Science.gov

Sample records for curvula schrad nees

  1. Nutritional and Sensory Evaluation of Injera Prepared from tef and Eragrostis curvula (Schrad.) Nees. Flours with Sorghum Blends

    PubMed Central

    Ghebrehiwot, Habteab M.; Shimelis, Hussein A.; Kirkman, Kevin P.; Laing, Mark D.; Mabhaudhi, Tafadzwanashe

    2016-01-01

    Injera is a fermented, sour bread consumed as a staple food in Eritrea and Ethiopia. The bread can be prepared from various cereals but tef [Eragrostis tef (Zucc.) Trotter] is the most preferred ingredient. This study assessed the acceptability of injera prepared using grains of a closely related but underutilized grass, Eragrostis curvula (Schrad.) Nees. The nutritive value of the grains was compared and the sensory attributes of injera made from flours of tef (control) and E. curvula, each combined with 0, 5, and 10% of sorghum flour, were assessed using a tasting panel. Nutrient analysis showed that E. curvula contains more than double the amount of crude protein found in tef. E. curvula also contains higher fat, dietary fiber and mineral nutrients than tef. Injera made of E. tef and E. curvula flours showed non-significant differences in taste, texture, appearance and overall acceptability. This suggest that E. curvula has the potential to serve as a novel source of gluten-free flour for human consumption. Agronomically viewed, growing E. curvula could be more advantageous for smallholder farmers on marginal lands because the species is a perennial that can produce a seed harvest twice a year, unlike tef, which is annual crop. It also tolerates acidic soils better than tef. PMID:27489554

  2. Nutritional and Sensory Evaluation of Injera Prepared from tef and Eragrostis curvula (Schrad.) Nees. Flours with Sorghum Blends.

    PubMed

    Ghebrehiwot, Habteab M; Shimelis, Hussein A; Kirkman, Kevin P; Laing, Mark D; Mabhaudhi, Tafadzwanashe

    2016-01-01

    Injera is a fermented, sour bread consumed as a staple food in Eritrea and Ethiopia. The bread can be prepared from various cereals but tef [Eragrostis tef (Zucc.) Trotter] is the most preferred ingredient. This study assessed the acceptability of injera prepared using grains of a closely related but underutilized grass, Eragrostis curvula (Schrad.) Nees. The nutritive value of the grains was compared and the sensory attributes of injera made from flours of tef (control) and E. curvula, each combined with 0, 5, and 10% of sorghum flour, were assessed using a tasting panel. Nutrient analysis showed that E. curvula contains more than double the amount of crude protein found in tef. E. curvula also contains higher fat, dietary fiber and mineral nutrients than tef. Injera made of E. tef and E. curvula flours showed non-significant differences in taste, texture, appearance and overall acceptability. This suggest that E. curvula has the potential to serve as a novel source of gluten-free flour for human consumption. Agronomically viewed, growing E. curvula could be more advantageous for smallholder farmers on marginal lands because the species is a perennial that can produce a seed harvest twice a year, unlike tef, which is annual crop. It also tolerates acidic soils better than tef.

  3. Expressed sequence tag analysis and development of gene associated markers in a near-isogenic plant system of Eragrostis curvula.

    PubMed

    Cervigni, Gerardo D L; Paniego, Norma; Díaz, Marina; Selva, Juan P; Zappacosta, Diego; Zanazzi, Darío; Landerreche, Iñaki; Martelotto, Luciano; Felitti, Silvina; Pessino, Silvina; Spangenberg, Germán; Echenique, Viviana

    2008-05-01

    Eragrostis curvula (Schrad.) Nees is a forage grass native to the semiarid regions of Southern Africa, which reproduces mainly by pseudogamous diplosporous apomixis. A collection of ESTs was generated from four cDNA libraries, three of them obtained from panicles of near-isogenic lines with different ploidy levels and reproductive modes, and one obtained from 12 days-old plant leaves. A total of 12,295 high-quality ESTs were clustered and assembled, rendering 8,864 unigenes, including 1,490 contigs and 7,394 singletons, with a genome coverage of 22%. A total of 7,029 (79.11%) unigenes were functionally categorized by BLASTX analysis against sequences deposited in public databases, but only 37.80% could be classified according to Gene Ontology. Sequence comparison against the cereals genes indexes (GI) revealed 50% significant hits. A total of 254 EST-SSRs were detected from 219 singletons and 35 from contigs. Di- and tri- motifs were similarly represented with percentages of 38.95 and 40.16%, respectively. In addition, 190 SNPs and Indels were detected in 18 contigs generated from 3 to 4 libraries. The ESTs and the molecular markers obtained in this study will provide valuable resources for a wide range of applications including gene identification, genetic mapping, cultivar identification, analysis of genetic diversity, phenotype mapping and marker assisted selection.

  4. Increased apomixis expression concurrent with genetic and epigenetic variation in a newly synthesized Eragrostis curvula polyploid

    NASA Astrophysics Data System (ADS)

    Zappacosta, Diego C.; Ochogavía, Ana C.; Rodrigo, Juan M.; Romero, José R.; Meier, Mauro S.; Garbus, Ingrid; Pessino, Silvina C.; Echenique, Viviana C.

    2014-04-01

    Eragrostis curvula includes biotypes reproducing through obligate and facultative apomixis or, rarely, full sexuality. We previously generated a ``tetraploid-dihaploid-tetraploid'' series of plants consisting of a tetraploid apomictic plant (T), a sexual dihaploid plant (D) and a tetraploid artificial colchiploid (C). Initially, plant C was nearly 100% sexual. However, its capacity to form non-reduced embryo sacs dramatically increased over a four year period (2003-2007) to reach levels of 85-90%. Here, we confirmed high rates of apomixis in plant C, and used AFLPs and MSAPs to characterize the genetic and epigenetic variation observed in this plant in 2007 as compared to 2003. Of the polymorphic sequences, some had no coding potential whereas others were homologous to retrotransposons and/or protein-coding-like sequences. Our results suggest that in this particular plant system increased apomixis expression is concurrent with genetic and epigenetic modifications, possibly involving transposable elements.

  5. Increased apomixis expression concurrent with genetic and epigenetic variation in a newly synthesized Eragrostis curvula polyploid

    PubMed Central

    Zappacosta, Diego C.; Ochogavía, Ana C.; Rodrigo, Juan M.; Romero, José R.; Meier, Mauro S.; Garbus, Ingrid; Pessino, Silvina C.; Echenique, Viviana C.

    2014-01-01

    Eragrostis curvula includes biotypes reproducing through obligate and facultative apomixis or, rarely, full sexuality. We previously generated a “tetraploid-dihaploid-tetraploid” series of plants consisting of a tetraploid apomictic plant (T), a sexual dihaploid plant (D) and a tetraploid artificial colchiploid (C). Initially, plant C was nearly 100% sexual. However, its capacity to form non-reduced embryo sacs dramatically increased over a four year period (2003–2007) to reach levels of 85–90%. Here, we confirmed high rates of apomixis in plant C, and used AFLPs and MSAPs to characterize the genetic and epigenetic variation observed in this plant in 2007 as compared to 2003. Of the polymorphic sequences, some had no coding potential whereas others were homologous to retrotransposons and/or protein-coding-like sequences. Our results suggest that in this particular plant system increased apomixis expression is concurrent with genetic and epigenetic modifications, possibly involving transposable elements. PMID:24710346

  6. Increased apomixis expression concurrent with genetic and epigenetic variation in a newly synthesized Eragrostis curvula polyploid.

    PubMed

    Zappacosta, Diego C; Ochogavía, Ana C; Rodrigo, Juan M; Romero, José R; Meier, Mauro S; Garbus, Ingrid; Pessino, Silvina C; Echenique, Viviana C

    2014-04-08

    Eragrostis curvula includes biotypes reproducing through obligate and facultative apomixis or, rarely, full sexuality. We previously generated a "tetraploid-dihaploid-tetraploid" series of plants consisting of a tetraploid apomictic plant (T), a sexual dihaploid plant (D) and a tetraploid artificial colchiploid (C). Initially, plant C was nearly 100% sexual. However, its capacity to form non-reduced embryo sacs dramatically increased over a four year period (2003-2007) to reach levels of 85-90%. Here, we confirmed high rates of apomixis in plant C, and used AFLPs and MSAPs to characterize the genetic and epigenetic variation observed in this plant in 2007 as compared to 2003. Of the polymorphic sequences, some had no coding potential whereas others were homologous to retrotransposons and/or protein-coding-like sequences. Our results suggest that in this particular plant system increased apomixis expression is concurrent with genetic and epigenetic modifications, possibly involving transposable elements.

  7. Ecological characterisation of supina bluegrass (Poa supina Schrad.) germplasm from the Italian Alps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Supina bluegrass (Poa supina Schrad.) is a potential turfgrass species for cool, northern type climates, yet few genetic resources for research and development are very limited. As a result, a field exploration for P. supina was conduction in the Italian Alps in 2008. Altogether, 55 populations of...

  8. Genetic introgression as a potential to widen a species' niche: insights from alpine Carex curvula.

    PubMed

    Choler, P; Erschbamer, B; Tribsch, A; Gielly, L; Taberlet, P

    2004-01-06

    Understanding what causes the decreasing abundance of species at the margins of their distributions along environmental gradients has drawn considerable interest, especially because of the recent need to predict shifts in species distribution patterns in response to climatic changes. Here, we address the ecological range limit problem by focusing on the sedge, Carex curvula, a dominant plant of high-elevation grasslands in Europe, for which two ecologically differentiated but crosscompatible taxa have been described in the Alps. Our study heuristically combines an extensive phytoecological survey of alpine plant communities to set the niche attributes of each taxon and a population genetic study to assess the multilocus genotypes of 177 individuals sampled in typical and marginal habitats. We found that ecological variation strongly correlates with genetic differentiation. Our data strongly suggest that ecologically marginal populations of each taxon are mainly composed of individuals with genotypes resulting from introgressive hybridization. Conversely, no hybrids were found in typical habitats, even though the two taxa were close enough to crossbreed. Thus, our results indicate that genotype integrity is maintained in optimal habitats, whereas introgressed individuals are favored in marginal habitats. We conclude that gene flow between closely related taxa might be an important, although underestimated, mechanism shaping species distribution along gradients.

  9. Development of plant regeneration and transformation protocols for the desiccation-sensitive weeping lovegrass Eragrostis curvula.

    PubMed

    Ncanana, Sandile; Brandt, Wolf; Lindsey, George; Farrant, Jill

    2005-08-01

    A tissue culture protocol, suitable for transformation, was established for the pasture grass Eragrostis curvula. Callus was generated in the dark from leaf and seed tissues on a medium comprising MS salts supplemented with 2 mg/l 2,4-D, 0.01 mg/l BAP and 2% sucrose. Plant regeneration occurred via organogenesis on the same medium with 6% and 3% sucrose for shoot and root formation, respectively. Optimal regeneration (50 plantlets per callus) occurred when light of 45 micromol/m2 per s was used. The yeast Saccharomyces cerevisiae Hsp12 gene was cloned into the Sac1 of the pCAMBIAUbeeQ vector and callus was transformed by biolistic bombardment. Best transformation (30%) occurred when the target tissue was bombarded twice at a distance of 70 mm using a bombardment pressure of 9,100 kPa. Although successful transformation and transcription of the Hsp12 gene occurred, no Hsp12 protein was found present in tissue extracts of transformed grass.

  10. Variation in cytosine methylation patterns during ploidy level conversions in Eragrostis curvula.

    PubMed

    Ochogavía, Ana C; Cervigni, Gerardo; Selva, Juan P; Echenique, Viviana C; Pessino, Silvina C

    2009-05-01

    In many species polyploidization involves rearrangements of the progenitor genomes, at both genetic and epigenetic levels. We analyzed the cytosine methylation status in a 'tetraploid-diploid-tetraploid' series of Eragrostis curvula with a common genetic background by using the MSAP (Methylation-sensitive Amplified Polymorphism) technique. Considerable levels of polymorphisms were detected during ploidy conversions. The total level of methylation observed was lower in the diploid genotype compared to the tetraploid ones. A significant proportion of the epigenetic modifications occurring during the tetraploid-diploid conversion reverted during the diploid-tetraploid one. Genetic and expression data from previous work were used to analyze correlation with methylation variation. All genetic, epigenetic and gene expression variation data correlated significantly when compared by pairs in simple Mantel tests. Dendrograms reflecting genetic, epigenetic and expression distances as well as principal coordinate analysis suggested that plants of identical ploidy levels present similar sets of data. Twelve (12) different genomic fragments displaying different methylation behavior during the ploidy conversions were isolated, sequenced and characterized.

  11. Gene expression in diplosporous and sexual Eragrostis curvula genotypes with differing ploidy levels.

    PubMed

    Cervigni, Gerardo D L; Paniego, Norma; Pessino, Silvina; Selva, Juan P; Díaz, Marina; Spangenberg, Germán; Echenique, Viviana

    2008-05-01

    The molecular nature of gene expression during the initiation and progress of diplosporous apomixis is still unknown. Moreover, the basis of the close correlation between diplospory and polyploidy is not clarified yet. A comparative expression analysis was performed based on expressed sequence tags (ESTs) sequencing and differential display in an Eragrostis curvula diplosporous tetraploid genotype (T, 4x apo), a sexual diploid derivative obtained from tissue culture (D, 2x sex) and an artificial sexual tetraploid obtained from the diploid seeds after colchicine treatment (C, 4x sex). From a total of 8,884 unigenes sequenced from inflorescence-derived libraries, 112 (1.26%) showed significant differential expression in individuals with different ploidy level and/or variable reproductive mode. Independent comparisons between plants with different reproductive mode (same ploidy) or different ploidy level (same reproductive mode) allowed the identification of genes modulated in response to diplosporous development or polyploidization, respectively. Surprisingly, a group of genes (Group 3) were differentially expressed or silenced only in the 4x sex plant, presenting similar levels of expression in the 4x apo and the 2x sex genotypes. A group of randomly selected differential genes was validated by QR-PCR. Differential display analysis showed that in general the 4x apo and 4x sex expression profiles were more related and different from the 2x sex one, but confirmed the existence of Group 3-type genes, in both inflorescences and leaves. The possible biological significance for the occurrence of this particular group of genes is discussed. In silico mapping onto the rice genome was used to identify candidates mapping to the region syntenic to the diplospory locus.

  12. Constituents of leaves from Bauhinia curvula Benth. exert gastroprotective activity in rodents: role of quercitrin and kaempferol.

    PubMed

    Beber, Ana Paula; de Souza, Priscila; Boeing, Thaise; Somensi, Lincon Bordignon; Mariano, Luísa Nathália Bolda; Cury, Benhur Judah; Burci, Ligia Moura; da Silva, Cristiane Bezerra; Simionatto, Euclésio; de Andrade, Sérgio Faloni; da Silva, Luísa Mota

    2017-02-07

    The Bauhinia genus is known as "Pata-de-Vaca" and a wide variety of these species are used in Brazilian folk medicine due to their gastroprotective properties. This study aimed to investigate the antiulcer efficacy of the hydroalcoholic extract from B. curvula (HEBC) leaves, as well as its semi-purified fraction (SPFr) and the contribution of their phytochemicals constituents for this effect. For that, ethanol 60%/HCl 0.3 M- and indomethacin-induced gastric ulcer were performed in rodents. Gastric ulcerated tissues were processed for histological, histochemical and biochemical analysis. The oral treatment with HEBC and SPFr decreased the gastric ulcer induced by ethanol/HCl in mice and by indomethacin (only HEBC) in rats. The gastroprotective effect of HEBC was abolished in mice pretreated with Nω-Nitro-L-arginine methyl ester, N-Ethylmaleimide, glibenclamide or indomethacin. Both HEBC and SPFr reduced myeloperoxidase activity in parallel with a decrease of lipoperoxides content at the site of the lesion. On the other hand, HEBC did not alter volume, pH, total acidity or pepsin activity of acid gastric secretion in rats, and neither inhibited the in vitro H(+),K(+)-ATPase activity. Additionally, the compounds identified and isolated from the SPFr, the flavonoids quercitrin (65%) and kaempferol (35%), were able to diminish the extent of ulcerated area induced by both ethanol/HCl and indomethacin. Taking together, these findings show that B. curvula extracts present gastroprotective effect, mainly explained by the presence of flavonoids quercitrin and kaempferol, which may possibly improve the defensive factors of gastric mucosa.

  13. A review on Citrullus colocynthis Schrad.: from traditional Iranian medicine to modern phytotherapy.

    PubMed

    Rahimi, Roja; Amin, Gholamreza; Ardekani, Mohammad Reza Shams

    2012-06-01

    Citrullus colocynthis Schrad. is an annual plant that grows in the south, center, and east areas of Iran. It is recognized by different pharmacologic activities in traditional Iranian medicine (TIM) (i.e., purgative, anti-inflammatory, antidiabetic, analgesic, hair growth-promoting, abortifacient, and antiepileptic. Some of these activities were confirmed in modern phytotherapy. Adverse events such as colic, diarrhea, hematochezia, nephrosis, and vomiting and narrow therapeutic index cause herbalists to use this plant cautiously. If some points about this plant in TIM are considered, it may be possible to produce more tolerable preparations from this plant. In this article, all aspects of this plant in TIM are reviewed; also, the medicinal properties declared for this plant in TIM are compared with those showed in modern phytotherapy. In addition, opinions of TIM and modern phytotherapy about safety and acceptable dosage of this plant are discussed.

  14. Antioxidant and free radical scavenging potential of Citrullus colocynthis (L.) Schrad. methanolic fruit extract.

    PubMed

    Kumar, Sunil; Kumar, Dinesh; Manjusha; Saroha, Kamal; Singh, Nidhan; Vashishta, Bhoodev

    2008-06-01

    Citrullus colocynthis (L.) Schrad. (Cucurbitaceae) is a medicinal plant traditionally used as an abortifacient and to treat constipation, oedema, bacterial infections, cancer and diabetes. Preliminary phytochemical screening of the plant showed the presence of large amounts of phenolics and flavonoids. Subsequent quantification showed the presence of 0.74% (m/m) phenolics (calculated as gallic acid) and 0.13% (m/m) flavonoids calculated as catechin equivalents per 100 g of fresh mass. The presence of phenolic compounds prompted us to evaluate its antioxidant activity. In the present study, methanolic fruit extract of C. colocynthis was screened to evaluate its free radical scavenging effect. The highest antioxidant and free radical scavenging ability of the fruit extract was observed at a concentration of 2500 microg mL(-1).

  15. NeeMDB: Convenient Database for Neem Secondary Metabolites.

    PubMed

    Hatti, Kaushik S; Muralitharan, Lakshmi; Hegde, Rajendra; Kush, Anil

    2014-01-01

    Indian Neem tree is known for its pesticidal and medicinal properties for centuries. Structure elucidation of large number of secondary metabolites responsible for its diverse properties has been achieved. However, this data is spread over various books, scientific reports and publications and difficult to access. We have compiled and stored structural details of neem metabolites in NeeMDB, a database which can be easily accessed, queried and downloaded. NeeMDB would be central in dissipating structural information of neem secondary metabolites world over.

  16. Effect of Citrullus colocynthis Schrad fruits on testosterone-induced alopecia.

    PubMed

    Dhanotia, Renuka; Chauhan, Nagendra Singh; Saraf, Dinesh K; Dixit, Vinod K

    2011-09-01

    Alopecia is a psychologically distressing phenomenon. Androgenetic alopecia (AGA) is the most common form of alopecia, which affects millions of men and women worldwide, and is an androgen driven disorder. Here, the Citrullus colocynthis Schrad fruit is evaluated for hair growth activity in androgen-induced alopecia. Petroleum ether extract of C. colocynthis was applied topically for its hair growth-promoting activity. Alopecia was induced in albino mice by testosterone administration intramuscularly for 21 days. Its inhibition by simultaneous administration of extract was evaluated using follicular density, anagen/telogen (A/T) ratio and microscopic observation of skin sections. Finasteride (5α-reductase inhibitor) solution was applied topically and served as positive control. Petroleum ether extract of C. colocynthis exhibited promising hair growth-promoting activity, as reflected from follicular density, A/T ratio and skin sections. The treatment was also successful in bringing a greater number of hair follicles in anagenic phase than the standard finasteride. The result of treatment with 2 and 5% petroleum ether extracts were comparable to the positive control finasteride. The petroleum ether extract of C. colocynthis and its isolate is useful in the treatment of androgen-induced alopecia.

  17. Mosquito larvicidal activity of oleic and linoleic acids isolated from Citrullus colocynthis (Linn.) Schrad.

    PubMed

    Rahuman, A Abdul; Venkatesan, P; Gopalakrishnan, Geetha

    2008-11-01

    In mosquito control programs, botanical origin may have the potential to be used successfully as larvicides. The larvicidal activity of crude acetone, hexane, ethyl acetate, methanol, and petroleum ether extracts of the leaf of Centella asiatica Linn., Datura metal Linn., Mukia scabrella Arn., Toddalia asiatica (Linn.) Lam, extracts of whole plant of Citrullus colocynthis (Linn.) Schrad, and Sphaeranthus indicus Linn. were assayed for their toxicity against the early fourth instar larvae of Culex quinquefasciatus (Diptera: Culicidae). The larval mortality was observed after 24 h exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in whole plant petroleum ether extract of C. colocynthis. In the present study, bioassay-guided fractionation of petroleum ether extract led to the separation and identification of fatty acids; oleic acid and linoleic acid were isolated and identified as mosquito larvicidal compounds. Oleic and Linoleic acids were quite potent against fourth instar larvae of Aedes aegypti L. (LC50 8.80, 18.20 and LC90 35.39, 96.33 ppm), Anopheles stephensi Liston (LC50 9.79, 11.49 and LC90 37.42, 47.35 ppm), and Culex quinquefasciatus Say (LC50 7.66, 27.24 and LC90 30.71, 70.38 ppm). The structure was elucidated from infrared, ultraviolet, 1H-nuclear magnetic resonance, 13C-NMR, and mass spectral data. This is the first report on the mosquito larvicidal activity of the reported isolated compounds from C. colocynthis.

  18. Variation of NEE and its affecting factors in a vineyard of arid region of northwest China

    NASA Astrophysics Data System (ADS)

    Guo, W. H.; Kang, S. Z.; Li, F. S.; Li, S. E.

    2014-02-01

    To understand the variation of net ecosystem CO2 exchange (NEE) in orchard ecosystem and it's affecting factors, carbon flux was measured using eddy covariance system in a wine vineyard in arid northwest China during 2008-2010. Results show that vineyard NEE was positive value at the early growth stage, higher negative value at the mid-growth stage, and lower negative value at the later growth stage. Diurnal variation of NEE was "W" shaped curve in sunny day, but "U" shaped curve in cloudy day. Irrigation and pruning did not affect diurnal variation shape of NEE, however, irrigation reduced the difference between maximal and minimal value of NEE and pruning reduced the carbon sink capacity. The main factors affecting hourly NEE were canopy conductance (gc) and net radiation (Rn). The hourly NEE increased with the increase of gc or Rn when gc was less than 0.02 m·s-1 or Rn was between 0 and 200 W·m-2. The main factors affecting both daily and seasonal NEE were gc, air temperature (Ta), atmospheric CO2 density, vapour pressure deficit (VPD) and soil moisture content.

  19. Genome polymorphisms and gene differential expression in a 'back-and-forth' ploidy-altered series of weeping lovegrass (Eragrostis curvula).

    PubMed

    Mecchia, Martín A; Ochogavía, Ana; Pablo Selva, Juan; Laspina, Natalia; Felitti, Silvina; Martelotto, Luciano G; Spangenberg, Germán; Echenique, Viviana; Pessino, Silvina C

    2007-08-01

    Molecular markers were used to analyze the genomic structure of an euploid series of Eragrostis curvula, obtained after a tetraploid dihaploidization procedure followed by chromosome re-doubling with colchicine. Considerable levels of genome polymorphisms were detected between lines. Curiously, a significant number of molecular markers showed a revertant behavior following the successive changes of ploidy, suggesting that genome alterations were specific and conferred genetic structures characteristic of a given ploidy level. Genuine reversion was confirmed by sequencing. Cluster analysis demonstrated grouping of tetraploids while the diploid was more distantly related with respect to the rest of the plants. Polymorphic revertant sequences involved mostly non-coding regions, although some of them displayed sequence homology to known genes. A revertant sequence corresponding to a P-type adenosine triphosphatase was found to be differentially represented in cDNA libraries obtained from the diploid and a colchiploid, but was not found expressed in the original tetraploid. Transcriptome profiling of inflorescence followed by real-time polymerase chain reaction validation showed 0.34% polymorphic bands between apomictic tetraploid and sexual diploid plants. Several of the polymorphic sequences corresponded to known genes. Possible correlation between the results observed here and a recently reported genome-wide non-Mendelian inheritance mechanism in Arabidopsis thaliana are discussed.

  20. Evaluation and characterisation of Citrullus colocynthis (L.) Schrad seed oil: Comparison with Helianthus annuus (sunflower) seed oil.

    PubMed

    Nehdi, Imededdine Arbi; Sbihi, Hassen; Tan, Chin Ping; Al-Resayes, Saud Ibrahim

    2013-01-15

    The physicochemical properties, fatty acid, tocopherol, thermal properties, (1)H NMR, FTIR and profiles of non-conventional oil extracted from Citrullus colocynthis (L.) Schrad seeds were evaluated and compared with conventional sunflower seed oil. In addition, the antioxidant properties of C. colocynthis seed oil were also evaluated. The oil content of the C. colocynthis seeds was 23.16%. The main fatty acids in the oil were linoleic acid (66.73%) followed by oleic acid (14.78%), palmitic acid (9.74%), and stearic acid (7.37%). The tocopherol content was 121.85 mg/100g with γ-tocopherol as the major one (95.49%). The thermogravimetric analysis showed that the oil was thermally stable up to 286.57°C, and then began to decompose in four stages namely at 377.4°C, 408.4°C, 434.9°C and 559.2°C. The present study showed that this non-conventional C. colocynthis seed oil can be used for food and non-food applications to supplement or replace some of the conventional oils.

  1. Green Microwave-Assisted Combustion Synthesis of Zinc Oxide Nanoparticles with Citrullus colocynthis (L.) Schrad: Characterization and Biomedical Applications.

    PubMed

    Azizi, Susan; Mohamad, Rosfarizan; Mahdavi Shahri, Mahnaz

    2017-02-16

    In this paper, a green microwave-assisted combustion approach to synthesize ZnO-NPs using zinc nitrate and Citrullus colocynthis (L.) Schrad (fruit, seed and pulp) extracts as bio-fuels is reported. The structure, optical, and colloidal properties of the synthesized ZnO-NP samples were studied. Results illustrate that the morphology and particle size of the ZnO samples are different and depend on the bio-fuel. The XRD results revealed that hexagonal wurtzite ZnO-NPs with mean particle size of 27-85 nm were produced by different bio-fuels. The optical band gap was increased from 3.25 to 3.40 eV with the decreasing of particle size. FTIR results showed some differences in the surface structures of the as-synthesized ZnO-NP samples. This led to differences in the zeta potential, hydrodynamic size, and more significantly, antioxidant activity through scavenging of 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) free radicals. In in vitro cytotoxicity studies on 3T3 cells, a dose dependent toxicity with non-toxic effect of concentration below 0.26 mg/mL was shown for ZnO-NP samples. Furthermore, the as-synthesized ZnO-NPs inhibited the growth of medically significant pathogenic gram-positive (Bacillus subtilis and Methicillin-resistant Staphylococcus aurous) and gram-negative (Peseudomonas aeruginosa and Escherichia coli) bacteria. This study provides a simple, green and efficient approach to produce ZnO nanoparticles for various applications.

  2. Discerning the cows from the pasture when determining annual NEE and carbon budget

    NASA Astrophysics Data System (ADS)

    Ammann, Christof; Felber, Raphael; Neftel, Albrecht

    2015-04-01

    The CO2 exchange of ecosystems and the resulting annual net ecosystem exchange (NEE) and total carbon budget (soil carbon sequestration) is commonly investigated using the eddy covariance (EC) technique. For the carbon budget of managed ecosystems also the import and export of organic carbon has to be taken into account. Grazed pasture systems represent a special challenge because their respiration can considerably contribute to the measured CO2 flux, but this contribution depends on the spatial distribution of the cows relative to the footprint and thus is variable in time. This has implications for the gap filling of CO2 flux time series necessary to determine annual NEE. In few existing studies two procedures have been suggested to determine the NEE of grazed pasture: (a) discarding all cases with cows in the footprint and gap-filling the remaining dataset; (b) treating the cow respiration as part of total ecosystem respiration and gap fill the entire flux dataset including cow contributions. Both approaches rely on idealized assumptions and have limitations. In our study we evaluated and compared the two approaches (for the first time to our knowledge) for a grazed pasture in Switzerland. For this purpose, the grazing cows were equipped with GPS sensors to monitor their position relative to the flux footprint. We found that the resulting annual NEE strongly depends on the flux data selection (e.g. u* filtering) and the applied gap filling procedure. Using an optimized procedure, the annual NEE with approach (b) was several times larger than the result of approach (a), but the difference agreed fairly well with independent estimates of cow respiration. Necessary assumptions and requirements of the two approaches for the determination of the pasture carbon budget will be discussed.

  3. Antifungal activity of nettle (Urtica dioica L.), colocynth (Citrullus colocynthis L. Schrad), oleander (Nerium oleander L.) and konar (Ziziphus spina-christi L.) extracts on plants pathogenic fungi.

    PubMed

    Hadizadeh, I; Peivastegan, B; Kolahi, M

    2009-01-01

    Anti-mycotic activity of the ethanol extracts from Nettle (Urtica dioica L.), Colocynth (Citrullus colocynthis L. Schrad), Konar (Ziziphus spina-christi L.) and Oleander (Nerium oleander L.) floral parts were screened in vitro against four important plant pathogenic fungi viz.; Alternaria alternate, Fusarium oxysporum, Fusarium solani and Rizoctonia solani using agar dilution bioassay. Extracts showed antifungal activity against all the tested fungi. Among the plants, Nettle and Colocynth were the most effective against A. alternate and R. solani while Oleander possesses the best inhibition on F. oxysporum and F. solani. Konar was the most effective extract by reducing the growth of Rizoctonia solani than other fungi. These results showed that extracts could be considered suitable alternatives to chemical additives for the control of fungal diseases in plants.

  4. Regional-scale NEE estimates over 4 flux towers in the US

    NASA Astrophysics Data System (ADS)

    Dang, X.; Lai, C.; Hollinger, D. Y.; Munger, J. W.; Paw U, K.; Owensby, C.; Wofsy, S. C.; Schauer, A.; Ehleringer, J.

    2010-12-01

    We modeled regional carbon dioxide (CO2) fluxes based on midday mixing ratios measured in the canopy surface layer over 6 years (2002-2007) in four AmeriFlux stations. Applying an equilibrium boundary layer approach to focus on mean CO2 balance aggregated by the atmospheric boundary layer (ABL) processes, we estimated monthly average CO2 fluxes by inverting the difference between CO2 mixing ratios in the ABL and those in the free troposphere. We used a combination of NCAR/NCEP Reanalysis and ECMWF model data to estimate mean monthly rates of vertical transport between ABL and the free troposphere. Comparison between modeled net CO2 fluxes and tower-based eddy covariance NEE measurements suggests two interesting general patterns. First, modeled regional CO2 fluxes display inter- and intra-annual variations similar to the tower NEE fluxes observed in the Rannells Prairie and Wind River Forest, whereas model discrepancies were consistently found for the Harvard Forest and Howland Forest. Second, model discrepancies show distinct temporal patterns between the two northeastern U.S. forests. At the Howland Forest site, modeled CO2 fluxes showed a lag in the onset of growing-season uptake by two months behind that of tower measurements. At the Harvard Forest, modeled CO2 fluxes agreed with the timing of growing season uptake but underestimated the magnitude of observed NEE seasonal fluctuation. This modeling inconsistency among sites can be partially attributed to the likely misrepresentation of atmospheric transport and/or CO2 gradients between ABL and the free troposphere. Remote sensing-based land cover maps indicate that spatial heterogeneity in land use and cover was very likely to explain the majority of the modeling inconsistency. We suggest that the equilibrium boundary layer budget method can serve as a routine, diagnostic tool to interpret long-term NEE observations in flux networks, providing an intermediate-level analysis to complement aircraft

  5. The Importance of Winter for Controlling the Growing Season Net Ecosystem Exchange (NEE) of Boreal Forests

    NASA Astrophysics Data System (ADS)

    Oquist, M. G.; Peichl, M.; Ottosson Lofvenius, M.; Nilsson, M. B.

    2014-12-01

    It is becoming increasingly apparent that the winter season of high latitudes can be important for controlling a range of ecological and biogeochemical properties of northern ecosystems. Here we evaluate the importance of winter conditions on the carbon exchange between boreal forest systems and the atmosphere during the following growing season in order to elucidate any influence of inter-seasonal "memory" effects on carbon exchange properties of boreal forest ecosystems. The study is based on 5 years of continuous eddy covariance measurements at two ca 50 year old Norway spruce stands situated in mid- and northern Sweden, respectively (a total of 10 site years). The growing season net ecosystem exchange (NEE) ranged from -530 to -60 g C m-2 (negative values indicates carbon sinks). Environmental conditions during the growing season (e.g. temperature, radiation, length) only weakly explained the year-to-year variability in NEE. In contrast, up to 75% of the variation could be explained by the severity of the preceding winter (defined as the lowest observed average weekly air temperature) using an exponential response function. After warm winters the carbon sink properties were high as compared to those observed after cold winters. The winter conditions markedly affected the systems potential for carbon uptake in early summer. This presentation will address the potential mechanisms underpinning the observed correlations linking growing season carbon exchange to the conditions of the preceding winter. The influence of winter on the partitioned carbon fluxes of ecosystem respiration and gross primary productivity, respectively, will also be addressed. The results strongly indicate that controls on boreal forest carbon exchange can transcend across seasons. Understanding these mechanisms are integral for understanding the environmental drivers of atmospheric carbon exchange, allowing for accurate predictions of boreal forest NEE under both present and future climates.

  6. BOREAS TGB-1/TGB-3 NEE Data over the NSA Fen

    NASA Technical Reports Server (NTRS)

    Bellisario, Lianne; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Moore, Tim R.

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-1) and TGB-3 teams collected several data sets that contributed to understanding the measured trace gas fluxes over sites in the Northern Study Area (NSA). This data set contains Net Ecosystem Exchange of CO2 (NEE) measurements collected with chambers at the NSA fen in 1994 and 1996. Gas samples were extracted approximately every 7 days from chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.

  7. Evaluation of anti-inflammatory activity of Solanum xanthocarpum Schrad and Wendl (Kaṇṭakāri) extract in laboratory animals

    PubMed Central

    More, Shraddha K.; Lande, Anirudha A.; Jagdale, Priti G.; Adkar, Prafulla P.; Ambavade, Shirishkumar D.

    2013-01-01

    Context: Solanum xanthocarpum Schrad and Wendl (Kaṇṭakāri) is a diffuse herb with prickly stem, traditionally used for the treatment of inflammation and one in the group of daśamūla (group of ten herbs) herbs commonly used drug in Ayurveda. Aims: In continuation of search for potent natural anti-inflammatory agents, the present research work was planned to evaluate the anti-inflammatory activity of ethanol extract of S. xanthocarpum whole plant. Settings and Design: The ethanol extract was evaluated at dose 10, 30 and 100 mg/kg p.o. in rats. Materials and Methods: Using pharmacological screening models carrageenan induced rat paw edema, histamine induced rat paw edema and cotton pellet granuloma in rats. Statistical Analysis Used: Data obtained was analyzed statistically using analysis of variance followed by post-hoc Dunnett test, P < 0.05 is considered as statistically significant. Results: Acute treatment didn’t show anti-inflammatory activity against carrageenan and histamine induced paw edema. However, administration of 100 mg/kg p.o for 7 day reduced the granuloma formation in cotton pellet granuloma model. Conclusions: Present results support the traditional use of plant for anti-inflammatory activity. In brief, the results provide scientific pharmacological basis for the therapeutic use of S. xanthocarpum. PMID:24991071

  8. The clinical investigation of Citrullus colocynthis (L.) schrad fruit in treatment of Type II diabetic patients: a randomized, double blind, placebo-controlled clinical trial.

    PubMed

    Huseini, H Fallah; Darvishzadeh, F; Heshmat, R; Jafariazar, Z; Raza, Mohsin; Larijani, B

    2009-08-01

    Citrullus colocynthis (L.) Schrad fruit is an herbal medicine used by traditional herbalists for the treatment of diabetes in Iran. To determine its efficacy and toxicity, a 2 month clinical trial was conducted in 50 type II diabetic patients. Two groups of 25 each under standard antidiabetic therapy, received 100 mg C. colocynthis fruit capsules or placebos three times a day, respectively. The patients were visited monthly and glycosylated hemoglobin (HbA1c), fasting blood glucose, total cholesterol, LDL, HDL, triglyceride, aspartate transaminase, alanine transaminase, alkaline phosphatase, urea and creatinine levels were determined at the beginning and after 2 months. The results showed a significant decrease in HbA1c and fasting blood glucose levels in C. colocynthis treated patients. Other serological parameters levels in both the groups did not change significantly. No notable gastrointestinal side effect was observed in either group. In conclusion, C. colocynthis fruit treatment had a beneficial effect on improving the glycemic profile without severe adverse effects in type II diabetic patients. Further clinical studies are recommended to evaluate the long-term efficacy and toxicity of C. colocynthis in diabetic patients.

  9. NEE and GPP dynamic evolution at two biomes in the upper Spanish plateau

    NASA Astrophysics Data System (ADS)

    Sánchez, María Luisa; Pardo, Nuria; Pérez, Isidro Alberto; García, Maria de los Angeles

    2014-05-01

    In order to assess the ability of dominant biomes to act as a CO2 sink, two eddy correlation stations close to each other in central Spain have been concurrently operational since March 2008 until the present. The land use of the first station, AC, is a rapeseed rotating crop consisting of annual rotation of non-irrigated rapeseed, barley, peas, rye, and sunflower, respectively. The land use of the second, CIBA, is a mixture of open shrubs/crops, with open shrubs being markedly dominant. The period of measurements covered variable general meteorological conditions. 2009 and 2012 were dominated by drought, whereas 2010 was the rainiest year. Annual rainfall during 2008 and 2009 was close to the historical averaged annual means. This paper presents the dynamic evolution of NEE-8d and GPP-8d observed at the AC station over five years and compares the results with those concurrently observed at the CIBA station. GGP 8-d estimates at both stations were determined using a Light Use Efficiency Model, LUE. Input data for the LUE model were the FPAR 8-d products supplied by MODIS, PAR in situ measurements, and a scalar f, varying between 0 and 1, to take account of the reduction in maximum PAR conversion efficiency, ɛ0, under limiting environmental conditions. f values were assumed to be dependent on air temperature and evaporative fraction, EF, which was considered a proxy of soil moisture. ɛ0, a key parameter, which depends on land use types, was derived through the results of a linear regression fit between the GPP 8-d eddy covariance composites observed and the LUE concurrent 8-d model estimates. Over the five-year study period, both biomes behaved as CO2 sinks. However, the ratio of the NEE-8d total accumulated at AC and CIBA, respectively, was close to a factor two, revealing the effectiveness of the studied crops as CO2 sinks. On an annual basis, accumulated NEE-8d exhibited major variability in both biomes. At CIBA, the results were largely dominated by the

  10. Enzyme inhibition, antioxidant and antibacterial potential of vasicine isolated from Adhatoda vasica Nees.

    PubMed

    Shahwar, Durre; Raza, Muhammad Asam; Tariq, Sidra; Riasat, Madiha; Ajaib, Mohammad

    2012-07-01

    Vasicine (1) was isolated from the ethanolic extract of Adhatoda vasica Nees (Acanthaceae) and the structure was confirmed using spectroscopic techniques. Acetylcholine esterase, trypsin, DPPH inhibition potential and FRAP assay were carried out using in vitro models. The results showed 38.4 ± 1.2% and 37.4 ± 1.1% activity in acetylcholine and trypsin inhibition assays respectively. The compound (1) exhibited significant DPPH inhibition activity (70.4 ± 1.3%, IC(50) = 212.3 ± 1.9 μM). A dose dependant behavior of vasicine (1), was indicated in the FRAP assay. Antibacterial activity was checked according to agar well diffusion assay and results revealed that vasicine (1) showed moderate activity.

  11. Four New Kaurane Diterpenoids from the Chinese Liverwort Jungermannia comata Nees.

    PubMed

    Li, Rui-Juan; Wang, Song; Li, Gang; Zhou, Jin-Chuan; Zhang, Jiao-Zhen; Zhang, You-Ming; Shi, Guo-Sheng; Lou, Hong-Xiang

    2016-12-01

    In our continuing program to find new bioactive compounds from the Chinese liverworts, four new kaurane-type diterpenoids, (6β)-kaur-16-ene-6,9-diol (1), (6β,12β)-kaur-16-ene-6,9,12-triol (2), (6β)-kaur-16-ene-5,6,9-triol (3), and kaur-16-ene-9,19-diol (4), have been isolated from the Chinese liverwort Jungermannia comata Nees. Five known kaurane-type diterpenoids (5 - 9) and four known trachylobane-type diterpenoids (10 - 13) were also obtained. The structures of the new compounds were established unequivocally on the basis of spectroscopic data. The absolute configuration of compound 1 was established by comparing experimental and calculated electronic circular dichroism spectra.

  12. Improvement in the yield and quality of kalmegh (Andrographis paniculata Nees) under the sustainable production system.

    PubMed

    Verma, Rajesh Kumar; Verma, Sanjeet K; Pankaj, Umesh; Gupta, Anand K; Khan, Khushboo; Shankar, Karuna

    2015-02-01

    Andrographis paniculata Nees is an annual erect herb with wide medicinal and pharmacological applications due to the presence of andrographolide and other active chemical constituents. The large-scale cultivation of the kalmegh is not in practice. The aim of this study was to establish sustainable production systems of A. paniculata cv CIM-Megha with the application of different bioinoculants and chemical fertilisers. A. paniculata herb and andrographolide yield in the dried leaves was found to be highest (218% and 61.3%, respectively) in treatment T3 (NPK+Bacillus sp.) compared with T1 (control). The soil organic carbon, soil microbial respiration, soil enzymes activity and available nutrients improved significantly with combined application of bioinoculants and chemical fertilisers.

  13. Simulating the impacts of land use in northwest Europe on Net Ecosystem Exchange (NEE): the role of arable ecosystems, grasslands and forest plantations in climate change mitigation.

    PubMed

    Abdalla, Mohamed; Saunders, Matthew; Hastings, Astley; Williams, Mike; Smith, Pete; Osborne, Bruce; Lanigan, Gary; Jones, Mike B

    2013-11-01

    In this study, we compared measured and simulated Net Ecosystem Exchange (NEE) values from three wide spread ecosystems in the southeast of Ireland (forest, arable and grassland), and investigated the suitability of the DNDC (the DeNitrification-DeComposition) model to estimate present and future NEE. Although, the field-DNDC version overestimated NEE at temperatures >5 °C, forest-DNDC under-estimated NEE at temperatures >5 °C. The results suggest that the field/forest DNDC models can successfully estimate changes in seasonal and annual NEE from these ecosystems. Differences in NEE were found to be primarily land cover specific. The annual NEE was similar for the grassland and arable sites, but due to the contribution of exported carbon, the soil carbon increased at the grassland site and decreased at the arable site. The NEE of the forest site was an order of magnitude larger than that of the grassland or arable ecosystems, with large amounts of carbon stored in woody biomass and the soil. The average annual NEE, GPP and Reco values over the measurement period were -904, 2379 and 1475 g C m(-2) (forest plantations), -189, 906 and 715 g C m(-2) (arable systems) and -212, 1653 and 1444 g C m(-2) (grasslands), respectively. The average RMSE values were 3.8 g C m(-2) (forest plantations), 0.12 g C m(-2) (arable systems) and 0.21 g C m(-2) (grasslands). When these models were run with climate change scenarios to 2060, predictions show that all three ecosystems will continue to operate as carbon sinks. Further, climate change may decrease the carbon sink strength in the forest plantations by up to 50%. This study supports the use of the DNDC model as a valid tool to predict the consequences of climate change on NEE from different ecosystems.

  14. The genus Spathius Nees (Hymenoptera, Braconidae, Doryctinae) in Mexico: occurrence of a highly diverse Old World taxon in the Neotropics

    PubMed Central

    Belokobylskij, Sergey A.; Zaldívar-Riverón, Alejandro

    2014-01-01

    Abstract Two new species of the parasitoid wasp genus Spathius Nees (Braconidae: Doryctinae) from Mexico, S. mexicanus sp. n. and S. chamelae sp. n., are described and illustrated. These represent the second and third described species of this highly diverse Old World genus in the Neotropics, and the first described species recorded for the Mexican territory. PMID:25147464

  15. The genus Spathius Nees (Hymenoptera, Braconidae, Doryctinae) in Mexico: occurrence of a highly diverse Old World taxon in the Neotropics.

    PubMed

    Belokobylskij, Sergey A; Zaldívar-Riverón, Alejandro

    2014-01-01

    Two new species of the parasitoid wasp genus Spathius Nees (Braconidae: Doryctinae) from Mexico, S. mexicanus sp. n. and S. chamelae sp. n., are described and illustrated. These represent the second and third described species of this highly diverse Old World genus in the Neotropics, and the first described species recorded for the Mexican territory.

  16. Anti-inflammatory, analgesic and antipyretic effects of Lepidagathis anobrya Nees (Acanthaceae).

    PubMed

    Richard, Sawadogo Wamtinga; Marius, Lompo; Noya, Somé; Innocent Pierre, Guissou; Germaine, Nacoulma-Ouedraogo Odile

    2011-01-01

    This study investigated the general acute, anti-inflammatory, analgesic and antipyretic effects of methanol extract of Lepidagathis anobrya Nees (Acanthaceae). Carrageenan-induced rat paw edema and croton oil-induced ear edema in rats were used for the evaluation of general acute anti-inflammatory effects. Acetic acid-induced writhing response and yeast-induced hyperpyrexia in mice were used to evaluate the analgesic and antipyretic activities respectively. The extract at doses of 10, 25, 50 and 100 mgkg(-1) for carrageenan test and doses of 0.5 mg/ear for croton oil test induced a significant reduction (p < 0.001) of paw and ear edemas in rats. In the analgesic and antipyretic tests, the extract has shown a significant inhibition of writhes and hyperpyrexia with all the doses used when compared to the untreated control group. These results clearly show the anti-inflammatory, analgesic and antipyretic effects of the methanol extract of Lepidagathis anobrya and give the scientific basis for its traditional use. Further studies are needed to clarify the mechanism of action and the components responsible for these pharmacological effects.

  17. Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees.

    PubMed

    Qin, Sheng; Wang, Hai-Bin; Chen, Hua-Hong; Zhang, Yu-Qin; Jiang, Cheng-Lin; Xu, Li-Hua; Li, Wen-Jun

    2008-11-01

    An actinomycete, designated strain YIM 56134(T), was isolated from the root of a Chinese medicinal plant, Carex baccans Nees, collected from Yunnan, south-west China, and subjected to a polyphasic taxonomic study. An analysis of 16S rRNA gene sequence similarities showed that strain YIM 56134(T) was a member of the genus Glycomyces, being most closely related to Glycomyces algeriensis NRRL B-16327(T) (99.0 % similarity), Glycomyces lechevalierae DSM 44724(T) (99.0 %), Glycomyces rutgersensis IFO 14488(T) (98.9 %) and Glycomyces harbinensis IFO 14487(T) (98.7 %). Strain YIM 56134(T) could be distinguished from other established Glycomyces species on the basis of relatively low sequence similarity (<97 %). Phenotypic and chemotaxonomic data supported the affiliation of this strain to the genus Glycomyces. The results of DNA-DNA hybridization and some physiological and biochemical tests allowed differentiation of the strain from related Glycomyces species. Therefore, strain YIM 56134(T) represents a novel species of the genus Glycomyces, for which the name Glycomyces endophyticus sp. nov. is proposed. The type strain is YIM 56134(T) (=KCTC 19152(T) =DSM 45002(T)).

  18. Rapid propagation of lemongrass (Cymbopogon flexuosus (Nees) Wats.) through somatic embryogenesis in vitro.

    PubMed

    Nayak, S; Debata, B K; Sahoo, S

    1996-01-01

    Somatic embryos induced from callus cultures of lemongrass [Cymbopogon flexuosus (Nees) Wats.] on Murashige and Skoog medium supplemented with 5 mg/l of 2,4-D, 0.1 mg/l of NAA and 0.5 mg/l of Kn developed into plantlets when plated on a medium supplemented with 3 mg/l of BA, 1 mg/l of GA3 and 0.1 mg/l of NAA. The regeneration potential of callus was retained for more than 2 years on the nutrient medium supplemented with comparatively lower levels of growth regulators (2,4-D at 2 mg/l, NAA at 0.1 mg/l and Kn at 0.25 mg/l). Approximately 30-35 plantlets were produced after two months of culture per 100 mg of callus inoculated. Regenerants were transplanted into soil and transferred to the field for assessment of various morphological and biochemical characteristics. The results of 1 year of field trials showed that plants derived from somatic embryoids were more uniform in all the characteristics examined when compared with the field performance of plants raised through slips by standard propagation procedures. Thus, a procedure has been developed for high frequency long term plant production of lemongrass through in vitro methods.

  19. Detoxification of aflatoxin B1 by an aqueous extract from leaves of Adhatoda vasica Nees.

    PubMed

    Vijayanandraj, S; Brinda, R; Kannan, K; Adhithya, R; Vinothini, S; Senthil, K; Chinta, Ramakoteswara Rao; Paranidharan, V; Velazhahan, R

    2014-04-01

    The effectiveness of aqueous extracts of various medicinal plants in detoxification of aflatoxin B1 (AFB1) was tested in vitro by thin-layer chromatography and enzyme-linked immunosorbent assay (ELISA). Among the different plant extracts, the leaf extract of Vasaka (Adhatoda vasica Nees) showed the maximum degradation of AFB1 (≥ 98%) after incubation for 24h at 37 °C. The aflatoxin detoxifying activity of the A. vasica leaf extract was significantly reduced by heating to 100 °C for 10 min or autoclaving at 121 °C for 20 min. Dialysis had no effect on aflatoxin detoxifying ability of A. vasica extract and the dialyzed extract showed similar level of detoxification of AFB1 as that of the untreated extract. A time course study of aflatoxin detoxification by A. vasica extract showed that 69% of the toxin was degraded within 6h and ≥ 95% degradation was observed after 24h of incubation. Detoxification of AFB1 by A. vasica extract was further confirmed by liquid chromatography-mass spectrometry (LC-MS) analysis. Phytochemical analysis revealed the presence of alkaloids in methanolic extract of A. vasica leaves. A partially purified alkaloid from A. vasica leaves by preparative TLC exhibited strong AFB1 detoxification activity.

  20. Anti-inflammatory and antimicrobial properties of pyrroloquinazoline alkaloids from Adhatoda vasica Nees.

    PubMed

    Singh, Bharat; Sharma, Ram Avtar

    2013-03-15

    Adhatoda vasica Nees, Acanthaceae, is well known plant in Ayurveda and Unani medicine. The purpose of this study was to characterize the most bioactive phytochemicals viz., vasicine, vasicinone, vasicine acetate, 2-acetyl benzyl amine, vasicinolone present in the chloroform fraction having anti-inflammatory and antimicrobial activities. The anti-inflammatory activity was tested by using carrageenan and CFA-model induced paw oedema. The antimicrobial activity of isolated compounds was assessed by using the microdilution method. The observed results revealed that vasicine showed most potent anti-inflammatory effects (59.51%) at the dose of 20.0mg/kg at 6h after carrageenan injection and maximum inhibition rate was observed of vasicinone (63.94%) at the dose of 10.0mg/kg at 4 days after CFA injection. The strong antibacterial activity was exhibited by vasicine at 20μg/ml dose against E. coli and also demonstrated maximum antifungal activity against C. albicans at the dose of >55μg/ml. All the five alkaloids demonstrated significant anti-inflammatory and antimicrobial activities.

  1. [Effects of Alternaria tenuis nees on Trifolium repens L. under Cu stress].

    PubMed

    Chu, Ling; Shao, Deng-hui; Jin, Song; Wu, Xue-feng

    2007-11-01

    With pot culture, this paper studied the effects of Alternaria tenuis Nees inoculation on the eco-physiological indices of Trifolium repens L. leaf under Cu stress. The results showed that in the control (not inoculated with the pathogen), the contents of photosynthetic pigments (chlorophyll a, b, a + b and carotenoid) and soluble protein in T. repens leaves decreased markedly with increasing Cu concentration (0-3000 mg x kg(-1)). The enhancement of cellular membrane lipids peroxidation with the increase of Cu concentration led to a rapid accumulation of malondialdehyde (MDA), the damage on cellular membrane structure, and an increase of electric conductivity. The balance of active oxygen metabolism systems was broken, SOD and CAT activities decreased, while POD activity increased. After inoculation with A. tenuis, the damages of Cu on plant membrane systems and active oxygen metabolism systems aggravated, the contents of photosynthetic pigments and soluble protein and the activities of SOD and CAT decreased to different degree, while the electric conductivity, MDA content and POD activity increased markedly, compared with the control.

  2. Clara Haber, nee Immerwahr (1870–1915): Life, Work and Legacy

    PubMed Central

    2016-01-01

    Abstract We examine the life, work, and legacy of Clara Haber, nee Immerwahr, who became the first woman to earn a doctorate from the University of Breslau, in 1900. In 1901 she married the chemist Fritz Haber. With no employment available for female scientists, Clara freelanced as an instructor in the continued education of women, mainly housewives, while struggling not to become a housewife herself. Her duties as a designated head of a posh household hardly brought fulfillment to her life. The outbreak of WWI further exacerbated the situation, as Fritz Haber applied himself in extraordinary ways to aid the German war effort. The night that he celebrated the “success” of the first chlorine cloud attack, Clara committed suicide. We found little evidence to support claims that Clara was an outspoken pacifist who took her life because of her disapproval of Fritz Haber's involvement in chemical warfare. We conclude by examining “the myth of Clara Immerwahr” that took root in the 1990s from the perspective offered by the available scholarly sources, including some untapped ones. PMID:27099403

  3. Glycosidic conjugates of C13 norisoprenoids, monoterpenoids, and cucurbates in Boronia megastigma (Nees).

    PubMed

    Cooper, Chris M; Davies, Noel W; Motti, Cherie A; Menary, Robert C

    2011-03-23

    Analysis of a methanolic extract of marc from Boronia megastigma (Nees) using LC-MS (APCI, nominal mass) provided strong evidence for the presence of both glycosides and malonyl glycosides of methyl cucurbates, C13 norisoprenoids including megastigmanes, and monoterpene alcohols. Subsequent fractionation of an extract from the marc using XAD-2 and LH 20 chromatography followed by LC-UV/MS-SPE-NMR and accurate mass LC-MS resulted in the isolation and identification of (1R,4R,5R)-3,3,5-trimethyl-4-[(1E)-3-oxobut-1-en-1-yl]cyclohexyl β-D-glucopyranoside (3-hydroxy-5,6-dihydro-β-ionone-β-D-glucopyranoside); 3,7-dimethylocta-1,5-diene-3,7-diol-3-O-β-D-glucopyranoside; and a methyl {(1R)-3-(β-D-glucopyranosyloxy)-2-[(2Z)-pent-2-en-1-yl]cyclopentyl}acetate stereoisomer (a methyl cucurbate-β-D-glucopyranoside); and provided evidence for 3,7-dimethylocta-1,5-diene-3,7-diol-3-O-(6'-O-malonyl)-β-D-glucopyranoside in boronia flowers.

  4. Pancreatic effect of andrographolide isolated from Andrographis paniculata (Burm. f.) Nees.

    PubMed

    Nugroho, Agung Endro; Rais, Ichwan Ridwan; Setiawan, Iwan; Pratiwi, Pramita Yuli; Hadibarata, Tony; Tegar, Maulana; Pramono, Suwidjiyo

    2014-01-01

    Andrographis paniculata (Burm. f.) Nees is a plant that originates from India and grows widely to Southeast which used for several purposes mainly as treatment of diabetes mellitus so the aim of this study was evaluate andrographolide for its pancreatic effect in neonatal streptozotocin (STZ)-induced diabetic rats, a model of type 2 diabetic rats. Diabetic condition was induced with an intraperitoneal injection of 90 mg kg(-1) streptozotocin in two-day-old rats. After three months, the neonatal STZ-induced diabetic rats were treated with andrographolide or andrographolide-enriched extract of A. paniculata (AEEAP) for 8 consecutive days. Pancreatic effect was evaluated by estimating mainly the preprandial and postprandial blood glucose levels and other parameters such as morphology of pancreatic islet, beta cells density and morphology and immunohistochemically pancreatic insulin. Andrographolide significantly (p < 0.05) decreased the levels of blood glucose and improved diabetic rat islet and beta cells. However, AEEAP exhibited moderate hypoglycaemic effects on the blood glucose levels. Moderate changes in beta cells were observed after AEEAP treatment. They could restore decreasing of pancreatic insulin contents. Based on these results andrographolide and AEEAP exhibited pancreatic actions in neonatal STZ-induced diabetic rats. The activity of andrographolide was more effective than this of AEEAP.

  5. Assimilation of NEE and CO2-concentrations into the land-surface scheme of the MPI Earth System Model

    NASA Astrophysics Data System (ADS)

    Schürmann, Gregor Josef; Köstler, Christoph; Kaminski, Thomas; Giering, Ralf; Scholze, Marko; Carvalhais, Nuno; Kattge, Jens; Reichstein, Markus; Papale, Dario; Rödenbeck, Christian; Schnur, Reiner; Reick, Christian; Zaehle, Sönke

    2013-04-01

    Uncertainties of land surface models are to a large extent a consequence of uncertainties in their parametrisation and parameter values. Understanding and reducing these uncertainties is important to reduce the spread in global carbon cycle and therefore climate change projections. For this purpose, we developed a Carbon Cycle Data Assimilation System (CCDAS) for the land surface scheme (JSBACH) of the MPI Earth system model as a tool to systematically confront observations with the model. Observations representative for different temporal and spatial scales and processes, such as plant trait observations, point scale flux measurements, and globally integrating CO2 abundance monitoring, can be incorporated into this CCDAS to estimate net land-atmosphere carbon fluxes that are consistent with the observations and the model structure. Here we present the latest results of the MPI-CCDAS using observations of net ecosystem exchange of CO2 (NEE) and atmospheric CO2 concentrations. Eddy-covariance based measurements of NEE constrain the modelled carbon cycle on the scale of the flux measurement footprint at hourly time scale. The assimilation of CO2-concentration requires an observational operator that links modelled NEE with observed CO2-concentrations, provided by the the atmospheric transport model TM3. The concentrations are observed at a network of atmospheric monitoring stations and provide a large-scale integrated view of the terrestrial carbon cycle at seasonal and inter-annual time scales. Given the data streams complementarity, we evaluate its individual role in constraining the net land-atmosphere carbon exchange and discuss the benefits of its simultaneous assimilation. Additionally, we explore the importance of parameter priors, model and measurement uncertainties in the assimilation procedure to assess the robustness of NEE estimates. Our results emphasize the importance of integrating multiple data streams towards more comprehensive assessments of

  6. An approach to assess NEE and C-costs associated with an energy-crop production at different erosion-induced transient states in a typical Northeastern Germany landscape using process-based agroecosystem modeling

    NASA Astrophysics Data System (ADS)

    Chatskikh, D.; Nendel, C.; Hagemann, U.; Specka, X.; Augustin, J.; Sommer, M.; Van Oost, K.

    2012-04-01

    Net Ecosystem Exchange (NEE) and C-costs associated with energy-crop production systems which are outside of NEE must be determined to suggest optimal mitigation options. In theory, NEE can be positive, if SOC is building up, neutral or balanced, with no change in SOC, or negative, if SOC is lost as a result of a soil degradation processes. Unclearness in complex multiscale interactions between different processes in the landscape in combination with a well-known wide range of uncertainties around NEE estimations makes these estimations for landscape scale scarce. In this study we used a process-based modeling to assess C-costs associated with soil erosion, assessing NEE at different erosion-induced transient states in the experiment settled Northeastern Germany (near Dedelow) in a representative section of younger landscape of hummocky ground moraine (CarboZALF-D). We used Monica, a soil-crop-atmosphere model, which is well-validated for various crops and soil in Germany. In the model, NEE (=-NEP) refer to NPP minus C losses in heterotrophic respiration, while NBE (=-NBP) refers to the change in SOC stocks after C losses due to regular (e.g. soil erosion) or occasional (e.g. harvest) disturbances. In this study we applied Monica to analyze relationships between past geomorphic processes, landscape position, crop growth and NEE. In this study we were interested in general trends and associated agroecosystem properties, rather than on magnitude of the fluxes. The results showed that past soil redistribution affected NEE at both positions, while the Monica-based scenarios in combination with data-based interpolations helped to interpret the NEE budgets. The model captured the magnitude of differences in the daily NEE values, but also the differences in an accumulated NEE fluxes between different erosion-induced transient states. Thus for both eroded and deposited positions NEE was negative. However absolute values of NEE were smaller for the deposited site compare to

  7. What have we Learned after a Decade of Experiments and Monitoring at the NEES@UCSB Permanently Instrumented Field Sites?

    NASA Astrophysics Data System (ADS)

    Steidl, J. H.; Civilini, F.; Seale, S. H.; Hegarty, P.

    2013-12-01

    The Wildlife Liquefaction Array (WLA) and Garner Valley Downhole Array (GVDA) located in southern California are facilities that for the last decade have been supported under the National Science Foundations George E. Brown, Jr., Network for Earthquake Engineering Simulation (NEES) program. These densely instrumented geotechnical and structural engineering field sites continuously record both acceleration and pore pressure, with accelerometers located on the surface and at various depths below the surface, and pore pressure transducers installed at depth within the liquefiable layers. Permanently instrumented structures for examining soil-foundation-structure interaction and a permanent cross-hole array at the sites have transformed these sites into multi-disciplinary earthquake engineering research facilities. Over the last decade, local and regional seismic activity, including multiple extremely active earthquake swarms, have produced a valuable new data set providing a unique opportunity to observe site response and the evolution of pore pressure generation with time throughout the liquefiable layer at an unprecedented level of detail. In addition to the earthquakes provided by nature, active testing experiments using the mobile shakers from NEES@UTexas and NEES@UCLA have produced an equally valuable data set on both site characterization studies and soil-foundation-structure interaction. The new observations of pore pressure and acceleration with depth are providing in situ empirical evidence documenting the range of ground motion levels at which the onset of nonlinear behavior and excess pore pressure begins, augmenting previous case history data, and laboratory data from cyclic tri-axial and centrifuge testing. The largest static pore pressure increases observed in the 'NEES' decade of monitoring were generated by four events at the WLA site, ranging in magnitude from 4.6 to 5.4 and all at distances less than 10km from the site. The largest peak horizontal

  8. Long Term Pattern in Runoff Doc Fluxes in Two Boreal Upland Forested Catchments: does the Increasing Nee Affect Doc Fluxes?

    NASA Astrophysics Data System (ADS)

    Pumpanen, J. S.; Lindén, A.; Miettinen, H.; Kolari, P.; Ilvesniemi, H.; Hari, P.; Heinonsalo, J.; Vesala, T.; Back, J. K.; Berninger, F.; Ojala, A.

    2013-12-01

    Part of the carbon fixed in terrestrial ecosystems is transferred through streams and rivers to lakes and the carbon is finally released as CO2 to the atmosphere through respiration or buried into lake sediments. Recently it has been shown that lake and stream water dissolved/total organic carbon (DOC/TOC) concentrations throughout the boreal zone are increasing. There are several theories which could explain this trend; land use changes, decrease in atmospheric acid deposition, changes in seasonal patterns in temperature and precipitation and increase in below ground C allocation due to increase in atmospheric CO2 concentration or soil warming. Here, we tested a hypothesis that increase in photosynthesis is reflected in soil water DOC concentrations and finally in DOC fluxes from the catchment. We used a 15-year-long continuous monitoring data on catchment runoff, DOC concentration in the runoff, GPP, TER and NEE of the ecosystem of two small upland boreal catchment areas in Southern Finland to explain the long-term trends in runoff DOC fluxes. We also studied the long term trends in the amount, DOC concentration and pH of through fall over the study period ranging from 1998 to 2012. The average DOC concentration in runoff water was 3.43-4.0 mg L-1 and it increased in both catchments over the study period (P<0.001) along with soil temperature. The annual DOC fluxes (calculated as runoff x DOC concentration) ranged from a dry year minimum of 201 mg m-2 to wet year maximum of 1886 mg m-2. Also the DOC fluxes increased significantly over the course of the study period, but only during wet years. Annual net ecosystem exchange (NEE) (P<0.002) and total ecosystem respiration (TER) (P<0.007) increased significantly during the study period whereas GPP did not show any increasing or decreasing trend (P<0.347). Annual DOC fluxes were not significantly correlated with annual NEE, GPP or TER except for wet years when one of the catchments showed increasing trend in DOC fluxes

  9. Effects of Andrographis paniculata Nees on growth, development and reproduction of malarial vector Anopheles stephensi Liston (Diptera: Culicidae).

    PubMed

    Kuppusamy, C; Murugan, K

    2010-12-01

    The use of environment friendly and easily biodegradable natural insecticides of plant origin has received progressively more attention as insecticide alternatives for the control of medically important mosquito vectors. The ethanol and methanol extracts of Andrographis paniculata Nees were evaluated for its effects on growth, development and reproduction of malarial vector Anopheles stephensi Liston. After 8 days of treatment, 88.60 and 85.25% of the larvae treated at 35p.p.m. failed to emerge in ethanol and methanol extracts respectively. In addition, the duration of larval instars and the total development time were prolonged, while female longevity and fecundity were markedly decreased. The suppression of pupation and adult emergence was probably due to juvenile hormone analog similarities in combination with growth regulators and toxicity, which reduced the overall performance of the malaria vector An. stephensi.

  10. Evaluation of the Allelopathic Potential of Leaf, Stem, and Root Extracts of Ocotea pulchella Nees et Mart.

    PubMed

    Candido, Lafayette P; Varela, Rosa M; Torres, Ascensión; Molinillo, José M G; Gualtieri, Sonia C J; Macías, Francisco A

    2016-08-01

    Despite the increase in recent decades in herbicide research on the potential of native plants, current knowledge is considered to be low. Very few studies have been carried out on the chemical profile or the biological activity of the Brazilian savanna (Cerrado) species. In the study reported here, the allelopathic activity of AcOEt and MeOH extracts of leaves, stems, and roots from Ocotea pulchella Nees was evaluated. The extracts were assayed on etiolated wheat coleoptiles. The AcOEt leaf extract was the most active and this was tested on standard target species (STS). Lycopersicon esculentum and Lactuca sativa were the most sensitive species in this test. A total of eleven compounds have been isolated and characterized. Compounds 1, 2, 4, and 6 have not been identified previously from O. pulchella and ocoteol (9) is reported for the first time in the literature. Eight compounds were tested on wheat coleoptile growth, and spathulenol, benzyl salicylate, and benzyl benzoate showed the highest activities. These compounds showed inhibitory activity on L. esculentum. The values obtained correspond to the activity exhibited by the extract and these compounds may therefore be responsible for the allelopathic activity shown by O. pulchella.

  11. Aporphine alkaloids from the leaves of Phoebe grandis (Nees) Mer. (Lauraceae) and their cytotoxic and antibacterial activities.

    PubMed

    Omar, Hanita; Hashim, Najihah Mohd; Zajmi, Asdren; Nordin, Noraziah; Abdelwahab, Siddiq Ibrahim; Azizan, Ainnul Hamidah Syahadah; Hadi, A Hamid A; Ali, Hapipah Mohd

    2013-07-29

    The oxoaporphine alkaloid lysicamine (1), and three proaporphine alkaloids, litsericinone (2), 8,9,11,12-tetrahydromecambrine (3) and hexahydromecambrine A (4) were isolated from the leaves of Phoebe grandis (Nees) Merr. (Lauraceae). Compounds 2 and 3 were first time isolated as new naturally occurring compounds from plants. The NMR data for the compounds 2-4 have never been reported so far. Compounds 1 and 2 showed significant cytotoxic activity against a MCF7 (human estrogen receptor (ER+) positive breast cancer) cell line with IC₅₀ values of 26 and 60 µg/mL, respectively. Furthermore, in vitro cytotoxic activity against HepG2 (human liver cancer) cell line was evaluated for compounds 1-4 with IC₅₀ values of 27, 14, 81 and 20 µg/mL, respectively. Lysicamine (1) displayed strong antibacterial activity against Bacillus subtilis (B145), Staphylococcus aureus (S1434) and Staphylococus epidermidis (a clinically isolated strain) with inhibition zones of 15.50 ± 0.57, 13.33 ± 0.57 and 12.00 ± 0.00 mm, respectively. However, none of the tested pathogenic bacteria were susceptible towards compounds 2 and 3.

  12. Pharmacokinetic and Pharmacodynamic Interaction of Andrographolide and Standardized Extract of Andrographis paniculata (Nees) with Nabumetone in Wistar Rats.

    PubMed

    Balap, Aishwarya; Lohidasan, Sathiyanarayanan; Sinnathambi, Arulmozhi; Mahadik, Kakasaheb

    2017-01-01

    The aim of the study was to investigate the herb-drug interaction of Andrographis paniculata Nees (Acanthaceae) and Andrographolide (AN) with nabumetone (NAB) in wistar rats. Pharmacokinetic and pharmacodynamic interactions were studied after co-administration of APE and AN with NAB in Wistar rats. In pharmacokinetic studies, significant decrease in Cmax, AUC0-t and AUC0-∞ of 6-MNA after co-administration with pure AN and APE has been observed. Tmax of 6-MNA has been increased to 2 h from 1.5 h in AN + NAB treated group. Changes in mean residential time, clearance and volume of distribution of 6-MNA in APE + NAB treated group and AN + NAB treated group indicated interference of other components of APE other than AN. In pharmacodynamic study, significant decrease in antiarthritic activity of NAB on concomitant administration with APE and AN has been observed. The study concludes that NAB exhibits pharmacokinetic and pharmacodynamic interactions with APE and AN in rats thus alarms the concomitant use of herbal preparations containing APE and AN with NAB. Further study is needed to understand the mechanism and predict the herb-drug interaction in humans. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Protective activity of andrographolide and arabinogalactan proteins from Andrographis paniculata Nees. against ethanol-induced toxicity in mice.

    PubMed

    Singha, Prajjal K; Roy, Somenath; Dey, Satyahari

    2007-04-20

    To find out the active principles against ethanol-induced toxicity in mice, Andrographis paniculata Nees. (Ap) was chosen and isolated andrographolide (ANDRO) and arabinogalactan proteins (AGPs). ANDRO was detected by HPTLC, FTIR and quantified by HPLC (10mg/g of Ap powder). AGPs was detected by beta-glucosyl Yariv staining of SDS-PAGE gel, FTIR and quantified by single radial gel diffusion assay with beta-glucosyl Yariv reagent (0.5mg/g Ap powder). The mice are pretreated intra-peritoneally (i.p.) with different doses (62.5, 125, 250, and 500mg/kg) of body weight of mice] of ANDRO and AGPs for 7 days and then ethanol (7.5g/kg of body weight) was injected, i.p. Besides, silymarin was used as standard hepatoprotective agent for comparative study with ANDRO and AGPs. The ameliorative activity of ANDRO and AGP against hepatic renal alcohol toxicity was measured by assessing GOT, GPT, ACP, ALP and LP levels in liver and kidney. It has been observed that pretreatment of mice with ANDRO and AGPs at 500mg/kg of body weight and 125mg/kg of body weight respectively could able to minimize the toxicity in compare to ethanol treated group as revealed by the different enzymatic assay in liver and kidney tissues and the results were comparable with silymarin. Hence, out of several ill-defined compounds present in Ap, ANDRO and AGPs are the potential bioactive compounds responsible for protection against ethanol-induced toxicity.

  14. Coupling of Pore Pressure and Ground Motion: Further Studies using Data Recorded at the NEES@UCSB Wildlife Station

    NASA Astrophysics Data System (ADS)

    Seale, S. H.; Lavallee, D.; Archuleta, R. J.; Steidl, J. H.

    2012-12-01

    Pore pressure built up during an earthquake and the hazard associated with soil liquefaction present a major challenge for our society, as has been dramatically illustrated by recent large events (e.g. the 2011 Tohoku-oki, Japan, earthquake). There is consensus among scientists that a better assessment of the liquefaction risk requires a better understanding of the coupling between pore pressure and ground motion time histories. There is a basic need to investigate coupling as a function of the frequency content of the ground motion. The 2010 M7.2 El Mayor-Cucapah event has provided a remarkable opportunity to investigate and model the coupling. The event was well recorded at the NEES@UCSB Wildlife station located 110 km from the hypocenter. The station is equipped with three-component strong-motion accelerometers at the surface and in boreholes at various depths and with pore pressure transducers located in a saturated, liquefiable layer. The recorded pore pressure and ground motion time histories both have frequency content that is a function of time. We have applied a wavelet decomposition technique to the El Mayor ground motion and pore pressure data, looking for a linear relationship between the signals. The analysis shows that the early P-wave accelerations (vertical component) initiate pore pressure response. However, the pore pressure records contain a low-frequency component that dominates the signal with no corresponding low-frequency component in the ground motion signals recorded near-by. Although uncommon, a similar behavior has been also reported in the literature for pore pressure signals recoded during the 1980 Mammoth Lakes, California, earthquake. We have extended this work to the analysis of 4 other seismic events that have induced an increase in pore pressure at WLA. As the response of pore pressure is potentially a local phenomenon, we have restricted our analysis to recordings from the same site. These events include the M5.8 Ocotillo

  15. Seasonal and Inter-Annual Patterns in Ecosystem-Scale Photosynthesis and Respiration in a Temperate Forest Revealed by Isotopic Partitioning of NEE

    NASA Astrophysics Data System (ADS)

    Wehr, R. A.; Munger, J. W.; McManus, J. B.; Nelson, D. D.; Zahniser, M. S.; Wofsy, S. C.; Saleska, S. R.

    2014-12-01

    Measurements of the isotopic composition of the net ecosystem-atmosphere exchange of CO2 (NEE) can be used to partition that exchange into its photosynthetic and respiratory components on an hourly basis, without the need for a priori assumptions about the responses of those components to environmental drivers. This method relies on photosynthesis and respiration having distinct isotopic signatures, which they generally do because the photosynthetic signature varies hourly (e.g. with light availability), whereas the respiratory signature is governed mostly by soil substrate composition and so varies only daily or weekly. Since 2011, we have been measuring the isotopic composition of NEE in a temperate deciduous forest by eddy covariance, using a quantum cascade laser spectrometer. Previously presented isotopic partitioning of the 2011 growing season indicated that ecosystem photosynthesis became more efficient through the summer (with respect to light and water use) and that during the hot, dry period in July, daytime ecosystem respiration was more strongly limited by soil moisture than was nighttime respiration, leading standard non-isotopic partitioning to substantially overestimate daytime ecosystem respiration and hence photosynthesis. Here we extend our analysis to span the three-year period from 2011 through 2013, taking advantage of large inter-annual differences in the seasonal pattern of soil moisture at the forest to test the prediction that standard partitioning exaggerates daytime ecosystem respiration and photosynthesis under drought conditions, and to further explore the mechanisms behind the apparent increase in photosynthetic efficiency through the summer.

  16. The effects of Andrographis paniculata (Burm.f.) Nees extract and diterpenoids on the CYP450 isoforms' activities, a review of possible herb-drug interaction risks.

    PubMed

    Tan, Mei Lan; Lim, Lin Ee

    2015-01-01

    Andrographis paniculata (Burm.f.) Nees is a popular medicinal plant and its components are used in various traditional product preparations. However, its herb-drug interactions risks remain unclear. This review specifically discusses the various published studies carried out to evaluate the effects of Andrographis paniculata (Burm.f.) Nees plant extracts and diterpenoids on the CYP450 metabolic enzyme and if the plant components pose a possible herb-drug interaction risk. Unfortunately, the current data are insufficient to indicate if the extracts or diterpenoids can be labeled as in vitro CYP1A2, CYP2C9 or CYP3A4 inhibitors. A complete CYP inhibition assay utilizing human liver microsomes and the derivation of relevant parameters to predict herb-drug interaction risks may be necessary for these isoforms. However, based on the current studies, none of the extracts and diterpenoids exhibited CYP450 induction activity in human hepatocytes or human-derived cell lines. It is crucial that a well-defined experimental design is needed to make a meaningful herb-drug interaction prediction.

  17. Long-term impacts of peatland restoration on the net ecosystem exchange (NEE) of blanket bogs in Northern Scotland.

    NASA Astrophysics Data System (ADS)

    Hambley, Graham; Hill, Timothy; Saunders, Matthew; Arn Teh, Yit

    2016-04-01

    Unmanaged peatlands represent an important long-term C sink and thus play an important part of the global C cycle. Despite covering only 12 % of the UK land area, peatlands are estimated to store approximately 20 times more carbon than the UK's forests, which cover 13% of the land area. The Flow Country of Northern Scotland is the largest area of contiguous blanket bog in the UK, and one of the biggest in Europe, covering an area in excess of 4000 km2 and plays a key role in mediating regional atmospheric exchanges of greenhouse gases (GHGs) such as carbon dioxide (CO2), and water vapour (H2O). However, these peatlands underwent significant afforestation in the 1980s, when over 670 km2 of blanket bog were drained and planted with Sitka spruce (Picea sitchensis) and Lodgepole pine (Pinus contorta). This resulted in modifications to hydrology, micro-topography, vegetation and soil properties all of which are known to influence the production, emission and sequestration of key GHGs. Since the late 1990s restoration work has been carried out to remove forest plantations and raise water tables, by drain blocking, to encourage the recolonisation of Sphagnum species and restore ecosystem functioning. Here, we report findings of NEE and its constituent fluxes, GPP and Reco, from a study investigating the impacts of restoration on C dynamics over a chronosequence of restored peatlands. The research explored the role of environmental variables and microtopography in modulating land-atmosphere exchanges, using a multi-scale sampling approach that incorporated eddy covariance measurements with dynamic flux chambers. Key age classes sampled included an undrained peatland; an older restored peatland (17 years old); and a more recently restored site (12 years old). The oldest restored site showed the strongest uptake of C, with an annual assimilation rate of 858 g C m-2 yr-1 compared to assimilation rates of 501g C m-2 yr-1 and 575g C m-2 yr-1 from the younger restored site and

  18. Anti-Infective Metabolites of a Newly Isolated Bacillus thuringiensis KL1 Associated with Kalmegh (Andrographis paniculata Nees.), a Traditional Medicinal Herb

    PubMed Central

    Roy, Sudipta; Yasmin, Sahana; Ghosh, Subhadeep; Bhattacharya, Somesankar; Banerjee, Debdulal

    2016-01-01

    This study was conducted to isolate endophytic bacteria possessing anti-infective property from Kalmegh (Andrographis paniculata Nees.), a well-known medicinal plant. A total of 23 strains were isolated from this plant among which the strain KL1, isolated from surface-sterilized leaf of this medicinal herb, showed broad-spectrum antagonism against an array of Gram-positive and -negative bacterial pathogens. Ethyl acetate extract of KL1-fermented media yielded a greenish amorphous substance retaining anti-infective property. Solvent-extracted crude material was separated by thin-layer chromatography, and the active ingredient was located by autobiogram analysis. The purified anti-infective compound was found as anthracene derivative as analyzed by ultraviolet and Fourier transform infrared spectroscopy. The strain was identified as Bacillus thuringiensis KL1 from cultural, physiochemical, and molecular aspects. The above results indicate the pharmaceutical potential of the candidate isolate. PMID:26997870

  19. Does Casing Material Influence Downhole Accelerometer Recordings? a Controlled Study of Earthquake and Experimental Data Recorded at the NEES@UCSB Wildlife Liquefaction Array

    NASA Astrophysics Data System (ADS)

    Huthsing, D. A.; Seale, S. H.; Steidl, J. H.; Ratzesberger, H.; Hegarty, P.; Nees@Ucsb

    2010-12-01

    In 2004, NEES@UCSB outfitted the Wildlife Liquefaction Array (WLA) with new instrumentation and initiated an experiment to test whether casing material influences downhole recordings of strong ground motion. Two 5.5m boreholes were drilled meters apart. One of the boreholes was cased with traditional rigid PVC and the other with flexible Corex® drain pipe. Three-component strong-motion accelerometers were installed in both boreholes. Recently we have obtained a unique set of data at WLA that has allowed us to conduct a controlled study. On 15 June 2010, a Mw 5.7 event occurred near Ocotillo, CA, 57 km SW from WLA. A set of 60 aftershocks with M > 3.0 were recorded at WLA with good signal-to-noise ratio. These data are ideal for our study, as the events are approximately co-located relative to the site and they have similar focal mechanisms. We computed frequency spectra for the three components of motion for these events and we computed average spectral ratios between the data in the two boreholes. The spectral ratios are not flat ( = 1): certain frequencies within the range of engineering interest ( f < 20 Hz) recorded in the flexible borehole show amplification and damping relative to the recordings from the rigid borehole. An amplification factor of 1.4 is the maximum in this frequency range. In May 2010, NEES@UTexas visited WLA with the vibroseis truck T-Rex. We have performed spectral analysis of borehole recordings from 30 T-Rex pulses with frequencies ranging from 3 to 16 Hz. We present these spectral ratios for comparison with the ones computed from earthquake data.

  20. Dehydroandrographolide, an iNOS inhibitor, extracted from Andrographis paniculata (Burm.f.) Nees, induces autophagy in human oral cancer cells.

    PubMed

    Hsieh, Ming-Ju; Lin, Chiao-Wen; Chiou, Hui-Ling; Yang, Shun-Fa; Chen, Mu-Kuan

    2015-10-13

    Autophagy, which is constitutively executed at the basal level in all cells, promotes cellular homeostasis by regulating the turnover of organelles and proteins. Andrographolide and dehydroandrographolide (DA) are the two principle components of Andrographis paniculata (Burm.f.) Nees. and are the main contributors to its therapeutic properties. However, the pharmacological activities of dehydroandrographolide (DA) remain unclear. In this study, DA induces oral cancer cell death by activating autophagy. Treatment with autophagy inhibitors inhibited DA-induced human oral cancer cell death. In addition, DA increased LC3-II expression and reduced p53 expression in a time- and concentration-dependent manner. Furthermore, DA induced autophagy and decreased cell viability through modulation of p53 expression. DA-induced autophagy was triggered by an activation of JNK1/2 and an inhibition of Akt and p38. In conclusion, this study demonstrated that DA induced autophagy in human oral cancer cells by modulating p53 expression, activating JNK1/2, and inhibiting Akt and p38. Finally, an administration of DA effectively suppressed the tumor formation in the oral carcinoma xenograft model in vivo. This is the first study to reveal the novel function of DA in activating autophagy, suggesting that DA could serve as a new and potential chemopreventive agent for treating human oral cancer.

  1. Spectral Analysis of Pore Pressure Data Recorded from the 2010 Sierra EL Mayor (baja California) Earthquake at the NEES@UCSB Wildlife Field Site

    NASA Astrophysics Data System (ADS)

    Seale, S. H.; Lavallee, D.; Steidl, J. H.; Ratzesberger, H.; Hegarty, P.

    2010-12-01

    On 4 April 2010, the M7.2 Sierra el Mayor event occurred in Baja California, Mexico. The NEES@UCSB Wildlife field site in the Imperial Basin is located 110 km NNW of the hypocenter. The event was recorded on all channels: by three-component strong-motion accelerometers at the surface and in boreholes at various depths and by pore pressure transducers located in a saturated, liquefiable layer. We have computed the spectra of the pore pressure response in the frequency domain for signals recorded at different depths. At each depth, the spectrum is attenuated as a power law with a sharp discontinuity at a frequency close to 1 Hz. We report the value of the exponents that characterize the power-law behavior of these spectra. We also computed cross-spectral analysis of the pore pressure records from different depths. The functional behaviors of the curves of the cross-spectra are similar to that of the original spectra. For comparison, we present the spectrum of each component of the ground motion recorded at a nearby accelerometer. Partially due to the late arrival of the surface waves, the frequency content of the recorded pore pressure signal is a function of time. To gain a better understanding of the time-dependence of the frequency content, we performed spectral analysis of the signal in a moving window and wavelet transforms of the full signals. The spectral analysis suggests that, except for high frequencies, the curves exhibit a complex behavior as a function of the window position. We interpret and discuss the consequences of the estimated spectra, the cross-spectra, and the wavelet transforms.

  2. Ho-Nee-Um Trail.

    ERIC Educational Resources Information Center

    Irwin, Harriet; And Others

    Appreciation and concern for the preservation of our natural resources by all citizens is the primary concern of this teacher's guide for use in the elementary grades. It employes the use of a filmstrip in conjunction with a local nature trail, to guide students in developing awareness - by looking closely, listening, touching, and smelling. Major…

  3. Hybrid analysis (barcode-high resolution melting) for authentication of Thai herbal products, Andrographis paniculata (Burm.f.) Wall.ex Nees

    PubMed Central

    Osathanunkul, Maslin; Suwannapoom, Chatmongkon; Khamyong, Nuttaluck; Pintakum, Danupol; Lamphun, Santisuk Na; Triwitayakorn, Kanokporn; Osathanunkul, Kitisak; Madesis, Panagiotis

    2016-01-01

    Background: Andrographis paniculata Nees is a medicinal plant with multiple pharmacological properties. It has been used over many centuries as a household remedy. A. paniculata products sold on the markets are in processed forms so it is difficult to authenticate. Therefore buying the herbal products poses a high-risk of acquiring counterfeited, substituted and/or adulterated products. Due to these issues, a reliable method to authenticate products is needed. Materials and Methods: High resolution melting analysis coupled with DNA barcoding (Bar-HRM) was applied to detect adulteration in commercial herbal products. The rbcL barcode was selected to use in primers design for HRM analysis to produce standard melting profile of A. paniculata species. DNA of the tested commercial products was isolated and their melting profiles were then generated and compared with the standard A. paniculata. Results: The melting profiles of the rbcL amplicons of the three closely related herbal species (A. paniculata, Acanthus ebracteatus and Rhinacanthus nasutus) are clearly separated so that they can be distinguished by the developed method. The method was then used to authenticate commercial herbal products. HRM curves of all 10 samples tested are similar to A. paniculata which indicated that all tested products were contained the correct species as labeled. Conclusion: The method described in this study has been proved to be useful in aiding identification and/or authenticating A. paniculata. This Bar-HRM analysis has allowed us easily to determine the A. paniculata species in herbal products on the markets even they are in processed forms. SUMMARY We propose the use of DNA barcoding combined with High Resolution Melting analysis for authenticating of Andrographis paniculata products.The developed method can be used regardless of the type of the DNA template (fresh or dried tissue, leaf, and stem).rbcL region was chosen for the analysis and work well with our samplesWe can easily

  4. Application of centrifugal precipitation chromatography and high-speed counter-current chromatography equipped with a spiral tubing support rotor for the isolation and partial characterization of carotenoid cleavage-like enzymes in Enteromorpha compressa (L.) Nees.

    PubMed

    Baldermann, Susanne; Mulyadi, Andriati N; Yang, Ziyin; Murata, Ariaka; Fleischmann, Peter; Winterhalter, Peter; Knight, Martha; Finn, Thomas M; Watanabe, Naoharu

    2011-10-01

    Centrifugal precipitation chromatography and a high-speed counter-current chromatography system equipped with a spiral tubing support rotor (spHSCCC) were successfully applied for the identification and isolation of carotenoid cleavage-like enzymes from Enteromorpha compressa (L.) Nees. This is the first study separating active enzymes from a complex natural matrix by spHSCCC. The target enzymes were identified after fractionation of the proteins in an acetone Tris-buffer gradient by centrifugal precipitation chromatography. Also, an aqueous two-phase solvent system consisting of PEG 1000 and mono- and dibasic potassium phosphate was used for the isolation of the enzymes by spHSCCC. The purified fractions contained two proteins of 65 and 72 kDa, respectively. The enzymes could cleave β-carotene and β-apo-8'-carotenal to produce β-ionone.

  5. ED-XRF spectrometric analysis of comparative elemental composition of in vivo and in vitro roots of Andrographis paniculata (Burm.f.) Wall. ex Nees--a multi-medicinal herb.

    PubMed

    Behera, P R; Nayak, P; Barik, D P; Rautray, T R; Thirunavoukkarasu, M; Chand, P K

    2010-12-01

    The multi-elemental composition of in vitro--proliferated root tissues of Andrographis paniculata (Burm.f.) Wall. ex Nees was compared with that of the naturally grown in vivo plants. Trace elements namely Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr and Pb in addition to two macro-elements K and Ca were identified and quantified in root tissues of both sources using the energy dispersive X-ray fluorescence (ED-XRF) technique. ED-XRF analysis was performed using Mo K X-rays generated from a secondary molybdenum target. The elemental content of in vitro roots was found to be at par with that of naturally grown plants of the same species. This opens up a possibility of exploiting in vitro root cultures as a viable, alternative and renewable source of phytochemicals of relevance, besides providing a means for conservation of the valuable natural resources.

  6. Separation of five compounds from leaves of Andrographis paniculata (Burm. f.) Nees by off-line two-dimensional high-speed counter-current chromatography combined with gradient and recycling elution.

    PubMed

    Zhang, Li; Liu, Qi; Yu, Jingang; Zeng, Hualiang; Jiang, Shujing; Chen, Xiaoqing

    2015-05-01

    An off-line two-dimensional high-speed counter-current chromatography method combined with gradient and recycling elution mode was established to isolate terpenoids and flavones from the leaves of Andrographis paniculata (Burm. f.) Nees. By using the solvent systems composed of n-hexane/ethyl acetate/methanol/water with different volume ratios, five compounds including roseooside, 5,4'-dihydroxyflavonoid-7-O-β-d-pyranglucuronatebutylester, 7,8-dimethoxy-2'-hydroxy-5-O-β-d-glucopyranosyloxyflavon, 14-deoxyandrographiside, and andrographolide were successfully isolated. Purities of these isolated compounds were all over 95% as determined by high-performance liquid chromatography. Their structures were identified by UV, mass spectrometry, and (1) H NMR spectroscopy. It has been demonstrated that the combination of off-line two-dimensional high-speed counter-current chromatography with different elution modes is an efficient technique to isolate compounds from complex natural product extracts.

  7. Cucurbitacins from the Leaves of Citrullus colocynthis (L.) Schrad.

    PubMed

    Chawech, Rachid; Jarraya, Raoudha; Girardi, Cynthia; Vansteelandt, Marieke; Marti, Guillaume; Nasri, Imen; Racaud-Sultan, Claire; Fabre, Nicolas

    2015-09-30

    Two new tetracyclic cucurbitane-type triterpene glycosides were isolated from an ethyl acetate extract of Citrullus colocynthis leaves together with four known cucurbitacins. Their structures were established on the basis of their spectroscopic data (mainly NMR and mass spectrometry). Evaluation of the in vitro cytotoxic activity of the isolated compounds against two human colon cancer cell lines (HT29 and Caco-2) and one normal rat intestine epithelial cell line (IEC6), revealed that one of the isolated compounds presented interesting specific cytotoxic activity towards colorectal cell lines.

  8. A review on antidiabetic activity of Citrullus colocynthis Schrad.

    PubMed

    Shi, Chenghe; Karim, Sabiha; Wang, Chunyong; Zhao, Mingjing; Murtaza, Ghulam

    2014-01-01

    Current studies have elaborated diabetes mellitus as one of the most prevalent endocrine disorder throughout the world. Citrullus colocynthis (C. colocynthis) is one of the most common traditional plants used as remedy against diabetes mellitus. It is well recognized by its hypoglycemic effect, which is substantiated in current phytotherapy. Its undesired effects include the disturbance of gastrointestinal and urinary tracts. This review article encompasses various blood glucose lowering studies that have been carried out till date. Various parts of plants used in extract preparation were roots, fruits, seeds, rinds and leaves. The nature of these extracts was ethnolic, methanolic, or aqueous and their doses varied from 10 to 500 mg/kg body weight/day. All these published articles elaborate C. colocynthis as a potential antiglycemic medicinal plant.

  9. Double-blind, placebo-controlled, randomized, pilot clinical trial of ImmunoGuard--a standardized fixed combination of Andrographis paniculata Nees, with Eleutherococcus senticosus Maxim, Schizandra chinensis Bail. and Glycyrrhiza glabra L. extracts in patients with Familial Mediterranean Fever.

    PubMed

    Amaryan, G; Astvatsatryan, V; Gabrielyan, E; Panossian, A; Panosyan, V; Wikman, G

    2003-05-01

    Double blind, randomized, placebo controlled pilot study of ImmunoGuard--a standardized fixed combination of Andrographis paniculata Nees., Eleutherococcus senticosus Maxim., Schizandra chinensis Bail., and Glycyrrhiza glabra L. special extracts standardized for the content of Andrographolide (4 mg/tablet), Eleuteroside E, Schisandrins and Glycyrrhizin, was carried out in two parallel groups of patients. The study was conducted in 24 (3-15 years of both genders) patients with Familial Mediterranean Fever (FMF), 14 were treated with tablets of series A (verum) and 10 patients received series B product (placebo). The study medication was taken three times of four tablets daily for 1 month. Daily dose of the andrographolide--48 mg. The primary outcome measures in physician's evaluation were related to duration, frequency and severity of attacks in FMF patients (attacks characteristics score). The patient's self-evaluation was based mainly on symptoms--abdominal, chest pains, temperature, arthritis, myalgia, erysipelas-like erythema. All of 3 features (duration, frequency, severity of attacks) showed significant improvement in the verum group as compared with the placebo. In both clinical and self evaluation the severity of attacks was found to show the most significant improvement in the verum group. Both the clinical and laboratory results of the present phase II (pilot) clinical study suggest that ImmunoGuard is a safe and efficacious herbal drug for the management of patients with FMF.

  10. Fermi (nee GLAST) at Six Months

    NASA Technical Reports Server (NTRS)

    Ritz, Steve

    2009-01-01

    The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy range 20 MeV to >300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20% of the sky at any instant, and the entire sky on a timescale of a few hours. With its recent launch on 11 June 2008, Fermi now opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, the origin of cosmic rays and supernova remnants, and searches for hypothetical new phenomena such as supersymmetric dark matter annihilations. In addition to early results and the science opportunities, this talk includes a description of the instruments and the mission status and plans.

  11. Water uptake, priming, drying and storage effects in Cassia excelsa Schrad seeds.

    PubMed

    Jeller, H; Perez, S C; Raizer, J

    2003-02-01

    The aims of this study were to evaluate the effects of osmotic potential on the water uptake curve in Cassia excelsa seeds and use the results to analyze the effects of dehydration and storage on primed seed germination. Seeds were imbibed in distilled water and polyethylene glicol (PEG 6000) osmotic solutions at -0.2, -0.4, and -0.6 MPa, at 20 degrees C. The radicle emergence and seed moisture content were evaluated at 6-hour intervals during 240 hours. Afterwards, seeds were primed in distilled water and PEG 6000 solutions at -0.2, -0.4, and -0.6 MPa for 48, 72, 96, and 168 hours at 20 degrees C, followed by air drying and storage for 15 days at 5 degrees C. The lower the osmotic potential, the higher the time required for priming. The osmoconditioning yields benefits with PEG solutions at 0.0 and -0.2 MPa; seed improvements were maintained during storage for 15 days at 5 degrees C, but were reverted by seed drying.

  12. Antinociceptive and anti-inflammatory effects of aqueous extract of Chenopodium opulifolium schrad leaves

    PubMed Central

    Ajayi, Abayomi M.; Tanayen, Julius Khidzee; Magomere, Albert; Ezeonwumelu, Joseph O. C.

    2017-01-01

    Aim: Chenopodium opulifolium is a specie of the Chenopodiaceae commonly used as vegetables in local diet and for treating different ailment in Uganda. This study was conducted to evaluate the antioxidant, antinociceptive and anti-inflammatory effects of the aqueous extract of C. opulifolium leaves (AECO). Materials and Methods: The dried leaf of the plant was extracted by maceration in water. Qualitative and quantitative phytochemical analysis, antioxidants, and membrane stabilizing effects were determined in the extract. The extract was then investigated for acute toxicity, antinociceptive (writhing, hot plate and open field test), and anti-inflammatory (egg albumin-induced paw edema) effects in rodents. Results: Phytochemical analysis revealed the presence of alkaloids, tannins, phlobatannins, flavonoids, and saponins in AECO. Total caffeic acid derivatives and total flavonoids content were 91.7 mgCAE/g sample and 94.7 mgRE/g sample, respectively. AECO demonstrated antioxidant effects in both 1,1-diphenyl-2-picryl-hydrazyl and NO assays. Significant membrane stabilizing activity was observed in both the heat and hypotonic solution-induced lysis of erythrocytes. The acute toxicity test showed that AECO (5000 mg/kg) did not cause any significant change in behavior or death in rats. AECO (100-400 mg/kg) produced a significant antinociceptive effect in both the writhing and hot plate tests, but no significant reduction in the locomotory activity in mice. Furthermore, the extract significantly (P < 0.05) reduced egg albumin-induced rat paw edema by 44.2%, 44.5%, and 51.2%, respectively, after 120 min. Conclusion: The results showed that C. opulifolium extract possesses significant antioxidant, antinociceptive and anti-inflammatory effects, and these affirm the reasons for its folkloric use. PMID:28163955

  13. Effect of bioactive fractions of Citrullus vulgaris Schrad. leaf extract against Anopheles stephensi and Aedes aegypti.

    PubMed

    Mullai, K; Jebanesan, A; Pushpanathan, T

    2008-04-01

    The benzene extract of Citrullus vulgaris was tested against Anopheles stephensi and Aedes aegypti for the larvicidal activity and ovicidal properties. The crude benzene extract was found to be more effective against A. stephensi than A. aegypti. The LC50 values were 18.56 and 42.76 ppm respectively. The LC50 values for silica gel fractions (bioactive fractions I, II, III and IV) were 11.32, 14.12, 14.53 and 16.02 ppm respectively. The mean per cent hatchability of the egg rafts were observed after 48 h post treatment. The crude extract of benzene exerted 100% mortality at 250 ppm against A. stephensi and at 300 ppm against A. aegypti. The silica gel fractions I and II afforded 100% mortality at 100 ppm and III and IV exerted the hatchability rate of 4.9 and 5.3% at the same concentration against A. stephensi.

  14. Oil and fatty acid contents in seed of Citrullus lanatus Schrad.

    PubMed

    Jarret, Robert L; Levy, Irvin J

    2012-05-23

    Intact seed of 475 genebank accessions of Citrullus ( C. lanatus var. lanatus and C. lanatus var. citroides) were analyzed for percent oil content using TD-NMR. Extracts from whole seed of 96 accessions of C. lanatus (30 var. citroides, 33 var. lanatus, and 33 egusi), C. colocynthis (n = 3), C. ecirrhosus (n = 1), C. rehmii (n = 1), and Benincasa fistulosa (n = 3) were also analyzed for their fatty acids content. Among the materials analyzed, seed oil content varied from 14.8 to 43.5%. Mean seed oil content in egusi types of C. lanatus was significantly higher (mean = 35.6%) than that of either var. lanatus (mean = 23.2%) or var. citroides (mean = 22.6%). Egusi types of C. lanatus had a significantly lower hull/kernel ratio when compared to other C. lanatus var. lanatus or C. lanatus var. citroides. The principal fatty acid in all C. lanatus materials examined was linoleic acid (43.6-73%). High levels of linoleic acid were also present in the materials of C. colocynthis (71%), C. ecirrhosus (62.7%), C. rehmii (75.8%), and B. fistulosa (73.2%), which were included for comparative purposes. Most all samples contained traces (<0.5%) of arachidonic acid. The data presented provide novel information on the range in oil content and variability in the concentrations of individual fatty acids present in a diverse array of C. lanatus, and its related species, germplasm.

  15. High efficient somatic embryogenesis development from leaf cultures of Citrullus colocynthis (L.) Schrad for generating true type clones.

    PubMed

    Ramakrishna, D; Shasthree, T

    2016-04-01

    We report an efficient somatic embryogenesis and plant regeneration system using leaf cultures of Citrullus colocynthis (L.) and assessed the effect of plant growth regulators on the regeneration process. Initially leaf explants were cultured on Murashige and Skoog medium supplemented with different concentrations of auxins viz., 2,4-dichlorophenoxyacetic acid, 1-naphthaleneacetic acid, gibberellic acid alone and along with combination of 6-benzylaminopurine. The different forms of calli such as compact, white friable, creamy friable, brownish nodular, green globular and green calli were induced from the leaf explants on MS medium containing different concentrations of auxins and gibberellins. Subsequently initial callus was subcultured at 1.5 mg L(-1) BAP + 1.0 mg L(-1) 2,4-D which resulted in 25 % somatic embryos from 85 % nodular embryogenic nodular callus that is highest percentage. Similarly the lowest percentage of somatic embryos was recorded at 2.5 mg L(-1) BAP + 0.5 mg L(-1) NAA from 55 % embryogenic globular callus i.e., 16 %. High frequency of embryo development takes place at intermittent light when compared with continuous light in the individual subcultures. The cotyledonary embryos were developed into complete platelets on MS medium. In vitro regenerated plantlets were washed to remove the traces of agar and then transferred to sterile vermiculite and sand (2:1) containing pot.

  16. A Classical Genetic Solution to Enhance the Biosynthesis of Anticancer Phytochemicals in Andrographis paniculata Nees

    PubMed Central

    Talei, Daryush; Abdul Kadir, Mihdzar; Rafii, Mohd Yusop; Sagineedu, Sreenivasa Rao

    2014-01-01

    Andrographolides, the diterpene lactones, are major bioactive phytochemicals which could be found in different parts of the medicinal herb Andrographis paniculata. A number of such compounds namely andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG) have already attracted a great deal of attention due to their potential therapeutic effects in hard-to-treat diseases such as cancers and HIV. Recently, they have also been considered as substrates for the discovery of novel pharmaceutical compounds. Nevertheless, there is still a huge gap in knowledge on the genetic pattern of the biosynthesis of these bioactive compounds. Hence, the present study aimed to investigate the genetic mechanisms controlling the biosynthesis of these phytochemicals using a diallel analysis. The high performance liquid chromatography analysis of the three andrographolides in 210 F1 progenies confirmed that the biosynthesis of these andrographolides was considerably increased via intraspecific hybridization. The results revealed high, moderate and low heterosis for DDAG, AG and NAG, respectively. Furthermore, the preponderance of non-additive gene actions was affirmed in the enhancement of the three andrographolides contents. The consequence of this type of gene action was the occurrence of high broad-sense and low narrow-sense heritabilities for the above mentioned andrographolides. The prevalence of non-additive gene action suggests the suitability of heterosis breeding and hybrid seed production as a preferred option to produce new plant varieties with higher andrographolide contents using the wild accessions of A. paniculata. Moreover, from an evolutionary point of view, the occurrence of population bottlenecks in the Malaysian accessions of A. paniculata was unveiled by observing a low level of additive genetic variance (VA) for all the andrographolides. PMID:24586262

  17. [Principles and Methods for Formulating National Standards of "Regulations of Acupuncture-nee- dle Manipulating techniques"].

    PubMed

    Gang, Wei-juan; Wang, Xin; Wang, Fang; Dong, Guo-feng; Wu, Xiao-dong

    2015-08-01

    The national standard of "Regulations of Acupuncture-needle Manipulating Techniques" is one of the national Criteria of Acupuncturology for which a total of 22 items have been already established. In the process of formulation, a series of common and specific problems have been met. In the present paper, the authors expound these problems from 3 aspects, namely principles for formulation, methods for formulating criteria, and considerations about some problems. The formulating principles include selection and regulations of principles for technique classification and technique-related key factors. The main methods for formulating criteria are 1) taking the literature as the theoretical foundation, 2) taking the clinical practice as the supporting evidence, and 3) taking the expounded suggestions or conclusions through peer review.

  18. Piptochaetium fuscum (Nees ex Steud.) Barkworth, Ciald., & Gandhi, a new combination replacing Piptochaetium setosum (Trin.) Arechav.

    PubMed

    Barkworth, Mary E; Cialdella, Ana María; Gandhi, Kanchi

    2014-01-01

    A new name, Piptochaetium fuscum, is provided for a taxon hitherto known as Piptochaetium setosum (Trin.) Arechav. Morphological, anatomical, and molecular studies that argue against including Piptochaetium in Stipa, and hence use of S. purpurata (Phil.) Columbus & J.P. Sm., are cited.

  19. In vitro culture of immature embryos of Cinnamomum tamala Nees.--the role of different factors.

    PubMed

    Deb, Madhabi S; Jamir, N S; Deb, Chitta Ranjan

    2014-10-01

    Seed characteristics and in vitro culture of C. tamala embryos were studied. Embryos desiccated below 50% (fresh weight) exhibited poor morphogenetic response in vitro and confirmed the recalcitrant nature of seeds. The immature embryos of various developmental ages (4-16 week after flowering, WAF) were cultured on different strengths of MS medium. Morphogenesis responses were recorded after 10 days of culture. The best culture responses were achieved from the immature embryos of 12 WAF on MS medium with sucrose (3%, w/v), polyvinyl pyrollidone (100 mg L(-1)) and benzyl adenine (12 microM). Under optimum condition -60% explants responded; and -7.3 shoots buds developed per explants after 35 days of culture initiation. The shoot buds could be converted into micro-shoots on MS medium with sucrose (3%) and kinetin (3 microM). About 5.3 micro-shoots/shoot buds sprouted per sub-culture. The micro-shoots were rooted by maintaining them on MS medium with alpha-naphthalene acetic acid (3 microM) where within 6-8 wk of culture -8-10 roots developed. The rooted plantlets were acclimatized in vitro before they were transferred to community potting mix and maintained in the poly-shade ca 75% shading. The transplants registered -70% survival after two months of transfer.

  20. Intraspecific Crossability in Andrographis paniculata Nees: A Barrier against Breeding of the Species

    PubMed Central

    Valdiani, Alireza; Abdul Kadir, Mihdzar; Said Saad, Mohd; Talei, Daryush; Omidvar, Vahid; Hua, Chia Sok

    2012-01-01

    The ambiguity of crossability in Andrographis paniculata (AP) was pointed out in the present research. Accordingly, the effects of different style length and crossing time on intraspecific crossability of seven AP accessions in 21 possible combinations were investigated. The best results came out between 08:00 to 11:00 h for manual out-crossing of AP, while the time from 12:00 to 18:00 h showed a decreasing trend. Moreover, 12 mm style length was found as the most proper phenological stage in terms of stigmatic receptivity to perform out-crossing in this plant. All in all, AP behaved unlikely in each combination, and a significant difference was observed in crossability of AP accessions (P < 0.01). The lowest and highest crossability rate was found in hybrids 21 (11261NS × 11344K) and 27 (11322PA × 11350T) with 0.25% and 13.33%, respectively. Furthermore, a significant negative relationship between style length and crossibility (r2 = 0.762∗∗) was recorded in this research. As a final conclusion, crossing time and proper style length can improve the intraspecific crossability in the species, considerably. Despite all the mentioned contrivances, we still believe that a genetic incongruity should be involved as an additional obstacle in crossability of those combinations that failed or responded deficiently to outcrossing. PMID:22701352

  1. Transcriptome sequencing of a thalloid bryophyte; Dumortiera hirsuta (Sw) Nees: assembly, annotation, and marker discovery

    PubMed Central

    Singh, Harpal; Rai, Krishan Mohan; Upadhyay, Santosh Kumar; Pant, Poonam; Verma, Praveen Chandra; Singh, Ajit Pratap; Singh, Pradhyumna Kumar

    2015-01-01

    Bryophytes are the first land plants but are scarcely studied at the molecular level. Here, we report transcriptome sequencing and functional annotation of Dumortiera hirsuta, as a representative bryophyte. Approximately 0.5 million reads with ~195 Mb data were generated by sequencing of mRNA using 454 pyrosequencer. De novo assembly of reads yielded 85,240 unigenes (12,439 contigs and 72,801 singletons). BlastX search at NCBI-NR database showed similarity of 33,662 unigenes with 10-10 e-value. A total of 23,685 unigenes were annotated at TAIR10 protein database. The annotated unigenes were further classified using the Gene Ontology. Analysis at Kyoto Encyclopedia of Genes and Genomes pathway database identified 95 pathways with significant scores, among which metabolic and biosynthesis of secondary metabolite were the major ones. Phenylpropanoid pathway was elucidated and selected genes were characterized by real time qPCR. We identified 447 transcription factors belonging to 41 families and 1594 eSSRs in 1479 unigenes. D. hirsuta unigenes showed homology across the taxa from algae to angiosperm indicating their role as the connecting link between aquatic and terrestrial plants. This could be a valuable genomic resource for molecular and evolutionary studies. Further, it sheds light for the isolation and characterization of new genes with unique functions. PMID:26481431

  2. Amauroderma rugosum (Blume & T. Nees) Torrend: Nutritional Composition and Antioxidant and Potential Anti-Inflammatory Properties

    PubMed Central

    Chan, Pui-Mun; Kanagasabapathy, Gowri; Tan, Yee-Shin; Sabaratnam, Vikineswary; Kuppusamy, Umah Rani

    2013-01-01

    Amauroderma rugosum is a wild mushroom that is worn as a necklace by the indigenous communities in Malaysia to prevent fits and incessant crying by babies. The aim of this study was to investigate the nutritive composition and antioxidant potential and anti-inflammatory effects of A. rugosum extracts on LPS-stimulated RAW264.7 cells. Nutritional analysis of freeze-dried mycelia of A. rugosum (KUM 61131) from submerged culture indicated a predominant presence of carbohydrates, proteins, dietary fibre, phosphorus, potassium, and sodium. The ethanol crude extract (EE), its hexane (HF), ethyl acetate (EAF), and aqueous (AF) fractions of mycelia of A. rugosum grown in submerged culture were evaluated for antioxidant potential and anti-inflammatory effects. EAF exhibited the highest total phenolic content and the strongest antioxidant activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. HF showed dose-dependent inhibition of NO production in LPS-stimulated RAW264.7 cells and NO radical scavenging activity. Gas chromatographic analysis of HF revealed the presence of ethyl linoleate and ergosterol, compounds with known anti-inflammatory properties. In conclusion, the nutritive compositions and significant antioxidant potential and anti-inflammatory effects of mycelia extracts of A. rugosum have the potential to serve as a therapeutic agent or adjuvant in the management of inflammatory disorders. PMID:24371454

  3. Transcriptome sequencing of a thalloid bryophyte; Dumortiera hirsuta (Sw) Nees: assembly, annotation, and marker discovery.

    PubMed

    Singh, Harpal; Rai, Krishan Mohan; Upadhyay, Santosh Kumar; Pant, Poonam; Verma, Praveen Chandra; Singh, Ajit Pratap; Singh, Pradhyumna Kumar

    2015-10-20

    Bryophytes are the first land plants but are scarcely studied at the molecular level. Here, we report transcriptome sequencing and functional annotation of Dumortiera hirsuta, as a representative bryophyte. Approximately 0.5 million reads with ~195 Mb data were generated by sequencing of mRNA using 454 pyrosequencer. De novo assembly of reads yielded 85,240 unigenes (12,439 contigs and 72,801 singletons). BlastX search at NCBI-NR database showed similarity of 33,662 unigenes with 10-(10) e-value. A total of 23,685 unigenes were annotated at TAIR10 protein database. The annotated unigenes were further classified using the Gene Ontology. Analysis at Kyoto Encyclopedia of Genes and Genomes pathway database identified 95 pathways with significant scores, among which metabolic and biosynthesis of secondary metabolite were the major ones. Phenylpropanoid pathway was elucidated and selected genes were characterized by real time qPCR. We identified 447 transcription factors belonging to 41 families and 1594 eSSRs in 1479 unigenes. D. hirsuta unigenes showed homology across the taxa from algae to angiosperm indicating their role as the connecting link between aquatic and terrestrial plants. This could be a valuable genomic resource for molecular and evolutionary studies. Further, it sheds light for the isolation and characterization of new genes with unique functions.

  4. Phytostabilisation potential of lemon grass (Cymbopogon flexuosus (Nees ex Stend) Wats) on iron ore tailings.

    PubMed

    Mohanty, M; Dhal, N K; Patra, P; Das, B; Reddy, P S R

    2012-01-01

    The present pot culture study was carried out for the potential phytostabilisation of iron ore tailings using lemon grass (Cymbopogon flexuosus) a drought tolerant, perennial, aromatic grass. Experiments have been conducted by varying the composition of garden soil (control) with iron ore tailings. The various parameters, viz. growth of plants, number of tillers, biomass and oil content of lemon grass are evaluated. The studies have indicated that growth parameters of lemon grass in 1:1 composition of garden soil and iron ore tailings are significantly more (-5% increase) compared to plants grown in control soil. However, the oil content of lemon grass in both the cases more or less remained same. The results also infer that at higher proportion of tailings the yield of biomass decreases. The studies indicate that lemongrass with its fibrous root system is proved to be an efficient soil binder by preventing soil erosion.

  5. Amauroderma rugosum (Blume & T. Nees) Torrend: Nutritional Composition and Antioxidant and Potential Anti-Inflammatory Properties.

    PubMed

    Chan, Pui-Mun; Kanagasabapathy, Gowri; Tan, Yee-Shin; Sabaratnam, Vikineswary; Kuppusamy, Umah Rani

    2013-01-01

    Amauroderma rugosum is a wild mushroom that is worn as a necklace by the indigenous communities in Malaysia to prevent fits and incessant crying by babies. The aim of this study was to investigate the nutritive composition and antioxidant potential and anti-inflammatory effects of A. rugosum extracts on LPS-stimulated RAW264.7 cells. Nutritional analysis of freeze-dried mycelia of A. rugosum (KUM 61131) from submerged culture indicated a predominant presence of carbohydrates, proteins, dietary fibre, phosphorus, potassium, and sodium. The ethanol crude extract (EE), its hexane (HF), ethyl acetate (EAF), and aqueous (AF) fractions of mycelia of A. rugosum grown in submerged culture were evaluated for antioxidant potential and anti-inflammatory effects. EAF exhibited the highest total phenolic content and the strongest antioxidant activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. HF showed dose-dependent inhibition of NO production in LPS-stimulated RAW264.7 cells and NO radical scavenging activity. Gas chromatographic analysis of HF revealed the presence of ethyl linoleate and ergosterol, compounds with known anti-inflammatory properties. In conclusion, the nutritive compositions and significant antioxidant potential and anti-inflammatory effects of mycelia extracts of A. rugosum have the potential to serve as a therapeutic agent or adjuvant in the management of inflammatory disorders.

  6. Analysis of the anticancer phytochemicals in Andrographis paniculata Nees. under salinity stress.

    PubMed

    Talei, Daryush; Valdiani, Alireza; Maziah, Mahmood; Sagineedu, Sreenivasa Rao; Saad, Mohd Said

    2013-01-01

    Salinity causes the adverse effects in all physiological processes of plants. The present study aimed to investigate the potential of salt stress to enhance the accumulation of the anticancer phytochemicals in Andrographis paniculata accessions. For this purpose, 70-day-old plants were grown in different salinity levels (0.18, 4, 8, 12, and 16 dSm(-1)) on sand medium. After inducing a period of 30-day salinity stress and before flowering, all plants were harvested and the data on morphological traits, proline content and the three anticancer phytochemicals, including andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG), were measured. The results indicated that salinity had a significant effect on the aforementioned three anticancer phytochemicals. In addition, the salt tolerance index (STI) was significantly decreased, while, except for DDAG, the content of proline, the AG, and NAG was significantly increased (P ≤ 0.01). Furthermore, it was revealed that significant differences among accessions could happen based on the total dry weight, STI, AG, and NAG. Finally, we noticed that the salinity at 12 dSm(-1) led to the maximum increase in the quantities of AG, NAG, and DDAG. In other words, under salinity stress, the tolerant accessions were capable of accumulating the higher amounts of proline, AG, and NAG than the sensitive accessions.

  7. Andrographis paniculata (Burm. f.) Wall. ex Nees: a review of ethnobotany, phytochemistry, and pharmacology.

    PubMed

    Hossain, Md Sanower; Urbi, Zannat; Sule, Abubakar; Hafizur Rahman, K M

    2014-01-01

    As aboriginal sources of medications, medicinal plants are used from the ancient times. Andrographis paniculata is one of the highly used potential medicinal plants in the world. This plant is traditionally used for the treatment of common cold, diarrhoea, fever due to several infective cause, jaundice, as a health tonic for the liver and cardiovascular health, and as an antioxidant. It is also used to improve sexual dysfunctions and serve as a contraceptive. All parts of this plant are used to extract the active phytochemicals, but the compositions of phytoconstituents widely differ from one part to another and with place, season, and time of harvest. Our extensive data mining of the phytoconstituents revealed more than 55 ent-labdane diterpenoids, 30 flavonoids, 8 quinic acids, 4 xanthones, and 5 rare noriridoids. In this review, we selected only those compounds that pharmacology has already reported. Finally we focused on around 46 compounds for further discussion. We also discussed ethnobotany of this plant briefly. Recommendations addressing extraction process, tissue culture, and adventitious rooting techniques and propagation under abiotic stress conditions for improvement of phytoconstituents are discussed concisely in this paper. Further study areas on pharmacology are also proposed where needed.

  8. A classical genetic solution to enhance the biosynthesis of anticancer phytochemicals in Andrographis paniculata Nees.

    PubMed

    Valdiani, Alireza; Talei, Daryush; Tan, Soon Guan; Abdul Kadir, Mihdzar; Maziah, Mahmood; Rafii, Mohd Yusop; Sagineedu, Sreenivasa Rao

    2014-01-01

    Andrographolides, the diterpene lactones, are major bioactive phytochemicals which could be found in different parts of the medicinal herb Andrographis paniculata. A number of such compounds namely andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG) have already attracted a great deal of attention due to their potential therapeutic effects in hard-to-treat diseases such as cancers and HIV. Recently, they have also been considered as substrates for the discovery of novel pharmaceutical compounds. Nevertheless, there is still a huge gap in knowledge on the genetic pattern of the biosynthesis of these bioactive compounds. Hence, the present study aimed to investigate the genetic mechanisms controlling the biosynthesis of these phytochemicals using a diallel analysis. The high performance liquid chromatography analysis of the three andrographolides in 210 F1 progenies confirmed that the biosynthesis of these andrographolides was considerably increased via intraspecific hybridization. The results revealed high, moderate and low heterosis for DDAG, AG and NAG, respectively. Furthermore, the preponderance of non-additive gene actions was affirmed in the enhancement of the three andrographolides contents. The consequence of this type of gene action was the occurrence of high broad-sense and low narrow-sense heritabilities for the above mentioned andrographolides. The prevalence of non-additive gene action suggests the suitability of heterosis breeding and hybrid seed production as a preferred option to produce new plant varieties with higher andrographolide contents using the wild accessions of A. paniculata. Moreover, from an evolutionary point of view, the occurrence of population bottlenecks in the Malaysian accessions of A. paniculata was unveiled by observing a low level of additive genetic variance (VA ) for all the andrographolides.

  9. Andrographis paniculata (Burm. f.) Wall. ex Nees: A Review of Ethnobotany, Phytochemistry, and Pharmacology

    PubMed Central

    Sule, Abubakar; Rahman, K. M. Hafizur

    2014-01-01

    As aboriginal sources of medications, medicinal plants are used from the ancient times. Andrographis paniculata is one of the highly used potential medicinal plants in the world. This plant is traditionally used for the treatment of common cold, diarrhoea, fever due to several infective cause, jaundice, as a health tonic for the liver and cardiovascular health, and as an antioxidant. It is also used to improve sexual dysfunctions and serve as a contraceptive. All parts of this plant are used to extract the active phytochemicals, but the compositions of phytoconstituents widely differ from one part to another and with place, season, and time of harvest. Our extensive data mining of the phytoconstituents revealed more than 55 ent-labdane diterpenoids, 30 flavonoids, 8 quinic acids, 4 xanthones, and 5 rare noriridoids. In this review, we selected only those compounds that pharmacology has already reported. Finally we focused on around 46 compounds for further discussion. We also discussed ethnobotany of this plant briefly. Recommendations addressing extraction process, tissue culture, and adventitious rooting techniques and propagation under abiotic stress conditions for improvement of phytoconstituents are discussed concisely in this paper. Further study areas on pharmacology are also proposed where needed. PMID:25950015

  10. Revegetation on a coal fine ash disposal site in South Africa

    SciTech Connect

    Van Rensburg, L.; De Sousa Correia, R.I.; Booysen, J.; Ginster, M.

    1998-11-01

    Eight medium amendments were conducted on top of a fine ash coal dump (i) to evaluate a few cost-effective treatments that could determine the minimum fertility status required for the local ash to support the establishment of a viable vegetation cover, and (ii) to select suitable grass species that would establish on the ash and could serve as a foundation for long-term rehabilitation. Degree and success of grass establishment per medium amelioration treatment is expressed in terms of total biomass, percentage basal cover, and in terms of a condition assessment model. Both the chemical and physical nature of the ash medium before and after amendment was characterized, as were the concentrations of some essential and potentially toxic elements in leaf samples. In terms of medium amelioration 5000 kg ha{sup {minus}1} compost, or 500 kg ha{sup {minus}1} kraal manure or 480 kg 2:3:2 ha{sup {minus}1} proved to be most effective. The grass species that occurred with the highest frequency, irrespective of treatment, were the perennials bermudagrass [Cynodon dactylon (L.) pers. var dactylon], weeping lovegrass [Eragrostis curvula (Schrader) Nees], and the annual teff [Eragrostis tef (Zuccagni) Trotter]. Of the potentially toxic extractable metals monitored in the leaves of vegetation on the dump, only Se accumulated to an average level of 4.4 mg kg{sup {minus}1} that could be toxic to livestock.

  11. Na-22, Ne-E, extinct radioactive anomalies and unsupported Ar-40. [in cooling ejecta of explosive nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1975-01-01

    The possibility that the origin of extinct radioactivities depended on their living long enough for grains to form in the expanding nucleosynthetic envelope, rather than on their living long enough for meteorites to form, is examined. As an example, the interpretation of Na-22 as a detectable extinct radioactivity, with a half life of only 2.6 years, is explored and related to Ne-22 occurrence. Similar arguments involving He-4, Ar-40, K-40, K-41, and calcium, titanium, chromium, manganese, iron, nickel, and cobalt isotopes are briefly presented.

  12. Reproductive biology of Syzygiella rubricaulis (Nees) Steph. (Adelanthaceae, Marchantiophyta), a liverwort disjunctly distributed in high-altitude Neotropical mountains.

    PubMed

    Maciel-Silva, A S; Gaspar, E P; da Conceição, F P; Dias Dos Santos, N; Pinheiro da Costa, D

    2016-07-01

    Syzygiella rubricaulis is a dioecious leafy liverwort disjunctly distributed and restricted to high-altitude mountains in the Neotropics and the Azores. This study is part of a larger project examining the phylogeography of S. rubricaulis in the Neotropics, and our main goals were to understand its reproductive biology, where sex expression occurs, if vegetative propagules are frequently found, how the sexes are distributed in populations, how frequently sporophytes are formed and what environmental conditions influence sexual expression. S. rubricaulis patches are mostly female, but all patches also contain non sex-expressing shoots. Out of 42 patches examined, 29 (69%) were sex-expressing: 25 were unisexual (21 female and four male) and four of mixed sex (two male-biased and two unbiased). At shoot level, out of 4200 shoots 18% were female and 7% male; among sex-expressing shoots, 73% were female, representing a sex ratio of 0.8 (female-biased). We encountered a total of 33 sporophytes in six patches (in Brazil, Venezuela and Ecuador). Leaf regenerants were found in one patch in Mexico. Low rates of sporophytes were likely related to low frequencies of male shoots and large distances between the sexes. As 25% of S. rubricaulis shoots expressed sex (occasionally producing sporophytes), we suggest that short-distance (and rarely long-distance) spore dispersal events occur in mountainous areas on a short-term basis. On a long-term basis, however, these events likely contribute to dynamic exchanges among populations in the Neotropics.

  13. Anxiolytic, antidepressant, and antistress activities of the aqueous extract of Cinnamomum tamala Nees and Eberm in rats

    PubMed Central

    Upadhyay, Gayaprasad; Khoshla, Sarvesh; Kosuru, Ramoji; Singh, Sanjay

    2016-01-01

    Objective: The current study was designed to explore anxiolytic, antidepressant, and antistress actions of Cinnamomum tamala (CT) leaves (aqueous extract) in rats. Materials and Methods: Behavioral procedures of anxiety, depression, and stress were assessed in rats. CT (100, 200, and 400 mg/kg) was given once a daily for 7 days via oral route and the efficacy was matched by those elicited by lorazepam (1 mg/kg, p.o.), imipramine (10 mg/kg, p.o.), and Withania somnifera (100 mg/kg, p.o.) for anxiolytic, antidepressant, and antistress studies, respectively. Standard drugs were given 1 time, 30 min preceding the behavioral trials. Results: One-way analysis of variance followed by Newman–Keuls multiple comparison test was employed to analyze the results. P < 0.05 was considered statistically significant as compared to control. CT at 400 mg/kg produced an antianxiety effect equivalent to lorazepam, in the elevated plus maze, open field, and social interaction tests among selected doses of the CT. CT at 400 mg/kg also induced an antidepressant activity similar to imipramine, in the behavioral despair, learned helplessness test, and tail suspension among selected doses of the CT. Moreover, CT at 400 mg/kg produced a significant antistress effect comparable to W. somnifera in water immersion-restraint stress by decreasing ulcer index, adrenal gland weight, and by normalizing the plasma levels of corticosterone, glucose, cholesterol, and triglyceride levels when related to stress control. Conclusion: The study shows that among the different CT doses, CT at 400 mg/kg possesses significant anxiolytic, antidepressant, and anti-stress effects and has therapeutic beneficial for the management of psychological ailments. PMID:27721543

  14. An efficient in vitro regeneration protocol for a natural dye yielding plant, Strobilanthes flaccidifolious Nees., from nodal explants.

    PubMed

    Deb, Chitta Ranjan; Arenmongla, T

    2012-11-01

    Adventitious shoot buds formation from axillary buds of nodal segments of S. flaccidifolious was achieved on MS medium containing sucrose (3%, w/v), and a-naphthalene acetic acid (NAA; 3 microM) and benzyl adenine (3 microM) in combination. The nodal segments were primed on 'Growtak Sieve' for 48 h on MS medium containing sucrose (2%), polyvinyl pyrollidone (200 mgL(-1)) as antioxidant. About 80% of primed nodal segments responded positively and formed approximately 12 adventitious shoot buds per explants from explants collected during October-November months of every year. The shoot buds converted into plantlets on MS medium containing sucrose (3%) and kinetin (3 microM) where approximately 7 micro shoots developed per subculture after 8 weeks of culture. The regenerated micro shoots induced average 14 roots/plant on medium containing NAA (3 microM). The regenerates were hardened for 6-7 weeks on medium with 1/2MS salt solution and sucrose (2%) under normal laboratory condition before transferring to potting mix. About 70% transplants survived after two months of transfer.

  15. In vitro flowering--a system for tracking floral organ development in Dendrocalamus hamiltonii Nees et Arn. ex Munro.

    PubMed

    Kaur, Devinder; Thapa, Pooja; Sharma, Madhu; Bhattacharya, Amita; Sood, Anil

    2014-08-01

    Dendrocalamus hamiltonii plants are slender and tall (15-25 m) thereby, rendering tagging, sampling and tracking the development of flowers difficult. Therefore, a reproducible system of in vitro flowering was established for tracking the stages of flower development. MS medium supplemented with 2.22 microM 6-benzylaminopurine, 1.23 microM indole-3-butyric acid and 2% sucrose was optimized as the flower induction medium (FIM) wherein 28 and 42 days were required for the development of gynoecium and androecium, respectively. Six distinct stages of in vitro flower development were identified, and the flowers were comparable with that of in planta sporadic flowers. Pollen viability of the in vitro flowers was higher than those of in planta ones. The in vitro system developed in the present study facilitates easy tracking of different stages of flower development under controlled environmental conditions. It can also be used for medium- or long-term storage of pollens and manipulation of in vitro fertilization.

  16. Road systems, land use, and related patterns of valley oak (Quercus lobata Nee) populations, seedling recruitment, and herbivory

    NASA Astrophysics Data System (ADS)

    Kuhn, Bill Ahlering

    This research investigates the interactions of road systems and land use on the population dynamics and recruitment of a long-lived tree in Mediterranean climate California. In the case of Valley oak (Quercus lobata), habitat conversion and limited recruitment of new individuals has resulted in widespread declines throughout Santa Barbara County and California. This pattern contrasts with high recruitment rates along roadsides, offering a unique opportunity to examine the effects of roads on the population dynamics of a native species. The pattern of roadside recruits is described, mapped, and a complete survey of the biophysical environment along 109 kilometers of road was conducted. The biophysical factors of the road and road system were of four types: (1) the general roadside environment; (2) the acorn supply; (3) a measure of ungulate deterrence; and, (4) roadside management. Seven individual or aggregate factors were then related to the pattern of seedling and sapling densities along roads. Univariate analysis and regression trees determined that acorn supply and total woody cover within the roadside plots explained 49% of the variation in Valley oak seedling densities. These results support the conclusion that the recruitment pattern is due to the roadsides serving as refugia from browsers (cattle and deer). The change in Valley oak populations within roadsides, croplands, rangelands, and urban/suburban lands over a 59 year period is examined using georeferenced aerial photos from 1938 and 1997. While population per capita growth rates were less than one (declining) within both rangelands and croplands, rates were greater than one (increasing) in urban/suburban populations. While roadside growth rates were even higher than those in urban/suburban areas, high variance resulted in a rate neither positive nor negative. Finally, seedlings were planted along roadsides and within adjacent grazed and ungrazed uplands to test browsing pressure. Seedlings within roadsides experienced significantly less browsing than those within the adjacent lands, lending support to the theory that roadsides provide refugia from browsing for Valley oak. Results are important for a deeper understanding of the causes and consequences of human land use and for assisting in the management of Valley oak and others similarly affected.

  17. Endo- and ectomycorrhizas in Quercus agrifolia Nee. (Fagaceae): patterns of root colonization and effects on seedling growth.

    PubMed

    Egerton-Warburton, L; Allen, M F

    2001-12-01

    We documented the patterns of root occupancy by Glomalean and ectomycorrhizal (EM) fungi in Quercus agrifolia, and host plant responses to inoculation with each mycorrhizal type alone or in combination. Glomalean hyphae, coils and vesicles, and EM root tips were recorded. Colonization patterns conformed to a succession from Glomalean and EM fungi in 1-year-old seedlings to predominantly EM in saplings (>11 years old); both mycorrhizal types were rarely detected within the same root segment. Inoculation of Q. agrifolia seedlings with EM or Glomalean fungi (AM) alone or in combination (EM+AM) altered the cost:benefit relationship of mycorrhizas to the host plant. Seedling survival, plant biomass, foliar nitrogen (N), and phosphorus (P) status were greatest in EM- or AM-only inoculated seedlings. Seedlings inoculated with both mycorrhizal types (AM+EM) exhibited the lowest survival rates, biomass, foliar N, and P levels. Roots of these plants were highly colonized by both EM (38% root length colonized) and Glomalean fungi (34%). Because these levels of colonization were similar to those detected in 1-year-old field seedlings, the presence of both mycorrhizal types may be a carbon cost and, in turn, less beneficial to oaks during establishment in the field. However, the shift to EM colonization in older plants suggests that mycorrhizal effects may become positive with time.

  18. Efficacy of crude extracts of Andrographis paniculata nees. on Callosobruchus chinensis L. during post harvest storage of cowpea.

    PubMed

    Bright, A A; Babu, A; Ignacimuth, S; Dorn, S

    2001-07-01

    Bioefficacy of different solvent fractions of A. paniculata was tested against the cowpea weevil, C. chinensis in terms of its effect on adult mortality, total egg output and emergence of F1 adults. All the extracts were effective against the weevil, the efficacy was however more significant with respect to methanol and ethyl acetate extracts at the highest concentrations (1,000 ppm) which lead to 72.01 and 67.69% adult mortality respectively. The efficacy was dose dependent. Total egg and percent emergence of Fl adults were lowest for methanol followed by ethyl acetate fractions. Possible role of the principal chemical constituents of this plant in bringing about mortality of the pest, reduction in egg laying and adult emergence are discussed.

  19. An effective protein extraction method for two-dimensional electrophoresis in the anticancer herb Andrographis paniculata Nees.

    PubMed

    Talei, Daryush; Valdiani, Alireza; Puad, Mohd Abdullah

    2013-01-01

    Proteomic analysis of plants relies on high yields of pure protein. In plants, protein extraction and purification present a great challenge due to accumulation of a large amount of interfering substances, including polysaccharides, polyphenols, and secondary metabolites. Therefore, it is necessary to modify the extraction protocols. A study was conducted to compare four protein extraction and precipitation methods for proteomic analysis. The results showed significant differences in protein content among the four methods. The chloroform-trichloroacetic acid-acetone method using 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer provided the best results in terms of protein content, pellets, spot resolution, and intensity of unique spots detected. An overall of 83 qualitative or quantitative significant differential spots were found among the four methods. Based on the 2-DE gel map, the method is expected to benefit the development of high-level proteomic and biochemical studies of Andrographis paniculata, which may also be applied to other recalcitrant medicinal plant tissues.

  20. Proteomic analysis of the salt-responsive leaf and root proteins in the anticancer plant Andrographis paniculata Nees.

    PubMed

    Talei, Daryush; Valdiani, Alireza; Rafii, Mohd Yusop; Maziah, Mahmood

    2014-01-01

    Separation of proteins based on the physicochemical properties with different molecular weight and isoelectric points would be more accurate. In the current research, the 45-day-old seedlings were treated with 0 (control) and 12 dS m(-1) of sodium chloride in the hydroponic system. After 15 days of salt exposure, the total protein of the fresh leaves and roots was extracted and analyzed using two-dimensional electrophoresis system (2-DE). The analysis led to the detection of 32 induced proteins (19 proteins in leaf and 13 proteins in the root) as well as 12 upregulated proteins (four proteins in leaf and eight proteins in the root) in the salt-treated plants. Of the 44 detected proteins, 12 were sequenced, and three of them matched with superoxide dismutase, ascorbate peroxidase and ribulose-1, 5-bisphosphate oxygenase whereas the rest remained unknown. The three known proteins associate with plants response to environmental stresses and could represent the general stress proteins in the present study too. In addition, the proteomic feedback of different accessions of A. paniculata to salt stress can potentially be used to breed salt-tolerant varieties of the herb.

  1. Salt stress-induced protein pattern associated with photosynthetic parameters and andrographolide content in Andrographis paniculata Nees.

    PubMed

    Talei, Daryush; Valdiani, Alireza; Maziah, Mahmood; Sagineedu, Sreenivasa Rao; Abiri, Rambod

    2015-01-01

    Andrographis paniculata is a multifunctional medicinal plant and a potent source of bioactive compounds. Impact of environmental stresses such as salinity on protein diversification, as well as the consequent changes in the photosynthetic parameters and andrographolide content (AG) of the herb, has not yet been thoroughly investigated. The present study showed that the salinity affects the protein pattern, and subsequently, it decreased the photosynthetic parameters, protein content, total dry weight, and total crude extract. Exceptionally, the AG content was increased (p ≤ 0.01). Moreover, it was noticed that the salinity at 12 dS m(-1) led to the maximum increase in AG content in all accessions. Interestingly, the leaf protein analysis revealed that the two polymorphic protein bands as low- and medium-sized of 17 and 45 kDa acted as the activator agents for the photosynthetic parameters and AG content. Protein sequencing and proteomic analysis can be conducted based on the present findings in the future.

  2. Evaluation of anti-bacterial and anti-oxidant potential of andrographolide and echiodinin isolated from callus culture of Andrographis paniculata Nees

    PubMed Central

    Arifullah, Mohmmed; Namsa, Nima Dandu; Mandal, Manabendra; Chiruvella, Kishore Kumar; Vikrama, Paritala; Gopal, Ghanta Rama

    2013-01-01

    Objective To evaluate the anti-bacterial and anti-oxidant activity of andrographolide (AND) and echiodinin (ECH) of Andrographis paniculata. Methods In this study, an attempt has been made to demonstrate the anti-microbial and anti-oxidant activity of isolated AND and ECH by broth micro-dilution method and 2,2-diphenyl-2-picryl-hydrazyl (DPPH) assay, respectively. Structure elucidation was determined by electro-spray ionization-MSD, NMR (1H and 13C) and IR spectra. Results AND was effective against most of the strains tested including Mycobacterium smegmatis, showing broad spectrum of growth inhibition activity with Minimum inhibitory concentration values against Staphylococcus aureus (100 µg/mL), Streptococcus thermophilus (350 µg/mL) Bacillus subtilis (100 µg/mL), Escherichia coli (50 µg/mL), Mycobacterium smegmatis (200 µg/mL), Klebsiella pneumonia (100 µg/mL), and Pseudomonas aeruginosa (200 µg/mL). ECH showed specific anti-bacterial activity against Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa at a concentration higher than 225 µg/mL. Both AND and ECH were not effective against the two yeast strains, Candida albicans and Saccharomyces cerevisiae tested in this study. Conclusion This preliminary study showed promising anti-bacterial activity and moderate free radical scavenging activity of AND and ECH, and it may provide the scientific rationale for its popular folklore medicines. PMID:23905016

  3. Evaluation of in vitro antioxidant activity of Indian bay leaf, Cinnamomum tamala (Buch. -Ham.) T. Nees & Eberm using rat brain synaptosomes as model system.

    PubMed

    Devi, S Lakshmi; Kannappan, S; Anuradha, C V

    2007-09-01

    The study investigated the perturbation of oxidant-antioxidant balance in brain synaptosomes of diabetic rats and determined the antioxidant and free radical-scavenging property of the Indian bay leaf. Brain synaptosomes were isolated from control and streptozotocin-induced diabetic animals and oxidative stress parameters were assayed. A methanolic extract of bay leaf (BLE) was tested for the polyphenolic content and antioxidant activity by in vitro assays. A significant increase in the levels of lipids and lipid peroxidation products and a decline in antioxidant potential were observed in diabetic rat brain synaptosomes. The total polyphenolic content of BLE was found to be 6.7 mg gallic acid equivalents (GAE)/100g. BLE displayed scavenging activity against superoxide and hydroxyl radicals in a concentration-dependent manner. Further, BLE showed inhibition of Fe(2+)-ascorbate induced lipid peroxidation in both control and diabetic rat brain synaptosomes. Maximum inhibition of lipid peroxidation, radical scavenging action and reducing power of BLE were observed at a concentration of 220 microg GAE. These effects of BLE in vitro were comparable with that of butylated hydroxyl toluene (BHT), a synthetic antioxidant. It can be concluded that synaptosomes from diabetic rats are susceptible to oxidative damage and the positive effects of bay leaf in vitro, could be attributed to the presence of antioxidant phytochemicals.

  4. Involvement of monoaminergic system in the antidepressant-like effect of riparin I from Aniba riparia (Nees) Mez (Lauraceae) in mice.

    PubMed

    de Sousa, Francisca Cléa Florenço; Oliveira, Iris Cristina Maia; Silva, Maria Izabel Gomes; de Melo, Carla Thiciane Vasconcelos; Santiago, Vívian Romero; de Castro Chaves, Raquell; Fernandes, Mariana Lima; Gutierrez, Stanley Juan Chaves; Vasconcelos, Silvânia Maria Mendes; Macêdo, Danielle Silveira; Barbosa Filho, José Maria

    2014-02-01

    In past studies conducted by our group, riparin I (rip I) isolated from the green fruit of Aniba riparia presented antianxiety effects in mice, while its analogs rip II and III showed anxiolytic and antidepressant-like actions. This time around, we investigated a possible antidepressant activity of rip I using the forced swimming test (FST) and tail suspension test (TST) as predictive tests for antidepressant activity in rodents. In addition, the involvement of the monoaminergic system in this effect was also assessed. rip I was acutely administered by intraperitoneal (i.p.) and oral (p.o) routes to male mice at doses of 25 and 50 mg/kg. Results showed that rip I at both tested doses and administration routes produced a significant decrease in immobility time in FST and TST. The pretreatment of mice with prazosin (1 mg/kg, i.p., an α₁ -adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an α₂ -adrenoceptor antagonist), SCH23390 (15 μg/kg, i.p., a dopamine D1 receptor antagonist), sulpiride (50 mg/kg, i.p., a dopamine D2 receptor antagonist), p-chlorophenylalanine (100 mg/kg, an inhibitor of serotonin synthesis) or ritanserin (4 mg/kg, a serotonin 5-HT2(A)/2(C) receptor antagonist) blocked the anti-immobility effects elicited by rip I (50 mg/kg, p.o.) in the FST. Taken together, results indicate that rip I produces significant antidepressant-like activity in the FST and TST, and this effect seems to be dependent on its interaction with noradrenergic, dopaminergic and serotonergic systems.

  5. Larvicidal efficacy of Adhatoda vasica (L.) Nees against the bancroftian filariasis vector Culex quinquefasciatus Say and dengue vector Aedes aegypti L. in in vitro condition.

    PubMed

    Thanigaivel, Annamalai; Chandrasekaran, Rajamanickam; Revathi, Kannan; Nisha, Selvamathiazhagan; Sathish-Narayanan, Subbiah; Kirubakaran, Suyambulingam Arunachalam; Senthil-Nathan, Sengottayan

    2012-05-01

    The larvicidal activities of methanolic fractions from Adhatoda vasica leaf extracts were investigated against the bancroftian filariasis vector Culex quinquefasciatus and dengue vector Aedes aegypti. The results indicated that the mortality rates was high at 100, 150, 200 and 250 ppm of methanol extract of fractions III with R (f) value 0.67 and methanol extract of fraction V with R (f) value 0.64 of A. vasica against all the larval instars of C. quinquefasciatus and A. aegypti. The result of log probit analysis (at 95% confidence level) revealed that lethal concentration, LC(50) and LC(90) values were 106.13 and 180.6 ppm for fraction III, 110.6 and 170 ppm for fraction V of C. quinquefasciatus. And, the LC(50) and LC(90) values were 157.5 and 215.5 ppm for fraction III of A. aegypti and 120 and 243.5 ppm for the fraction V of A. aegypti, respectively. All the tested fractions proved to have strong larvicidal activity (doses from 100 to 250 ppm) against C. quinquefasciatus and A. aegypti. In general, second instar was more susceptible than the later instar. The results achieved suggest that, in addition to their ethnopharmacology value, A. vasica may also serve as a natural larvicidal agent.

  6. Validation of a method for the determination of sterols and triterpenes in the aerial part of Justicia anselliana (Nees) T. Anders by capillary gas chromatography.

    PubMed

    Kpoviéssi, Dossou Sika Salomé; Gbaguidi, Fernand; Gbénou, Joachim; Accrombessi, Georges; Moudachirou, Mansourou; Rozet, Eric; Hubert, Philippe; Quetin-Leclercq, Joëlle

    2008-12-01

    An accurate and sensitive method, combining soxhlet extraction, solid phase-extraction and capillary gas chromatography is described for the quantitative determination of one triterpene (lupeol) and three sterols (stigmasterol, campesterol and beta-sitosterol) and the detection of another triterpene (alpha-amyrin) from the aerial part of Justicia anselliana. This is the first method allowing the quantification of sterols and triterpenes in this plant. It has been fully validated in order to be able to compare the sterol and triterpene composition of different samples of J. anselliana and therefore help to explain the allelopathic activity due to these compounds. This method showed that the aerial part of J. anselliana contained (292+/-2)mg/kg of lupeol, (206+/-1)mg/kg of stigmasterol, (266+/-2)mg/kg of campesterol and (184+/-9)mg/kg of beta-sitosterol.

  7. Geranyl acetate esterase controls and regulates the level of geraniol in lemongrass (Cymbopogon flexuosus Nees ex Steud.) mutant cv. GRL-1 leaves.

    PubMed

    Ganjewala, Deepak; Luthra, Rajesh

    2009-01-01

    Essential oil isolated from lemongrass (Cymbopogon flexuosus) mutant cv. GRL-1 leaves is mainly composed of geraniol (G) and geranyl acetate (GA). The proportion of G and GA markedly fluctuates during leaf development. The proportions of GA and G in the essential oil recorded at day 10 after leaf emergence were approximately 59% and approximately 33% respectively. However, the level of GA went down from approximately 59 to approximately 3% whereas the level of G rose from approximately 33 to approximately 91% during the leaf growth period from day 10 to day 50. However, the decline in the level of GA was most pronounced in the early (day 10 to day 30) stage of leaf growth. The trend of changes in the proportion of GA and G has clearly indicated the role of an esterase that must be involved in the conversion of GA to G during leaf development. We isolated an esterase from leaves of different ages that converts GA into G and has been given the name geranyl acetate esterase (GAE). The GAE activity markedly varied during the leaf development cycle; it was closely correlated with the monoterpene (GA and G) composition throughout leaf development. GAE appeared as several isoenzymes but only three (GAE-I, GAE-II, and GAE-III) of them had significant GA cleaving activity. The GAE isoenzymes pattern was greatly influenced by the leaf developmental stages and so their GA cleaving activities. Like the GAE activity, GAE isoenzyme patterns were also found to be consistent with the monoterpene (GA and G) composition. GAE had an optimum pH at 8.5 and temperature at 30 degrees C. Besides GAE, a compound with phosphatase activity capable of hydrolyzing geranyl diphosphate (GPP) to produce geraniol has also been isolated.

  8. Improving Hatchery Effectiveness as Related to Smoltification: Proceedings of a Workshop held at Kah-Nee-Tah Lodge, Warm Springs, Oregon, May 20-23, 1985.

    SciTech Connect

    Bouck, Gerald R.

    1987-05-01

    The Bonneville Power Administration (BPA) intends to develop a smoltification research effort that would have broad support among the interested parties. BPA sponsored this workshop on smoltification and related research to gather leading technical experts in the field in smoltification, permit them to exchange information about the state of the art of smoltification research, and allow them to identify and rank high-priority projects. This document includes keynote speeches, technical papers, and other sessions that summarize both what is known and what information is needed.

  9. A Phenylurea Cytokinin, CPPU, Elevated Reducing Sugar and Correlated to Andrographolide Contents in Leaves of Andrographis paniculata (Burm. F.) Wall. Ex Nees.

    PubMed

    Worakan, Phapawee; Karaket, Netiya; Maneejantra, Nuchada; Supaibulwatana, Kanyaratt

    2017-02-01

    Cytokinins are phytohormones that play multiple roles to control plant growth and development. In this study, leaf biomass and the production of andrographolide compounds in a medicinal plant Andrographis paniculata were significantly increased after exogenously treating with the synthetic cytokinin cytokinin-1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU) at 0 (water), 5, or 10 mg L(-1) and observed the results for 24 h, 48 h, and 7 days of treatment. It was found that CPPU could significantly enhance new axillary bud formation and further promote branching 4.6-5.6-fold higher, resulting in higher fresh weight (FW) and dry weight (DW) than the control. Application of CPPU at 5 mg L(-1) significantly promoted the highest contents of total reducing sugar at 2.5-fold in leaves and at 1.5-fold in roots. Although treatments of CPPU significantly affected the increasing contents of chlorophyll and carotenoid (1.2-1.6-fold), CPPU at 10 mg L(-1) slightly caused leaf stress and chlorophyll reduction. Interestingly, 5 mg L(-1) CPPU could enhance andrographolide content, an active anti-infectious compound in Andrographis paniculata (2.2-fold higher than the control) that reached the highest content at 24 h after treatment. This study suggested that CPPU should be suitable for field application to promote leaf yields and induce the production of useful pharmaceutical compounds in Andrographis paniculata.

  10. Attenuation of Inflammatory Mediators (TNF-α and Nitric Oxide) and Up-Regulation of IL-10 by Wild and Domesticated Basidiocarps of Amauroderma rugosum (Blume & T. Nees) Torrend in LPS-Stimulated RAW264.7 Cells

    PubMed Central

    2015-01-01

    Amauroderma rugosum, commonly known as “Jiǎzī” in China, is a wild mushroom traditionally used by the Chinese to reduce inflammation, to treat diuretic and upset stomach, and to prevent cancer. It is also used by the indigenous communities in Malaysia to prevent epileptic episodes and incessant crying by babies. The aim of this study was to compare the wild and domesticated basidiocarps of A. rugosum for antioxidant and in vitro anti-inflammatory effects in LPS-stimulated RAW264.7 cells. The wild basidiocarps of A. rugosum were collected from the Belum Forest, Perak, Malaysia and the domesticated basidiocarps of A. rugosum were cultivated in the mushroom house located in the University of Malaya, Kuala Lumpur, Malaysia. Both the wild and domesticated basidiocarps were subjected to ethanolic extraction and the extracts were tested for antioxidant and anti-inflammatory activities. In this study, the crude ethanolic extract of wild (WB) and domesticated (DB) basidiocarps of A. rugosum had comparable total phenolic content and DPPH scavenging activity. However, WB (EC50 = 222.90 μg/mL) displayed a better ABTS cation radical scavenging activity than DB (EC50 = 469.60 μg/mL). Both WB and DB were able to scavenge nitric oxide (NO) radical and suppress the NO production in LPS-stimulated RAW264.7 cells and this effect was mediated through the down-regulation of inducible nitric oxide synthase (iNOS) gene. In addition, both WB and DB caused down-regulation of the inflammatory gene TNF-α and the up-regulation of the anti-inflammatory gene IL-10. There was no inhibitory effect of WB and DB on nuclear translocation of NF-κB p65. In conclusion, the wild and domesticated basidiocarps of A. rugosum possessed antioxidant and in vitro anti-inflammatory properties. WB and DB inhibited downstream inflammatory mediators (TNF-α and NO) and induced anti-inflammatory cytokine IL-10 production. No inhibitory effects shown on upstream nuclear translocation of NF-κB p65. WB and DB exhibited antioxidant activity and attenuation of proinflammatory mediators and therefore, A. rugosum may serve as a potential therapeutic agent in the management of inflammation. PMID:26427053

  11. FINAL REPORT: EDDY-COVARIANCE FLUX TOWER AND TRACER TECHNOLOGY SUPPORT FOR THE UNIVERSITY OF GEORGIA PROPOSAL: FROM TOWER TO PIXEL: INTEGRATION OF PATCH-SIZE NEE USING EXPERIMENTAL MODELING FOOTPRINT ANALYSIS.

    SciTech Connect

    LEWIN,K.F.; NAGY, J.; WATSON, T.B.

    2007-09-01

    Brookhaven National Laboratory has been funded since October of 2000 to provide assistance to the University of Georgia in conducting footprint analyses of individual towers based on meteorology and trace gas measurements. Brookhaven researchers conducted air flow measurements using perfluorocarbon tracers and meteorological instrumentation for three experimental campaigns at an AmeriFlux research site maintained by Dr. Monique Leclerc near Gainesville, FL. In addition, BNL provided assistance with remote data collection and distribution from remote field sites operated by Dr. John Hom of the US Forest Service in the Pine Barrens of New Jersey and at FACE research sites in North Carolina and Wisconsin.

  12. Recommended Species for Vegetative Stabilization of Training Lands in Arid and Semi-Arid Environments

    DTIC Science & Technology

    1985-09-01

    semibacata Awnless bush sunflower Helianthus sp. Bahia grass Paspalum notatum Barley Hordeum vulgare Basin wildrye Elymus cinereus Bearded wheatgrass...Boer lovegrass Eragrostis curvuLa *Brittlebush Encelia farinosa *Brome grasses Bromus spp. Buckwheat s Eriogonum spp. Buffalograss Buchloe dactyloides...mexicana *Millets Panicum spp. Mountain brome Bromus montanum Mountain mahogany Gercocarpus montanus *Mountain penstenion Penstemon montanus *Muhly grasses

  13. Plastic traits of an exotic grass contribute to its abundance but are not always favourable.

    PubMed

    Firn, Jennifer; Prober, Suzanne M; Buckley, Yvonne M

    2012-01-01

    In herbaceous ecosystems worldwide, biodiversity has been negatively impacted by changed grazing regimes and nutrient enrichment. Altered disturbance regimes are thought to favour invasive species that have a high phenotypic plasticity, although most studies measure plasticity under controlled conditions in the greenhouse and then assume plasticity is an advantage in the field. Here, we compare trait plasticity between three co-occurring, C(4) perennial grass species, an invader Eragrostis curvula, and natives Eragrostis sororia and Aristida personata to grazing and fertilizer in a three-year field trial. We measured abundances and several leaf traits known to correlate with strategies used by plants to fix carbon and acquire resources, i.e. specific leaf area (SLA), leaf dry matter content (LDMC), leaf nutrient concentrations (N, C:N, P), assimilation rates (Amax) and photosynthetic nitrogen use efficiency (PNUE). In the control treatment (grazed only), trait values for SLA, leaf C:N ratios, Amax and PNUE differed significantly between the three grass species. When trait values were compared across treatments, E. curvula showed higher trait plasticity than the native grasses, and this correlated with an increase in abundance across all but the grazed/fertilized treatment. The native grasses showed little trait plasticity in response to the treatments. Aristida personata decreased significantly in the treatments where E. curvula increased, and E. sororia abundance increased possibly due to increased rainfall and not in response to treatments or invader abundance. Overall, we found that plasticity did not favour an increase in abundance of E. curvula under the grazed/fertilized treatment likely because leaf nutrient contents increased and subsequently its' palatability to consumers. E. curvula also displayed a higher resource use efficiency than the native grasses. These findings suggest resource conditions and disturbance regimes can be manipulated to disadvantage

  14. Notes on Citrullius spp. and Acanthosicyos naudinianus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scanning electron and light microscopy were utilized to examine pollen of the currently recognized species (and forms) within the genus Citrullus (Cucurbitaceae). Materials examined included: C. lanatus (Thunb.) Matsum. & Nakai including the citron (C. amarus Schrad.) and egusi (C. lanatus subsp. mu...

  15. Genetic diversity in the desert watermelon Citrullus colocynthis and its relationship with Citrullus species as determined by high-frequency oligonucleotides-targeting active gene markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrullus colocynthis (L.) Schrad. is a viable source of genes for enhancing disease and pest resistance in the cultivated watermelon. However, there is little information in the literature about genetic diversity within C. colocynthis (CC) or the relationship of specific genotypes of CC to C. lanat...

  16. Genetic relationships in the desert watermelon citrullus colocynthis as viewed with high-frequency, oligonucleotide–targeting active gene (HFO–TAG) markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    U.S. Plant Introductions (PIs) of Citrullus colocynthis (L.) Schrad. are a viable source for enhancing disease and pest resistance in watermelon cultivars. However, there is information about their genetic diversity and relationships to watermelon cultivars. Genetic diversity and relationships were ...

  17. Observations on anatomical aspects of the fruit, leaf and stem tissues of four Citrullus spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Morphological characteristics of the fruit, stem and leaf tissues of four species of Citrullus (L.) Schrad. were examined using standard histological methods. Plant materials included the cultivated watermelon (C. lanatus (Thunb.) Matsum. & Nakai) and three of its related species; C. colocynthis (...

  18. Notes on Citrullus spp. And Acanthosicyos naudinianus-pollen morphology and interspecific hybridization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scanning electron and light microscopy were utilized to examine pollen of the currently recognized species (and forms) within the genus Citrullus (Cucurbitaceae). Materials examined included: C. lanatus (Thunb.) Matsum. & Nakai including the citron (C. amarus Schrad.) and egusi (C. mucosospermus (Fu...

  19. 'Snowstorm' a new forage kochia cultivar with improved stature, productivity, and nutritional content for enhanced fall and winter grazing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Snowstorm' forage kochia (Bassia prostrata [L.] A.J. Scott) (synonym=Kochia prostrata [L.] Schrad.) (Reg. No. CV-_____, PI _____) was released on March 22, 2012, by the USDA-ARS and the Utah Agricultural Experiment Station. Snowstorm was evaluated as OTVSEL and Otavny-select, and was developed as ...

  20. Contrasting microbial biogeographical patterns between anthropogenic subalpine grasslands and natural alpine grasslands.

    PubMed

    Geremia, Roberto A; Pușcaș, Mihai; Zinger, Lucie; Bonneville, Jean-Marc; Choler, Philippe

    2016-02-01

    The effect of plant species composition on soil microbial communities was studied at the multiregional level. We compared the soil microbial communities of alpine natural grasslands dominated by Carex curvula and anthropogenic subalpine pastures dominated by Nardus stricta. We conducted paired sampling across the Carpathians and the Alps and used Illumina sequencing to reveal the molecular diversity of soil microbes. We found that bacterial and fungal communities exhibited contrasting regional distributions and that the distribution in each grassland is well discriminated. Beta diversity of microbial communities was much higher in C. curvula grasslands due to a marked regional effect. The composition of grassland-type core microbiomes suggest that C. curvula, and N. stricta to a lesser extent, tend to select a cohort of microbes related to antibiosis/exclusion, pathogenesis and endophytism. We discuss these findings in light of the postglacial history of the studied grasslands, the habitat connectivity and the disturbance regimes. Human-induced disturbance in the subalpine belt of European mountains has led to homogeneous soil microbial communities at large biogeographical scales. Our results confirm the overarching role of the dominant grassland plant species in the distribution of microbial communities and highlight the relevance of biogeographical history.

  1. Biologically-Effective Rainfall Pulses in Mediterranean and Monsoonal Regions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In semiarid regions rainfall pulses provide intermittent opportunities for biological activity. These pulses have been shown to affect the activity of microbes and plant differently, altering the net ecosystem exchange of carbon dioxide (NEE) from these ecosystems. We examine NEE and its components ...

  2. Pan-Arctic modelling of net ecosystem exchange of CO2.

    PubMed

    Shaver, G R; Rastetter, E B; Salmon, V; Street, L E; van de Weg, M J; Rocha, A; van Wijk, M T; Williams, M

    2013-08-19

    Net ecosystem exchange (NEE) of C varies greatly among Arctic ecosystems. Here, we show that approximately 75 per cent of this variation can be accounted for in a single regression model that predicts NEE as a function of leaf area index (LAI), air temperature and photosynthetically active radiation (PAR). The model was developed in concert with a survey of the light response of NEE in Arctic and subarctic tundras in Alaska, Greenland, Svalbard and Sweden. Model parametrizations based on data collected in one part of the Arctic can be used to predict NEE in other parts of the Arctic with accuracy similar to that of predictions based on data collected in the same site where NEE is predicted. The principal requirement for the dataset is that it should contain a sufficiently wide range of measurements of NEE at both high and low values of LAI, air temperature and PAR, to properly constrain the estimates of model parameters. Canopy N content can also be substituted for leaf area in predicting NEE, with equal or greater accuracy, but substitution of soil temperature for air temperature does not improve predictions. Overall, the results suggest a remarkable convergence in regulation of NEE in diverse ecosystem types throughout the Arctic.

  3. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    SciTech Connect

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis; Ma, Siyan; Law, Beverly E.; Richardson, Andrew D; Chen, Jiquan; Oren, Ram

    2008-10-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board the National Aeronautics and Space Administration s (NASA) Terra satellite to scale up AmeriFlux NEE measurements to the continental scale.We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a modified regression tree approach. The predictive model was trained and validated using eddy flux NEE data over the periods 2000 2004 and 2005 2006, respectively. We found that the model predicted NEE well (r = 0.73, p < 0.001). We then applied the model to the continental scale and estimated NEE for each 1 km 1 km cell across the conterminous U.S. for each 8-day interval in 2005 using spatially explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE as determined from measurements and the literature. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets over large areas.

  4. Seasonal and interannual variations of carbon exchange over a rice-wheat rotation system on the North China Plain

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Li, Dan; Gao, Zhiqiu; Tang, Jianwu; Guo, Xiaofeng; Wang, Linlin; Wan, Bingcheng

    2015-10-01

    Rice-wheat (R-W) rotation systems are ubiquitous in South and East Asia, and play an important role in modulating the carbon cycle and climate. Long-term, continuous flux measurements help in better understanding the seasonal and interannual variation of the carbon budget over R-W rotation systems. In this study, measurements of CO2 fluxes and meteorological variables over an R-W rotation system on the North China Plain from 2007 to 2010 were analyzed. To analyze the abiotic factors regulating Net Ecosystem Exchange (NEE), NEE was partitioned into gross primary production (GPP) and ecosystem respiration. Nighttime NEE or ecosystem respiration was controlled primarily by soil temperature, while daytime NEE was mainly determined by photosythetically active radiation (PAR). The responses of nighttime NEE to soil temperature and daytime NEE to light were closely associated with crop development and photosynthetic activity, respectively. Moreover, the interannual variation in GPP and NEE mainly depended on precipitation and PAR. Overall, NEE was negative on the annual scale and the rotation system behaved as a carbon sink of 982 g C m-2 per year over the three years. The winter wheat field took up more CO2 than the rice paddy during the longer growing season, while the daily NEE for wheat and rice were -2.35 and -3.96 g C m-2, respectively. After the grain harvest was subtracted from the NEE, the winter wheat field became a moderately strong carbon sink of 251-334 g C m-2 per season, whereas the rice paddy switched to a weak carbon sink of 107-132 per season.

  5. Estimation of Net Ecosystem Carbon Exchange for the Conterminous UnitedStates by Combining MODIS and AmeriFlux Data

    SciTech Connect

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Law, Beverly E.; Richardson, Andrew D.; Chen, Jiquan; Oren, Ram; Starr, Gregory; Noormets, Asko; Ma, Siyan; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.; Bolstad, Paul V.; Burns, Sean P.; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Litvak, Marcy; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Scott, Russell L.; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.

    2009-03-06

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board NASA's Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a regression tree approach. The predictive model was trained and validated using NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE reasonably well at the site level. We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day period in 2005 using spatially-explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets for large areas.

  6. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    SciTech Connect

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Bolstad, Paul V.; Burns, Sean P.; Chen, Jiquan; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Law, Beverly E.; Litvak, Marcy; Ma, Siyan; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; Oren, Ram; Richardson, Andrew D.; Schmid, Hans Peter; Scott, Russell L.; Starr, Gregory; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.; Paw, Kyaw; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.

    2008-10-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board the National Aeronautics and Space Administration's (NASA) Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a modified regression tree approach. The predictive model was trained and validated using eddy flux NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE well (r = 0.73, p < 0.001). We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day interval in 2005 using spatially explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE as determined from measurements and the literature. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets over large areas.

  7. Direct and indirect effects of elevated atmospheric CO2 on net ecosystem production in a Chesapeake Bay tidal wetland.

    PubMed

    Erickson, John E; Peresta, Gary; Montovan, Kathryn J; Drake, Bert G

    2013-11-01

    The rapid increase in atmospheric CO2 concentrations (Ca ) has resulted in extensive research efforts to understand its impact on terrestrial ecosystems, especially carbon balance. Despite these efforts, there are relatively few data comparing net ecosystem exchange of CO2 between the atmosphere and the biosphere (NEE), under both ambient and elevated Ca . Here we report data on annual sums of CO2 (NEE(net) ) for 19 years on a Chesapeake Bay tidal wetland for Scirpus olneyi (C3 photosynthetic pathway)- and Spartina patens (C4 photosynthetic pathway)-dominated high marsh communities exposed to ambient and elevated Ca (ambient + 340 ppm). Our objectives were to (i) quantify effects of elevated Ca on seasonally integrated CO2 assimilation (NEE(net) = NEE(day) + NEE(night) , kg C m(-2) y(-1) ) for the two communities; and (ii) quantify effects of altered canopy N content on ecosystem photosynthesis and respiration. Across all years, NEE(net) averaged 1.9 kg m(-2) y(-1) in ambient Ca and 2.5 kg m(-2) y(-1) in elevated Ca , for the C3 -dominated community. Similarly, elevated Ca significantly (P < 0.01) increased carbon uptake in the C4 -dominated community, as NEE(net) averaged 1.5 kg m(-2) y(-1) in ambient Ca and 1.7 kg m(-2) y(-1) in elevated Ca . This resulted in an average CO2 stimulation of 32% and 13% of seasonally integrated NEE(net) for the C3 - and C4 -dominated communities, respectively. Increased NEE(day) was correlated with increased efficiencies of light and nitrogen use for net carbon assimilation under elevated Ca , while decreased NEE(night) was associated with lower canopy nitrogen content. These results suggest that rising Ca may increase carbon assimilation in both C3 - and C4 -dominated wetland communities. The challenge remains to identify the fate of the assimilated carbon.

  8. Elevated CO(2) and temperature alter net ecosystem C exchange in a young Douglas fir mesocosm experiment.

    PubMed

    Tingey, David T; Lee, E Henry; Phillips, Donald L; Rygiewicz, Paul T; Waschmann, Ronald S; Johnson, Mark G; Olszyk, David M

    2007-11-01

    We investigated the effects of elevated CO(2) (EC) [ambient CO(2) (AC) + 190 ppm] and elevated temperature (ET) [ambient temperature (AT) + 3.6 degrees C] on net ecosystem exchange (NEE) of seedling Douglas fir (Pseudotsuga menziesii) mesocosms. As the study utilized seedlings in reconstructed soil-litter-plant systems, we anticipated greater C losses through ecosystem respiration (R(e)) than gains through gross photosynthesis (GPP), i.e. negative NEE. We hypothesized that: (1) EC would increase GPP more than R(e), resulting in NEE being less negative; and (2) ET would increase R(e) more than GPP, resulting in NEE being more negative. We also evaluated effects of CO(2) and temperature on light inhibition of dark respiration. Consistent with our hypothesis, NEE was a smaller C source in EC, not because EC increased photosynthesis but rather because of decreased respiration resulting in less C loss. Consistent with our hypothesis, NEE was more negative in ET because R(e) increased more than GPP. The light level that inhibited respiration varied seasonally with little difference among CO(2) and temperature treatments. In contrast, the degree of light inhibition of respiration was greater in AC than EC. In our system, respiration was the primary control on NEE, as EC and ET caused greater changes in respiration than photosynthesis.

  9. Contemporary mire net ecosystem green-house gas balance: controls and susceptibility to change

    NASA Astrophysics Data System (ADS)

    Nilsson, Mats; Eriksson, Tobias; Grelle, Achim; Larsson, Anna; Laudon, Hjalmar; Lindroth, Anders; Ottosson-Löfvenius, Mikaell; Peichl, Matthias; Sagerfors, Jörgen; Ågren, Anneli; Öquist, Mats

    2015-04-01

    In this presentation I will address three main issues: 1 - What is the contemporary carbon sequestration function of high latitude mire ecosystems relative to Holocene average? 2 - The relative importance of the component carbon (C) fluxes for the annual mire Net Ecosystem Carbon Balance (NECB); 3 - The importance of gross primary production (GPP) versus ecosystem respiration (Reco) for the annual Net Ecosystem Exchange (NEE); The annual boreal mire NECB is made up principally by the biosphere-atmosphere exchange of CO2 (NEE) and CH4 and the runoff C-export. One important research issue is to further understand what controls the relative contribution from the component fluxes to the annual mire NECB. A second important major research issue is to reveal the relative importance of gross photosynthesis (GPP) and ecosystem respiration (Reco) respectively for the annual mire NEE. The relative importance of GPP and Reco respectively for the NECB also encounters the effect of changes in the lengths of the growing season and non-growing season respectively. In this presentation we use ten years of data on annual fluxes of NEE, methane and water discharge C export at a nutrient poor minerogenic boreal mire, Degerö Stormyr, in northern Sweden to address the above questions. Winter time NEE together with methane emission and water discharge C export reduces the growing season NEE with approximately 60%, thus substantially controlling the annual boreal mire NEE.

  10. Carbon dioxide fluxes of an urban tidal marsh in the Hudson-Raritan estuary

    NASA Astrophysics Data System (ADS)

    Schäfer, K. V. R.; Tripathee, R.; Artigas, F.; Morin, T. H.; Bohrer, G.

    2014-11-01

    Net ecosystem exchange (NEE) of tidal brackish wetlands in urban areas is largely unknown, albeit it is an important ecosystem service. High carbon dioxide (CO2) uptake of estuaries can potentially be achieved by creating conditions that foster CO2 uptake and sequestration. Thus, this study sought to assess NEE in a mesohaline tidal urban wetland that has been restored and determine the biophysical drivers of NEE in order to investigate uptake strength and drivers thereof. Beginning in 2009, NEE was measured using the eddy covariance technique in a restored urban estuarine wetland. Maximum NEE rates observed were -30 µmol m-2 s-1 under high light conditions in the summer. Monthly mean NEE showed this ecosystem to be a CO2 source in the winter, but a CO2 sink in summer. Conditional Granger causality showed the influence of net radiation on half daily to biweekly timescales on NEE and the influence of water level at half daily time scales. The overall productivity of this wetland is within the expected range of tidal brackish marshes and it was a sink for atmospheric CO2 in two out of the 3 years of this study and had a continued increase over the study period.

  11. Voltammetry of redox analytes at trace concentrations with nanoelectrode ensembles.

    PubMed

    Moretto, Ligia Maria; Pepe, Niki; Ugo, Paolo

    2004-04-19

    Gold nanoelectrodes ensembles (NEEs) have been prepared by electroless plating of Au nanoelectrode elements within the pores of a microporous polycarbonate template membrane. Cyclic voltammograms recorded in (ferrocenylmethyl) trimethylammonium hexafluorophosphate (FA(+) PF(6)(-)) solutions showed that these NEEs operate in the "total-overlap" response regime, giving well resolved peak shaped voltammograms. Experimental results show that the faradaic/background currents ratios at the NEE are independent on the total geometric area of the ensemble, so that NEE can be enlarged or miniaturized at pleasure without influencing the very favorable signal/noise ratio. Differential pulse voltammetry (DPV) at the NEE is optimized for direct determinations at trace levels. DPV at NEE allowed the determination (with no preconcentration) of trace amounts of FA(+), with a detection limit of 0.02muM. The use of NEE and DPV in cytochrome c (cyt c) solutions showed the possibility to observe the direct electrochemistry of submicromolar concentration of the protein, even without the need of adding any promoter or mediator.

  12. Relative linkages of climatic and environmental drivers/fluxes with net ecosystem exchanges of six diverse terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, O.; Ishtiaq, K. S.

    2013-12-01

    We analyzed ecosystem-scale, half-hourly net ecosystem exchange (NEE) data along with the environmental drivers and heat fluxes for six distinct ecosystems of the AmeriFlux network. Multivariate pattern recognition techniques such as Principal Component Analysis (PCA) and Factor Analysis (FA) were applied to investigate potential groupings in participatory variables and their relative linkages. Normalized multiple regression models were developed in order to extract the statistically significant predictors of NEE from the data matrix and compute their relative weights. Radiation components (net radiation and photosynthetically active radiation) along with the ecosystem water and energy fluxes (latent and soil heat fluxes) displayed dictating weights on NEE followed by temperature related variables (air temperature, soil temperature and vapor pressure deficit). Velocity factors (wind speed and friction velocity) were less explanatory in describing the half hourly fluxes of NEE. Developed linear models showed acceptable accuracy (ratio of root mean square error to observations' standard deviation, RSR: 0.48-0.68) and fitting efficiency (coefficient of determination, R2: 0.54-0.77) in explaining NEE. Overall, environmental drivers and fluxes showed relatively analogous association with NEE among the six separate ecoregions representing diversity in climate, hydrology, and vegetation types. The findings can guide the development of appropriate mechanistic and empirical models for spatio-temporally robust predictions of NEE and potential carbon sequestration from diverse terrestrial ecosystems.

  13. Regional scaling of soil moisture dynamics on the semiarid grasslands of Mexico through remotely sensed vegetation indices

    NASA Astrophysics Data System (ADS)

    Carrera-Hernandez, J. J.; Mata-Martinez, A.; Huber-Sannwald, E.; Arredondo, T.

    2014-12-01

    Soil moisture dynamics for both native (Bouteloa gracilis) and introduced (Eragrostis curvula) species within the semiarid grasslands in Mexico are analyzed. The semiarid grasslands of Mexico are part of the shortgrass steppe ecosystem, which extends from the North American midwest in the north to Llanos de Ojuelos in the south, where the study site is located. Soil moisture dynamics are measured on two homogeneous fields; one dominated by the native species (Bouteloa gracilis), and another with an introduced species (Eragrostis curvula) at three different depths with high temporal resolution along with standard climatological data. These data are related to measured Leaf Area Index (LAI) and spectra at 16 different wavelengths, both of which, in turn, are related to remotely sensed imagery through different vegetation indices (NDVI, SAVI, EVI and Modified Chlorophyll Absorption Ratio Index (MCARI)) for different sensors (LANDSAT, SPOT, Pleiades) at different growth stages. To date, the MCARI exhibits a larger correlation with LAI for all sensors and growing stages for both grass species (ongoing field work will provide additional data). Regionalization of soil moisture dynamics (i.e. recharge) will be done using a numerical model of the vadose zone that will be linked to the temporal variation of MCARI. Financial support by the Mexico's CONACYT (project CB 158370) and UNAM's PAPIIT program (project IA100613) is acknowledged.

  14. Net Ecosystem Exchange of CO2 with Rapidly Changing High Arctic Landscapes

    NASA Astrophysics Data System (ADS)

    Emmerton, C. A.

    2015-12-01

    High Arctic landscapes are expansive and changing rapidly. However our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest-latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near zero sink of atmospheric CO2 (NEE: -0.3±13.5 g C m-2). A nearby meadow wetland accumulated over two magnitudes more carbon (NEE: -79.3±20.0 g C m-2) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southern latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely-detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote-sensing, however high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases substantially, climate-related changes of dry high Arctic landscapes may be restricted by poor soil moisture retention, and therefore have some inertia against

  15. Disentangling the confounding effects of PAR and air temperature on net ecosystem exchange in time and scale

    NASA Astrophysics Data System (ADS)

    yang, Z.; Chen, J.; Becker, R.; Chu, H.; Xie, J.; Shao, C.

    2013-12-01

    Net ecosystem exchange of CO2 (NEE) in temperate forests is modulated by microclimatic factors. The effects of those factors differ at different time scales and during different time periods. Some of them are correlated across a number of time scales, so their effects on NEE are confounded by each other. PAR and air temperature (Ta) are among the two most important drivers of NEE in temperate forests, and among the two most correlated microclimatic factors. PAR and Ta have similar daily, seasonal, and annual cycles. Their influence on NEE is confounded by each other and entangled together especially at those scales. In this study, we tried to disentangle the confounding effects of them on NEE at different time scales and during different time periods. To accomplish this objective, we applied the innovative spectral analysis techniques including Continuous Wavelet Transformation (CWT), Cross Wavelet Transformation (XWT), Wavelet Coherent (WTC), and Partial Wavelet Coherence (PWC) on seven years time series (2004-2010) of PAR, Ta and NEE from the Ohio Oak Openings site (N 41.5545°, W 83.8438°), USA for spectral analysis. We found that PAR is the major driver at short time scales (e.g. semidiurnal and daily) and Ta is the major driver at long time scales (e.g. seasonal and annual). At daily scale during growing seasons, PAR is anti-phase with NEE with no time delay while Ta lagged PAR about 2-3 hours, which could be explained by the strong dependence of photosynthesis on PAR and a 2-3 hours lags of the daily course of Ta to PAR. At daily scale during non-growing season, NEE has little variation and thus neither Ta nor PAR has high common wavelet power and significant coherence with NEE. At annual scale, Ta is anti-phase with NEE and PAR leads NEE about 34 days, which could be explained by the strong dependence of LAI dynamics on Ta and the lag between the LAI/biomass development and the progress of sunlight. We also found that NEE distributes most of its variation

  16. Superoxide Free Radicals Are Produced in Glyoxysomes 1

    PubMed Central

    Sandalio, Luisa M.; Fernández, Victor M.; Rupérez, Francisco L.; Del Río, Luis A.

    1988-01-01

    The production of superoxide free radicals in pellet and supernatant fractions of glyoxysomes, specialized plant peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons, was investigated. Upon inhibition of the endogenous superoxide dismutase, xanthine, and hypoxanthine induced in glyoxysomal supernatants the generation of O2− radicals and this was inhibited by allopurinol. In glyoxysomal pellets, NADH stimulated the generation of superoxide radicals. Superoxide production by purines was due to xanthine oxidase, which was found predominantly in the matrix of glyoxysomes. The generation of O2− radicals in glyoxysomes by endogenous metabolites suggests new active oxygen-related roles for glyoxysomes, and for peroxisomes in general, in cellular metabolism. PMID:16666081

  17. Postia alni Niemelä & Vampola (Basidiomycota, Polyporales) – member of the problematic Postia caesia complex – has been found for the first time in Hungary

    PubMed Central

    2014-01-01

    Abstract Due to their bluish basidiocarps the Postia caesia (syn. Oligoporus caesius) complex forms a distinctive morphological group within the polypore genus Postia Fr., 1874. Five species of this group occur in Europe: Postia alni Niemelä & Vampola, Postia caesia (Schrad.) P. Karst., Postia luteocaesia (A. David) Jülich, Postia mediterraneocaesia M. Pierre & B. Rivoire and Postia subcaesia (A. David) Jülich. In this study Postia alni is reported for the first time from Hungary. The dichotomous key of the species of the European Postia caesia complex was prepared as well. PMID:24855437

  18. What Are Some of the Basics of Infant Health?

    MedlinePlus

    ... movements usually consist of a thick, black or dark green substance called meconium (pronounced mi-KOH-nee- ... In a healthy child, urine is light to dark yellow in color. (The darker the color, the ...

  19. Ringworm

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Ringworm KidsHealth > For Teens > Ringworm Print A A A ... is generally easy to treat. The Basics on Tinea Infections Tinea (pronounced: TIH-nee-uh) is the ...

  20. Athlete's Foot

    MedlinePlus

    ... type of tinea, athlete's foot. The Basics on Tinea Infections Tinea (pronounced: TIH-nee-uh) is the medical name ... or scalp, including athlete's foot, jock itch , and ringworm (despite its name, ringworm is not a worm). ...

  1. Jock Itch

    MedlinePlus

    ... of a group of fungal skin infections called tinea. The medical name for jock itch is tinea cruris (pronounced: TIH-nee-uh KRUR-us). Jock itch, like other tinea infections, is caused by several types of mold- ...

  2. 77 FR 41205 - Sunshine Act Meetings; National Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... Earthquake Engineering Research Infrastructure (NEES) Beyond 2014 ] Director's Remarks NSB Discussion Item... visitors must report to the NSF visitor desk located in the lobby at the 9th and N. Stuart Streets...

  3. APPLICATIONS OF A CONCEPTUAL MODEL (THE BIOLOGICAL CONDITION GRADIENT) TO DEFINE AQUATIC REFERENCE CONDITIONS

    EPA Science Inventory

    The United States Clean Water Act currently offers no definitions to interpret the Act's objective to "restore and maintain physical, chemical and biological integrity of the Nation's waters". Operative definitions, independent of differences in assessment methodologies, are nee...

  4. Host ranges of gregarious muscoid fly parasitoids: Muscidifurax raptorellus (Kogan and Legner) (Hymenoptera:Pteromalidae), Tachinaephagus zealandicus Ashmead (Hymenoptera: Encyrtidae), and Trichopria (Hymenoptera: Diapriidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Attack rates, progeny production, sex ratios and host utilization efficiency of Muscidifurax raptorellus (Kogan and Legner) (Hymenoptera: Pteromalidae), Tachinaephagus zealandicus Ashmead (Hymenoptera: Encyrtidae), and Trichopria nigra (Nees) (Hymenoptera: Diapriidae) were evaluated in laboratory bi...

  5. Estimation of Carbon Flux of Forest Ecosystem over Qilian Mountains by BIOME-BGC Model

    NASA Astrophysics Data System (ADS)

    Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei

    2014-11-01

    The gross primary production (GPP) and net ecosystem exchange (NEE) are important indicators for carbon fluxes. This study aims at evaluating the forest GPP and NEE over the Qilian Mountains using meteorological, remotely sensed and other ancillary data at large scale. To realize this, the widely used ecological-process-based model, Biome-BGC, and remote-sensing-based model, MODIS GPP algorithm, were selected for the simulation of the forest carbon fluxes. The combination of these two models was based on calibrating the Biome-BGC by the optimized MODIS GPP algorithm. The simulated GPP and NEE values were evaluated against the eddy covariance observed GPPs and NEEs, and the well agreements have been reached, with R2=0.76, 0.67 respectively.

  6. Stress and Hair Loss: Are They Related?

    MedlinePlus

    ... hair. Trichotillomania. Trichotillomania (trik-o-til-o-MAY-nee-uh) is an irresistible urge to pull out ... Flavin, M.D. References Shapiro J, et al. Evaluation and diagnosis of hair loss. http://www.uptodate. ...

  7. Estimation of Carbon Flux of Forest Ecosystem over Qilian Mountains by BIOME-BGC Model

    NASA Astrophysics Data System (ADS)

    Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei

    2014-11-01

    The gross primary production (GPP) and net ecosystem exchange (NEE) are important indicators for carbon fluxes. This study aims at evaluating the forest GPP and NEE over the Qilian Mountains using meteorological, remotely sensed and other ancillary data at large scale. To realize this, the widely used ecological-process- based model, Biome-BGC, and remote-sensing-based model, MODIS GPP algorithm, were selected for the simulation of the forest carbon fluxes. The combination of these two models was based on calibrating the Biome-BGC by the optimized MODIS GPP algorithm. The simulated GPP and NEE values were evaluated against the eddy covariance observed GPPs and NEEs, and the well agreements have been reached, with R2=0.76, 0.67 respectively.

  8. Blood

    MedlinePlus

    ... that die or are lost from the body. White Blood Cells White blood cells (WBCs, and also ... of severe pain. previous continue Diseases of the White Blood Cells Neutropenia (pronounced: new-truh-PEE-nee- ...

  9. DEVELOPMENT OF REAL-TIME SITE-SPECIFIC MICROSCALE EMISSION FACTOR MODEL FOR THE ASSESSMENT OF HUMAN EXPOSURE TO MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's (EPA) National Expsoure Research Laboratory (NERL) has initiated a project to improve the methodology for modeling urban-scale human exposure to mobile source emissions. The modeling project has started by considering the nee...

  10. Hemolytic Anemia

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Hemolytic Anemia? Hemolytic anemia (HEE-moh-lit-ick uh-NEE-me-uh) ... blood cells to replace them. However, in hemolytic anemia, the bone marrow can't make red blood ...

  11. What Is Aplastic Anemia?

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Aplastic Anemia? Aplastic anemia (a-PLAS-tik uh-NEE-me-uh) is ... heart, heart failure , infections, and bleeding. Severe aplastic anemia can even cause death. Overview Aplastic anemia is ...

  12. Nonlinear Waves in Waveguides

    NASA Astrophysics Data System (ADS)

    Leble, Sergei B.

    S.B. Leble's book deals with nonlinear waves and their propagation in metallic and dielectric waveguides and media with stratification. The underlying nonlinear evolution equations (NEEs) are derived giving also their solutions for specific situations. The reader will find new elements to the traditional approach. Various dispersion and relaxation laws for different guides are considered as well as the explicit form of projection operators, NEEs, quasi-solitons and of Darboux transforms. Special points relate to: 1. the development of a universal asymptotic method of deriving NEEs for guide propagation; 2. applications to the cases of stratified liquids, gases, solids and plasmas with various nonlinearities and dispersion laws; 3. connections between the basic problem and soliton- like solutions of the corresponding NEEs; 4. discussion of details of simple solutions in higher- order nonsingular perturbation theory.

  13. Nonlinear Waves in Waveguides with Stratification.

    NASA Astrophysics Data System (ADS)

    Leble, Sergei B.

    S.B. Leble's book deals with nonlinear waves and their propagation in metallic and dielectric waveguides and media with stratification. The underlying nonlinear evolution equations (NEEs) are derived giving also their solutions for specific situations. The reader will find new elements to the traditional approach. Various dispersion and relaxation laws for different guides are considered as well as the explicit form of projection operators, NEEs, quasi-solitons and of Darboux transforms. Special points relate to: 1. the development of a universal asymptotic method of deriving NEEs for guide propagation; 2. applications to the cases of stratified liquids, gases, solids and plasmas with various nonlinearities and dispersion laws; 3. connections between the basic problem and soliton- like solutions of the corresponding NEEs; 4. discussion of details of simple solutions in higher- order nonsingular perturbation theory.

  14. Validation Of DEM Data Dvied From World View 3 Stero Imagery For Low Elevation Majuro Atoll, Marchall Islands

    EPA Science Inventory

    The availability of surface elevation data for the Marshall Islands has been identified as a "massive" data gap for conducting vulnerability assessments and the subsequent development of climate change adaption strategies. Specifically, digital elevation model (DEM) data are nee...

  15. Net ecosystem exchange of CO2 with rapidly changing high Arctic landscapes.

    PubMed

    Emmerton, Craig A; St Louis, Vincent L; Humphreys, Elyn R; Gamon, John A; Barker, Joel D; Pastorello, Gilberto Z

    2016-03-01

    High Arctic landscapes are expansive and changing rapidly. However, our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near-zero sink of atmospheric CO2 (NEE: -0.3 ± 13.5 g C m(-2) ). A nearby meadow wetland accumulated over 300 times more carbon (NEE: -79.3 ± 20.0 g C m(-2) ) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southerly latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on-site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote sensing; however, high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases enough to offset poor soil moisture retention, climate-related changes to productivity on polar semideserts may be restricted.

  16. Four new species of Tanycarpa (Hymenoptera, Braconidae, Alysiinae) from the Palaearctic Region and new records of species from China.

    PubMed

    Yao, Junli; Kula, Robert R; Wharton, Robert A; Chen, Jiahua

    2015-05-14

    Four new species of Tanycarpa (Hymenoptera, Braconidae, Alysiinae), T. gymnonotum Yao sp. n., T. similis Yao sp. n., T. areolata Yao sp. n., and T. lineata Yao sp. n., are described from the Palaearctic Region of China, and T. chors Belokobylskij is newly recorded from China. Significant range extensions are given for T. bicolor (Nees von Esenbeck), T. gracilicornis (Nees von Esenbeck), and T. mitis Stelfox. A key to the Palaearctic species of Tanycarpa is provided.

  17. Standing litter as a driver of interannual CO2 exchange variability in a freshwater marsh

    NASA Astrophysics Data System (ADS)

    Rocha, A. V.; Potts, D. L.; Goulden, M. L.

    2008-12-01

    The San Joaquin Freshwater Marsh (SJFM) is a seasonally flooded Typha wetland in Southern California that is characterized by high rates of Aboveground Net Primary Production (ANPP) and a large accumulation of standing leaf litter. The ANPP, Gross and Net Ecosystem CO2 Exchange (GEE and NEE), and Enhanced Vegetation Index (EVI) at the SJFM fluctuate by ˜40% from year to year, in ways that are not directly attributable to variation in weather or the maximum green Leaf Area Index (LAImax). We tested the hypothesis that this variation is caused by a negative feedback between ANPP, the buildup of leaf litter, shading of green leaves by litter, a reduction in GEE and NEE, and a subsequent reduction in ANPP. Litter manipulations on replicated plots demonstrated that the presence of standing litter decreased plot-level NEE by 17 to 47% and surface EVI by 25 to 48%, even as green Leaf Area Index (LAIgreen) was held constant. Plot level NEE and surface EVI remained tightly correlated, and largely decoupled from LAIgreen, as standing litter was varied. This pattern paralleled that observed for the entire marsh, where NEE and EVI remained tightly correlated, and largely decoupled from LAImax, from year to year. Correcting LAIgreen and LAImax for the amount of shading caused by standing litter improved the correlations between LAI and EVI and NEE, indicating that EVI and NEE are most sensitive to the amount of unshaded LAI. The accumulation of standing litter at the SJFM decouples the relationships between LAI and EVI and NEE, and appears to be important for controlling the interannual variability observed at the site.

  18. Evaluation of GEOSAT Data and Application to Variability of the Northeast Pacific Ocean

    DTIC Science & Technology

    1988-10-01

    while Diamante and Nee (1981) determined tidal constituents from GEOS-3 derived sea surfaces. Cheney and Marsh I (1981b) mapped mesoscale variability...Miller, L.L., and Porter , D.L. 1987. Geosat altimeter geophysical data record (GDR) user handbook. Rockville, MD: I NOAA National Ocean Service...University Applied Physics Laboratory Report 7292-9510. First revision. i I I 159 I Diamante , J.M., and Nee, T.S. 1981. Application of satellite

  19. Evaluation of GEOSAT (Geodetic Satellite) Data and Application to Variability of the Northeast Pacific Ocean

    DTIC Science & Technology

    1988-09-01

    locales using GEOS-3 outputs, while Diamante and Nee (1981) determined tidal constituents from GEOS-3 derived sea surfaces. Cheney and Marsh (1981b...and Porter , D.L. 1987. Geosat altimeter geophysical data record (GDR) user handbook. Rockville, MD: NOAA National Ocean Service. Cheney, R.E., and Marsh...Physics Laboratory Report 7292-9510. First revision. 15 Diamante , J.M., and Nee, T.S. 1981. Application of satellite radar altimeter data to the

  20. Relationship Between Ecosystem Productivity and Photosynthetically Active Radiation for Northern Peatlands

    NASA Technical Reports Server (NTRS)

    Frolking, S. E.; Bubier, J. L.; Moore, T. R.; Ball, T.; Bellisario, L. M.; Bhardwaj, A.; Carroll, P.; Crill, P. M.; Lafleur, P. M.; McCaughey, J. H.; Roulet, N. T.; Suyker, A. E.; Verma, S. B.; Waddington, J. M.; Whiting, G. J.

    1998-01-01

    We analyzed the relationship between net ecosystem exchange of carbon dioxide (NEE) and irradiance (as photosynthetic photon flux density or PPFD), using published and unpublished data that have been collected during midgrowing season for carbon balance studies at seven peatlands in North America and Europe, NEE measurements included both eddy-correlation tower and clear, static chamber methods, which gave very similar results. Data were analyzed by site, as aggregated data sets by peatland type (bog, poor fen, rich fen, and all fens) and as a single aggregated data set for all peatlands. In all cases, a fit with a rectangular hyperbola (NEE = alpha PPFD P(sub max)/(alpha PPFD + P(sub max) + R) better described the NEE-PPFD relationship than did a linear fit (NEE = beta PPFD + R). Poor and rich fens generally had similar NEE-PPFD relationships, while bogs had lower respiration rates (R = -2.0 micro mol m(exp -2) s(exp -1) for bogs and -2.7 micro mol m(exp -2) s(exp -1)) for fens) and lower NEE at moderate and high light levels (P(sub max)= 5.2 micro mol m(exp -2) s(exp -1) for bogs and 10.8 micro mol m(exp -2) s(exp -1) for fens). As a single class, northern peatlands had much smaller ecosystem respiration (R = -2.4 micro mol m(exp -2) s(exp -1)) and NEE rates (alpha = 0.020 and P(sub max)= 9.2 micro mol m(exp -2) s(exp -1)) than the upland ecosystems (closed canopy forest, grassland, and cropland). Despite this low productivity, northern peatland soil carbon pools are generally 5-50 times larger than upland ecosystems because of slow rates of decomposition caused by litter quality and anaerobic, cold soils.

  1. Authentication of true cinnamon (Cinnamon verum) utilising direct analysis in real time (DART)-QToF-MS.

    PubMed

    Avula, Bharathi; Smillie, Troy J; Wang, Yan-Hong; Zweigenbaum, Jerry; Khan, Ikhlas A

    2015-01-01

    The use of cinnamon as a spice and flavouring agent is widespread throughout the world. Many different species of plants are commonly referred to as 'cinnamon'. 'True cinnamon' refers to the dried inner bark of Cinnamomum verum J. S. Presl (syn. C. zeylanicum) (Lauraceae). Other 'cinnamon' species, C. cassia (Nees & T. Nees) J. Presl (syn. C. aromaticum Nees) (Chinese cassia), C. loureiroi Nees (Saigon cassia), and C. burmannii (Nees & T. Nees) Blume (Indonesian cassia), commonly known as cassia, are also marketed as cinnamon. Since there is a prevalence of these various types of 'cinnamons' on the market, there is a need to develop a rapid technique that can readily differentiate between true cinnamon (C. verum) and other commonly marketed species. In the present study, coumarin and other marker compounds indicative of 'cinnamon' were analysed using DART-QToF-MS in various samples of cinnamon. This method involved the use of [M + H](+) ions in positive mode in addition to principal component analysis (PCA) using Mass Profiler Professional software to visualise several samples for quality and to discriminate 'true cinnamon' from other Cinnamomum species using the accurate mass capabilities of QToF-MS.

  2. Diagnostic outcomes of inpatient video electroencephalography: nonepileptic events in South Carolina.

    PubMed

    Koontz, Elizabeth H; Hanson, Jarom; Pritchard, Paul B

    2013-09-01

    The Epilepsy Monitoring Unit (EMU) was established at the Medical University Hospital to assist in the diagnosis of epilepsy and the evaluation of other paroxysmal neurological symptoms, including non-epileptic events (NEEs), which are often confused with epileptic seizures. Correct diagnosis can prevent inappropriate treatment with antiepileptic drugs, avoid some of the restrictions imposed by epileptic seizures, and facilitate appropriate treatment for NEEs. A retrospective review of patients admitted to the EMU over a two year period showed the percentage of patients diagnosed with NEEs (39%) is greater than those diagnosed with epilepsy alone (36%). This incidence of NEE is higher than in other academic medical centers. The explanations for this disparity are not fully defined, but warrant further study as to patient demographics, risk factors, and referral patterns in South Carolina. The average time from when patients began having events to accurate diagnosis of NEEs was 4.5 years, and 21 patients had NEEs for at least 10 years prior to diagnosis.

  3. Evaluating terrestrial CO2 flux diagnoses and uncertainties from a simple land surface model and its residuals

    NASA Astrophysics Data System (ADS)

    Hilton, T. W.; Davis, K. J.; Keller, K.

    2014-01-01

    Global terrestrial atmosphere-ecosystem carbon dioxide fluxes are well constrained by the concentration and isotopic composition of atmospheric carbon dioxide. In contrast, considerable uncertainty persists surrounding regional contributions to the net global flux as well as the impacts of atmospheric and biological processes that drive the net flux. These uncertainties severely limit our ability to make confident predictions of future terrestrial biological carbon fluxes. Here we use a simple light-use efficiency land surface model (the Vegetation Photosynthesis Respiration Model, VPRM) driven by remotely sensed temperature, moisture, and phenology to diagnose North American gross ecosystem exchange (GEE), ecosystem respiration, and net ecosystem exchange (NEE) for the period 2001 to 2006. We optimize VPRM parameters to eddy covariance (EC) NEE observations from 65 North American FluxNet sites. We use a separate set of 27 cross-validation FluxNet sites to evaluate a range of spatial and temporal resolutions for parameter estimation. With these results we demonstrate that different spatial and temporal groupings of EC sites for parameter estimation achieve similar sum of squared residuals values through radically different spatial patterns of NEE. We also derive a regression model to estimate observed VPRM errors as a function of VPRM NEE, temperature, and precipitation. Because this estimate is based on model-observation residuals it is comprehensive of all the error sources present in modeled fluxes. We find that 1 km interannual variability in VPRM NEE is of similar magnitude to estimated 1 km VPRM NEE errors.

  4. Effects of biased CO2 flux measurements by open-path sensors on the interpretation of CO2 flux dynamics at contrasting ecosystems

    NASA Astrophysics Data System (ADS)

    Helbig, Manuel; Humphreys, Elyn; Bogoev, Ivan; Quinton, William L.; Wischnweski, Karoline; Sonnentag, Oliver

    2015-04-01

    Long-term measurements of net ecosystem exchange of CO2 (NEE) are conducted across a global network of flux tower sites. These sites are characterised by varying climatic and vegetation conditions, but also differ in the type of CO2/H2O gas analyser used to obtain NEE. Several studies have observed a systematic bias in measured NEE when comparing open-path (OP) and closed-path (CP) sensors with consistently more negative daytime NEE measurements when using OP sensors, both during the growing and non-growing season. A surface heating correction has been proposed in the literature, but seems not to be universally applicable. Systematic biases in NEE measurements are particularly problematic for synthesis papers and inter-comparison studies between sites where the 'true' NEE is small compared to the potential instrument bias. For example, NEE estimates for boreal forest sites derived from OP sensors show large, ecologically unreasonable winter CO2 uptake. To better understand the causes and the magnitude of this potential bias, we conducted a sensor inter-comparison study at the Mer Bleue peatland near Ottawa, ON, Canada. An eddy covariance system with a CP (LI7000 & GILL R3-50) and an OP sensor (EC150 & CSAT3A) was used. Measurements were made between September 2012 and January 2013 and covered late summer, fall, and winter conditions. Flux calculations were made as consistently as possible to minimise differences due to differing processing procedures (e.g. spectral corrections). The latent (LE, slope of orthogonal linear regression of LEOP on LECP: 1.02 ± 0.01 & intercept: -0.2 ± 0.6 W m-2 and sensible heat fluxes (H, slope of HCSAT3A on HGILL: 0.96 ± 0.01 & intercept: 0.1 ± 0.03 W m-2) did not show any significant bias. However, a significant bias was apparent in the NEE measurements (slope of NEEOP on NEECP: 1.36 ± 0.02 & intercept: -0.1 ± 0.05). The differences between NEEOP and NEECP were linearly related to the magnitude of HCSAT3A with a slope of -0

  5. Drivers of long-term variability in CO2 net ecosystem exchange in a temperate peatland

    NASA Astrophysics Data System (ADS)

    Helfter, C.; Campbell, C.; Dinsmore, K. J.; Drewer, J.; Coyle, M.; Anderson, M.; Skiba, U.; Nemitz, E.; Billett, M. F.; Sutton, M. A.

    2015-03-01

    Land-atmosphere exchange of carbon dioxide (CO2) in peatlands exhibits marked seasonal and inter-annual variability, which subsequently affects the carbon (C) sink strength of catchments across multiple temporal scales. Long-term studies are needed to fully capture the natural variability and therefore identify the key hydrometeorological drivers in the net ecosystem exchange (NEE) of CO2. Since 2002, NEE has been measured continuously by eddy-covariance at Auchencorth Moss, a temperate lowland peatland in central Scotland. Hence this is one of the longest peatland NEE studies to date. For 11 years, the site was a consistent, yet variable, atmospheric CO2 sink ranging from -5.2 to -135.9 g CO2-C m-2 yr-1 (mean of -64.1 ± 33.6 g CO2-C m-2 yr-1). Inter-annual variability in NEE was positively correlated to the length of the growing season. Mean winter air temperature explained 87% of the inter-annual variability in the sink strength of the following summer, indicating an effect of winter climate on local phenology. Ecosystem respiration (Reco) was enhanced by drought, which also depressed gross primary productivity (GPP). The CO2 uptake rate during the growing season was comparable to three other sites with long-term NEE records; however, the emission rate during the dormant season was significantly higher. To summarise, the NEE of the peatland studied is modulated by two dominant factors: - phenology of the plant community, which is driven by winter air temperature and impacts photosynthetic potential and net CO2 uptake during the growing season (colder winters are linked to lower summer NEE), - water table level, which enhanced soil respiration and decreased GPP during dry spells. Although summer dry spells were sporadic during the study period, the positive effects of the current climatic trend towards milder winters on the site's CO2 sink strength could be offset by changes in precipitation patterns especially during the growing season.

  6. Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: effects of climate and management

    PubMed Central

    Wohlfahrt, Georg; Hammerle, Albin; Haslwanter, Alois; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander

    2013-01-01

    The role and relative importance of climate and cutting for the seasonal and inter-annual variability of the net ecosystem CO2 (NEE) of a temperate mountain grassland was investigated. Eddy covariance CO2 flux data and associated measurements of the green area index and the major environmental driving forces acquired during 2001-2006 at the study site Neustift (Austria) were analyzed. Driven by three cutting events per year which kept the investigated grassland in a stage of vigorous growth, the seasonal variability of NEE was primarily modulated by gross primary productivity (GPP). The role of environmental parameters in modulating the seasonal variability of NEE was obscured by the strong response of GPP to changes in the amount of green area, as well as the cutting-mediated decoupling of phenological development and the seasonal course of climate drivers. None of the climate and management metrics examined was able to explain the inter-annual variability of annual NEE. This is thought to result from (1) a high covariance between GPP and ecosystem respiration (Reco) at the annual time scale which results in a comparatively small inter-annual variation of NEE, (2) compensating effects between carbon exchange during and outside the management period, and (3) changes in the biotic response to rather than the climate variables per se. GPP was more important in modulating inter-annual variations in NEE in spring and before the first and second cut, while Reco explained a larger fraction of the inter-annual variability of NEE during the remaining, in particular the post-cut, periods. PMID:24383047

  7. Benchmarking the seasonal cycle of CO2 fluxes simulated by terrestrial ecosystem models

    NASA Astrophysics Data System (ADS)

    Peng, Shushi; Ciais, Philippe; Chevallier, Frédéric; Peylin, Philippe; Cadule, Patricia; Sitch, Stephen; Piao, Shilong; Ahlström, Anders; Huntingford, Chris; Levy, Peter; Li, Xiran; Liu, Yongwen; Lomas, Mark; Poulter, Benjamin; Viovy, Nicolas; Wang, Tao; Wang, Xuhui; Zaehle, Sönke; Zeng, Ning; Zhao, Fang; Zhao, Hongfang

    2015-01-01

    We evaluated the seasonality of CO2 fluxes simulated by nine terrestrial ecosystem models of the TRENDY project against (1) the seasonal cycle of gross primary production (GPP) and net ecosystem exchange (NEE) measured at flux tower sites over different biomes, (2) gridded monthly Model Tree Ensembles-estimated GPP (MTE-GPP) and MTE-NEE obtained by interpolating many flux tower measurements with a machine-learning algorithm, (3) atmospheric CO2 mole fraction measurements at surface sites, and (4) CO2 total columns (XCO2) measurements from the Total Carbon Column Observing Network (TCCON). For comparison with atmospheric CO2 measurements, the LMDZ4 transport model was run with time-varying CO2 fluxes of each model as surface boundary conditions. Seven out of the nine models overestimate the seasonal amplitude of GPP and produce a too early start in spring at most flux sites. Despite their positive bias for GPP, the nine models underestimate NEE at most flux sites and in the Northern Hemisphere compared with MTE-NEE. Comparison with surface atmospheric CO2 measurements confirms that most models underestimate the seasonal amplitude of NEE in the Northern Hemisphere (except CLM4C and SDGVM). Comparison with TCCON data also shows that the seasonal amplitude of XCO2 is underestimated by more than 10% for seven out of the nine models (except for CLM4C and SDGVM) and that the MTE-NEE product is closer to the TCCON data using LMDZ4. From CO2 columns measured routinely at 10 TCCON sites, the constrained amplitude of NEE over the Northern Hemisphere is of 1.6 ± 0.4 gC m-2 d-1, which translates into a net CO2 uptake during the carbon uptake period in the Northern Hemisphere of 7.9 ± 2.0 PgC yr-1.

  8. Long term effects of fen restoration: Parameterization of net ecosystem exchange models along a land use-degradation gradient

    NASA Astrophysics Data System (ADS)

    Bergmann, L.; Drösler, M.; Schultz, R.; Freibauer, A.; Jungkunst, H.; Höll, B.

    2010-05-01

    In combination with fluctuating water regimes and extreme variations in weather conditions expected through climate change, continual disturbance to the soils through peat use poses a risk to the carbon storage capacities and sequestration potentials of peatlands. Restoration and/ or extensive use of peatlands are strategies to optimize vegetation and hydrological balance within these sensitive ecosystems. Our goal was to determine the long term effects of fen restoration on CO2 fluxes and to identify the driving parameters causing differential fluxes along a disturbance gradient. This study aimed specifically to provide a CO2-C flux dataset to determine net ecosystem exchange (NEE) in restored temperate fens ecosystems. A climate controlled chamber system was used for measuring instantaneous NEE over the entire year in the Donauried in 2005 and in the Loisach-Kochelsee fens in 2006, both in southern Germany. The sites were chosen to represent both a management gradient (from intensive grasslands and crops to long-term restored Carex lawns) and a water table gradient (-78 cm below surface to -1 cm below surface). NEE was measured using the closed chamber technique, allowing for separation of NEE into gross ecosystem production (GEP) and ecosystem respiration (Reco). In both study areas, management strongly influenced ecosystem respiration and GPP and thus NEE, where Reco remained a strong determinant of NEE balances. Whereas the managed-degraded sites are acting as sources of CO2, a positive effect of restoration is seen in terms of NEE exchange. The restored sites are either acting as significant sinks for CO2 (Donauried old restored sites) or are have significantly lower emissions as the managed-degraded sites. NEE values ranged from 1041 g CO2-C m2 a1source to the atmosphere in a two cut grassland to a -130 g CO2-C m2 a1sinkin the long-term restored unmanaged Carex paniculata site. Reco was highest in grassland sites and lowest in the restored Carex sites. A

  9. Evaluating the agreement between measurements and models of net ecosystem exchange at different times and time scales using wavelet coherence: an example using data from the North American Carbon Program Site-Level Interim Synthesis

    NASA Astrophysics Data System (ADS)

    Stoy, P. C.; Dietze, M.; Richardson, A. D.; Vargas, R.; Barr, A. G.; Anderson, R. S.; Arain, M. A.; Baker, I. T.; Black, T. A.; Chen, J. M.; Cook, R. B.; Gough, C. M.; Grant, R. F.; Hollinger, D. Y.; Izaurralde, R. C.; Kucharik, C. J.; Lafleur, P.; Law, B. E.; Liu, S.; Lokupitiya, E.; Luo, Y.; Munger, J. W.; Peng, C.; Poulter, B.; Price, D. T.; Ricciuto, D. M.; Riley, W. J.; Sahoo, A. K.; Schaefer, K.; Schwalm, C. R.; Tian, H.; Verbeeck, H.; Weng, E.

    2013-02-01

    Earth system processes exhibit complex patterns across time, as do the models that seek to replicate these processes. Model output may or may not be significantly related to observations at different times and on different frequencies. Conventional model diagnostics provide an aggregate view of model-data agreement, but usually do not identify the time and frequency patterns of model misfit, leaving unclear the steps required to improve model response to environmental drivers that vary on characteristic frequencies. Wavelet coherence can quantify the times and frequencies at which models and measurements are significantly different. We applied wavelet coherence to interpret the predictions of twenty ecosystem models from the North American Carbon Program (NACP) Site-Level Interim Synthesis when confronted with eddy covariance-measured net ecosystem exchange (NEE) from ten ecosystems with multiple years of available data. Models were grouped into classes with similar approaches for incorporating phenology, the calculation of NEE, and the inclusion of foliar nitrogen (N). Models with prescribed, rather than prognostic, phenology often fit NEE observations better on annual to interannual time scales in grassland, wetland and agricultural ecosystems. Models that calculate NEE as net primary productivity (NPP) minus heterotrophic respiration (HR) rather than gross ecosystem productivity (GPP) minus ecosystem respiration (ER) fit better on annual time scales in grassland and wetland ecosystems, but models that calculate NEE as GPP - ER were superior on monthly to seasonal time scales in two coniferous forests. Models that incorporated foliar nitrogen (N) data were successful at capturing NEE variability on interannual (multiple year) time scales at Howland Forest, Maine. Combined with previous findings, our results suggest that the mechanisms driving daily and annual NEE variability tend to be correctly simulated, but the magnitude of these fluxes is often erroneous

  10. Evaluating the agreement between measurements and models of net ecosystem exchange at different times and timescales using wavelet coherence: an example using data from the North American Carbon Program Site-Level Interim Synthesis

    NASA Astrophysics Data System (ADS)

    Stoy, P. C.; Dietze, M. C.; Richardson, A. D.; Vargas, R.; Barr, A. G.; Anderson, R. S.; Arain, M. A.; Baker, I. T.; Black, T. A.; Chen, J. M.; Cook, R. B.; Gough, C. M.; Grant, R. F.; Hollinger, D. Y.; Izaurralde, R. C.; Kucharik, C. J.; Lafleur, P.; Law, B. E.; Liu, S.; Lokupitiya, E.; Luo, Y.; Munger, J. W.; Peng, C.; Poulter, B.; Price, D. T.; Ricciuto, D. M.; Riley, W. J.; Sahoo, A. K.; Schaefer, K.; Schwalm, C. R.; Tian, H.; Verbeeck, H.; Weng, E.

    2013-11-01

    Earth system processes exhibit complex patterns across time, as do the models that seek to replicate these processes. Model output may or may not be significantly related to observations at different times and on different frequencies. Conventional model diagnostics provide an aggregate view of model-data agreement, but usually do not identify the time and frequency patterns of model-data disagreement, leaving unclear the steps required to improve model response to environmental drivers that vary on characteristic frequencies. Wavelet coherence can quantify the times and timescales at which two time series, for example time series of models and measurements, are significantly different. We applied wavelet coherence to interpret the predictions of 20 ecosystem models from the North American Carbon Program (NACP) Site-Level Interim Synthesis when confronted with eddy-covariance-measured net ecosystem exchange (NEE) from 10 ecosystems with multiple years of available data. Models were grouped into classes with similar approaches for incorporating phenology, the calculation of NEE, the inclusion of foliar nitrogen (N), and the use of model-data fusion. Models with prescribed, rather than prognostic, phenology often fit NEE observations better on annual to interannual timescales in grassland, wetland and agricultural ecosystems. Models that calculated NEE as net primary productivity (NPP) minus heterotrophic respiration (HR) rather than gross ecosystem productivity (GPP) minus ecosystem respiration (ER) fit better on annual timescales in grassland and wetland ecosystems, but models that calculated NEE as GPP minus ER were superior on monthly to seasonal timescales in two coniferous forests. Models that incorporated foliar nitrogen (N) data were successful at capturing NEE variability on interannual (multiple year) timescales at Howland Forest, Maine. The model that employed a model-data fusion approach often, but not always, resulted in improved fit to data, suggesting

  11. Differential Responses of Net Ecosystem Exchange of Carbon Dioxide to Light and Temperature between Spring and Neap Tides in Subtropical Mangrove Forests

    PubMed Central

    Li, Qing; Lu, Weizhi; Chen, Hui; Luo, Yiqi; Lin, Guanghui

    2014-01-01

    The eddy flux data with field records of tidal water inundation depths of the year 2010 from two mangroves forests in southern China were analyzed to investigate the tidal effect on mangrove carbon cycle. We compared the net ecosystem exchange (NEE) and its responses to light and temperature, respectively, between spring tide and neap tide inundation periods. For the most time of the year 2010, higher daytime NEE values were found during spring tides than during neap tides at both study sites. Regression analysis of daytime NEE to photosynthetically active radiation (PAR) using the Landsberg model showed increased sensitivity of NEE to PAR with higher maximum photosynthetic rate during spring tides than neap tides. In contrast, the light compensation points acquired from the regression function of the Landsberg model were smaller during spring tides than neap tides in most months. The dependence of nighttime NEE on soil temperature was lower under spring tide than under neap tides. All these results above indicated that ecosystem carbon uptake rates of mangrove forests were strengthened, while ecosystem respirations were inhibited during spring tides in comparison with those during neap tides, which needs to be considered in modeling mangrove ecosystem carbon cycle under future sea level rise scenarios. PMID:25133267

  12. Theory and experiments for voltammetric and SECM investigations and application to ORR electrocatalysis at nanoelectrode ensembles of ultramicroelectrode dimensions.

    PubMed

    Fernández, José L; Wijesinghe, Manjula; Zoski, Cynthia G

    2015-01-20

    Theoretical and experimental approaches to characterizing nanoelectrode (NE) ensembles of ultramicroelectrode dimensions (UME-NEEs) as a function of fraction of active area and random NE distribution are described. UME-NEEs were fabricated by addressing microregions of a gold-filled polycarbonate membrane through the UMEs of an underlying microfabricated addressable array. Results of Comsol Multiphysics 3D simulations based on randomly spaced NEs of 15 nm radius on a UME disk geometry of radii up to 5 μm are shown for steady-state voltammetry (SSV) and scanning electrochemical microscopy (SECM) experiments. Analytical equations were developed to describe the diffusion-limited steady-state current and steady-state voltammogram at an UME-NEE. These equations are shown to be in good agreement with the simulations and enabled evaluation of experimental SSVs. Comparison of experimental and simulated SECM approach curves, images, and tip voltammograms enabled the fraction of active area and distribution of NEs to be visualized and determined for individual UME-NEEs. Gold UME-NEEs are shown to be unique platforms for electrodeposition in forming nanoparticle electrodes (UME-NPEs). Electrocatalysis results for the oxygen reduction reaction (ORR) on Pt UME-NPEs in 0.1 M H2SO4 are also shown.

  13. Electrodiagnostic examination of lumbosacral radiculopathies.

    PubMed

    Weber, F; Albert, U

    2000-06-01

    To determine the diagnostic efficacy of late responses and of magnetic stimulation in the electrodiagnostic evaluation of lumbosacral radiculopathies, 42 patients with acute monoradiculopathies of L5 or S1 were examined. We performed conventional nerve conduction studies, F-wave studies, needle electrode examination (NEE) and magnetic stimulation. The results were compared with a control group of 36 persons. In the patients with weakness, we found a diagnostic sensitivity for NEE of 90% in L5 and of 80% in S1. F-waves had the same sensitivity as NEE in the patients with weakness and were more sensitive in the group of patients without weakness (L5 80%, S1 67%). Magnetic stimulation had a sensitivity of 40% in all groups. There were also abnormalities of NEE and of F-wave studies in the patients with abnormal magnetic stimulation. It is concluded that NEE is the single most effective method in acute LSR and that F-wave studies are able to provide complementary information. Magnetically evoked motor nerve root stimulation was not found of clinically relevant diagnostic value.

  14. Estimating carbon dioxide fluxes from temperate mountain grasslands using broad-band vegetation indices

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, G.; Pilloni, S.; Hörtnagl, L.; Hammerle, A.

    2009-11-01

    The broad-band normalised difference vegetation index (NDVI) and the simple ratio (SR) were calculated from measurements of reflectance of photosynthetically active and short-wave radiation at two temperate mountain grasslands in Austria and related to the net ecosystem CO2 exchange (NEE) measured concurrently by means of the eddy covariance method. There was no significant statistical difference between the relationships of midday mean NEE with narrow- and broad-band NDVI and SR, measured during and calculated for that same time window, respectively. The skill of broad-band NDVI and SR in predicting CO2 fluxes was higher for metrics dominated by gross photosynthesis and lowest for ecosystem respiration, with NEE in between. A method based on a simple light response model whose parameters were parameterised based on broad-band NDVI allowed to improve predictions of daily NEE and is suggested to hold promise for filling gaps in the NEE time series. Relationships of CO2 flux metrics with broad-band NDVI and SR however generally differed between the two studied grassland sites indicting an influence of additional factors not yet accounted for.

  15. Estimating carbon dioxide fluxes from temperate mountain grasslands using broad-band vegetation indices

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, G.; Pilloni, S.; Hörtnagl, L.; Hammerle, A.

    2010-02-01

    The broad-band normalised difference vegetation index (NDVI) and the simple ratio (SR) were calculated from measurements of reflectance of photosynthetically active and short-wave radiation at two temperate mountain grasslands in Austria and related to the net ecosystem CO2 exchange (NEE) measured concurrently by means of the eddy covariance method. There was no significant statistical difference between the relationships of midday mean NEE with narrow- and broad-band NDVI and SR, measured during and calculated for that same time window, respectively. The skill of broad-band NDVI and SR in predicting CO2 fluxes was higher for metrics dominated by gross photosynthesis and lowest for ecosystem respiration, with NEE in between. A method based on a simple light response model whose parameters were parameterised based on broad-band NDVI allowed to improve predictions of daily NEE and is suggested to hold promise for filling gaps in the NEE time series. Relationships of CO2 flux metrics with broad-band NDVI and SR however generally differed between the two studied grassland sites indicting an influence of additional factors not yet accounted for.

  16. Ecosystem carbon exchange in response to locust outbreaks in a temperate steppe.

    PubMed

    Song, Jian; Wu, Dandan; Shao, Pengshuai; Hui, Dafeng; Wan, Shiqiang

    2015-06-01

    It is predicted that locust outbreaks will occur more frequently under future climate change scenarios, with consequent effects on ecological goods and services. A field manipulative experiment was conducted to examine the responses of gross ecosystem productivity (GEP), net ecosystem carbon dioxide (CO2) exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) to locust outbreaks in a temperate steppe of northern China from 2010 to 2011. Two processes related to locust outbreaks, natural locust feeding and carcass deposition, were mimicked by clipping 80 % of aboveground biomass and adding locust carcasses, respectively. Ecosystem carbon (C) exchange (i.e., GEP, NEE, ER, and SR) was suppressed by locust feeding in 2010, but stimulated by locust carcass deposition in both years (except SR in 2011). Experimental locust outbreaks (i.e., clipping plus locust carcass addition) decreased GEP and NEE in 2010 whereas they increased GEP, NEE, and ER in 2011, leading to neutral changes in GEP, NEE, and SR across the 2 years. The responses of ecosystem C exchange could have been due to the changes in soil ammonium nitrogen, community cover, and aboveground net primary productivity. Our findings of the transient and neutral changes in ecosystem C cycling under locust outbreaks highlight the importance of resistance, resilience, and stability of the temperate steppe in maintaining reliable ecosystem services, and facilitate the projections of ecosystem functioning in response to natural disturbance and climate change.

  17. Differential responses of net ecosystem exchange of carbon dioxide to light and temperature between spring and neap tides in subtropical mangrove forests.

    PubMed

    Li, Qing; Lu, Weizhi; Chen, Hui; Luo, Yiqi; Lin, Guanghui

    2014-01-01

    The eddy flux data with field records of tidal water inundation depths of the year 2010 from two mangroves forests in southern China were analyzed to investigate the tidal effect on mangrove carbon cycle. We compared the net ecosystem exchange (NEE) and its responses to light and temperature, respectively, between spring tide and neap tide inundation periods. For the most time of the year 2010, higher daytime NEE values were found during spring tides than during neap tides at both study sites. Regression analysis of daytime NEE to photosynthetically active radiation (PAR) using the Landsberg model showed increased sensitivity of NEE to PAR with higher maximum photosynthetic rate during spring tides than neap tides. In contrast, the light compensation points acquired from the regression function of the Landsberg model were smaller during spring tides than neap tides in most months. The dependence of nighttime NEE on soil temperature was lower under spring tide than under neap tides. All these results above indicated that ecosystem carbon uptake rates of mangrove forests were strengthened, while ecosystem respirations were inhibited during spring tides in comparison with those during neap tides, which needs to be considered in modeling mangrove ecosystem carbon cycle under future sea level rise scenarios.

  18. Carbon exchange between the atmosphere and subtropical forested cypress and pine wetlands

    NASA Astrophysics Data System (ADS)

    Shoemaker, W. B.; Anderson, F.; Barr, J. G.; Graham, S. L.; Botkin, D. B.

    2015-04-01

    Carbon dioxide exchange between the atmosphere and forested subtropical wetlands is largely unknown. Here we report a first step in characterizing this atmospheric-ecosystem carbon (C) exchange, for cypress strands and pine forests in the Greater Everglades of Florida as measured with eddy covariance methods at three locations (Cypress Swamp, Dwarf Cypress and Pine Upland) for 2 years. Links between water and C cycles are also examined at these three sites, as are methane emission measured only at the Dwarf Cypress site. Each forested wetland showed net C uptake from the atmosphere both monthly and annually, as indicated by the net ecosystem exchange (NEE) of carbon dioxide (CO2). For this study, NEE is the difference between photosynthesis and respiration, with negative values representing uptake from the atmosphere that is retained in the ecosystem or transported laterally via overland flow (unmeasured for this study). Atmospheric C uptake (NEE) was greatest at the Cypress Swampp (-900 to -1000 g C m2 yr-1), moderate at the Pine Upland (-650 to -700 g C m2 yr-1) and least at the Dwarf Cypress (-400 to -450 g C m2 yr-1). Changes in NEE were clearly a function of seasonality in solar insolation, air temperature and flooding, which suppressed heterotrophic soil respiration. We also note that changes in the satellite-derived enhanced vegetation index (EVI) served as a useful surrogate for changes in NEE at these forested wetland sites.

  19. Growing season net ecosystem CO2 exchange of two desert ecosystems with alkaline soils in Kazakhstan.

    PubMed

    Li, Longhui; Chen, Xi; van der Tol, Christiaan; Luo, Geping; Su, Zhongbo

    2014-01-01

    Central Asia is covered by vast desert ecosystems, and the majority of these ecosystems have alkaline soils. Their contribution to global net ecosystem CO2 exchange (NEE) is of significance simply because of their immense spatial extent. Some of the latest research reported considerable abiotic CO2 absorption by alkaline soil, but the rate of CO2 absorption has been questioned by peer communities. To investigate the issue of carbon cycle in Central Asian desert ecosystems with alkaline soils, we have measured the NEE using eddy covariance (EC) method at two alkaline sites during growing season in Kazakhstan. The diurnal course of mean monthly NEE followed a clear sinusoidal pattern during growing season at both sites. Both sites showed significant net carbon uptake during daytime on sunny days with high photosynthetically active radiation (PAR) but net carbon loss at nighttime and on cloudy and rainy days. NEE has strong dependency on PAR and the response of NEE to precipitation resulted in an initial and significant carbon release to the atmosphere, similar to other ecosystems. These findings indicate that biotic processes dominated the carbon processes, and the contribution of abiotic carbon process to net ecosystem CO2 exchange may be trivial in alkaline soil desert ecosystems over Central Asia.

  20. Carbon exchange between the atmosphere and subtropical forested cypress and pine wetlands

    USGS Publications Warehouse

    Shoemaker, W. Barclay; Anderson, Frank E.; Barr, Jordan G.; Graham, Scott L.; Botkin, Daniel B.

    2015-01-01

    Carbon dioxide exchange between the atmosphere and forested subtropical wetlands is largely unknown. Here we report a first step in characterizing this atmospheric–ecosystem carbon (C) exchange, for cypress strands and pine forests in the Greater Everglades of Florida as measured with eddy covariance methods at three locations (Cypress Swamp, Dwarf Cypress and Pine Upland) for 2 years. Links between water and C cycles are also examined at these three sites, as are methane emission measured only at the Dwarf Cypress site. Each forested wetland showed net C uptake from the atmosphere both monthly and annually, as indicated by the net ecosystem exchange (NEE) of carbon dioxide (CO2). For this study, NEE is the difference between photosynthesis and respiration, with negative values representing uptake from the atmosphere that is retained in the ecosystem or transported laterally via overland flow (unmeasured for this study). Atmospheric C uptake (NEE) was greatest at the Cypress Swampp (−900 to −1000 g C m2 yr−1), moderate at the Pine Upland (−650 to −700 g C m2 yr−1) and least at the Dwarf Cypress (−400 to −450 g C m2 yr−1). Changes in NEE were clearly a function of seasonality in solar insolation, air temperature and flooding, which suppressed heterotrophic soil respiration. We also note that changes in the satellite-derived enhanced vegetation index (EVI) served as a useful surrogate for changes in NEE at these forested wetland sites.

  1. Disentangling leaf area and environmental effects on the response of the net ecosystem CO2 exchange to diffuse radiation

    PubMed Central

    Wohlfahrt, Georg; Hammerle, Albin; Haslwanter, Alois; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander

    2013-01-01

    There is an ongoing discussion about why the net ecosystem CO2 exchange (NEE) of some ecosystems is less sensitive to diffuse radiation than others and about the role other environmental factors play in determining the response of NEE to diffuse radiation. Using a six-year data set from a temperate mountain grassland in Austria we show that differences between ecosystems may be reconciled based on their green area index (GAI; square meter green plant area per square meter ground area) - the sensitivity to diffuse radiation increasing with GAI. Our data suggest diffuse radiation to have a negligible influence on NEE below a GAI of 2 m2 m−2. Changes in air/soil temperature and air humidity concurrent with the fraction of diffuse radiation were found to amplify the sensitivity of the investigated temperate mountain grassland ecosystem to diffuse radiation. PMID:24347740

  2. An annotated catalogue of the Iranian Euphorinae, Gnamptodontinae, Helconinae, Hormiinae and Rhysipolinae (Hymenoptera: Braconidae).

    PubMed

    Gadallah, Neveen S; Ghahari, Hassan; Achterberg, Kees Van

    2016-01-28

    The Iranian species diversity of five braconid subfamilies, Euphorinae (54 species in 16 genera and 8 tribes), Gnamptodontinae (4 species in 1 genus and 1 tribe), Helconinae (9 species in 5 genera and 2 tribes), Hormiinae (8 species in 4 genera and 2 tribe) and Rhysipolinae (3 species in 2 genera) are summarized in this catalogue. A faunistic list is given comprising both local and global distribution of each species under study as well as host records. In the present study ten new records are added to the Iranian fauna: Centistes (Ancylocentrus) ater (Nees), Centistes cuspidatus (Haliday), Meteorus affinis (Wesmael), Meteorus rufus (DeGeer), Microctonus brevicollis (Haliday), Microctonus falciger Ruthe, Peristenus nitidus (Curtis) (Euphorinae), Aspicolpus carinator (Nees), Diospilus capito (Nees) and Diospilus productus Marshall (Helconinae s.l.). Euphorus pseudomitis Hedwig, 1957 is transferred to the subfamily Hormiinae and Hormisca pseudomitis (Hedwig, 1957) is a new combination.

  3. Wall Analyses of Lophocolea Seta Cells (Bryophyta) Before and After Elongation 1

    PubMed Central

    Thomas, Robert J.

    1977-01-01

    Lophocolea heterophylla (Schrad.) Dum. (a leafy liverwort) produces sporophytes with seta cells that elongate 50-fold in 3 to 4 days. Wall components of these cells have been characterized by microscopic histochemistry, colorimetry, and gas chromatography of neutral sugars. Seta cell walls are qualitatively similar to primary cell walls of higher plants. The pectic fraction, however, responds differently to standard histochemical staining and extraction. Quantitatively, mannose, fucose, and rhamnose are in higher percentage, and arabinose and xylose are lower than typically found in vascular plants. Hexuronic acids increase on a percentage basis during elongation; pentoses decrease slightly, while hexose levels remain about the same. Increase in total wall carbohydrate after 2,400% elongation of setae was 1.8-fold. Images PMID:16659846

  4. Behavioral Response of Nothanguina phyllobia to Selected Plant Species

    PubMed Central

    Robinson, A. F.; Orr, C. C.; Abernathy, J. R.

    1979-01-01

    The silver-leaf nightshade nenmtode, Nothanguina phyllobia, is a promising biological control agent for its only reported host, Solanum elaeagnifolium Cav. When infective larvae of N. phyllobia and stem tissue of 39 econmnically important plant species were suspended in 0.5% water agar, nematodes aggregated about S. elaeagnifolium, Solanum carolinense L., Solanum melongena L., Solanum tuberosum L., and Prunus caroliniana (Mill.) Ait. Nematodes responded to Solanum spp. via positive chemotaxis and/or klinokinesis, but aggregated near tissue of P. caroliniana as a result of orthokinetic effects. Nematodes aggregated away from tissue of Hibiscus esculentus L., Triticum aestivum L., Santolina sp., Rosa sp., and Kochia scoparia (L.) Schrad. in the absence of orthokinetic effects. Experiments that excluded light and maintained relative humidity at 100% showed N. phyllobia to ascend the stems of 35 plant species to a height of > 9 cm within 12 h. Differences in stem ascension were not attributable to stem surface characteristics. PMID:19305532

  5. Morpho-histological studies in the aromatic species of Chenopodium from Argentina.

    PubMed

    Bonzani, N E; Barboza, G E; Bugatti, M A; Ariza Espinar, L

    2003-04-01

    A morpho-histological study of the vegetative organs (stem and leaf) of the aromatic species of Chenopodium L. from Argentina [C. ambrosioides L., C. burkartii (Aellen) Vorosch., C. carinatum R. Br., C. chilense Schrad., C. graveolens Willd. var. bangii (Murr) Aellen, C. haumanii Ulbr., C. multifidum L., C. oblanceolatum (Speg.) Giusti, C. pumilio R. Br., C. retusum (Moq.) Moq., and C. venturii (Aellen) Cabrera] was carried out. Classifications for the glandular and non-glandular trichomes are established and their presence among species is presented. A variant in both the dorsiventral and isobilateral mesophyll is reported; some data are valuable for systematic purposes and for the identification of dried and smashed material used as vegetal drug.

  6. Drivers of long-term variability in CO2 net ecosystem exchange in a temperate peatland

    NASA Astrophysics Data System (ADS)

    Helfter, C.; Campbell, C.; Dinsmore, K. J.; Drewer, J.; Coyle, M.; Anderson, M.; Skiba, U.; Nemitz, E.; Billett, M. F.; Sutton, M. A.

    2014-10-01

    Land-atmosphere exchange of carbon dioxide (CO2) in peatlands exhibits marked seasonal and inter-annual variability, which subsequently affects the carbon sink strength of catchments across multiple temporal scales. Long-term studies are needed to fully capture the natural variability and therefore identify the key hydrometeorological drivers in the net ecosystem exchange (NEE) of CO2. NEE has been measured continuously by eddy-covariance at Auchencorth Moss, a temperate lowland peatland in central Scotland, since 2002. Hence this is one of the longest peatland NEE studies to date. For 11 yr, the site was a consistent, yet variable, atmospheric CO2 sink ranging from -5.2 to -135.9 g CO2-C m-2 yr-1 (mean of -64.1 ± 33.6 g CO2-C m-2 yr-1). Inter-annual variability in NEE was positively correlated to the length of the growing season. Mean winter air temperature explained 87% of the inter-annual variability in the sink strength of the following summer, indicating a phenological memory-effect. Plant productivity exhibited a marked hysteresis with respect to photosynthetically active radiation (PAR) over the growing season, indicative of two separate growth regimes. Ecosystem respiration (Reco) and gross primary productivity (GPP) were closely correlated (ratio 0.74), suggesting that autotrophic processes were dominant. Whilst the site was wet most of the year (water table depth <5 cm) there were indications that heterotrophic respiration was enhanced by drought, which also depressed GPP. NEE was compared to 5 other peatland sites which have published long-term NEE records. The CO2 uptake rate during the growing season was comparable to 3 other European sites, however the emission rate during the dormant season was significantly higher.

  7. Recent variations in Amazon carbon balance driven by climate anomalies

    NASA Astrophysics Data System (ADS)

    Miller, J. B.

    2015-12-01

    Understanding tropical rainforest response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net ecosystem exchange of CO2 with the atmosphere (NEE), a metric that represents the total integrated signal of carbon fluxes into and out of ecosystems. Sub-annual and sub-basin NEE estimates have previously been derived from process-based biosphere models, despite often disagreeing with plot-scale observations. Our analysis of airborne CO2 and CO measurements reveals monthly, sub-Basin scale (~106 km2) NEE variations in a framework that is largely independent of bottom-up estimates. As such, our approach provides new insights about tropical forest response to climate. We find acute sensitivity of NEE to daily and monthly climate extremes. In particular, increased central-Amazon NEE was associated with wet-season heat and dry-season drought in 2010. We analyze satellite proxies for photosynthesis and find that suppression of photosynthesis may have contributed to increased carbon loss in the 2010 drought, consistent with recent analysis of plot-scale measurements. In the eastern Amazon, pulses of increased NEE (i.e. net respiration) persisted through 2011, suggesting legacy effects of the drought that occurred in 2010. Regional differences in post-drought recovery in 2011 and 2012 appear related to long-term water availability. These results provide novel evidence of the vulnerability of Amazon carbon stocks to short-term temperature and moisture extremes.

  8. Inter-annual variability in the biosphere-atmosphere exchange of carbon dioxide and water vapor in adjacent pine and hardwood forests: links to drought, disturbance, and seasonality

    NASA Astrophysics Data System (ADS)

    Novick, K. A.; Ward, E. J.; Oishi, A. C.; Stoy, P. C.

    2012-12-01

    Understanding the variation in long-term biosphere-atmosphere fluxes of carbon dioxide and water vapor is necessary to characterize the benefits and services of terrestrial ecosystems, including the highly productive forests of the Southeastern United States. This study quantifies flux variability at inter-annual times scales using eight-year eddy covariance records from two co-located ecosystems in the Duke Forest (North Carolina, USA): a hardwood deciduous forest (HW) and a pine plantation (PP), which together represent the dominant forest types in the region. When averaged across the study period, annual net ecosystem exchange of CO2 (NEE) was similar in PP and HW (NEE = -560 and -520 g C m-2 y-1 in PP and HW, respectively). Variation in annual NEE was high in both ecosystems, but higher in the pine site (CV = 0.38) as compared to the hardwood site (CV = 0.23). Gross ecosystem productivity (GEP) and ecosystem respiration (RE), which together represent the primary components of NEE, were not necessarily more variable in the pine site; however, the coupling between annual GEP and RE was weaker in PP as compared to HW, contributing to higher overall variability in PP NEE. Our results identify at least two factors contributing to this decoupling: 1) an ice storm event, which reduced PP GEP while increasing or having no effect on PP RE, and 2) two severe drought events, which cause large reductions in PP GEP but not RE. Additionally, in both ecosystems, variability in GEP and NEE is strongly related to the length of the active season (r2 = 0.60 - 0.93), a variable reflecting the seasonality of carbon assimilation that is largely independent from patterns of leaf area development.

  9. On the difference in the net ecosystem exchange of CO2 between deciduous and evergreen forests in the southeastern United States.

    PubMed

    Novick, Kimberly A; Oishi, A Christopher; Ward, Eric J; Siqueira, Mario B S; Juang, Jehn-Yih; Stoy, Paul C

    2015-02-01

    The southeastern United States is experiencing a rapid regional increase in the ratio of pine to deciduous forest ecosystems at the same time it is experiencing changes in climate. This study is focused on exploring how these shifts will affect the carbon sink capacity of southeastern US forests, which we show here are among the strongest carbon sinks in the continental United States. Using eight-year-long eddy covariance records collected above a hardwood deciduous forest (HW) and a pine plantation (PP) co-located in North Carolina, USA, we show that the net ecosystem exchange of CO2 (NEE) was more variable in PP, contributing to variability in the difference in NEE between the two sites (ΔNEE) at a range of timescales, including the interannual timescale. Because the variability in evapotranspiration (ET) was nearly identical across the two sites over a range of timescales, the factors that determined the variability in ΔNEE were dominated by those that tend to decouple NEE from ET. One such factor was water use efficiency, which changed dramatically in response to drought and also tended to increase monotonically in nondrought years (P < 0.001 in PP). Factors that vary over seasonal timescales were strong determinants of the NEE in the HW site; however, seasonality was less important in the PP site, where significant amounts of carbon were assimilated outside of the active season, representing an important advantage of evergreen trees in warm, temperate climates. Additional variability in the fluxes at long-time scales may be attributable to slowly evolving factors, including canopy structure and increases in dormant season air temperature. Taken together, study results suggest that the carbon sink in the southeastern United States may become more variable in the future, owing to a predicted increase in drought frequency and an increase in the fractional cover of southern pines.

  10. Colonization of a Deglaciated Moraine: Contrasting Patterns of Carbon Uptake and Release from C3 and CAM Plants

    PubMed Central

    Tagliavini, Massimo; Zerbe, Stefan

    2016-01-01

    Introduction Current glacier retreat makes vast mountain ranges available for vegetation establishment and growth. As a result, carbon (C) is accumulated in the soil, in a negative feedback to climate change. Little is known about the effective C budget of these new ecosystems and how the presence of different vegetation communities influences CO2 fluxes. Methods On the Matsch glacier forefield (Alps, Italy) we measured over two growing seasons the Net Ecosystem Exchange (NEE) of a typical grassland, dominated by the C3 Festuca halleri All., and a community dominated by the CAM rosettes Sempervivum montanum L. Using transparent and opaque chambers, with air temperature as the driver, we partitioned NEE to calculate Ecosystem Respiration (Reco) and Gross Ecosystem Exchange (GEE). In addition, soil and vegetation samples were collected from the same sites to estimate the Net Ecosystem Carbon Balance (NECB). Results The two communities showed contrasting GEE but similar Reco patterns, and as a result they were significantly different in NEE during the period measured. The grassland acted as a C sink, with a total cumulated value of -46.4±35.5 g C m-2 NEE, while the plots dominated by the CAM rosettes acted as a source, with 31.9±22.4 g C m-2. In spite of the different NEE, soil analysis did not reveal significant differences in carbon accumulation of the two plant communities (1770±130 for F. halleri and 2080±230 g C m-2 for S. montanum), suggesting that processes often neglected, like lateral flows and winter respiration, can have a similar relevance as NEE in the determination of the Net Ecosystem Carbon Balance. PMID:28033605

  11. Long term trend and interannual variability of land carbon uptake—the attribution and processes

    NASA Astrophysics Data System (ADS)

    Fu, Zheng; Dong, Jinwei; Zhou, Yuke; Stoy, Paul C.; Niu, Shuli

    2017-01-01

    Ecosystem carbon (C) uptake in terrestrial ecosystems has increased over the past five decades, but with large interannual variability (IAV). However, we are not clear on the attribution and the processes that control the long-term trend and IAV of land C uptake. Using atmospheric inversion net ecosystem exchange (NEE) data, we quantified the trend and IAV of NEE across the globe, the Northern Hemisphere (NH), and the Southern Hemisphere (SH), and decomposed NEE into carbon uptake amplitude and duration during each year from 1979–2013. We found the NH rather than the SH determined the IAV, while both hemispheres contributed equivalently to the global NEE trend. Different ecosystems in the NH and SH had differential relative contributions to their trend and IAV. The long-term trends of increased C uptake across the globe and the SH were attributed to both extended duration and increasing amplitude of C uptake. The shortened duration of uptake in the NH partly offsets the effects of increased NEE amplitude, making the net C uptake trend the same as that of the SH. The change in NEE IAV was also linked to changes in the amplitude and duration of uptake, but they worked in different ways in the NH, SH and globe. The fundamental attributions of amplitude and duration of C uptake revealed in this study are helpful to better understand the mechanisms underlying the trend and IAV of land C uptake. Our findings also suggest the critical roles of grassland and croplands in the NH in contributing to the trend and IAV of land C uptake.

  12. Net ecosystem exchange over heterogeneous Arctic tundra: Scaling between chamber and eddy covariance measurements

    NASA Astrophysics Data System (ADS)

    Fox, Andrew M.; Huntley, Brian; Lloyd, Colin R.; Williams, Mathew; Baxter, Robert

    2008-06-01

    Net ecosystem exchange (NEE) was estimated for an area of tundra near Abisko using both eddy covariance (EC) data and chamber measurements. This area of tundra is heterogeneous with six principal elements forming a landscape mosaic. Chamber measurements in patches of the individual mosaic elements were used to model NEE as a function of irradiance and temperature. The area around the EC mast was mapped, and a footprint model was used to simulate the varying source fraction attributable to each mosaic element. Various upscaling approaches were used to estimate NEE for comparison with NEE calculated from the EC observations. The results showed that EC measurements made for such a heterogeneous site are robust to the variations in NEE between mosaic elements that also vary substantially in their source fractions. However, they also revealed a large (˜60%) bias in the absolute magnitude of the cumulative negative NEE for a 40-day study period simulated by various upscaling approaches when compared to the value calculated from the EC observations. The magnitude of this bias, if applied to estimates for the entire tundra region, is substantial in relation to other components of the global carbon budget. Various hypotheses to account for this bias are discussed and, where possible, evaluated. A need is identified for more systematic sampling strategies when performing chamber measurements in order to assess the extent to which subjectivity of chamber location may account for much of the observed bias. If this is the origin of the bias, then upscaling approaches using chamber measurements may generally overestimate CO2 uptake.

  13. Partitioning interannual variability in net ecosystem exchange between climatic variability and functional change.

    PubMed

    Hui, Dafeng; Luo, Yiqi; Katul, Gabriel

    2003-05-01

    Interannual variability (IAV) in net ecosystem exchange of carbon (NEE) is a critical factor in projections of future ecosystem changes. However, our understanding of IAV is limited because of the difficulty in isolating its numerous causes. We proposed that IAV in NEE is primarily caused by climatic variability, through its direct effects on photosynthesis and respiration and through its indirect effects on carbon fluxes (i.e., the parameters that govern photosynthesis and respiration), hereafter called functional change. We employed a homogeneity-of-slopes model to identify the functional change contributing to IAV in NEE and nighttime ecosystem respiration (RE). The model uses multiple regression analysis to relate NEE and RE with climatic variables for individual years and for all years. If the use of different slopes for each year significantly improves the model fitting compared to the use of one slope for all years, we consider that functional change exists, at least on annual time scales. With the functional change detected, we then partition the observed variation in NEE or RE to four components, namely, the functional change, the direct effect of interannual climatic variability, the direct effect of seasonal climatic variation, and random error. Application of this approach to a data set collected at the Duke Forest AmeriFlux site from August 1997 to December 2001 indicated that functional change, interannual climatic variability, seasonal climatic variation and random error explained 9.9, 8.9, 59.9 and 21.3%, respectively, of the observed variation in NEE and 13.1, 5.0, 38.1 and 43.8%, respectively, of the observed variation in RE.

  14. Toward Verifying Fossil Fuel CO2 Emissions with the CMAQ Model: Motivation, Model Description and Initial Simulation

    SciTech Connect

    Liu, Zhen; Bambha, Ray P.; Pinto, Joseph P.; Zeng, Tao; Boylan, Jim; Huang, Maoyi; Lei, Huimin; Zhao, Chun; Liu, Shishi; Mao, Jiafu; Schwalm, Christopher R.; Shi, Xiaoying; Wei, Yaxing; Michelsen, Hope A.

    2014-03-14

    Motivated by the urgent need for emission verification of CO2 and other greenhouse gases, we have developed regional CO2 simulation with CMAQ over the contiguous U.S. Model sensitivity experiments have been performed using three different sets of inputs for net ecosystem exchange (NEE) and two fossil fuel emission inventories, to understand the roles of fossil fuel emissions, atmosphere-biosphere exchange and transport in regulating the spatial and diurnal variability of CO2 near the surface, and to characterize the well-known ‘signal-to-noise’ problem, i.e. the interference from the biosphere on the interpretation of atmospheric CO2 observations. It is found that differences in the meteorological conditions for different urban areas strongly contribute to the contrast in concentrations. The uncertainty of NEE, as measured by the difference among the three different NEE inputs, has notable impact on regional distribution of CO2 simulated by CMAQ. Larger NEE uncertainty and impact are found over eastern U.S. urban areas than along the western coast. A comparison with tower CO2 measurements at Boulder Atmospheric Observatory (BAO) shows that the CMAQ model using hourly varied and high-resolution CO2 emission from the Vulcan inventory and CarbonTracker optimized NEE reasonably reproduce the observed diurnal profile, whereas switching to different NEE inputs significantly degrades the model performance. Spatial distribution of CO2 is found to correlate with NOx, SO2 and CO, due to their similarity in emission sources and transport processes. These initial results from CMAQ demonstrate the power of a state-of-the art CTM in helping interpret CO2 observations and verify fossil fuel emissions. The ability to simulate CO2 in CMAQ will also facilitate investigations of the utility of traditionally regulated pollutants and other species as tracers to CO2 source attribution.

  15. [CO2 flux characteristics and their influence on the carbon budget of a larch plantation in Maoershan region of Northeast China].

    PubMed

    Qiu, Ling; Zu, Yuan-Gang; Wang, Wen-Jie; Sun, Wei; Su, Dong-Xue; Zheng, Guang-Yu

    2011-01-01

    From January to December 2008, the CO2 flux in a larch plantation (Larix gmeilinii) in Maoershan region of Shangzhi County, Heilongliang Province was measured by eddy covanance method, and the diurnal changes of leaf photosynthetic rate were measured in growth season (from May to October). There existed differences in the net ecosystem exchange (NEE) of the plantation in different time periods under the effects of environmental factors. In the afternoon (12:00-24:00), the NEE changed more slowly with the variation of vapor pressure deficit (VPD) than in the morning (0:00-12:00); and in the morning, tbe light use efficiency was 0.6284 mol x mol(-1), 14% more than that in afternoon. The NEE increased with increasing temperature, and the increment in the morning was 50% higher than that in the afternoon (air temperature > 15 degrees C). These differences in responding to environmental changes led to 88% NEE implemented in the morning, and only 12% NEE implemented in the afternoon. The annual gross ecosystem productivity (GEP) in the morning took a percentage of 60%, and that in afternoon took 40%. These findings were supported by the observation at leaf level, i.e., on average of whole growth season, the leaf photosynthetic capacity in the morning was over 2-fold higher than that in afternoon. Generally, the annual NEE, ecosystem respiration (Re), and GEP of the plantation in 2008 were 263-264 g C x m(-2), 718-725 g C x m(-2), and 981-989 g C x m(-2), respectively.

  16. Effects of drought - altered seasonality and low rainfall - in net ecosystem carbon exchange of three contrasting Mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Pereira, J. S.; Mateus, J. A.; Aires, L. M.; Pita, G.; Pio, C.; Andrade, V.; Banza, J.; David, T. S.; Rodrigues, A.; David, J. S.

    2007-06-01

    Droughts cause reductions in gross primary production (GPP) and also in net ecosystem exchange (NEE), contributing to most of the inter-annual variability in terrestrial carbon sequestration. In seasonally dry climates (Mediterranean) droughts result from reductions in annual rainfall and from changes in rain seasonality. In western Iberia, the hydrological-year (i.e., from October to September) of 2004-2005 was extremely dry, with precipitation 50% below the long-term mean (691 mm in 1961-1990), but 2005-2006 was normal. We compared the carbon fluxes measured by the eddy covariance technique from three contrasting ecosystems in southern Portugal: an evergreen oak woodland (savannah-like) with ca. 21% tree cover; a Mediterranean C3/C4 grassland; and a coppiced eucalyptus plantation. During the dry hydrological-year of 2004-2005, NEE was lowest, the highest sink strength was in the eucalypt plantation (NEE = -399 g C m -2 year-1) as compared to the oak woodland (NEE = -88 g C m -2 year-1), and the grassland (NEE = +49 g C m -2 year -1). The latter was a source of carbon dioxide. The NEE values of the dry year were, however, much lower than those for wetter years, e.g. NEE = -861 g C m-2 year -1 in 2002-2003 in the eucalypt plantation. The NEE of the grassland and the oak savannah in the 2005-2006 hydrological-year, with annual precipitation above the long term mean, were -190 and -120 g C m -2 year-1, respectively. All ecosystems studied increased their rain-use efficiency (GPP per unit of rain volume) increased in dry years. In the case of annual vegetation - grassland and low tree density woodland, however &ndash, rain-use efficiency decreased with severe drought. However, this was more pronounced in the eucalypt plantation due to greater GPP and the use of deep soil water resources. Although both calendar years of 2004 and 2005 had equally low rainfall, the effect of drought on the eucalypt plantation was delayed until the second dry year. This suggests that the

  17. Estimation of Ecosystem Parameters of the Community Land Model with DREAM: Evaluation of the Potential for Upscaling Net Ecosystem Exchange

    NASA Astrophysics Data System (ADS)

    Hendricks Franssen, H. J.; Post, H.; Vrugt, J. A.; Fox, A. M.; Baatz, R.; Kumbhar, P.; Vereecken, H.

    2015-12-01

    Estimation of net ecosystem exchange (NEE) by land surface models is strongly affected by uncertain ecosystem parameters and initial conditions. A possible approach is the estimation of plant functional type (PFT) specific parameters for sites with measurement data like NEE and application of the parameters at other sites with the same PFT and no measurements. This upscaling strategy was evaluated in this work for sites in Germany and France. Ecosystem parameters and initial conditions were estimated with NEE-time series of one year length, or a time series of only one season. The DREAM(zs) algorithm was used for the estimation of parameters and initial conditions. DREAM(zs) is not limited to Gaussian distributions and can condition to large time series of measurement data simultaneously. DREAM(zs) was used in combination with the Community Land Model (CLM) v4.5. Parameter estimates were evaluated by model predictions at the same site for an independent verification period. In addition, the parameter estimates were evaluated at other, independent sites situated >500km away with the same PFT. The main conclusions are: i) simulations with estimated parameters reproduced better the NEE measurement data in the verification periods, including the annual NEE-sum (23% improvement), annual NEE-cycle and average diurnal NEE course (error reduction by factor 1,6); ii) estimated parameters based on seasonal NEE-data outperformed estimated parameters based on yearly data; iii) in addition, those seasonal parameters were often also significantly different from their yearly equivalents; iv) estimated parameters were significantly different if initial conditions were estimated together with the parameters. We conclude that estimated PFT-specific parameters improve land surface model predictions significantly at independent verification sites and for independent verification periods so that their potential for upscaling is demonstrated. However, simulation results also indicate

  18. Ecosystem CO2 exchange during the snow-covered season in a boreal peatland, Sweden

    NASA Astrophysics Data System (ADS)

    Zhao, Junbin; Peichl, Matthias; Nilsson, Mats

    2014-05-01

    In high latitude areas, ecosystem CO2 emission in the snow-covered season (SCS) is a crucial part of annual carbon budget, which may account for 33-90% of the summer uptake. As snow pack development is sensitive to the warming climate, the change of CO2 flux in SCS is widely concerned, which, however, is still poorly understood. We used the 12-year CO2 exchange data (2001-2012) from an eddy covariance system in a minerogenic mire in Sweden, where the snow-covered season lasts for about 6 months in a year, to evaluate inter-annual change of CO2 flux in SCS and explore the underlying environmental controllers. Sum of net ecosystem CO2 exchange (NEE) in SCS varied from 8.19 to 32.13 gC m-2 (CO2 release), which accounted for 11-41% of the net CO2 uptake during non-snow-covered period of each year. Over the studied years, the NEE during SCS performed a trend of decline (-1.58 gC m-2 year-1), which was attributed to the decreased daily NEE rather than the variation in the duration of SCS. However, we found no single environmental factor that was responsible for the trend. Over the whole SCS, snow depth did not show direct impact on the day-to-day variation of NEE but acted as an important role in insulating the environment below snow pack from the atmosphere. Daily NEE during the period with a deep snow cover (i.e. snow depth >30cm) was relatively lower and was not affected by air or soil temperature. In contrast, the period with a shallow snow cover (i.e. snow depth < 30cm), which was usually shorter, emitted more CO2 and the NEE was influenced by both air and soil temperatures as well as photosynthetically active radiation. At the end of SCS, snow melt usually lasted for about a month and during this period, NEE was jointly driven by air temperature and photosynthetically active radiation. Given a trend of CO2 emission decline in SCS over 2001-2012 and the influence of temperature on day-to-day NEE variation, our results suggest that winter time CO2 flux is an

  19. Diurnal and Seasonal Variations in the Net Ecosystem CO2 Exchange of a Pasture in the Three-River Source Region of the Qinghai−Tibetan Plateau

    PubMed Central

    Wang, Bin; Jin, Haiyan; Li, Qi; Chen, Dongdong; Zhao, Liang; Tang, Yanhong; Kato, Tomomichi; Gu, Song

    2017-01-01

    Carbon dioxide (CO2) exchange between the atmosphere and grassland ecosystems is very important for the global carbon balance. To assess the CO2 flux and its relationship to environmental factors, the eddy covariance method was used to evaluate the diurnal cycle and seasonal pattern of the net ecosystem CO2 exchange (NEE) of a cultivated pasture in the Three-River Source Region (TRSR) on the Qinghai−Tibetan Plateau from January 1 to December 31, 2008. The diurnal variations in the NEE and ecosystem respiration (Re) during the growing season exhibited single-peak patterns, the maximum and minimum CO2 uptake observed during the noon hours and night; and the maximum and minimum Re took place in the afternoon and early morning, respectively. The minimum hourly NEE rate and the maximum hourly Re rate were −7.89 and 5.03 μmol CO2 m−2 s−1, respectively. The NEE and Re showed clear seasonal variations, with lower values in winter and higher values in the peak growth period. The highest daily values for C uptake and Re were observed on August 12 (−2.91 g C m−2 d−1) and July 28 (5.04 g C m−2 day−1), respectively. The annual total NEE and Re were −140.01 and 403.57 g C m−2 year−1, respectively. The apparent quantum yield (α) was −0.0275 μmol μmol−1 for the entire growing period, and the α values for the pasture’s light response curve varied with the leaf area index (LAI), air temperature (Ta), soil water content (SWC) and vapor pressure deficit (VPD). Piecewise regression results indicated that the optimum Ta and VPD for the daytime NEE were 14.1°C and 0.65 kPa, respectively. The daytime NEE decreased with increasing SWC, and the temperature sensitivity of respiration (Q10) was 3.0 during the growing season, which was controlled by the SWC conditions. Path analysis suggested that the soil temperature at a depth of 5 cm (Tsoil) was the most important environmental factor affecting daily variations in NEE during the growing season, and the

  20. BOREAS TGB-3 Plant Species Composition Data over the NSA Fen

    NASA Technical Reports Server (NTRS)

    Bubier, Jill L.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-3) team collected several data sets that contributed to understanding the measured trace gas fluxes over sites in the Northern Study Area (NSA). This data set contains information about the composition of plant species that were within the collars used to measure Net Ecosystem Exchange of CO2 (NEE). The species composition was identified to understand the differences in NEE among the various plant communities in the NSA fen. The data were collected in July of 1994 and 1996. The data are contained in comma-delimited, ASCII files.

  1. Diurnal and Seasonal Variations in the Net Ecosystem CO2 Exchange of a Pasture in the Three-River Source Region of the Qinghai-Tibetan Plateau.

    PubMed

    Wang, Bin; Jin, Haiyan; Li, Qi; Chen, Dongdong; Zhao, Liang; Tang, Yanhong; Kato, Tomomichi; Gu, Song

    2017-01-01

    Carbon dioxide (CO2) exchange between the atmosphere and grassland ecosystems is very important for the global carbon balance. To assess the CO2 flux and its relationship to environmental factors, the eddy covariance method was used to evaluate the diurnal cycle and seasonal pattern of the net ecosystem CO2 exchange (NEE) of a cultivated pasture in the Three-River Source Region (TRSR) on the Qinghai-Tibetan Plateau from January 1 to December 31, 2008. The diurnal variations in the NEE and ecosystem respiration (Re) during the growing season exhibited single-peak patterns, the maximum and minimum CO2 uptake observed during the noon hours and night; and the maximum and minimum Re took place in the afternoon and early morning, respectively. The minimum hourly NEE rate and the maximum hourly Re rate were -7.89 and 5.03 μmol CO2 m-2 s-1, respectively. The NEE and Re showed clear seasonal variations, with lower values in winter and higher values in the peak growth period. The highest daily values for C uptake and Re were observed on August 12 (-2.91 g C m-2 d-1) and July 28 (5.04 g C m-2 day-1), respectively. The annual total NEE and Re were -140.01 and 403.57 g C m-2 year-1, respectively. The apparent quantum yield (α) was -0.0275 μmol μmol-1 for the entire growing period, and the α values for the pasture's light response curve varied with the leaf area index (LAI), air temperature (Ta), soil water content (SWC) and vapor pressure deficit (VPD). Piecewise regression results indicated that the optimum Ta and VPD for the daytime NEE were 14.1°C and 0.65 kPa, respectively. The daytime NEE decreased with increasing SWC, and the temperature sensitivity of respiration (Q10) was 3.0 during the growing season, which was controlled by the SWC conditions. Path analysis suggested that the soil temperature at a depth of 5 cm (Tsoil) was the most important environmental factor affecting daily variations in NEE during the growing season, and the photosynthetic photon flux

  2. Conceptontwerp nieuwe slaapmatten (Concept Design of Sleeping Mattresses)

    DTIC Science & Technology

    2008-11-01

    gaven geen antwoord op deze vraag. Vraag 13) Is het slaapmatje ooit stuk gegaan tijdens operationeel gebruik? Aantal Ja 25 nee 13 Vraag 14) Hoe...matje stuk is, wordt deze geruild. valt weinig aan te repareren. - Kapot is inleveren en ruilen voor nieuw. Vraag 19) U mag de cijfers 1, 2, 3, 4 en 5...nl.: TNO-rapport | TNO-DV 2008 A486 Bijlage B | 6/9 vraag 14) Is het slaapmatje ooit stuk gegaan tijdens operationeel gebruik? Oja O nee vraag 15

  3. Interactive state-parameter estimation of a crop carbon mass balance model through the assimilation of observed winter wheat carbon flux and stock data

    NASA Astrophysics Data System (ADS)

    Sus, O.; Williams, M. D.; Gruenwald, T.

    2010-12-01

    Next to the consideration of land management practises, modelling the carbon balance of croplands requires a crop carbon budget model that realistically simulates photosynthesis, ecosystem respiration, soil carbon dynamics, and phenology dependant on crop-specific parameters and carbon allocation patterns. A crop carbon mass balance model is a tool which can aid to answer questions related to cropland carbon sequestration potential, best-practise recommendations, seasonal patterns and amplitude of net carbon exchange (NEE), and prediction of biomass growth and crop yield. However, land management complicates modelling of cropland NEE by largely determining the onset and length of the growing season of agricultural areas. Human decision making on crop cultivars, sowing and harvest dates, and management practices is difficult to simulate, and corresponding reliable data for larger spatial and temporal scales is still sparse. Crop carbon budget models require a specific set of parameters, some of which are poorly understood and are thus of empirical rather than mechanistic nature. Here, we present a study that deals with the assimilation of observations of both carbon flux and stock data into a crop C budget model (SPAc). Our data assimilation procedure (the Ensemble Kalman Filter, EnKF) aims at updating both model states and parameters, so that we will gain insight into optimized parameter values and carbon stock/flux estimates within quantified confidence limits. We obtained measured data of NEE, LAI, and leaf, root, stem, and storage organ dry mass for a winter wheat season in 2005/2006 from the CarboEurope Fluxnet site at Klingenberg/Germany. We conducted several model experiments, for each of which we assimilated a unique combination of data sources. We find that the assimilation of NEE data leads to reduced model error (observed vs. modelled NEE) compared to a model run without data assimilation (a reduction of ~15-20% of RMSE). The assimilated dry mass data on

  4. PRESENT; PREScription of Enteral Nutrition in pediaTric Crohn's disease in Spain.

    PubMed

    Navas-López, Victor Manuel; Martín-de-Carpi, Javier; Segarra, Oscar; García-Burriel, José Ignacio; Díaz-Martín, Juan José; Rodríguez, Alejandro; Medina, Enrique; Juste, Mercedes

    2014-03-01

    Objetivos: La nutrición enteral exclusiva (NEE) es una de las estrategias terapéuticas empleadas para inducir la remisión en niños con enfermedad de Crohn (EC). Pese a que la NEE se recomienda en las guías de práctica clínica y en los documentos de consenso, la frecuencia real de su empleo en España es desconocida. Métodos: Encuesta compuesta por 70-items (PRESENT: PREScription of Enteral Nutrition in pediaTric Crohn’s disease in Spain) que se distribuyó a través de la lista de distribución de Sociedad Española de Gastroenterología, Hepatología y Nutrición Pediátrica (SEGHNP). Resultados: Se recibieron los datos de 51 unidades de Gastroenterología Pediátrica del territorio español. De los 287 pacientes recién diagnosticados de EC durante los años 2011-12 en esos centros (139 en 2011 y 148 en 20212), 182 (63%) recibieron NEE (58% en 2011 y 68% en 2012). El 26% de los pacientes que recibieron NEE estaban en recaída. Todos los facultativos que respondieron pensaban que la NEE es efectiva para inducir la remisión clínica en los brotes leves-moderados. El 24,5% no emplean la NEE durante las recaídas. Las formulas enterales empleadas más frecuentemente fueron las específicas para EC (70,6%), la vía oral fue la más utilizada, el 60,8% utilizaron saborizantes y el 9,8% de las unidades permitían un porcentaje variable de calorías en forma de otros alimentos durante el periodo de NEE. El 65% emplearon 5-ASA junto con la NEE, el 69% antibióticos y hasta un 95% inmunomoduladores. La duración de la NEE fue de 8 semanas en el 47,1% de los casos, la transición hacia una dieta normal se realizó de forma secuencial. En relación a las barreras y factores limitantes encontrados por los respondedores para instaurar la NEE destacaban la falta de aceptación por el paciente y/o la familia (71%), falta de tiempo o de personal auxiliar (69%) y la dificultad para convencer al paciente o su familia de la idoneidad del tratamiento (43%). Conclusiones

  5. Inter-annual variability in Alaskan net ecosystem CO2 exchange

    NASA Astrophysics Data System (ADS)

    Luus, Kristina; Lindaas, Jakob; Commane, Roisin; Euskirchen, Eugenie; Oechel, Walter; Zona, Donatella; Chang, Rachel; Kelly, Richard; Miller, Charles; Wofsy, Steven; Lin, John

    2015-04-01

    The high-latitude biospheric carbon cycle's responses to climate change are predicted to have an important role in determining future atmospheric concentrations of CO2. In response to warming soil and air temperatures, Arctic wetlands have been observed to increase rates of both soil C efflux and vegetation C uptake through photosynthesis. However, insights into the regional-scale consequences of these processes for net C uptake have been limited by the large uncertainties existing in process-based model estimates of Arctic net ecosystem CO2 exchange (NEE). The Polar Vegetation Photosynthesis and Respiration Model (PolarVPRM) instead provides data-driven, satellite-based estimates of high-latitude NEE, using a framework which specifically accounts for polar influences on NEE. PolarVPRM calculates NEE as the sum of respiration (R) and gross ecosystem exchange (GEE), where GEE refers to the light-dependent portion of NEE: NEE= -GEE + R. Meteorological inputs for PolarVPRM are provided by the North American Regional Reanalysis (NARR), and land surface inputs are acquired from the Moderate Resolution Imaging Spectroradiometer (MODIS). Growing season R is calculated from air temperature, and subnivean R is calculated according to soil temperature. GEE is calculated according to shortwave radiation, air temperature, and MODIS-derived estimates of soil moisture and vegetation biomass. Previously, model validation has indicated that PolarVPRM showed reasonably good agreement with eddy covariance observations at nine North American Arctic sites, of which three were used for calibration purposes. For this project, PolarVPRM NEE was calculated year-round across Alaska at a three-hourly temporal resolution and a spatial resolution of 1 6°×1 4° (latitude × longitude). The objective of this work was to gain insight into inter-annual variability in Alaskan NEE, R and GEE, and an understanding of which meteorological and land surface drivers account for these observed patterns

  6. Linda S. Gottfredson

    ERIC Educational Resources Information Center

    Wainer, Howard; Robinson, Daniel H.

    2009-01-01

    This article presents an interview with Linda Gottfredson (nee Howarth), who obtained her BA (psychology, Phi Beta Kappa) from UC Berkeley in 1969, served in the Peace Corps in the Malaysian Health Service from 1969 to 1972, and received her PhD (sociology) from Johns Hopkins University (JHU) in 1976. She was Research Scientist at JHU's Center for…

  7. New bactericide derived from Isatin for treating oilfield reinjection water

    PubMed Central

    2012-01-01

    Isatin, an extract from Strobilanthes cusia (Nees) Kuntze, was the base for synthesizing derivatives that were screened for antibacterial activity against oilfield water-borne bacteria. The bacterial groups are sulfate reducing, iron and total. The derivatives were characterized by spectrums and they showed good to moderate activity against sulfate reducing bacteria. PMID:22929650

  8. Climatic Versus Biotic Constraints on Carbon and Water Fluxes in Seasonally Drought-affected Ponderosa Pine Ecosystems. Chapter 2

    NASA Technical Reports Server (NTRS)

    Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.

    2005-01-01

    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE.

  9. Effects of rodent-induced land degradation on ecosytem carbon fluxes in alpine meadow in the Qinghai-Tibet Plateau, China

    NASA Astrophysics Data System (ADS)

    Peng, F.; Quangang, Y.; Xue, X.; Guo, J.; Wang, T.

    2014-10-01

    Land degradation induced by rodent activities is extensively occurred in alpine meadow ecosystem in the Qinghai-Tibet Plateau that would affect the ecosystem carbon (C) balance. We conducted a field experiment with six levels of land degradation (D1-D6, degradation aggravates from D1 to D6) to investigate the effects of land degradation on ecosystem C fluxes. Soil respiration (Rs), net ecosystem exchange (NEE), ecosystem respiration (ER) and gross ecosystem production (GEP) were measured from June to September 2012. Soil respiration, ER, GEP and above-ground biomass (AGB) was significantly higher in slightly degraded (D3 and D6) than in severely degraded land (D1, D2, D4 and D5). Positive averages of NEE in the growing season indicate that alpine meadow ecosystem is a weak C sink during the growing season. Net ecosystem exchange had no significant difference among different degraded levels, but the average NEE in slightly degraded group was 33.6% higher than in severely degraded group. Soil respiration, ER and NEE were positively correlated with AGB whereas soil organic C, labile soil C, total nitrogen (N) and inorganic nitrogen were associated with root biomass (RB). Our results highlight the decline of vegetation C storage of alpine meadow ecosystem with increasing number of rodent holes and suggest the control of AGB on ecosystem C fluxes, and the control of RB on soil C and N with development of land degradation.

  10. Indicators and Methods for Constructing a U.S. Human Well-being Index (HWBI) for Ecosystem Services Research

    EPA Science Inventory

    Humans are dependent upon the services provided by nature, and unless we effectively account for the range of values from ecosystems in our efforts to protect the environment, we cannot sustain human well-being. In light of this dependence, a national measure of well-being is nee...

  11. Large interannual variability in net ecosystem carbon dioxide exchange of a disturbed temperate peatland.

    PubMed

    Aslan-Sungur, Guler; Lee, Xuhui; Evrendilek, Fatih; Karakaya, Nusret

    2016-06-01

    Peatland ecosystems play an important role in the global carbon (C) cycle as significant C sinks. However, human-induced disturbances can turn these sinks into sources of atmospheric CO2. Long-term measurements are needed to understand seasonal and interannual variability of net ecosystem CO2 exchange (NEE) and effects of hydrological conditions and their disturbances on C fluxes. Continuous eddy-covariance measurements of NEE were conducted between August 2010 and April 2014 at Yenicaga temperate peatland (Turkey), which was drained for agricultural usage and for peat mining until 2009. Annual NEE during the three full years of measurement indicated that the peatland acted as a CO2 source with large interannual variability, at rates of 246, 244 and 663 g Cm(-2)yr(-1) for 2011, 2012, and 2013 respectively, except for June 2011, and May to July 2012. The emission strengths were comparable to those found for severely disturbed tropical peatlands. The peak CO2 emissions occurred in the dry summer of 2013 when water table level (WTL) was below a threshold value of -60 cm and soil water content (SCW) below a threshold value of 70% by volume. Water availability index was found to have a stronger explanatory power for variations in monthly ecosystem respiration (ER) than the traditional water status indicators (SCW and WTL). Air temperature, evapotranspiration and vapor pressure deficient were the most significant variables strongly correlated with NEE and its component fluxes of gross primary production and ER.

  12. Evaluation of Growing Season Milestones, Using Eddy Covariance Time-Series of Net Ecosystem Exchange

    NASA Astrophysics Data System (ADS)

    Pastorello, G.; Faybishenko, B.; Poindexter, C.; Menzer, O.; Agarwal, D.; Papale, D.; Baldocchi, D. D.

    2014-12-01

    Common methods for determining timing of plants' developmental events, such as direct observation and remote sensing of NDVI, usually produce data of temporal resolution on the order of one week or more. This limitation can make observing subtle trends across years difficult. The goal of this presentation is to demonstrate a conceptual approach and a computational technique to quantify seasonal, annual and long-term phenological indices and patterns, based on continuous eddy covariance measurements of net ecosystem exchange (NEE) measured at eddy covariance towers in the AmeriFlux network. Using a comprehensive time series analysis of NEE fluxes in different climatic zones, we determined multiple characteristics (and their confidence intervals) of the growing season including: the initiation day—the day when canopy photosynthesis development starts, the photosynthesis stabilization day - the day when the development process of canopy photosynthesis starts to slow down and gradually moves toward stabilization, and the growing season effective termination day. We also determined the spring photosynthetic development velocity and the fall photosynthetic development velocity. The results of calculations using NEE were compared with those from temperature and precipitation data measured at the same AmeriFlux tower stations, as well as with the in-situ directly observed phenological records. The results of calculations of phenological indices from the NEE time-series collected at AmeriFlux sites can be used to constrain the application of other time- and labor-intensive sensing methods and to reduce the uncertainty in identifying trends in the timing of phenological indices.

  13. Consequences of cool-season drought induced plant mortality to Chihuahuan Desert grassland ecosystem and soil respiration dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate change is predicted to increase the severity and frequency of cool-season drought across the arid Southwest US. We quantified net ecosystem carbon dioxide exchange (NEE), ecosystem respiration (Reco), and gross ecosystem photosynthesis (GEP) in response to interannual seasonal precip...

  14. 76 FR 42750 - National Science Board: Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... Information Item: iPlant Annual Report on Award Progress NSB Information Item: National Ecological Observatory Network (NEON) Update NSB Information Item: Network for Earthquake Engineering Simulation (NEES) Update... visitors must report to the NSF visitor desk at the 9th and N. Stuart Streets entrance to receive a...

  15. Registration of N614, A3N615, N616, and N617 Shattercane Genetic Stocks with cytoplasmic or nuclear male-sterility and juicy or dry midribs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four shattercane [Sorghum bicolor subsp. drummondii (Nees ex Steud) de Wet & Harlan] genetic stocks, N614, A3N615, N616, N617 (Reg. No. XXX, PI 665683 to 665686), with A3 cytoplasmic male-sterility or nuclear male-sterility gene ms3 containing either juicy (dd) or dry (DD) culms were developed joint...

  16. Continuum estimates of rotational dielectric friction and polar solvation

    SciTech Connect

    Maroncelli, M.

    1997-01-01

    Dynamical solvation data recently obtained with the probe solute coumarin 153 are used to test the reliability of dielectric continuum models for estimating dielectric friction effects. In particular, the predictions of the Nee{endash}Zwanzig theory of rotational dielectric friction are examined in some detail. The analysis undertaken here uncovers an error made in virtually all previous applications of the Nee{endash}Zwanzig formalism. The error involves neglect of the solvent{close_quote}s electronic polarizability when calculating dielectric friction constants. In highly polar solvents the effect of this neglect is shown to be minor, so that the results of past studies should not be appreciably altered. However, in weakly polar and especially in nondipolar solvents, the proper inclusion of electronic polarizability terms is essential. The equivalence between the Nee{endash}Zwanzig theory of dielectric friction and more general continuum treatments of polar solvation dynamics is also demonstrated. This equivalence enables the use of solvation data to test the reliability of the Nee{endash}Zwanzig description of electrical interactions between a solute and solvent that form the core of this and related continuum theories of dielectric friction. Comparisons to experimental data show that, with the important exception of nondipolar solvents, such continuum treatments provide reasonably accurate ({plus_minus}40{percent}) predictors of time-dependent solvation and/or dielectric friction. {copyright} {ital 1997 American Institute of Physics.}

  17. Reply to DJ Millward

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this Letter to the Editor was to clarify the tenets underlying a mathematical model of energy flux characterizing the obesity epidemic. 1. The obesity epidemic is attributed to an increase in energy intake, since the drop in physical activity energy expenditure (PAEE) that would nee...

  18. Blood Tests

    MedlinePlus

    ... as the kidneys, liver, thyroid, and heart—are working Diagnose diseases and conditions such as cancer, HIV/AIDS, diabetes, anemia (uh-NEE-me-eh), and coronary heart disease Find out whether you have risk factors ... taking are working Assess how well your blood is clotting Overview ...

  19. CARBON FLUXES ON NORTH AMERICAN RANGELANDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seasonal patterns of growth and thus carbon uptake are relevant to both scientists who study ecosystem properties and managers who strive to maintain rangeland productivity. We studied seasonal patterns of net ecosystem exchange of carbon (NEE) on 11 US rangelands over a 6-year period. All sites w...

  20. Estimation of Net Ecosystem Carbon Exchange for the Conterminous United States by Combining MODIS and AmeriFlux Data 1961

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the...

  1. Insect pests and diseases in bioenergy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Louisiana sugarcane, Saccharum spp., and other grassy crops (e.g., grain sorghum, Sorghum bicolor (L.) Moench, and hybrids involving sugarcane; sorghum; sudangrass, Sorghum bicolor ssp. drummondii (Nees ex Steud.) de Wet and Harlan, and others) with potential for bioenergy production are susceptible...

  2. Compensatory water effects link yearly global land CO2 sink changes to temperature.

    PubMed

    Jung, Martin; Reichstein, Markus; Schwalm, Christopher R; Huntingford, Chris; Sitch, Stephen; Ahlström, Anders; Arneth, Almut; Camps-Valls, Gustau; Ciais, Philippe; Friedlingstein, Pierre; Gans, Fabian; Ichii, Kazuhito; Jain, Atul K; Kato, Etsushi; Papale, Dario; Poulter, Ben; Raduly, Botond; Rödenbeck, Christian; Tramontana, Gianluca; Viovy, Nicolas; Wang, Ying-Ping; Weber, Ulrich; Zaehle, Sönke; Zeng, Ning

    2017-01-26

    Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales. Here we use empirical models based on eddy covariance data and process-based models to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance. Our study indicates that spatial climate covariation drives the global carbon cycle response.

  3. Antioxidant Effect of Nanoemulsions Containing Extract of Achyrocline satureioides (Lam) D.C.-Asteraceae.

    PubMed

    Zorzi, Giovanni Konat; Caregnato, Fernanda; Moreira, José Cláudio Fonseca; Teixeira, Helder Ferreira; Carvalho, Edison Luis Santana

    2016-08-01

    Ethanolic extracts of Achyrocline satureioides have pronounced antioxidant activity mainly due to the presence of the flavonoid quercetin. However, direct topical application of the extract is not possible due to the presence of high amounts of ethanol. In this sense, nanoemulsions arise as an alternative for topical formulation associating molecules with limited aqueous solubility. This article describes the development of topical nanoemulsions containing either A. satureioides extract or one of its most abundant flavonoid, quercetin. Nanoemulsions composed of octyldodecanol, egg lecithin, water and extract (NEE), or quercetin (NEQ) were prepared by spontaneous emulsification. This process led to monodisperse nanoemulsions presenting a mean droplet size of approximately 200-300 nm, negative zeta potential, and high association efficiency. A study of quercetin skin retention using porcine skin which was performed using a Franz diffusion cell revealed a higher accumulation of quercetin in skin for NEE when compared to NEQ. Finally, the antioxidant activity of formulations was measured by thiobarbituric acid-reactive species and the APPH model. A lower lipoperoxidation for the extract in respect to quercetin solution was observed. However, no difference between NEQ and NEE lipoperoxidation could be seen. The protection against lipoperoxidation by the formulations was also measured in the skin, where lower formation of reactive species was observed after treatment with NEE. In conclusion, this study shows the formulation effect on the physicochemical properties of nanoemulsions as well as on the skin retention and antioxidant activity of quercetin.

  4. Electrochemical immunosensor based on ensemble of nanoelectrodes for immunoglobulin IgY detection: application to identify hen's egg yolk in tempera paintings.

    PubMed

    Bottari, Fabio; Oliveri, Paolo; Ugo, Paolo

    2014-02-15

    A nanostructured electrochemical biosensor for detecting proteins of interest in work of art, in particular in tempera paintings, is presented. To determine egg yolk we focus here on the determination of immunoglobulin IgY. The transducers are nanoelectrode ensembles (NEEs), prepared via membrane templated electroless deposition of gold. Because of their geometrical and diffusion characteristics, NEEs are characterized by significantly low detection limits, moreover they display the capability of capturing proteins by interaction with the polycarbonate membrane of the NEE. At first, the proteic component of the paint is extracted by ultrasonication in an aqueous buffer, then IgY is captured by incubation on the NEE. The immunoglobulin is detected by treatment with anti-IgY labeled with horse radish peroxidase (Anti-IgY-HRP). The binding of the Anti-IgY-HRP is detected by recording the electrocatalytic signal caused by addition of H2O2 and methylene blue. The sensor detection capabilities are tested by analyzing both paint models, prepared in the lab, and real samples, from paintings of the XVIII-XX century. Multivariate exploratory analysis is applied to classify the voltammetric patterns, confirming the capability to differentiate egg-yolk tempera from other kind of tempera binders as well as from acrylic or oil paints.

  5. Carbon dioxide and water vapour exchange in a tropical dry forest as influenced by the North American Monsoon System (NAMS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better understand the effects and relationship between precipitation, net ecosystem carbon dioxide (NEE) and water vapor exchange (ET), we report a study conducted in the tropical dry forest (TDF) in the northwest of Mexico. Ecosystem gas exchange was measured using the eddy correlation technique...

  6. Rh Incompatibility

    MedlinePlus

    ... attack the baby's red blood cells. This can lead to hemolytic anemia (HEE-moh-lit-ick uh-NEE-me-uh) ... baby won't get enough oxygen. This can lead to serious problems. Severe hemolytic anemia may even be fatal to the child. Outlook ...

  7. Dynamic evolution of precise regulatory encodings creates the clustered site signature of enhancers

    PubMed Central

    Crocker, Justin; Potter, Nathan; Erives, Albert

    2010-01-01

    Concentration gradients of morphogenic proteins pattern the embryonic axes of Drosophila by activating different genes at different concentrations. The neurogenic ectoderm enhancers (NEEs) activate different genes at different threshold levels of the Dorsal (Dl) morphogen, which patterns the dorsal/ventral axis. NEEs share a unique arrangement of highly constrained DNA-binding sites for Dl, Twist (Twi), Snail (Sna) and Suppressor of Hairless (Su(H)), and encode the threshold variable in the precise length of DNA that separates one well-defined Dl element from a Twi element. However, NEEs also possess dense clusters of variant Dl sites. Here, we show that these increasingly variant sites are eclipsed relic elements, which were superseded by more recently evolved threshold encodings. Given the divergence in egg size during Drosophila lineage evolution, the observed characteristic clusters of divergent sites indicate a history of frequent selection for changes in threshold responses to the Dl morphogen gradient and confirm the NEE structure/function model. PMID:20981027

  8. Evaluating the Significance of CDK2-PELP1 Axis in Tumorigenesis and Hormone Therapy Resistance

    DTIC Science & Technology

    2011-02-01

    Rambabu Challa1, Bramanandam Manavathi3, nee Yew2, Rakesh Kumar4, Rajeshwar Rao Tekmal1, and Ratna K. Vadlamudi1ract Estr influen recept cancer genesi the...breast cancer progression. Cancer Res; 70(18); 7166–75. ©2010 AACR.CDK2 of tum emerg stream crucia Estr prolife glands gressio cycle ductio is prop

  9. Addressable nanoelectrode membrane arrays: fabrication and steady-state behavior.

    PubMed

    Zoski, Cynthia G; Yang, Nianjun; He, Peixin; Berdondini, Luca; Koudelka-Hep, Milena

    2007-02-15

    An addressable nanoelectrode membrane array (ANEMA) based on a Au-filled track-etched polycarbonate membrane was fabricated. The Au-filled membrane was secured to a lithographically fabricated addressable ultramicroelectrode (UME) array patterned with 25 regularly spaced (100 microm center to center spacing), 10 microm diameter recessed Pt UMEs to create 25 microregions of 10 microm diameter nanoelectrode ensembles (NEEs) on the membrane. The steady-state voltammetric behavior of 1.0 mM Ru(NH(3))(6)Cl(3) and 1.0 mM ferrocene methanol in 0.1 M KCl on each of the micro NEEs resulted in sigmoidal-shaped voltammograms which were reproducible across the ANEMA. This reproducibility of the steady-state current was attributed to the overlapping hemispherical diffusion layers at the Au-filled nanopores of each 10 microm diameter NEE of a ANEMA. The track-etched polycarbonate membranes were filled using a gold electroless deposition procedure into the 30 nm diameter pores in the membrane. Electrical connection between the Au-filled template array and the lithographic UME platform array was achieved by potentiostatic electrodeposition of Cu from an acidic copper solution into each of the 25 recessed Pt UMEs on the UME array platform. A multiplexer unit capable of addressing 64 individual micro NEEs on an ANEMA is described. ANEMAs have advantages of high reproducibility, facile fabrication, multitime reuse of lithographically fabricated UME arrays, and purely steady-state behavior.

  10. Effects of alpha adrenoceptor blockade on renal nerve stimulation-induced norepinephrine release and vasoconstriction in the dog kidney.

    PubMed

    Hisa, H; Araki, S; Tomura, Y; Hayashi, Y; Satoh, S

    1989-02-01

    Effects of alpha-antagonists on renal norepinephrine (NE) release and vasoconstriction induced by renal nerve stimulation (RNS) were examined in pentobarbital-anesthetized dogs. RNS at 1,2 and 3 Hz (1 msec duration, 10-20 V) for 1 min decreased renal blood flow (RBF) and increased both the renal venous NE concentration (NEC) and calculated renal NE efflux (NEE). The RBF responses to 2 and 3 Hz RNS and NEC responses to 1, 2 and 3 Hz RNS during intrarenal arterial infusion of yohimbine (1.0 micrograms/kg/min) were greater than those observed during the control period. The NEE responses to 1 and 2 Hz RNS, but not to 3 Hz RNS, were also potentiated by the yohimbine infusion. Prazosin treatment (0.2 mg/kg i.v.) attenuated the RBF responses. Subsequent infusion of yohimbine potentiated both the NEC and NEE responses to 1, 2 and 3 Hz RNS in this alpha-1 adrenoceptor-blocked state. These results suggest that an alpha-2 adrenoceptor-mediated inhibitory mechanism of neural NE release exists in the dog kidney, which can be activated by endogenously released catecholamines to modulate the neural control of renal hemodynamics. Alpha-1 adrenoceptor-mediated renal vasoconstriction may affect the evaluation of neural NE release by NEE when high-frequency RNS is applied during inhibition of the alpha-2 adrenoceptor-mediated mechanism.

  11. Net ecosystem CO2 exchange of a primary tropical peat swamp forest in Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Tang Che Ing, A.; Stoy, P. C.; Melling, L.

    2014-12-01

    Tropical peat swamp forests are widely recognized as one of the world's most efficient ecosystems for the sequestration and storage of carbon through both their aboveground biomass and underlying thick deposits of peat. As the peat characteristics exhibit high spatial and temporal variability as well as the structural and functional complexity of forests, tropical peat ecosystems can act naturally as both carbon sinks and sources over their life cycles. Nonetheless, few reports of studies on the ecosystem-scale CO2 exchange of tropical peat swamp forests are available to-date and their present roles in the global carbon cycle remain uncertain. To quantify CO2 exchange and unravel the prevailing factors and potential underlying mechanism regulating net CO2 fluxes, an eddy covariance tower was erected in a tropical peat swamp forest in Sarawak, Malaysia. We observed that the diurnal and seasonal patterns of net ecosystem CO2 exchange (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (RE)) varied between seasons and years. Rates of NEE declined in the wet season relative to the dry season. Conversely, both the gross primary productivity (GPP) and ecosystem respiration (RE) were found to be higher during the wet season than the dry season, in which GPP was strongly negatively correlated with NEE. The average annual NEE was 385 ± 74 g C m-2 yr-1, indicating the primary peat swamp forest functioned as net source of CO2 to the atmosphere over the observation period.

  12. Do plant population and planting date make a difference in corn production?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One management practice that can positively or negatively impact corn yield is plant population. Yield potential can also be influenced by the date of planting, which is strongly linked to the at-planting and in-season weather and climatic conditions. Even when considering management changes, we nee...

  13. EPA DETERMINATION STUDIES ON THE CONTROL OF TOXIC AIR POLLUTION EMISSIONS FROM ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The U. S. Environmental Protection Agency (EPA) is to determine whether the regulation of hazardous air pollution (HAP) emissions from electric utility generating plants is necessary. This determination is to be made on or before December 15, 2000. It focuses primarily on the nee...

  14. 76 FR 11821 - Submission for OMB Review; Comment Request Survey of Principal Investigators on Earthquake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... Submission for OMB Review; Comment Request Survey of Principal Investigators on Earthquake Engineering... Investigators on Earthquake Engineering Research Awards Made by the National Science Foundation, 2003-2009. Type... George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES). The purpose of the...

  15. Carbon isotope ratios document that the elytra of western corn rootworm reflects adult versus larval feeding and later instar larvae prefer Bt corn to alternate hosts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is a major pest of maize, Zea mays L., worldwide. While exploring conventional approaches to management and more recently bioengineering, extended research has been conducted on ways to manage its root-feeding larvae. The nee...

  16. Collection and seed production of Allium acuminatum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a component of Greater Sage-Grouse and Southern Idaho Ground Squirrel habitat, Allium acuminatum Hook. (Taper-tip onion) has been targeted for use in restoration projects and conservation. Before a native plant can be used in large or small projects in the landscape quantities of propagules nee...

  17. Indigenous Educational Models for Contemporary Practice: In Our Mother's Voice. Sociocultural, Political, and Historical Studies in Education.

    ERIC Educational Resources Information Center

    Nee-Benham, Maenette Kape'ahiokalani Padeken Ah, Ed.

    This book presents a collection of papers on the rights of indigenous students to an equal education. The 15 chapters include: (1) "Gathering Together To Travel to the Source: A Vision for a Language and Culture-Based Educational Model" (Maenette Kape'ahiokalani Padeken Ah Nee-Benham and Joanne Elizabeth Cooper); (2) "Building a Child-Centered…

  18. FACILITATING ADVANCED URBAN METEOROLOGY AND AIR QUALITY MODELING CAPABILITIES WITH HIGH RESOLUTION URBAN DATABASE AND ACCESS PORTAL TOOLS

    EPA Science Inventory

    Information of urban morphological features at high resolution is needed to properly model and characterize the meteorological and air quality fields in urban areas. We describe a new project called National Urban Database with Access Portal Tool, (NUDAPT) that addresses this nee...

  19. The soil moisture active passive validation experiment 2012 (SMAPVEX12): pre-launch calibration and validation of the SMAP satellite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite is scheduled for launch in November 2014. In order to develop robust soil moisture retrieval algorithms that fully exploit the unique capabilities of SMAP, algorithm developers had identified a nee...

  20. Nutritional Needs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dramatic growth of infants during the 1st yr of life (a 3-fold increase in weight; a 50% increase in length) and continued growth, albeit at lower rates, from 1 yr of age through adolescence impose unique nutritional needs. The needs for growth are superimposed on relatively high maintenance nee...

  1. Thermal adaptation of net ecosystem exchange

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal adaptation of gross primary production and ecosystem respiration has been well documented over broad thermal gradients. However, no study has examined their interaction as a function of temperature, i.e. the thermal responses of net ecosystem exchange of carbon (NEE). In this study, we const...

  2. MaizeGDB: everything old is new again! [abstract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The focus of genetic, genomic, and breeding research evolves over time, making it necessary to continually redefine the paradigm for data access and data analysis tools. Here we report the reinvention of MaizeGDB, the maize genetics and genomics database, to meet maize researchers’ ever changing nee...

  3. 75 FR 74036 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ...-001. Applicants: The Trustees of the University of Pennsylvania. Description: McNees Wallace & Nurick LLC council to The Trustees of the University of PA, a PA Non-Profit Corp requests a shortened.... Docket Numbers: ER11-2157-000. Applicants: EWO Marketing, Inc. Description: EWO Marketing, Inc....

  4. ELEVATED CO2 AND TEMPERATURE ALTER THE ECOSYSTEM C EXCHANGE IN A YOUNG DOUGLAS FIR MESOCOSM EXPERIMENT

    EPA Science Inventory

    We investigated the effects of elevated CO2 (EC) [ambient CO2 (AC) + 190 ppm] and elevated temperature (ET) [ambient temperature (AT) + 3.6 °C] on net ecosystem exchange (NEE) of seedling Douglas fir (Pseudotsuga menziesii) mesocosms. As the study utilized seedlings in reconstruc...

  5. Root expression from a Beta vulgaris promoter in transgenic Arabidopsis plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tighter control of gene expression can be achieved by using promoters for expressing genes in a tissue-specific and temporal manner without imparting deleterious effects on non-target tissue. Inducible gene promoters that are specifically activated by pathogen invasion or insect pest attack are nee...

  6. [Net carbon exchange and its environmental affecting factors in a forest plantation in Badaling, Beijing of China].

    PubMed

    Tang, Xiang; Chen, Wen-Jing; Li, Chun-Yi; Zha, Tian-Shan; Wu, Bin; Wang, Xiao-Ping; Jia, Xin

    2013-11-01

    By using eddy covariance technique, a year-round (November, 2011-October, 2012) continuous measurement of net ecosystem carbon dioxide exchange (NEE) was conducted in a 4-year old mixed forest plantation in Badaling of Beijing. The forest plantation ecosystem was a net carbon sink in July and August, but a carbon source in the rest months. The monthly net carbon loss and uptake were the largest in April and July, respectively. The annual net ecosystem productivity was (-256 +/- 21) g C x m(-2) x a(-1), in which, the ecosystem respiration was (950 +/- 36) g C x m(-2) x a(-1), and the gross ecosystem productivity was (694 +/- 17) g C x m(-2) x a(-1). The nighttime NEE increased exponentially with the soil temperature at 10 cm depth, with the estimated temperature sensitivity of ecosystem respiration (Q10 ) being 2.2. During the growth season (May-September), the daytime NEE increased with photosynthetically active radiation (PAR) as described by the Michaelis-Menten rectangular hyperbola. The ecosystem quantum yield varied seasonally, ranging from 0.0219 micromol CO2 x micromol(-1) in May to 0.0506 micromol CO2 x micromol(-1) in July. The maximum carbon assimilation rate and the average daytime respiration followed the seasonal trends of PAR and air temperature. In July and August, vapor pressure deficit and soil moisture played a significant role in determining daytime NEE.

  7. The EV-1 airborne microwave observatory of subcanopy and subsurface (AirMOSS) investigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AirMOSS is one of the five Earth Venture-1 investigations selected in May 2010, with the goal of improving the estimates of the North American net ecosystem exchange (NEE) through high-resolution observations of root zone soil moisture (RZSM). The 5-year AirMOSS investigation is deigned to overlap w...

  8. Climatic versus biotic constraints on carbon and water fluxes in seasonally drought-affected ponderosa pine ecosystems

    NASA Astrophysics Data System (ADS)

    Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.

    2004-12-01

    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (<10%), largest at the MS (>50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE.

  9. What's the Deal with Dialysis?

    MedlinePlus

    ... ih-sis) uses a filtering machine to remove waste and extra fluid from your blood. In the second type, called peritoneal (say: per-uh-tuh-NEE-ul) dialysis , the actual filtering is done by the lining of the person's belly! Kids who need dialysis are most likely ...

  10. Quantum Cascade Lasers

    DTIC Science & Technology

    2007-11-02

    predicted small linewidth enhancement factor of QC lasers was measured in outside collaboration ( Prof . Shun-Lien Chuang at UIUC) and confirmed to be...Gmachl, Michael C. Wanke, Federico Capasso, Albert L. Hutchinson, Deborah L. Sivco, Sung- Nee G. Chu, and Alfred Y. Cho “Surface plasmon quantum cascade

  11. Analysis of isotopic labeling in peptide fragments by tandem mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cellular phenotype is the consequence of dynamic metabolic events that occur in a spacially dependent fashion. This spatial and temporal complexity presents challenges for investigating primary metabolism and improved methods to probe biochemical events such as amino acid biosynthesis may be nee...

  12. Implementing Strategic Management of Producibility in Military Hardware Design

    DTIC Science & Technology

    1985-05-01

    production life. Maximum producibility can not be reached unless it is nee Figura 5 considered prior to commencing production. The cost savings...from your publica ion will be greatfully acknowledged in my thesis and any possible follow on journal articles or presentations. Si ncer’el y. -12

  13. Compensatory water effects link yearly global land CO2 sink changes to temperature

    NASA Astrophysics Data System (ADS)

    Jung, Martin; Reichstein, Markus; Schwalm, Christopher R.; Huntingford, Chris; Sitch, Stephen; Ahlström, Anders; Arneth, Almut; Camps-Valls, Gustau; Ciais, Philippe; Friedlingstein, Pierre; Gans, Fabian; Ichii, Kazuhito; Jain, Atul K.; Kato, Etsushi; Papale, Dario; Poulter, Ben; Raduly, Botond; Rödenbeck, Christian; Tramontana, Gianluca; Viovy, Nicolas; Wang, Ying-Ping; Weber, Ulrich; Zaehle, Sönke; Zeng, Ning

    2017-01-01

    Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales. Here we use empirical models based on eddy covariance data and process-based models to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance. Our study indicates that spatial climate covariation drives the global carbon cycle response.

  14. Estimating Pan Arctic Net Ecosystem Exchange using Functional Relationships with Air temperature, Leaf Area Index and Photosynthetic Active Radiation

    NASA Astrophysics Data System (ADS)

    Mbufong, H.; Kusbach, A.; Lund, M.; Persson, A.; Christensen, T. R.; Tamstorf, M. P.; Connolly, J.

    2015-12-01

    The high variability in Arctic tundra net ecosystem exchange (NEE) of carbon (C) is often attributed to the high spatial heterogeneity of Arctic tundra. Current models of carbon exchange thus handle the Arctic as either a single or few ecosystems, responding to environmental change in the same manner. In this study, we developed and tested a simple NEE model using the Misterlich light response curve (LRC) function with photosynthetic photon flux density (PPFD) as the main driving variable. Model calibration was carried out with eddy covariance carbon dioxide data from 12 Arctic tundra sites. The model input parameters (fcsat, Rd and α) were estimated as a function of air temperature and leaf area index (LAI) and represent specific characteristics of the NEE-PPFD relationship. They describe the saturation flux, dark respiration and initial light use efficiency, respectively. While remotely sensed LAI is readily available as a MODIS Terra product (MCD15A3), air temperature was estimated from a direct relationship with MODIS land surface temperature (MOD11A2, LST). Therefore, no specific knowledge of the vegetation type is required. Preliminary results show the model captures the spatial heterogeneity of the Arctic tundra but so far, overestimates NEE on all 17 test sites which include heaths, bogs, fens, and tussock tundra vegetation. The final updated results and error assessment will be presented at the conference in December.

  15. Splinter Protection for Airbase Firefighting Resources

    DTIC Science & Technology

    1989-12-01

    Hardened Construction, Shotcret , Corrugated Steel Pipe, Ccnventional Weapons. - 19.IVSTRACT (Continue on reverse if nee.•sry and identify by block...structure with a concrete floor and the other con- sisted of a reinforced concrete ( shotcrete ) arch. A suggested test plan is included for field testing the...13 5. Cost ........................................... 14 G. SHOTCRETE ARCH .................................... 14 1. Constructibility

  16. A new Gonatocerus (Hymenoptera:Mymaridae) from Argentina, with taxonomic notes and molecular data on the G. tuberculifemur species complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gonatocerus deleoni Triapitsyn, Logarzo & Virla sp. n., reared from sentinel eggs of Tapajosa rubromarginata (Signoret) (Cicadellidae: Cicadellinae: Proconiini) on citrus plants, a new member of the ater species group of Gonatocerus Nees (Mymaridae), is described from the state of Mendoza, Argentina...

  17. A new species of Gonatocerus (Hymenoptera: Mymaridae) from Argentina, an egg parasitoid of Tapajosa rubromarginata (Hemiptera: Cleadellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new species from the ater species group of Gonatocerus Nees (Mymaridae) is described from Argentina. Specimens of G. virlai S. Triapitsyn, Logarzo & de León sp. n. were reared mostly from wild-collected and sentinel eggs of the proconiine sharpshooter Tapajosa rubromarginata (Signoret) (Cicadelli...

  18. A new Gonatocerus (Hymenoptera: Mymaridae) from Argentina, with taxonomic notes and molecular data on the G. tuberculifemur species complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new member of the ater species group of Gonatocerus Nees (Mymaridae) is described from the state of Mendoza in Argentina. Specimens of G. deleoni Triapitsyn, Logarzo & Virla sp. n. were first reared in San Rafael from sentinel eggs of the proconiine sharpshooter Tapajosa rubromarginata (Signoret) ...

  19. Exploring the Adolescent's Creative Pathways: Mindfulness, Role Fluidity, Story, and the Dramatic Curriculum

    ERIC Educational Resources Information Center

    McNees, David

    2015-01-01

    David McNees' deep foray into creativity theory and drama begins with mindfulness as a preparation for adolescent focus. This article discusses role incarnation, the correlation of the three-period lesson to Landy's role theory, the creation and re-creation of personal story and identity, archetypal heroes, and how the adaptability learned in…

  20. Lemongrass productivity oil content and composition as a function of nitrogen sulfur and harvest time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lemongrass [Cymbopogon flexuosus (Steud.) Wats, (syn. Andropogon nardus var. flexuosus Hack; A. flexuosus Nees)] is one of the most widely grown essential oil plants in the world. Field experiments were conducted at Verona and Poplarville, Mississippi, to evaluate the effects of N (0, 40, 80, and 16...

  1. Women in History--Mary Seacole

    ERIC Educational Resources Information Center

    Harmer, Bonnie

    2005-01-01

    Born in Jamaica in 1805, Mary Seacole (nee Grant), was the daughter of a Black Creole boarding house owner and a Scottish Army officer. Like many Creole doctress women, Seacole was taught African herbal medicine arts from her mother. In addition to understanding traditional herbal medicine, she gleaned an understanding of Western medicine from the…

  2. Complex conductivity response to silver nanoparticles in partially saturated sand columns

    EPA Science Inventory

    The increase in the use of nanoscale materials in consumer products has resulted in a growing concern of their potential hazard to ecosystems and public health from their accidental or intentional introduction to the environment. Key environmental, health, and safety research nee...

  3. Net ecosystem production in a Little Ice Age moraine: the role of plant functional traits

    NASA Astrophysics Data System (ADS)

    Varolo, E.; Zanotelli, D.; Tagliavini, M.; Zerbe, S.; Montagnani, L.

    2015-07-01

    Current glacier retreat allows vast mountain ranges available for vegetation establishment and growth. Little is known about the effective carbon (C) budget of these new ecosystems and how the presence of different vegetation communities, characterized by their specific physiology and life forms influences C fluxes. In this study, using a comparative analysis of the C fluxes of two contrasting vegetation types, we intend to evaluate if the different physiologies of the main species have an effect on Ecosystem Respiration (Reco), Gross Primary Production (GPP), annual cumulated Net Ecosystem Exchange (NEE), and long-term carbon accumulation in soil. The NEE of two plant communities present on a Little Ice Age moraine in the Matsch glacier forefield (Alps, Italy) was measured over two growing seasons. They are a typical C3 grassland, dominated by Festuca halleri All. and a community dominated by CAM rosettes Sempervivum montanum L. on rocky soils. Using transparent and opaque chambers, we extrapolated the ecophysiological responses to the main environmental drivers and performed the partition of NEE into Reco and GPP. Soil samples were collected from the same site to measure long-term C accumulation in the ecosystem. The two communities showed contrasting GPP but similar Reco patterns and as a result significantly different in NEE. The grassland acted mainly as a carbon sink with a total cumulated value of -46.4 ± 35.5 g C m-2 NEE while the plots dominated by the CAM rosettes acted as a source with 31.9 ± 22.4 g C m-2. In spite of the NEE being different in the two plant communities, soil analysis did not reveal significant differences in carbon accumulation. Grasslands showed 1.76 ± 0.12 kg C m-2, while CAM rosettes showed 2.06 ± 0.23 kg C m-2. This study demonstrates that carbon dynamics of two vegetation communities can be distinct even though the growing environment is similar. The physiological traits of the dominant species determine large differences in

  4. A process-level evaluation of the spatiotemporal variability of CO2 fluxes predicted by terrestrial biosphere models using atmospheric data

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Michalak, A. M.; Shiga, Y. P.; Yadav, V.

    2013-12-01

    Terrestrial biosphere models (TBMs) are used to extrapolate local observations and process-level understanding of land-atmosphere carbon exchange to larger regions, and can serve as a predictive tool for examining carbon-climate interactions and global change. Understanding and improving the performance of TBMs is thus crucial to the carbon cycle research community. In this work, we evaluate the spatiotemporal patterns of net ecosystem exchange (NEE) simulated by TBMs using atmospheric CO2 observations and a Geostatistical Inverse Modeling (GIM) framework. The evaluation methodology is based on the ability (or inability) of the spatiotemporal patterns in NEE estimates to explain the variability observed in atmospheric CO2 distribution. More simply, we examine whether the spatiotemporal patterns of NEE simulated by TBMs (including CASA-GFED, ORCHIDEE, VEGAS2 and SiB3) are consistent with the variations observed in the atmosphere. A similar GIM methodology is also applied using environmental variables (such as water availability, temperature, radiation, etc.) rather than TBMs, to explore the environmental processes associated with the variability of NEE, and determine which processes are associated with good/poor performance in TBMs. We find that NEE simulated by TBMs is consistent with that seen by atmospheric measurements more often during growing season months (Apr-Sept) than during the non-growing season. Over Temperate Broadleaf and Mixed Forests, Temperate Coniferous Forests and Temperate Grasslands, Savannas and Shrublands, atmospheric measurements are sufficiently sensitive to NEE fluxes to constrain the evaluation of model performance during the majority of the year (about 7-8 months in a year, mostly in growing season). For these regions and months, at least one of the TBMs is found to be able to reproduce the observed variability, but the most representative TBM varies by region and month. For the remaining months, none of the TBMs are able to reproduce

  5. Variation in Factors Regulating Net Greenhouse Gas Exchange Across Different Vegetation Types at Cape Bounty, Melville Island, Nunavut

    NASA Astrophysics Data System (ADS)

    Scott, N. A.; Blaser, A.; Buckley, E.; Humphreys, E.; Treitz, P.

    2015-12-01

    Global-scale climate simulations predict significant changes both in temperature and moisture regimes in the high Arctic. This could lead to changes in vegetation community distribution, as vegetation communities are distributed along moisture gradients often determined by snowfall patterns across the landscape. Furthermore, changes in soil moisture and temperature could alter fluxes of greenhouse gases such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and the impacts of changes in these controlling factors could vary by vegetation type.We measured both spatial and temporal variation in CO2 fluxes using combinations of eddy covariance, auto-chamber, and static chamber techniques at the Cape Bounty Arctic Watershed Observatory (CBAWO). Measurements were performed in three major plant community types: polar semi-desert (PSD), mid-moisture tundra (MM) and wet sedge meadow (WS). Based on our auto-chamber data collected in all vegetation types, ecosystem respiration (ER) related positively to air temperature, and correlated more strongly with air temperature than soil temperature. Modeled ER based on eddy covariance data and air temperature over MM agreed well with measured ER in the same vegetation type. In the WS community, average net ecosystem exchange (NEE) in 2014 measured by static chambers differed in spectrally separable 'wet' and 'dry' sedge areas (-0.33 and 0.01 µmol m-2 s-1, respectively; p<0.001). Rates of ER also varied across this moisture gradient (p<0.05). Over the entire growing season and multiple years, NEE correlated poorly with air and soil temperature, suggesting that ER is not the dominant processes driving NEE. This can vary, however, over the growing season. In PSD communities measured in 2013, air temperature related positively to NEE early in the growing season, but not during the latter part of the season, when PAR (photosynthesis) became the key factor controlling NEE. Not surprisingly, NEE related strongly (0.93) to

  6. Isotopic air sampling in a tallgrass prairie to partition net ecosystem CO2 exchange

    NASA Astrophysics Data System (ADS)

    Lai, Chun-Ta; Schauer, Andrew J.; Owensby, Clenton; Ham, Jay M.; Ehleringer, James R.

    2003-09-01

    Stable isotope ratios of various ecosystem components and net ecosystem exchange (NEE) CO2 fluxes were measured in a C3-C4 mixture tallgrass prairie near Manhattan, Kansas. The July 2002 study period was chosen because of contrasting soil moisture contents, which allowed us to address the effects of drought on photosynthetic CO2 uptake and isotopic discrimination. Significantly higher NEE fluxes were observed for both daytime uptake and nighttime respiration during well-watered conditions when compared to a drought period. Given these differences, we investigated two carbon-flux partitioning questions: (1) What proportions of NEE were contributed by C3 versus C4 species? (2) What proportions of NEE fluxes resulted from canopy assimilation versus ecosystem respiration? To evaluate these questions, air samples were collected every 2 hours during daytime for 3 consecutive days at the same height as the eddy covariance system. These air samples were analyzed for both carbon isotope ratios and CO2 concentrations to establish an empirical relationship for isoflux calculations. An automated air sampling system was used to collect nighttime air samples to estimate the carbon isotope ratios of ecosystem respiration (δR) at weekly intervals for the entire growing season. Models of C3 and C4 photosynthesis were employed to estimate bulk canopy intercellular CO2 concentration in order to calculate photosynthetic discrimination against 13C. Our isotope/NEE results showed that for this grassland, C4 vegetation contributed ˜80% of the NEE fluxes during the drought period and later ˜100% of the NEE fluxes in response to an impulse of intense precipitation. For the entire growing season, the C4 contribution ranged from ˜68% early in the spring to nearly 100% in the late summer. Using an isotopic approach, the calculated partitioned respiratory fluxes were slightly greater than chamber-measured estimates during midday under well-watered conditions. In addition, time series

  7. Turbulence Considerations for Comparing Ecosystem Exchange over Old-Growth and Clear-Cut Stands For Limited Fetch and Complex Canopy Flow Conditions

    SciTech Connect

    Wharton, S; Schroeder, M; Paw U, K T; Falk, M; Bible, K

    2009-01-08

    Carbon dioxide, water vapor and energy fluxes were measured using eddy covariance (EC) methodology over three adjacent forests in southern Washington State to identify stand-level age-effects on ecosystem exchange. The sites represent Douglas-fir forest ecosystems at two contrasting successional stages: old-growth (OG) and early seral (ES). Here we present eddy flux and meteorological data from two early seral stands and the Wind River AmeriFlux old-growth forest during the growing season (March-October) in 2006 and 2007. We show an alternative approach to the usual friction velocity (u*) method for determining periods of adequate atmospheric boundary layer (ABL) mixing based on the ratio of mean horizontal ({bar u}) and vertical ({bar w}) wind flow to a modified turbulent kinetic energy scale (uTKE). This new parameter in addition to footprint modeling showed that daytime CO{sub 2} fluxes (F{sub NEE}) in small clear-cuts (< 10 hectares) can be measured accurately with EC if micrometeorological conditions are carefully evaluated. Peak midday CO{sub 2} fluxes (F{sub NEE} = -14.0 to -12.3 {micro}mol m{sup -2} s{sup -1}) at OG were measured in April in both 2006 and 2007 before bud break when air and soil temperatures and vapor pressure deficit were relatively low, and soil moisture and light levels were favorable for photosynthesis. At the early seral stands, peak midday CO{sub 2} fluxes (F{sub NEE} = -11.0 to -8.7 {micro}mol m{sup -2} s{sup -1}) were measured in June and July while spring-time CO{sub 2} fluxes were much smaller (F{sub NEE} = -3.8 to -3.6 {micro}mol m{sup -2} s{sup -1}). Overall, we measured lower evapotranspiration (OG = 230 mm; ES = 297 mm) higher midday F{sub NEE} (OG F{sub NEE} = -9.0 {micro}mol m{sup -2} s{sup -1}; ES F{sub NEE} = -7.3 {micro}mol m{sup -2} s{sup -1}) and higher Bowen ratios (OG {beta} = 2.0. ES {beta} = 1.2) at the old-growth forest than at the ES sites during the summer months (May-August). Eddy covariance studies such as ours

  8. The behavior of multiple independent managers and ecological traits interact to determine prevalence of weeds.

    PubMed

    Coutts, Shaun R; Yokomizo, Hiroyuki; Buckley, Yvonne M

    2013-04-01

    Management of damaging invasive plants is often undertaken by multiple decision makers, each managing only a small part of the invader's population. As weeds can move between properties and re-infest eradicated sites from unmanaged sources, the dynamics of multiple decision makers plays a significant role in weed prevalence and invasion risk at the landscape scale. We used a spatially explicit agent-based simulation to determine how individual agent behavior, in concert with weed population ecology, determined weed prevalence. We compared two invasive grass species that differ in ecology, control methods, and costs: Nassella trichotoma (serrated tussock) and Eragrostis curvula (African love grass). The way decision makers reacted to the benefit of management had a large effect on the extent of a weed. If benefits of weed control outweighed the costs, and either net benefit was very large or all agents were very sensitive to net benefits, then agents tended to act synchronously, reducing the pool of infested agents available to spread the weed. As N. trichotoma was more damaging than E. curvula and had more effective control methods, agents chose to manage it more often, which resulted in lower prevalence of N. trichotoma. A relatively low number of agents who were intrinsically less motivated to control weeds led to increased prevalence of both species. This was particularly apparent when long-distance dispersal meant each infested agent increased the invasion risk for a large portion of the landscape. In this case, a small proportion of land mangers reluctant to control, regardless of costs and benefits, could lead to the whole landscape being infested, even when local control stopped new infestations. Social pressure was important, but only if it was independent of weed prevalence, suggesting that early access to information, and incentives to act on that information, may be crucial in stopping a weed from infesting large areas. The response of our model to both

  9. Detecting Disturbance and its Impact on Ecosystem Carbon Balance from Global to Regional Scales

    NASA Astrophysics Data System (ADS)

    Ballantyne, A.; Jacobson, A. R.; Anderegg, W.; Poulter, B.; Cooper, L. A.; Smith, W. K.; Miller, J. B.

    2015-12-01

    One of the most vital ecosystem services currently provided by the terrestrial biosphere is the removal of approximately one quarter of the anthropogenic CO2 emitted to the atmosphere. However, as patterns of temperature and precipitation change so is the frequency and intensity of ecosystem disturbance. Despite evidence that ecosystem disturbance regimes have shifted leading to widespread forest mortality, the net effect of disturbance on the carbon (C) balance of forest ecosystems remains uncertain. We will use satellite and atmospheric observations to deconvolve net carbon exchange (NEE) into its component fluxes of gross primary productivity and total respiration (e.g. NEE= GPP - R) at global to regional scales. At the global scale we find that NEE has increased over the last 50 years and appears to have accelerated as a result of diminished R over the last 15 years. However the variance in global NEE has also increased perhaps due to inter-annual variability in R, especially within semi-arid ecosystems. These global trends are not necessarily consistent with regional patterns in the net carbon balance, especially across the western US. Atmospheric mass balance suggests that ecosystems of North America have shifted from a net C sink to a net C source. While prolonged drought across the Western US has likely caused this shift in continental scale NEE, attributing this shift in the net C balance to any one mechanism of disturbance (e.g. drought, insect infestation, and fire) or their interactions is challenging. Lastly, we will evaluate existing observing networks, such as NOAA/ESRL and Ameriflux, and how they can be combined with nascent networks, such as NEON, EarthNetworks, and OCO-2, to identify regional disturbance processes that may be causing increasing variance in the global C cycle.

  10. Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO2.

    PubMed

    Keppel-Aleks, Gretchen; Wolf, Aaron S; Mu, Mingquan; Doney, Scott C; Morton, Douglas C; Kasibhatla, Prasad S; Miller, John B; Dlugokencky, Edward J; Randerson, James T

    2014-11-01

    The response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO2) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO2 anomalies. Here we examined how the temporal evolution of CO2 in different latitude bands may be used to separate contributions from temperature stress, drought stress, and fire emissions to CO2 variability. We developed atmospheric CO2 patterns from each of these mechanisms during 1997-2011 using an atmospheric transport model. NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to CO2 variability in each latitude band, suggesting that no single mechanism was the dominant driver. We found that the sum of drought and fire contributions to CO2 variability exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed that these contributions are masked by temporal and spatial smoothing of CO2 observations. Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.9 ± 0.4 Pg C yr(-1) K(-1). These results underscore the need for accurate attribution of the drivers of CO2 variability prior to using contemporary observations to constrain long-term ESM responses.

  11. Diurnal and seasonal variations of CO2 fluxes and their climate controlling factors for a subtropical forest in Ningxiang

    NASA Astrophysics Data System (ADS)

    Jia, Binghao; Xie, Zhenghui; Zeng, Yujin; Wang, Linying; Wang, Yuanyuan; Xie, Jinbo; Xie, Zhipeng

    2015-04-01

    In this study, the diurnal and seasonal variations of CO2 fluxes in a subtropical mixed evergreen forest in Ningxiang of Hunan Province, part of the East Asian monsoon region, were quantified for the first time. The fluxes were based on eddy covariance measurements from a newly initiated flux tower. The relationship between the CO2 fluxes and climate factors was also analyzed. The results showed that the target ecosystem appeared to be a clear carbon sink in 2013, with integrated net ecosystem CO2 exchange (NEE), ecosystem respiration (RE), and gross ecosystem productivity (GEP) of -428.8, 1534.8 and 1963.6 g C m-2yr-1, respectively. The net carbon uptake (i.e. the -NEE), RE and GEP showed obvious seasonal variability, and were lower in winter and under drought conditions and higher in the growing season. The minimum NEE occurred on 12 June (-7.4 g C m-2 d-1), due mainly to strong radiation, adequate moisture, and moderate temperature; while a very low net CO2 uptake occurred in August (9 g C m-2 month-1), attributable to extreme summer drought. In addition, the NEE and GEP showed obvious diurnal variability that changed with the seasons. In winter, solar radiation and temperature were the main controlling factors for GEP, while the soil water content and vapor pressure deficit were the controlling factors in summer. Furthermore, the daytime NEE was mainly limited by the water-stress effect under dry and warm atmospheric conditions, rather than by the direct temperature-stress effect.

  12. Retrieval of average CO2 fluxes by combining in situ CO2 measurements and backscatter lidar information

    NASA Astrophysics Data System (ADS)

    Gibert, Fabien; Schmidt, Martina; Cuesta, Juan; Ciais, Philippe; Ramonet, Michel; Xueref, IrèNe; Larmanou, Eric; Flamant, Pierre Henri

    2007-05-01

    The present paper deals with a boundary layer budgeting method which makes use of observations from various in situ and remote sensing instruments to infer regional average net ecosystem exchange (NEE) of CO2. Measurements of CO2 within and above the atmospheric boundary layer (ABL) by in situ sensors, in conjunction with a precise knowledge of the change in ABL height by lidar and radiosoundings, enable to infer diurnal and seasonal NEE variations. Near-ground in situ CO measurements are used to discriminate natural and anthropogenic contributions of CO2 diurnal variations in the ABL. The method yields mean NEE that amounts to 5 μmol m-2 s-1 during the night and -20 μmol m-2 s-1 in the middle of the day between May and July. A good agreement is found with the expected NEE accounting for a mixed wheat field and forest area during winter season, representative of the mesoscale ecosystems in the Paris area according to the trajectory of an air column crossing the landscape. Daytime NEE is seen to follow the vegetation growth and the change in the ratio diffuse/direct radiation. The CO2 vertical mixing flux during the rise of the atmospheric boundary layer is also estimated and seems to be the main cause of the large decrease of CO2 mixing ratio in the morning. The outcomes on CO2 flux estimate are compared to eddy-covariance measurements on a barley field. The importance of various sources of error and uncertainty on the retrieval is discussed. These errors are estimated to be less than 15%; the main error resulted from anthropogenic emissions.

  13. Using Airborne Microwave Remotely Sensed Root-Zone Soil Moisture and Flux Measurements to Improve Regional Predictions of Carbon Fluxes in a Terrestrial Biosphere Model

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Antonarakis, A. S.; Medvigy, D.; Burgin, M. S.; Crow, W. T.; Milak, S.; Jaruwatanadilok, S.; Truong-Loi, M.; Moghaddam, M.; Saatchi, S. S.; Cuenca, R. H.; Moorcroft, P. R.

    2013-12-01

    North American ecosystems are critical components of the global carbon cycle, exchanging large amounts of carbon dioxide and other gases with the atmosphere. Net ecosystem exchange (NEE) of CO2 between atmosphere and ecosystems quantifies these carbon fluxes, but current continental-scale estimates contain high levels of uncertainty. Root-zone soil moisture (RZSM) and its spatial and temporal heterogeneity influences NEE and improved estimates can help reduce uncertainty in NEE estimates. We used the RZSM measurements from the Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission, and the carbon, water and energy fluxes observed by the eddy-covariance flux towers to constrain the Ecosystem Demography Model 2.2 (ED2.2) to improve its predictions of carbon fluxes. The parameters of the ED2.2 model were first optimized at seven flux tower sites in North America, which represent six different biomes, by constraining the model against a suite of flux measurements and forest inventory measurements through a Bayesian Markov-Chain Monte Carlo framework. We further applied the AirMOSS RZSM products to constrain the ED2.2 model to achieve better estimates of regional NEE. Evaluation against flux tower measurements and forest dynamics measurements shows that the constrained ED2.2 model produces improved predictions of monthly to annual carbon fluxes. The remote sensing based RZSM can further help improve the spatial patterns and temporal variations of model NEE. The results demonstrate that model-data fusion can substantially improve model performance and highlight the important role of RZSM in regulating the spatial and temporal heterogeneities of carbon fluxes.

  14. Effects of rodent-induced land degradation on ecosystem carbon fluxes in an alpine meadow in the Qinghai-Tibet Plateau, China

    NASA Astrophysics Data System (ADS)

    Peng, F.; Quangang, Y.; Xue, X.; Guo, J.; Wang, T.

    2015-03-01

    The widespread land degradation in an alpine meadow ecosystem would affect ecosystem carbon (C) balance. Biomass, soil chemical properties and carbon dioxide (CO2) of six levels of degraded lands (D1-D6, according to the number of rodent holes and coverage) were investigated to examine the effects of rodent-induced land degradation on an alpine meadow ecosystem. Soil organic carbon (SOC), labile soil carbon (LC), total nitrogen (TN) and inorganic nitrogen (N) were obtained by chemical analysis. Soil respiration (Rs), net ecosystem exchange (NEE) and ecosystem respiration (ER) were measured by a Li-Cor 6400XT. Gross ecosystem production (GEP) was the sum of NEE and ER. Aboveground biomass (AGB) was based on a linear regression with coverage and plant height as independent variables. Root biomass (RB) was obtained by using a core method. Soil respiration, ER, GEP and AGB were significantly higher in slightly degraded (D3 and D6, group I) than in severely degraded land (D1, D2, D4 and D5, group II). Positive values of NEE average indicate that the alpine meadow ecosystem is a weak C sink during the growing season. The only significant difference was in ER among different degradation levels. Rs, ER and GEP were 38.2, 44.3 and 46.5% higher in group I than in group II, respectively. Similar difference of ER and GEP between the two groups resulted in an insignificant difference of NEE. Positive correlations of AGB with ER, NEE and GEP, and relatively small AGB and lower CO2 fluxes in group II, suggest the control of AGB on ecosystem CO2 fluxes. Correlations of RB with SOC, LC, TN and inorganic N indicate the regulation of RB on soil C and N with increasing number of rodent holes in an alpine meadow ecosystem in the permafrost region of the Qinghai-Tibet Plateau (QTP).

  15. Ecosystem CO2/H2O fluxes are explained by hydraulically limited gas exchange during tree mortality from spruce bark beetles

    NASA Astrophysics Data System (ADS)

    Frank, John M.; Massman, William J.; Ewers, Brent E.; Huckaby, Laurie S.; Negrón, José F.

    2014-06-01

    Disturbances are increasing globally due to anthropogenic changes in land use and climate. This study determines whether a disturbance that affects the physiology of individual trees can be used to predict the response of the ecosystem by weighing two competing hypothesis at annual time scales: (a) changes in ecosystem fluxes are proportional to observable patterns of mortality or (b) to explain ecosystem fluxes the physiology of dying trees must also be incorporated. We evaluate these hypotheses by analyzing 6 years of eddy covariance flux data collected throughout the progression of a spruce beetle (Dendroctonus rufipennis) epidemic in a Wyoming Engelmann spruce (Picea engelmannii)-subalpine fir (Abies lasiocarpa) forest and testing for changes in canopy conductance (gc), evapotranspiration (ET), and net ecosystem exchange (NEE) of CO2. We predict from these hypotheses that (a) gc, ET, and NEE all diminish (decrease in absolute magnitude) as trees die or (b) that (1) gc and ET decline as trees are attacked (hydraulic failure from beetle-associated blue-stain fungi) and (2) NEE diminishes both as trees are attacked (restricted gas exchange) and when they die. Ecosystem fluxes declined as the outbreak progressed and the epidemic was best described as two phases: (I) hydraulic failure caused restricted gc, ET (28 ± 4% decline, Bayesian posterior mean ± standard deviation), and gas exchange (NEE diminished 13 ± 6%) and (II) trees died (NEE diminished 51 ± 3% with minimal further change in ET to 36 ± 4%). These results support hypothesis b and suggest that model predictions of ecosystem fluxes following massive disturbances must be modified to account for changes in tree physiological controls and not simply observed mortality.

  16. Cyclic occurrence of fire and its role in carbon dynamics along an edaphic moisture gradient in longleaf pine ecosystems.

    PubMed

    Whelan, Andrew; Mitchell, Robert; Staudhammer, Christina; Starr, Gregory

    2013-01-01

    Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC) and statistical techniques to investigate carbon dynamics in frequently burned longleaf pine savannas along a gradient of soil moisture availability (mesic, intermediate and xeric). This research approach allowed us to investigate the complex interactions between carbon exchange and cyclic fire along the ecological amplitude of longleaf pine. Over three years of EC measurement of net ecosystem exchange (NEE) show that the mesic site was a net carbon sink (NEE = -2.48 tonnes C ha(-1)), while intermediate and xeric sites were net carbon sources (NEE = 1.57 and 1.46 tonnes C ha(-1), respectively), but when carbon losses due to fuel consumption were taken into account, all three sites were carbon sources (10.78, 7.95 and 9.69 tonnes C ha(-1) at the mesic, intermediate and xeric sites, respectively). Nonetheless, rates of NEE returned to pre-fire levels 1-2 months following fire. Consumption of leaf area by prescribed fire was associated with reduction in NEE post-fire, and the system quickly recovered its carbon uptake capacity 30-60 days post fire. While losses due to fire affected carbon balances on short time scales (instantaneous to a few months), drought conditions over the final two years of the study were a more important driver of net carbon loss on yearly to multi-year time scales. However, longer-term observations over greater environmental variability and additional fire cycles would help to more precisely examine interactions between fire and climate and make future predictions about carbon dynamics in these systems.

  17. Does Terrestrial Drought Explain Global CO2 Flux Anomalies Induced by El Nino?

    NASA Technical Reports Server (NTRS)

    Schwalm. C. R.; Williams, C. A.; Schaefer, K.; Baker, I.; Collatz, G. J.; Roedenbeck, C.

    2011-01-01

    The El Nino Southern Oscillation is the dominant year-to-year mode of global climate variability. El Nino effects on terrestrial carbon cycling are mediated by associated climate anomalies, primarily drought, influencing fire emissions and biotic net ecosystem exchange (NEE). Here we evaluate whether El Nino produces a consistent response from the global carbon cycle. We apply a novel bottom-up approach to estimating global NEE anomalies based on FLUXNET data using land cover maps and weather reanalysis. We analyze 13 years (1997-2009) of globally gridded observational NEE anomalies derived from eddy covariance flux data, remotely-sensed fire emissions at the monthly time step, and NEE estimated from an atmospheric transport inversion. We evaluate the overall consistency of biospheric response to El Nino and, more generally, the link between global CO2 flux anomalies and El Nino-induced drought. Our findings, which are robust relative to uncertainty in both methods and time-lags in response, indicate that each event has a different spatial signature with only limited spatial coherence in Amazonia, Australia and southern Africa. For most regions, the sign of response changed across El Nino events. Biotic NEE anomalies, across 5 El Nino events, ranged from -1.34 to +0.98 Pg Cyr(exp -1, whereas fire emissions anomalies were generally smaller in magnitude (ranging from -0.49 to +0.53 Pg C yr(exp -1). Overall drought does not appear to impose consistent terrestrial CO2 flux anomalies during El Ninos, finding large variation in globally integrated responses from 11.15 to +0.49 Pg Cyr(exp -1). Despite the significant correlation between the CO2 flux and El Nino indices, we find that El Nino events have, when globally integrated, both enhanced and weakened terrestrial sink strength, with no consistent response across events

  18. Carbon and energy fluxes in cropland ecosystems: a model-data comparison

    SciTech Connect

    Lokupitiya, E.; Denning, A. S.; Schaefer, K.; Ricciuto, D.; Anderson, R.; Arain, M. A.; Baker, I.; Barr, A. G.; Chen, G.; Chen, J. M.; Ciais, P.; Cook, D. R.; Dietze, M.; El Maayar, M.; Fischer, M.; Grant, R.; Hollinger, D.; Izaurralde, C.; Jain, A.; Kucharik, C.; Li, Z.; Liu, S.; Li, L.; Matamala, R.; Peylin, P.; Price, D.; Running, S. W.; Sahoo, A.; Sprintsin, M.; Suyker, A. E.; Tian, H.; Tonitto, C.; Torn, M.; Verbeeck, Hans; Verma, S. B.; Xue, Y.

    2016-06-03

    Croplands are highly productive ecosystems that contribute to land–atmosphere exchange of carbon, energy, and water during their short growing seasons. We evaluated and compared net ecosystem exchange (NEE), latent heat flux (LE), and sensible heat flux (H) simulated by a suite of ecosystem models at five agricultural eddy covariance flux tower sites in the central United States as part of the North American Carbon Program Site Synthesis project. Most of the models overestimated H and underestimated LE during the growing season, leading to overall higher Bowen ratios compared to the observations. Most models systematically under predicted NEE, especially at rain-fed sites. Certain crop-specific models that were developed considering the high productivity and associated physiological changes in specific crops better predicted the NEE and LE at both rain-fed and irrigated sites. Models with specific parameterization for different crops better simulated the inter-annual variability of NEE for maize-soybean rotation compared to those models with a single generic crop type. Stratification according to basic model formulation and phenological methodology did not explain significant variation in model performance across these sites and crops. The under prediction of NEE and LE and over prediction of H by most of the models suggests that models developed and parameterized for natural ecosystems cannot accurately predict the more robust physiology of highly bred and intensively managed crop ecosystems. When coupled in Earth System Models, it is likely that the excessive physiological stress simulated in many land surface component models leads to overestimation of temperature and atmospheric boundary layer depth, and underestimation of humidity and CO2 seasonal uptake over agricultural regions.

  19. Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO2

    PubMed Central

    Keppel-Aleks, Gretchen; Wolf, Aaron S; Mu, Mingquan; Doney, Scott C; Morton, Douglas C; Kasibhatla, Prasad S; Miller, John B; Dlugokencky, Edward J; Randerson, James T

    2014-01-01

    The response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO2) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO2 anomalies. Here we examined how the temporal evolution of CO2 in different latitude bands may be used to separate contributions from temperature stress, drought stress, and fire emissions to CO2 variability. We developed atmospheric CO2 patterns from each of these mechanisms during 1997–2011 using an atmospheric transport model. NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to CO2 variability in each latitude band, suggesting that no single mechanism was the dominant driver. We found that the sum of drought and fire contributions to CO2 variability exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed that these contributions are masked by temporal and spatial smoothing of CO2 observations. Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.9 ± 0.4 Pg C yr−1 K−1. These results underscore the need for accurate attribution of the drivers of CO2 variability prior to using contemporary observations to constrain long-term ESM responses. PMID:26074665

  20. Seasonal effects of irrigation on land-atmosphere latent heat, sensible heat, and carbon fluxes in semiarid basin

    NASA Astrophysics Data System (ADS)

    Zeng, Yujin; Xie, Zhenghui; Liu, Shuang

    2017-02-01

    Irrigation, which constitutes ˜ 70 % of the total amount of freshwater consumed by the human population, is significantly impacting land-atmosphere fluxes. In this study, using the improved Community Land Model version 4.5 (CLM4.5) with an active crop model, two high-resolution (˜ 1 km) simulations investigating the effects of irrigation on latent heat (LH), sensible heat (SH), and carbon fluxes (or net ecosystem exchange, NEE) from land to atmosphere in the Heihe River basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The model output and measurements from remote sensing demonstrated the capacity of the developed models to reproduce ecological and hydrological processes. The results revealed that the effects of irrigation on LH and SH are strongest during summer, with a LH increase of ˜ 100 W m-2 and a SH decrease of ˜ 60 W m-2 over intensely irrigated areas. However, the reactions are much weaker during spring and autumn when there is much less irrigation. When the irrigation rate is below 5 mm day-1, the LH generally increases, whereas the SH decreases with growing irrigation rates. However, when the irrigation threshold is in excess of 5 mm day-1, there is no accrued effect of irrigation on the LH and SH. Irrigation produces opposite effects to the NEE during spring and summer. During the spring, irrigation yields more discharged carbon from the land to the atmosphere, increasing the NEE value by 0.4-0.8 gC m-2 day-1, while the summer irrigation favors crop fixing of carbon from atmospheric CO2, decreasing the NEE value by ˜ 0.8 gC m-2 day-1. The repercussions of irrigation on land-atmosphere fluxes are not solely linked to the irrigation amount, and other parameters (especially the temperature) also control the effects of irrigation on LH, SH, and NEE.

  1. Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw.

    PubMed

    Mauritz, Marguerite; Bracho, Rosvel; Celis, Gerardo; Hutchings, Jack; Natali, Susan M; Pegoraro, Elaine; Salmon, Verity G; Schädel, Christina; Webb, Elizabeth E; Schuur, Edward A G

    2017-02-16

    Rapid Arctic warming is expected to increase global greenhouse gas concentrations as permafrost thaw exposes immense stores of frozen carbon (C) to microbial decomposition. Permafrost thaw also stimulates plant growth, which could offset C loss. Using data from 7 years of experimental Air and Soil warming in moist acidic tundra, we show that Soil warming had a much stronger effect on CO2 flux than Air warming. Soil warming caused rapid permafrost thaw and increased ecosystem respiration (Reco ), gross primary productivity (GPP), and net summer CO2 storage (NEE). Over 7 years Reco , GPP, and NEE also increased in Control (i.e., ambient plots), but this change could be explained by slow thaw in Control areas. In the initial stages of thaw, Reco , GPP, and NEE increased linearly with thaw across all treatments, despite different rates of thaw. As thaw in Soil warming continued to increase linearly, ground surface subsidence created saturated microsites and suppressed Reco , GPP, and NEE. However Reco and GPP remained high in areas with large Eriophorum vaginatum biomass. In general NEE increased with thaw, but was more strongly correlated with plant biomass than thaw, indicating that higher Reco in deeply thawed areas during summer months was balanced by GPP. Summer CO2 flux across treatments fit a single quadratic relationship that captured the functional response of CO2 flux to thaw, water table depth, and plant biomass. These results demonstrate the importance of indirect thaw effects on CO2 flux: plant growth and water table dynamics. Nonsummer Reco models estimated that the area was an annual CO2 source during all years of observation. Nonsummer CO2 loss in warmer, more deeply thawed soils exceeded the increases in summer GPP, and thawed tundra was a net annual CO2 source.

  2. Land use affects the net ecosystem CO(2) exchange and its components in mountain grasslands.

    PubMed

    Schmitt, M; Bahn, M; Wohlfahrt, G; Tappeiner, U; Cernusca, A

    2010-08-01

    Changes in land use and management have been strongly affecting mountain grassland, however, their effects on the net ecosystem exchange of CO(2) (NEE) and its components have not yet been well documented. We analysed chamber-based estimates of NEE, gross primary productivity (GPP), ecosystem respiration (R) and light use efficiency (LUE) of six mountain grasslands differing in land use and management, and thus site fertility, for the growing seasons of 2002 to 2008. The main findings of the study are that: (1) land use and management affected seasonal NEE, GPP and R, which all decreased from managed to unmanaged grasslands; (2) these changes were explained by differences in leaf area index (LAI), biomass and leaf-area-independent changes that were likely related to photosynthetic physiology; (3) diurnal variations of NEE were primarily controlled by photosynthetically active photon flux density and soil and air temperature; seasonal variations were associated with changes in LAI; (4) parameters of light response curves were generally closely related to each other, and the ratio of R at a reference temperature/ maximum GPP was nearly constant across the sites; (5) similarly to our study, maximum GPP and R for other grasslands on the globe decreased with decreasing land use intensity, while their ratio remained remarkably constant. We conclude that decreasing intensity of management and, in particular, abandonment of mountain grassland lead to a decrease in NEE and its component processes. While GPP and R are generally closely coupled during most of the growing season, GPP is more immediately and strongly affected by land management (mowing, grazing) and season. This suggests that management and growing season length, as well as their possible future changes, may play an important role for the annual C balance of mountain grassland.

  3. Seasonal Carbon Dioxide Exchange of a Grazed Grassland in California

    NASA Astrophysics Data System (ADS)

    Xu, L.; Baldocchi, D. D.

    2001-12-01

    An new Ameriflux site was established in late 2000 to study the exchange of carbon dioxide over an oak/grass savanna and a nearby grazed grassland at the foothill of Sierra Nevada in California. Only data from the grazed grassland will be presented here. The flux measurement, along with measurements of meteorological and soil parameters, were start at the end of October 2000. Results from almost one year's data indicated that most of variance of the CO2 flux can be explained by changes in soil water content and leaf area index (LAI). The grass started to growth around middle of October after receiving substantial rainfall. Midday net ecosystem CO2 exchange (NEE) increased slowly from near zero in early November to about -10 μ mol m-2 s-1 (downward flux is negative) in the middle of March. While the nighttime NEE was around 1 to 3 μ mol m-2 s-1. In the spring, there was a peak growth period when photosynthesis and respiration both accelerated. The maximum LAI was 2.0, reached at this peak period. Midday NEE reached a maximum value of -18 μ mol m-2 s-1, and averaged nighttime NEE ranged from 2 to 5 μ mol m-2 s-1. Then as the soil dried out in the early summer, both daytime photosynthesis and night respiration plummeted to near zero. In the dry summer, small value of soil CO2 efflux during daytime only was observed. From almost one season's data, we found that nighttime ecosystem respiration followed closely to the daytime photosynthetic rate, indicating the importance of photosynthetic assimilates allocation for respiration. Annual integrated carbon exchange over this grazed grassland was estimated to be around -120 g C m-2. Results also show that the seasonality of NEE and growth of grasses are quite different from those mid-western grasslands.

  4. Evaluate the seasonal cycle and interannual variability of carbon fluxes and the associated uncertainties using modeled and observed data

    NASA Astrophysics Data System (ADS)

    Zeng, F.; Collatz, G. J.; Ivanoff, A.

    2013-12-01

    We assessed the performance of the Carnegie-Ames-Stanford Approach - Global Fire Emissions Database (CASA-GFED3) terrestrial carbon cycle model in simulating seasonal cycle and interannual variability (IAV) of global and regional carbon fluxes and uncertainties associated with model parameterization. Key model parameters were identified from sensitivity analyses and their uncertainties were propagated through model processes using the Monte Carlo approach to estimate the uncertainties in carbon fluxes and pool sizes. Three independent flux data sets, the global gross primary productivity (GPP) upscaled from eddy covariance flux measurements by Jung et al. (2011), the net ecosystem exchange (NEE) estimated by CarbonTracker, and the eddy covariance flux observations, were used to evaluate modeled fluxes and the uncertainties. Modeled fluxes agree well with both Jung's GPP and CarbonTracker NEE in the amplitude and phase of seasonal cycle, except in the case of GPP in tropical regions where Jung et al. (2011) showed larger fluxes and seasonal amplitude. Modeled GPP IAV is positively correlated (p < 0.1) with Jung's GPP IAV except in the tropics and temperate South America. The correlations between modeled NEE IAV and CarbonTracker NEE IAV are weak at regional to continental scales but stronger when fluxes are aggregated to >40°N latitude. At regional to continental scales flux uncertainties were larger than the IAV in the fluxes for both Jung's GPP and CarbonTracker NEE. Comparisons with eddy covariance flux observations are focused on sites within regions and years of recorded large-scale climate anomalies. We also evaluated modeled biomass using other independent continental biomass estimates and found good agreement. From the comparisons we identify the strengths and weaknesses of the model to capture the seasonal cycle and IAV of carbon fluxes and highlight ways to improve model performance.

  5. Climate and Biological Controls of Carbon Fluxes along latitudinal gradients

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Yuan, J.; Niu, S.

    2012-12-01

    It has not been carefully examined whether relative importance of climate and biological controls of carbon fluxes is similar among various ecosystem types along latitudinal gradients from the tropical to polar region. We hypothesize that except tropical regions, there is a consistent pattern of climate and biological controls of carbon fluxes across all the other ecosystems. We tested the hypothesis by analyzing data of net ecosystem exchange (NEE) from nearly 200 eddy-flux towers distributed worldwide and simulated gross primary production (GPP) from the Australian Community Atmosphere Land Exchange (CABLE) model. Specifically, we estimated yearly NEE (i.e., NEP), carbon uptake period (CUP) and seasonal maximum of NEE (NEE¬_max) from eddy-flux data. Similarly, we estimated CUP, GPP_max, seasonal maximum leaf area index (LAI_max), and Vcmax from the model across the globe. Our regression analysis indicates that NEP is very tightly correlated with the product of CUP and NEE_max cross all sites. Similarly, simulated GPP is highly correlated with the product of CUP and GPP_max over the globe in the CABLE model. CUP is related to phenology and represents climate control of carbon fluxes while NEE_max or GPP_max is determined by biological processes and thus represents biological control of carbon processes. We further analyzed relationships of GPP_max with LAI_max and Vcmax individually or in combination. GPP_max is highly correlated with them. This talk will present results of our analysis and explain our hypothesis test regarding relative importance of biological and climate controls of carbon fluxes along the latitudinal gradients.

  6. Estimating Large-Scale Carbon Fluxes from Remotely-Sensed Biomass and Vegetation Indices

    NASA Astrophysics Data System (ADS)

    Bloom, A. A.; Williams, M. D.

    2012-12-01

    Large uncertainties are associated with net ecosystem exchange (NEE) estimates across continental scales. The assimilation of satellite-derived biometric data into carbon cycle (C) models can lead to an improved understanding of ecosystem C fluxes and ultimately to a reduction of estimated NEE uncertainty. We implement a Monte Carlo model-data fusion approach to assimilate MODIS LAI and GLAS-derived canopy height into the Data Assimilation Linked Ecosystem Carbon (DALEC) model, in order to estimate ecosystem C allocation and the magnitude of C fluxes. In particular, we test a broad reality check in the assimilation cost-function: we discard ``unrealistic'' combinations of randomly sampled allocation parameters and C pool dynamics in DALEC, without discarding non-equilibrium states. We first test our approach on two forested eddy-covariance flux tower sites with well characterised C pools (Hesse, France and Loobos, Netherlands). When assimilating satellite-derived products without reality constraints we are unable to adequately describe NEE and C pool magnitudes. However, when we also implement the reality check we find (a) a >99% reduction in viable parameter combinations (b) significant reductions in NEE and parameter uncertainties (c) a convergence in NEE estimates (r2 = 0.59 -- 0.79, |NEEbias | ≤ 0.44 gC m2 day-1) and (d) strong inter-relationships between C allocation parameters and C pools. We apply this approach on larger spatial scales, and we discuss the sensitivity of our results to uncertainties associated with the assimilated data-streams. We conclude that our approach is an important step in bridging the gap between remotely-sensed biometric data and the full ecosystem C cycle.

  7. Carbon dioxide exchange in a semidesert grassland through drought-induced vegetation change

    NASA Astrophysics Data System (ADS)

    Scott, Russell L.; Hamerlynck, Erik P.; Jenerette, G. Darrel; Moran, M. Susan; Barron-Gafford, Greg A.

    2010-09-01

    Global warming may intensify the hydrological cycle and lead to increased drought severity and duration, which could alter plant community structure and subsequent ecosystem water and carbon dioxide cycling. We report on the net ecosystem exchange of carbon dioxide (NEE) of a semidesert grassland through a severe drought which drove succession from native bunchgrasses to forbs and to eventual dominance by an exotic bunchgrass. We monitored NEE and energy fluxes using eddy covariance coupled with meteorological and soil moisture variables for 6 years at a grassland site in southeastern Arizona, USA. Seasonal NEE typically showed a springtime carbon uptake after winter-spring periods of average rainfall followed by much stronger sink activity during the summer rainy season. The two severe drought years (2004 and 2005) resulted in a net release of carbon dioxide (25 g C m-2) and widespread mortality of native perennial bunchgrasses. Above average summer rains in 2006 alleviated drought conditions, resulting in a large flush of broad-leaved forbs and negative total NEE (-55 g C m-2 year-1). Starting in 2007 and continuing through 2009, the ecosystem became increasingly dominated by the exotic grass, Eragrostis lehmanniana, and was a net carbon sink (-47 to -98 g C m-2 year-1) but with distinct annual patterns in NEE. Rainfall mediated by soils was the key driver to water and carbon fluxes. Seasonal respiration and photosynthesis were strongly dependent on precipitation, but photosynthesis was more sensitive to rainfall variation. Respiration normalized by evapotranspiration showed no interannual variation, while normalized gross ecosystem production (i.e., water use efficiency) was low during drought years and then increased as the rains returned and the E. lehmanniana invasion progressed. Thus, when dry summer conditions returned in 2009, the potential for ecosystem carbon accumulation was increased and the ecosystem remained a net sink unlike similar dry years when

  8. Analysis of the influence of climatic and physiological parameters on the net ecosystem carbon exchange of an apple orchard

    NASA Astrophysics Data System (ADS)

    Zanotelli, Damiano; Montagnani, Leonardo; Scandellari, Francesca; Tagliavini, Massimo

    2013-04-01

    Net ecosystem carbon exchange (NEE) of an apple orchard located in South Tyrol (Caldaro, Bolzano, Italy) was monitored continuously since March 2009 via eddy covariance technique. Contemporary measurements of the main environmental parameters (temperature, photosynthetic active photon flux density, soil water content, vapor pressure deficit) were taken at the same field site. Leaf Area Index was also determined biometrically starting from spring 2010. Objectives of this work were (i) to assess the influence of these environmental and physiological parameters on NEE, (ii) to set up a model capable to fill large gap occurring in the dataset and (iii) predict inter-annual variability of fluxes based on the measurements of the selected explanatory variables. Daily cumulated values of the response variable (NEE, g C d-1) and mean daily value of the five explanatory variables considered (air T, ° C; SWC, m3m-3; PPFD, μmol m-2s-1; VPD, hPa, LAI m2m-2) were used in this analysis. The complex interactions between the explanatory variables and NEE were analyzed with the tree model approach which draws a picture of the complexity of data structure and highlights the explanatory variable that explain the greater amount of deviance of the response variable. NEE variability was mostly explained by LAI and PPFD. The most positive values of NEE occurred below the LAI threshold of 1.16 m2m-2 while above that LAI threshold and with an average daily PPFD above 13.2 μmol m-2s-1, the orchard resulted always a sink of carbon (negative daily NEE). On half of the available data (only alternate months of the considered period were considered), a stepwise multiple regression approach was used to model NEE using the variables indicated above. Simplification by deletion of the non-significant terms was carried out until all parameters where highly significant (p < 0.05) and a significant increase in deviance was observed when deleting further variables. Since heteroscedasticity and non

  9. Variability of annual CO2 exchange from Dutch grasslands

    NASA Astrophysics Data System (ADS)

    Jacobs, C. M. J.; Jacobs, A. F. G.; Bosveld, F. C.; Hendriks, D. M. D.; Hensen, A.; Kroon, P. S.; Moors, E. J.; Nol, L.; Schrier-Uijl, A.; Veenendaal, E. M.

    2007-10-01

    An intercomparison is made of the Net Ecosystem Exchange of CO2, NEE, for eight Dutch grassland sites: four natural grasslands, two production grasslands and two meteorological stations within a rotational grassland region. At all sites the NEE was determined during at least 10 months per site, using the eddy-covariance (EC) technique, but in different years. The NEE does not include any import or export other than CO2. The photosynthesis-light response analysis technique is used along with the respiration-temperature response technique to partition NEE into Gross Primary Production (GPP) and Ecosystem Respiration (Re) and to obtain the eco-physiological characteristics of the sites at the field scale. Annual sums of NEE, GPP and Re are then estimated using the fitted response curves with observed radiation and air temperature from a meteorological site in the centre of The Netherlands as drivers. These calculations are carried out for four years (2002-2005). Land use and management histories are not considered. The estimated annual Re for all individual sites is more or less constant per site and the average for all sites amounts to 1390±30 gC m-2 a-1. The narrow uncertainty band (±2%) reflects the small differences in the mean annual air temperature. The mean annual GPP was estimated to be 1325 g C m-2 a-1, and displays a much higher standard deviation, of ±110 gC m-2 a-1 (8%), which reflects the relatively large variation in annual solar radiation. The mean annual NEE amounts to -65±85 gC m-2 a-1. From two sites, four-year records of CO2 flux were available and analyzed (2002-2005). Using the weather record of 2005 with optimizations from the other years, the standard deviation of annual GPP was estimated to be 171-206 gC m-2 a-1 (8-14%), of annual Re 227-247 gC m-2 a-1 (14-16%) and of annual NEE 176-276 gC m-2 a-1. The inter-site standard deviation was higher for GPP and Re, 534 gC m-2 a-1 (37.3%) and 486 gC m-2 a-1 (34.8%), respectively. However, the inter

  10. High diversity of fungi may mitigate the impact of pollution on plant litter decomposition in streams.

    PubMed

    Duarte, Sofia; Pascoal, Cláudia; Cássio, Fernanda

    2008-11-01

    We investigated how a community of microbial decomposers adapted to a reference site responds to a sudden decrease in the water quality. For that, we assessed the activity and diversity of fungi and bacteria on decomposing leaves that were transplanted from a reference (E1) to a polluted site (E2), and results were compared to those from decomposing leaves either at E1 or E2. The two sites had contrasting concentrations of organic and inorganic nutrients and heavy metals in the stream water. At E2, leaf decomposition rates, fungal biomass, and sporulation were reduced, while bacterial biomass was stimulated. Fungal diversity was four times lower at the polluted site. The structure of fungal community on leaves decomposing at E2 significantly differed from that decomposing at E1, as indicated by the principal response curves analysis. Articulospora tetracladia, Anguillospora filiformis, and Lunulospora curvula were dominant species on leaves decomposing at E1 and were the most negatively affected by the transfer to the polluted site. The transfer of leaves colonized at the reference site to the polluted site reduced fungal diversity and sporulation but not fungal biomass and leaf decomposition. Overall, results suggest that the high diversity on leaves from the upstream site might have mitigated the impact of anthropogenic stress on microbial decomposition of leaves transplanted to the polluted site.

  11. Leaf Barriers to Fungal Colonization and Shredders (Tipula lateralis) Consumption of Decomposing Eucalyptus globulus.

    PubMed

    Canhoto; Graça

    1999-04-01

    > Abstract Herein we assess the importance of leaf cuticle, polyphenolic, and essential oils contents of Eucalyptus globulus leaves to hyphomycete colonization and shredder consumption. Optical and electron microscopy revealed that, at least during the first 5 weeks of conditioning, the cuticle remains virtually intact. Stomata provide the main access for hyphae to internal leaf tissues and, eventually, for spore release. We suggest that in E. globulus leaves, fungal decomposition progresses predominantly in and from the eucalyptus leaf mesophyll to the outside. Malt extract agar media supplemented with either eucalyptus essential oils or tannic acid completely inhibited (Articulospora tetracladia, Lemonniera aquatica, and Tricladium gracile) or depressed (Heliscus lugdunensis, Lunulospora curvula, and Tricladium angulatum) aquatic hyphomycetes growth. The transference of both secondary compounds to alder leaves induced similar and significant reduction in Tipula lateralis larval consumption. Results consistently indicate that eucalyptus oils are stronger deterrents than polyphenols. The waxy cuticle of E. globulus appears to be a key physical factor delaying fungal colonization during decomposition. We hypothesize that the relative influence of leaf phenols and essential oils to aquatic hyphomycetes and shredders may be related to three main factors: (a) initial distribution of such compounds in the leaves; (b) possibility of their decrease through decomposition; and (c) consumption strategies of detritivores.

  12. Germination characteristics of Andropogon virginicus L

    SciTech Connect

    Farmer, R.E. Jr.; Cunningham, M.; Brown, J.E.

    1980-12-01

    The natural occurrence of broomsedge (Andropogon virginicus L.) as a pioneer species on orphan strip mines with acid soils (pH 3.0-4.0) and other areas of low fertility suggests that it may have value in revegetation systems for disturbed sites. This study was conducted to delineate seed dormancy and germination characteristics important to developing seeding procedures. Freshly collected seed from east Tennessee germinated to about 50 percent under light at 20-30/sup 0/C, but did not germinate at lower temperatures. If stored in a low-humidity, low-temperature environment, seed developed a deeper dormancy, which was broken by moist chilling. This chilling first enabled germination at high temperatures and in light; as chilling time increased, seed developed a capability for germination in the dark and at low temperatures. In a preliminary seeding trial on an acid (pH 4.0) minesoil, broomsedge survived and grew better than commonly used species such as Festuca arundinacea and Eragrostis curvula.

  13. Individual rain events decrease long-term boreal peatland net CO2 uptake through reduced light availability

    NASA Astrophysics Data System (ADS)

    Nijp, Jelmer; Limpens, Juul; Metselaar, Klaas; Peichl, Matthias; Nilsson, Mats B.; van der Zee, Sjoerd; Berendse, Frank

    2016-04-01

    Northern peatlands sequester enormous quantities of carbon, suggesting these wetland ecosystems are of fundamental importance for the global carbon cycle. The long-term carbon storage of these wetland ecosystems depends on wet surface conditions, and is prone to drought. Future climate predictions indicate that most of the northern hemisphere is projected to become wetter, but that precipitation will fall in less frequent but more intense events. How such fine-scale climatic changes will affect long-term future net ecosystem exchange (NEE) of northern peatlands remains unknown. In this study we explored the short-term peatland NEE response to day time rain events during the growing season, how timing and characteristics of individual events and environmental conditions modify this response, and the impact of NEE responses to individual rain events for the longer-term (annual) carbon uptake. We used an 11-year time series of half-hourly eddy covariance and meteorological measurements from Degerö Stormyr, a peatland in northern Sweden. Our study shows daytime precipitation events systematically decreased the sink strength for atmospheric CO2. An individual daytime precipitation event reduced net ecosystem CO2 uptake by 0.23-0.54 gC m-2 on average. This reduction was best explained by the reduction in light associated with precipitation events, rather than by precipitation characteristics, timing of events, or drought length. On an annual basis, this reduction of net CO2 uptake corresponds to 24% of the annual net CO2 uptake (NEE) of the study site, equivalent to a 4.4% reduction of gross primary production (GPP) during the growing season. We conclude that accounting for the short-term response of NEE to individual rain events is crucial in determining climate change impacts on long-term sink strength of peatlands to atmospheric CO2. Moreover, reduced light availability associated with rain events is more important in explaining the NEE response to rain events than

  14. Measurement-based upscaling of Pan Arctic Net Ecosystem Exchange: the PANEEx project

    NASA Astrophysics Data System (ADS)

    Njuabe Mbufong, Herbert; Kusbach, Antonin; Lund, Magnus; Persson, Andreas; Christensen, Torben R.; Tamstorf, Mikkel P.; Connolly, John

    2016-04-01

    The high variability in Arctic tundra net ecosystem exchange (NEE) of carbon (C) can be attributed to the high spatial heterogeneity of Arctic tundra due to the complex topography. Current models of C exchange handle the Arctic as either a single or few ecosystems, responding to environmental change in the same manner. In this study, we developed and tested a simple pan Arctic NEE (PANEEx) model using the Misterlich light response curve (LRC) function with photosynthetic photon flux density (PPFD) as the main driving variable. Model calibration was carried out with eddy covariance carbon dioxide (CO2) data from 12 Arctic tundra sites. The model input parameters (Fcsat, Rd and α) were estimated as a function of air temperature (AirT) and leaf area index (LAI) and represent specific characteristics of the NEE-PPFD relationship, including the saturation flux, dark respiration and initial light use efficiency, respectively. LAI and air temperature were respectively estimated from empirical relationships with remotely sensed normalized difference vegetation index (NDVI) and land surface temperature (LST). These are available as MODIS Terra product MOD13Q1 and MOD11A1 respectively. Therefore, no specific knowledge of the vegetation type is required. The PANEEx model captures the spatial heterogeneity of the Arctic tundra and was effective in simulating 77% of the measured fluxes (r2 = 0.72, p < 0.001) at the 12 sites used in the calibration of the model. Further, the model effectively estimates NEE in three disparate Alaskan ecosystems (heath, tussock and fen) with an estimation ranging between 10 - 36% of the measured fluxes. We suggest that the poor agreement between the measured and modeled NEE may result from the disparity between ground-based measured LAI (used in model calibration) and remotely sensed LAI (estimated from NDVI and used in NEE estimation). Moreover, our results suggests that using simple linear regressions may be inadequate as parameters estimated

  15. Early Season Goose Grazing Has a Greater Effect Than Advancement of the Growing Season on Net Ecosystem Exchange in a Sub-Arctic Coastal Wetland of Western Alaska

    NASA Astrophysics Data System (ADS)

    Leffler, A. J.; Choi, R. T.; Beard, K. H.; Schmutz, J. A.; Welker, J. M.

    2014-12-01

    The wetlands of the Yukon-Kuskokwim Delta in western Alaska are important breeding areas for geese and are experiencing rapid climate change. Growing seasons now begin earlier but geese have not advanced their breeding enough to match the advancement of spring. Consequently, geese enter a greener system that may be less nutritious than in the past because grasses and sedges have highest nutrient density shortly following emergence. One consequence of this changing phenology is that vegetation consumed by geese and returned as feces may have a different carbon to nitrogen ratio than in the past, which may influence net ecosystem exchange (NEE). We examine the effect of the advancement of the growing season and different arrival times by Brant Geese on NEE. Our study consists of six experimental blocks, each with nine plots. Half of the plots are warmed to advance the growing season. Two plots each receive early, mid, and late season grazing; the remaining two plots are not grazed and there is one control plot. In one block, we monitor NEE hourly with an automatic gas exchange system. In the other blocks, survey measurements of NEE and ecosystem respiration (ER) are made periodically with a portable system. Geese remove considerable vegetation from the system and maintain "grazing lawns" <1 cm tall of high quality forage. Plots grazed in the early summer were net sources of C to the atmosphere, releasing ca. 2-4 g m-2 d-1. Non-grazed plots were C sinks of similar magnitude. Grazing had little effect on ER but an advanced growing season enhanced ER in the plots by ca. 0.5 μmol m-2 s-1. We observed a similar advanced growing season effect on NEE that we attribute to enhanced ER. Consequently, the larger influence on NEE in the system is grazing and this influence is through removal of photosynthetic tissue. Grazing by Brant Geese shifts large areas of this coastal wetland to a C source while advanced growing season only reduces the strength of the C sink.

  16. Sensitivity of the boreal forest-mire ecotone CO2, CH4, and N2O global warming potential to rainy and dry weather

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Minkkinen, Kari; Vesala, Timo; Nikinmaa, Eero

    2015-04-01

    In a mosaic of well drained forests and poorly drained mires of boreal landscape the weather events such as drought and rainy control greenhouse gas dynamics and ecosystem global warming potential (GWP). In forest-mire ecotone especially in ecosystems where CO2 sink is nearly balanced with CO2 source, it's fairly unknown whether the net warming effect of emissions of gases with strong radiative forcing (CH4 and N2O) could offset the net cooling effect of CO2 sequestration. We compared the net ecosystem CO2 exchange (NEE) estimated from the carbon sequestrations of forest stands and forest floor CO2 fluxes against CH4 and N2O fluxes of nine forest/mire site types along the soil moisture gradient in Finland. The ground water of nine sites changed between 10 m in upland forests and 0.1 m in mires, and weather during three years ranged between exceptionally wet and dry for the local climate. The NEE of upland forests was typically a sink of CO2, regardless the weather. Though, xeric pine forest was estimated to be a source of CO2 during wet and intermediate year and became a weak sink only in dry year. The NEE of forest-mire transitions ranged between a sink in dry year, while increased stand carbon sequestration could offset the reduced forest floor CO2 emission, and a source in wet year. The NEE of two sparsely forested mires strongly differed. The lawn type mire was balanced around zero and the hummock type mire was relatively strong NEE sink, regardless the weather. Generally, nearly zero N2O emission could not offset the cooling effect of net CH4 sink and net CO2 sink of upland forest and forest-mire transitions. However in sparsely forested mires, with N2O emission also nearly zero, the CH4 emission during wet and intermediate year played important role in turning the net cooling effect of NEE into a net warming. When evaluating GWP of boreal landscapes, undisturbed forest-mire transitions should be regarded as net cooling ecosystems instead of hotspots of net

  17. Ecohydrological and Biophysical Controls on Carbon Cycling in Two Seasonally Snow-covered Forests

    NASA Astrophysics Data System (ADS)

    Chan, A. M.; Brooks, P. D.; Burns, S. P.; Litvak, M. E.; Blanken, P.; Bowling, D. R.

    2014-12-01

    In many seasonally snow-covered forests, the snowpack is the primary water resource. The snowpack also serves as an insulating layer over the soil, warming soil throughout the winter and preserving moisture conditions from the preceding fall. Therefore, the total amount of water in the snowpack as well as the timing and duration of the snow-covered season are likely to have a strong influence on forest productivity through the regulation of the biophysical environment. We investigated how interannual variation in the amount and timing of seasonal snow cover affect winter carbon efflux and growing season carbon uptake at the Niwot Ridge AmeriFlux site (NWT) in Colorado (3050m a.s.l.; 40˚N) and the Valles Caldera Mixed-Conifer AmeriFlux site (VC) in New Mexico (3003m a.s.l.; 36˚N). The tree species composition at NWT is dominated by Abies lasiocarpa, Picea engelmannii, and Pinus contorta. At VC, the dominant tree species are Pseudotsuga menziesii, Abies concolor, Picea pungens, Pinus strobiformis, Pinus flexilis, Pinus ponderosa, and Populus tremuloides. We used net ecosystem exchange (NEE) and climate data from 1999-2012 at NWT and 2007-2012 at VC to divide each year into the growing season, when NEE is negative, and the winter, when NEE is positive. Snow water equivalent (SWE), precipitation, and duration of snow cover data were obtained from USDA/NRCS SNOTEL sites near each forest. At both sites, the start of the growing season was strongly controlled by air temperature, but growing season NEE was not dependent on the length of the growing season. At NWT, total winter carbon efflux was strongly influenced by both the amount and duration of the snowpack, measured as SWE integrated over time. Years with higher integrated SWE had higher winter carbon efflux and also had warmer soil under the snowpack. These patterns were not seen at VC. However, peak SWE amount was positively correlated with growing season NEE at VC, but not at NWT. These results suggest that

  18. Weed-cover versus weed-removal management in olive orchards: influence on the carbon balance at the ecosystem scale

    NASA Astrophysics Data System (ADS)

    Chamizo, Sonia; Serrano-Ortiz, Penélope; Vicente-Vicente, José Luis; Sánchez-Cañete, Enrique P.; López-Ballesteros, Ana; Kowalski, Andrew S.

    2016-04-01

    Agriculture plays an important role in the C budget at the global scale. Traditional practices based on soil tillage and applying herbicides to remove weeds have caused damage to soils and led to important losses of soil organic C and increased CO2 emissions to the atmosphere. Changing trends from traditional agriculture to conservation agriculture practices may have an important role in both C and water budgets and the transformation of agriculture from C source to C sink. The objective of this study was to analyse the effect of two treatments, weed removal by herbicides versus weed cover conservation, on the C balance in an irrigated olive orchard in SE Spain. Measurements of CO2 exchange were made from October 2014 to September 2015 using two eddy covariance towers, one for each olive crop treatment. Results show that CO2 fluxes at the ecosystem scale were similar in the two treatments during initial conditions, prior to weed growth in the soils without herbicide application (October). During the first week, daily net ecosystem exchange (NEE) was close to zero in both treatments, with values ranging from 1.06 to -0.41 g C m-2 in the weed cover treatment, and from 0.76 to -0.69 g C m-2 in the weed removal treatment. As weed growth increased, higher net CO2 assimilation was found in the treatment with weed cover. In both treatments, maximum net CO2 assimilation was found in March, with a monthly NEE of -72 and -28 g C m-2 in the treatment with and without weed cover, respectively. In May, after the weeds were cut and left on the soil, a strong increase was observed in NEE in the treatment with weed cover due to decreased CO2 assimilation and increased respiration compared to the treatment without weed cover. Therefore, soil chamber measurements showed average respiration rates of 2.57 and 1.57 μmol m-2 s-2 in the weed cover and weed removal treatment, respectively. Finally, the highest monthly NEE was registered during July, with both treatments showing a similar

  19. Unmasking the effect of a precipitation pulse on the biological processes composing Net Ecosystem Carbon Exchange

    NASA Astrophysics Data System (ADS)

    Lopez-Ballesteros, Ana; Sanchez-Cañete, Enrique P.; Serrano-Ortiz, Penelope; Oyonarte, Cecilio; Kowalski, Andrew S.; Perez-Priego, Oscar; Domingo, Francisco

    2015-04-01

    Drylands occupy 47.2% of the global terrestrial area and are key ecosystems that significantly determine the inter-annual variability of the global carbon balance. However, it is still necessary to delve into the functional behavior of arid and semiarid ecosystems due to the complexity of drivers and interactions between underpinning processes (whether biological or abiotic) that modulate net ecosystem CO2 exchange (NEE). In this context, water inputs are crucial to biological organisms survival in arid ecosystems and frequently arrive via rain events that are commonly stochastic and unpredictable (i.e. precipitation pulses) and strongly control arid land ecosystem structure and function. The eddy covariance technique can be used to investigate the effect of precipitation pulses on NEE, but provide limited understanding of what exactly happens after a rain event. The chief reasons are that, firstly, we cannot measure separately autotrophic and heterotrophic components, and secondly, the partitioning techniques widely utilized to separate Gross Primary Production and Total Ecosystem Respiration, do not work properly in these water-limited ecosystems, resulting in biased estimations of plant and soil processes. Consequently, it is essential to combine eddy covariance measurements with other techniques to disentangle the different biological processes composing NEE that are activated by a precipitation pulse. Accordingly, the main objectives of this work were: (i) to quantify the contribution of precipitation pulse events to annual NEE using the eddy covariance technique in a semiarid steppe located in Almería (Spain), and (ii) to simulate a realistic precipitation pulse in order to understand its effect on the ecosystem, soil and plant CO2 exchanges by using a transitory-state closed canopy chamber, soil respiration chambers and continuous monitoring CO2 sensors inserted in the subsoil. Preliminary results showed, as expected, a delay between soil and plant

  20. Arctic ecosystem responses to changes in water table and surface warming

    NASA Astrophysics Data System (ADS)

    Olivas, P. C.; Oberbauer, S. F.; Tweedie, C. E.; Oechel, W. C.

    2009-12-01

    Although low in productivity, arctic ecosystems store close to 20% of the global soil carbon as a result of low decomposition rates enhanced by high soil moisture availability and low temperatures. Expected global climatic changes are likely to significantly increase the temperature in the Arctic, disturbing surface soil moisture patterns and potentially increasing turnover of soil organic matter, thus reversing the role of the Arctic as a carbon sink. Our goal was to determine the short-term ecosystem CO2 exchange response to drying, flooding, and warming, and understand the potential effects that climatic changes could have on the long-term carbon balance of the Arctic. We carried out this study during the growing seasons from 2006 to 2008 on the coastal plain near Barrow, Alaska. We used a 62 ha thawed lake, divided into three sections: drained, flooded and intermediate treatments. Temperature treated plots were replicated within each water treatment category using open top chambers. We assessed ecosystem responses to water and temperature treatments as: ecosystem respiration (ER), gross primary photosynthesis (GPP) and net ecosystem balance (NEE) using chamber-based measurements. We found a strong CO2 exchange response to changes in water table and surface temperature. However, the magnitude of the response differed among carbon flux components. Although flooding increased NEE, the increase was more a result of a decrease in ER rather than an increase in GPP. High water tables can also reduce GPP by submerging leaf area, especially that of mosses. Drying increased ER and GPP, however, species composition and microtopography position affected the magnitude of the changes ultimately affecting NEE. Areas dominated by mosses experienced a reduction of sink capacity, whereas areas dominated by vascular plants experienced an increase in NEE regardless of the drying of the moss layer. Warming affected all CO2 flux components. GPP increased in all treatments except in

  1. Invasive C4 Perennial Grass Alters Net Ecosystem Exchange in Mixed C3/C4 Savanna Grassland

    NASA Astrophysics Data System (ADS)

    Basham, T. S.; Litvak, M.

    2006-12-01

    The invasion of ecosystems by non-native plants that differ from native plants in physiological characteristics and phenology has the potential to alter ecosystem function. In Texas and other regions of the southern central plains of the United States, the introduced C4 perennial grass, Bothriochloa ischaemum, invades C3/C4 mixed grasslands and savannas, resulting in decreased plant community diversity (Gabbard 2003; Harmoney et al 2004). The objective of this study was to quantify how the conversion of these mixed grass communities to C4 dominated, B. ischaemum monocultures impacts carbon cycling and sequestration. Seasonal measurements of Net Ecosystem Exchange (NEE) of CO2, leaf level gas exchange and soil respiration were compared between savanna grassland plots composed of either naturally occurring B. ischaemum monocultures or native mixed grasses (n=16). NEE was measured using a closed system chamber that attached to permanently installed stainless steel bases. Temperature, soil moisture, aerial percent species cover and leaf area index were also monitored in plots to explain variability in measured responses. Results showed that NEE differed seasonally between invaded and native plots due to 1) greater leaf surface area per unit ground area in invaded plots, 2) differences in phenological patterns of plant activity and 3) differences in responses to water limitation between invaded and native plots. Cold season and summer drought NEE were driven primarily by belowground respiration in both plot types, however spring uptake activity commenced two months later in invaded plots. This later start in invaded plots was compensated for by greater uptake throughout the growing season and in particular during the drier summer months. Differences in NEE between plot types were not due to differences in soil respiration nor were they due to greater leaf level photosynthetic capabilities of B. ischaemum relative to the dominant native grasses. NEE, soil respiration and

  2. Phenological control over ecosystem-atmosphere carbon exchange (Invited)

    NASA Astrophysics Data System (ADS)

    Monson, R. K.; Moore, D. J.; Scott-Denton, L.; Burns, S. P.

    2010-12-01

    Our understanding of ecosystem-atmosphere carbon fluxes has been improved over the past decade in large part due to the maturation of observational records from networks of flux towers and the development of model-data assimilation techniques from which insight into carbon cycle processes can be extracted. Some of the earliest analyses of the observation record revealed that interannual phenological variation in forest ecosystems has a significant influence on the annual cumulative net rate of CO2 uptake from the atmosphere. In winter-deciduous forest ecosystems, phenological variability in the timing of bud break in the spring, and the early-season rate at which the forest reaches its seasonal maximum leaf area index, have large effects on the ultimate annual sum for net ecosystem CO2 exchange (NEE). In snow-controlled evergreen forests, the timing at which snow melt or soil thaw occurs, and liquid water becomes available to drive diurnal increases in stomatal conductance, the spring 'phenological switch-on' can be abrupt and the capacity for the forest to reach its seasonal maximum NEE can occur within a few days. The relatively high sensitivity of ecosystem carbon budgets to variability in phenology renders it difficult to accurately model system dynamics, especially for evergreen forests. Recent model-data assimilation studies have found large errors in the ability of the models to replicate observations of NEE at the seasonal-to-annual time scales, in large part due to inadequacies in how they capture spring and fall phenology thresholds and early- and late-season dynamics in the state of the photosynthetic apparatus. In our own studies of interannual variation in NEE in the evergreen subalpine forest at Niwot Ridge, Colorado, we have not been able to accurately represent spring phenology dynamics and their influence on annual NEE using the Simple Evapotranspiration and Net Photosynthesis (SIPNET) model without explicit consideration of snowmelt dynamics. In

  3. Combining tower mixing ratio and community model data to estimate regional-scale net ecosystem carbon exchange by boundary layer inversion over four flux towers in the United States

    NASA Astrophysics Data System (ADS)

    Dang, Xuerui; Lai, Chun-Ta; Hollinger, David Y.; Schauer, Andrew J.; Xiao, Jingfeng; Munger, J. William; Owensby, Clenton; Ehleringer, James R.

    2011-09-01

    We evaluated an idealized boundary layer (BL) model with simple parameterizations using vertical transport information from community model outputs (NCAR/NCEP Reanalysis and ECMWF Interim Analysis) to estimate regional-scale net CO2 fluxes from 2002 to 2007 at three forest and one grassland flux sites in the United States. The BL modeling approach builds on a mixed-layer model to infer monthly average net CO2 fluxes using high-precision mixing ratio measurements taken on flux towers. We compared BL model net ecosystem exchange (NEE) with estimates from two independent approaches. First, we compared modeled NEE with tower eddy covariance measurements. The second approach (EC-MOD) was a data-driven method that upscaled EC fluxes from towers to regions using MODIS data streams. Comparisons between modeled CO2 and tower NEE fluxes showed that modeled regional CO2 fluxes displayed interannual and intra-annual variations similar to the tower NEE fluxes at the Rannells Prairie and Wind River Forest sites, but model predictions were frequently different from NEE observations at the Harvard Forest and Howland Forest sites. At the Howland Forest site, modeled CO2 fluxes showed a lag in the onset of growing season uptake by 2 months behind that of tower measurements. At the Harvard Forest site, modeled CO2 fluxes agreed with the timing of growing season uptake but underestimated the magnitude of observed NEE seasonal fluctuation. This modeling inconsistency among sites can be partially attributed to the likely misrepresentation of atmospheric transport and/or CO2 gradients between ABL and the free troposphere in the idealized BL model. EC-MOD fluxes showed that spatial heterogeneity in land use and cover very likely explained the majority of the data-model inconsistency. We show a site-dependent atmospheric rectifier effect that appears to have had the largest impact on ABL CO2 inversion in the North American Great Plains. We conclude that a systematic BL modeling approach

  4. Reduced uncertainty of regional scale CLM predictions of net carbon fluxes and leaf area indices with estimated plant-specific parameters

    NASA Astrophysics Data System (ADS)

    Post, Hanna; Hendricks Franssen, Harrie-Jan; Han, Xujun; Baatz, Roland; Montzka, Carsten; Schmidt, Marius; Vereecken, Harry

    2016-04-01

    Reliable estimates of carbon fluxes and states at regional scales are required to reduce uncertainties in regional carbon balance estimates and to support decision making in environmental politics. In this work the Community Land Model version 4.5 (CLM4.5-BGC) was applied at a high spatial resolution (1 km2) for the Rur catchment in western Germany. In order to improve the model-data consistency of net ecosystem exchange (NEE) and leaf area index (LAI) for this study area, five plant functional type (PFT)-specific CLM4.5-BGC parameters were estimated with time series of half-hourly NEE data for one year in 2011/2012, using the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, a Markov Chain Monte Carlo (MCMC) approach. The parameters were estimated separately for four different plant functional types (needleleaf evergreen temperate tree, broadleaf deciduous temperate tree, C3-grass and C3-crop) at four different sites. The four sites are located inside or close to the Rur catchment. We evaluated modeled NEE for one year in 2012/2013 with NEE measured at seven eddy covariance sites in the catchment, including the four parameter estimation sites. Modeled LAI was evaluated by means of LAI derived from remotely sensed RapidEye images of about 18 days in 2011/2012. Performance indices were based on a comparison between measurements and (i) a reference run with CLM default parameters, and (ii) a 60 instance CLM ensemble with parameters sampled from the DREAM posterior probability density functions (pdfs). The difference between the observed and simulated NEE sum reduced 23% if estimated parameters instead of default parameters were used as input. The mean absolute difference between modeled and measured LAI was reduced by 59% on average. Simulated LAI was not only improved in terms of the absolute value but in some cases also in terms of the timing (beginning of vegetation onset), which was directly related to a substantial improvement of the NEE estimates in

  5. Modeling surface roughness scattering in metallic nanowires

    SciTech Connect

    Moors, Kristof; Sorée, Bart; Magnus, Wim

    2015-09-28

    Ando's model provides a rigorous quantum-mechanical framework for electron-surface roughness scattering, based on the detailed roughness structure. We apply this method to metallic nanowires and improve the model introducing surface roughness distribution functions on a finite domain with analytical expressions for the average surface roughness matrix elements. This approach is valid for any roughness size and extends beyond the commonly used Prange-Nee approximation. The resistivity scaling is obtained from the self-consistent relaxation time solution of the Boltzmann transport equation and is compared to Prange-Nee's approach and other known methods. The results show that a substantial drop in resistivity can be obtained for certain diameters by achieving a large momentum gap between Fermi level states with positive and negative momentum in the transport direction.

  6. Soliton-like solutions for a (2+1) -dimensional nonintegrable KdV equation and a variable-coefficient KdV equation

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, B.

    2003-08-01

    Based on a Riccati equation and a symbolic computation system--Maple, a generalized Riccati equation expansion method is presented for constructing soliton-like solutions and periodic form solutions for some nonlinear evolution equations (NEEs) or NEEs with variable coefficients. Compared with most of the existing tanh methods, the extended tanh-function method, the modified extended tanh-function method and the generalized hyperbolic-function method, the proposed method is more powerful. We study a (2+1)-dimensional general nonintegrable KdV equation, a KdV equation with variable coefficients. As a result, rich new families of exact solutions, including the non-travelling wave's and coefficient functions' soliton-like solutions, singular soliton-like solutions, periodic form solutions, are obtained. When setting the arbitrary functions in some solutions be equal to special constants or special functions, the solitary wave solutions can be recovered.

  7. Optimizing Photosynthetic and Respiratory Parameters Based on the Seasonal Variation Pattern in Regional Net Ecosystem Productivity Obtained from Atmospheric Inversion

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Chen, J.; Zheng, X.; Jiang, F.; Zhang, S.; Ju, W.; Yuan, W.; Mo, G.

    2014-12-01

    In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation pattern of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (Vcmax and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate Vcmax and Q10 of the Boreal Ecosystem Productivity Simulator (BEPS) to improve its NEP simulation in the Boreal North America (BNA) region. Simultaneously, in-situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results have the implication on using atmospheric CO2 data for optimizing ecosystem parameters through atmospheric inversion or data assimilation techniques.

  8. New species of Solanum (Solanaceae) from Peru and Ecuador

    PubMed Central

    Knapp, Sandra

    2010-01-01

    Abstract Three new species of “non-spiny" Solanum are described from Peru and Ecuador, and a revised description for Solanum verecundum M. Nee is presented. Solanum kulliwaita S. Knapp, sp. nov. (Dulcamaroid clade) is endemic to the Department of Cuzco in southern Peru, and is most similar to the recently described Solanum sanchez-vegae S. Knapp of northern Peru. Solanum dillonii S. Knapp, sp. nov. (Brevantherum clade) is found in southern Ecuador and northern Peru in the Amotape-Huancabamba phytogeographic zone, and is morphologically similar to the widespread Solanum riparium Ruiz & Pav. Solanum oxapampense S. Knapp, sp. nov., (also of the Brevantherum clade) is endemic to the Oxapampa region (Department of Pasco) of central Peru, and is similar to and segregated from Solanum verecundum M. Nee of Peru and Ecuador. Complete descriptions, distributions and preliminary conservation assessments of all new species are given. PMID:22171167

  9. The Aquatic Communities Inhabiting Internodes of Two Sympatric Bamboos in Argentinean Subtropical Forest

    PubMed Central

    Campos, Raúl E.

    2013-01-01

    In order to determine if phytotelmata in sympatric bamboos of the genus Guadua might be colonized by different types of arthropods and contain communities of different complexities, the following objectives were formulated: (1) to analyze the structure and species richness of the aquatic macroinvertebrate communities, (2) to comparatively analyze co-occurrences; and (3) to identify the main predators. Field studies were conducted in a subtropical forest in Argentina, where 80 water-filled bamboo internodes of Guadua chacoensis (Rojas Acosta) Londoño and Peterson (Poales: Poaceae) and G. trinii (Nees) Nees and Rupr. were sampled. Morphological measurements indicated that G. chacoensis held more fluid than G. trinii. The communities differed between Guadua species, but many macroinvertebrate species used both bamboo species. The phytotelmata were mainly colonized by Diptera of the families Culicidae and Ceratopogonidae. PMID:24224775

  10. Variability of annual CO2 exchange from Dutch Grasslands

    NASA Astrophysics Data System (ADS)

    Jacobs, C. M. J.; Jacobs, A. F. G.; Bosveld, F. C.; Hendriks, D. M. D.; Hensen, A.; Kroon, P. S.; Moors, E. J.; Nol, L.; Schrier-Uijl, A.; Veenendaal, E. M.

    2007-05-01

    An intercomparison is made of the Net Ecosystem Exchange of CO2, NEE, for eight Dutch grassland sites; four natural grasslands, two production grasslands and two meteorological stations within a rotational grassland region. At all sites the NEE was determined during at least 10 months per site, using the eddy-covariance (EC) technique, but in different years. The photosynthesis-light response analysis technique is used along with the respiration-temperature response technique to partition NEE among Gross Primary Production (GPP) and Ecosystem Respiration (Re) and to obtain the eco-physiological characteristics of the sites at the field scale. Annual sums of NEE, GPP and Re are then estimated using the fitted response curves with observed radiation and air temperature from a meteorological site in the centre of The Netherlands as drivers. These calculations are carried out for four years (2002-2005). The estimated annual Re for all individual sites is more or less constant per site and the average for all sites amounts to 1390±30 gC m-2 a-1. The narrow uncertainty band (±2%) reflects the small differences in the mean annual air temperature. The mean annual GPP was estimated to be 1325 g C m-2 a-1, and displays a much higher standard deviation, of ±100 gC m-2 a-1 (8%), which reflects the relatively large variation in annual solar radiation. The mean annual NEE amounts to -65±85 gC m-2 a-1, which implies that on average the grasslands act as a source, with a relatively large standard deviation. From two sites, four-year records of CO2 flux were available and analyzed (2002-2005). Using the weather record of 2005 with optimizations from the other years, standard deviation of annual GPP was estimated to be 171-206 gC m-2 a-1 (8-14%), of annual Re 227-247 gC m-2 a-1 (14-16%) and of annual NEE 176-276 gC m-2 a-1. The inter-site standard deviation was higher for GPP and Re, 534 gC m-2 a-1 (37.3%) and 486 gC m-2 a-1 (34.8%), respectively. However, the inter

  11. Study of the genus Bracon Fabricius, 1804 (Hymenoptera: Braconidae) of Southern Iran with description of a new species.

    PubMed

    Ameri, Ali; Talebi, Ali Asghar; Beyarslan, Ahmet; Kamali, Karim; Rakhshani, Ehsan

    2014-01-16

    A survey on the genus Bracon Fabricius, 1804 was conducted in Hormozgan province, Southern Iran, during February 2011-July 2012. In all, 19 species belonging to seven subgenera were collected and identified, of which seven species and the subgenus Asiabracon Tobias, 1957 are recorded for first time from Iran. Bracon (Orthobracon) persiangulfensis Ameri, Beyarslan & Talebi sp. n. is newly described and illustrated from the Queshm island of Persian Gulf. Morphological characters of the new species were compared with the congeneric species. The newly recorded species from Iran were as follow: B. (Asiabracon) quardrimaculatus Telenga, 1936; B. (Bracon) kozak Telenga, 1936; B. (Glabrobracon) immutator Nees; B. (Habrobracon) telengai (Mulyarskaya, 1955); B. (Habrobracon) variegator Spinola, 1808; B. (Orthobracon) epitriptus Marshall, 1885 and B. (Orthobracon) exhilarator Nees, 1834. A key is presented for identification of Bracon species collected in Hormozgan province as well as an updated checklist of all Bracon species occurring in Iran.

  12. Two new non-spiny Solanum species from the Bolivian Andes (Morelloid Clade)

    PubMed Central

    Särkinen, Tiina; Knapp, Sandra; Nee, Michael

    2015-01-01

    Abstract Two new Bolivian species are described from the Morelloid clade of Solanum (section Solanum in the traditional sense). Solanum alliariifolium M.Nee & Särkinen, sp. nov. is found in montane forests between 1,900 and 3,200 m and is morphologically most similar to Solanum leptocaulon Van Heurck & Müll.Arg., also from montane forests in southern Peru and Bolivia. Solanum rhizomatum Särkinen & M.Nee, sp. nov. is found in seasonally dry forests and matorral vegetation in lower elevations between 1,300 and 2,900 m and is most similar to Solanum pygmaeum Cav., a species native to sub-tropical Argentina but introduced in subtropical and temperate areas worldwide. PMID:25878556

  13. Two new non-spiny Solanum species from the Bolivian Andes (Morelloid Clade).

    PubMed

    Särkinen, Tiina; Knapp, Sandra; Nee, Michael

    2015-01-01

    Two new Bolivian species are described from the Morelloid clade of Solanum (section Solanum in the traditional sense). Solanumalliariifolium M.Nee & Särkinen, sp. nov. is found in montane forests between 1,900 and 3,200 m and is morphologically most similar to Solanumleptocaulon Van Heurck & Müll.Arg., also from montane forests in southern Peru and Bolivia. Solanumrhizomatum Särkinen & M.Nee, sp. nov. is found in seasonally dry forests and matorral vegetation in lower elevations between 1,300 and 2,900 m and is most similar to Solanumpygmaeum Cav., a species native to sub-tropical Argentina but introduced in subtropical and temperate areas worldwide.

  14. Effect of selected antiasthmatic plant constituents against micro organism causing upper respiratory tract infection.

    PubMed

    Nilani, P; Duraisamy, B; Dhamodaran, P; Ravichandran, S; Elango, K

    2010-01-01

    Most exacerbations of asthma can be proven to be associated with bacterial infections and there is scientific evidence that frequent respiratory infections particularly bacterial infections provoke asthma attack. Considering these facts different plant extracts and phytoconstituents with proven anti asthmatic property had been selected for screening anti microbial activity in in-vitro models. In the present study, Coleus forskohlii Willd. extract (10% Forskolin), Piper Longum L. Extract (20% Piperine), Adathoda vasica Nees. extract (30% Vasicinone), Curcuma longa L. extract (60% Curcumin) were screened for the antibacterial activity against human pathogens causing upper respiratory infection namely Haemophilus influenzae , Streptococcus pneumoniae , Streptococcus pyrogene and Staphylococcus aureus, by taking Gentamycin, Optochin, Bacitracin and Amoxicillin as reference standards. Except for Adathoda vasica Nees. extract, all the other selected plant extracts exhibited a moderate activity antibacterial activity against selected strains.

  15. On the potential of the ICOS atmospheric CO2 measurement network for estimating the biogenic CO2 budget of Europe

    NASA Astrophysics Data System (ADS)

    Kadygrov, N.; Broquet, G.; Chevallier, F.; Rivier, L.; Gerbig, C.; Ciais, P.

    2015-11-01

    We present a performance assessment of the European Integrated Carbon Observing System (ICOS) atmospheric network for constraining European biogenic CO2 fluxes (hereafter net ecosystem exchange, NEE). The performance of the network is assessed in terms of uncertainty in the fluxes, using a state-of-the-art mesoscale variational atmospheric inversion system assimilating hourly averages of atmospheric data to solve for NEE at 6 h and 0.5° resolution. The performance of the ICOS atmospheric network is also assessed in terms of uncertainty reduction compared to typical uncertainties in the flux estimates from ecosystem models, which are used as prior information by the inversion. The uncertainty in inverted fluxes is computed for two typical periods representative of northern summer and winter conditions in July and in December 2007, respectively. These computations are based on a observing system simulation experiment (OSSE) framework. We analyzed the uncertainty in a 2-week-mean NEE as a function of the spatial scale with a focus on the model native grid scale (0.5°), the country scale and the European scale (including western Russia and Turkey). Several network configurations, going from 23 to 66 sites, and different configurations of the prior uncertainties and atmospheric model transport errors are tested in order to assess and compare the improvements that can be expected in the future from the extension of the network, from improved prior information or transport models. Assimilating data from 23 sites (a network comparable to present-day capability) with errors estimated from the present prior information and transport models, the uncertainty reduction on a 2-week-mean NEE should range between 20 and 50 % for 0.5° resolution grid cells in the best sampled area encompassing eastern France and western Germany. At the European scale, the prior uncertainty in a 2-week-mean NEE is reduced by 50 % (66 %), down to ~ 43 Tg C month-1 (26 Tg C month-1) in July

  16. The Way the Wind Blows Matters to Ecosystem Water Use Efficiency

    NASA Astrophysics Data System (ADS)

    Montaldo, N.; Oren, R.

    2015-12-01

    In many regions, atmospheric conditions change frequently with shifts of wind direction, extending maritime influences far inland or continental influences to coastal ecosystems. Climate models predict changes in both wind direction and velocity; these changes could potentially impact ecosystems mass and energy exchanges with the atmosphere. Using climate and ecosystem-scale eddy-covariance data from Sardinia, we evaluated whether the frequency of certain wind characteristics, potentially improving ecosystem CO2 uptake, have changed over five decades, and whether these characteristics are indeed linked to ecosystem gas-exchange responses of the studied ecosystem. The analyses shows that days dominated by summer Mistral winds decreased on average 3% per decade, and that wind direction affects biosphere-atmosphere exchange of carbon but not water. High velocity cool Mistral winds from continental Europe treble vapor pressure deficit (D) as they cross the island. In contrast, arriving with a similar D, lower velocity, warmer Saharan Sirocco winds heat up, thus increasing D five-fold only 50 km inland. Over a mixed ecosystem (grass-wild olive), while soil moisture was low and constant, daytime net carbon exchange (NEE) averaged 2.3-fold higher in Mistral than Sirocco days, largely reflecting the theoretically expected response of canopy conductance (gc) to variation of D. Because the product of gc and D encodes the key ecosystem compensatory mechanism, the reciprocal gc-D response maintained similar ecosystem evapotranspiration (E). Thus, summertime ecosystem water-use efficiency (W=NEE/E), was ~66% higher during Mistral than other days. The historical decrease of Mistral frequency reduced the estimated summertime NEE >30 %. The analyses demonstrate that alteration of dominance of air masses predicted with future climate will amplify or negate the positive effect of increased atmospheric [CO2] on W, and should be considered when assessing climate change impact on NEE.

  17. Adaptive data-driven models for estimating carbon fluxes in the Northern Great Plains

    USGS Publications Warehouse

    Wylie, B.K.; Fosnight, E.A.; Gilmanov, T.G.; Frank, A.B.; Morgan, J.A.; Haferkamp, Marshall R.; Meyers, T.P.

    2007-01-01

    Rangeland carbon fluxes are highly variable in both space and time. Given the expansive areas of rangelands, how rangelands respond to climatic variation, management, and soil potential is important to understanding carbon dynamics. Rangeland carbon fluxes associated with Net Ecosystem Exchange (NEE) were measured from multiple year data sets at five flux tower locations in the Northern Great Plains. These flux tower measurements were combined with 1-km2 spatial data sets of Photosynthetically Active Radiation (PAR), Normalized Difference Vegetation Index (NDVI), temperature, precipitation, seasonal NDVI metrics, and soil characteristics. Flux tower measurements were used to train and select variables for a rule-based piece-wise regression model. The accuracy and stability of the model were assessed through random cross-validation and cross-validation by site and year. Estimates of NEE were produced for each 10-day period during each growing season from 1998 to 2001. Growing season carbon flux estimates were combined with winter flux estimates to derive and map annual estimates of NEE. The rule-based piece-wise regression model is a dynamic, adaptive model that captures the relationships of the spatial data to NEE as conditions evolve throughout the growing season. The carbon dynamics in the Northern Great Plains proved to be in near equilibrium, serving as a small carbon sink in 1999 and as a small carbon source in 1998, 2000, and 2001. Patterns of carbon sinks and sources are very complex, with the carbon dynamics tilting toward sources in the drier west and toward sinks in the east and near the mountains in the extreme west. Significant local variability exists, which initial investigations suggest are likely related to local climate variability, soil properties, and management.

  18. Ultrasound Guidance as a Rescue Technique for Peripheral Intravenous Cannulation

    DTIC Science & Technology

    2006-09-14

    painful, time consuming, and may result in arterial puncture, nerve damage, and paresthes ias.5 Other routes such as central venous or venous cut down...peripherally inserted central lines-PICCS), femoral catheterizations during cardiopulmonary resuscitation, and peripheral IV catheters in difficult...techniques for gaining venous access. What to do when peripheral intravenous catheterization is not possible. J Crit 11/n. 1993;8:435-442. 2. Nee PA

  19. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions and a new approach for estimating net ecosystem exchange from inventory-based data

    SciTech Connect

    Hayes, Daniel J; Turner, David P; Stinson, Graham; Mcguire, David; Wei, Yaxing; West, Tristram O.; Heath, Linda S.; De Jong, Bernardus; McConkey, Brian G.; Birdsey, Richard A.; Kurz, Werner; Jacobson, Andrew; Huntzinger, Deborah; Pan, Yude; Post, Wilfred M; Cook, Robert B

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000 2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a 327 252 TgC yr1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (248 TgC yr1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (297 TgC yr1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated tobe a small net source (+18 TgC yr1) due to land use change between 1993 and 2002. We compare these inventorybased estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is 511 TgC yr1 and 931 TgC yr1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional 239 TgC yr1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.

  20. [Simulation of water and carbon fluxes in harvard forest area based on data assimilation method].

    PubMed

    Zhang, Ting-Long; Sun, Rui; Zhang, Rong-Hua; Zhang, Lei

    2013-10-01

    Model simulation and in situ observation are the two most important means in studying the water and carbon cycles of terrestrial ecosystems, but have their own advantages and shortcomings. To combine these two means would help to reflect the dynamic changes of ecosystem water and carbon fluxes more accurately. Data assimilation provides an effective way to integrate the model simulation and in situ observation. Based on the observation data from the Harvard Forest Environmental Monitoring Site (EMS), and by using ensemble Kalman Filter algorithm, this paper assimilated the field measured LAI and remote sensing LAI into the Biome-BGC model to simulate the water and carbon fluxes in Harvard forest area. As compared with the original model simulated without data assimilation, the improved Biome-BGC model with the assimilation of the field measured LAI in 1998, 1999, and 2006 increased the coefficient of determination R2 between model simulation and flux observation for the net ecosystem exchange (NEE) and evapotranspiration by 8.4% and 10.6%, decreased the sum of absolute error (SAE) and root mean square error (RMSE) of NEE by 17.7% and 21.2%, and decreased the SAE and RMSE of the evapotranspiration by 26. 8% and 28.3%, respectively. After assimilated the MODIS LAI products of 2000-2004 into the improved Biome-BGC model, the R2 between simulated and observed results of NEE and evapotranspiration was increased by 7.8% and 4.7%, the SAE and RMSE of NEE were decreased by 21.9% and 26.3%, and the SAE and RMSE of evapotranspiration were decreased by 24.5% and 25.5%, respectively. It was suggested that the simulation accuracy of ecosystem water and carbon fluxes could be effectively improved if the field measured LAI or remote sensing LAI was integrated into the model.

  1. Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park

    USGS Publications Warehouse

    Barr, Jordan G.; Engel, Vic; Fuentes, Jose D.; Zieman, Joseph C.; O'Halloran, Thomas L.; Smith, Thomas J.; Anderson, Gordon H.

    2010-01-01

    We report on net ecosystem production (NEP) and key environmental controls on net ecosystem exchange (NEE) of carbon dioxide (CO2) between a mangrove forest and the atmosphere in the coastal Florida Everglades. An eddy covariance system deployed above the canopy was used to determine NEE during January 2004 through August 2005. Maximum daytime NEE ranged from -20 to -25 μmol (CO2) m-2 s-1 between March and May. Respiration (Rd) was highly variable (2.81 ± 2.41 μmol (CO2) m-2 s-1), reaching peak values during the summer wet season. During the winter dry season, forest CO2 assimilation increased with the proportion of diffuse solar irradiance in response to greater radiative transfer in the forest canopy. Surface water salinity and tidal activity were also important controls on NEE. Daily light use efficiency was reduced at high (>34 parts per thousand (ppt)) compared to low (d by ~0.9 μmol (CO2) m-2 s-1 and nighttime Rd by ~0.5 μmol (CO2) m-2 s-1. The forest was a sink for atmospheric CO2, with an annual NEP of 1170 ± 127 g C m-2 during 2004. This unusually high NEP was attributed to year-round productivity and low ecosystem respiration which reached a maximum of only 3 g C m-2 d-1. Tidal export of dissolved inorganic carbon derived from belowground respiration likely lowered the estimates of mangrove forest respiration. These results suggest that carbon balance in mangrove coastal systems will change in response to variable salinity and inundation patterns, possibly resulting from secular sea level rise and climate change.

  2. Intra-seasonal mapping of CO2 flux in rangelands of northern Kazakhstan at one-kilometer resolution

    USGS Publications Warehouse

    Wylie, B.K.; Gilmanov, T.G.; Johnson, D.A.; Saliendra, Nicanor Z.; Akshalov, K.; Tieszen, L.L.; Reed, B.C.; Laca, Emilio

    2004-01-01

    Algorithms that establish relationships between variables obtained through remote sensing and geographic information system (GIS) technologies are needed to allow the scaling up of site-specific CO2 flux measurements to regional levels. We obtained Bowen ratio-energy balance (BREB) flux tower measurements during the growing seasons of 1998-2000 above a grassland steppe in Kazakhstan. These BREB data were analyzed using ecosystem light-curve equations to quantify 10-day CO2 fluxes associated with gross primary production (GPP) and total respiration (R). Remotely sensed, temporally smoothed normalized difference vegetation index (NDVIsm) and environmental variables were used to develop multiple regression models for the mapping of 10-day CO2 fluxes for the Kazakh steppe. Ten-day GPP was estimated (R 2 = 0.72) by day of year (DOY) and NDVIsm, and 10-day R was estimated (R2 = 0.48) with the estimated GPP and estimated 10-day photosynthetically active radiation (PAR). Regression tree analysis estimated 10-day PAR from latitude, NDVIsm, DOY, and precipitation (R2 = 0.81). Fivefold cross-validation indicated that these algorithms were reasonably robust. GPP, R, and resulting net ecosystem exchange (NEE) were mapped for the Kazakh steppe grassland every 10 days and summed to produce regional growing season estimates of GPP, R, and NEE. Estimates of 10-day NEE agreed well with BREB observations in 2000, showing a slight underestimation in the late summer. Growing season (May to October) mean NEE for Kazakh steppe grasslands was 1.27 Mg C/ha in 2000. Winter flux data were collected during the winter of 2001-2002 and are being analyzed to close the annual carbon budget for the Kazakh steppe. ?? 2004 Springer-Verlag New York, LLC.

  3. Seasonal variation of carbon uptake in a primary forest ecosystem in southwestern Amazon

    NASA Astrophysics Data System (ADS)

    Garcia, S.; Gonçalves, J. F.; Cirino, G. G.; Artaxo, P.

    2013-05-01

    Tropical rainforests possess a large carbon stock and their dynamics are strongly dependent on climatic factors. Carbon assimilation by tropical forests can be meaningfully altered by seasonal changes in rainfall regime. Considering the interactions of the plant-atmosphere system, this study evaluated the effect of the precipitation seasonality on the photosynthesis of a primary forest, located in the state of Rondônia (Rebio Jaru), southwest of the Amazon, Brazil. Precipitation data from Instituto Nacional de Metereologia (INMET) from five years (2006-2010) were analyzed and the NEE (Net Ecosystem Exchange) of CO2 was calculated for ten years (1999-2009) using data from the Large Scale Biosphere-Atmosphere Experiment in the Amazon (LBA). Furthermore, leaves gas exchanges were measured in 48 individual in three forest strata (canopy, sub-canopy and understory) using a infrared gas analyzer (IRGA model LI-6400, Li-cor, USA) during two distinct precipitation periods: at the end of the wet (May) and dry (Sept.) seasons. The climatological data exhibited an accentuated dry season between the months of June and August. The lower water availability inhibited the forest primary production and altered the CO2 assimilation observed in the variation in the NEE values (Fig. 1). The NEE values were larger in the dry season and showed a smaller carbon uptake in the ecosystem, when compared with the values from the wet season. In the period that succeeds the dry season, the photosynthetic rates measured in canopy leaves were 44,49% lower than the values measured in the period prior to the dry season. Therefore, it is possible to conclude that the accentuated dry season strongly controls the seasonal photosynthesis variation in the studied area, decreasing the carbon uptake into the ecosystem. Fig. 1: Seasonal cycle of Net Ecosystem Exchange (NEE) of CO2 between the forest and atmosphere, in Rebio Jaru (1999-2009, monthly averages).

  4. Revegetation Methods for Arid Areas. Revised,

    DTIC Science & Technology

    1983-08-18

    es o pra atio ing the usse i t ions ery fo is rea ds req favor ss, so in nee ly wi t reveg compa ects o r seed ctices n, and operat...Transportation. Mr. Brady supplied of a seeding specification for one o tional information was gathered from (1979), Natural Resource Planner, fo...conditions enhances seed - ling establishment. by soil analyses. Based on dments are determined. For d. Mortenson (1979) reports sodium in excess of ten

  5. Chemical composition of essential oil from the root bark of Sassafras albidum.

    PubMed

    Kamdem, D P; Gage, D A

    1995-12-01

    The root bark of Sassafras albidum (Nuttall) Nees (Lauraceae) was extracted at room temperature with hexane and chloroform as solvents. The isolated essential oils were analyzed with GC and GC/MS. Thirty compounds were identified, nine of which have not been previously reported from this species. The major compounds were safrole (85%), camphor (3.25%), and methyleugenol (1.10%). Ten sesquiterpenes were also identified.

  6. Application of a satellite-based terrestrial carbon flux model for quantifying recent climate and fire disturbance impacts on northern ecosystem productivity

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Kimball, J. S.; Jones, L. A.; Reichle, R. H.; Nemani, R. R.

    2012-12-01

    Quantifying variability and underlying environmental constraints on carbon (CO2) sequestration in northern (≥ 45 °N) ecosystems is important for improving predictions of future climate change. We applied a satellite-based terrestrial carbon flux model for daily estimation of net ecosystem CO2 exchange (NEE) and component carbon fluxes across a pan-boreal/Arctic domain. The model includes a light use efficiency algorithm for estimating vegetation gross primary production (GPP) using operational satellite NDVI records, while ecosystem respiration is derived using a three-pool soil decomposition model adapted to utilize potential inputs from satellite microwave retrieved soil moisture and temperature as primary environmental constraints to soil respiration. Initial validation against tower eddy-covariance measurement based carbon fluxes for northern tower sites showed favorable results for GPP (R ≥ 0.7, RMSE < 2.5 g C/m2/day), and overall consistency for NEE (R > 0.5) at predominantly undisturbed sites. However, the terrestrial carbon uptake during the peak growing season was generally underestimated by the model especially for deciduous broadleaf forests, mainly due to under prediction of GPP over dense canopy areas and model steady-state assumptions of dynamic equilibrium between vegetation productivity and respiration processes. A model framework integrating satellite-based burned area products and vegetation indices was then developed to represent non-steady-state fire disturbance and recovery effects and the simulations largely tracked NEE recovery indicated by tower CO2 flux measurements over three boreal fire chronosequence networks. The regional simulations indicated that large drought and fire events were generally associated with large GPP reductions and net ecosystem carbon losses, though NEE was generally less sensitive to fire disturbance due to similar behavior in GPP and respiration components. These results are being used to inform development of

  7. A Laboratory Investigation of Aerosol and Extinction Characteristics for SALTY DOG, NWC 29 and NWC 78 Pyrotechnics

    DTIC Science & Technology

    1980-10-01

    Dispersion Extinction Pyrotechnics Salty Dog Smokes Deliquescent Growth i *0. ABSTRACT (Continue on reverse aide Iti nee.,ary and idently by block... deliquescent aerosol. Results from the laboratory investigation of individual particle growth indicate that the aerosol generated by NVC 78 has the...due to liquid water (i.e., the deliquesced aerosol) absorption at those IR wavelengths. To compare the extinction effectiveness of Salty Dog to that of

  8. Influence of vegetation and seasonal forcing on carbon dioxide fluxes across the Upper Midwest, USA: Implications for regional scaling

    SciTech Connect

    Desai, Desai Ankur R.; Noormets, Asko; Bolstad, Paul V; Chen, Jiquan; Cook, Bruce D; Davis, Kenneth; Euskirchen, Eugenie S; Gough, Christopher M; Martin, Jonathan G; Ricciuto, Daniel M; Schmid, Hans Peter; Tang, Jianwu; Wang, Weiguo

    2008-01-01

    Carbon dioxide fluxes were examined over the growing seasons of 2002 and 2003 from 14 different sites in Upper Midwest (USA) to assess spatial variability of ecosystem atmosphere CO2 exchange. These sites were exposed to similar temperature/precipitation regimes and spanned a range of vegetation types typical of the region (northern hardwood, mixed forest, red pine, jack pine, pine barrens and shrub wetland). The hardwood and red pine sites also spanned a range of stand ages (young, intermediate, mature). While seasonal changes in net ecosystem exchange (NEE) and photosynthetic parameters were coherent across the 2 years at most sites, changes in ecosystem respiration (ER) and gross ecosystem production (GEP) were not. Canopy height and vegetation type were important variables for explaining spatial variability of CO2 fluxes across the region. Light-use efficiency (LUE) was not as strongly correlated to GEP as maximum assimilation capacity (Amax). A bottom-up multi-tower land cover aggregated scaling of CO2 flux to a 2000 km2 regional flux estimate found June to August 2003 NEE, ER and GEP to be 290 89, 408, 48, and 698, 73 gC m-2, respectively. Aggregated NEE, ER and GEP were 280% larger, 32% smaller and 3% larger, respectively, than that observed from a regionally integrating 447m tall flux tower. However, when the tall tower fluxes were decomposed using a footprint-weighted influence function and then reaggregated to a regional estimate, the resulting NEE, ER and GEP were within 11% of the multi-tower aggregation. Excluding wetland and young stand age sites from the aggregation worsened the comparison to observed fluxes. These results provide insight on the range of spatial sampling, replication, measurement error and land cover accuracy needed for multi-tiered bottom-up scaling of CO2 fluxes in heterogeneous regions such as the Upper Midwest, USA.

  9. Influence of Vegetation and Seasonal Forcing on Carbon Dioxide Fluxes Across the Upper Midwest, USA: Implications for Regional Scaling

    SciTech Connect

    Desai, Ankur R; Noormets, Asko; Bolstad, Paul V; Chen, Jiquan; Cook, Bruce D; Davis, Kenneth J; Euskirchen, Eugenie S; Gough, Christopher; Martin, Jonathan G; Ricciuto, Daniel M; Schmid, Hans P; Tang, Jianwu; Wang, Weiguo

    2008-02-13

    Carbon dioxide fluxes were examined over the growing seasons of 2002 and 2003 from 14 different sites in the Upper Midwest (USA) to assess spatial variability of ecosystem–atmosphere CO2 exchange. These sites were exposed to similar temperature/precipitation regimes and spanned a range of vegetation types typical of the region (northern hardwood, mixed forest, red pine, jack pine, pine barrens, and shrub wetland). The hardwood and red pine sites also spanned a range of stand ages (young, intermediate, mature). While seasonal changes in net ecosystem exchange (NEE) and photosynthetic parameters were coherent across the 2 years at most sites, changes in ecosystem respiration (ER) and gross ecosystem production (GEP) were not. Canopy height and vegetation type were important variables for explaining spatial variability of CO2 fluxes across the region. Light-use efficiency (LUE) was not as strongly correlated to GEP as maximum assimilation capacity (Amax). A bottom-up multi-tower land cover aggregated scaling of CO2 flux to a 2000 km2 regional flux estimate found June to August 2003 NEE, ER, and GEP to be -290 ± 89, 408 ± 48, and 698 ± 73 gC m-2, respectively. Aggregated NEE, ER, and GEP were 280% larger, 32% smaller and 3% larger, respectively, than that observed from a regionally integrating 447 m tall flux tower. However, when the tall tower fluxes were decomposed using a footprint-weighted influence function and then re-aggregated to a regional estimate, the resulting NEE, ER, and GEP were within 11% of the multi-tower aggregation. Excluding wetland and young stand age sites from the aggregation worsened the comparison to observed fluxes. These results provide insight on the range of spatial sampling, replication, measurement error, and land cover accuracy needed for multi-tiered bottom-up scaling of CO2 fluxes in heterogeneous regions such as the Upper Midwest, USA.

  10. Causes of interannual variability in ecosystem-atmosphere CO2 exchange in a northern Wisconsin forest using a Bayesian model calibration

    SciTech Connect

    Ricciuto, Daniel M; Butler, Martha; Davis, Kenneth; Cook, Bruce D

    2008-01-01

    Carbon dioxide fluxes were examined over the growing seasons of 2002 and 2003 from 14 different sites in Upper Midwest (USA) to assess spatial variability of ecosystem-atmosphere CO2 exchange. These sites were exposed to similar temperature/precipitation regimes and spanned a range of vegetation types typical of the region (northern hardwood, mixed forest, red pine, jack pine, pine barrens and shrub wetland). The hardwood and red pine sites also spanned a range of stand ages (young, intermediate, mature). While seasonal changes in net ecosystem exchange (NEE) and photosynthetic parameters were coherent across the 2 years at most sites, changes in ecosystem respiration (ER) and gross ecosystem production (GEP) were not. Canopy height and vegetation type were important variables for explaining spatial variability of CO2 fluxes across the region. Light-use efficiency (LUE) was not as strongly correlated to GEP as maximum assimilation capacity (Amax). A bottom-up multi-tower land cover aggregated scaling of CO2 flux to a 2000 km(2) regional flux estimate found June to August 2003 NEE, ER and GEP to be -290 +/- 89, 408 +/- 48, and 698 +/- 73 gC m(-2), respectively. Aggregated NEE, ER and GEP were 280% larger, 32% smaller and 3% larger, respectively, than that observed from a regionally integrating 447 m tall flux tower. However, when the tall tower fluxes were decomposed using a footprint-weighted influence function and then re-aggregated to a regional estimate, the resulting NEE, ER and GEP were within 11% of the multi-tower aggregation. Excluding wetland and young stand age sites from the aggregation worsened the comparison to observed fluxes. These results provide insight on the range of spatial sampling, replication, measurement error and land cover accuracy needed for multi-tiered bottom-up scaling of CO2 fluxes in heterogeneous regions such as the Upper Midwest, USA. (C) 2007 Elsevier B.V. All rights reserved.

  11. Effects of grazing on ecosystem CO₂ exchange in a meadow grassland on the Tibetan Plateau during the growing season.

    PubMed

    Chen, Ji; Shi, Weiyu; Cao, Junji

    2015-02-01

    Effects of human activity on ecosystem carbon fluxes (e.g., net ecosystem exchange (NEE), ecosystem respiration (R(eco)), and gross ecosystem exchange (GEE)) are crucial for projecting future uptake of CO2 in terrestrial ecosystems. However, how ecosystem that carbon fluxes respond to grazing exclusion is still under debate. In this study, a field experiment was conducted to study the effects of grazing exclusion on R(eco), NEE, and GEE with three treatments (free-range grazing (FG) and grazing exclusion for 3 and 5 years (GE3 and GE5, respectively)) in a meadow grassland on the Tibetan Plateau. Our results show that grazing exclusion significantly increased NEE by 47.37 and 15.84%, and R eco by 33.14 and 4.29% under GE3 and GE5 plots, respectively, although carbon sinks occurred in all plots during the growing season, with values of 192.11, 283.12, and 222.54 g C m(-2) for FG, GE3, and GE5, respectively. Interestingly, grazing exclusion increased temperature sensitivity (Q10) of R eco with larger increases at the beginning and end of growing season (i.e., May and October, respectively). Soil temperature and soil moisture were key factors on controlling the diurnal and seasonal variations of R(eco), NEE, and GEE, with soil temperature having a stronger influence. Therefore, the combined effects of grazing and temperature suggest that grazing should be taken into consideration in assessing global warming effects on grassland ecosystem CO2 exchange.

  12. A downward CO2 flux seems to have nowhere to go

    NASA Astrophysics Data System (ADS)

    Ma, J.; Liu, R.; Tang, L.-S.; Lan, Z.-D.; Li, Y.

    2014-11-01

    Recent studies have suggested that deserts, which are a long-neglected region in global carbon budgeting, have strong downward CO2 fluxes and might be a significant carbon sink. This finding, however, has been strongly challenged because neither the reliability of the flux measurements nor the exact location of the fixed carbon has been determined. This paper shows, with a full chain of evidence, that there is indeed strong carbon flux into saline/alkaline land in arid regions. Based on continuous measurement of net ecosystem CO2 exchange (NEE) from 2002 to 2012 (except for 2003), the saline desert in western China was a carbon sink for 9 out of 10 years, and the average yearly NEE for the 10 years was -25.00 ± 12.70 g C m-2 year-1. Supporting evidence for the validity of these NEE estimates comes from the close agreement of NEE values obtained from the chamber and eddy-covariance methods. After ruling out the possibility of changes in C stored in plant biomass or soils, the C uptake was found to be leached downwards into the groundwater body in the process of groundwater fluctuation: rising groundwater absorbs soil dissolved inorganic carbon (DIC), and falling groundwater transports the DIC downward. Horizontal groundwater flow may send this DIC farther away and prevent it from being observed locally. This process has been called "passive leaching" of DIC, in comparison with the active DIC leaching that occurs during groundwater recharge. This passive leaching significantly expands the area where DIC leaching occurs and creates a literally "hidden" carbon sink process under the desert. This study tells us that when a downward CO2 flux is observed, but seems to have nowhere to go, it does not necessarily mean that the flux measurement is unreliable. By looking deeper and farther away, a place and a process may be found "hidden" underground.

  13. On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia

    NASA Astrophysics Data System (ADS)

    Molina, L.; Broquet, G.; Imbach, P.; Chevallier, F.; Poulter, B.; Bonal, D.; Burban, B.; Ramonet, M.; Gatti, L. V.; Wofsy, S. C.; Munger, J. W.; Dlugokencky, E.; Ciais, P.

    2015-07-01

    The exchanges of carbon, water and energy between the atmosphere and the Amazon basin have global implications for the current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate (MACC) service is used to study the seasonal and interannual variations of biogenic CO2 fluxes in Amazonia during the period 2002-2010. The system assimilated surface measurements of atmospheric CO2 mole fractions made at more than 100 sites over the globe into an atmospheric transport model. The present study adds measurements from four surface stations located in tropical South America, a region poorly covered by CO2 observations. The estimates of net ecosystem exchange (NEE) optimized by the inversion are compared to an independent estimate of NEE upscaled from eddy-covariance flux measurements in Amazonia. They are also qualitatively evaluated against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We attempt at assessing the impact on NEE of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons) and the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE are also investigated. While the inversion supports the assumption of strong spatial heterogeneity of these variations, the results reveal critical limitations of the coarse-resolution transport model, the surface observation network in South America during the recent years and the present knowledge of modelling uncertainties in South America that prevent our inversion from capturing the seasonal patterns of fluxes across Amazonia. However, some patterns from the inversion seem consistent with the anomaly of moisture conditions in 2009.

  14. Stellar condensates in meteorites - Isotopic evidence from noble gases

    NASA Technical Reports Server (NTRS)

    Lewis, R. S.; Alaerts, L.; Matsuda, J.-I.; Anders, E.

    1979-01-01

    The Murchison carbonaceous chondrite contains three isotopically anomalous noble-gas components of apparently presolar origin: two kinds of Ne-E, (Ne-20)/(Ne-22) less than 0.6, and s-process Kr + Xe (enriched in the even isotopes 82, 84, 86, 128, 130, 132). Their carriers are tentatively identified as spinel and two carbonaceous phases, the principal high-temperature stellar condensates at low and high C/O ratios, respectively.

  15. Utilization of Methylthio-s-Triazine for Growth of Soil Fungi 1

    PubMed Central

    Murray, Don S.; Rieck, Walter L.; Lynd, J. Q.

    1970-01-01

    Aspergillus niger van Tieghem, Aspergillus tamarii Kita, and Aspergillus flavus Link ex Fries utilized the methylthio moiety of 2,4-bis(isopropylamino) -6-methyl-mercapto-s-triazine (prometryne) as a sulfur nutrient source. Other soil fungal isolates not affected by prometryne concentrations to 1 mg/ml culture included: Aspergillus oryzae (Ahlburg) Cohn, Curvularia lunata (Wakker) Boedijn, Trichoderma viride Persoon ex Fries, Alternaria tenuis Nees ex Corda, Penicillium funiculosum Thom, and Paecilomyces varioti Bainier. PMID:16349873

  16. Effects of Pre-industrial and Future Atmospheric CO2 concentration on Net Ecosystem Exchange on Arid and Semi-Arid Ecosystems

    NASA Astrophysics Data System (ADS)

    Kalhori, A. A. M.; Deutschman, D.; Cheng, Y.; Oechel, W. C.

    2014-12-01

    Ecosystem carbon dioxide flux was studied between 1997 and 2000 under six different CO2 concentrations (250 ppm, 350 ppm, 450 ppm, 550 ppm, 650 ppm, and 750 ppm) using CO2 LT (CO2 controlled, naturally Lit, Temperature controlled) null balance chambers in Southern California chaparral dominated by Adenostoma fasciculatum. The purpose of this study is to evaluate possible effects of altered levels of atmospheric CO2 concentrations on carbon fluxes in a natural chaparral ecosystem. Here we present that the increase of CO2 from near pre-industrial levels of around 250 ppm to recent past CO2 levels of 350 ppm are sufficient to increase NEE. These data indicate that chaparral ecosystems will increase carbon sequestration under elevated CO2 levels and that under elevated atmospheric CO2 there will be greater sink or reduced source of ecosystem CO2 to the atmosphere as a result of improved moisture status. The effect of elevated CO2 on increasing NEE was greatest during the warm and dry season versus the cold and wet season. Further, it appears that increasing atmospheric CO2 will have greater relative effects in areas of increasing water stress as CO2 treatment effects on NEE were greater in modestly dry years and with longer periods of drought. The daily maximum NEE difference between the lowest (250 ppm) and the highest (750 ppm) CO2 concentrations treatments for January was -0.127gC m-2 h-1, but for June was -0.267 gC m-2 h-1 in this study, which was a 210 percent increase. The differences between the lower treatments and higher treatments were greater in the later years indicating there was an accumulative effect. Cumulative of net ecosystem exchange (gC m-2) between 1/1/1997 and 1/1/2001 under six different CO2 concentration is presented in the figure attached.

  17. Effects of experimental nitrogen deposition on peatland carbon pools and fluxes: a modelling analysis

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Blodau, C.; Moore, T. R.; Bubier, J.; Juutinen, S.; Larmola, T.

    2015-01-01

    Nitrogen (N) pollution of peatlands alters their carbon (C) balances, yet long-term effects and controls are poorly understood. We applied the model PEATBOG to explore impacts of long-term nitrogen (N) fertilization on C cycling in an ombrotrophic bog. Simulations of summer gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem exchange (NEE) were evaluated against 8 years of observations and extrapolated for 80 years to identify potential effects of N fertilization and factors influencing model behaviour. The model successfully simulated moss decline and raised GEP, ER and NEE on fertilized plots. GEP was systematically overestimated in the model compared to the field data due to factors that can be related to differences in vegetation distribution (e.g. shrubs vs. graminoid vegetation) and to high tolerance of vascular plants to N deposition in the model. Model performance regarding the 8-year response of GEP and NEE to N input was improved by introducing an N content threshold shifting the response of photosynthetic capacity (GEPmax) to N content in shrubs and graminoids from positive to negative at high N contents. Such changes also eliminated the competitive advantages of vascular species and led to resilience of mosses in the long-term. Regardless of the large changes of C fluxes over the short-term, the simulated GEP, ER and NEE after 80 years depended on whether a graminoid- or shrub-dominated system evolved. When the peatland remained shrub-Sphagnum-dominated, it shifted to a C source after only 10 years of fertilization at 6.4 g N m-2 yr-1, whereas this was not the case when it became graminoid-dominated. The modelling results thus highlight the importance of ecosystem adaptation and reaction of plant functional types to N deposition, when predicting the future C balance of N-polluted cool temperate bogs.

  18. Effects of experimental nitrogen deposition on peatland carbon pools and fluxes: a modeling analysis

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Blodau, C.; Moore, T. R.; Bubier, J. L.; Juutinen, S.; Larmola, T.

    2014-07-01

    Nitrogen (N) pollution of peatlands alters their carbon (C) balances, yet long-term effects and controls are poorly understood. We applied the model PEATBOG to analyze impacts of long-term nitrogen (N) fertilization on C cycling in an ombrotrophic bog. Simulations of summer gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem exchange (NEE) were evaluated against 8 years of observations and extrapolated for 80 years to identify potential effects of N fertilization and factors influencing model behavior. The model successfully simulated moss decline and raised GEP, ER and NEE on fertilized plots. GEP was systematically overestimated in the model compared to the field data due to high tolerance of Sphagnum to N deposition in the model. Model performance regarding the 8 year response of GEP and NEE to N was improved by introducing an N content threshold shifting the response of photosynthesis capacity to N content in shrubs and graminoids from positive to negative at high N contents. Such changes also eliminated the competitive advantages of vascular species and led to resilience of mosses in the long-term. Regardless of the large changes of C fluxes over the short-term, the simulated GEP, ER and NEE after 80 years depended on whether a graminoid- or shrub-dominated system evolved. When the peatland remained shrub-Sphagnum dominated, it shifted to a C source after only 10 years of fertilization at 6.4 g N m-2 yr-1, whereas this was not the case when it became graminoid-dominated. The modeling results thus highlight the importance of ecosystem adaptation and reaction of plant functional types to N deposition, when predicting the future C balance of N-polluted cool temperate bogs.

  19. Electrodiagnostic approach to patients with weakness.

    PubMed

    Dillingham, Timothy R

    2003-05-01

    Electrodiagnosis has a key role in the evaluation of patients presenting with weakness. The electrodiagnostician should maintain a broad inclusive differential diagnosis and tailor the examination using a sound conceptual framework. A clear understanding of what is normal provides the proper foundation upon which to judge electrodiagnostic findings. Many peripheral neuromuscular conditions manifest themselves in characteristic ways on NEE and nerve conduction testing, making them identifiable to the skilled electrodiagnostic medicine consultant.

  20. Effects of drought and warming treatments on CO2 fluxes in shrubland ecosystems across an environmental gradient: a synthesis of the INCREASE project

    NASA Astrophysics Data System (ADS)

    Guidolotti, Gabriele; Steenberg Larsen, Klaus; de Dato, Giovanbattista; Baarsel, Susie; Lellei-Kovács, Eszter; Kopittke, Gillian; Tietema, Albert; Emmet, Bridgett; De Angelis, Paolo; Kappel Schmidt, Inger

    2013-04-01

    Seasonal changes of net ecosystem exchange (NEE) of terrestrial ecosystems are the result of different interactions between CO2 assimilation (GPP) and ecosystem respiration (ER) with environmental drivers. There is still debate about to which extent low soil moisture (drought) and increased temperature (warming) can affect GPP or ER depending on both functional groups and ecosystem climate types. In dynamic systems, such as shrubland ecosystems, these effects can be difficult to predict. We used the INCREASE network infrastructure "space-for-time substitution" (natural gradient and experimental approach) to quantify the effects of drought and warming on GPP, ER, SR and NEE across 6 European shrublands. The sites ranged from Denmark to Southern Italy along a precipitation and temperature gradient. In addition, INCREASE experimentally manipulates the climate in 20 m2 plots simulating the climate change: reflective curtains are drawn across plots at night preventing heat loss (warming treatment) while other plots are periodically covered by curtains during rain events thereby reducing the water input from precipitation (drought treatment). The measurements of soil CO2 efflux (SR), net ecosystem CO2 exchange (NEE) and total ecosystem respiration (ER) were done according to common protocols using chamber method, while the gross ecosystem photosynthesis (GPP) was estimated by difference between NEE and ER. Preliminary results indicate large flux variability across the sites and the seasons. The drought treatment tends to limit the loss of CO2 through the respiratory processes, while the warming treatment seems to stimulate all the processes in most sites, even in the Mediterranean where the temperature has never been considered a limiting factor.

  1. Fort Leavenworth: From Frontier Post to Home of the United States Army Command and General Staff College

    DTIC Science & Technology

    1959-10-26

    neighboring Cantonment Leavenworth for the Delawares, Shaw- nees, Wyandottes, Pottawatomies, and Kickapoos . Surveyor Saved Post The site of the Cantonment...Sac, Delaware, Shawnee, and Kickapoo - were located on reRet·vations near the Post and fell under the jurisdiction of this frontier insta11ation. By...and Weston; to the north was the fiery little town of Kickapoo with its violent pro-slavery newspaper; still farther north was Atchison, also

  2. Rain events decrease boreal peatland net CO2 uptake through reduced light availability.

    PubMed

    Nijp, Jelmer J; Limpens, Juul; Metselaar, Klaas; Peichl, Matthias; Nilsson, Mats B; van der Zee, Sjoerd E A T M; Berendse, Frank

    2015-06-01

    Boreal peatlands store large amounts of carbon, reflecting their important role in the global carbon cycle. The short-term exchange and the long-term storage of atmospheric carbon dioxide (CO2 ) in these ecosystems are closely associated with the permanently wet surface conditions and are susceptible to drought. Especially, the single most important peat forming plant genus, Sphagnum, depends heavily on surface wetness for its primary production. Changes in rainfall patterns are expected to affect surface wetness, but how this transient rewetting affects net ecosystem exchange of CO2 (NEE) remains unknown. This study explores how the timing and characteristics of rain events during photosynthetic active periods, that is daytime, affect peatland NEE and whether rain event associated changes in environmental conditions modify this response (e.g. water table, radiation, vapour pressure deficit, temperature). We analysed an 11-year time series of half-hourly eddy covariance and meteorological measurements from Degerö Stormyr, a boreal peatland in northern Sweden. Our results show that daytime rain events systematically decreased the sink strength of peatlands for atmospheric CO2 . The decrease was best explained by rain associated reduction in light, rather than by rain characteristics or drought length. An average daytime growing season rain event reduced net ecosystem CO2 uptake by 0.23-0.54 gC m(-2) . On an annual basis, this reduction of net CO2 uptake corresponds to 24% of the annual net CO2 uptake (NEE) of the study site, equivalent to a 4.4% reduction of gross primary production (GPP) during the growing season. We conclude that reduced light availability associated with rain events is more important in explaining the NEE response to rain events than rain characteristics and changes in water availability. This suggests that peatland CO2 uptake is highly sensitive to changes in cloud cover formation and to altered rainfall regimes, a process hitherto largely

  3. kwayask e-ki-pe-kiskinowapahtihicik = Their Example Showed Me the Way: A Cree Woman's Life Shaped by Two Cultures.

    ERIC Educational Resources Information Center

    Minde, Emma; Ahenakew, Freda, Ed.; Wolfart, H. C., Ed.

    Emma Minde (nee Memnook)was born in 1907 in Saddle Lake, Alberta. In 1927 she was given by her father in an arranged marriage to Joe Minde, who lived in Hobbema, Alberta. In this recorded autobiography taped in 1988 when she was 81 years old, little is said about her parents and her life as a child other than that she spent 7 years at a…

  4. Sky with Ocean Joined, Presented at Proceedings of the Sesquicentennial Symposia Held at Washington, DC on 5-8 December 1980

    DTIC Science & Technology

    1983-12-01

    nal % with publications principally by Lewis Boss, the editor, and individual pieces by G. W. Hill and Seth C. Chandler .22 First, Boss raised the...Communication," Astronomical Journal, 19 (April 14, 1898), 4-5. Sec also. Scth C. Chandler . "The Aberra- tion-Constant of the French Con fere nee...34 Astronomical Journal, 18 (February 10, 1898), 149-152: in this article. Chandler used essentially (he same arguments that Ncwcomb employed at the

  5. Atmospheric observations inform CO2 flux responses to enviroclimatic drivers

    NASA Astrophysics Data System (ADS)

    Fang, Yuanyuan; Michalak, Anna M.

    2015-05-01

    Understanding the response of the terrestrial biospheric carbon cycle to variability in enviroclimatic drivers is critical for predicting climate-carbon interactions. Here we apply an atmospheric-inversion-based framework to assess the relationships between the spatiotemporal patterns of net ecosystem CO2 exchange (NEE) and those of enviroclimatic drivers. We show that those relationships can be directly observed at 1° × 1° 3-hourly resolution from atmospheric CO2 measurements for four of seven large biomes in North America, namely, (i) boreal forests and taiga; (ii) temperate coniferous forests; (iii) temperate grasslands, savannas, and shrublands; and (iv) temperate broadleaf and mixed forests. We find that shortwave radiation plays a dominant role during the growing season over all four biomes. Specific humidity and precipitation also play key roles and are associated with decreased CO2 uptake (or increased release). The explanatory power of specific humidity is especially strong during transition seasons, while that of precipitation appears during both the growing and dormant seasons. We further find that the ability of four prototypical terrestrial biospheric models (TBMs) to represent the spatiotemporal variability of NEE improves as the influence of radiation becomes more dominant, implying that TBMs have a better skill in representing the impact of radiation relative to other drivers. Even so, we show that TBMs underestimate the strength of the relationship to radiation and do not fully capture its seasonality. Furthermore, the TBMs appear to misrepresent the relationship to precipitation and specific humidity at the examined scales, with relationships that are not consistent in terms of sign, seasonality, or significance relative to observations. More broadly, we demonstrate the feasibility of directly probing relationships between NEE and enviroclimatic drivers at scales with no direct measurements of NEE, opening the door to the study of emergent

  6. Parametric Blade Study Test Report Rotor Configuration. Number 2

    DTIC Science & Technology

    1988-11-01

    by block number) FIELD GROUP SUB. GR. Axial compressor 01 -Gas Turbine t Aircraft Turbine Engine . 19, BSTRACT (Continue on reverse if nee..ary and...AFWAL-TR-88-41108 00 PARAMETRIC BLADE STUDY TEST REPORT 00 ROTOR CONFIGURATION NO. 2 N C. Herbert Law Steven L. Puterbaugh Technology Branch Turbine ...Technology Branch Technology Branch Turbine Engine Division FOR THE COMMANDER THOMAS J. IMS, Director Turbinengine Division Aero P opulsion Laboratory If

  7. Flux frequency analysis of seasonally dry ecosystem fluxes in two unique biomes of Sonora Mexico

    NASA Astrophysics Data System (ADS)

    Verduzco, V. S.; Yepez, E. A.; Robles-Morua, A.; Garatuza, J.; Rodriguez, J. C.; Watts, C.

    2013-05-01

    Complex dynamics from the interactions of ecosystems processes makes difficult to model the behavior of ecosystems fluxes of carbon and water in response to the variation of environmental and biological drivers. Although process oriented ecosystem models are critical tools for studying land-atmosphere fluxes, its validity depends on the appropriate parameterization of equations describing temporal and spatial changes of model state variables and their interactions. This constraint often leads to discrepancies between model simulations and observed data that reduce models reliability especially in arid and semiarid ecosystems. In the semiarid north western Mexico, ecosystem processes are fundamentally controlled by the seasonality of water and the intermittence of rain pulses which are conditions that require calibration of specific fitting functions to describe the response of ecosystem variables (i.e. NEE, GPP, ET, respiration) to these wetting and drying periods. The goal is to find functions that describe the magnitude of ecosystem fluxes during individual rain pulses and the seasonality of the ecosystem. Relaying on five years of eddy covariance flux data of a tropical dry forest and a subtropical shrubland we present a flux frequency analysis that describe the variation of net ecosystem exchange (NEE) of CO2 to highlight the relevance of pulse driven dynamics controlling this flux. Preliminary results of flux frequency analysis of NEE indicate that these ecosystems are strongly controlled by the frequency distribution of rain. Also, the output of fitting functions for NEE, GPP, ET and respiration using semi-empirical functions applied at specific rain pulses compared with season-long statistically generated simulations do not agree. Seasonality and the intrinsic nature of individual pulses have different effects on ecosystem flux responses. This suggests that relationships between the nature of seasonality and individual pulses can help improve the

  8. A Concept for Quantifying the Readiness Contribution of Proposed Army Facilities.

    DTIC Science & Technology

    1982-04-01

    PROGRAM IPROGRA SIZE OF EEC. EC. FACTORS AT RESPECTIVE MERGE LEVELS IFACILITY FACILITY FACILITYI USING DELPHI INEEDS-- NEES-- NEEDS-- PROCESS IDCSLOGI...OBJECTIVES (MISSIONS) USING DELPHI PROCESS ll~ll~ SIS’ANOARD OBJECTIVES HIERARCHY r, ,------------ EXPERTS SCOpt I I FUNCTIONAL I DETERMINE I SIGNIFICANCEI...RELATIVE L--------J L....-J WORTH OF r r-- - ENTITIES I INTENSITY I IOPERATIONALI USING DELPHI 9 OF NEED ISIGNIFICANCE PROCESS Ir - 1 REL.ATION T TE

  9. Twelve year interannual and seasonal variability of stream carbon export from a boreal peatland catchment

    NASA Astrophysics Data System (ADS)

    Leach, J. A.; Larsson, A.; Wallin, M. B.; Nilsson, M. B.; Laudon, H.

    2016-07-01

    Understanding stream carbon export dynamics is needed to accurately predict how the carbon balance of peatland catchments will respond to climatic and environmental change. We used a 12 year record (2003-2014) of continuous streamflow and manual spot measurements of total organic carbon (TOC), dissolved inorganic carbon (DIC), methane (CH4), and organic carbon quality (carbon-specific ultraviolet absorbance at 254 nm per dissolved organic carbon) to assess interannual and seasonal variability in stream carbon export for a peatland catchment (70% mire and 30% forest cover) in northern Sweden. Mean annual total carbon export for the 12 year period was 12.2 gCm-2 yr-1, but individual years ranged between 6 and 18 gCm-2 yr-1. TOC, which was primarily composed of dissolved organic carbon (>99%), was the dominant form of carbon being exported, comprising 63% to 79% of total annual exports, and DIC contributed between 19% and 33%. CH4 made up less than 5% of total export. When compared to previously published annual net ecosystem exchange (NEE) for the studied peatland system, stream carbon export typically accounted for 12 to 50% of NEE for most years. However, in 2006 stream carbon export accounted for 63 to 90% (estimated uncertainty range) of NEE due to a dry summer which suppressed NEE, followed by a wet autumn that resulted in considerable stream export. Runoff exerted a primary control on stream carbon export from this catchment; however, our findings suggest that seasonal variations in biologic and hydrologic processes responsible for production and transport of carbon within the peatland were secondary influences on stream carbon export. Consideration of these seasonal dynamics is needed when predicting stream carbon export response to environmental change.

  10. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data

    USGS Publications Warehouse

    Hayes, Daniel J.; Turner, David P.; Stinson, Graham; McGuire, A. David; Wei, Yaxing; West, Tristram O.; Heath, Linda S.; de Jong, Bernardus; McConkey, Brian G.; Birdsey, Richard A.; Kurz, Werner A.; Jacobson, Andrew R.; Huntzinger, Deborah N.; Pan, Yude; Post, W. Mac; Cook, Robert B.

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000–2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a -327 ± 252 TgC yr-1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (-248 TgC yr-1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (-297 TgC yr-1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr-1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated to be a small net source (+18 TgC yr-1) due to land use change between 1993 and 2002. We compare these inventory-based estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is -511 TgC yr-1 and -931 TgC yr-1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional -239 TgC yr-1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.

  11. Comparing the Net Ecosystem Exchange of Two Cropping Systems for Dairy Feed Production

    NASA Astrophysics Data System (ADS)

    Sulaiman, M. F.; Wagner-Riddle, C.; Brown, S. E.

    2015-12-01

    A three-year study was conducted from 2012 to 2014 to determine the net CO2 fluxes from corn and hay, the two main feed crops used in dairy production. The aim of this study is to better understand the net ecosystem exchange (NEE) in annual and perennial cropping systems used in dairy production to benefit greenhouse gas emission model developments and the life cycle analysis of dairy production. The study was conducted on two 4-ha plots where one plot was a 5-year old hayfield and the other plot was planted in a continuous cycle corn. All plots were continuously monitored using the flux-gradient method deployed with a tunable diode laser trace gas analyzer and sonic anemometers. All plots received dairy manure as fertilizer applied according to common practice. The cumulative NEE for the three years of the study was -873.15 g C m-2 for corn and -409.36 g C m-2 for hay. Differences in respiration between the two cropping systems was found to be the larger factor compared to differences in gross ecosystem production (GEP) that resulted in the contrasting cumulative NEE where cumulative respiration for the three years for hay was 3094.23 g C m-2 as opposed to 2078.11 g C m-2 for corn. Cumulative GEP for the three years was 3503.60 and 2951.31 g C m-2 for hay and corn respectively. Inter-annual and inter-crop variability of the NEE, GEP and respiration will be discussed in relation to biomass production, climatic conditions and crop physiological characteristics.

  12. Large net CO2 loss from a grass-dominated tropical savanna in south-central Brazil in response to seasonal and interannual drought

    NASA Astrophysics Data System (ADS)

    Zanella De Arruda, Paulo Henrique; Vourlitis, George Louis; Santanna, Franciele Bomfiglio; Pinto, Osvaldo Borges, Jr.; De Almeida Lobo, Francisco; De Souza Nogueira, José

    2016-08-01

    The savanna vegetation of Brazil (Cerrado) accounts for 20-25% of the land cover of Brazil and is the second largest ecosystem following Amazonian forest; however, Cerrado mass and energy exchange is still highly uncertain. We used eddy covariance to measure the net ecosystem CO2 exchange (NEE) of grass-dominated Cerrado (campo sujo) over 3 years. We hypothesized that soil water availability would be a key control over the seasonal and interannual variations in NEE. Multiple regression indicated that gross primary production (GPP) was positively correlated (Pearson's r = 0.69; p < 0.001) with soil water content, radiation, and the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived enhanced vegetation index (EVI) but negatively correlated with the vapor pressure deficit (VPD), indicating that drier conditions increased water limitations on GPP. Similarly, ecosystem respiration (Reco) was positively correlated (Pearson's r = 0.78; p < 0.001) with the EVI, radiation, soil water content, and temperature but slightly negatively correlated with rainfall and the VPD. While the NEE responded rapidly to temporal variations in soil water availability, the grass-dominated Cerrado stand was a net source of CO2 to the atmosphere during the study period, which was drier compared to the long-term average rainfall. Cumulative NEE was approximately 842 gC m-2, varying from 357 gC m-2 in 2011 to 242 gC m-2 in 2012. Our results indicate that grass-dominated Cerrado may be an important regional CO2 source in response to the warming and drying that is expected to occur in the southern Amazon Basin under climate change.

  13. Performance of Multiple-Disk-Rotor Pumps with Varied Interdisk Spacings

    DTIC Science & Technology

    1980-08-01

    necessary old Identity obe MNoAW) Disk Rotor, Disk Pump , Centrifugal Pump 20. ABSTRACT (CMORI Nm asue ai" S t N.ee ai060dWFO 1111idet 0Y Weak 0101do...83 4P4 LIST OF FIGURES Page I - Sectional View of Disk Pump and Rotor Assembly with Volute Casing...Investigated .. ......... ... 15 3 - Pump Performance Parameters Measured ..... .............. ... 16 4 - Performance of Disk Pump with Volute Casing

  14. A Web-Based Borehole Strong-motion Data Dissemination Portal

    NASA Astrophysics Data System (ADS)

    Steidl, J. H.; Seale, S.; Ratzesberger, H.; Civilini, F.; Vaughan, N.

    2009-12-01

    Accelerometric and pore pressure data from instrumented boreholes in southern California are producing very interesting observations from a large data set that includes 100’s of earthquake observations each month. While the majority of these are very small events, they provide the control data that represents the linear behavior of the site. In addition, the largest motions recorded to date, ~10%g, are getting to the regime where nonlinear soil behavior effects become important. In order to make these data more accessible to the seismology and earthquake engineering research community, software development of a web-based data dissemination portal has taken place under the George E. Brown Jr., Network for Earthquake Engineering (NEES) program. This development includes processing and analysis tools, and web-based data dissemination available through the NEES@UCSB website [http://nees.ucsb.edu]. Of interest to the research community are the tools developed to provide search, waveform viewing, and download capabilities for access to data acquired through the various borehole-monitoring programs at UC Santa Barbara. Researchers interested in obtaining data recorded at the various field sites can use the map-based search tool to select a particular station and instrument(s). The user is then provided another map-based interface that allows the user to select events with choice of magnitude, distance, and time period. Once the user has selected an event of interest, the ability to view the data is provided, along with some waveform parameters like peak velocity and acceleration. The records can then be downloaded in a number of common formats, including MSEED, SAC, and an ASCII text-based real-time data viewer (RDV) format. The last format allows the data to be viewed in the NEES RDV tool, a platform independent JAVA program developed to display both real-time streaming data, or playback data that has been downloaded through the web-based event search tool.

  15. Formulation and pharmacokinetic evaluation of hard gelatin capsule encapsulating lyophilized Vasa Swaras for improved stability and oral bioavailability of vasicine.

    PubMed

    Vyas, Tejas; Dash, Ranjeet Prasad; Anandjiwala, Sheetal; Nivsarkar, Manish

    2011-04-01

    The oral bioavailability of vasicine (1) was investigated in hard gelatin capsules of lyophilized Vasa Swaras (aqueous extract of Adhatoda vasica Nees.,Fam.: Acanthaceae) The rat pharmacokinetic profile of lyophilized Vasa Swaras, Vasa Swaras, vasicine (1) (chief marker compounds of A. vasica) and a marketed capsule formulation of A. vasica were compared. Vasicine (1) was found to be more orally bioavailable from lyophilized Vasa Swaras, with an overall minor conversion to vasicinone (2).

  16. Handbook of the Statistics of Various Terrain and Water (Ice) Backgrounds from Selected U.S. Locations

    DTIC Science & Technology

    1980-01-01

    operations necessary for the successful completion of the analyses. Dr. J. Robert Maxwell was the initial Project Manager and has contributed invaluably to...the histograms provide estimates of how the detection probability and false alarm rate vary with threshold setting. However, today there is a nee.d for...alarm rates V iwith today’s sensor and processor technology. The statistics developed are the probabilities that regions (of various sizes, shapes, and

  17. Inventory of Rare of Endangered Vascular Plants Occurring in the Floodplain of the Mississippi River between Cairo, Illinois, and St. Paul, Minnesota, and in the Floodplain of the Illinois River between Grafton, Illinois, and Chicago,

    DTIC Science & Technology

    1975-01-01

    The illustrated flora of Illinois: Grasses : Bromus to Paspalum . Southern Illinois University Press, Carbon- dale. 332 pp. Mohlenbrock, R. H. 1973. The...species, calling it Eragrostis pilifera Scheele. r 17 Eragrostis reptans (Michx.) Nees Pony Grass Family Poaceae Status: Endangered Or possibly extinct...Illinois). This low-growing grass is distributed from Kentucky, Illinois, and Missouri south to Texas and Louisiana. It is also found as an exten- sion

  18. Structural Technology Evaluation and Analysis Program (STEAP) Delivery Order 0042: Development of the Equivalent Overload Model, Demonstration of the Failure of Superposition, and Relaxation/Redistribution Measurement

    DTIC Science & Technology

    2011-09-01

    aluminum alloy AA2024-T351 using simple element specimens and standard material behavior coupons. Specific goals accomplished in this program were to...3.1.2 Test: Tensile Static Strength (ASTM E-8) The monotonic stress strain behavior of Aluminum Alloy 2024-T351 was measured using ASTM E-08 protocol on...this NEES report, Cintron and Saouma used DIC on aluminum or brick and mortar specimens. They did not identify the particular aluminum alloy , but did

  19. An Investigation of Constitutive Models for Predicting Viscoplastic Response during Cyclic Loading.

    DTIC Science & Technology

    1988-06-01

    1485 NEE TGTINOh CNTIIE OELSRPE DEIETN I lflfllfllfllflfflfflf I EfLlllfffflllfff ’., 11111l . - 2-8 L 0 * 12V 1-25~ Woo 0 -U I IDTIC ~ JUN 23 98 OF AN...progressive error when performing cre.ep predictions using corn ipiter sNvsteins whose accu - - racy is less than that of ti, \\ \\X II 7,0 N 24 00 000 I

  20. Predicting landscape-scale CO2 flux at a pasture and rice paddy with long-term hyperspectral canopy reflectance measurements

    NASA Astrophysics Data System (ADS)

    Matthes, J. H.; Knox, S. H.; Sturtevant, C.; Sonnentag, O.; Verfaillie, J.; Baldocchi, D.

    2015-08-01

    Measurements of hyperspectral canopy reflectance provide a detailed snapshot of information regarding canopy biochemistry, structure and physiology. In this study, we collected 5 years of repeated canopy hyperspectral reflectance measurements for a total of over 100 site visits within the flux footprints of two eddy covariance towers at a pasture and rice paddy in northern California. The vegetation at both sites exhibited dynamic phenology, with significant interannual variability in the timing of seasonal patterns that propagated into interannual variability in measured hyperspectral reflectance. We used partial least-squares regression (PLSR) modeling to leverage the information contained within the entire canopy reflectance spectra (400-900 nm) in order to investigate questions regarding the connection between measured hyperspectral reflectance and landscape-scale fluxes of net ecosystem exchange (NEE) and gross primary productivity (GPP) across multiple timescales, from instantaneous flux to monthly integrated flux. With the PLSR models developed from this large data set we achieved a high level of predictability for both NEE and GPP flux in these two ecosystems, where the R2 of prediction with an independent validation data set ranged from 0.24 to 0.69. The PLSR models achieved the highest skill at predicting the integrated GPP flux for the week prior to the hyperspectral canopy reflectance collection, whereas the NEE flux often achieved the same high predictive power at daily to monthly integrated flux timescales. The high level of predictability achieved by PLSR in this study demonstrated the potential for using repeated hyperspectral canopy reflectance measurements to help partition NEE into its component fluxes, GPP and ecosystem respiration, and for using quasi-continuous hyperspectral reflectance measurements to model regional carbon flux in future analyses.

  1. Predicting landscape-scale CO2 flux at a pasture and rice paddy with long-term hyperspectral canopy reflectance measurements

    NASA Astrophysics Data System (ADS)

    Matthes, J. H.; Knox, S. H.; Sturtevant, C.; Sonnentag, O.; Verfaillie, J.; Baldocchi, D.

    2015-03-01

    Measurements of hyperspectral canopy reflectance provide a detailed snapshot of information regarding canopy biochemistry, structure and physiology. In this study, we collected five years of repeated canopy hyperspectral reflectance measurements for a total of over 100 site visits within the flux footprints of two eddy covariance towers at a pasture and rice paddy in Northern California. The vegetation at both sites exhibited dynamic phenology, with significant inter-annual variability in the timing of seasonal patterns that propagated into inter-annual variability in measured hyperspectral reflectance. We used partial least-squares regression (PLSR) modeling to leverage the information contained within the entire continuous canopy reflectance spectra (400-900 nm) in order to investigate questions regarding the connection between measured hyperspectral reflectance and landscape-scale fluxes of net ecosystem exchange (NEE) and gross primary productivity (GPP) across multiple timescales, from instantaneous flux to monthly-integrated flux. With the PLSR models developed from this large dataset we achieved a high level of predictability for both NEE and GPP flux in these two ecosystems, where the R2 of prediction with an independent validation dataset ranged from 0.24 to 0.69. The PLSR models achieved the highest skill at predicting the integrated GPP flux for the week prior to the hyperspectral canopy reflectance collection, whereas the NEE flux often achieved the same high predictive power at the daily- through monthly-integrated flux timescales. The high level of predictability achieved by PLSR regression in this study demonstrated the potential for using repeated hyperspectral canopy reflectance measurements to help partition NEE measurements into its component fluxes, GPP and ecosystem respiration, and for using continuous hyperspectral reflectance measurements to model regional carbon flux in future analyses.

  2. Evaluation of Areas for Off-Road Recreational Motorcycle Use. Volume I. Evaluation Method.

    DTIC Science & Technology

    1980-11-01

    r , % 4 - e d I - A:T J N .Cf ii𔃿 T- ’’ a,,’’Aq’nee-,N I t’ NN-M V - T N o al I ’brtas -qee , " N i,’ ’A n, e i ’ no neC l’ DALN-M0 PRC Cuca -.T1T

  3. Block Plan Construction from a Deltahedron Based Adjacency Graph.

    DTIC Science & Technology

    1986-01-01

    shown below: - Assiston ’rofessor of Industria En neeDate Industrial Engineering * y* ACKNOWLEDGEMENTS I would like to thank Dr. John W. Giffin for his...was written in BASICA on an IBM Personal Computer. Due to the amount of memoru available in BASICA , the problem size is somewhat limited however; 11...Figure 4.13. Example III Block Plan with 3 facilities not included To provide a complete block plan, the BREAK feature of BASICA is used. Before

  4. Implementation of the Department of Defense Small Business Innovation Research Commercialization Pilot Program: Be All You Can Be?

    DTIC Science & Technology

    2011-04-30

    and Related SBIR/STTR Reforms: Be All You Can Be? Prof . Max V. Kidalov, J.D., LL.M., Naval Postgraduate School, Monterey, CA Kevin Hettinger...bilit t f t ll h t i po c an nee s e a y o ore e w a s going to happen tomorrow, next week, next month and next year And to have the ability, . afterwards to explain why it didn’t happen.” – Sir Winston Churchill 47

  5. Implementation of DOD SBIR Commercialization Pilot Program and Related SBIR/STTR Reforms: Be All You Can Be?

    DTIC Science & Technology

    2011-05-12

    Implementation of DOD SBIR Commercialization Pilot Program and Related SBIR/STTR Reforms: Be All You Can Be? Prof . Max V. Kidalov, J.D...an nee s e a y o ore el w a s going to happen tomorrow, next week, next month and next year And to have the ability, . afterwards to explain why it didn’t happen.” – Sir Winston Churchill 47

  6. Dynamic Models Including Uncertainty

    DTIC Science & Technology

    2009-01-22

    least in part with this grant) • H.T. Banks, Prof ., North Carolina State University • G. M. Kepler, Res. Assoc, North Carolina State University • S...8217W- C -( ( »II 2 »P] i=i i’=i - N m nEE d 2{a2p) 2tttid^y ’tax dei N N EE WP) (4.19) 4.2.9 Finite Difference Scheme for Fokker

  7. Evaluating Effects of Pump-Storage Water Withdrawals Using an Individual-Based Metapopulation Model of a Benthic Fish Species

    DTIC Science & Technology

    2011-04-01

    maintaining ab- undance of a native fish species, the Turquoise darter (Etheostoma inscriptum). We developed and applied an individual-based...based metapopulation model for assessing the effects of water withdrawals on a flow-dependent species, the Turquoise darter (Etheostoma inscriptum...withdrawal strategy for a municipal pump-storage reservoir and the status of the Turquoise darter over a 20-year period in the Middle Oco- nee River near

  8. Modeling Vegetation Dynamics in Response to Hydrological Changes in a Small Urban Tropical Freshwater Wetland

    NASA Astrophysics Data System (ADS)

    Chui, T. M.; Palanisamy, B.; Mohanadas, H.

    2011-12-01

    Wetlands worldwide face drastic degradation from human-induced changes. A small freshwater wetland located within the dense urbanized island state of Singapore---the Nee Soon Wetland---is no exception. It is the only significant locality in Singapore of peat swamp forest and is home to a wide range of rare and endangered floral and faunal species. Unfortunately, changes in downstream land use and surrounding reservoirs' operations may pose threats to the coupled hydrological and vegetation systems. This study develops and applies coupled hydrological-vegetation models to understand the dynamic relationships between hydrology and vegetation systems, and simulates vegetation responses to hydrological changes in Nee Soon. The models combine a hydrological component with a vegetation component. The hydrological component accounts for both saturated and unsaturated flows, and incorporates evapotranspiration, rainfall infiltration and recharge from streams and reservoirs. The vegetation component is described by Lokta-Volterra equations that are tailored for plant growth, to simulate the vegetation dynamics of up to three species that thrive in different flooding conditions. Important findings include: (1) groundwater levels within Nee Soon are not highly sensitive to the operating levels of the surrounding reservoirs. However, (2) downstream drainage results in a localized zone of influence with significant adverse impacts, especially on the less flood-tolerant species. In addition, (3) the severely impacted less flood-tolerant species is unable to recover even when previous hydrological conditions are restored, unless the downstream drainage duration is reduced, or the plant characteristics such as maximum assimilation rates or competitiveness are increased. Finally, (4) hydrological conditions and species competitiveness supersede any other plant growth characteristics in determining the stable coexistence of different species. The developed models and modeling

  9. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations

    NASA Astrophysics Data System (ADS)

    Jung, Martin; Reichstein, Markus; Margolis, Hank A.; Cescatti, Alessandro; Richardson, Andrew D.; Arain, M. Altaf; Arneth, Almut; Bernhofer, Christian; Bonal, Damien; Chen, Jiquan; Gianelle, Damiano; Gobron, Nadine; Kiely, Gerald; Kutsch, Werner; Lasslop, Gitta; Law, Beverly E.; Lindroth, Anders; Merbold, Lutz; Montagnani, Leonardo; Moors, Eddy J.; Papale, Dario; Sottocornola, Matteo; Vaccari, Francesco; Williams, Christopher

    2011-09-01

    We upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5° × 0.5° spatial resolution and a monthly temporal resolution from 1982 to 2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were not as strong (MEf between 0.29 and 0.52). Improved accounting of disturbance and lagged environmental effects, along with improved characterization of errors in the training data set, would contribute most to further reducing uncertainties. Our global estimates of LE (158 ± 7 J × 1018 yr-1), H (164 ± 15 J × 1018 yr-1), and GPP (119 ± 6 Pg C yr-1) were similar to independent estimates. Our global TER estimate (96 ± 6 Pg C yr-1) was likely underestimated by 5-10%. Hot spot regions of interannual variability in carbon fluxes occurred in semiarid to semihumid regions and were controlled by moisture supply. Overall, GPP was more important to interannual variability in NEE than TER. Our empirically derived fluxes may be used for calibration and evaluation of land surface process models and for exploratory and diagnostic assessments of the biosphere.

  10. Spaceport Command and Control System User Interface Testing

    NASA Technical Reports Server (NTRS)

    Huesman, Jacob

    2016-01-01

    The Spaceport Command and Control System will be the National Aeronautics and Space Administration's newest system for launching commercial and government owned spacecraft. It's a large system with many parts all in need of testing. To improve upon testing already done by NASA engineers, the Engineering Directorate, Electrical Division (NE-E) of Kennedy Space Center has hired a group of interns each of the last few semesters to develop novel ways of improving the testing process.

  11. Determination of The Carbon and Water Vapour Net Ecosystem Exchange Rates In The Swiss Pre-alps - A Contribution To The Carbomont Project

    NASA Astrophysics Data System (ADS)

    Furger, M.; Siegwolf, R. T. W.; Eugster, W.

    A major objective of the Carbomont project is the analysis of the source/sink re- lationship of various biogenic and anthropogenic species in European mountainous ecosystems. PSI contributes to these studies with two sub-projects. The first one de- termines the carbon and water vapour net ecosystem exchange (NEE) rates of selected ecosystem segments, while the other one investigates the partitioning of the NEE into its carbon dioxide source and sink components. The NEE will be determined with eddy covariance (EC) methods for two different ecosystems (abandoned versus in- tensively managed pasture) and shall provide information on their long-term carbon source or sink relation. By analysing the stable isotope 13C/12C and 18O/16O ratio in the carbon dioxide from the soil, the canopy, and the atmosphere above the canopy, the ecosystem carbon dioxide flux can be quantitatively partitioned. In combination with the EC method, the sink and source strength of different flux components can be quantified. The field measurements will take place in Seebodenalp in Central Switzer- land. The site is located at an altitude of about 1000 m above sea level. Measurements are planned for the growing seasons of 2002, 2003 and 2004.

  12. Automated modeling of ecosystem CO2 fluxes based on closed chamber measurements: A standardized conceptual and practical approach

    NASA Astrophysics Data System (ADS)

    Hoffmann, Mathias; Jurisch, Nicole; Albiac Borraz, Elisa; Hagemann, Ulrike; Sommer, Michael; Augustin, Jürgen

    2015-04-01

    Closed chamber measurements are widely used for determining the CO2 exchange of small-scale or heterogeneous ecosystems. Among the chamber design and operational handling, the data processing procedure is a considerable source of uncertainty of obtained results. We developed a standardized automatic data processing algorithm, based on the language and statistical computing environment R© to (i) calculate measured CO2 flux rates, (ii) parameterize ecosystem respiration (Reco) and gross primary production (GPP) models, (iii) optionally compute an adaptive temperature model, (iv) model Reco, GPP and net ecosystem exchange (NEE), and (v) evaluate model uncertainty (calibration, validation and uncertainty prediction). The algorithm was tested for different manual and automatic chamber measurement systems (such as e.g. automated NEE-chambers and the LI-8100A soil CO2 Flux system) and ecosystems. Our study shows that even minor changes within the modelling approach may result in considerable differences of calculated flux rates, derived photosynthetic active radiation and temperature dependencies and subsequently modeled Reco, GPP and NEE balance of up to 25%. Thus, certain modeling implications will be given, since automated and standardized data processing procedures, based on clearly defined criteria, such as statistical parameters and thresholds are a prerequisite and highly desirable to guarantee the reproducibility, traceability of modelling results and encourage a better comparability between closed chamber based CO2 measurements.

  13. Extending the KCNQ2 encephalopathy spectrum

    PubMed Central

    Weckhuysen, Sarah; Ivanovic, Vanja; Hendrickx, Rik; Van Coster, Rudy; Hjalgrim, Helle; Møller, Rikke S.; Grønborg, Sabine; Schoonjans, An-Sofie; Ceulemans, Berten; Heavin, Sinead B.; Eltze, Christin; Horvath, Rita; Casara, Gianluca; Pisano, Tiziana; Giordano, Lucio; Rostasy, Kevin; Haberlandt, Edda; Albrecht, Beate; Bevot, Andrea; Benkel, Ira; Syrbe, Steffan; Sheidley, Beth; Guerrini, Renzo; Poduri, Annapurna; Lemke, Johannes R.; Mandelstam, Simone; Scheffer, Ingrid; Angriman, Marco; Striano, Pasquale; Marini, Carla; Suls, Arvid

    2013-01-01

    Objectives: To determine the frequency of KCNQ2 mutations in patients with neonatal epileptic encephalopathy (NEE), and to expand the phenotypic spectrum of KCNQ2 epileptic encephalopathy. Methods: Eighty-four patients with unexplained NEE were screened for KCNQ2 mutations using classic Sanger sequencing. Clinical data of 6 additional patients with KCNQ2 mutations detected by gene panel were collected. Detailed phenotyping was performed with particular attention to seizure frequency, cognitive outcome, and video-EEG. Results: In the cohort, we identified 9 different heterozygous de novo KCNQ2 missense mutations in 11 of 84 patients (13%). Two of 6 missense mutations detected by gene panel were recurrent and present in patients of the cohort. Seizures at onset typically consisted of tonic posturing often associated with focal clonic jerking, and were accompanied by apnea with desaturation. One patient diagnosed by gene panel had seizure onset at the age of 5 months. Based on seizure frequency at onset and cognitive outcome, we delineated 3 clinical subgroups, expanding the spectrum of KCNQ2 encephalopathy to patients with moderate intellectual disability and/or infrequent seizures at onset. Recurrent mutations lead to relatively homogenous phenotypes. One patient responded favorably to retigabine; 5 patients had a good response to carbamazepine. In 6 patients, seizures with bradycardia were recorded. One patient died of probable sudden unexpected death in epilepsy. Conclusion: KCNQ2 mutations cause approximately 13% of unexplained NEE. Patients present with a wide spectrum of severity and, although rare, infantile epilepsy onset is possible. PMID:24107868

  14. Typhoons exert significant but differential impact on net carbon ecosystem exchange of subtropical mangrove ecosystems in China

    NASA Astrophysics Data System (ADS)

    Chen, H.; Lu, W.; Yan, G.; Yang, S.; Lin, G.

    2014-06-01

    Typhoons are very unpredictable natural disturbances to subtropical mangrove forests in Asian countries, but litter information is available on how these disturbances affect ecosystem level carbon dioxide (CO2) exchange of mangrove wetlands. In this study, we examined short-term effect of frequent strong typhoons on defoliation and net ecosystem CO2 exchange (NEE) of subtropical mangroves, and also synthesized 19 typhoons during a 4-year period between 2009 and 2012 to further investigate the regulation mechanisms of typhoons on ecosystem carbon and water fluxes following typhoon disturbances. Strong wind and intensive rainfall caused defoliation and local cooling effect during typhoon season. Daily total NEE values were decreased by 26-50% following some typhoons (e.g. W28-Nockten, W35-Molave and W35-Lio-Fan), but were significantly increased (43-131%) following typhoon W23-Babj and W38-Megi. The magnitudes and trends of daily NEE responses were highly variable following different typhoons, which were determined by the balance between the variances of gross ecosystem production (GEP) and ecosystem respiration (RE). Furthermore, results from our synthesis indicated that the landfall time of typhoon, wind speed and rainfall were the most important factors controlling the CO2 fluxes following typhoon events. These findings not only indicate that mangrove ecosystems have strong resilience to the frequent typhoon disturbances, but also demonstrate the damage of increasing typhoon intensity and frequency on subtropical mangrove ecosystems under future global climate change scenarios.

  15. Soil and Atmospheric CO2 Exchanges in Great Basin Plant Communities

    NASA Astrophysics Data System (ADS)

    Hipps, L. E.; Ivanovich, S.; Or, D.; Turcu, V.

    2001-12-01

    Seasonal changes in net CO2 exchange for three plant communities typical of the cold desert Great Basin biome, and primary factors governing CO2 exchange are studied. The communities include Agropyron desertorum (crested wheatgrass), Artemisia tridentata (sagebrush) and Juniperus osteosperma (Utah Juniper). Net ecosystem exchange (NEE) was estimated for each site with open-path eddy covariance systems. Soil CO2 fluxes were independently estimated at local scales using both surface chambers and a new gradient method based upon continuous and passive monitoring of CO2 concentrations at various soil depths. Eddy covariance-determined NEE values were directed towards the soil surface in the early spring when water was available. As the ecosystems became drier, periods of downward flux became shorter, until fluxes were always upward in the crested wheatgrass and sage communities. The Juniper maintained some downward fluxes much longer into the summer, indicating net photosynthesis was sometimes greater than soil respiration. All sites responded rapidly to even small rain events, by exhibiting temporary downward NEE values. Estimates of soil CO2 fluxes by surface chamber and gradient methods were in good agreement with each other, however, these were often inconsistent with the larger scale eddy covariance estimates, even in the absence of active vegetation. The causes of these apparent discrepancies are being investigated.

  16. Mediterranean savanna of Acacia caven (Mol) is still a sink of CO2 in spite of severe hydrological drought conditions

    NASA Astrophysics Data System (ADS)

    Bravo-Martínez, F.; Meza, F. J.

    2012-12-01

    An eddy covariance tower was set up to monitor net ecosystem exchange (NEE) on a mediterranean shrubland of Acacia caven (Mol) in October 2010. This ecosystem (commonly referred as "espinal") is one of the most abundant land covers of Chile's central valley (2.000.000 ha). The last two years (2010-2011) were characterized by the occurrence of a severe drought (rainfall deficit 56%) and a small increase in temperature evaluated using a climatic change index (Peterson, 2005). We also detected a strong reduction in vegetation index during this period (evaluated using MODIS imagery). The historical analysis of the enhanced vegetation index (EVI) and leaf area index (LAI) showed that water status of the acacia savanna were at a minimum during this period (record of 14 years of data). The annual balance of NEE of 2011 was -54gC m-2 y-1, which means that the espinal is a sink of atmospheric CO2 notwithstanding the many stressors on photosynthesis. Monthly analysis of NEE shows the strong dependence of ecosystem fluxes on phenological state. Maximum rates of assimilation are a consequence of grassland activity, whereas secondary picks during the year (late spring and early autumn) are attributed to the semideciduos leaf of A. caven. Climatic conditions during the study season, confirm the tremendous plasticity of Acacia caven and its role as a colonizer of degraded sclerophyll forest because it adaptation to water and thermal stress.

  17. Trends in long-term carbon and water fluxes - a case study from a temperate Norway spruce site

    NASA Astrophysics Data System (ADS)

    Babel, Wolfgang; Lüers, Johannes; Hübner, Jörg; Serafimovich, Andrei; Thomas, Christoph; Foken, Thomas

    2016-04-01

    In this study we analyse eddy-covariance flux measurements of carbon dioxide and water vapour from 18 years at Waldstein-Weidenbrunnen (DE-Bay), a Norway spruce forest site in the Fichtelgebirge, Germany. Standard flux partitioning algorithms have been applied for separation of net ecosystem exchange NEE into gross ecosystem uptake GEE and ecosystem respiration Reco, and gap-filling. The annual NEE shows a positive trend, which is related to a strong increase in GEE, while Reco enhances slightly. Annual evapotranspiration increases as well, while atmospheric demand, i.e. potential evapotranspiration, shows inter-annual variability, but no trend. Comparisons with studies from other warm temperate needle-leaved forests show, that NEE is at the upper range of the distribution, and evapotranspiration in Budyko space is in a similar range, but with a large inter-annual variability. While this trends are generally in agreement with findings from other locations and expectations to climate change, the specific history at this site clearly has a large impact on the results: The forest was in the first years very much affected due to forest decline and convalesced after a liming. In the last ten years the site was much affected by beetles and windthrow. Thus the more recent positive trends may be related to increased heterogeneity at the site. As FLUXNET stations, built 10-20 years ago, often started with "ideal forest sites", increasing heterogeneity might be a more general problem for trend analysis of long-term data sets.

  18. Carbon dioxide exchange in a cool-temperate evergreen coniferous forest over complex topography in Japan during two years with contrasting climates.

    PubMed

    Saitoh, Taku M; Tamagawa, Ichiro; Muraoka, Hiroyuki; Lee, Na-Yeon M; Yashiro, Yuichiro; Koizumi, Hiroshi

    2010-07-01

    We investigated carbon dioxide (CO(2)) exchange and its environmental response during two years with contrasting climate (2006 and 2007) in a cool-temperate mixed evergreen coniferous forest dominated by Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa). The study, which was conducted in a mountainous region of central Japan, used the eddy-covariance technique. Our results (crosschecked using the common u (*) approach and van Gorsel's alternative approach) showed that annual gross primary production (GPP) and ecosystem respiration (RE) were at least 6% higher in the dry year than in the wet year, whereas net ecosystem exchange (NEE) was similar in both years. Without soil water stress, strong light stress or seasonality of plant area index during most of the study period, the forest had high metabolic activity. GPP and RE differed greatly between the two years, especially in spring (April-May) and summer (July-September), respectively. The spring GPP difference (>20%) was influenced by different winter air temperatures and snow melt timing, which controlled photosynthetic capacity in spring, and by different spring light intensities. The annual NEE differed depending on the evaluation method used, but the mean 2-year NEE estimated by the u (*) threshold approach [-3.39 +/- 0.11 (SD) MgC ha(-1) year(-1)] appears more reasonable in comparison with results from other forests.

  19. CO2 exchange over a mixed-grassland savanna in Central Brazil

    NASA Astrophysics Data System (ADS)

    Arruda, Paulo

    2014-03-01

    We used eddy covariance technique to measure the net ecosystem exchange (NEE) of CO2 between the atmosphere and an savanna in Central Brazil (locally known as cerrado), from February 2011 to February 2013, the data set included measurements of climatological variables. This part of brazilian savana has a long history of land cover change due to human activity, mainly due agricultural activity. Thus, the aim of this study was to evaluate the temporal variation in energy flux in areas of degraded, grass-dominated cerrado (locally known as campo sujo) in Central Brazil. The NEE variability is controlled mainly by solar radiation, temperature and air humidity on diel course. Seasonally, soil moisture and changes on land cover plays a strong role on the ecossystem. Daytime CO2 uptake under high irradiance averaged 4-12 μ mol .m-2 . s-1 in the wet season (October to April) and 0-3 μ mol . m2 . s-1 on the dry season (May to September). The net sign of NEE is negative (sink) during of the wet season and positive (source) in the dry season.

  20. Measurements of CO2 exchange over a mixed-grassland savanna in Central Brazil

    NASA Astrophysics Data System (ADS)

    Arruda, P. H.; Vourlitis, G. L.; Santanna, F. B.; Pinto-Jr, O. B.; Nogueira, J. D.

    2013-12-01

    We used eddy covariance technique to measure the net ecosystem exchange (NEE) of CO2 between the atmosphere and an savanna in Central Brazil (locally known as cerrado), from February 2011 to February 2013, the data set included measurements of climatological variables. This part of brazilian savana has a long history of land cover change due to human activity, mainly due agricultural activity. Thus, the aim of this study was to evaluate the temporal variation in energy flux in areas of degraded, grass-dominated cerrado (locally known as campo sujo) in Central Brazil. The NEE variability is controlled mainly by solar radiation, temperature and air humidity on diel course. Seasonally, soil moisture and changes on land cover plays a strong role on the ecossystem. Daytime CO2 uptake under high irradiance averaged 4-12 μmol m-2 s-1 in the wet season (October to April) and 0-3 μmol m-2 s-1 on the dry season (May to September). The net sign of NEE is negative (sink) during of the wet season and positive (source) in the dry season.

  1. Evaluating the carbon balance estimate from an automated ground-level flux chamber system in artificial grass mesocosms.

    PubMed

    Heinemeyer, Andreas; Gornall, Jemma; Baxter, Robert; Huntley, Brian; Ineson, Phil

    2013-12-01

    Measuring and modeling carbon (C) stock changes in terrestrial ecosystems are pivotal in addressing global C-cycling model uncertainties. Difficulties in detecting small short-term changes in relatively large C stocks require the development of robust sensitive flux measurement techniques. Net ecosystem exchange (NEE) ground-level chambers are increasingly used to assess C dynamics in low vegetation ecosystems but, to date, have lacked formal rigorous field validation against measured C stock changes. We developed and deployed an automated and multiplexed C-flux chamber system in grassland mesocosms in order rigorously to compare ecosystem total C budget obtained using hourly C-flux measurements versus destructive net C balance. The system combines transparent NEE and opaque respiration chambers enabling partitioning of photosynthetic and respiratory fluxes. The C-balance comparison showed good agreement between the two methods, but only after NEE fluxes were corrected for light reductions due to chamber presence. The dark chamber fluxes allowed assessing temperature sensitivity of ecosystem respiration (R eco) components (i.e., heterotrophic vs. autotrophic) at different growth stages. We propose that such automated flux chamber systems can provide an accurate C balance, also enabling pivotal partitioning of the different C-flux components (e.g., photosynthesis and respiration) suitable for model evaluation and developments.

  2. Evaluation of the Community Land Model 3.5 with carbon and nitrogen cycles (CLM3.5CN) at a Tibetan grassland site

    NASA Astrophysics Data System (ADS)

    Lee, Young-Hee; Lim, Hee-Jeong; Ichii, Kazuhito; Li, Yingnian

    2013-11-01

    The Tibetan plateau plays an important role in energy and carbon cycles by providing an elevated heat source and by storing a large amount of soil carbon due to low temperature. The main vegetation of the plateau is alpine grassland. This study evaluates performance of Community Land Model 3.5 with carbon and nitrogen cycles (CLM3.5CN) over a alpine grassland in the Tibetan plateau in terms of energy and carbon fluxes in conditions of reasonable phenology and initial carbon pool comparable to observations. Comparison between model and observation shows following features. The model captures the magnitude of maximum leaf area index (LAI) but underestimats leaf mass. Net ecosystem exchange (NEE) is significantly underestimated during the growing season and soil temperature is also underestimated throughout a year with higher negative bias in winter than in other seasons. In order to examine the cause of the model deficiencies, we design four sensitivity tests: seasonal mulch; shallow rooting depth; reduction of critical soil moisture to limit the decomposition rate; smaller specific leaf area (SLA). Considering seasonal mulch improves the negative bias of soil temperature during dormant season has little effect on the NEE during the growing seasson. Underestimation of NEE during the growing season is partly due to underestimated decomposition rate which results from underestimated soil temperature and deep root placement in the soil column. Underestimation of latent heat flux during summer is partly due to use of large SLA in the model. Other deficiencies are also discussed.

  3. Reduced expression of cytokeratin 4 and 13 is a valuable marker for histologic grading of esophageal squamous intraepithelial neoplasia.

    PubMed

    Takashima, Masaki; Kawachi, Hiroshi; Yamaguchi, Tsukasa; Nakajima, Yutaka; Kitagaki, Keisuke; Sekine, Masaki; Iida, Tadatsune; Takemura, Kosuke; Kawano, Tatsuyuki; Eishi, Yoshinobu

    2012-03-13

    Histologic evaluation of low-grade or high-grade intraepithelial neoplasia (LG-IN or HG-IN) of the esophagus is important for estimating the risk of progression to invasive carcinoma. Discrimination between LG-IN and HG-IN, or neoplasia and non-neoplastic lesion (NNL), however, is occasionally difficult. This study was designed to evaluate whether cytokeratin expression can be used for discrimination of these lesions. Esophageal Iodine-unstained lesions (n=154), less than 10 mm, were classified into HG-IN, LG-IN, and NNL. These lesions together with 154 foci of normal esophageal epithelium (NEE) were examined by immunohistochemistry for cytokeratins (CK4 and CK13), p53 overexpression, and the MIB-1 labeling index. The ratios of CK4- and CK13-positive staining were scored from 1 to 3. The CK4- and CK13-positive staining ratios were decreased in NNL (73% and 78%), LG-IN (55% and 69%), and HG-IN (33% and 48%), compared to NEE (91% and 95%). The differences between LG-IN and HG-IN, neoplasia and NNL, and among these three lesions and NEE were statistically significant (p < 0.005). The cytokeratin scores correlated with the MIB-1 labeling index (both: p < 0.0001), but not with p53 overexpression. CK4 and CK13 immunohistochemistry could be an objective method for evaluating the risk for progression to invasive carcinoma.

  4. The spectrum of nonepileptic events in children.

    PubMed

    Paolicchi, Juliann M

    2002-01-01

    Nonepileptic events (NEE) are common in children, and can be difficult to distinguish from epileptic events. Several strategies can assist in differentiation. The first is an age-based approach to the differential of commonly presenting EEs in neonates, infants, and adolescents. The next strategy is to identify key elements of the patient's history to narrow the possibilities, and third is a rational approach to ancillary testing. There are additional challenges to the diagnosis and evaluation of NEEs in patients with cognitive impairments or mental retardation (MR). Twenty to 25% of neurologically normal patients (34), and up to 60% of children with MR (35) referred for an evaluation of seizures, have NEE. In most instances, the clinical history leads to the diagnosis, and ancillary testing serves as confirmation. But in certain populations, neonates, children with concurrent epilepsy, children in whom pseudoseizures are suspected, and children with MR, early use of video-EEG telemetry is indicated to establish the diagnosis and avoid overtreatment with antiepileptic drugs (AEDs).

  5. Climate control of terrestrial carbon exchange across biomes and continents

    SciTech Connect

    Ricciuto, Daniel M; Gu, Lianhong

    2010-07-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid- and high-latitudes, (2) a strong function of dryness at mid- and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 N). The sensitivity of NEE to mean annual temperature breaks down at ~ 16 C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.

  6. Soil warming effect on net ecosystem exchange of carbon dioxide during the transition from winter carbon source to spring carbon sink in a temperate urban lawn.

    PubMed

    Zhou, Xiaoping; Wang, Xiaoke; Tong, Lei; Zhang, Hongxing; Lu, Fei; Zheng, Feixiang; Hou, Peiqiang; Song, Wenzhi; Ouyang, Zhiyun

    2012-01-01

    The significant warming in urban environment caused by the combined effects of global warming and heat island has stimulated widely development of urban vegetations. However, it is less known of the climate feedback of urban lawn in warmed environment. Soil warming effect on net ecosystem exchange (NEE) of carbon dioxide during the transition period from winter to spring was investigated in a temperate urban lawn in Beijing, China. The NEE (negative for uptake) under soil warming treatment (temperature was about 5 degrees C higher than the ambient treatment as a control) was -0.71 micromol/(m2 x sec), the ecosytem was a CO2 sink under soil warming treatment, the lawn ecosystem under the control was a CO2 source (0.13 micromol/(m2 x sec)), indicating that the lawn ecosystem would provide a negative feedback to global warming. There was no significant effect of soil warming on nocturnal NEE (i.e., ecosystem respiration), although the soil temperature sensitivity (Q10) of ecosystem respiration under soil warming treatment was 3.86, much lower than that in the control (7.03). The CO2 uptake was significantly increased by soil warming treatment that was attributed to about 100% increase of alpha (apparent quantum yield) and Amax (maximum rate of photosynthesis). Our results indicated that the response of photosynthesis in urban lawn is much more sensitive to global warming than respiration in the transition period.

  7. The effects of grazing and watering on ecosystem CO2 fluxes vary by community phenology.

    PubMed

    Han, Juanjuan; Li, Linghao; Chu, Housen; Miao, Yuan; Chen, Shiping; Chen, Jiquan

    2016-01-01

    Grazing profoundly influences vegetation and the subsequent carbon fluxes in various ecosystems. However, little effort has been made to explore the underlying mechanisms for phenological changes and their consequences on carbon fluxes at ecosystem level, especially under the coupled influences of human disturbances and climate change. Here, a manipulative experiment (2012-2013) was conducted to examine both the independent and interactive effects of grazing and watering on carbon fluxes across phenological phases in a desert steppe. Grazing advanced or delayed phenological timing, leading to a shortened green-up phase (GrP: 23.60 days) in 2013 and browning phase (BrP: 12.48 days) in 2012 from high grazing, and insignificant effects on the reproductive phase (ReP) in either year. High grazing significantly enhance carbon uptake, while light grazing reduce carbon uptake in ReP. Watering only delayed the browning time by 5.01 days in 2013, producing no significant effects on any phenophase. Watering promoted the net ecosystem exchange (NEE), ecosystem respiration (ER), and gross ecosystem productivity (GEP) only in the GrP. When calculating the yearly differences in phenophases and the corresponding carbon fluxes, we found that an extended GrP greatly enhanced NEE, but a prolonged ReP distinctly reduced it. The extended GrP also significantly promote GEP. Increases in growing season length appeared promoting ER, regardless of any phenophase. Additionally, the shifts in NEE appeared dependent of the variations in leaf area index (LAI).

  8. Earlier snowmelt reduces atmospheric carbon uptake in midlatitude subalpine forests

    NASA Astrophysics Data System (ADS)

    Winchell, Taylor S.; Barnard, David M.; Monson, Russell K.; Burns, Sean P.; Molotch, Noah P.

    2016-08-01

    Previous work demonstrates conflicting evidence regarding the influence of snowmelt timing on forest net ecosystem exchange (NEE). Based on 15 years of eddy covariance measurements in Colorado, years with earlier snowmelt exhibited less net carbon uptake during the snow ablation period, which is a period of high potential for productivity. Earlier snowmelt aligned with colder periods of the seasonal air temperature cycle relative to later snowmelt. We found that the colder ablation-period air temperatures during these early snowmelt years lead to reduced rates of daily NEE. Hence, earlier snowmelt associated with climate warming, counterintuitively, leads to colder atmospheric temperatures during the snow ablation period and concomitantly reduced rates of net carbon uptake. Using a multilinear-regression (R2 = 0.79, P < 0.001) relating snow ablation period mean air temperature and peak snow water equivalent (SWE) to ablation-period NEE, we predict that earlier snowmelt and decreased SWE may cause a 45% reduction in midcentury ablation-period net carbon uptake.

  9. Resilience to seasonal heat wave episodes in a Mediterranean pine forest.

    PubMed

    Tatarinov, Fedor; Rotenberg, Eyal; Maseyk, Kadmiel; Ogée, Jérôme; Klein, Tamir; Yakir, Dan

    2016-04-01

    Short-term, intense heat waves (hamsins) are common in the eastern Mediterranean region and provide an opportunity to study the resilience of forests to such events that are predicted to increase in frequency and intensity. The response of a 50-yr-old Aleppo pine (Pinus halepensis) forest to hamsin events lasting 1-7 d was studied using 10 yr of eddy covariance and sap flow measurements. The highest frequency of heat waves was c. four per month, coinciding with the peak productivity period (March-April). During these events, net ecosystem carbon exchange (NEE) and canopy conductance (gc ) decreased by c. 60%, but evapotranspiration (ET) showed little change. Fast recovery was also observed with fluxes reaching pre-stress values within a day following the event. NEE and gc showed a strong response to vapor pressure deficit that weakened as soil moisture decreased, while sap flow was primarily responding to changes in soil moisture. On an annual scale, heat waves reduced NEE and gross primary productivity by c. 15% and 4%, respectively. Forest resilience to short-term extreme events such as heat waves is probably a key to its survival and must be accounted for to better predict the increasing impact on productivity and survival of such events in future climates.

  10. Intermediate time scale response of atmospheric CO2 following prescribed fire in a longleaf pine forest

    NASA Astrophysics Data System (ADS)

    Viner, B.; Parker, M.; Maze, G.; Varnedoe, P.; Leclerc, M.; Starr, G.; Aubrey, D.; Zhang, G.; Duarte, H.

    2016-10-01

    Fire plays an essential role in maintaining the structure and function of longleaf pine ecosystems. While the effects of fire on carbon cycle have been measured in previous studies for short periods during a burn and for multiyear periods following the burn, information on how carbon cycle is influenced by such changes over the span of a few weeks to months has yet to be quantified. We have analyzed high-frequency measurements of CO2 concentration and flux, as well as associated micrometeorological variables, at three levels of the tall Aiken AmeriFlux tower during and after a prescribed burn. Measurements of the CO2 concentration and vertical fluxes were examined as well as calculated net ecosystem exchange (NEE) for periods prior to and after the burn. Large spikes in both CO2 concentration and CO2 flux during the fire and increases in atmospheric CO2 concentration and reduced CO2 flux were observed for several weeks following the burn, particularly below the forest canopy. Both CO2 measurements and NEE were found to return to their preburn states within 60-90 days following the burn when no statistical significance was found between preburn and postburn NEE. This study examines the micrometeorological conditions during a low-intensity prescribed burn and its short-term effects on local CO2 dynamics in a forested environment by identifying observable impacts on local measurements of atmospheric CO2 concentration and fluxes.

  11. Shrub biomass, net primary production, and canopy spectral imaging (NDVI) exhibit consistent correspondence across Arctic Tundra habitats.

    NASA Astrophysics Data System (ADS)

    Flower, C. E.; Welker, J. M.; Anderson-Smith, A.; Van Hoey, N.; Whelan, C.; Gonzalez-Meler, M. A.

    2014-12-01

    Climate change is contributing to rapid vegetation shifts in the ecologically sensitive arctic tundra. These tussock grass dominated systems are shifting to tussock/woody shrub communities with cascading ecological and climate feedback consequences. This shifting vegetation composition should result in concomitant changes in carbon sequestration (net ecosystem exchange, NEE) and productivity which in turn could be manifested in "Greening" and changes in normalized difference vegetation index values (NDVI). In this study, we address the need to know the relationships between NDVI, leaf area, and shrub biomass, in part so that long-term trends in NDVI can be much more accurately interpreted as true changes in ecosystem C cycling processes. These relationships will enhance our ability to predict shifts in standing carbon mass, carbon cycling, and use historic satellite products to assess change. We sampled NEE, NDVI, leaf area and shrub (Betula spp. and Salix spp.) biomass across a shrub gradient in a dry heath and moist acidic tundra. The positive relationship between NDVI and NEE highlights the potential shifts in tundra carbon sequestration associated with woody vegetation shifts. Furthermore, strong positive linear relationships found among shrub biomass, species, leaf area, and NDVI in different tundra habitats should increase the robustness of spatial scaling. Increased productivity in sites with increased NDVI can provide a mechanism through which tundra ecosystems may respond to climate change. Improvements in our ability to detect relationships between above and belowground biomass for the dominant shrubs can strengthen our ability to predict standing biomass from satellite imagery.

  12. Contributions of biogenic volatile organic compounds to net ecosystem carbon flux in a ponderosa pine plantation

    NASA Astrophysics Data System (ADS)

    Bouvier-Brown, Nicole C.; Schade, Gunnar W.; Misson, Laurent; Lee, Anita; McKay, Megan; Goldstein, Allen H.

    2012-12-01

    When assessing net ecosystem exchange (NEE) and net ecosystem carbon balance (NECB), respiration is generally assumed to be the only significant loss of carbon to the atmosphere. However, carbon is also emitted from ecosystems in the form of biogenic volatile organic compounds (BVOCs). Here we consider the magnitude of systematic difference caused by omitting this additional carbon loss from the net ecosystem carbon balance, as compared to the NEE term, of the ponderosa pine plantation at Blodgett Forest. We find that 9.4 (range 6.2-12.5) g C m-2 yr-1 were emitted from this ecosystem as BVOCs. This is 4.0 (2.0-7.9) % of annual NEE, and neglecting this additional loss of carbon causes an overestimation of carbon storage for this rapidly growing commercial forest plantation. For ecosystems that are not storing carbon as rapidly, where photosynthesis and respiration are more closely balanced, ignoring BVOC emission may cause a larger error in the estimation of NECB.

  13. CO2 transport over complex terrain

    USGS Publications Warehouse

    Sun, Jielun; Burns, Sean P.; Delany, A.C.; Oncley, S.P.; Turnipseed, A.A.; Stephens, B.B.; Lenschow, D.H.; LeMone, M.A.; Monson, Russell K.; Anderson, D.E.

    2007-01-01

    CO2 transport processes relevant for estimating net ecosystem exchange (NEE) at the Niwot Ridge AmeriFlux site in the front range of the Rocky Mountains, Colorado, USA, were investigated during a pilot experiment. We found that cold, moist, and CO2-rich air was transported downslope at night and upslope in the early morning at this forest site situated on a ???5% east-facing slope. We found that CO2 advection dominated the total CO2 transport in the NEE estimate at night although there are large uncertainties because of partial cancellation of horizontal and vertical advection. The horizontal CO2 advection captured not only the CO2 loss at night, but also the CO2 uptake during daytime. We found that horizontal CO2 advection was significant even during daytime especially when turbulent mixing was not significant, such as in early morning and evening transition periods and within the canopy. Similar processes can occur anywhere regardless of whether flow is generated by orography, synoptic pressure gradients, or surface heterogeneity as long as CO2 concentration is not well mixed by turbulence. The long-term net effect of all the CO2 budget terms on estimates of NEE needs to be investigated. ?? 2007 Elsevier B.V. All rights reserved.

  14. A survey of Euphorinae (Hymenoptera: Braconidae) of southern Iran, with description of a new species.

    PubMed

    Ameri, Ali; Talebi, Ali Asghar; Rakhshani, Ehsan; Beyarslan, Ahmet; Kamali, Karim

    2014-12-23

    A faunistic survey of Euphorinae (Hym., Braconidae) in southern Iran, as well as an updated checklist of the genera and species in Iran, are presented. Sampling was performed using Malaise traps at different locations of Hormozgan province and Qeshm Island in Persian Gulf during 2011-2013. In total, 38 species belonging to 10 genera are listed from Iran. The recorded species belong to the following genera: Allurus Forster, 1862 (two species), Chrysopophthorus Goidanich 1948 (one species), Dinocampus Forster, 1862 (one species), Ecclitura Kokujev, 1902 (one species), Leiophron Nees von Esenbeck, 1819 (10 species), Meteorus Haliday, 1835 (12 species), Perilitus Nees von Esenbeck, 1819 (five species), Syntretus Forster 1862 (three species), Wesmaelia Foerster, 1862 (one species) and Zele Curtis, 1832 (two species). Allurus lituratus (Haliday 1835), Dinocampus coccinellae (Schrank, 1802), Leiophron (Peristenus) grandiceps (Thomson 1892), Meteorus rubens (Nees, 1811) and Wesmaelia petiolata (Wollaston, 1858) are new records for Hormozgan province and Leiophron (Peristenus) grandiceps (Thomson 1892) is recorded for the first time from Iran. In addition, Meteorus breviterebratus Ameri, Talebi & Beyarslan sp. n. is newly described and illustrated. 

  15. Evaluating the carbon balance estimate from an automated ground-level flux chamber system in artificial grass mesocosms

    PubMed Central

    Heinemeyer, Andreas; Gornall, Jemma; Baxter, Robert; Huntley, Brian; Ineson, Phil

    2013-01-01

    Measuring and modeling carbon (C) stock changes in terrestrial ecosystems are pivotal in addressing global C-cycling model uncertainties. Difficulties in detecting small short-term changes in relatively large C stocks require the development of robust sensitive flux measurement techniques. Net ecosystem exchange (NEE) ground-level chambers are increasingly used to assess C dynamics in low vegetation ecosystems but, to date, have lacked formal rigorous field validation against measured C stock changes. We developed and deployed an automated and multiplexed C-flux chamber system in grassland mesocosms in order rigorously to compare ecosystem total C budget obtained using hourly C-flux measurements versus destructive net C balance. The system combines transparent NEE and opaque respiration chambers enabling partitioning of photosynthetic and respiratory fluxes. The C-balance comparison showed good agreement between the two methods, but only after NEE fluxes were corrected for light reductions due to chamber presence. The dark chamber fluxes allowed assessing temperature sensitivity of ecosystem respiration (Reco) components (i.e., heterotrophic vs. autotrophic) at different growth stages. We propose that such automated flux chamber systems can provide an accurate C balance, also enabling pivotal partitioning of the different C-flux components (e.g., photosynthesis and respiration) suitable for model evaluation and developments. PMID:24455131

  16. Nanobiosensing with Arrays and Ensembles of Nanoelectrodes

    PubMed Central

    Karimian, Najmeh; Moretto, Ligia M.; Ugo, Paolo

    2016-01-01

    Since the first reports dating back to the mid-1990s, ensembles and arrays of nanoelectrodes (NEEs and NEAs, respectively) have gained an important role as advanced electroanalytical tools thank to their unique characteristics which include, among others, dramatically improved signal/noise ratios, enhanced mass transport and suitability for extreme miniaturization. From the year 2000 onward, these properties have been exploited to develop electrochemical biosensors in which the surfaces of NEEs/NEAs have been functionalized with biorecognition layers using immobilization modes able to take the maximum advantage from the special morphology and composite nature of their surface. This paper presents an updated overview of this field. It consists of two parts. In the first, we discuss nanofabrication methods and the principles of functioning of NEEs/NEAs, focusing, in particular, on those features which are important for the development of highly sensitive and miniaturized biosensors. In the second part, we review literature references dealing the bioanalytical and biosensing applications of sensors based on biofunctionalized arrays/ensembles of nanoelectrodes, focusing our attention on the most recent advances, published in the last five years. The goal of this review is both to furnish fundamental knowledge to researchers starting their activity in this field and provide critical information on recent achievements which can stimulate new ideas for future developments to experienced scientists. PMID:28042840

  17. Carbon dioxide exchange of a perennial bioenergy crop cultivation on a mineral soil

    NASA Astrophysics Data System (ADS)

    Lind, S. E.; Shurpali, N. J.; Peltola, O.; Mammarella, I.; Hyvönen, N.; Maljanen, M.; Räty, M.; Virkajärvi, P.; Martikainen, P. J.

    2015-10-01

    One of the strategies to reduce carbon dioxide (CO2) emissions from the energy sector is to increase the use of renewable energy sources such as bioenergy crops. Bioenergy is not necessarily carbon neutral because of greenhouse gas (GHG) emissions during biomass production, field management and transportation. The present study focuses on the cultivation of reed canary grass (RCG, Phalaris arundinaceae L.), a perennial bioenergy crop, on a mineral soil. To quantify the CO2 exchange of this RCG cultivation system, and to understand the key factors controlling its CO2 exchange, the net ecosystem CO2 exchange (NEE) was measured during three years using the eddy covariance (EC) method. The RCG cultivation thrived well producing yields of 6200 and 6700 kg DW ha-1 in 2010 and 2011, respectively. Gross photosynthesis (GPP) was controlled mainly by radiation from June to September. Vapour pressure deficit (VPD), air temperature or soil moisture did not limit photosynthesis during the growing season. Total ecosystem respiration (TER) increased with soil temperature, green area index and GPP. Annual NEE was -262 and -256 g C m-2 in 2010 and 2011, respectively. Throughout the studied period, cumulative NEE was -575 g C m-2. When compared to the published data for RCG on an organic soil, the cultivation of this crop on a mineral soil had higher capacity to take up CO2 from the atmosphere.

  18. Comparing net ecosystem carbon dioxide exchange at adjacent commercial bioenergy and conventional cropping systems in Lincolnshire, United Kingdom

    NASA Astrophysics Data System (ADS)

    Morrison, Ross; Brooks, Milo; Evans, Jonathan; Finch, Jon; Rowe, Rebecca; Rylett, Daniel; McNamara, Niall

    2016-04-01

    The conversion of agricultural land to bioenergy plantations represents one option in the national and global effort to reduce greenhouse gas emissions whilst meeting future energy demand. Despite an increase in the area of (e.g. perennial) bioenergy crops in the United Kingdom and elsewhere, the biophysical and biogeochemical impacts of large scale conversion of arable and other land cover types to bioenergy cropping systems remain poorly characterised and uncertain. Here, the results of four years of eddy covariance (EC) flux measurements of net ecosystem CO2 exchange (NEE) obtained at a commercial farm in Lincolnshire, United Kingdom (UK) are reported. CO2 flux measurements are presented and compared for arable crops (winter wheat, oilseed rape, spring barely) and plantations of the perennial biofuel crops Miscanthus x. giganteus (C4) and short rotation coppice (SRC) willow (Salix sp.,C3). Ecosystem light and temperature response functions were used to analyse and compare temporal trends and spatial variations in NEE across the three land covers. All three crops were net in situ sinks for atmospheric CO2 but were characterised by large temporal and between site variability in NEE. Environmental and biological controls driving the spatial and temporal variations in CO2 exchange processes, as well as the influences of land management, will be analysed and discussed.

  19. Sod-seeding to modify coastal bermuda grass on reclaimed lignite overburden in Texas

    SciTech Connect

    Skousen, J.G.

    1986-01-01

    This study was conducted to investigate the ability of nine low-maintenance species to establish and persist with Coastal bermuda grass (Cynodon dactylon (L.) Pers.) established on reclaimed lignite overburden; to evaluate the establishment and persistence of seventeen low-maintenance species seeded in overburden with no vegetation cover; and to examine seeding mixtures and rates for establishing low-maintenance species into three cover types (bermuda grass, oats, (Avena fatua L.) and no cover). Seventeen low-maintenance species established and persisted in overburden without fertilization during years of low precipitation. Several seeded grasses showed sufficient stand development in monoculture for erosion control. Most of the other seeded species were slower in establishment, yet persisted on the site and promoted multiple use of the reclaimed area. Recommended seeding rates were generally adequate for seedling establishment in oat, bermuda grass, and no vegetation cover types. Sod-seeding into bermuda grass resulted in higher seedling densities than those in oats and no cover because of stored moisture beneath the sod during bermuda grass dormancy. Using /sup 15/N-labelled fertilizer, Coastal bermuda grass demonstrated the ability to rapidly recovery applied N. Maximilian sunflower (Helianthus maximiliani Schrad.) was suppressed by Coastal bermuda grass in mixture at all fertilizer N rates.

  20. Proteomic Study Related to Vascular Connections in Watermelon Scions Grafted onto Bottle-Gourd Rootstock under Different Light Intensities

    PubMed Central

    Muneer, Sowbiya; Ko, Chung Ho; Soundararajan, Prabhakaran; Manivnnan, Abinaya; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2015-01-01

    Although grafting is broadly used in the production of crops, no information is available about the proteins involved in vascular connections between rootstock and scion. Similarly, proteome changes under the light intensities widely used for grafted seedlings are of practical use. The objective of this study was to determine the proteome of vascular connections using watermelon (Citrullus vulgaris Schrad.) ‘Sambok Honey’ and ‘Speed’ as the scion and bottle gourd (Lagenaria siceraria Stanld.) ‘RS Dongjanggun’ as the rootstock grown under different light intensities (25, 50, 75 and 100 μmol m−2 s−1). Our proteomic analysis revealed 24 and 27 differentially expressed proteins in ‘Sambok Honey’ and ‘Speed’, respectively, under different light intensities. The identified proteins were largely involved in ion binding, amino acid metabolism, transcriptional regulation and defense response. The enhancement of ion-binding, transcriptional regulation, amino acid metabolism, and defense response proteins suggests a strengthening of the connection between the rootstock and scion under high light intensity. Indeed, the accumulation of key enzymes in the biological processes described above appears to play an important role in the vascular connections of grafted seedlings. Moreover, it appears that 100 μmol m−2 s−1 results in better protein expression responses in grafted seedlings. PMID:25789769

  1. A novel mechanism for momordin Ic-induced HepG2 apoptosis: involvement of PI3K- and MAPK-dependent PPARγ activation.

    PubMed

    Wang, Jing; Yuan, Li; Xiao, Haifang; Wang, Chan; Xiao, Chunxia; Wang, Yutang; Liu, Xuebo

    2014-05-01

    Momordin Ic is a natural triterpenoid saponin found in various Chinese and Japanese natural medicines such as the fruit of Kochia scoparia (L.) Schrad. Momordin Ic has been previously demonstrated to induce HepG2 cell apoptosis in a ROS-mediated PI3K and MAPK pathway-dependent manner. In the present study, the underlying mechanisms of PI3K and MAPK pathway-mediated PPARγ, and PGC-1α co-regulator activation, as well as the effects of downstream proteins, COX-2 and FoxO4, on cell apoptosis were investigated. The results demonstrated that momordin Ic activated PPARγ and inhibited COX-2. PGC-1α and FoxO4 expressions were increased by the PI3K or MAPK pathways. Furthermore, PPARγ inhibition decreased p-p38 and FoxO4 expression, and restored COX-2 expression. ROS inhibition exerted little effect on PPARγ, COX-2 and FoxO4 expression but affected PGC-1α expression. These results revealed the involvement of PI3K and MAPK-dependent PPARγ activation in momordin Ic-induced apoptosis, providing more detailed information underlying the pro-apoptotic mechanism of momordin Ic in HepG2 cell apoptosis.

  2. [Effects of water deficiency on mitochondrial functions and polymorphism of respiratory enzymes in plants].

    PubMed

    Rakhmankulova, Z F; Shuĭskaia, E V; Rogozhnikova, E S

    2013-01-01

    In plants, adaptive-compensatory responses to stress always entail additional energy expenditure. A suggestion was brought forward that in plants growing under conditions of water stress there is a relationship between genetic variability of respiratory enzymes and their functional significance. With Kochia prostrate (L.) Schrad. as a case study, intraspecies genetic polymorphism under the conditions of drought has been analyzed using typical protein markers which, considering their functional importance, can be viewed as respiratory enzymes. Out of eight protein markers examined, four enzymes were singled out for which dominating combination of genotypes Dia B (a), G6pd (a), Gdh (c), and Mdh A (a) was incidental. In all populations from arid and semiarid zone, these genotypes frequency of occurrence was in the range of 0.53-1.0, i.e., it comprised more than 50% of the whole variety of combinations. Thus, it seems plausible that this combination of genotypes can be an "adaptive collection" for K. prostrata populations growing in arid habitats. A characteristic feature of the picked out enzymes is their belonging to NAD(P)(+)-depending oxidoreductases that play a key role in functioning and redox-regulation of respiratory metabolism in course of adapting to water deficiency. It is suggested that the presence of such well-balanced co-adaptive genotype combinations, that provide enzymes important in terms of energetics, determine the formation of energetic and redox-balances during the process of adaptation to water stress.

  3. Proteomic study related to vascular connections in watermelon scions grafted onto bottle-gourd rootstock under different light intensities.

    PubMed

    Muneer, Sowbiya; Ko, Chung Ho; Soundararajan, Prabhakaran; Manivnnan, Abinaya; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2015-01-01

    Although grafting is broadly used in the production of crops, no information is available about the proteins involved in vascular connections between rootstock and scion. Similarly, proteome changes under the light intensities widely used for grafted seedlings are of practical use. The objective of this study was to determine the proteome of vascular connections using watermelon (Citrullus vulgaris Schrad.) 'Sambok Honey' and 'Speed' as the scion and bottle gourd (Lagenaria siceraria Stanld.) 'RS Dongjanggun' as the rootstock grown under different light intensities (25, 50, 75 and 100 μmol m-2 s-1). Our proteomic analysis revealed 24 and 27 differentially expressed proteins in 'Sambok Honey' and 'Speed', respectively, under different light intensities. The identified proteins were largely involved in ion binding, amino acid metabolism, transcriptional regulation and defense response. The enhancement of ion-binding, transcriptional regulation, amino acid metabolism, and defense response proteins suggests a strengthening of the connection between the rootstock and scion under high light intensity. Indeed, the accumulation of key enzymes in the biological processes described above appears to play an important role in the vascular connections of grafted seedlings. Moreover, it appears that 100 μmol m-2 s-1 results in better protein expression responses in grafted seedlings.

  4. Phytotherapy of hypertension and diabetes in oriental Morocco.

    PubMed

    Ziyyat, A; Legssyer, A; Mekhfi, H; Dassouli, A; Serhrouchni, M; Benjelloun, W

    1997-09-01

    In order to select the main medicinal plants used in folk medicine to treat arterial hypertension and/or diabetes, a survey was undertaken in different areas of oriental Morocco. The patients (370 women and 256 men) were divided into three groups: diabetics (61%), hypertensives (23%) and hypertensive diabetic persons (16%). On average, 67.51% of patients regularly use medicinal plants. This proportion is perceptibly the same in all groups and does not depend on sex, age and socio-cultural level. This result shows that phytotherapy is widely adopted in northeastern Morocco. For diabetes, 41 plants were cited, of which the most used were Trigonella foenum-graecum L. (Leguminosae), Globularia alypum L. (Globulariaceae), Artemisia herba-alba Asso. (Compositae), Citrullus colocynthis (L.) Schrad. (Cucurbitaceae) and Tetraclinis articulata Benth. (Cupressaceae). In the hypertension's therapy 18 vegetal species were reported, of which the most used were Allium sativum L. (Liliaceae), Olea europea L. (Oleaceae), Arbutus unedo L. (Ericaceae), Urtica dioica L. (Urticaceae) and Petroselinum crispum A.W. Hill (Apiaceae). Among the 18 species used for hypertension, 14 were also employed for diabetes. Moreover, these two diseases were associated in 41% of hypertensives. These findings suggest that hypertension observed in this region would be in a large part related to diabetes.

  5. Gene expression changes in response to drought stress in Citrullus colocynthis.

    PubMed

    Si, Ying; Zhang, Cankui; Meng, Shasha; Dane, Fenny

    2009-06-01

    Citrullus colocynthis (L.) Schrad, closely related to watermelon, is a member of the Cucurbitaceae family. This plant is a drought-tolerant species with a deep root system, widely distributed in the Sahara-Arabian deserts in Africa and the Mediterranean region. cDNA amplified fragment length polymorphism (cDNA-AFLP) was used to study differential gene expression in roots of seedlings in response to a 20% polyethylene glycol-(PEG8000) induced drought stress treatment. Eighteen genes which show similarity to known function genes were confirmed by quantitative relative (RQ) real-time RT-PCR to be differentially regulated. These genes are involved in various abiotic and biotic stress and developmental responses. Dynamic changes with tissue-specific pattern were detected between 0 and 48 h of PEG treatment. In general, the highest induction levels in roots occurred earlier than in shoots, because the highest expression was detected in roots following 4 and 12 h, in shoots following 12 and 48 h of drought. These drought-responsive genes were also affected by the plant hormones abscisic acid (ABA), salicylic acid (SA), or jasmonic acid (JA), indicating an extensive cross-talk between drought and plant hormones. Collectively, these results will be useful to explore the functions of these multiple signal-inducible genes for unveiling the relationship and crosstalk between different signaling pathways.

  6. [Pharmacognosy study of Verbascum species].

    PubMed

    Török, Tamás; Varga, Erzsébet

    2015-01-01

    The mullein (Verbascum phlomoides L., V thapsus L., V. thapsiforme Schrad., V. speciosum L.) is a medicinal herb known and used for a long time, especially in traditional Turkish medicine. The aims of our study were to identify the species and study the plant's major active substances both qualitatively and quantitatively, comparing it to data found in scientific literature. The plants were identified as probable hybrids of V. phlomoides and V. thapsiforme. Microscopic analysis of the flowers showed no major difference between the specimens. The diameter of both stomata and pollen we observed was around 15-20 μm. Important flavonoids like rutin and quercetin were identified. Dosage resulted in a 0.135% total flavonoid aglycone content. (expressed as hypericin) and a 1.3% total flavonoid glycoside content (expressed as rutoside). Thin layer chromatography from saponines revealed two spots. A hemolytic index of 13095 was also determined. Repeating the dosage experiment a year later resulted in significantly lower flavonoid aglycone and glycoside content (0.006% and 0.95% respectively) as well as a hemolytic index of approximately 4000.

  7. Spatiotemporal Variability in Water-carbon Flux and Water Use Efficiency Over an Agro-Ecosystem in the Changwu Tableland of the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Han, X.; Liu, W.; Ning, T.

    2015-12-01

    Study on the characteristics and coupling relationship of water and carbon fluxes in agro-ecosystem, will contribute to maintaining and improving agricultural productivity, and is also important for understanding the material circulation of terrestrial ecosystem. In this study, a 30 m-high tower was erected for mounting flux instruments in the Changwu Tableland of the Loess Plateau. Two sets of eddy covariance system on the tower representing for ecosystems with different spatial scales, one is the cropland ecosystem (2m height, the underlying is winter wheat mono-cropping cropland) and the other is agro-fruit ecosystem (30m height, including both cropland and apple orchard). Seasonal and interannual variations in evapotranspiration (ET), net ecosystem exchange (NEE) and ecosystem water use efficiency (WUE) for the two ecosystems were continuously measured from September 2004 to June 2010. Mean while, the relationship between actual ET and potential evapotranspiration (ET0) was discussed. The results showed that, 1) Seasonally, ET of the cropland ecosystem was bimodal, peaked in May (Jointing and heading stage of winter wheat) and August (summer fallow period), respectively. The trend of NEE was consistent with the growth period of winter wheat, and the minimum occurred between April and May, the maximum WUE value also appeared that time. Seasonal ET of the agro-fruit ecosystem showed unimodal trend, which peaked in July. The lowest NEE occurred in July. The seasonal variation of WUE was smaller than that of the cropland ecosystem, and it got the highest in May. 2) Both of the annual ET in the cropland and the agro-fruit ecosystem fluctuated in these years, and the annual average ET were 437.12 and 417.41 mm, respectively. Because of the underestimated of latent heat flux caused by the energy imclosure, the observed ET was less than the results of the water balance calculation. The trend in NEE was similar, and the annual average NEE were -325.88 and -440.74 gC/m2

  8. Towards a consistent approach of measuring and modelling CO2 exchange with manual chambers

    NASA Astrophysics Data System (ADS)

    Huth, Vytas; Vaidya, Shrijana; Hoffmann, Mathias; Jurisch, Nicole; Günther, Anke; Gundlach, Laura; Hagemann, Ulrike; Elsgaard, Lars; Augustin, Jürgen

    2016-04-01

    Determining ecosystem CO2 exchange with the manual closed chamber method has been applied in the past for e.g. plant, soil or treatment on a wide range of terrestrial ecosystems. Its major limitation is the discontinuous data acquisation challenging any gap-filling procedures. In addition, both data acquisition and gap-filling of closed chamber data have been carried out in different ways in the past. The reliability and comparability of the derived results from different closed chamber studies has therefore remained unclear. Hence, this study compares two different approaches of obtaining fluxes of gross primary production (GPP) either via sunrise to noon or via gradually-shaded mid-day measurements of transparent chamber fluxes (i.e. net ecosystem exchange, NEE) and opaque chamber fluxes (i.e., ecosystem respiration, RECO) on a field experiment plot in NE Germany cropped with a lucerne-clover-grass mix. Additionally, we compare three approaches of pooling RECO data for consecutive modelling of annual balances of NEE, i.e. campaign-wise (single measurement day RECO models), seasonal-wise (one RECO model for the entire study period), and cluster-wise (two RECO models representing low-/high-vegetation-stage data) modelling. The annual NEE balances of the sunrise to noon measurements are insensitive towards differing RECO modelling approaches (-101 to -131 g C m-2), whereas the choice of modelling annual NEE balances with the shaded mid-day measurements must be taken carefully (-200 to 425 g C m-2). In addition, the campaign-wise RECO modelling approach is very sensitive to daily data pooling (sunrise vs. mid-day) and only advisable when the diurnal variability of CO2 fluxes and environmental parameters (i.e. photosynthetically active radiation, temperature) is sufficiently covered. The seasonal- and cluster-wise approaches lead to robust NEE balances with only little variation in terms of daily data collection. We therefore recommend sunrise to noon measurements and

  9. [Characteristics of CO₂ flux in an old growth mixed forest in Tianmu Mountain, Zhejiang, China].

    PubMed

    Niu, Xiao-dong; Jiang, Hong; Zhang, Jin-meng; Fang, Cheng-yuan; Chen, Xiao-feng; Sun, Heng

    2016-01-01

    The old-growth, multiple ages, multispecies natural forest has played an important role in terrestrial ecosystem dynamics model and the global carbon budget. However, carbon fluxes of old forests in subtropical regions are rarely reported in China. In the present study, the CO₂ flux of an old-growth subtropical evergreen and deciduous broad-leaved mixed forest was observed using eddy covariance technique in Tianmu Mountain of Zhejiang Province. Based on the data sets which were observed from July 2013 to June 2014, the variations of net ecosystem exchange (NEE), eco-system respiration (Re), and gross ecosystem exchange (GEE) were analyzed. The results showed that during the study period, the monthly NEE all had a negative value (acted as a carbon sink) except for December and February (acted as a carbon source). The average monthly NEE was -61.52 g C · m⁻², the monthly carbon sequestration showed a double-peak curve and the maximum carbon sink was -149.40 g C · m⁻², which occurred in June while the maximum carbon source was 23.45 g C · m⁻², which occurred in February. The maximum of monthly mean CO₂ flux occurred in June with a value of -0.98 mg · m⁻² · s⁻¹, while the minimum value occurred in December with a value of -0.35 mg · m⁻² · s⁻¹. The NEE at the time point of positive and negative conversion had typical seasonal characteristics. The yearly NEE, Re, and GEE were -738.18, 931.05 and -1669.23 g C · m⁻², respectively. Compared with other forest ecosystems located at the similar latitude, the carbon fixation of the old-growth forest was larger, likely due to its complicated structure within the canopy and the presence of young-growth regeneration and successional stands. This showed that other than in carbon neutral, old-growth forests of Tianmu Mountain in subtropical China had a strong capability in carbon sequestration.

  10. Growing season variability of net ecosystem CO2 exchange and evapotranspiration of a sphagnum mire in the broad-leaved forest zone of European Russia

    NASA Astrophysics Data System (ADS)

    Olchev, A.; Volkova, E.; Karataeva, T.; Novenko, E.

    2013-09-01

    The spatial and temporal variability of net ecosystem exchange (NEE) of CO2 and evapotranspiration (ET) of a karst-hole sphagnum peat mire situated at the boundary between broad-leaved and forest-steppe zones in the central part of European Russia in the Tula region was described using results from field measurements. NEE and ET were measured using a portable measuring system consisting of a transparent ventilated chamber combined with an infrared CO2/H2O analyzer, LI-840A (Li-Cor, USA) along a transect from the southern peripheral part of the mire to its center under sunny clear-sky weather conditions in the period from May to September of 2012 and in May 2013. The results of the field measurements showed significant spatial and temporal variability of NEE and ET that was mainly influenced by incoming solar radiation and ground water level. The seasonal patterns of NEE and ET within the mire were quite different. During the entire growing season the central part of the mire was a sink of CO2 for the atmosphere. NEE reached maximal values in June-July (-6.8 ± 4.2 μmol m-2 s-1). The southern peripheral part of the mire, due to strong shading by the surrounding forest, was a sink of CO2 for the atmosphere in June-July only. ET reached maximal values in the well-lighted central parts of the mire in May (0.34 ± 0.20 mm h-1) mainly because of high air and surface temperatures and the very wet upper peat horizon and sphagnum moss. Herbaceous species made the maximum contribution to the total gross primary production (GPP) in both the central and the peripheral parts of the mire. The contribution of sphagnum to the total GPP of these plant communities was relatively small and ranged on sunny days of July-August from -1.1 ± 1.1 mgC g-1 of dry weight (DW) per hour in the peripheral zone of the mire to -0.6 ± 0.2 mgC g-1 DW h-1 at the mire center. The sphagnum layer made the maximum contribution to total ET at the mire center (0.25 ± 0.10 mm h-1) and the herbaceous

  11. New tool for CO2 flux partitioning with soil chamber flux implementation as a solution for site in topographically complex terrain

    NASA Astrophysics Data System (ADS)

    Šigut, Ladislav; Mammarella, Ivan; Kolari, Pasi; Dařenová, Eva; Novosadová, Kateřina; Pietras, Justina; Pokorný, Radek; Sedlák, Pavel; Mauder, Matthias

    2014-05-01

    Eddy covariance method (EC) is one of the most accurate and direct approaches for measurements of fluxes of matter and energy on the level of an entire ecosystem. CO2 flux data acquired using the global network of EC flux towers help us to better understand the impacts of natural and anthropogenic phenomena on the global carbon balance. Comparisons among different sites are usually performed on annual sums of net ecosystem exchange (annual sums of NEE). Nowadays, EC is also used in complex terrain on the edge of its applicability (e.g. hills, cities) such as the mountain forest site at Bílý Kříž, Beskydy Mountains, Czech Republic. This requires revisiting of generally applied algorithms for computation of annual sums of NEE. The first aim of this study is the assessment of the performance and correctness of a newly developed tool for CO2 flux separation in comparison with standard algorithms. Simple models describing response of NEE to temperature and photosynthetic active radiation will be used for flux partitioning and a new approach to remove seasonality from datasets will be demonstrated. The second aim of this study will be to evaluate whether it is possible to estimate defensible annual sums of NEE for complex terrain site Bílý Kříž with the help of auxiliary biomass inventory and soil chamber measurements. Here the up-scaling of soil respiration to ecosystem respiration will be attempted and the resulting sums of NEE will be compared to independent biomass inventory estimates of net primary productivity. The importance of this research lies in extending the boundaries of EC application, thus contributing to better understanding of carbon balance in mountainous regions ecosystems which are not well represented within networks of EC flux towers. Acknowledgement This work was supported by CZ.1.05/1.1.00/02.0073, CZ.1.07/2.4.00/31.0056, OU SGS20/PřF/2014 grants and MICMoR graduate programme.

  12. Understanding variation in ecosystem pulse responses to wetting: Benefits of data-model coupling

    NASA Astrophysics Data System (ADS)

    Jenerette, D.

    2011-12-01

    Metabolic pulses of activity are a common ecological response to intermittently available resources and in water-limited ecosystems these pulses often occur in response to wetting. Net ecosystem CO2 exchange (NEE) in response to episodic wetting events is hypothesized to have a complex trajectory reflecting the distinct responses, or "pulses", of respiration and photosynthesis. To help direct research activities a physiological-based model of whole ecosystem metabolic activity up- and down-regulation was developed to investigate ecosystem energy balance and gas exchange pulse responses following precipitation events. This model was to investigate pulse dynamics from a local network of sites in southern Arizona, a global network of eddy-covariance ecosystem monitoring sites, laboratory incubation studies, and field manipulations. Pulse responses were found to be ubiquitous across ecosystem types. These pulses had a highly variable influence on NEE following wetting, ranging from large net sinks to sources of CO2 to the atmosphere. Much of the variability in pulse responses of NEE could be described through a coupled up- and down-regulation pulse response model. Respiration pulses were hypothesized to occur through a reduction in whole ecosystem activation energy; this model was both useful and corroborated through laboratory incubation studies of soil respiration. Using the Fluxnet eddy-covariance measurement database event specific responses were combined with the pulse model into an event specific twenty-five day net flux calculation. Across all events observed a general net accumulation of CO2 following a precipitation event, with the largest net uptake within deciduous broadleaf forests and smallest within grasslands. NEE pulses favored greater uptake when pre-event ecosystem respiration rates and total precipitation were higher. While the latter was expected, the former adds to previous theory by suggesting a larger net uptake of CO2 when pre-event metabolic

  13. The impact of extreme drought on the biofuel feedstock production

    NASA Astrophysics Data System (ADS)

    hussain, M.; Zeri, M.; Bernacchi, C.

    2013-12-01

    Miscanthus (Miscanthus x giganteus) and Switchgrass (Panicum virgatum) have been identified as the primary targets for second-generation cellulosic biofuel crops. Prairie managed for biomass is also considered as one of the alternative to conventional biofuel and promised to provide ecosystem services, including carbon sequestration. These perennial grasses possess a number of traits that make them desirable biofuel crops and can be cultivated on marginal lands or interspersed with maize and soybean in the Corn Belt region. The U.S. Corn Belt region is the world's most productive and expansive maize-growing region, approximately 20% of the world's harvested corn hectares are found in 12 Corn Belt states. The introduction of a second generation cellulosic biofuels for biomass production in a landscape dominated by a grain crop (maize) has potential implications on the carbon and water cycles of the region. This issue is further intensified by the uncertainty in the response of the vegetation to the climate change induced drought periods, as was seen during the extreme droughts of 2011 and 2012 in the Midwest. The 2011 and 2012 growing seasons were considered driest since the 1932 dust bowl period; temperatures exceeded 3.0 °C above the 50- year mean and precipitation deficit reached 50 %. The major objective of this study was to evaluate the drought responses (2011 and 2012) of corn and perennial species at large scale, and to determine the seasonability of carbon and water fluxes in the response of controlling factors. We measured net CO2 ecosystem exchange (NEE) and water fluxes of maize-maize-soybean, and perennial species such as miscanthus, switchgrass and mixture of prairie grasses, using eddy covariance in the University of Illinois energy farm at Urbana, IL. The data presented here were for 5 years (2008- 2012). In the first two years, higher NEE in maize led to large CO2 sequestration. NEE however, decreased in dry years, particularly in 2012. On the other

  14. The REFLEX project: Comparing different algorithms and implementations for the inversion of a terrestrial ecosystem model against eddy covariance data

    SciTech Connect

    Fox, Andrew; Williams, Mathew; Richardson, Andrew D.; Cameron, David; Gove, Jeffrey H.; Quaife, Tristan; Ricciuto, Daniel M; Reichstein, Markus; Tomelleri, Enrico; Trudinger, Cathy; Van Wijk, Mark T.

    2009-10-01

    We describe a model-data fusion (MDF) inter-comparison project (REFLEX), which compared various algorithms for estimating carbon (C) model parameters consistent with both measured carbon fluxes and states and a simple C model. Participants were provided with the model and with both synthetic net ecosystem exchange (NEE) ofCO2 and leaf area index (LAI) data, generated from the model with added noise, and observed NEE and LAI data from two eddy covariance sites. Participants endeavoured to estimate model parameters and states consistent with the model for all cases over the two years for which data were provided, and generate predictions for one additional year without observations. Nine participants contributed results using Metropolis algorithms, Kalman filters and a genetic algorithm. For the synthetic data case, parameter estimates compared well with the true values. The results of the analyses indicated that parameters linked directly to gross primary production (GPP) and ecosystem respiration, such as those related to foliage allocation and turnover, or temperature sensitivity of heterotrophic respiration,were best constrained and characterised. Poorly estimated parameters were those related to the allocation to and turnover of fine root/wood pools. Estimates of confidence intervals varied among algorithms, but several algorithms successfully located the true values of annual fluxes from synthetic experiments within relatively narrow 90% confidence intervals, achieving>80% success rate and mean NEE confidence intervals <110 gCm-2 year-1 for the synthetic case. Annual C flux estimates generated by participants generally agreed with gap-filling approaches using half-hourly data. The estimation of ecosystem respiration and GPP through MDF agreed well with outputs from partitioning studies using half-hourly data. Confidence limits on annual NEE increased by an average of 88% in the prediction year compared to the previous year, when data were available. Confidence

  15. The Potential of Carbonyl Sulfide as a Tracer for Gross Primary Productivity at Flux Tower Sites

    NASA Astrophysics Data System (ADS)

    Blonquist, J.; Montzka, S. A.; Yakir, D.; Desai, A. R.; Dragoni, D.; Griffis, T. J.; Monson, R. K.; Munger, J. W.; Scott, R. L.; Bowling, D. R.

    2010-12-01

    Regional/continental scale studies of atmospheric carbonyl sulfide (OCS) seasonal dynamics and leaf level studies of plant OCS uptake have shown a close relationship to CO2 dynamics and uptake, suggesting potential for OCS as a tracer for gross primary productivity (GPP). Canopy CO2 and OCS differences (mole fraction within canopy minus that above canopy) at a temperate deciduous forest (Harvard Forest AmeriFlux site) were analyzed relative to net ecosystem exchange (NEE) and GPP, respectively. Canopy CO2 and OCS vertical gradients (CO2 and OCS differences divided by within and above canopy measurement height differences) were used to calculate ecosystem relative uptake (ERU; relative canopy OCS gradient divided by relative canopy CO2 gradient, where relative gradients are gradients normalized by above canopy mole fractions), from which GPP was estimated using an equation that assumes OCS follows the same physical pathway as CO2 into plant leaves and where GPP / NEE was proportional to OCS gradient / CO2 gradient. Additionally, canopy CO2 differences from five other AmeriFlux sites were analyzed, and OCS differences were projected from these differences (via an assumed ERU) to further evaluate OCS as a potential GPP tracer. At Harvard Forest, canopy CO2 differences were related to NEE (y = 0.041x + 0.046, r2 = 0.14, P < 0.025) and OCS differences were related to GPP (y = 0.43x - 2.0, r2 = 0.18, P < 0.1), indicating the influence of canopy uptake on canopy differences. Relative canopy OCS and CO2 gradients were linearly correlated (slope = 4.4, intercept = -0.00028, r2 = 0.69, P < 0.025), indicating CO2 and OCS dynamics were likely controlled by similar mechanisms. Estimates of GPP derived from OCS and from temperature-based NEE partitioning showed a strong linear relationship (slope = 1.2, intercept = 3.1, r2 = 0.99, P < 0.0005), indicating the potential of OCS as a GPP tracer. As with Harvard Forest, canopy CO2 differences at the other AmeriFlux sites were related

  16. Environmental controls on carbon fluxes over three grassland ecosystems in China

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Zheng, Z.; Yu, G.; Hu, Z.; Sun, X.; Shi, P.; Wang, Y.; Zhao, X.

    2009-08-01

    This study compared the CO2 fluxes over three grassland ecosystems in China, including a temperate steppe (TS) in Inner Mongolia, an alpine shrub-meadow (ASM) in Qinghai and an alpine meadow-steppe (AMS) in Tibet. The measurements were made in 2004 and 2005 using the eddy covariance technique. Objectives were to document the different seasonality of net ecosystem exchange of CO2 (NEE) and its components, gross ecosystem photosynthesis (GEP) and ecosystem respiration (Reco), and to examine how environmental factors affect carbon exchange in the three grassland ecosystems. It was warmer in 2005 than in 2004, especially during the growing season (from May to September), across the three sites. The annual precipitation at TS in 2004 (364.4 mm) was close the annual average (350 mm), whereas the precipitation at TS in 2005 (153.3 mm) was significantly below the average. Both GEP and Reco of the temperate steppe in 2005 were significantly reduced by the extreme drought stress, resulting in net carbon release during almost the whole growing season. The magnitude of CO2 fluxes (daily and annual sums) was largest for the alpine shrub-meadow and smallest for the alpine meadow-steppe. The seasonal trends of GEP, Reco and NEE of the alpine shrub-meadow tracked closely with the variation in air temperature, while the seasonality of GEP, Reco and NEE of the temperate steppe and the alpine meadow-steppe was more related to the variation in soil moisture. The alpine shrub-meadow was a local carbon sink over the two years. The temperate steppe and alpine meadow-steppe were acting as net carbon source, with more carbon loss to the atmosphere in warmer and drier year of 2005. Annual precipitation was the primary climate driver for the difference in annual GEP and NEE among the three sites and between the two years. We also found the annual GEP and NEE depended significantly on the growing season length, which was mainly a result of the timing and amount of precipitation for the

  17. Processing arctic eddy-flux data using a simple carbon-exchange model embedded in the ensemble Kalman filter.

    PubMed

    Rastetter, Edward B; Williams, Mathew; Griffin, Kevin L; Kwiatkowski, Bonnie L; Tomasky, Gabrielle; Potosnak, Mark J; Stoy, Paul C; Shaver, Gaius R; Stieglitz, Marc; Hobbie, John E; Kling, George W

    2010-07-01

    Continuous time-series estimates of net ecosystem carbon exchange (NEE) are routinely made using eddy covariance techniques. Identifying and compensating for errors in the NEE time series can be automated using a signal processing filter like the ensemble Kalman filter (EnKF). The EnKF compares each measurement in the time series to a model prediction and updates the NEE estimate by weighting the measurement and model prediction relative to a specified measurement error estimate and an estimate of the model-prediction error that is continuously updated based on model predictions of earlier measurements in the time series. Because of the covariance among model variables, the EnKF can also update estimates of variables for which there is no direct measurement. The resulting estimates evolve through time, enabling the EnKF to be used to estimate dynamic variables like changes in leaf phenology. The evolving estimates can also serve as a means to test the embedded model and reconcile persistent deviations between observations and model predictions. We embedded a simple arctic NEE model into the EnKF and filtered data from an eddy covariance tower located in tussock tundra on the northern foothills of the Brooks Range in northern Alaska, USA. The model predicts NEE based only on leaf area, irradiance, and temperature and has been well corroborated for all the major vegetation types in the Low Arctic using chamber-based data. This is the first application of the model to eddy covariance data. We modified the EnKF by adding an adaptive noise estimator that provides a feedback between persistent model data deviations and the noise added to the ensemble of Monte Carlo simulations in the EnKF. We also ran the EnKF with both a specified leaf-area trajectory and with the EnKF sequentially recalibrating leaf-area estimates to compensate for persistent model-data deviations. When used together, adaptive noise estimation and sequential recalibration substantially improved filter

  18. Contrasting effects of invasive insects and fire on ecosystem water use efficiency

    NASA Astrophysics Data System (ADS)

    Clark, K. L.; Skowronski, N. S.; Gallagher, M. R.; Renninger, H.; Schäfer, K. V. R.

    2014-12-01

    We used eddy covariance and meteorological measurements to estimate net ecosystem exchange of CO2 (NEE), gross ecosystem production (GEP), evapotranspiration (Et), and ecosystem water use efficiency (WUEe; calculated as GEP / Et during dry canopy conditions) in three upland forests in the New Jersey Pinelands, USA, that were defoliated by gypsy moth (Lymantria dispar L.) or burned using prescribed fire. Before disturbance, half-hourly daytime NEE during full sunlight conditions, daily GEP, and daily WUEe during the summer months were greater at the oak-dominated stand compared to the mixed or pine-dominated stands. Both defoliation by gypsy moth and prescribed burning reduced stand leaf area and nitrogen mass in foliage. During complete defoliation in 2007 at the oak stand, NEE during full sunlight conditions and daily GEP during the summer averaged only 14 and 35% of pre-disturbance values. Midday NEE and daily GEP then averaged 58 and 85%, and 71 and 78% of pre-defoliation values 1 and 2 years following complete defoliation, respectively. Prescribed fires conducted in the dormant season at the mixed and pine-dominated stands reduced NEE during full sunlight conditions and daily GEP during the following summer to 57 and 68%, and 79 and 82% of pre-disturbance values, respectively. Daily GEP during the summer was a strong function of N mass in foliage at the oak and mixed stands, but a weaker function of N in foliage at the pine-dominated stand. Ecosystem WUEe during the summer at the oak and mixed stands during defoliation by gypsy moth averaged 1.6 and 1.1 g C kg H2O-1, representing 60 and 46% of pre-disturbance values. In contrast, prescribed fires at the mixed and pine-dominated stands had little effect on WUEe. Two years following complete defoliation by gypsy moth, WUEe during the summer averaged 2.1 g C kg H2O-1, 80% of pre-disturbance values. WUEe was correlated with canopy N content only at the oak-dominated stand. Overall, our results indicate that WUEe

  19. Modeling net ecosystem exchange of carbon dioxide in a beetle-attacked subalpine forest using a data-constrained ecosystem model

    NASA Astrophysics Data System (ADS)

    Peckham, S. D.; Ewers, B. E.; Mackay, D. S.; Frank, J. M.; Massman, W. J.; Ryan, M. G.; Scott, H.; Pendall, E.

    2012-12-01

    The mountain pine and spruce bark beetles and associated blue-stain fungi have caused widespread mortality in the forests of the western U.S. during the past decade, impacting over 1.6 Mha in Northern Colorado and Southeast Wyoming alone. Both the beetles and fungi they carry block tree xylem and eventually cause mortality due to hydraulic failure. Previous studies of bark beetle mortality in Canadian forests have suggested a net loss of carbon following beetle attack. This study aimed to determine if forests in the southern Rocky Mountains showed a similar response. We simulated carbon fluxes over a time period of six years (2005-2010) at the Glacier Lakes Ecosystem Experiment sites (GLEES) Ameriflux site using the Terrestrial Regional Ecosystem Exchange Simulator (TREES) model. This time period included a beetle infestation during the last three years that resulted in mortality of 51% of the spruce trees that accounted for 90% of the spruce basal area. Model estimates of net ecosystem exchange of CO2 (NEE) were compared to eddy-covariance measurements before, during, and after beetle attack. Model predictions of NEE were generated two ways, 1) using the standard set of maintenance respiration coefficients, and 2) constraining modeled respiration using equations derived from field measurements of stem, leaf, and soil respiration at GLEES, and were compared to NEE observations before, during, and after the presence of bark beetles. Model changes included both simple modification of the exponential temperature response curve (Q10) and adding new equations based on both temperature and live tissue nitrogen content. Pre-beetle observed growing season mean NEE averaged -1.49 μmol C m-2 s-1 and simulation means ranged from -4.10 to 0.64 μmol C m-2 s-1. Changing the model's computation of maintenance respiration to incorporate site-specific temperature response (Q10) resulted in an over-prediction of nighttime NEE by up to 100%, but a 10-30% improvement during the day

  20. Multiple Flux Footprints, Flux Divergences and Boundary Layer Mixing Ratios: Studies of Ecosystem-Atmosphere CO2 Exchange Using the WLEF Tall Tower.

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Bakwin, P. S.; Yi, C.; Cook, B. D.; Wang, W.; Denning, A. S.; Teclaw, R.; Isebrands, J. G.

    2001-05-01

    Long-term, tower-based measurements using the eddy-covariance method have revealed a wealth of detail about the temporal dynamics of netecosystem-atmosphere exchange (NEE) of CO2. The data also provide a measure of the annual net CO2 exchange. The area represented by these flux measurements, however, is limited, and doubts remain about possible systematic errors that may bias the annual net exchange measurements. Flux and mixing ratio measurements conducted at the WLEF tall tower as part of the Chequamegon Ecosystem-Atmosphere Study (ChEAS) allow for unique assessment of the uncertainties in NEE of CO2. The synergy between flux and mixing ratio observations shows the potential for comparing inverse and eddy-covariance methods of estimating NEE of CO2. Such comparisons may strengthen confidence in both results and begin to bridge the huge gap in spatial scales (at least 3 orders of magnitude) between continental or hemispheric scale inverse studies and kilometer-scale eddy covariance flux measurements. Data from WLEF and Willow Creek, another ChEAS tower, are used to estimate random and systematic errors in NEE of CO2. Random uncertainty in seasonal exchange rates and the annual integrated NEE, including both turbulent sampling errors and variability in enviromental conditions, is small. Systematic errors are identified by examining changes in flux as a function of atmospheric stability and wind direction, and by comparing the multiple level flux measurements on the WLEF tower. Nighttime drainage is modest but evident. Systematic horizontal advection occurs during the morning turbulence transition. The potential total systematic error appears to be larger than random uncertainty, but still modest. The total systematic error, however, is difficult to assess. It appears that the WLEF region ecosystems were a small net sink of CO2 in 1997. It is clear that the summer uptake rate at WLEF is much smaller than that at most deciduous forest sites, including the nearby

  1. A Comparison of Conservation Reserve Program Habitat Plantings with Respect to Arthropod Prey for Grassland Birds

    USGS Publications Warehouse

    McIntyre, N.E.; Thompson, Thomas R.

    2003-01-01

    The Conservation Reserve Program (CRP) was designed to reduce soil erosion and curb agricultural overproduction by converting highly erodible agricultural land to various forms of perennial habitat. It has had an incidental benefit of providing habitat for wildlife and has been beneficial in reversing population declines of several grassland bird species. However, the mechanisms behind these reversals remain unknown. One such mechanism may be differences in food availability on CRP vs. non-CRP land or between different types of CRP. The influence of CRP habitat type on the abundance of arthropod prey used by grassland birds has not been previously explored. We compared the abundance and diversity of arthropods among four CRP habitat types in Texas [replicated plots of exotic lovegrass (Eragrostis curvula), Old World bluestem (Bothriochloa ischaemum), mixed native grasses with buffalograss (Buchloe?? dactyloides) and mixed native grasses without buffalograss] and native shortgrass prairie. Attention was focused on adult and juvenile spiders (Order Araneae), beetles (Coleoptera), orthopterans (Orthroptera: grasshoppers and crickets) and lepidopterans (Lepidoptera: butterflies and moths), as these taxa are the primary prey items of grassland birds during the breeding season. Arthropod diversity and abundance were higher on indigenous prairie compared to CRP, reflecting differences in vegetative diversity and structure, but there were no differences in arthropod richness or abundance among CRP types. These results indicate that, although CRP is not equivalent to native prairie in terms of vegetation or arthropod diversity, CRP lands do support arthropod prey for grassland birds. More direct assays of the survivorship and fitness of birds on CRP compared to native shortgrass prairie are clearly warranted.

  2. Effect of atmospheric CO 2 enrichment on rubisco content in herbaceous species from high and low altitude

    NASA Astrophysics Data System (ADS)

    Sage, Rowan F.; Schäppi, Bernd; Körner, Christian

    Atmospheric CO 2 enrichment reduces Rubisco content in many species grown in controlled environments; however, relatively few studies have examined CO 2 effects on Rubisco content of plants grown in their natural habitat. We examined the response of Rubisco content to atmospheric CO 2 enrichment (600-680 μmol mol -1 in place of ppm) in 5 herbaceous species growing in a low altitude grassland (550 m) near Basel, Switzerland, and 3 herbaceous species from Swiss alpine grassland at 2470 m. At low elevation, the dominant grass Bromus erectus and the subdominant dicot Sanquisorba minor exhibited 20% to 25% reduction of Rubisco content following high CO 2 exposure; no CO 2 effect was observed in the subdominants Carex flacca, Lotus corniculatus and Trifolium repens. At the Alpine site, the subdominant grass Poa alpina maintained 27% less Rubisco content when grown at high CO 2 while the co-dominant forb Leontodon helveticus had 19% less Rubisco in high CO 2. Rubisco content was unaffected in the tundra dominant Carex curvula. Because the degree of Rubisco modulation was similar between high and low elevation sites, it does not appear that differences in local partial pressure of CO 2 (altitude) or differences in stress in general induce different patterns of modulation of photosynthetic capacity in response to high CO 2. In addition, the degree of Rubisco reduction (<30%) was less than might be indicated by the low biomass response to CO 2 enrichment previously observed at these sites. Thus, plants in Swiss lowland and alpine grassland appear to maintain greater Rubisco concentration and photosynthetic capacity than whole plants can effectively exploit in terms of harvestable biomass.

  3. Fungal composition on leaves explains pollutant-mediated indirect effects on amphipod feeding.

    PubMed

    Bundschuh, Mirco; Zubrod, Jochen P; Kosol, Sujitra; Maltby, Lorraine; Stang, Christoph; Duester, Lars; Schulz, Ralf

    2011-07-01

    The energy stored in coarse particulate organic matter, e.g. leaf litter, is released to aquatic ecosystems by breakdown processes involving microorganisms and leaf shredding invertebrates. The palatability of leaves and thus the feeding of shredders on leaf material are highly influenced by microorganisms. However, implications in the colonization of leaves by microorganisms (=conditioning) caused by chemical stressors are rarely studied. Our laboratory experiments, therefore, investigated for the first time effects of a fungicide on the conditioning process of leaf material by means of food-choice experiments using Gammarus fossarum (Crustacea: Amphipoda). Additionally, microbial analyses were conducted to facilitate the mechanistic understanding of the observed behavior. Gammarids significantly preferred control leaf discs over those conditioned in presence of the fungicide tebuconazole at concentrations of 50 and 500 μg/L. Besides the decrease of fungal biomass with increasing fungicide concentration, also the leaf associated fungal community composition showed that species preferred by gammarids, such as Alatospora acumunata, Clavariopsis aquatica, or Flagellospora curvula, were more frequent in the control. Tetracladium marchalianum, however, which is rejected by gammarids, was abundant in all treatments suggesting an increasing importance of this species for the lower leaf palatability--as other more palatable fungal species were almost absent--in the fungicide treatments. Hence, the food-choice behavior of G. fossarum seems to be a suitable indicator for alterations in leaf associated microbial communities, especially fungal species composition, caused by chemical stressors. Finally, this or similar test systems may be a reasonable supplement to the environmental risk assessment of chemicals in order to achieve its protection goals, as on the one hand, indirect effects may occur far below concentrations known to affect gammarids directly, and on the other

  4. Kinetics of caesium and potassium absorption by roots of three grass pastures and competitive effects of potassium on caesium uptake in Cynodon sp

    SciTech Connect

    Ayub, J. Juri; Velasco, R. H.; Valverde, L. Rubio; Garcia-Sanchez, M. J.; Fernandez, J. A.

    2008-08-07

    Caesium uptake by plant roots has been normally associated with the uptake of potassium as the potassium transport systems present in plants have also the capacity to transport caesium. Three grass species (Eragrostis curvula, Cynodon sp and Distichlis spicata) growing in seminatural grassland of central Argentina were selected to study their capability to incorporate Cs{sup +} (and K{sup +}) using electrophysiological techniques. Although the {sup 137}Cs soil inventory ranged between 328-730 Bq m{sup -2} in this region, no {sup 137}Cs activity was detected in these plants. However, all the species, submitted previously to K{sup +} starvation, showed the uptake of both Cs{sup +} and K{sup +} when micromolar concentrations of these cations were present in the medium. The uptake showed saturation kinetics for both cations that could be fitted to the Michelis-Menten model. K{sub M} values were smaller for K{sup +} than for Cs{sup +}, indicating a higher affinity for the first cation. The presence of increasing K{sup +} concentrations in the assay medium inhibited Cs{sup +} uptake in Cynodon sp., as expected if both cations are transported by the same transport systems. This effect is due to the competition of both ions for the union sites of the high affinity potassium transporters. In field situation, where soil concentration of Cs{sup +} is smaller than K{sup +} concentration, is then expectable that caesium activity in plants is not detectable. Nevertheless, the studied plants would have the capacity to incorporate caesium if its availability in soil solution increases. In addition, studies of Cs/K interaction can help us to understand the variability in transfer factors.

  5. Kinetics of caesium and potassium absorption by roots of three grass pastures and competitive effects of potassium on caesium uptake in Cynodon sp.

    NASA Astrophysics Data System (ADS)

    Ayub, J. Juri; Valverde, L. Rubio; Garcia-Sanchez, M. J.; Fernandez, J. A.; Velasco, R. H.

    2008-08-01

    Caesium uptake by plant roots has been normally associated with the uptake of potassium as the potassium transport systems present in plants have also the capacity to transport caesium. Three grass species (Eragrostis curvula, Cynodon sp and Distichlis spicata) growing in seminatural grassland of central Argentina were selected to study their capability to incorporate Cs+ (and K+) using electrophysiological techniques. Although the 137Cs soil inventory ranged between 328-730 Bq m-2 in this region, no 137Cs activity was detected in these plants. However, all the species, submitted previously to K+ starvation, showed the uptake of both Cs+ and K+ when micromolar concentrations of these cations were present in the medium. The uptake showed saturation kinetics for both cations that could be fitted to the Michelis-Menten model. KM values were smaller for K+ than for Cs+, indicating a higher affinity for the first cation. The presence of increasing K+ concentrations in the assay medium inhibited Cs+ uptake in Cynodon sp., as expected if both cations are transported by the same transport systems. This effect is due to the competition of both ions for the union sites of the high affinity potassium transporters. In field situation, where soil concentration of Cs+ is smaller than K+ concentration, is then expectable that caesium activity in plants is not detectable. Nevertheless, the studied plants would have the capacity to incorporate caesium if its availability in soil solution increases. In addition, studies of Cs/K interaction can help us to understand the variability in transfer factors.

  6. Perennial species for optimum production of herbaceous biomass in the Piedmont (Management study, 1987--1991). Final report

    SciTech Connect

    Parrish, D.J.; Wolf, D.D.; Daniels, W.L.

    1993-04-01

    The authors have investigated cutting and N management strategies for two biofuel feedstock candidate species -- switchgrass (Panicum virgatum) and weeping lovegrass (Eragrostis curvula). Each was no-till planted in 1987 at three sites underlain by Davidson or Cecil soils. Three N levels (0, 50, or 100 kg/ha) were applied, and the plots fertilized at each level were harvested either twice (early-September and early-November) or only in early-November. The results with lovegrass suggest 50 kg N/ha is nearly optimal and that two cuttings provide more biomass than one. For switchgrass, when averaged across sites and years, 50 kg N/ha produced a slight yield advantage over no added N, but 50 kg was not different from 100 kg. In 1989 and 1990, more biomass was available in early-September harvests (9.6 Mg/ha) than in early-November (8.3 Mg/ha). Apparently the plants translocated significant portions of their biomass below ground during the last few weeks of the season. In 1991, we harvested only in early-November. Plots that had been cut in early-September in the previous three years had lower yields (7.6 Mg/ha) than those that had been cut only in early-November (9.4 Mg/ha). The delayed cutting permitted more growth on a sustained basis -- presumably because of conservation of translocatable materials. This poses an interesting dilemma for the producer of biomass. In additional studies, the authors found no advantage in double-cropping rye (Secale cereale) with switchgrass; at low input levels, rye yields were low, and rye lowered switchgrass yields. Other studies showed double-cropping with winter-annual legumes such as crimson clover (Trifolium incarnatum) may have potential. The timing of herbicide treatment of the legume is critical.

  7. Perennial species for optimum production of herbaceous biomass in the Piedmont (Management study, 1987--1991)

    SciTech Connect

    Parrish, D.J.; Wolf, D.D.; Daniels, W.L. . Dept. of Crop and Soil Environmental Sciences)

    1993-04-01

    The authors have investigated cutting and N management strategies for two biofuel feedstock candidate species -- switchgrass (Panicum virgatum) and weeping lovegrass (Eragrostis curvula). Each was no-till planted in 1987 at three sites underlain by Davidson or Cecil soils. Three N levels (0, 50, or 100 kg/ha) were applied, and the plots fertilized at each level were harvested either twice (early-September and early-November) or only in early-November. The results with lovegrass suggest 50 kg N/ha is nearly optimal and that two cuttings provide more biomass than one. For switchgrass, when averaged across sites and years, 50 kg N/ha produced a slight yield advantage over no added N, but 50 kg was not different from 100 kg. In 1989 and 1990, more biomass was available in early-September harvests (9.6 Mg/ha) than in early-November (8.3 Mg/ha). Apparently the plants translocated significant portions of their biomass below ground during the last few weeks of the season. In 1991, we harvested only in early-November. Plots that had been cut in early-September in the previous three years had lower yields (7.6 Mg/ha) than those that had been cut only in early-November (9.4 Mg/ha). The delayed cutting permitted more growth on a sustained basis -- presumably because of conservation of translocatable materials. This poses an interesting dilemma for the producer of biomass. In additional studies, the authors found no advantage in double-cropping rye (Secale cereale) with switchgrass; at low input levels, rye yields were low, and rye lowered switchgrass yields. Other studies showed double-cropping with winter-annual legumes such as crimson clover (Trifolium incarnatum) may have potential. The timing of herbicide treatment of the legume is critical.

  8. Controls of Carbon Exchange in a Boreal Minerogenic Mire

    NASA Astrophysics Data System (ADS)

    Nilsson, M.; Sagerfors, J.; Buffam, I.; Eriksson, T.; Grelle, A.; Klemedtsson, L.; Weslien, P.; Laudon, H.; Lindroth, A.

    2008-12-01

    Based on theories on both mire development and their response to environmental change, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the contemporary net C-exchange in mires requires direct measurements of all relevant fluxes. We use data on carbon exchange from a boreal minerogenic oligotrophic mire (Degerö Stormyr, 64°11' N, 19°33E) to derive a contemporary carbon budget and to analyze the main controls on the C exchange. Data on the following fluxes were collected: land-atmosphere CO2 (continuous Eddy Covariance measurements, 7 years) and CH4 (static chambers during the snow free period, 4 years) exchange; DOC in precipitation; loss of TOC, CO2 and CH4 through water runoff, 4 years (continuous discharge measurement and regular C-content measurements). The annual land atmosphere exchange of CO2 (NEE) was fairly constant between years and varied between -48 - -61 gCm-2yr-1 during six out of the seven years, despite a large variation in weather combinations, the average being -53 ± 5 gCm-2yr-1. Of the net fixation of atmospheric CO2-C during the net uptake period, i.e. the growing season, approximately a third was lost during the net source period, i.e. the winter period. During the four years with measurements of methane and runoff C-export another third of the growing season uptake was lost from the mire ecosystem as methane and runoff C. While the balance between the length of the NEE uptake and the NEE loss period are most important for the annual net ecosystem carbon balance (NECB) it is central to understand the controls of the spring-summer, and the summer-autumn transitions. The onset of the net C uptake period was controlled by the interaction between the water content and the temperature of the peat moss surface. We interpret this as mainly being a control of the CO2 photosynthesis uptake by the Sphagnum mosses. The transition from being a net C sink to being a net C source is in contrast only controlled

  9. Net Ecosystem Exchange and Net Biome Productivity of different land use in eastern Germany

    NASA Astrophysics Data System (ADS)

    Grünwald, Thomas; Prescher, Anne-Katrin; Bernhofer, Christian

    2010-05-01

    The carbon (CO2-C) budgets of a managed forest (spruce), grassland and a cropland (crop rotation) have been determined and compared. The sites are part of the Tharandt cluster which features low intersite variability in climate due to the small distances between the sites. This allows the comparison of management effects on the carbon budget of different land use among other things. At the forest site, continuous CO2 flux measurements are available from 1997 to 2008, the common observation period of the grassland and cropland sites was 2005 to 2008. With regard to annual net ecosystem exchange NEE (based on eddy covariance flux measurements), the forest showed the highest net sink (-698 g C m-2 (1999) to -444 g C m-2 (2003)). In contrast the grassland and cropland sites were significantly lower sinks in terms of NEE (-177 g C m-2 (2004) to -62 g C m-2 (2005) and -115 g C m-2 (2005) to -32 g C m-2 (2007 and 2008), respectively). To quantify the net biome productivity (NBP) carbon exports due to thinning or harvest as well as carbon imports due to organic fertilisation are considered besides NEE. Carbon exports and imports change the carbon budget in terms of NBP. At the forest site only the 2002 NBP is a carbon source (+221 g C m-2) due to the thinning in April 2002 when around 43 m3 ha-1 solid wood was removed from the ecosystem. After the thinning the annual NEE is reduced by around 100 g C m-2 until 2007. The grassland NBP alternated between carbon source and sink (+25 g C m-2 (2008) to -28 g C m-2 (2006)) indicating the carbon balance was approximately neutral. Low NEE and NBP values at the grassland site were a consequence of carbon export due to several cuts per year. The NBP of the cropland ecosystem was mainly influenced by the crop type (winter or spring crop) and the application of organic fertiliser (manure) resulting in carbon budgets between +484 g C m-2 (2007) and -89 g C m-2 (2006). The different timing and length of the growing season of winter and

  10. A comparison of different inverse carbon flux estimation approaches for application on a regional domain

    NASA Astrophysics Data System (ADS)

    Tolk, L. F.; Dolman, A. J.; Meesters, A. G. C. A.; Peters, W.

    2011-10-01

    We have implemented six different inverse carbon flux estimation methods in a regional carbon dioxide (CO2) flux modeling system for the Netherlands. The system consists of the Regional Atmospheric Mesoscale Modeling System (RAMS) coupled to a simple carbon flux scheme which is run in a coupled fashion on relatively high resolution (10 km). Using an Ensemble Kalman filter approach we try to estimate spatiotemporal carbon exchange patterns from atmospheric CO2 mole fractions over the Netherlands for a two week period in spring 2008. The focus of this work is the different strategies that can be employed to turn first-guess fluxes into optimal ones, which is known as a fundamental design choice that can affect the outcome of an inversion significantly. Different state-of-the-art approaches with respect to the estimation of net ecosystem exchange (NEE) are compared quantitatively: (1) where NEE is scaled by one linear multiplication factor per land-use type, (2) where the same is done for photosynthesis (GPP) and respiration (R) separately with varying assumptions for the correlation structure, (3) where we solve for those same multiplication factors but now for each grid box, and (4) where we optimize physical parameters of the underlying biosphere model for each land-use type. The pattern to be retrieved in this pseudo-data experiment is different in nearly all aspects from the first-guess fluxes, including the structure of the underlying flux model, reflecting the difference between the modeled fluxes and the fluxes in the real world. This makes our study a stringent test of the performance of these methods, which are currently widely used in carbon cycle inverse studies. Our results show that all methods struggle to retrieve the spatiotemporal NEE distribution, and none of them succeeds in finding accurate domain averaged NEE with correct spatial and temporal behavior. The main cause is the difference between the structures of the first-guess and true CO2 flux

  11. A comparison of different inverse carbon flux estimation approaches for application on a regional domain

    NASA Astrophysics Data System (ADS)

    Tolk, L. F.; Dolman, A. J.; Meesters, A. G. C. A.; Peters, W.

    2011-01-01

    We have implemented six different inverse carbon flux estimation methods in a regional carbon dioxide (CO2) flux modeling system for The Netherlands. The system consists of the Regional Atmospheric Mesoscale Modeling System (RAMS) coupled to a simple carbon flux scheme which is run in a coupled fashion on relatively high resolution (10 km). Using an Ensemble Kalman filter approach we try to estimate spatiotemporal carbon exchange patterns from atmospheric CO2 mole fractions over The Netherlands for a two week period in spring 2008. The focus of this work is the different strategies that can be employed to turn first-guess fluxes into optimal ones, which is known as a fundamental design choice that can affect the outcome of an inversion significantly. Different state-of-the-art approaches with respect to the estimation of net ecosystem exchange (NEE) are compared quantitatively: (1) where NEE is scaled by one linear multiplication factor per land-use type, (2) where the same is done for photosynthesis (GPP) and respiration (R) separately with varying assumptions for the correlation structure, (3) where we solve for those same multiplication factors but now for each grid box, and (4) where we optimize physical parameters of the underlying biosphere model for each land-use type. The pattern to be retrieved in this pseudo-data experiment is different in nearly all aspects from the first-guess fluxes, including the structure of the underlying flux model, reflecting the difference between the modeled fluxes and the fluxes in the real world. This makes our study a stringent test of the performance of these methods, which are currently widely used in carbon cycle inverse studies. Our results show that all methods struggle to retrieve the spatiotemporal NEE distribution, and none of them succeeds in finding accurate domain averaged NEE with correct spatial and temporal behavior. The main cause is the difference between the structures of the first-guess and true CO2 flux

  12. A preliminary evaluation of an O2/CO2 based eddy covariance theory at Missouri AmeriFlux site

    NASA Astrophysics Data System (ADS)

    Yan, B.; Gu, L.

    2013-12-01

    The eddy covariance (EC) technique has been widely used at flux sites on every continent, across most ecosystem types and climates to monitor exchanges of momentum, mass and energy between land surface and atmosphere. In an attempt to develop a self-consistent theory for the EC technique, Gu et al. (2012) reformulated the fundamental equations for EC by introducing the concept of constraining gas that has no net ecosystem sink/source. Gu (2013) expanded the theory of Gu et al. (2012) to include paired gases whose ecosystem exchange ratios are stable over an averaging period (e.g. 30 min) and therefore can be used to constrain EC flux measurements of any gases. He proposed that O2 and CO2 are an ideal pair of gases as their biological processes are coupled and their ecosystem exchange ratio (also known as oxidative ratio) is close to 1. Advantages of this new O2/CO2 based EC theory include: 1) avoidance of covariance loss in calculating dry air density induced by spatial separation of measuring instruments and use of multiple indirectly derived variables, 2) the minimum number of assumptions adopted for the derivation of the equation, and 3) avoidance of errors related to linearization of ideal gas law. In this study, we conducted a preliminary evaluation for the basic principle of Gu (2013) EC theory. We crosschecked net ecosystem exchange (NEE) estimations from different, independent methods by using CO2 and H2O as paired constraining gases. Using CO2 and H2O instead of CO2 and O2 as paired constraining gases is not ideal in the framework of Gu (2013); however, no fast response O2 analyzer is currently available. CO2 and H2O are both transported between the inside of plants and canopy air through stomata on leaves in the processes of photosynthesis and transpiration which are known to be closely coupled. However, this close coupling is contaminated by other ecosystem sinks/sources, e.g. respiration of plants and soil for CO2 and evaporation of intercepted and soil

  13. Modelling Temporal Variability in the Carbon Balance of a Spruce/Moss Boreal Forest

    NASA Technical Reports Server (NTRS)

    Frolking, S.; Goulden, M. L.; Wofsy, S. C.; Fan, S.-M.; Sutton, D. J.; Munger, J. W.; Bazzaz, A. M.; Daube, B. C.; Crill, P. M.; Aber, J. D.; Band, L. E.; Wang, X.; Savages, K.; Moore, T.; Harriss, R. C.

    1996-01-01

    A model of the daily carbon balance of a black spruce/feathermoss boreal forest ecosystem was developed and results compared to preliminary data from the 1994 BOREAS field campaign in northern Manitoba, Canada. The model, driven by daily weather conditions, simulated daily soil climate status (temperature and moisture profiles), spruce photosynthesis and respiration, moss photosynthesis and respiration, and litter decomposition. Model agreement with preliminary field data was good for net ecosystem exchange (NEE), capturing both the asymmetrical seasonality and short-term variability. During the growing season simulated daily NEE ranged from -4 g C m(exp -2) d(exp -1) (carbon uptake by ecosystem) to + 2 g C m(exp -2) d(exp -1) (carbon flux to atmosphere), with fluctuations from day to day. In the early winter simulated NEE values were + 0.5 g C m(exp -2) d(exp -1), dropping to + 0.2 g C m(exp -2) d(exp -1) in mid-winter. Simulated soil respiration during the growing season (+ 1 to + 5 g C m(exp -2) d(exp -1)) was dominated by metabolic respiration of the live moss, with litter decomposition usually contributing less than 30% and live spruce root respiration less than 10% of the total. Both spruce and moss net primary productivity (NPP) rates were higher in early summer than late summer. Simulated annual NEE for 1994 was -51 g C m(exp -2) y(exp -1), with 83% going into tree growth and 17% into the soil carbon accumulation. Moss NPP (58 g C m(exp -2) d(exp -1)) was considered to be litter (i.e. soil carbon input; no net increase in live moss biomass). Ecosystem respiration during the snow-covered season (84 g Cm(exp -2)) was 58% of the growing season net carbon uptake. A simulation of the same site for 1968-1989 showed about 10-20% year-to-year variability in heterotrophic respiration (mean of + 113 g C m-2 y@1). Moss NPP ranged from 19 to 114 g C m(exp -2) y(exp -1); spruce NPP from 81 to 150 g C nt-2 y,@l; spruce growth (NPP minus litterfall) from 34 to 103 g C m

  14. Nanoelectrochemical Immunosensors for Protein Detection

    NASA Astrophysics Data System (ADS)

    Carpentiero, Alessandro; de Leo, Manuela; Garcia Romero, Ivan; Pozzi Mucelli, Stefano; Reuther, Freimut; Stanta, Giorgio; Tormen, Massimo; Ugo, Paolo; Zamuner, Martina

    Nanoelectrochemical immunosensors fabricated by templated electrodeposition of gold nanoelectrodes inside the pores of polycarbonate (PC) track-etched membranes, followed by the immobilization of the biorecognition elements on the surrounding PC, have proven high sensitivity and specificity for protein detection. The signal transduction scheme involves a suitable redox mediator added to the sample solution to shuttle electrons from the gold nanoelectrodes to the biorecognition layer, both elements being in strict spatial proximity. Highly improved signal-to-background current ratio, which are peculiar of NEEs with respect to other electrochemical transducers, can be exploited in this way. Two detection schemes were tested: one based on the direct immobilization of the target protein on the PC of the NEE (approach A) and the other based on the immobilisation on PC of an antibody to capture the target protein (approach B). The biorecognition process was completed by adding a primary antibody and a secondary antibody with horse radish peroxidase (HRP) as enzyme label; methylene blue was the redox mediator added to the electrolyte solution. Typical target analytes were single chain fragment variable proteins, for approach A, and trastuzumab (also known as Herceptin®), for approach B. NEE-based capture sensors were tested successfully to detect small amounts of the receptor protein HER2 in biological samples. Finally, motivated by the target of a better control of the geometrical characteristics of ensembles of nanoelectrodes (size, density, geometrical arrangement, and degree of recession), and by the positive results obtained with track-etch membranes of PC from the standpoint of protein immobilization, we demonstrated the fabrication of nanobiosensors by patterning ordered arrays of nanoelectrodes (NEAs) by electron beam lithography (EBL) on polycarbonate. EBL results perfectly suitable for the top-down fabrication of arrays of nanobiosensors on thin PC films

  15. Greenhouse gas fluxes in mountain grassland differing in land use

    NASA Astrophysics Data System (ADS)

    Ladreiter-Knauss, Thomas; Schmitt, Michael; Butterbach-Bahl, Klaus; Kienzl, Sandra; Ingrisch, Johannes; Hasibeder, Roland; Bahn, Michael

    2013-04-01

    Mountain grassland covers large areas, thus influences the global greenhouse gas (GHG) balance and is strongly affected by changes in land use. Effects of such changes on the GHG-balance have so far not been well documented. As a contribution to the EU-project GHG Europe we are studying the net ecosystem exchange (NEE) of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) on a mountain meadow, an adjacent and an abandoned pasture at 1820-1970m a.s.l. in the Austrian Central Alps. The GHG balance is estimated from manual and auto-chamber measurements, combined with already published CO2-NEE over almost a decade. Winter CO2-fluxes, primarily soil respiration underneath the snowpack, are estimated with solid state CO2-sensors using a validated diffusion model. We found that abandon the management decreases the NEE of CO2 while its component, soil respiration (Rs), increases. The decrease is explained by differences in leaf area index, biomass and leaf-area-independent changes that were likely related to photosynthetic physiology. The increase in Rs can be explained by higher belowground carbon input due to missing grazing or mowing. The abandoned pasture showed the highest uptake rates of CH4 and a slight uptake of N2O, possibly due to better soil aeration. Spring freeze-thaw events caused slight CH4 emissions in the managed grassland. The meadow and pasture had just low emission rates of N2O even at freeze-thaw cycles and organic fertilization. These results suggest that in mountain grassland the main contributor to the GHG balance are CO2 fluxes that can largely be influenced by land use changes.

  16. Linking Rainfall Variability and Carbon Cycling in a Green Roof Ecosystem

    NASA Astrophysics Data System (ADS)

    Potts, D. L.; Warren, R. J., II; Ivancic, T. A.

    2015-12-01

    Whereas green roof hydrology is well-studied, these systems present a novel opportunity to examine plant-mediated linkages between rainfall and carbon cycling. For example, green roofs experience dramatic fluctuations in soil moisture because they have limited soil water holding capacity and high rates of evaporation. Stonecrop (Sedum spp.) is widely planted in green roofs and its traits reflect an overall strategy of water conservation. In addition to succulent leaves and a slow growth rate, several stonecrop species possess inducible CAM photosynthesis. We made continuous measurements of ecosystem CO2 exchange, soil temperature (T), and volumetric soil moisture (θ) using a chamber-based automated monitoring system installed on a 3-year old green roof located in Buffalo, New York. Concurrent measurements of net ecosystem CO2 exchange (NEE) and ecosystem respiration (Re) allowed us to estimate gross ecosystem CO2 exchange (GEE). We predicted that CAM photosynthesis by stonecrop would be induced by high T and low θ and would manifest at the ecosystem scale by a reductions in both reduced midday CO2 uptake associated with stomatal closure and nighttime net CO2 efflux as CAM-driven assimilation offset respiratory losses. Not surprisingly, increased T and decreased θ negatively influenced GEE while Re increased in response to increased T and θ. During a period of unusually hot, dry conditions the responses of GEE and Re were reflected in a decline in daytime NEE. However, this decline in NEE was not associated with a similar reduction in nighttime Re suggesting that these conditions were insufficient to induce CAM photosynthesis. Future ecohydrological investigations of green roofs may provide new insights into how rainfall variability interacts with plant traits, community diversity, and edaphic factors to shape ecosystem function.

  17. Cyclic Occurrence of Fire and Its Role in Carbon Dynamics along an Edaphic Moisture Gradient in Longleaf Pine Ecosystems

    PubMed Central

    Whelan, Andrew; Mitchell, Robert; Staudhammer, Christina; Starr, Gregory

    2013-01-01

    Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC) and statistical techniques to investigate carbon dynamics in frequently burned longleaf pine savannas along a gradient of soil moisture availability (mesic, intermediate and xeric). This research approach allowed us to investigate the complex interactions between carbon exchange and cyclic fire along the ecological amplitude of longleaf pine. Over three years of EC measurement of net ecosystem exchange (NEE) show that the mesic site was a net carbon sink (NEE = −2.48 tonnes C ha−1), while intermediate and xeric sites were net carbon sources (NEE = 1.57 and 1.46 tonnes C ha−1, respectively), but when carbon losses due to fuel consumption were taken into account, all three sites were carbon sources (10.78, 7.95 and 9.69 tonnes C ha−1 at the mesic, intermediate and xeric sites, respectively). Nonetheless, rates of NEE returned to pre-fire levels 1–2 months following fire. Consumption of leaf area by prescribed fire was associated with reduction in NEE post-fire, and the system quickly recovered its carbon uptake capacity 30–60 days post fire. While losses due to fire affected carbon balances on short time scales (instantaneous to a few months), drought conditions over the final two years of the study were a more important driver of net carbon loss on yearly to multi-year time scales. However, longer-term observations over greater environmental variability and additional fire cycles would help to more precisely examine interactions between fire and climate and make future predictions about carbon dynamics in these systems. PMID:23335986

  18. Seasonal and inter-annual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains

    SciTech Connect

    Torn, M.S.; Biraud, S.; Still, C.J.; Riley, W.J.; Berry, J.A.

    2010-09-22

    The {delta}{sup 13}C signature of terrestrial carbon fluxes ({delta}{sub bio}) provides an important constraint for inverse models of CO{sub 2} sources and sinks, insight into vegetation physiology, C{sub 3} and C{sub 4} vegetation productivity, and ecosystem carbon residence times. From 2002-2009, we measured atmospheric CO{sub 2} concentration and {delta}{sup 13}C-CO{sub 2} at four heights (2 to 60 m) in the U.S. Southern Great Plains (SGP) and computed {delta}{sub bio} weekly. This region has a fine-scale mix of crops (primarily C{sub 3} winter wheat) and C{sub 4} pasture grasses. {delta}{sub bio} had a large and consistent seasonal cycle of 6-8{per_thousand}. Ensemble monthly mean {delta}{sub bio} ranged from -25.8 {+-} 0.4{per_thousand} ({+-}SE) in March to -20.1 {+-} 0.4{per_thousand} in July. Thus, C{sub 3} vegetation contributed about 80% of ecosystem fluxes in winter-spring and 50% in summer-fall. In contrast, prairie-soil {delta}{sub 13}C values were about -15{per_thousand}, indicating that historically the region was dominated by C{sub 4} vegetation and had more positive {delta}{sub bio} values. Based on a land-surface model, isofluxes ({delta}{sub bio} x NEE) in this region have large seasonal amplitude because {delta}{sub bio} and net ecosystem exchange (NEE) covary. Interannual variability in isoflux was driven by variability in NEE. The large seasonal amplitude in {delta}{sub bio} and isoflux imply that carbon inverse analyses require accurate estimates of land cover and temporally resolved {sup 13}CO{sub 2} and CO{sub 2} fluxes.

  19. Seven-year trends of CO2 exchange in a tundra ecosystem affected by long-term permafrost thaw

    NASA Astrophysics Data System (ADS)

    Trucco, Christian; Schuur, Edward A. G.; Natali, Susan M.; Belshe, E. Fay; Bracho, Rosvel; Vogel, Jason

    2012-06-01

    Arctic warming has led to permafrost degradation and ground subsidence, created as a result of ground ice melting. Frozen soil organic matter that thaws can increase carbon (C) emissions to the atmosphere, but this can be offset in part by increases in plant growth. The balance of plant and microbial processes, and how this balance changes through time, determines how permafrost ecosystems influence future climate change via the C cycle. This study addressed this question both on short (interannual) and longer (decadal) time periods by measuring C fluxes over a seven-year period at three sites representing a gradient of time since permafrost thaw. All three sites were upland tundra ecosystems located in Interior Alaska but differed in the extent of permafrost thaw and ground subsidence. Results showed an increasing growing season (May - September) trend in gross primary productivity (GPP), net ecosystem exchange (NEE), aboveground net primary productivity (ANPP), and annual NEE at all sites over the seven year study period from 2004 to 2010, but no change in annual and growing season ecosystem respiration (Reco). These trends appeared to most closely follow increases in the depth to permafrost that occurred over the same time period. During the seven-year period, sites with more permafrost degradation had significantly greater GPP compared to where degradation was least, but also greater growing season Reco. Adding in winter Reco decreased, in part, the summer C sink and left only the site with the most permafrost degradation C neutral, with the other sites still C sinks. Annual C balance was strongly dependent on winter Reco, which, compared to the growing season, was relatively data-poor due to extreme environmental conditions. As a result, we cannot yet conclude whether the increased NEE in the growing season is truly sustained on an annual basis. If it turns out that winter measurements shown here are an underestimate, we may indeed find these systems are

  20. Typhoons exert significant but differential impacts on net ecosystem carbon exchange of subtropical mangrove forests in China

    NASA Astrophysics Data System (ADS)

    Chen, H.; Lu, W.; Yan, G.; Yang, S.; Lin, G.

    2014-10-01

    Typhoons are very unpredictable natural disturbances to subtropical mangrove forests in Asian countries, but little information is available on how these disturbances affect ecosystem level carbon dioxide (CO2) exchange of mangrove wetlands. In this study, we examined short-term effect of frequent strong typhoons on defoliation and net ecosystem CO2 exchange (NEE) of subtropical mangroves, and also synthesized 19 typhoons during a 4-year period between 2009 and 2012 to further investigate the regulation mechanisms of typhoons on ecosystem carbon and water fluxes following typhoon disturbances. Strong wind and intensive rainfall caused defoliation and local cooling effect during the typhoon season. Daily total NEE values decreased by 26-50% following some typhoons (e.g., W28-Nockten, W35-Molave and W35-Lio-Fan), but significantly increased (43-131%) following typhoon W23-Babj and W38-Megi. The magnitudes and trends of daily NEE responses were highly variable following different typhoons, which were determined by the balance between the variances of gross ecosystem production (GEP) and ecosystem respiration (RE). Furthermore, results from our synthesis indicated that the landfall time of typhoon, wind speed and rainfall were the most important factors controlling the CO2 fluxes following typhoon events. These findings indicate that different types of typhoon disturbances can exert very different effects on CO2 fluxes of mangrove ecosystems and that typhoon will likely have larger impacts on carbon cycle processes in subtropical mangrove ecosystems as the intensity and frequency of typhoons are predicted to increase under future global climate change scenarios.

  1. Regional Ecosystem Carbon Exchange in the Southern Great Plains: Measurements, Modeling, and Scaling

    NASA Astrophysics Data System (ADS)

    Torn, M. S.; Riley, W. J.; Biraud, S. C.; Fischer, M. L.; Billesbach, D. S.; Berry, J. A.

    2007-12-01

    The extremely heterogeneous landscape of the ARM (Atmospheric Radiation Measurement) Climate Research Facility (ACRF) in the U.S. Southern Great Plains is representative of the southern boundary of the NACP Midwest intensive experiment. The area is largely agricultural with vegetation cover type and status that vary on sub- kilometer scales. In this study we developed, applied, and tested a "bottom- up" approach to inferring terrestrial C exchanges at fine scales (down to 250 m). Measurements at the ACRF include a 60 m tower instrumented with eddy covariance (ECOR) systems at several heights, about 20 permanent ECOR towers, several portable ECOR systems, many atmospheric and cloud sensing systems, and regular balloon sonde and aircraft measurements. We applied the land-surface model ISOLSM (with recent modifications to the plant physiological submodel) forced with OK and KS Mesonet climate datasets and MODIS vegetation indices. A method to infer vegetation cover type using satellite data and archetypal LAI annual profiles was developed and successfully tested against USDA census data for the region. The model's net CO2 exchange estimates were calibrated and tested using eddy correlation data from the dominant surface covers. Three years spanning a substantial precipitation gradient (2003 - 2005) were then simulated. Large differences in annual regional CO2 exchanges were predicted corresponding to expected system responses to available moisture. Spatial scaling analysis from 250 m to 100 km indicated that homogenizing LAI and vegetation cover can impact annual NEE substantially, including changing the region from a predicted net CO2 source to a net sink. Further, differences in NEE associated with spatial scaling differed between years, indicating that accurate bottom-up NEE estimates in this heterogeneous region require fine-scale analysis approaches.

  2. A downward CO2 flux seems to have nowhere to go

    NASA Astrophysics Data System (ADS)

    Ma, J.; Liu, R.; Tang, L.-S.; Lan, Z.-D.; Li, Y.

    2014-07-01

    Recent studies have suggested that deserts, which are a long-neglected region in global carbon budgeting, have strong downward CO2 fluxes and might be a significant carbon sink. This finding, however, has been strongly challenged because neither the reliability of the flux measurements nor the exact location of the fixed carbon has been determined. This paper shows, with a full chain of evidence, that there is indeed strong carbon flux into saline/alkaline land in arid regions. Based on continuous measurement of CO2 exchange from 2002 to 2012 (except for 2003), the saline desert in western China was a carbon sink for 9 out of the 10 years, and average yearly net ecosystem exchange of carbon (NEE) for the 10 years was -25.00 ± 12.70 g C m-2yr-1. Supporting evidence for the validity of these NEE estimates comes from the close agreement of NEE values obtained from the chamber and eddy-covariance methods. After ruling out the possibility of changes in C stored in plant biomass or soils, the C uptake was found to be leached downwards into the groundwater body in the process of groundwater fluctuation: rising groundwater absorbs soil dissolved inorganic carbon (DIC), and falling groundwater transports the DIC downward. Horizontal groundwater flow may send this DIC farther away and prevent it from being observed locally. This process has been called "passive leaching" of DIC, in comparison with the active DIC leaching that occurs during groundwater recharge. This passive leaching significantly expands the area where DIC leaching occurs and creates a literally "hidden" carbon sink process under the desert. This study tells us that when a downward CO2 flux is observed, but seems to have nowhere to go, it should not be concluded that the flux measurement is unreliable. By looking deeper and farther away, a place and a process may be found that are "hidden" underground.

  3. Long-term Impacts of Fire on Permafrost Vulnerability and C loss in Siberian Larch Forests

    NASA Astrophysics Data System (ADS)

    Egan, J. E.; Natali, S.; Alexander, H. D.; Loranty, M. M.; Spawn, S.; Risk, D. A.

    2015-12-01

    In Boreal forests, which contain large stocks of terrestrial carbon (C), fires have been increasing and are expected to continue to do so as the climate becomes warmer and dryer. Here we studied the indirect, long-term effects of fire on ecosystem C cycling via changes in stand density, organic layer and thaw depth in, in Siberian larch (Larix cajanderi) forests, underlain by continuous permafrost, near Chersky, Russia. Understory net ecosystem exchange (NEE), ecosystem respiration (Reco) and thaw depth were measured for 3 growing seasons from density plots (related to fire severity) found within a 75-yr burn scar and from experimental burn plots. In 2015, Reco was partitioned, using a dual-isotope approach, to determine how fire severity alters the contribution of autotrophic and heterotrophic respiration. Reco gas samples were collected from static chambers, and at the density gradient we also collected carbon dioxide (CO2) from Reco sources (organic and mineral layer soils, above and belowground vegetation). We expect that differences in thaw depth, vegetation and organic layer related to stand density, will impact the contribution of old C sources to Reco. In the experimental burn plots, the severity of the burn and thaw depth were positively correlated, and promoted loss of old C. Following the fires in 2012, higher intensity burns decreased Reco, but 3 years later, Reco was similar across burn treatments. In the 75-yr burn, stand density significantly impacted both thaw depth and understory CO2 exchange, where higher density stands, had lower thaw depths, higher understory NEE, and C loss from young C sources that have assimilated since the fire. Decades after fire, permafrost vulnerability and C accumulation are driven by stand density, where higher-density stands have higher rates of NEE, but C loss from relatively young C.

  4. On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia

    NASA Astrophysics Data System (ADS)

    Molina, L.; Broquet, G.; Imbach, P.; Chevallier, F.; Poulter, B.; Bonal, D.; Burban, B.; Ramonet, M.; Gatti, L. V.; Wofsy, S. C.; Munger, J. W.; Dlugokencky, E.; Ciais, P.

    2015-01-01

    The exchanges of carbon, water, and energy between the atmosphere and the Amazon Basin have global implications for current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate service (MACC) was used to further study the seasonal and interannual variations of biogenic CO2 fluxes in Amazonia. The system assimilated surface measurements of atmospheric CO2 mole fractions made over more than 100 sites over the globe into an atmospheric transport model. This study added four surface stations located in tropical South America, a region poorly covered by CO2 observations. The estimates of net ecosystem exchange (NEE) optimized by the inversion were compared to independent estimates of NEE upscaled from eddy-covariance flux measurements in Amazonia, and against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We focused on the impact of the interannual variation of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons), and of the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE were also investigated. While the inversion supported the assumption of strong spatial heterogeneity of these variations, the results revealed critical limitations that prevent global inversion frameworks from capturing the data-driven seasonal patterns of fluxes across Amazonia. In particular, it highlighted issues due to the configuration of the observation network in South America and the lack of continuity of the measurements. However, some robust patterns from the inversion seemed consistent with the abnormal moisture conditions in 2009.

  5. Ecosystem gross CO2 fluxes in a tropical rainforest estimated from carbonyl sulfide (COS)

    NASA Astrophysics Data System (ADS)

    Seibt, U. H.; Maseyk, K. S.; Lett, C.; Juarez, S.; Sun, W.

    2014-12-01

    Carbonyl sulfide (COS) is a promising new tracer to constrain the gross CO2 fluxes of land ecosystems, particularly in tropical forests where CO2 flux partitioning is often problematic due to the absence of turbulent flow at night. Since vegetation COS and CO2 uptake during photosynthesis is closely coupled, the gross fluxes of photosynthesis and respiration can be quantified through the concurrent measurements of COS and CO2. We measured ecosystem COS and CO2 exchange over four months in a tropical rainforest at La Selva, Costa Rica. We observed a strong ecosystem uptake of COS with a diel signal that was similar but not identical to net CO2 fluxes. Soils at the site mostly acted as COS sinks, correlated with soil moisture. The COS and CO2 data were used to calculate canopy photosynthesis (approx. GPP) from net ecosystem CO2 exchange (NEE) based on the empirical relationship of leaf relative uptake of COS and CO2. Mid-day COS-based GPP estimates ranged from -10 to -15 μmol m-2 s-1, compared to NEE of -5 to -10 μmol m-2 s-1. Ecosystem respiration, calculated as the difference of NEE and GPP, ranged from 5 to 10 μmol m-2 s-1, similar to previous estimates of 5 to 9 μmol m-2 s-1 from CO2 flux partitioning and respiration component measurements at the site. Our results support the application of COS as a new tool in ecosystem flux partitioning that may be particularly useful in tropical forests.

  6. Directivity and Sensitivity of Fiber-Optic Cable Measuring Ground Motion using a Distributed Acoustic Sensing Array

    NASA Astrophysics Data System (ADS)

    Lancelle, C.; Lord, N. E.; Wang, H. F.; Fratta, D.; Nigbor, R. L.; Chalari, A.; Karaulanov, R.; Baldwin, J. A.; Castongia, E.

    2014-12-01

    Distributed acoustic sensing (DAS) is a relatively recent development for measurement of ground motion by using a fiber-optic cable itself as the sensor. In September 2013 a field test was conducted at the NEES@UCSB Garner Valley field site in Southern California incorporating DAS technology. A 762 meter long fiber-optic cable was trenched to a depth of about 0.3 m in a rectangular design with two interior diagonal segments. Existing instruments at the field site include the Garner Valley Downhole Array (GVDA) surface and borehole accelerometers and pore pressure transducers. A PASSCAL seismometer array and four NEES@UCLA tri-axial accelerometers were also deployed along the two interior diagonal segments. These sensors also recorded most of the source events. One goal of the field test was to study the response of the fiber-optic cable to various vibration sources, including a 45 kN shear shaker and a smaller 450 N portable mass shaker, both of which were available through NEES@UCLA. In addition to the shear sources, signals were recorded from a mini-Vibe source and hammer blows on a steel plate. The focus of this study is on the directivity and the sensitivity of the fiber-optic cable and the distributed acoustic sensor. Preliminary results indicate that the fiber-optic cable is most effective if oriented in the direction of maximum strain. Even with the directional response, signals were recorded throughout the array for different cable orientations at distances up to two-hundred meters. Move-out of different phases could be seen over several meters of traces recorded one-meter apart. Sensitivity of the fiber-optic cable relative to the other instruments is also presented.

  7. Parameter estimation and data assimilation with the Community Land Model (CLM) to upscale net CO2 fluxes from plot to catchment scale

    NASA Astrophysics Data System (ADS)

    Post, H.; Hoar, T. J.; Vrugt, J. A.; Han, X.; Baatz, R.; Pramod, K.; Vereecken, H.; Hendricks Franssen, H. J.

    2014-12-01

    The Community Land Model CLM version 4.5 (CLM4.5) was applied to simulate the net ecosystem exchange of CO2 (NEE) for the 2454 km2 Rur catchment located in the border region of Belgium, Germany, and the Netherlands. NEE was measured within this catchment by six eddy covariance (EC) towers located on different land use sites. To reliably determine NEE patterns within the catchment, and taking into account uncertainty in observations, meteorological forcings, model parameters and initial conditions, we applied two different model-data fusion methods: (1.) The parameter estimation problem was solved using an adaptive Markov Chain Monte Carlo (MCMC) method. The eight parameters estimated had been selected through sensitivity analysis. We tested the effect of different lengths of the model calibration period (4x3 months versus 1 year) and measurement averaging intervals (30 min. versus 6 hourly). Parameter estimation results were strongly influenced by initial model states and varied for the different seasons. For the one year runs parameter uncertainty was larger than for the three months runs. Posterior pdfs of parameters for three months periods differed significantly from the one year run. The parameter estimation results were evaluated for an additional verification period of one year. (2.) After model calibration, we assimilated leaf area index (LAI) and eddy covariance data into CLM using the Ensemble Kalman Filter (EnKF). Only model states (e.g. LAI, leaf nitrogen) were updated. We found that calculated LAI and other state variables for c3-grass and prognostic c3-crops in CLM are highly sensitive to meteorological input data. We assume this is due to the phenology of c3-grass and c3-crop in CLM which is strongly based on threshold values for e.g. temperature and precipitation to initiate onset and offset. Adding parameter uncertainty noticeably affected the data assimilation results.

  8. Within and between population variation in plant traits predicts ecosystem functions associated with a dominant plant species

    PubMed Central

    Breza, Lauren C; Souza, Lara; Sanders, Nathan J; Classen, Aimée T

    2012-01-01

    Linking intraspecific variation in plant traits to ecosystem carbon uptake may allow us to better predict how shift in populations shape ecosystem function. We investigated whether plant populations of a dominant old-field plant species (Solidago altissima) differed in carbon dynamics and if variation in plant traits among genotypes and between populations predicted carbon dynamics. We established a common garden experiment with 35 genotypes from three populations of S. altissima from either Tennessee (southern populations) or Connecticut (northern populations) to ask whether: (1) southern and northern Solidago populations will differ in aboveground productivity, leaf area, flowering time and duration, and whole ecosystem carbon uptake, (2) intraspecific trait variation (growth and reproduction) will be related to intraspecific variation in gross ecosystem CO2 exchange (GEE) and net ecosystem CO2 exchange (NEE) within and between northern and southern populations. GEE and NEE were 4.8× and 2× greater in southern relative to northern populations. Moreover, southern populations produced 13× more aboveground biomass and 1.4× more inflorescence mass than did northern populations. Flowering dynamics (first- and last-day flowering and flowering duration) varied significantly among genotypes in both the southern and northern populations, but plant performance and ecosystem function did not. Both productivity and inflorescence mass predicted NEE and GEE between S. altissima southern and northern populations. Taken together, our data demonstrate that variation between S. altissima populations in performance and flowering traits are strong predictors of ecosystem function in a dominant old-field species and suggest that populations of the same species might differ substantially in their response to environmental perturbations. PMID:22833791

  9. Forecasting net ecosystem CO2 exchange in a subalpine forest using model data assimilation combined with simulated climate and weather generation

    NASA Astrophysics Data System (ADS)

    Scott-Denton, Laura E.; Moore, David J. P.; Rosenbloom, Nan A.; Kittel, Timothy G. F.; Burns, Sean P.; Schimel, David S.; Monson, Russell K.

    2013-06-01

    Forecasting the carbon uptake potential of terrestrial ecosystems in the face of future climate change has proven challenging. Process models, which have been increasingly used to study ecosystem-atmosphere carbon and water exchanges when conditioned with tower-based eddy covariance data, have the potential to inform us about biogeochemical processes in future climate regimes, but only if we can reconcile the spatial and temporal scales used for observed fluxes and projected climate. Here, we used weather generator and ecosystem process models conditioned on observed weather dynamics and carbon/water fluxes, and embedded them within climate projections from a suite of six Earth Systems Models. Using this combination of models, we studied carbon cycle processes in a subalpine forest within the context of future (2080-2099) climate regimes. The assimilation of daily averaged, observed net ecosystem CO2 exchange (NEE) and evapotranspiration (ET) into the ecosystem process model resulted in retrieval of projected NEE with a level of accuracy that was similar to that following the assimilation of half-daily averaged observations; the assimilation of 30 min averaged fluxes or monthly averaged fluxes caused degradation in the model's capacity to accurately simulate seasonal patterns in observed NEE. Using daily averaged flux data with daily averaged weather data projected for the period 2080-2099, we predicted greater forest net CO2 uptake in response to a lengthening of the growing season. These results contradict our previous observations of reduced CO2 uptake in response to longer growing seasons in the current (1999-2008) climate regime. The difference between these analyses is due to a projected increase in the frequency of rain versus snow during warmer winters of the future. Our results demonstrate the sensitivity of modeled processes to local variation in meteorology, which is often left unresolved in traditional approaches to earth systems modeling, and the

  10. Developing and Applications of a Gap-filling Model for Eddy covariance CO2 Flux: Evaluating the Net Ecosystem Exchange of a Subtropical Evergreen Forest after a Server Environmental Disturbance

    NASA Astrophysics Data System (ADS)

    Li, M.; CHEN, Y.

    2013-12-01

    Successful eddy covariance (EC) applications often challenged by several difficulties, including non-ideal micrometeorological conditions, instrument failures, measurement limitations, and lacking consistent footprint area. Consequently, the resultant gaps in the time series of EC measurements limit the use of these dataset and cause the uncertainty in a range of 1 to 2 ton C/ha/yr for evaluating net ecosystem exchange (NEE) after different CO2 gap-filling procedures (Saigusa et al., 2013). It is crucial to develop a suitable gap-filling model for EC CO2 flux observations to provide reliable long-term surface fluxes for numerous applications. In this study, a gap-filling model was developed for EC CO2 flux by linking the gap-filled water vapor fluxes estimated by Chen et al. (2012) and the optimal nearest QC/QA passed CO2 fluxes for interpolating CO2 flux gaps. Considering the atmosphere characteristics and controlling mechanisms of CO2 fluxes, measured hydrometerological and flux data at the Lien-Hua-Chih (LHC) experimental watershed were separated into clear sky and cloudy/nighttime conditions. The successful applications of our gap-filling approaches were examined with various sizes of artificial CO2 gaps. Without any significant environmental disturbance in 2012, the annual NEE of this subtropical evergreen forest was estimated around 6.7 ton C/ha/yr as the amount of terrestrial CO2 sequestration. The effect of sever Typhoon Soulik (11-13, July, 2013) invasion on several ecosystem variables, such as changes of intrinsic water use efficiency, leaf area index, and canopy storage capacity, will be investigated to propose indicators for estimating NEE variations in association with environmental disturbances at this forest ecosystem.

  11. Incorporating grassland management in ORCHIDEE: model description and evaluation at 11 eddy-covariance sites in Europe

    NASA Astrophysics Data System (ADS)

    Chang, J. F.; Viovy, N.; Vuichard, N.; Ciais, P.; Wang, T.; Cozic, A.; Lardy, R.; Graux, A.-I.; Klumpp, K.; Martin, R.; Soussana, J.-F.

    2013-12-01

    This study describes how management of grasslands is included in the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) process-based ecosystem model designed for large-scale applications, and how management affects modeled grassland-atmosphere CO2 fluxes. The new model, ORCHIDEE-GM (grassland management) is enabled with a management module inspired from a grassland model (PaSim, version 5.0), with two grassland management practices being considered, cutting and grazing. The evaluation of the results from ORCHIDEE compared with those of ORCHIDEE-GM at 11 European sites, equipped with eddy covariance and biometric measurements, shows that ORCHIDEE-GM can realistically capture the cut-induced seasonal variation in biometric variables (LAI: leaf area index; AGB: aboveground biomass) and in CO2 fluxes (GPP: gross primary productivity; TER: total ecosystem respiration; and NEE: net ecosystem exchange). However, improvements at grazing sites are only marginal in ORCHIDEE-GM due to the difficulty in accounting for continuous grazing disturbance and its induced complex animal-vegetation interactions. Both NEE and GPP on monthly to annual timescales can be better simulated in ORCHIDEE-GM than in ORCHIDEE without management. For annual CO2 fluxes, the NEE bias and RMSE (root mean square error) in ORCHIDEE-GM are reduced by 53% and 20%, respectively, compared to ORCHIDEE. ORCHIDEE-GM is capable of modeling the net carbon balance (NBP) of managed temperate grasslands (37 ± 30 gC m-2 yr-1 (P < 0.01) over the 11 sites) because the management module contains provisions to simulate the carbon fluxes of forage yield, herbage consumption, animal respiration and methane emissions.

  12. Joint assimilation of eddy covariance flux measurements and FAPAR products over temperate forests within a process-oriented biosphere model

    NASA Astrophysics Data System (ADS)

    Bacour, C.; Peylin, P.; MacBean, N.; Rayner, P. J.; Delage, F.; Chevallier, F.; Weiss, M.; Demarty, J.; Santaren, D.; Baret, F.; Berveiller, D.; Dufrêne, E.; Prunet, P.

    2015-09-01

    We investigate the benefits of assimilating in situ and satellite data of the fraction of photosynthetically active radiation (FAPAR) relative to eddy covariance flux measurements for the optimization of parameters of the ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystem) biosphere model. We focus on model parameters related to carbon fixation, respiration, and phenology. The study relies on two sites—Fontainebleau (deciduous broadleaf forest) and Puechabon (Mediterranean broadleaf evergreen forest)—where measurements of net carbon exchange (NEE) and latent heat (LE) fluxes are available at the same time as FAPAR products derived from ground measurements or derived from spaceborne observations at high (SPOT (Satellite Pour l'Observation de la Terre)) and medium (MERIS (MEdium Resolution Imaging Spectrometer)) spatial resolutions. We compare the different FAPAR products, analyze their consistency with the in situ fluxes, and then evaluate the potential benefits of jointly assimilating flux and FAPAR data. The assimilation of FAPAR data leads to a degradation of the model-data agreement with respect to NEE at the two sites. It is caused by the change in leaf area required to fit the magnitude of the various FAPAR products. Assimilating daily NEE and LE fluxes, however, has a marginal impact on the simulated FAPAR. The results suggest that the main advantage of including FAPAR data is the ability to constrain the timing of leaf onset and senescence for deciduous ecosystems, which is best achieved by normalizing FAPAR time series. The joint assimilation of flux and FAPAR data leads to a model-data improvement across all variables similar to when each data stream is used independently, corresponding, however, to different and likely improved parameter values.

  13. Climate indices strongly influence old-growth forest carbon exchange

    SciTech Connect

    Wharton, Sonia; Falk, Matthias

    2016-04-13

    We present a decade and a half (1998–2013) of carbon dioxide fluxes from an old-growth stand in the American Pacific Northwest to identify ecosystem-level responses to Pacific teleconnection patterns, including the El Niño/Southern Oscillation (ENSO). This study provides the longest, continuous record of old-growth eddy flux data to date from one of the longest running Fluxnet stations in the world. From 1998 to 2013, average annual net ecosystem exchange (FNEE) at Wind River AmeriFlux was –32 ± 84 g C m–2 yr–1 indicating that the late seral forest is on average a small net sink of atmospheric carbon. However, interannual variability is high (>300 g C m–2 yr–1) and shows that the stand switches from net carbon sink to source in response to climate drivers associated with ENSO. The old-growth forest is a much stronger sink during La Niña years (mean FNEE = –90 g C m–2 yr–1) than during El Niño when the stand turns carbon neutral or into a small net carbon source (mean FNEE = +17 g C m–2 yr–1). Forest inventory data dating back to the 1930s show a similar correlation with the lower frequency Pacific North American (PNA) and Pacific Decadal Oscillation (PDO) whereby higher aboveground net primary productivity (FANPP) is associated with cool phases of both the PNA and PDO. Furthermore, these measurements add evidence that carbon exchange in old-growth stands may be more sensitive to climate variability across shorter time scales than once thought.

  14. Environmental and Physiographic Controls on Inter-Growing Season Variability of Carbon Dioxide and Water Vapour Fluxes in a Minerotrophic Fen

    NASA Astrophysics Data System (ADS)

    van der Kamp, G.; Sonnentag, O.; Chen, J. M.; Barr, A.; Hedstrom, N.; Granger, R.

    2008-12-01

    The interaction of fens with groundwater is spatially and temporally highly variable in response to meteorological conditions, resulting in frequent changes of groundwater fluxes in both vertical and lateral directions (flow reversals) across the mineral soil-peat boundary. However, despite the importance of the topographic and hydrogeological setting of fens, no study has been reported in the literature that explores a fen's atmospheric CO2 and energy flux densities under contrasting meteorological conditions in response to its physiographic setting. In our contribution we report four years of growing season eddy covariance and supporting measurements from the Canada Fluxnet-BERMS fen (formerly BOREAS southern peatland) in Saskatchewan, Canada. We first analyze hydrological data along two piezometer transects across the mineral soil-peat boundary with the objective of assessing changes in water table configuration and thus hydraulic gradients, indicating flow reversals, in response to dry and wet meteorological conditions. Next we quantify and compare growing season totals and diurnal and daily variations in evapotranspiration (ET) and net ecosystem exchange (NEE) and its component fluxes gross ecosystem productivity (GPP) and terrestrial ecosystem respiration (TER) to identify their controls with a major focus on water table depth. While ET growing season totals were similar (~ 310 mm) under dry and wet meteorological conditions, the CO2 sink- source strength of Sandhill fen varied substantially from carbon neutral (NEE = -2 [+-7] g C m-2 per growing season) under dry meteorological condition (2003) to a moderate CO2- sink with NEE ranging between 157 [+- 10] and 190 [+- 11] g C m-2 per growing season under wet meteorological conditions (2004, 2005, and 2006). Using a process-oriented ecosystem model, BEPS-TerrainLab, we investigate how different canopy components at Sandhill contribute to total ET and GPP, and thus water use efficiency, under dry and wet

  15. Unchanged carbon balance driven by equivalent responses of production and respiration to climate change in a mixed-grass prairie.

    PubMed

    Xu, Xia; Shi, Zheng; Chen, Xuecheng; Lin, Yang; Niu, Shuli; Jiang, Lifen; Luo, Ruiseng; Luo, Yiqi

    2016-05-01

    Responses of grassland carbon (C) cycling to climate change and land use remain a major uncertainty in model prediction of future climate. To explore the impacts of global change on ecosystem C fluxes and the consequent changes in C storage, we have conducted a field experiment with warming (+3 °C), altered precipitation (doubled and halved), and annual clipping at the end of growing seasons in a mixed-grass prairie in Oklahoma, USA, from 2009 to 2013. Results showed that although ecosystem respiration (ER) and gross primary production (GPP) negatively responded to warming, net ecosystem exchange of CO2 (NEE) did not significantly change under warming. Doubled precipitation stimulated and halved precipitation suppressed ER and GPP equivalently, with the net outcome being unchanged in NEE. These results indicate that warming and altered precipitation do not necessarily have profound impacts on ecosystem C storage. In addition, we found that clipping enhanced NEE due to a stronger positive response of GPP compared to ER, indicating that clipping could potentially be an effective land practice that could increase C storage. No significant interactions between warming, altered precipitation, and clipping were observed. Meanwhile, we found that belowground net primary production (BNPP) in general was sensitive to climate change and land use though no significant changes were found in NPP across treatments. Moreover, negative correlations of the ER/GPP ratio with soil temperature and moisture did not differ across treatments, highlighting the roles of abiotic factors in mediating ecosystem C fluxes in this grassland. Importantly, our results suggest that belowground C cycling (e.g., BNPP) could respond to climate change with no alterations in ecosystem C storage in the same period.

  16. Effects of Warming on CO2 Fluxes in an Alpine Meadow Ecosystem on the Central Qinghai-Tibetan Plateau.

    PubMed

    Ganjurjav, Hasbagan; Gao, Qingzhu; Zhang, Weina; Liang, Yan; Li, Yawei; Cao, Xujuan; Wan, Yunfan; Li, Yue; Danjiu, Luobu

    2015-01-01

    To analyze CO2 fluxes under conditions of climate change in an alpine meadow on the central Qinghai-Tibetan Plateau, we simulated the effect of warming using open top chambers (OTCs) from 2012 to 2014. The OTCs increased soil temperature by 1.62°C (P < 0.05), but decreased soil moisture (1.38%, P < 0.05) during the experiments. The response of ecosystem CO2 fluxes to warming was variable, and dependent on the year. Under conditions of warming, mean gross ecosystem productivity (GEP) during the growing season increased significantly in 2012 and 2014 (P < 0.05); however, ecosystem respiration (ER) increased substantially only in 2012 (P < 0.05). The net ecosystem CO2 exchange (NEE) increased marginally in 2012 (P = 0.056), did not change in 2013(P > 0.05), and increased significantly in 2014 (P = 0.034) under conditions of warming. The GEP was more sensitive to climate variations than was the ER, resulting in a large increase in net carbon uptake under warming in the alpine meadow. Under warming, the 3-year averages of GEP, ER, and NEE increased by 19.6%, 15.1%, and 21.1%, respectively. The seasonal dynamic patterns of GEP and NEE, but not ER, were significantly impacted by warming. Aboveground biomass, particularly the graminoid biomass increased significantly under conditions of warming. Soil moisture, soil temperature, and aboveground biomass were the main factors that affected the variation of the ecosystem CO2 fluxes. The effect of warming on inter- and intra-annual patterns of ecosystem CO2 fluxes and the mechanism of different sensitivities in GEP and ER to warming, require further researched.

  17. Effects of Warming and Clipping on Ecosystem Carbon Fluxes across Two Hydrologically Contrasting Years in an Alpine Meadow of the Qinghai-Tibet Plateau

    PubMed Central

    Peng, Fei; You, Quangang; Xu, Manhou; Guo, Jian; Wang, Tao; Xue, Xian

    2014-01-01

    Responses of ecosystem carbon (C) fluxes to human disturbance and climatic warming will affect terrestrial ecosystem C storage and feedback to climate change. We conducted a manipulative experiment to investigate the effects of warming and clipping on soil respiration (Rs), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross ecosystem production (GEP) in an alpine meadow in a permafrost region during two hydrologically contrasting years (2012, with 29.9% higher precipitation than the long-term mean, and 2013, with 18.9% lower precipitation than the long-tem mean). Our results showed that GEP was higher than ER, leading to a net C sink (measured by NEE) over the two growing seasons. Warming significantly stimulated ecosystem C fluxes in 2012 but did not significantly affect these fluxes in 2013. On average, the warming-induced increase in GEP (1.49 µ mol m−2s−1) was higher than in ER (0.80 µ mol m−2s−1), resulting in an increase in NEE (0.70 µ mol m−2s−1). Clipping and its interaction with warming had no significant effects on C fluxes, whereas clipping significantly reduced aboveground biomass (AGB) by 51.5 g m−2 in 2013. These results suggest the response of C fluxes to warming and clipping depends on hydrological variations. In the wet year, the warming treatment caused a reduction in water, but increases in soil temperature and AGB contributed to the positive response of ecosystem C fluxes to warming. In the dry year, the reduction in soil moisture, caused by warming, and the reduction in AGB, caused by clipping, were compensated by higher soil temperatures in warmed plots. Our findings highlight the importance of changes in soil moisture in mediating the responses of ecosystem C fluxes to climate warming in an alpine meadow ecosystem. PMID:25291187

  18. Intercomparisons of Prognostic, Diagnostic, and Inversion Modeling Approaches for Estimation of Net Ecosystem Exchange over the Pacific Northwest Region

    NASA Astrophysics Data System (ADS)

    Turner, D. P.; Jacobson, A. R.; Nemani, R. R.

    2013-12-01

    The recent development of large spatially-explicit datasets for multiple variables relevant to monitoring terrestrial carbon flux offers the opportunity to estimate the terrestrial land flux using several alternative, potentially complimentary, approaches. Here we developed and compared regional estimates of net ecosystem exchange (NEE) over the Pacific Northwest region of the U.S. using three approaches. In the prognostic modeling approach, the process-based Biome-BGC model was driven by distributed meteorological station data and was informed by Landsat-based coverages of forest stand age and disturbance regime. In the diagnostic modeling approach, the quasi-mechanistic CFLUX model estimated net ecosystem production (NEP) by upscaling eddy covariance flux tower observations. The model was driven by distributed climate data and MODIS FPAR (the fraction of incident PAR that is absorbed by the vegetation canopy). It was informed by coarse resolution (1 km) data about forest stand age. In both the prognostic and diagnostic modeling approaches, emissions estimates for biomass burning, harvested products, and river/stream evasion were added to model-based NEP to get NEE. The inversion model (CarbonTracker) relied on observations of atmospheric CO2 concentration to optimize prior surface carbon flux estimates. The Pacific Northwest is heterogeneous with respect to land cover and forest management, and repeated surveys of forest inventory plots support the presence of a strong regional carbon sink. The diagnostic model suggested a stronger carbon sink than the prognostic model, and a much larger sink that the inversion model. The introduction of Landsat data on disturbance history served to reduce uncertainty with respect to regional NEE in the diagnostic and prognostic modeling approaches. The FPAR data was particularly helpful in capturing the seasonality of the carbon flux using the diagnostic modeling approach. The inversion approach took advantage of a global

  19. Summer drought leads to reduced net CO2 uptake and CH4 fluxes in a New Zealand peatland

    NASA Astrophysics Data System (ADS)

    Goodrich, J. P.; Campbell, D.; Schipper, L. A.; Clearwater, M.

    2013-12-01

    Global climate change is likely to influence the frequency and severity of drought events in many regions. This has implications for changing carbon (C) storage in peatland ecosystems, which provide an important global sink for atmospheric C. However, the relative impacts on ecosystem respiration (ER), gross primary productivity (GPP), and CH4 efflux are not well understood and may alter the C balance differently depending on peatland type, vegetation, and timing of drought. We measured CO2 and CH4 fluxes using eddy covariance in a New Zealand peatland during two contrasting years capturing the impact of an historically extreme drought on these two major components of the net ecosystem C balance. Kopuatai bog is a 96 km2 ombrotrophic raised bog dominated by the endemic peat-forming rush species, Empodisma robustum. The drought impacted the growing season period from January to May, 2013. Net ecosystem exchange of CO2 (NEE) during the drought was approximately half that of the previous relatively wet summer. From January 1 to May 1, cumulative NEE was -133.3 gC m-2 in 2012 and -66.7 gC m-2 in 2013. Increases in ER during the drought were responsible for up to 88% of the difference in NEE, while differences in GPP were comparatively small. For April, mean daily CH4 fluxes during the drought (25 mgCH4 m-2 day-1) reduced to approximately one third of the mean flux measured in April 2012 (80 mgCH4 m-2 day-1). CH4 fluxes remained low for several months following water table recharge, suggesting a substantial lag in the recovery of the methanogenic population. Despite the magnitude of respiration enhancement, the relatively consistent GPP and reduced CH4 flux led to net storage of C during drought, albeit significantly smaller than the previous wet year.

  20. Carbon and Water Fluxes of Crops Exposed to the Sequence of Naturally Occurring Heat Stress, Drought and Freezing

    NASA Astrophysics Data System (ADS)

    Joo, E.; Miller, J. N.; Bernacchi, C.

    2015-12-01

    As a consequence of global climate change the occurrence of extreme weather events (heat waves, cold spells, drought, etc) are predicted to become more frequent and/or intense, which will likely have a large impact on crop production. In the winter of 2013/2014 several polar vortexes were experienced in Illinois, US, resulting in periods of extreme low temperatures between -20°C and -35°C. Prior to the extreme cold winter of 2013/2014 the region experienced drought over a hot summer in 2012. Four established fields of three perennial biofuel crops (Miscanthus x giganteus, Panicum virgatum L., and a mixture of native prairie species) and Zea mays/Glycine max agroecosystem have been studied since 2009 in order to investigate the effect of climate change and land-use change on carbon and water fluxes using the eddy covariance technique, as well as biomass production of these species. The combined effect of the heat and drought stress in 2012 resulted in severe water deficit of all species (up to -360 mm for miscanthus), which resulted in reduced net ecosystem exchange (NEE) during the drought for all species other than miscanthus. In the following year, during the recovery of these species from drought, miscanthus showed decreased NEE but the other species did not appear to be negatively influenced. As a consequence of the environmental stresses (heat and drought stress followed by extreme freezing), the water and carbon exchanges (such as ET, NEE, GPP, Reco) as well as growth parameters (LAI, biomass production) are shown to vary based on the stress tolerance of these species.

  1. The strength of contributions from topography mismatch and measurement filtering to simulated net ecosystem exchange in complex terrain

    NASA Astrophysics Data System (ADS)

    Brooks, B.; Desai, A. R.; Stephens, B. B.; Jacobson, A. R.

    2011-12-01

    Global scale carbon cycle inverse models provide invaluable information for the construction of empirically based carbon budgets based on in situ measurements. In landscapes of predominantly smooth topography inverse carbon cycle models are useful for diagnosing the magnitude and climate sensitivity of different regional carbon sinks. However, in landscapes of predominately complex topography inversion model results come with strong caveats for two reasons: 1) Coarse gridding of model topography can lead the model to sample observations at elevations far above the model surface, and 2) Transport wind fields over smoothed model representations of mountain regions are not always sufficiently resolved to inform the model about the source region for assimilated measurements. The uncertainty contributed by incorrect winds and topography mismatches (e.g., differences between the actual measurement elevation and model surface on the order of 1,000 m) is thought to be smaller for higher resolution regional inversion models (e.g., Gockede et al., 2010; Schuh et al. 2010), but these uncertainties are not well constrained for larger scale inversion systems (e.g., Peters et al., 2010), which are one of few ways for determining the relative priority of regional sinks. In this work we examine the effects on net ecosystem exchange (NEE) for a global scale inversion system when 1) topography mismatches are ameliorated, and 2) subset observations consistent with model resolution are used rather than observation-based subsets. Our focus is to use an example inversion model system, CarbonTracker (Peters et al., 2007; 2010), driven by CO2 mixing ratio measurements, including the RACCOON Network in the United States Mountain West (raccoon.ucar.edu), to quantify and compare the contribution to NEE from tower elevation mismatches and filtering strategies across biomes and and in terms of forecast skill (model data mismatch). We further compare our results to the differences in NEE over

  2. The potential of carbonyl sulfide as a proxy for gross primary production at flux tower sites

    NASA Astrophysics Data System (ADS)

    Blonquist, J. Mark, Jr.

    Seasonal dynamics of atmospheric carbonyl sulfide (OCS) at regional and continental scales and plant OCS exchange at the leaf level have shown a close relationship with those for CO2. CO2 has both sinks and sources within terrestrial ecosystems, but the primary terrestrial exchange for OCS is thought to be leaf uptake, suggesting potential for OCS uptake as a proxy for gross primary production (GPP). The utility of OCS uptake as a GPP proxy in micrometeorological studies of biosphere-atmosphere CO2 exchange was explored by applying theoretical concepts from earlier OCS studies to estimate GPP. Measured net ecosystem exchange (NEE) was partitioned using the ratio of measured vertical mole fraction gradients of OCS and CO2. At the Harvard Forest AmeriFlux site, measured CO2 and OCS vertical gradients were correlated, and were related to NEE and GPP, respectively. Estimates of GPP from OCS-based NEE partitioning were similar to those from established regression techniques, providing evidence that OCS uptake can potentially serve as a GPP proxy. Measured vertical CO 2 mole fraction gradients at five other AmeriFlux sites were used to project anticipated vertical OCS mole fraction gradients to provide indication of potential OCS signal magnitudes at sites where no OCS measurements were made. Projected OCS gradients at sites with short canopies were greater than those in forests, including measured OCS gradients at Harvard Forest, indicating greater potential for OCS uptake as a GPP proxy at these sites. This exploratory study suggests that continued investigation of linkages between OCS and GPP is warranted.

  3. Modeling impacts of changes in temperature and water table on C gas fluxes in an Alaskan peatland

    NASA Astrophysics Data System (ADS)

    Deng, Jia; Li, Changsheng; Frolking, Steve

    2015-07-01

    Northern peatlands have accumulated a large amount of organic carbon (C) in their thick peat profile. Climate change and associated variations in soil environments are expected to have significant impacts on the C balance of these ecosystems, but the magnitude is still highly uncertain. Verifying and understanding the influences of changes in environmental factors on C gas fluxes in biogeochemical models are essential for forecasting feedbacks between C gas fluxes and climate change. In this study, we applied a biogeochemical model, DeNitrification-DeComposition (DNDC), to assess impacts of air temperature (TA) and water table (WT) on C gas fluxes in an Alaskan peatland. DNDC was validated against field measurements of net ecosystem exchange of CO2 (NEE) and CH4 fluxes under manipulated surface soil temperature and WT conditions in a moderate rich fen. The validation demonstrates that DNDC was able to capture the observed impacts of the manipulations in soil environments on C gas fluxes. To investigate responses of C gas fluxes to changes in TA and soil water condition, we conducted a series of simulations with varying TA and WT. The results demonstrate that (1) uptake rates of CO2 at the site were reduced by either too colder or warmer temperatures and generally increased with increasing soil moisture; (2) CH4 emissions showed an increasing trend as TA increased or WT rose toward the peat surface; and (3) the site could shift from a net greenhouse gas (GHG) sink into a net GHG source under some warm and/or dry conditions. A sensitivity analysis evaluated the relative importance of TA and WT to C gas fluxes. The results indicate that both TA and WT played important roles in regulating NEE and CH4 emissions and that within the investigated ranges of the variations in TA and WT, changes in WT showed a greater impact than changes in TA on NEE, CH4 fluxes, and net C gas fluxes at the study fen.

  4. Climate sensitivity of global terrestrial ecosystems' subdaily carbon, water, and energy dynamics.

    NASA Astrophysics Data System (ADS)

    Yu, R.; Ruddell, B. L.; Childers, D. L.; Kang, M.

    2015-12-01

    Abstract: Under the context of global climate change, it is important to understand the direction and magnitude of different ecosystems respond to climate at the global level. In this study, we applied dynamical process network (DPN) approach combined with eco-climate system sensitivity model and used the global FLUXNET eddy covariance measurements (subdaily net ecosystem exchange of CO2, air temperature, and precipitation) to access eco-climate system sensitivity to climate and biophysical factors at the flux site level. For the first time, eco-climate system sensitivity was estimated at the global flux sites and extrapolated to all possible land covers by employing artificial neural network approach and using the MODIS phenology and land cover products, the long-term climate GLDAS-2 product, and the GMTED2010 Global Grid elevation dataset. We produced the seasonal eco-climate system DPN maps, which revealed how global carbon dynamics driven by temperature and precipitation. We also found that the eco-climate system dynamical process structures are more sensitive to temperature, whether directly or indirectly via phenology. Interestingly, if temperature continues rising, the temperature-NEE coupling may increase in tropical rain forest areas while decrease in tropical desert or Savanna areas, which means that rising temperature in the future could lead to more carbon sequestration in tropical forests whereas less carbon sequestration in tropical drylands. At the same time, phenology showed a positive effect on the temperature-NEE coupling at all pixels, which suggests increased greenness may increase temperature driven carbon dynamics and consequently carbon sequestration globally. Precipitation showed relatively strong influence on the precipitation-NEE coupling, especially indirectly via phenology. This study has the potential to conduct eco-climate system short-term and long-term forecasting.

  5. Quantification of net ecosystem exchange sampling within two mature boreal aspen stands using airborne LiDAR and a flux footprint model: Scaling to MODIS

    NASA Astrophysics Data System (ADS)

    Chasmer, L. E.; Kljun, N.; Hopkinson, C.; Petrone, R. M.; Milne, T.; Giroux, K.; Black, T. A.; Devito, K. J.; Canadian Carbon Program; Head Project

    2010-12-01

    Exchanges of CO2 and H2O are often measured by eddy covariance within relatively homogeneous ecosystems, where the spatial variability of vegetation structural characteristics and ground surface topography are relatively non-varying. Therefore, scalars transported from source/sink areas are representative of site average characteristics, regardless of wind direction and atmospheric turbulence. Despite relatively high confidence in the efficacy of measured exchanges within homogeneous ecosystems (barring meteorological and technical problems, etc.), site representativeness of the larger area may be questionable. For example, ecosystems represented by eddy covariance are often more heterogeneous than those measured. On the other hand, deployment of eddy covariance within sites containing variable land cover types may be prone to biased site averages if sampling does not represent similar landscape characteristics within the region. By combining remote sensing data, estimates of source/sink areas, and net ecosystem exchanges (NEE), vegetation and topographical characteristics associated with the frequency of sampling may be quantified. Sample frequency may then be used to classify and scale fluxes to the larger region. The following study integrates a flux footprint model parameterisation with three-dimensional characteristics of the ground, understory, and canopy measured using airborne Light Detection and Ranging (LiDAR) and NEE within two contrasting mature boreal aspen/mixed ecosystems. The objectives of the study are to 1) quantify the frequency distribution of source/sink contributions of CO2 to eddy covariance; 2) classify canopy, understory and topographical characteristics of the footprint climatology to quantify biases in NEE; 3) determine the dominance of sites (e.g. their representativeness) within the larger basin; 4) Evaluate the effectiveness of eddy covariance placement for MODIS product validation.

  6. Carbon dioxide exchange of a perennial bioenergy crop cultivation on a mineral soil

    NASA Astrophysics Data System (ADS)

    Lind, Saara E.; Shurpali, Narasinha J.; Peltola, Olli; Mammarella, Ivan; Hyvönen, Niina; Maljanen, Marja; Räty, Mari; Virkajärvi, Perttu; Martikainen, Pertti J.

    2016-03-01

    One of the strategies to reduce carbon dioxide (CO2) emissions from the energy sector is to increase the use of renewable energy sources such as bioenergy crops. Bioenergy is not necessarily carbon neutral because of greenhouse gas (GHG) emissions during biomass production, field management and transportation. The present study focuses on the cultivation of reed canary grass (RCG, Phalaris arundinacea L.), a perennial bioenergy crop, on a mineral soil. To quantify the CO2 exchange of this RCG cultivation system, and to understand the key factors controlling its CO2 exchange, the net ecosystem CO2 exchange (NEE) was measured from July 2009 until the end of 2011 using the eddy covariance (EC) method. The RCG cultivation thrived well producing yields of 6200 and 6700 kg DW ha-1 in 2010 and 2011, respectively. Gross photosynthesis (GPP) was controlled mainly by radiation from June to September. Vapour pressure deficit (VPD), air temperature or soil moisture did not limit photosynthesis during the growing season. Total ecosystem respiration (TER) increased with soil temperature, green area index and GPP. Annual NEE was -262 and -256 g C m-2 in 2010 and 2011, respectively. Throughout the study period from July 2009 until the end of 2011, cumulative NEE was -575 g C m-2. Carbon balance and its regulatory factors were compared to the published results of a comparison site on drained organic soil cultivated with RCG in the same climate. On this mineral soil site, the RCG had higher capacity to take up CO2 from the atmosphere than on the comparison site.

  7. 12 Years of NPK Addition Diminishes Carbon Sink Potential of a Nutrient Limited Peatland

    NASA Astrophysics Data System (ADS)

    Larmola, T.; Bubier, J. L.; Juutinen, S.; Moore, T. R.

    2011-12-01

    Peatlands store about a third of global soil carbon. Our aim was to study whether the vegetation feedbacks of nitrogen (N) deposition lead to stronger carbon sink or source in a nutrient limited peatland ecosystem. We investigated vegetation structure and ecosystem CO2 exchange at Mer Bleue Bog, Canada, that has been fertilized for 7-12 years. We have applied 5 and 20 times ambient annual wet N deposition (0.8 g N m-2) with or without phosphorus (P) and potassium (K). Gross photosynthesis, ecosystem respiration and net CO2 exchange (NEE) were measured weekly during the growing season using chamber technique. Under the highest N(PK) treatments, the light saturated photosynthesis (PSmax) was reduced by 20-30% compared to the control treatment, whereas under moderate N and PK additions PSmax slightly increased or was similar to the control. The ecosystem respiration showed similar trends among the treatments, but changes in the rates were less pronounced. High nutrient additions led to up to 65% lower net CO2 uptake than that in the control: In the NPK plots with cumulative N additions of 70, 19, and 0 g N m-2, the daytime NEE in May-July 2011 averaged 0.8 (se. 0.3), 2.0 (se. 0.4), and 2.4 (se. 0.3) μmol m-2 s-1, respectively. In the N only plots with cumulative N additions of 45, 19, and 0 g N m-2, the daytime NEE in May-July 2011 averaged 0.8 (se. 0.2), 2.6 (se. 0.4), and 1.8 (se. 0.3) μmol m-2 s-1, respectively. The reduced plant photosynthetic capacity and diminished carbon sink potential in the highest nutrient treatments correlated with the loss of peat mosses and were not compensated for by the increased vascular plant biomass that has mainly been allocated to woody shrub stems.

  8. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations

    NASA Astrophysics Data System (ADS)

    Martin, J.; Reichstein, M.

    2012-12-01

    We upscaled FLUXNET observations of carbon dioxide, water and energy fluxes to the global scale using the machine learning technique, Model Tree Ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5° x 0.5o spatial resolution and a monthly temporal resolution from 1982-2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were weak. Our products are increasingly used to evaluate global land surface models. However, depending on the flux of interest (e.g. gross primary production, terrestrial ecosystem respiration, net ecosystem exchange, evapotranspiration) and the pattern of interest (mean annual map, seasonal cycles, interannual variability, trends) the robustness and uncertainty of these products varies considerably. To avoid pitfalls, this talk also aims at providing an overview of uncertainties associated with these products, and to provide recommendations on the usage for land surface model evaluations. Finally, we present FLUXCOM - an ongoing activity that aims at generating an ensemble of data-driven FLUXNET based products based on diverse approaches.

  9. Carbon exchange between the atmosphere and subtropical forested cypress and pine wetlands

    NASA Astrophysics Data System (ADS)

    Shoemaker, W. B.; Barr, J. G.; Botkin, D. B.; Graham, S. L.

    2014-11-01

    Carbon dioxide exchange between the atmosphere and forested subtropical wetlands is largely unknown. Here we report a first step in characterizing this atmospheric-ecosystem carbon (C) exchange, for cypress strands and pine forests in the Greater Everglades of Florida as measured with eddy covariance methods at three locations (Cypress Swamp, Dwarf Cypress and Pine Upland) for one year. Links between water and C cycles are examined at these three sites, and methane emission measured only at the Dwarf Cypress site. Each forested wetland showed net C uptake (retained in the soil and biomass or transported laterally via overland flow) from the atmosphere monthly and annually. Net ecosystem exchange (NEE) of carbon dioxide (CO2) (difference between photosynthesis and respiration, with negative values representing net ecosystem uptake) was greatest at the Cypress Swamp (-1000 g C m-2 year-1), moderate at the Pine Upland (-900 g C m-2 year-1), and least at the Dwarf Cypress (-500 g C m-2 year-1). Methane emission was a negligible part of the C (12 g C m-2 year-1) budget when compared to NEE. However, methane (CH4) production was considerable in terms of global warming potential, as about 20 g CH4 emitted per m2 year was equivalent to about 500 g CO2 emitted per m2 year}. Changes in NEE were clearly a function of seasonality in solar insolation, air temperature and water availability from rainfall. We also note that changes in the satellite-derived enhanced-vegetation index (EVI) served as a useful surrogate for changes in net and gross atmospheric-ecosystem C exchange at these forested wetland sites.

  10. Effects of management thinning on CO2 exchange by a plantation oak woodland in south-eastern England

    NASA Astrophysics Data System (ADS)

    Wilkinson, M.; Crow, P.; Eaton, E. L.; Morison, J. I. L.

    2015-10-01

    Forest thinning, which removes some individual trees from a forest stand at intermediate stages of the rotation, is commonly used as a silvicultural technique and is a management practice that can substantially alter both forest canopy structure and carbon storage. Whilst a proportion of the standing biomass is removed through harvested timber, thinning also removes some of the photosynthetic leaf area and introduces a large pulse of woody residue (brash) to the soil surface which potentially can alter the balance of autotrophic and heterotrophic respiration. Using a combination of eddy covariance (EC) and aerial light detection and ranging (LiDAR) data, this study investigated the effects of management thinning on the carbon balance and canopy structure in a commercially managed oak plantation in the south-east of England. Whilst thinning had a large effect on the canopy structure, increasing canopy complexity and gap fraction, the effects of thinning on the carbon balance were not as evident. In the first year post thinning, Net Ecosystem Exchange (NEE) was unaffected by the thinning, suggesting that the better illuminated ground vegetation and shrub layer partially compensated for the removed trees. NEE was reduced in the thinned area but not until two years after the thinning had been completed (2009); initially this was associated with an increase in ecosystem respiration (Reco). In subsequent years, NEE remained lower with reduced carbon sequestration in fluxes from the thinned area, which we suggest was in part due to heavy defoliation by caterpillars in 2010 reducing GPP in both sectors of the forest, but particularly in the east.

  11. Momordin Ic induces HepG2 cell apoptosis through MAPK and PI3K/Akt-mediated mitochondrial pathways.

    PubMed

    Wang, Jing; Yuan, Li; Xiao, Haifang; Xiao, Chunxia; Wang, Yutang; Liu, Xuebo

    2013-06-01

    Momordin Ic is a natural triterpenoid saponin enriched in various Chinese and Japanese natural medicines such as the fruit of Kochia scoparia (L.) Schrad. So far, there is little scientific evidence for momordin Ic with regard to the anti-tumor activities. The aim of this work was to elucidate the anti-tumor effect of momordin Ic and the signal transduction pathways involved. We found that momordin Ic induced apoptosis in human hepatocellular carcinoma HepG2 cells, which were supported by DNA fragmentation, caspase-3 activation and PARP cleavage. Meanwhile, momordin Ic triggered reactive oxygen species (ROS) production together with collapse of mitochondrial membrane potential, cytochrome c release, down-regulation of Bcl-2 and up-regulation of Bax expression. The activation of p38 and JNK, inactivation of Erk1/2 and Akt were also demonstrated. Although ROS production rather than NO was stimulated, the expression of iNOS and HO-1 were altered after momordin Ic treatment for 4 h. Furthermore, the cytochrome c release, caspase-3 activation, Bax/Bcl-2 expression and PARP cleavage were promoted with LY294002 and U0126 intervention but were blocked by SB203580, SP600125, PI3K activator, NAC and 1,400 W pretreatment, demonstrating the mitochondrial disruption. Furthermore, momordin Ic combination with NAC influenced MAPK, PI3K/Akt and HO-1, iNOS pathways, MAPK and PI3K/Akt pathways also regulated the expression of HO-1 and iNOS. These results indicated that momordin Ic induced apoptosis through oxidative stress-regulated mitochondrial dysfunction involving the MAPK and PI3K-mediated iNOS and HO-1 pathways. Thus, momordin Ic might represent a potential source of anticancer candidate.

  12. Growth and Reproduction of Glyphosate-Resistant and Susceptible Populations of Kochia scoparia

    PubMed Central

    Kumar, Vipan; Jha, Prashant

    2015-01-01

    Evolution of glyphosate-resistant kochia is a threat to no-till wheat-fallow and glyphosate-resistant (GR) cropping systems of the US Great Plains. The EPSPS (5-enol-pyruvylshikimate-3-phosphate synthase) gene amplification confers glyphosate resistance in the tested Kochia scoparia (L.) Schrad populations from Montana. Experiments were conducted in spring to fall 2014 (run 1) and summer 2014 to spring 2015 (run 2) to investigate the growth and reproductive traits of the GR vs. glyphosate-susceptible (SUS) populations of K. scoparia and to determine the relationship of EPSPS gene amplification with the level of glyphosate resistance. GR K. scoparia inbred lines (CHES01 and JOP01) exhibited 2 to 14 relative copies of the EPSPS gene compared with the SUS inbred line with only one copy. In the absence of glyphosate, no differences in growth and reproductive parameters were evident between the tested GR and SUS inbred lines, across an intraspecific competition gradient (1 to 170 plants m-2). GR K. scoparia plants with 2 to 4 copies of the EPSPS gene survived the field-use rate (870 g ha-1) of glyphosate, but failed to survive the 4,350 g ha-1 rate of glyphosate (five-times the field-use rate). In contrast, GR plants with 5 to 14 EPSPS gene copies survived the 4,350 g ha-1 of glyphosate. The results from this research indicate that GR K. scoparia with 5 or more EPSPS gene copies will most likely persist in field populations, irrespective of glyphosate selection pressure. PMID:26580558

  13. The use of medicinal herbs in gynecological and pregnancy-related disorders by Jordanian women: a review of folkloric practice vs. evidence-based pharmacology.

    PubMed

    Akour, Amal; Kasabri, Violet; Afifi, Fatma U; Bulatova, Nailya

    2016-09-01

    Context National statistical reports in Jordan indicate a decrease in the total fertility rate along with a parallel increase in contraceptive use. The folkloric use of medicinal herbs in gynecological disorders has been growing in Jordan, despite of deficient reports on the evidence-based safety and efficacy of these practices. Objective The aim of this comprehensive article is to review medicinal plants with claimed ethnonpharmacological usage in various gynecological and pregnancy-related issues in Jordan, and to assess their evidence-based pharmacological studies as well as their phytochemistry. Methods The published literature was surveyed using Google Scholar entering the terms "ethnopharmacology AND Jordan AND infertility AND gynecology OR gestation". We included ethnopharmacological surveys in Jordan with available full-text. Results Twelve articles were reviewed. Plant species which are commonly used for female gynecological issues such as Artemisia monosperma Del. and A. herba-alba Asso. (Asteraceae) have been found to exert an antifertility effect. Ricinus communis L. (Euphorbiaceae) and Citrullus colocynthis (L.) Schrad. (Cucurbitaceae) had antifertility effects in male rats, but Nigella sativa oil L. (Ranunculaceae) and Cinnamon zeylanicum J. Presl (Lauraceae) were found to enhance it. Conclusion Using plants for gynecological disorders is a common practice in Jordan. Many of them, whether utilised for gynecological or non-gynecological conditions equally, were found to have detrimental effects on female or male fertility. Thus, couples planning pregnancy should be discouraged from the consumption of these herbs. Further local studies are warranted to confirm the appreciable beneficial pharmacological effects and safety of these plants.

  14. Peroxisomal copper, zinc superoxide dismutase. Characterization of the isoenzyme from watermelon cotyledons.

    PubMed Central

    Bueno, P; Varela, J; Gimeénez-Gallego, G; del Río, L A

    1995-01-01

    The biochemical and immunochemical characterization of a superoxide dismutase (SOD, EC 1.15.1.1) from peroxisomal origin has been carried out. The enzyme is a Cu,Zn-containing SOD (CuZn-SOD) located in the matrix of peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons (L.M. Sandalio and L.A. del Río [1988] Plant Physiol 88: 1215-1218). The amino acid composition of the enzyme was determined. Analysis by reversed-phase high-performance liquid chromatography of the peroxisomal CuZn-SOD incubated with 6 M guanidine-HCl indicated that this enzyme contained a noncovalently bound chromophore group that was responsible for the absorbance peak of the native enzyme at 260 nm. The amino acid sequence of the peroxisomal CuZn-SOD was determined by Edman degradation. Comparison of its sequence with those reported for other plant SODs revealed homologies of about 70% with cytosolic CuZn-SODs and of 90% with chloroplastic CuZn-SODs. The peroxisomal SOD has a high thermal stability and resistance to inactivation by hydrogen peroxide. A polyclonal antibody was raised against peroxisomal CuZn-SOD, and by western blotting the antibody cross-reacted with plant CuZn-SODs but did not recognize either plant Mn-SOD or bacterial Fe-SOD. The antiSOD-immunoglobulin G showed a weak cross-reaction with bovine erythrocytes and liver CuZn-SODs, and also with cell-free extracts from trout liver. The possible function of this CuZn-SOD in the oxidative metabolism of peroxisomes is discussed. PMID:7630940

  15. Growth and Reproduction of Glyphosate-Resistant and Susceptible Populations of Kochia scoparia.

    PubMed

    Kumar, Vipan; Jha, Prashant

    2015-01-01

    Evolution of glyphosate-resistant kochia is a threat to no-till wheat-fallow and glyphosate-resistant (GR) cropping systems of the US Great Plains. The EPSPS (5-enol-pyruvylshikimate-3-phosphate synthase) gene amplification confers glyphosate resistance in the tested Kochia scoparia (L.) Schrad populations from Montana. Experiments were conducted in spring to fall 2014 (run 1) and summer 2014 to spring 2015 (run 2) to investigate the growth and reproductive traits of the GR vs. glyphosate-susceptible (SUS) populations of K. scoparia and to determine the relationship of EPSPS gene amplification with the level of glyphosate resistance. GR K. scoparia inbred lines (CHES01 and JOP01) exhibited 2 to 14 relative copies of the EPSPS gene compared with the SUS inbred line with only one copy. In the absence of glyphosate, no differences in growth and reproductive parameters were evident between the tested GR and SUS inbred lines, across an intraspecific competition gradient (1 to 170 plants m-2). GR K. scoparia plants with 2 to 4 copies of the EPSPS gene survived the field-use rate (870 g ha-1) of glyphosate, but failed to survive the 4,350 g ha-1 rate of glyphosate (five-times the field-use rate). In contrast, GR plants with 5 to 14 EPSPS gene copies survived the 4,350 g ha-1 of glyphosate. The results from this research indicate that GR K. scoparia with 5 or more EPSPS gene copies will most likely persist in field populations, irrespective of glyphosate selection pressure.

  16. A Primer for the Act-1 Language.

    DTIC Science & Technology

    1982-04-01

    34 Programming Language System" 20. ABSTRACT (Contie on reverse side It nee...aty ad Identeay by block n..b.) This paper/describes the current design for the Act...step consisted of a partial modification to a global machine state. Data "types" and "structures" were merely templates with which I, interpret parts of...the global state. In a machine -oriented model, computation proceeds by sequentially modifying portions of the machine’s state. Although languages

  17. Carbon and Water Vapor Fluxes of Dedicated Bioenergy Feedstocks: Switchgrass and High Biomass Sorghum

    NASA Astrophysics Data System (ADS)

    Wagle, P.; Kakani, V. G.; Huhnke, R.

    2015-12-01

    We compared eddy covariance measurements of carbon and water vapor fluxes from co-located two major dedicated lignocellulosic feedstocks, Switchgrass (Panicum virgatum L.) and high biomass sorghum (Sorghum bicolor L. Moench), in Oklahoma during the 2012 and 2013 growing seasons. Monthly ensemble averaged net ecosystem CO2 exchange (NEE) reached seasonal peak values of 36-37 μmol m-2 s-1 in both ecosystems. Similar magnitudes (weekly average of daily integrated values) of NEE (10-11 g C m-2 d-1), gross primary production (GPP, 19-20 g C m-2 d-1), ecosystem respiration (ER, 10-12 g C m-2 d-1), and evapotranspiration (ET, 6.2-6.7 mm d-1) were observed in both ecosystems. Carbon and water vapor fluxes of both ecosystems had similar response to air temperature (Ta) and vapor pressure deficit (VPD). An optimum Ta was slightly over 30 °C for NEE and approximately 35 °C for ET, and an optimum VPD was approximately 3 kPa for NEE and ET in both ecosystems. The switchgrass field was a larger carbon sink, with a cumulative seasonal carbon uptake of 406-490 g C m-2 compared to 261-330 g C m-2 by the sorghum field. Despite similar water use patterns during the active growing period, seasonal cumulative ET was higher in switchgrass than in sorghum. The ratio of seasonal sums of GPP to ET yielded ecosystem water use efficiency (EWUE) of 9.41-11.32 and 8.98-9.17 g CO2 mm-1 ET in switchgrass and sorghum, respectively. The ratio of seasonal sums of net ecosystem production (NEP) to ET was 2.75-2.81 and 2.06-2.18 g CO2 mm-1 ET in switchgrass and sorghum, respectively. The switchgrass stand was a net carbon sink for four to five months (April/May-August), while sorghum was a net carbon sink only for three months (June-August). Our results imply that the difference in carbon sink strength and water use between two ecosystems was driven mainly by the length of the growing season.

  18. F-16 Task Analysis Criterion-Referenced Objective and Objectives Hierarchy Report. Volume 3

    DTIC Science & Technology

    1981-03-01

    mareuver and tar get’s actions and position, describe subsequent specfic actions to t,.ke Ai the phase manual, FWIC Instructional texts, and TRICOM...steps in the roceeli-e ;or :4-.sie attack in AAM mode dith AMi-9j r correct oroer with ro o-,issics. _ [Acadesic) I nee r iiri~g, ;ridirh- the AI & .J...presentatior of the AI -?J zissile on, the missile over-ridedgih oe corr-ectly idertifV the VCrIOUS components and state the values represerted LAW t.he

  19. Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest.

    PubMed

    Monson, Russell K; Sparks, Jed P; Rosenstiel, Todd N; Scott-Denton, Laura E; Huxman, Travis E; Harley, Peter C; Turnipseed, Andrew A; Burns, Sean P; Backlund, Brant; Hu, Jia

    2005-11-01

    The transition between wintertime net carbon loss and springtime net carbon assimilation has an important role in controlling the annual rate of carbon uptake in coniferous forest ecosystems. We studied the contributions of springtime carbon assimilation to the total annual rate of carbon uptake and the processes involved in the winter-to-spring transition across a range of scales from ecosystem CO2 fluxes to chloroplast photochemistry in a coniferous, subalpine forest. We observed numerous initiations and reversals in the recovery of photosynthetic CO2 uptake during the initial phase of springtime recovery in response to the passage of alternating warm- and cold-weather systems. Full recovery of ecosystem carbon uptake, whereby the 24-h cumulative sum of NEE (NEEdaily) was consistently negative, did not occur until 3-4 weeks after the first signs of photosynthetic recovery. A key event that preceded full recovery was the occurrence of isothermality in the vertical profile of snow temperature across the snow pack; thus, providing consistent daytime percolation of melted snow water through the snow pack. Interannual variation in the cumulative annual NEE (NEEannual) was mostly explained by variation in NEE during the snow-melt period (NEEsnow-melt), not variation in NEE during the snow-free part of the growing season (NEEsnow-free). NEEsnow-melt was highest in those years when the snow melt occurred later in the spring, leading us to conclude that in this ecosystem, years with earlier springs are characterized by lower rates of NEEannual, a conclusion that contrasts with those from past studies in deciduous forest ecosystems. Using studies on isolated branches we showed that the recovery of photosynthesis occurred through a series of coordinated physiological and biochemical events. Increasing air temperatures initiated recovery through the upregulation of PSII electron transport caused in part by disengagement of thermal energy dissipation by the carotenoid

  20. Canopy Spectral Imaging (NDVI) As A Proxy For Shrub Biomass And Ecosystem Carbon Fluxes Across Arctic Tundra Habitats

    NASA Astrophysics Data System (ADS)

    Flower, C. E.; Welker, J. M.; Gonzalez-Meler, M. A.

    2015-12-01

    There is widespread consensus that climate change is contributing to rapid vegetation shifts in the ecologically sensitive Arctic tundra. These tussock grass dominated systems are shifting to tussock/woody shrub communities leading to likely alterations in carbon (C) sequestration and ecosystem productivity, which in turn can manifest in "greening" and changes in normalized difference vegetation index values (NDVI). While the expansion of woody vegetation is well established, our understanding of the ecosystem dynamics associated with this new habitat remain largely unknown. To untangle how the Arctic tundra may be impacted by these vegetation shifts we paired vegetation measurements (i.e. shrub biomass, leaf area, and shrub canopy area) and ecosystem C fluxes (e.g. net ecosystem exchange, NEE, and ecosystem respiration) with ground-level measurements of NDVI. Measurements were conducted at the Toolik Field Station in dry heath and moist acidic tundra habitats which are two primary habitat types on the North Slope of Alaska. We found strong positive relationships between shrub leaf area and biomass as well as shrub canopy area and biomass, relationships that were corroborated with NDVI measurements. This lends support for the use of NDVI as a proxy measurement of leaf area and shrub biomass. Additionally, NDVI was negatively correlated with ecosystem respiration across habitats, with respiratory fluxes consistently higher in the moist acidic relative to the dry heath tundra. Finally, we observed a significant positive nonlinear relationship between NEE and NDVI (R2~0.8; P<0.01). Shrub removal revealed that NEE was strongly controlled by woody shrubs. The positive relationship between NDVI and NEE highlights the potential shifts in the C balance of the Arctic tundra associated with woody encroachment. This increased plant productivity may offset greenhouse gas losses from permafrost degradation contributing some resilience to this system otherwise considered a

  1. [Responses of ecosystem carbon budget to increasing nitrogen deposition in differently degraded Leymus chinensis steppes in Inner Mongolia, China].

    PubMed

    Qi, Yu-Chun; Peng, Qin; Dong, Yun-She; Xiao, Sheng-Sheng; Jia, Jun-Qiang; Quo, Shu-Fang; He, Yun-Long; Yan, Zhong-Qing; Wang, Li-Qin

    2015-02-01

    Based on a field manipulative nitrogen (N) addition experiment, the effects of atmospheric N deposition level change on the plant biomass and net primary productivity (NPP), soil respiration (Rs) and net ecosystem exchange (NEE) were investigated respectively in 2009 and 2010 in two differently degraded Leymus chinensis steppes in Inner Mongolia of China, and the difference in the response of NEE to equal amount of N addition [10 g x (M2 x a)(-1), MN] between the two steppes was also discussed. The results indicated that for the light degraded Leymus chinensis steppe (site A) , the average plant aboveground biomass (AGB) in MN treatment were 21.5% and 46.8% higher than those of CK in these two years. But for the moderate degraded Leymus chinensis steppe (site B), the N addition decreased the plant AGB and ANPP in 2009, while showed positive effects in 2010. N addition increased the belowground biomass (BGB) of the both sites and belowground NPP (BNPP) of site B in both years, but decreased the BNPP of site A in 2010. The increase of N input in the two steppes did not change the seasonal variation of Rs. The cumulative annual soil C emissions in MN treatment in site A showed an increase of about 14.6% and 25.7% of those in the CK respectively for these two years, while were decreased by about 10.4% and 11.3%, respectively in site B. The NEE of MN treatments, expressed by C, for the two steppes were 59.22 g x (m2 x a)(1) and 166.68 g x (m2 x a)(-1), as well as 83.27 g x (m2 x a)(-1) and 117.47 g x (m2 x a)(-1), respectively in these two years. The increments in NEE originated from N addition for these two years were 15.79 g x (M2 x a)(-1) and