, demonstrated that the method provided a high level of accuracy. The method was used to identify 86 field mosquitoes through the assignment of each to the two common clusters with a high degree of certainty. Each cluster was defined by individuals from pure colonies. HRM analysis is simpler to use than most other methods and provides comparable or more accurate discrimination between the two sibling species but requires a specialized melt-analysis instrument and software.
Zianni, Michael R.; Nikbakhtzadeh, Mahmood R.; Jackson, Bryan T.; Panescu, Jenny; Foster, Woodbridge A.
2013-01-01
There is a need for more cost-effective options to more accurately discriminate among members of the Anopheles gambiae complex, particularly An. gambiae and Anopheles arabiensis. These species are morphologically indistinguishable in the adult stage, have overlapping distributions, but are behaviorally and ecologically different, yet both are efficient vectors of malaria in equatorial Africa. The method described here, High-Resolution Melt (HRM) analysis, takes advantage of minute differences in DNA melting characteristics, depending on the number of incongruent single nucleotide polymorphisms in an intragenic spacer region of the X-chromosome-based ribosomal DNA. The two species in question differ by an average of 13 single-nucleotide polymorphisms giving widely divergent melting curves. A real-time PCR system, Bio-Rad CFX96, was used in combination with a dsDNA-specific dye, EvaGreen, to detect and measure the melting properties of the amplicon generated from leg-extracted DNA of selected mosquitoes. Results with seven individuals from pure colonies of known species, as well as 10 field-captured individuals unambiguously identified by DNA sequencing, demonstrated that the method provided a high level of accuracy. The method was used to identify 86 field mosquitoes through the assignment of each to the two common clusters with a high degree of certainty. Each cluster was defined by individuals from pure colonies. HRM analysis is simpler to use than most other methods and provides comparable or more accurate discrimination between the two sibling species but requires a specialized melt-analysis instrument and software. PMID:23543777
NASA Astrophysics Data System (ADS)
Mitra, S.; Dey, S.; Siddartha, G.; Bhattacharya, S.
2016-12-01
We estimate 1-dimensional path average fundamental mode group velocity dispersion curves from regional Rayleigh and Love waves sampling the Indian subcontinent. The path average measurements are combined through a tomographic inversion to obtain 2-dimensional group velocity variation maps between periods of 10 and 80 s. The region of study is parametrised as triangular grids with 1° sides for the tomographic inversion. Rayleigh and Love wave dispersion curves from each node point is subsequently extracted and jointly inverted to obtain a radially anisotropic shear wave velocity model through global optimisation using Genetic Algorithm. The parametrization of the model space is done using three crustal layers and four mantle layers over a half-space with varying VpH , VsV and VsH. The anisotropic parameter (η) is calculated from empirical relations and the density of the layers are taken from PREM. Misfit for the model is calculated as a sum of error-weighted average dispersion curves. The 1-dimensional anisotropic shear wave velocity at each node point is combined using linear interpolation to obtain 3-dimensional structure beneath the region. Synthetic tests are performed to estimate the resolution of the tomographic maps which will be presented with our results. We envision to extend this to a larger dataset in near future to obtain high resolution anisotrpic shear wave velocity structure beneath India, Himalaya and Tibet.
NASA Astrophysics Data System (ADS)
Jerzykiewicz, M.; Lehmann, H.; Niemczura, E.; Molenda-Żakowicz, J.; Dymitrov, W.; Fagas, M.; Guenther, D. B.; Hartmann, M.; Hrudková, M.; Kamiński, K.; Moffat, A. F. J.; Kuschnig, R.; Leto, G.; Matthews, J. M.; Rowe, J. F.; Ruciński, S. M.; Sasselov, D.; Weiss, W. W.
2013-06-01
MOST time series photometry of μ Eri, an SB1 eclipsing binary with a rapidly rotating SPB primary, is reported and analysed. The analysis yields a number of sinusoidal terms, mainly due to the intrinsic variation of the primary, and the eclipse light curve. New radial-velocity observations are presented and used to compute parameters of a spectroscopic orbit. Frequency analysis of the radial-velocity residuals from the spectroscopic orbital solution fails to uncover periodic variations with amplitudes greater than 2 km s-1. A Rossiter-McLaughlin anomaly is detected from observations covering ingress. From archival photometric indices and the revised Hipparcos parallax, we derive the primary's effective temperature, surface gravity, bolometric correction and the luminosity. An analysis of a high signal-to-noise spectrogram yields the effective temperature and surface gravity in good agreement with the photometric values. From the same spectrogram, we determine the abundance of He, C, N, O, Ne, Mg, Al, Si, P, S, Cl and Fe. The eclipse light curve is solved by means of EBOP. For a range of mass of the primary, a value of mean density, very nearly independent of assumed mass, is computed from the parameters of the system. Contrary to a recent report, this value is approximately equal to the mean density obtained from the star's effective temperature and luminosity. Despite limited frequency resolution of the MOST data, we were able to recover the closely spaced SPB frequency quadruplet discovered from the ground in 2002-2004. The other two SPB terms seen from the ground were also recovered. Moreover, our analysis of the MOST data adds 15 low-amplitude SPB terms with frequencies ranging from 0.109 to 2.786 d-1.
ORBITAL AND PHYSICAL PROPERTIES OF THE σ Ori Aa, Ab, B TRIPLE SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simón-Díaz, S.; Caballero, J. A.; Apellániz, J. Maíz
2015-02-01
We provide a complete characterization of the astrophysical properties of the σ Ori Aa, Ab, B hierarchical triple system and an improved set of orbital parameters for the highly eccentric σ Ori Aa, Ab spectroscopic binary. We compiled a spectroscopic data set comprising 90 high-resolution spectra covering a total time span of 1963 days. We applied the Lehman-Filhés method for a detailed orbital analysis of the radial velocity curves and performed a combined quantitative spectroscopic analysis of the σ Ori Aa, Ab, B system by means of the stellar atmosphere code FASTWIND. We used our own plus other available information onmore » photometry and distance to the system for measuring the radii, luminosities, and spectroscopic masses of the three components. We also inferred evolutionary masses and stellar ages using the Bayesian code BONNSAI. The orbital analysis of the new radial velocity curves led to a very accurate orbital solution of the σ Ori Aa, Ab pair. We provided indirect arguments indicating that σ Ori B is a fast-rotating early B dwarf. The FASTWIND+BONNSAI analysis showed that the Aa, Ab pair contains the hottest and most massive components of the triple system while σ Ori B is a bit cooler and less massive. The derived stellar ages of the inner pair are intriguingly younger than the one widely accepted for the σ Orionis cluster, at 3 ± 1 Ma. The outcome of this study will be of key importance for a precise determination of the distance to the σ Orionis cluster, the interpretation of the strong X-ray emission detected for σ Ori Aa, Ab, B, and the investigation of the formation and evolution of multiple massive stellar systems and substellar objects.« less
Thermoluminescence glow curve analysis and CGCD method for erbium doped CaZrO{sub 3} phosphor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, Ratnesh, E-mail: 31rati@gmail.com; Chopra, Seema
2016-05-06
The manuscript report the synthesis, thermoluminescence study at fixed concentration of Er{sup 3+} (1 mol%) doped CaZrO{sub 3} phosphor. The phosphors were prepared by modified solid state reaction method. The powder sample was characterized by thermoluminescence (TL) glow curve analysis. In TL glow curve the optimized concentration in 1mol% for UV irradiated sample. The kinetic parameters were calculated by computerized glow curve deconvolution (CGCD) techniaue. Trapping parameters gives the information of dosimetry loss in prepared phosphor and its usability in environmental monitoring and for personal monitoring. CGCD is the advance tool for analysis of complicated TL glow curves.
Soheili, Fariborz; Jalili, Zahra; Rahbar, Mahtab; Khatooni, Zahed; Mashayekhi, Amir; Jafari, Hossein
2018-03-01
The mutations in GATA4 gene induce inherited atrial and ventricular septation defects, which is the most frequent forms of congenital heart defects (CHDs) constituting about half of all cases. We have performed High resolution melting (HRM) mutation scanning of GATA4 coding exons of nonsyndrome 100 patients as a case group including 39 atrial septal defects (ASD), 57 ventricular septal defects (VSD) and four patients with both above defects and 50 healthy individuals as a control group. Our samples are categorized according to their HRM graph. The genome sequencing has been done for 15 control samples and 25 samples of patients whose HRM analysis were similar to healthy subjects for each exon. The PolyPhen-2 and MUpro have been used to determine the causative possibility and structural stability prediction of GATA4 sequence variation. The HRM curve analysis exhibit that 21 patients and 3 normal samples have deviated curves for GATA4 coding exons. Sequencing analysis has revealed 12 nonsynonymous mutations while all of them resulted in stability structure of protein 10 of them are pathogenic and 2 of them are benign. Also we found two nucleotide deletions which one of them was novel and one new indel mutation resulting in frame shift mutation, and 4 synonymous variations or polymorphism in 6 of patients and 3 of normal individuals. Six or about 50% of these nonsynonymous mutations have not been previously reported. Our results show that there is a spectrum of GATA4 mutations resulting in septal defects. © 2018 Wiley Periodicals, Inc.
SCEC Earthquake System Science Using High Performance Computing
NASA Astrophysics Data System (ADS)
Maechling, P. J.; Jordan, T. H.; Archuleta, R.; Beroza, G.; Bielak, J.; Chen, P.; Cui, Y.; Day, S.; Deelman, E.; Graves, R. W.; Minster, J. B.; Olsen, K. B.
2008-12-01
The SCEC Community Modeling Environment (SCEC/CME) collaboration performs basic scientific research using high performance computing with the goal of developing a predictive understanding of earthquake processes and seismic hazards in California. SCEC/CME research areas including dynamic rupture modeling, wave propagation modeling, probabilistic seismic hazard analysis (PSHA), and full 3D tomography. SCEC/CME computational capabilities are organized around the development and application of robust, re- usable, well-validated simulation systems we call computational platforms. The SCEC earthquake system science research program includes a wide range of numerical modeling efforts and we continue to extend our numerical modeling codes to include more realistic physics and to run at higher and higher resolution. During this year, the SCEC/USGS OpenSHA PSHA computational platform was used to calculate PSHA hazard curves and hazard maps using the new UCERF2.0 ERF and new 2008 attenuation relationships. Three SCEC/CME modeling groups ran 1Hz ShakeOut simulations using different codes and computer systems and carefully compared the results. The DynaShake Platform was used to calculate several dynamic rupture-based source descriptions equivalent in magnitude and final surface slip to the ShakeOut 1.2 kinematic source description. A SCEC/CME modeler produced 10Hz synthetic seismograms for the ShakeOut 1.2 scenario rupture by combining 1Hz deterministic simulation results with 10Hz stochastic seismograms. SCEC/CME modelers ran an ensemble of seven ShakeOut-D simulations to investigate the variability of ground motions produced by dynamic rupture-based source descriptions. The CyberShake Platform was used to calculate more than 15 new probabilistic seismic hazard analysis (PSHA) hazard curves using full 3D waveform modeling and the new UCERF2.0 ERF. The SCEC/CME group has also produced significant computer science results this year. Large-scale SCEC/CME high performance codes were run on NSF TeraGrid sites including simulations that use the full PSC Big Ben supercomputer (4096 cores) and simulations that ran on more than 10K cores at TACC Ranger. The SCEC/CME group used scientific workflow tools and grid-computing to run more than 1.5 million jobs at NCSA for the CyberShake project. Visualizations produced by a SCEC/CME researcher of the 10Hz ShakeOut 1.2 scenario simulation data were used by USGS in ShakeOut publications and public outreach efforts. OpenSHA was ported onto an NSF supercomputer and was used to produce very high resolution hazard PSHA maps that contained more than 1.6 million hazard curves.
NASA Astrophysics Data System (ADS)
Kouwenberg, L. L. R.; Kurschner, W. M.; Wagner, F.; Visscher, H.
An inverse relation of stomatal frequency in leaves of many plant taxa and atmospheric CO2 concentration has been repeatedly demonstrated. Response curves based on this species-specific relation are increasingly used to reconstruct paleo-CO2 levels from stomatal frequency analysis on fossil leaves. This type of atmospheric CO2 records have been produced for a large part of geological history, varying from the Paleozoic to the Holocene. Quaternary glaciochemical records from Antarctica and Greenland suggest that CO2 concentration and temperature are strongly linked, in general CO2 appears to lag temperature change. However, in order to assess this relation, high res- olution records with a precise chronology are needed. During the Holocene, several century-scale climatic fluctuations took place, such as the 8.2 kyr event and the Lit- tle Ice age. Linking these temperature fluctuations to paleo-CO2 concentrations in glaciochemical records can be difficult, because the resolution of ice-cores is gen- erally low and the ice-gas age difference complicates accurate dating. An excellent alternative tool for high-resolution Holocene CO2 reconstructions can be provided by stomatal frequency analysis of leaves from Holocene peat and lake sediments. In this study, it is demonstrated that the western hemlock (Tsuga heterophylla) also ad- justs its stomatal frequency to the historical CO2 rise. After careful proxy-validation, a high resolution paleo-atmospheric CO2 record over the last 2000 years based on subfossil Tsuga heterophylla needles from Mount Rainier (Washington, USA) was re- constructed. Chronology is provided by a suite of AMS carbon isotope dates and the presence of tephra layers from nearby Mt. St Helens. The record reproduces CO2 lev- els around 280 ppmv for the Little Ice Age and the CO2 rise to 365 ppmv over the last 150 years. A prominent feature is a marked rise in CO2 at 350 years AD, gradu- ally declining over the next centuries. The CO2 record will be discussed in terms of its relation to local volcanic CO2 production, paleoclimate data and changes in the terrestrial and marine carbon sources and sinks.
A search for life on earth at 100 meter resolution
NASA Technical Reports Server (NTRS)
Sagan, C.; Wallace, D.
1970-01-01
A study of several thousand photos indicated approximately 1% of Gemini and Apollo photographs of the earth at 100 m resolution revealed signs of life; rectangular arrays due to human agricultural and urban territoriality, roads, canals, jet contrails, and industrial pollution. Potential false positives such as dunes, sand bars, and jet stream clouds abound. A curve was derived for the detectivity of contemporary life on earth, in a plot of ground resolution versus global coverage. A comparable biology on Mars would not have been detected by all observations of Mars through Mariner 7. Forthcoming Mars orbiter and lander imaging experiments hold significant promise of detecting life on Mars of contemporary terrestrial extent and advancement, should such life exist.