Sample records for cut power efficiency

  1. CO 2 laser cutting of MDF . 2. Estimation of power distribution

    NASA Astrophysics Data System (ADS)

    Ng, S. L.; Lum, K. C. P.; Black, I.

    2000-02-01

    Part 2 of this paper details an experimentally-based method to evaluate the power distribution for both CW and PM cutting. Variations in power distribution with different cutting speeds, material thickness and pulse ratios are presented. The paper also provides information on both the cutting efficiency and absorptivity index for MDF, and comments on the beam dispersion characteristics after the cutting process.

  2. The effect of cutting conditions on power inputs when machining

    NASA Astrophysics Data System (ADS)

    Petrushin, S. I.; Gruby, S. V.; Nosirsoda, Sh C.

    2016-08-01

    Any technological process involving modification of material properties or product form necessitates consumption of a certain power amount. When developing new technologies one should take into account the benefits of their implementation vs. arising power inputs. It is revealed that procedures of edge cutting machining are the most energy-efficient amongst the present day forming procedures such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc, such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc. An expanded formula for calculation of power inputs is deduced, which takes into consideration the mode of cutting together with the tip radius, the form of the replaceable multifaceted insert and its wear. Having taken as an example cutting of graphite iron by the assembled cutting tools with replaceable multifaceted inserts the authors point at better power efficiency of high feeding cutting in comparison with high-speed cutting.

  3. Optimal Design of Magnetic ComponentsinPlasma Cutting Power Supply

    NASA Astrophysics Data System (ADS)

    Jiang, J. F.; Zhu, B. R.; Zhao, W. N.; Yang, X. J.; Tang, H. J.

    2017-10-01

    Phase-shifted transformer and DC reactor are usually needed in chopper plasma cutting power supply. Because of high power rate, the loss of magnetic components may reach to several kilowatts, which seriously affects the conversion efficiency. Therefore, it is necessary to research and design low loss magnetic components by means of efficient magnetic materials and optimal design methods. The main task in this paper is to compare the core loss of different magnetic material, to analyze the influence of transformer structure, winding arrangement and wire structure on the characteristics of magnetic component. Then another task is to select suitable magnetic material, structure and wire in order to reduce the loss and volume of magnetic components. Based on the above outcome, the optimization design process of transformer and dc reactor are proposed in chopper plasma cutting power supply with a lot of solutions. These solutions are analyzed and compared before the determination of the optimal solution in order to reduce the volume and power loss of the two magnetic components and improve the conversion efficiency of plasma cutting power supply.

  4. Analysis of key factors influencing the evaporation performances of an oriented linear cutting copper fiber sintered felt

    NASA Astrophysics Data System (ADS)

    Pan, Minqiang; Zhong, Yujian

    2018-01-01

    Porous structure can effectively enhance the heat transfer efficiency. A kind of micro vaporizer using the oriented linear cutting copper fiber sintered felt is proposed in this work. Multiple long cutting copper fibers are firstly fabricated with a multi-tooth tool and then sintered together in parallel to form uniform thickness metal fiber sintered felts that provided a characteristic of oriented microchannels. The temperature rise response and thermal conversion efficiency are experimentally investigated to evaluate the influences of porosity, surface structure, feed flow rate and input power on the evaporation characteristics. It is indicated that the temperature rise response of water is mainly affected by input power and feed flow rate. High input power and low feed flow rate present better temperature rise response of water. Porosity rather than surface structure plays an important role in the temperature rise response of water at a relatively high input power. The thermal conversion efficiency is dominated by the input power and surface structure. The oriented linear cutting copper fiber sintered felts for three kinds of porosities show better thermal conversion efficiency than that of the oriented linear copper wire sintered felt when the input power is less than 115 W. All the sintered felts have almost the same performance of thermal conversion at a high input power.

  5. Cutting efficiency of a mid-infrared laser on human enamel.

    PubMed

    Levy, G; Koubi, G F; Miserendino, L J

    1998-02-01

    In this study, the cutting ability of a newly developed dental laser was compared with a dental high-speed handpiece and rotary bur for removal of enamel. Measurements of the volume of tissue removed, energy emitted, and time of exposure were used to quantify the ablation rate (rate of tissue removal) for each test group and compared. Cutting efficiency (mm3/s) of the laser was calculated based on the mean volume of tissue removed per pulse (mm3/pulse) and unit energy expended (mm3/J) over the range of applied powers (2, 4, 6, and 8 W). The specimens were then examined by light microscopy and scanning electron micrographs for qualitative analysis of the amount of remaining debris and the presence of the smear layer on the prepared enamel surface. Calculations of the cutting efficiency of the laser over the range of powers tested revealed a linear relationship with the level of applied power. The maximum average rate of tissue removal by the laser was 0.256 mm3/s at 8 W, compared with 0.945 mm3/s by the dental handpiece. Light microscopy and scanning electron micrograph examinations revealed a reduction in the amount of remaining debris and smear layer in the laser-prepared enamel surfaces, compared with the conventional method. Based on the results of this study, the cutting efficiency of the high-speed handpiece and dental bur was 3.7 times greater than the laser over the range of powers tested, but the laser appeared to create a cleaner enamel surface with minimal thermal damage. Further modifications of the laser system are suggested for improvement of laser cutting efficiency.

  6. Water Powered Tools

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Space Spin-Offs, Inc. under a contract with Lewis Research Center and Marshall Space Flight Center produced a new water-powered saw that cuts through concrete and steel plate reducing danger of explosion or electric shock in rescue and other operations. In prototype unit efficient water-powered turbine drives an 8 inch diameter grinding disk at 6,600 rpm. Exhaust water cools disk and workpiece quenching any sparks produced by cutting head. At maximum power, tool easily cuts through quarter inch steel plate. Adapter heads for chain saws, impact wrenches, heavy duty drills, and power hack saws can be fitted.

  7. Efficiency of laser beam utilization in gas laser cutting of materials

    NASA Astrophysics Data System (ADS)

    Galushkin, M. G.; Grishaev, R. V.

    2018-02-01

    Relying on the condition of dynamic matching of the process parameters in gas laser cutting, the dependence of the beam utilization factor on the cutting speed and the beam power has been determined. An energy balance equation has been derived for a wide range of cutting speed values.

  8. Cascaded a-cut Nd:YVO4 self-Raman with second-Stokes laser at 1313 nm

    NASA Astrophysics Data System (ADS)

    Xie, Zhi; Duan, Yanmin; Guo, Junhong; Huang, Xiaohong; Yan, Lifen; Zhu, Haiyong

    2017-11-01

    A diode-end-pumped, acousto-optic Q-switched second-Stokes self-Raman laser at 1313 nm was demonstrated in a common a-cut Nd:YVO4 crystal, with the primary Raman shift of 890 cm-1. At the incident pump power of 17.1 W, the maximum average output power up to 2.51 W and pulse width of 5 ns for second-Stokes were obtained with the pulse repetition frequency of 50 kHz. The slope efficiency and conversion efficiency with respect to the incident pump power are about 23.7% and 14.7%. The efficient output should be attributed to suitable transmittance of the output coupler used.

  9. Online, efficient and precision laser profiling of bronze-bonded diamond grinding wheels based on a single-layer deep-cutting intermittent feeding method

    NASA Astrophysics Data System (ADS)

    Deng, Hui; Chen, Genyu; He, Jie; Zhou, Cong; Du, Han; Wang, Yanyi

    2016-06-01

    In this study, an online, efficient and precision laser profiling approach that is based on a single-layer deep-cutting intermittent feeding method is described. The effects of the laser cutting depth and the track-overlap ratio of the laser cutting on the efficiency, precision and quality of laser profiling were investigated. Experiments on the online profiling of bronze-bonded diamond grinding wheels were performed using a pulsed fiber laser. The results demonstrate that an increase in the laser cutting depth caused an increase in the material removal efficiency during the laser profiling process. However, the maximum laser profiling efficiency was only achieved when the laser cutting depth was equivalent to the initial surface contour error of the grinding wheel. In addition, the selection of relatively high track-overlap ratios of laser cutting for the profiling of grinding wheels was beneficial with respect to the increase in the precision of laser profiling, whereas the efficiency and quality of the laser profiling were not affected by the change in the track-overlap ratio. After optimized process parameters were employed for online laser profiling, the circular run-out error and the parallelism error of the grinding wheel surface decreased from 83.1 μm and 324.6 μm to 11.3 μm and 3.5 μm, respectively. The surface contour precision of the grinding wheel significantly improved. The highest surface contour precision for grinding wheels of the same type that can be theoretically achieved after laser profiling is completely dependent on the peak power density of the laser. The higher the laser peak power density is, the higher the surface contour precision of the grinding wheel after profiling.

  10. Study on fibre laser machining quality of plain woven CFRP laminates

    NASA Astrophysics Data System (ADS)

    Li, Maojun; Li, Shuo; Yang, Xujing; Zhang, Yi; Liang, Zhichao

    2018-03-01

    Laser cutting is suitable for large-scale and high-efficiency production with relatively high cutting speed, while machining of CFRP composite using lasers is challenging with severe thermal damage due to different material properties and sensitivity to heat. In this paper, surface morphology of cutting plain woven carbon fibre-reinforced plastics (CFRP) by fibre laser and the influence of cutting parameters on machined quality were investigated. A full factorial experimental design was employed involving three variable factors, which included laser pulse frequency at three levels together with laser power and cutting speed at two levels. Heat-affected zone (HAZ), kerf depth and kerf angle were quantified to understand the interactions with cutting parameters. Observations of machined surface were analysed relating to various damages using optical microscope and scanning electron microscopy (SEM), which included HAZ, matrix recession, fibre protruding, striations, fibre-end swelling, collapses, cavities and delamination. Based on ANOVA analysis, it was found that both cutting speed and laser power were significant factors for HAZ and kerf depth, while laser power was the only significant factor for kerf angle. Besides, HAZ and the kerf depth showed similar sensitivity to the pulse energy and energy per unit length, which was opposite for kerf angle. This paper presented the feasibility and experimental results of cutting CFRP laminates using fibre laser, which is possibly the efficient and high-quality process to promote the development of CFRPs.

  11. High-power linearly polarized diode-side-pumped a-cut Nd:GdVO4 rod laser

    NASA Astrophysics Data System (ADS)

    Li, Xiaowen; Qian, Jianqiang; Zhang, Baitao

    2017-03-01

    An efficiently high-power diode-side-pumped Nd:GdVO4 rod laser system was successfully demonstrated, operating in continuous wave (CW) and acousto-optically (AO) Q-switched regime. With a 65 mm-long a-cut Nd:GdVO4 crystal, a maximum linearly polarized CW output power of 60 W at 1063.2 nm was obtained under an absorbed pump power of 180 W, corresponding to a slope efficiency of 50.6%. The output laser beam was linearly polarized with a degree of polarization of 98%. In AO Q-switched operation, the highest output power, minimum pulse width, and highest peak power were achieved to be 42 W, 36 ns, and 58 kW at the pulse repetition frequency of 20 kHz.

  12. Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol

    NASA Astrophysics Data System (ADS)

    Zhang, Dongshi; Gökce, Bilal; Sommer, Steffen; Streubel, René; Barcikowski, Stephan

    2016-03-01

    In this paper, we perform liquid-assisted picosecond laser cutting of 150 μm thin germanium wafers from the rear side. By investigating the cutting efficiency (the ability to allow an one-line cut-through) and quality (characterized by groove morphologies on both sides), the pros and cons of this technique under different conditions are clarified. Specifically, with laser fluence fixed, repetition rate and scanning speed are varied to show quality and efficiency control by means of laser parameter modulation. It is found that low repetition rate ablation in liquid gives rise to a better cut quality on the front side than high repetition rate ablation since it avoids dispersed nanoparticles redeposition resulting from a bubble collapse, unlike the case of 100 kHz which leads to large nanorings near the grooves resulting from a strong interaction of bubbles and the case of 50 kHz which leads to random cutting due to the interaction of the former pulse induced cavitation bubble and the subsequent laser pulse. Furthermore, ethanol is mixed with pure distilled water to assess the liquid's impact on the cutting efficiency and cutting quality. The results show that increasing the ethanol fraction decreases the ablation efficiency but simultaneously, greatly improves the cutting quality. The improvement of cut quality as ethanol ratio increases may be attributed to less laser beam interference by a lower density of bubbles which adhere near the cut kerf during ablation. A higher density of bubbles generated from ethanol vaporization during laser ablation in liquid will cause stronger bubble shielding effect toward the laser beam propagation and therefore result in less laser energy available for the cut, which is the main reason for the decrease of cut efficiency in water-ethanol mixtures. Our findings give an insight into under which condition the rear-side laser cutting of thin solar cells should be performed: high repetition, pure distilled water and high laser power are favorable for high-speed rough cutting but the cut kerf suffers from strong side effects of ripples, nanoredeposition occurrence, while low laser power at low repetition rate (10 kHz), mixed solution (1 wt% ethanol in water) and moderate scanning speed (100 μm/s) are preferable for ultrafine high-quality debris-free cutting. The feasibility of high-quality cut is a good indication of using rear laser ablation in liquid to cut thinner wafers. More importantly, this technique spares any post cleaning steps to reduce the risk to the contamination or crack of the thin wafers.

  13. Economic technology of laser cutting

    NASA Astrophysics Data System (ADS)

    Fedin, Alexander V.; Shilov, Igor V.; Vassiliev, Vladimir V.; Malov, Dmitri V.; Peskov, Vladimir N.

    2000-02-01

    The laser cutting of color metals and alloys by a thickness more than 2 mm has significant difficulties due to high reflective ability and large thermal conduction. We made it possible to raise energy efficiency and quality of laser cutting by using a laser processing system (LPS) consisting both of the YAG:Nd laser with passive Q-switching on base of LiF:F2- crystals and the CO2 laser. A distinctive feature of the LPS is that the radiation of different lasers incorporated in a coaxial beam has simultaneously high level of peak power (more than 400 kW in a TEM00 mode) and significant level of average power (up to 800 W in a TEM01 mode of the CO2 laser). The application of combined radiation for cutting of an aluminum alloy of D16 type made it possible to decrease the cutting energy threshold in 1.7 times, to increase depth of treatment from 2 up to 4 mm, and velocity from 0.015 up to 0.7 m/min, and also to eliminate application of absorptive coatings. At cutting of steels the velocity of treatment was doubled, and also an oxygen flow was eliminated from the technological process and replaced by the air. The obtained raise of energy efficiency and quality of cutting is explained by an essential size reducing of a formed penetration channel and by the shifting of a thermal cutting mode from melting to evaporation. The evaluation of interaction efficiency of a combined radiation was produced on the basis of non-stationary thermal-hydrodynamic model of a heating source moving as in the cutting direction, and also into the depth of material.

  14. Efficient production by laser materials processing integrated into metal cutting machines

    NASA Astrophysics Data System (ADS)

    Wiedmaier, M.; Meiners, E.; Dausinger, Friedrich; Huegel, Helmut

    1994-09-01

    Beam guidance of high power YAG-laser (cw, pulsed, Q-switched) with average powers up to 2000 W by flexible glass fibers facilitates the integration of the laser beam as an additional tool into metal cutting machines. Hence, technologies like laser cutting, joining, hardening, caving, structuring of surfaces and laser-marking can be applied directly inside machining centers in one setting, thereby reducing the flow of workpieces resulting in a lowering of costs and production time. Furthermore, materials with restricted machinability--especially hard materials like ceramics, hard metals or sintered alloys--can be shaped by laser-caving or laser assisted machining. Altogether, the flexibility of laser integrated machining centers is substantially increased or the efficiency of a production line is raised by time-savings or extended feasibilities with techniques like hardening, welding or caving.

  15. Energy conversion/power plant cost-cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, K.

    This presentation by Kenneth Nichols, Barber-Nichols, Inc., is about cost-cutting in the energy conversion phase and power plant phase of geothermal energy production. Mr. Nichols discusses several ways in which improvements could be made, including: use of more efficient compressors and other equipment as they become available, anticipating reservoir resource decline and planning for it, running smaller binary systems independent of human operators, and designing plants so that they are relatively maintenance-free.

  16. Enhancing cuttings removal with gas blasts while drilling on Mars

    NASA Astrophysics Data System (ADS)

    Zacny, K. A.; Quayle, M. C.; Cooper, G. A.

    2005-04-01

    Future missions to Mars envision use of drills for subsurface exploration. Since the Martian atmosphere precludes the use of liquids for cuttings removal, proposed drilling machines utilize mechanical cuttings removal systems such as augers. However, an auger can substantially contribute to the total power requirements, and in the worst scenario it can choke. A number of experiments conducted under Martian pressures showed that intermittent blasts of gas at low differential pressures can effectively lift the cuttings out of the hole. A gas flushing system could be incorporated into the drill assembly for assistance in clearing the holes of rock cuttings or for redundancy in case of auger jamming. A number of variables such as the particle size distribution of the rock powder, the type of gas used, the bit and auger side clearances, the initial mass of cuttings, and the ambient pressure were investigated and found to affect the efficiency. In all tests the initial volume of gas was close to 1 L and the differential pressure was varied to achieve desired clearing efficiencies. Particles were being lifted out of the hole at a maximum speed of 6 m/s at a differential pressure of 25 torr and ambient pressure of 5 torr. Flushing tests lasted on average for 2 s. The power required to compress the thin Martian atmosphere to achieve a sufficient gas blast every minute or so at 10% efficiency was calculated to be of the order of a few watts.

  17. An experimental investigation of pulsed laser-assisted machining of AISI 52100 steel

    NASA Astrophysics Data System (ADS)

    Panjehpour, Afshin; Soleymani Yazdi, Mohammad R.; Shoja-Razavi, Reza

    2014-11-01

    Grinding and hard turning are widely used for machining of hardened bearing steel parts. Laser-assisted machining (LAM) has emerged as an efficient alternative to grinding and hard turning for hardened steel parts. In most cases, continuous-wave lasers were used as a heat source to cause localized heating prior to material removal by a cutting tool. In this study, an experimental investigation of pulsed laser-assisted machining of AISI 52100 bearing steel was conducted. The effects of process parameters (i.e., laser mean power, pulse frequency, pulse energy, cutting speed and feed rate) on state variables (i.e., material removal temperature, specific cutting energy, surface roughness, microstructure, tool wear and chip formation) were investigated. At laser mean power of 425 W with frequency of 120 Hz and cutting speed of 70 m/min, the benefit of LAM was shown by 25% decrease in specific cutting energy and 18% improvement in surface roughness, as compared to those of the conventional machining. It was shown that at constant laser power, the increase of laser pulse energy causes the rapid increase in tool wear rate. Pulsed laser allowed efficient control of surface temperature and heat penetration in material removal region. Examination of the machined subsurface microstructure and microhardness profiles showed no change under LAM and conventional machining. Continuous chips with more uniform plastic deformation were produced in LAM.

  18. Passively mode-locked pulse generation in a c-cut Nd:LuVO4 laser at 1086 nm with a semiconductor saturable-absorber mirror

    NASA Astrophysics Data System (ADS)

    Lin, Ja-Hon; Yang, Pao-Keng; Lin, Wei-Cheng

    2012-04-01

    We demonstrate a diode-pumped passively mode-locked (ML) c-cut Nd:LuVO4 laser with central wavelength at 1086 nm by shifting the reflectance band of the SESAM into a longer wavelength to result in larger loss around 1068 nm. At 15 W absorbed pump power, the highest output power of the ML pulse was about 2.6 W that corresponded to the 17.3% optical-to-optical conversion efficiency and the slope efficiency of laser was about 22.9%. Using our ML laser as the light source, we have also successfully measured the saturation fluence of the SESAM at 1086 nm.

  19. Attenuation of laser radiation by the flame of burning hydrocarbons and efficiency of remote cutting of metals

    NASA Astrophysics Data System (ADS)

    Gvozdev, S. V.; Glova, A. F.; Dubrovskii, V. Yu; Durmanov, S. T.; Krasyukov, A. G.; Lysikov, A. Yu; Smirnov, G. V.; Pleshkov, V. M.

    2017-12-01

    Mobile laser technological complex MLTC-20 with radiation power 20 kW and radiation wavelength 1.07 μm created in SRC RF TRINITI on the base of a three cw fiber Yb lasers is used successfully at remote cutting of the metalworks at carrying out of the emergency-reduction works on the out of control gas wells. In this work the results of the investigation of the possibility and the efficiency of laser radiation application for remote cutting of metals on the emergency oil wells have been presented. Measurements of the mean absorption coefficient of the radiation of a cw fiber Yb laser under its propagation in a flame of burning oil in dependence on radiation intensity have been carried out. It was shown that at the intensity ~104 W/cm2 the absorption coefficient traverses the maximum where its value is equal to ~0.1 cm-1, and at the intensity increasing to the values 105 - 106 W/cm2 it stabilizes on a small level ~5·10-3 - 10-2 cm-1. It is established that the maximal velocity and the efficiency of remote cutting of the steel plates with a thickness up to 10 mm by the radiation with the intensity 106 W/cm2 exceed these factors at the intensity 104 W/cm2. The possibility of the efficient remote cutting of steel plate with a thickness of 60 mm by laser radiation having the power 7.5 kW and the intensity 105 W/cm2 has been demonstrated.

  20. Big Savings from Smart Motors

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Chesebrough-Pond's operates 32 plants across the nation and in those plants are more than 10,000 electric motors. In an effort to cut down on waste of electrical power used by these motors, Chesebrough organized a Corporate Advanced Technology Group to devise ways of improving productivity and cut manufacturing costs. Chesebrough used NASA's Marshall Space Flight Center's Power Factor Controller technology as a departure point for development of their own computerized motor controller that enables motors to operate at maximum efficiency regardless of the motor's applications or operating condition.

  1. Laser beam machining of polycrystalline diamond for cutting tool manufacturing

    NASA Astrophysics Data System (ADS)

    Wyszyński, Dominik; Ostrowski, Robert; Zwolak, Marek; Bryk, Witold

    2017-10-01

    The paper concerns application of DPSS Nd: YAG 532nm pulse laser source for machining of polycrystalline WC based diamond inserts (PCD). The goal of the research was to determine optimal laser cutting parameters for cutting tool shaping. Basic criteria to reach the goal was cutting edge quality (minimalization of finishing operations), material removal rate (time and cost efficiency), choice of laser beam characteristics (polarization, power, focused beam diameter). The research was planned and realised and analysed according to design of experiment rules (DOE). The analysis of the cutting edge was prepared with use of Alicona Infinite Focus measurement system.

  2. Energy characteristics of the CO2 laser cutting of thick steel sheets

    NASA Astrophysics Data System (ADS)

    Orishich, A. M.

    2012-01-01

    In the present paper the scaling laws for the oxygen-assisted laser cutting of low-carbon steel of 5-25 mm is studied experimentally. No dross and minimal roughness of the cut surface were chosen as criteria of quality. The paper also studies the possibility to describe the cutting process by the similarity method and as ratios between dimensionless variables. Normalized power W/ktT, normalized velocity Vcb/a (Peclet number) and kerf width have special optimum numb. Formulas were obtained to determine the optimum values of the laser power and cutting speed for the given sheet thickness. The energy balance of the oxygen-assisted laser cutting is studied experimentally at these optimum parameters. The absorbed laser energy, heat conduction losses and cut width were measured experimentally, and then the energy of exothermic reaction of oxidation was found from the balance equation. To define the integral coefficient of absorption, the laser power was measured on the cutting channel exit during the cutting. The heat conduction losses were measured by the calorimetric method. It has been established that the absorbed laser energy, oxidation energy, thermal losses and melting enthalpy related to a sheet thickness unit, do not depend on the sheet thickness at the cutting with the minimal roughness. The results enable to determine the fraction of the oxidized iron in the melt and thermal efficiency at the cutting with the minimal roughness. The share of the oxidation reaction energy is 50-60% in the total contributed energy.

  3. Switch to Diesels Cuts Transportation Costs.

    ERIC Educational Resources Information Center

    Meyer, Kay

    1982-01-01

    Since the acquisition of diesel-powered school buses for the Half Hollow Hills (New York) School District, fuel efficiency has doubled. This has helped cover the costs of refurbishing older buses and establishing a more sophisticated shop operation and more efficient recordkeeping. (Author/MLF)

  4. Design and Analysis of Bionic Cutting Blades Using Finite Element Method.

    PubMed

    Li, Mo; Yang, Yuwang; Guo, Li; Chen, Donghui; Sun, Hongliang; Tong, Jin

    2015-01-01

    Praying mantis is one of the most efficient predators in insect world, which has a pair of powerful tools, two sharp and strong forelegs. Its femur and tibia are both armed with a double row of strong spines along their posterior edges which can firmly grasp the prey, when the femur and tibia fold on each other in capturing. These spines are so sharp that they can easily and quickly cut into the prey. The geometrical characteristic of the praying mantis's foreleg, especially its tibia, has important reference value for the design of agricultural soil-cutting tools. Learning from the profile and arrangement of these spines, cutting blades with tooth profile were designed in this work. Two different sizes of tooth structure and arrangement were utilized in the design on the cutting edge. A conventional smooth-edge blade was used to compare with the bionic serrate-edge blades. To compare the working efficiency of conventional blade and bionic blades, 3D finite element simulation analysis and experimental measurement were operated in present work. Both the simulation and experimental results indicated that the bionic serrate-edge blades showed better performance in cutting efficiency.

  5. Design and Analysis of Bionic Cutting Blades Using Finite Element Method

    PubMed Central

    Li, Mo; Yang, Yuwang; Guo, Li; Chen, Donghui; Sun, Hongliang; Tong, Jin

    2015-01-01

    Praying mantis is one of the most efficient predators in insect world, which has a pair of powerful tools, two sharp and strong forelegs. Its femur and tibia are both armed with a double row of strong spines along their posterior edges which can firmly grasp the prey, when the femur and tibia fold on each other in capturing. These spines are so sharp that they can easily and quickly cut into the prey. The geometrical characteristic of the praying mantis's foreleg, especially its tibia, has important reference value for the design of agricultural soil-cutting tools. Learning from the profile and arrangement of these spines, cutting blades with tooth profile were designed in this work. Two different sizes of tooth structure and arrangement were utilized in the design on the cutting edge. A conventional smooth-edge blade was used to compare with the bionic serrate-edge blades. To compare the working efficiency of conventional blade and bionic blades, 3D finite element simulation analysis and experimental measurement were operated in present work. Both the simulation and experimental results indicated that the bionic serrate-edge blades showed better performance in cutting efficiency. PMID:27019583

  6. High-speed fiber laser cutting of thick stainless steel for dismantling tasks

    NASA Astrophysics Data System (ADS)

    Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Seon, Sangwoo; Kim, Taek-Soo; Lee, Lim; Choi, Byung-Seon; Moon, Jei-Kwon

    2017-09-01

    A high-speed fiber laser cutting technology of thick steels for dismantling tasks was achieved using a 6-kW fiber laser system. At first, a new cutting head for efficient cutting of thick steels was developed, which was composed by a collimator with a focal length of 160 mm and mirror-type focusing objects with a long focal length of 600 mm. The long focal length of the focusing object made it possible for the beam size to be small through the thick cutting material and the cutting efficiency was expected to increase compared with the short focal length. In addition, folding the beam facilitated the compact cutting head with a size of 160 mm (width) × 80 mm (height) × 640 mm (length) and a weight of 6.9 kg. In the cutting experiment, the laser beam was delivered to the cutting head by a 25-m long process fiber with a core diameter of 100 μm. The cutting performances were studied against the thicknesses of stainless steel plates. A maximum cutting speed of 72 mm/min was obtained for the 60-mm thick stainless steel plate cutting and the cut specimen showed an excellent kerf shape and a narrow kerf width. To the best of our knowledge, this cutting speed was higher than other previously reported results when cutting with a 6-kW laser power.

  7. Power, Politics and Purchasing.

    ERIC Educational Resources Information Center

    Moore, Deborah P.

    2000-01-01

    Explores the overlapping of energy efficiency, budget-cutting, and facility needs in K-12 schools. Utilities expenditures in schools are discussed for electricity and natural gas as are energy-saving alternatives such as daylighting, solar energy, wind production of power, and geothermal energy. Sources for further information conclude the…

  8. Continuous-wave laser operation at 743 and 753 nm based on a diode-pumped c-cut Pr:YAlO3 crystal

    NASA Astrophysics Data System (ADS)

    Lin, Xiuji; Huang, Xiaoxu; Liu, Bin; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Li, Dongzhen; Liu, Jian; Xu, Jun

    2018-02-01

    We report on blue-diode-pumped continuous-wave Pr:YAlO3 (YAP) crystal lasers. Using a b-cut sample, a maximum output power of 181 mW is achieved at ∼747 nm with slope efficiency of 12.7% with respect to the absorbed power. Using a c-cut sample, a dual-wavelength laser at ∼743 and ∼753 nm is obtained with a total maximum output power of 72 mW by using the blue diode pumping, for the first time to our knowledge. These laser emissions are all linearly polarized and M2 factors of these output laser beams are also measured. YAP is experimentally verified to be one of effective oxide hosts for Pr-doped visible laser operation besides its fluoride counterparts.

  9. Development of high-efficiency power amplifiers for PIP2 (Project X), Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raab, Frederick

    The Fermi Lab PIP II (formerly Project X) accelerator will require the generation of over a megawatt of radio-frequency (RF) power at 325 and 650 MHz. This Phase-II SBIR grant developed techniques to generate this RF power efficienly. The basis of this approach is a system comprising high-efficiency RF power amplifiers, high-efficiency class-S modulators to maintain efficiency at all power levels, and low-loss power combiners. A digital signal processor adjusts signal parameters to obtain the maximum efficiency while producing a signal of the desired amplitude and phase. Components of 4-kW prototypes were designed, assembled, and tested. The 500-W modules producemore » signals at 325 MHz with an overall efficiency of 83 percent and signals at 650 MHz with an overall efficiency of 79 percent. This efficiency is nearly double that available from conventional techniques, which makes it possible to cut the power consumption nearly in half. The system is designed to be scalable to the multi-kilowatt level and can be adapted to other DoE applications.« less

  10. Investigations on the potential of a low power diode pumped Er:YAG laser system for oral surgery

    NASA Astrophysics Data System (ADS)

    Stock, Karl; Wurm, Holger; Hausladen, Florian; Wagner, Sophia; Hibst, Raimund

    2015-02-01

    Flash lamp pumped Er:YAG-lasers are used in clinical practice for dental applications successfully. As an alternative, several diode pumped Er:YAG laser systems (Pantec Engineering AG) become available, with mean laser power of 2W, 15W, and 30W. The aim of the presented study is to investigate the potential of the 2W Er:YAG laser system for oral surgery. At first an appropriate experimental set-up was realized with a beam delivery and both, a focusing unit for non-contact tissue cutting and a fiber tip for tissue cutting in contact mode. In order to produce reproducible cuts, the samples (porcine gingiva) were moved by a computer controlled translation stage. On the fresh samples cutting depth and quality were determined by light microscopy. Afterwards histological sections were prepared and microscopically analyzed regarding cutting depth and thermal damage zone. The experiments show that low laser power ≤ 2W is sufficient to perform efficient oral soft tissue cutting with cut depth up to 2mm (sample movement 2mm/s). The width of the thermal damage zone can be controlled by the irradiation parameters within a range of about 50μm to 110μm. In general, thermal injury is more pronounced using fiber tips in contact mode compared to the focused laser beam. In conclusion the results reveal that even the low power diode pumped Er:YAG laser is an appropriate tool for oral surgery.

  11. High speed pulsed laser cutting of LiCoO2 Li-ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Lutey, Adrian H. A.; Fortunato, Alessandro; Carmignato, Simone; Fiorini, Maurizio

    2017-09-01

    Laser cutting of Li-ion battery electrodes represents an alternative to mechanical blanking that avoids complications associated with tool wear and allows assembly of different cell geometries with a single device. In this study, laser cutting of LiCoO2 Li-ion battery electrodes is performed at up to 5m /s with a 1064nm wavelength nanosecond pulsed fiber laser with a maximum average power of 500W and a repetition rate of up to 2MHz . Minimum average cutting power for cathode and anode multi-layer films is established for 12 parameter groups with velocities over the range 1 - 5m /s , varying laser pulse fluence and overlap. Within the tested parameter range, minimum energy per unit cut length is found to decrease with increasing repetition rate and velocity. SEM analysis of the resulting cut edges reveals visible clearance widths in the range 20 - 50 μm , with cut quality found to improve with velocity due to a reduction in lateral heat conduction losses. Raman line map spectra reveal changes in the cathode at 60 μm from the cut edge, where bands at 486cm-1 and 595cm-1 , corresponding to the Eg and A1g modes of LiCoO2 , are replaced with a single wide band centered at 544cm-1 , and evidence of carbon black is no longer present. No changes in Raman spectra are observed in the anode. The obtained results suggest that further improvements in cutting efficiency and quality could be achieved by increasing the repetition rate above 2MHz , thereby improving ablation efficiency of the metallic conductor layers. The laser source utilized in the present study nonetheless represents an immediately available solution for repeatability and throughput that are superior to mechanical blanking.

  12. Optoacoustic monitoring of cutting efficiency and thermal damage during laser ablation.

    PubMed

    Bay, Erwin; Douplik, Alexandre; Razansky, Daniel

    2014-05-01

    Successful laser surgery is characterized by a precise cut and effective hemostasis with minimal collateral thermal damage to the adjacent tissues. Consequently, the surgeon needs to control several parameters, such as power, pulse repetition rate, and velocity of movements. In this study we propose utilizing optoacoustics for providing the necessary real-time feedback of cutting efficiency and collateral thermal damage. Laser ablation was performed on a bovine meat slab using a Q-switched Nd-YAG laser (532 nm, 4 kHz, 18 W). Due to the short pulse duration of 7.6 ns, the same laser has also been used for generation of optoacoustic signals. Both the shockwaves, generated due to tissue removal, as well as the normal optoacoustic responses from the surrounding tissue were detected using a single broadband piezoelectric transducer. It has been observed that the rapid reduction in the shockwave amplitude occurs as more material is being removed, indicating decrease in cutting efficiency, whereas gradual decrease in the optoacoustic signal likely corresponds to coagulation around the ablation crater. Further heating of the surrounding tissue leads to carbonization accompanied by a significant shift in the optoacoustic spectra. Our results hold promise for real-time monitoring of cutting efficiency and collateral thermal damage during laser surgery. In practice, this could eventually facilitate development of automatic cut-off mechanisms that will guarantee an optimal tradeoff between cutting and heating while avoiding severe thermal damage to the surrounding tissues.

  13. Designing an efficient rectifying cut-wire metasurface for electromagnetic energy harvesting

    NASA Astrophysics Data System (ADS)

    Oumbé Tékam, Gabin T.; Ginis, Vincent; Danckaert, Jan; Tassin, Philippe

    2017-02-01

    Electromagnetic energy harvesting, i.e., capturing energy from ambient microwave signals, may become an essential part in extending the battery lifetime of wearable devices. Here, we present a design of a microwave energy harvester based on a cut-wire metasurface with an integrated PN junction diode. The cut wire with a quasistatic electric-dipole moment is designed to have a resonance at 6.75 GHz, leading to a substantial cross-section for absorption. The external microwaves create a unidirectional current through the rectifying action of the integrated diode. Using an electrical-circuit model, we design the operating frequency and the resistive load of the cut wire. Subsequently, by optimizing our design using full-wave numerical simulations, we obtain an energy harvesting efficiency of 50% for incident power densities in agreement with the typical power density of WiFi signals. Finally, we study the effect of connecting adjacent unit cells of the metasurface in parallel by a thin highly inductive wire and we demonstrate that this allows for the collection of current from all individual cells, while the microwave resonance of the unit cell is not significantly altered, thus solving the wiring problem that arises in many nonlinear metamaterials.

  14. Efficient 10 kW diode-pumped Nd:YAG rod laser

    NASA Astrophysics Data System (ADS)

    Akiyama, Yasuhiro; Takada, Hiroyuki; Sasaki, Mitsuo; Yuasa, Hiroshi; Nishida, Naoto

    2003-03-01

    As a tool for high speed and high precision material processing such as cutting and welding, we developed a rod-type all-solid-state laser with an average power of more than 10 kW, an electrical-optical efficiency of more than 20%, and a laser head volume of less than 0.05 m3. We developed a highly efficient diode pumped module, and successfully obtained electrical-optical efficiencies of 22% in CW operation and 26% in QCW operation at multi-kW output powers. We also succeeded to reduce the laser head volume, and obtained the output power of 12 kW with an efficiency of 23%, and laser head volume of 0.045 m3. We transferred the technology to SHIBAURA mechatronics corp., who started to provide the LD pumped Nd:YAG laser system with output power up to 4.5 kW. We are now continuing development for further high power laser equipment.

  15. High power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Holzer, Marco

    2011-02-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With well over 1000 high power disk lasers installations, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain important details of the TruDisk laser series and process relevant features of the system, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  16. Energy conditions of high quality laser-oxygen cutting of mild steel

    NASA Astrophysics Data System (ADS)

    Shulyatyev, V. B.; Orishich, A. M.; Malikov, A. G.

    2011-02-01

    In our previous work we found experimentally the scaling laws for the oxygen-assisted laser cutting of low-carbon steel of 5 - 25 mm. No dross and minimal roughness of the cut surface were chosen as criteria of quality. Formulas were obtained to determine the optimum values of the laser power and cutting speed for the given sheet thickness. In the present paper, the energy balance of the oxygen-assisted laser cutting is studied experimentally at these optimum parameters. The absorbed laser energy and heat conduction losses and cut width were measured experimentally, and then the energy of exothermic reaction of oxidation was found from the balance equation. To define the integral coefficient of absorption, the laser power was measured on the cutting channel exit during the cutting. The heat conduction losses were measured by the calorimetric method. It has been established that the absorbed laser energy, oxidation energy, thermal losses and melting enthalpy related to a sheet thickness unit, do not depend on the sheet thickness at the cutting with the minimal roughness. The results enable to determine the fraction of the oxidized iron in the melt and thermal efficiency at the cutting with the minimal roughness. The share of the oxidation reaction energy is 50 - 60% in the total contributed energy.

  17. A Micro grid design for a kind of household energy efficiency management system based on high permeability

    NASA Astrophysics Data System (ADS)

    Li, Siwei; Li, Jun; Liu, Zhuochu; Wang, Min; Yue, Liang

    2017-05-01

    After the access of household distributed photovoltaic, conditions of high permeability generally occur, which cut off the connection between distributed power supply and major network rapidly and use energy storage device to realize electrical energy storage. The above operations cannot be adequate for the power grid health after distributed power supply access any more from the perspective of economy and rationality. This paper uses the integration between device and device, integration between device and system and integration between system and system of household microgrid and household energy efficiency management, to design household microgrid building program and operation strategy containing household energy efficiency management, to achieve efficient integration of household energy efficiency management and household microgrid, to effectively solve problems of high permeability of household distributed power supply and so on.

  18. Theoretical and experimental aspects of laser cutting with a direct diode laser

    NASA Astrophysics Data System (ADS)

    Costa Rodrigues, G.; Pencinovsky, J.; Cuypers, M.; Duflou, J. R.

    2014-10-01

    Recent developments in beam coupling techniques have made it possible to scale up the power of diode lasers with a laser beam quality suitable for laser cutting of metal sheets. In this paper a prototype of a Direct Diode Laser (DDL) source (BPP of 22 mm-mrad) is analyzed in terms of efficiency and cut performance and compared with two established technologies, CO2 and fiber lasers. An analytical model based on absorption calculations is used to predict the performance of the studied laser source with a good agreement with experimental results. Furthermore results of fusion cutting of stainless steel and aluminium alloys as well as oxygen cutting of structural steel are presented, demonstrating that industrial relevant cutting speeds with high cutting quality can now be achieved with DDL.

  19. Remote Fiber Laser Cutting System for Dismantling Glass Melter - 13071

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitsui, Takashi; Miura, Noriaki; Oowaki, Katsura

    Since 2008, the equipment for dismantling the used glass melter has been developed in High-level Liquid Waste (HLW) Vitrification Facility in the Japanese Rokkasho Reprocessing Plant (RRP). Due to the high radioactivity of the glass melter, the equipment requires a fully-remote operation in the vitrification cell. The remote fiber laser cutting system was adopted as one of the major pieces of equipment. An output power of fiber laser is typically higher than other types of laser and so can provide high-cutting performance. The fiber laser can cut thick stainless steel and Inconel, which are parts of the glass melter suchmore » as casings, electrodes and nozzles. As a result, it can make the whole of the dismantling work efficiently done for a shorter period. Various conditions of the cutting test have been evaluated in the process of developing the remote fiber cutting system. In addition, the expected remote operations of the power manipulator with the laser torch have been fully verified and optimized using 3D simulations. (authors)« less

  20. Dual-wavelength laser operation in a-cut Nd:MgO:LiNbO3

    NASA Astrophysics Data System (ADS)

    Fan, M. Q.; Li, T.; Zhao, S. Z.; Li, G. Q.; Li, D. C.; Yang, K. J.; Qiao, W. C.; Li, S. X.

    2016-03-01

    Diode-pumped dual-wavelength a-cut Nd:MgO:LiNbO3 lasers near 1085 and 1093 nm were experimentally and theoretically investigated. The simultaneous dual-wavelength emitting was mainly attributed to the Boltzmann distribution of the occupation in the Stark-split energy-levels in manifold 4I11/2. Under an absorbed pump power of 7.45 W, a maximum continuous wave (CW) output power of 1.23 W was obtained, giving a slope efficiency of 21.2%. Using Cr:YAG as saturable absorber, the shortest pulse duration of 28 ns was obtained with a repetition rate of 24 kHz, resulting in a peak power of 729 W.

  1. JPRS Report, Science & Technology China: Energy

    DTIC Science & Technology

    1992-10-26

    The Xiaolongtan power plant is located at the Xiaolongtan open-cut coal mine and uses its coal directly from the conveyer belt. The first...which has resulted in high coal consumption, large power use by the plants, and low full-staff labor productivity and economic results. Examine coal ...consuming an additional 70 million tons-plus of raw coal . Examine the power used at power plants. The efficiency of the blowers, water pumps,

  2. Efficient bone cutting with the novel diode pumped Er:YAG laser system: in vitro investigation and optimization of the treatment parameters

    NASA Astrophysics Data System (ADS)

    Stock, Karl; Diebolder, Rolf; Hausladen, Florian; Hibst, Raimund

    2014-03-01

    It is well known that flashlamp pumped Er:YAG lasers allow efficient bone ablation due to strong absorption at 3μm by water. Preliminary experiments revealed also a newly developed diode pumped Er:YAG laser system (Pantec Engineering AG) to be an efficient tool for use for bone surgery. The aim of the present in vitro study is the investigation of a new power increased version of the laser system with higher pulse energy and optimization of the treatment set-up to get high cutting quality, efficiency, and ablation depth. Optical simulations were performed to achieve various focus diameters and homogeneous beam profile. An appropriate experimental set-up with two different focusing units, a computer controlled linear stage with sample holder, and a shutter unit was realized. By this we are able to move the sample (slices of pig bone) with a defined velocity during the irradiation. Cutting was performed under appropriate water spray by moving the sample back and forth. After each path the ablation depth was measured and the focal plane was tracked to the actual bottom of the groove. Finally, the cuts were analyzed by light microcopy regarding the ablation quality and geometry, and thermal effects. In summary, the results show that with carefully adapted irradiation parameters narrow and deep cuts (ablation depth > 6mm, aspect ratio approx. 20) are possible without carbonization. In conclusion, these in vitro investigations demonstrate that high efficient bone cutting is possible with the diode pumped Er:YAG laser system using appropriate treatment set-up and parameters.

  3. Performance of continuous wave and acousto-optically Q-switched Tm, Ho: YAP laser pumped by diode laser

    NASA Astrophysics Data System (ADS)

    Li, Guoxing; Xie, Wenqiang; Yang, Xining; Zhang, Ziqiu; Zhang, Hongda; Zhang, Liang

    2018-02-01

    A two-end-pumped a-cut Tm(0.5%), Ho(0.5%):YAP laser output at 2119nm is reported under cryogenic temperature. The maximum output power reached to 7.76W with the incident pump power of 24.2W in CW mode. With the acousto-optically Q-switch, an average power of 7.3W can be obtained, when the pulse repetition frequency was 7.5 kHz. The corresponding optical-to-optical conversion efficiency was 30.2% and the slope efficiency was 31.4%. Then, the laser output characteristics in the repetition frequency of 7.5 kHz and 10kHz were researched. The output power, the optical-to-optical conversion efficiency and slope efficiency were increased with the increase of the repetition frequency. In the same repetition frequency, the pulse duration was decreasing with the growth of the incident pump power.

  4. High output power of differently cut Nd:MgO:LiTaO3 CW lasers

    NASA Astrophysics Data System (ADS)

    Sun, D. H.; Liu, S. D.; Wang, D. Z.; Sang, Y. H.; Kang, X. L.; Liu, H.; Bi, Y.; Yan, B. X.; He, J. L.; Wang, J. Y.

    2013-04-01

    A high-quality Nd3+ and Mg2+ co-doped LiTaO3 (Nd:MgO:LT) crystal was grown by the Czochralski method. The polarized absorption spectra and fluorescence spectra were studied, and the absorption cross section was calculated by Judd-Ofelt (J-O) theory. The laser performance with different sample cuts of the crystal was investigated for the first time, and it was found that Nd:MgO:LT crystal with different cutting directions (a and c) exhibits different laser properties. By optimizing a partial reflectivity mirror in the laser experimental setting, a high continuous wave output power of 3.58 W was obtained at 1092 and 1076 nm with an optical-to-optical conversion efficiency of 22.78% and slope efficiency of 26.06%. The results indicate that Nd:MgO:LT crystal is a promising candidate for the manufacture of Nd3+ doped periodically poled MgO:LiTaO3 crystal (Nd:PPMgOLT), which should have considerable applications in self-frequency doubling and optical parametric oscillation laser devices.

  5. High-power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Ryba, Tracey; Holzer, Marco

    2012-03-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With about 2,000 high power disk lasers installations, and a demand upwards of 1,000 lasers per year, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain recent advances in disk laser technology and process relevant features of the laser, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  6. Megawatt level UV output from [110] Cr⁴⁺:YAG passively Q-switched microchip laser.

    PubMed

    Bhandari, Rakesh; Taira, Takunori

    2011-11-07

    Recent development of megawatt peak power, giant pulse microchip lasers has opened new opportunities for efficient wavelength conversion, provided the output of the microchip laser is linearly polarized. We obtain > 2 MW peak power, 260 ps, 100 Hz pulses at 266 nm by fourth harmonic conversion of a linearly polarized Nd:YAG microchip laser that is passively Q-switched with [110] cut Cr⁴⁺:YAG. The SHG and FHG conversion efficiencies are 85% and 51%, respectively.

  7. Absorption generator for solar-powered air-conditioner

    NASA Technical Reports Server (NTRS)

    Lowen, D. J.; Murray, J. G.

    1977-01-01

    Device passes solar-heated water through coils. Hot lithium Bromide/Water solution leaves through central stand-pipe, and water vapor leaves through refrigerant outlet at top. Matching generation temperature to collector efficiency helps cut costs.

  8. LD-pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser operating at 1166 and 1176 nm

    NASA Astrophysics Data System (ADS)

    Sun, Xinzhi; Zhang, Xihe; Li, Shutao; Dong, Yuan

    2017-12-01

    A laser diode pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser is experimentally investigated. Simultaneous pulse outputs at 1166 nm and 1176 nm corresponding to the Raman shifts of 807 and 882 cm-1 are acquired. At the pulse repetition frequency (PRF) of 20 kHz, the maximum output power is 103 mW at 1166 nm with the incident pump power of 2.31 W, while 1176 nm output power reaches 530 mW with the incident pump power of 4.11 W. The maximum output power of Raman laser is 570 mW with the incident pump power of 4.11 W and the PRF of 30 kHz. With the incident pump power of 3.67 W and the PRF of 30 kHz, the highest diode-to-Stokes optical conversion efficiency of 14.9% is obtained with the corresponding average output power of 547 mW.

  9. Energy Efficient Engine acoustic supporting technology report

    NASA Technical Reports Server (NTRS)

    Lavin, S. P.; Ho, P. Y.

    1985-01-01

    The acoustic development of the Energy Efficient Engine combined testing and analysis using scale model rigs and an integrated Core/Low Spool demonstration engine. The scale model tests show that a cut-on blade/vane ratio fan with a large spacing (S/C = 2.3) is as quiet as a cut-off blade/vane ratio with a tighter spacing (S/C = 1.27). Scale model mixer tests show that separate flow nozzles are the noisiest, conic nozzles the quietest, with forced mixers in between. Based on projections of ICLS data the Energy Efficient Engine (E3) has FAR 36 margins of 3.7 EPNdB at approach, 4.5 EPNdB at full power takeoff, and 7.2 EPNdB at sideline conditions.

  10. Cascaded c-cut Nd:YVO4 self-Raman laser operation with a single 259 cm-1 shift

    NASA Astrophysics Data System (ADS)

    Guo, Junhong; Zhu, Haiyong; Duan, Yanmin; Xu, Changwen; Ruan, Xiukai; Cui, Guihua; Yan, Lifen

    2017-03-01

    A cascaded c-cut Nd:YVO4 crystal self-Raman operation was demonstrated with a Raman shift of 259 cm-1. The Stokes oscillation with a primary Raman shift of 890 cm-1 was suppressed and a cascaded self-Raman with a single Raman shift of 259 cm-1 was realized based on suitable coating design. At an incident pump power of 13.3 W, the second Stokes at 1129 nm was obtained as the main output laser and the output power was about 0.81 W. As the incident pump power increased, dual Stokes at 1129 and 1163 nm were obtained. A maximum output power of up to 1.0 W with a conversion efficiency of 6.7% was achieved at an incident pump power of 14.9 W and a pulse repetition frequency of 15 kHz.

  11. Recent development of disk lasers at TRUMPF

    NASA Astrophysics Data System (ADS)

    Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Ackermann, Matthias; Bauer, Dominik; Scharun, Michael; Killi, Alexander

    2016-03-01

    The disk laser is one of the most important laser concepts for today's industrial laser market. Offering high brilliance at low cost, high optical efficiency and great application flexibility the disk laser paved the way for many industrial laser applications. Over the past years power and brightness increased and the disk laser turned out to be a very versatile laser source, not only for welding but also for cutting. Both, the quality and speed of cutting are superior to CO2-based lasers for a vast majority of metals, and, most important, in a broad thickness range. In addition, due to the insensitivity against back reflections the disk laser is well suited for cutting highly reflective metal such as brass or copper. These advantages facilitate versatile cutting machines and explain the high and growing demand for disk lasers for applications besides welding applications that can be observed today. From a today's perspective the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over fiber lasers or direct diode lasers. This paper will give insight in the latest progress in kilowatt class cw disk laser technology at TRUMPF and will discuss recent power scaling results as well.

  12. Optimisation Of Cutting Parameters Of Composite Material Laser Cutting Process By Taguchi Method

    NASA Astrophysics Data System (ADS)

    Lokesh, S.; Niresh, J.; Neelakrishnan, S.; Rahul, S. P. Deepak

    2018-03-01

    The aim of this work is to develop a laser cutting process model that can predict the relationship between the process input parameters and resultant surface roughness, kerf width characteristics. The research conduct is based on the Design of Experiment (DOE) analysis. Response Surface Methodology (RSM) is used in this work. It is one of the most practical and most effective techniques to develop a process model. Even though RSM has been used for the optimization of the laser process, this research investigates laser cutting of materials like Composite wood (veneer)to be best circumstances of laser cutting using RSM process. The input parameters evaluated are focal length, power supply and cutting speed, the output responses being kerf width, surface roughness, temperature. To efficiently optimize and customize the kerf width and surface roughness characteristics, a machine laser cutting process model using Taguchi L9 orthogonal methodology was proposed.

  13. kW-class direct diode laser for sheet metal cutting based on commercial pump modules

    NASA Astrophysics Data System (ADS)

    Witte, U.; Schneider, F.; Holly, C.; Di Meo, A.; Rubel, D.; Boergmann, F.; Traub, M.; Hoffmann, D.; Drovs, S.; Brand, T.; Unger, A.

    2017-02-01

    We present a direct diode laser with an optical output power of more than 800 W ex 100 μm with an NA of 0.17. The system is based on 6 commercial pump modules that are wavelength stabilized by use of VBGs. Dielectric filters are used for coarse and dense wavelength multiplexing. Metal sheet cutting tests were performed in order to prove system performance and reliability. Based on a detailed analysis of loss mechanisms, we show that the design can be easily scaled to output powers in the range of 2 kW and to an optical efficiency of 80%.

  14. Thermal lensing and microchip laser performance of N g-cut Tm3+:KY(WO4)2 crystal

    NASA Astrophysics Data System (ADS)

    Gaponenko, M. S.; Loiko, P. A.; Gusakova, N. V.; Yumashev, K. V.; Kuleshov, N. V.; Pavlyuk, A. A.

    2012-09-01

    The thermal lensing effect was characterized in the diode-pumped monoclinic N g-cut Tm:KYW crystal under laser operation conditions at the wavelength of 1.94 μm. The thermal lens was found to be slightly astigmatic; its optical power D being positive for rays lying in all meridional planes. Thermal lens sensitivity factors M= dD/ dP abs equal 11.8 m-1/W and 8.8 m-1/W (with respect to the absorbed pump power P abs) for principal meridional planes containing N p and N m axes. Nearly athermal behavior of N g-cut crystal is associated with the mutual compensation of different impacts to the thermal lens optical power that arise from temperature dependence of the refractive index dn/ dT and anisotropic thermal expansion. It was utilized to produce passively cooled diode-pumped 0.65 W cw Tm:KYW microchip laser with slope efficiency of 44 % and low thermo-optic aberrations.

  15. Spectral and power characteristics of a 5% Tm : KLu(WO4)2 Nm-cut minislab laser passively Q-switched by a Cr2+ : ZnSe crystal

    NASA Astrophysics Data System (ADS)

    Vatnik, S. M.; Vedin, I. A.; Kurbatov, P. F.; Smolina, E. A.; Pavlyuk, A. A.; Korostelin, Yu. V.; Skasyrsky, Ya. K.

    2017-12-01

    Laser characteristics of a 5%Tm : KLu(WO4)2 Nm-cut minislab laser passively Q-switched by a Cr2+ : ZnSe saturable absorber are presented. At a pump power of 21 W, the average laser power at a wavelength of 1.91 μm was 3.2 W (pulse duration 35 ns, pulse energy 0.3 mJ). The maximum slope efficiency of the laser in the Q-switched regime was 31%; the loss in power with respect to the cw regime did not exceed 17%. At pump powers above 15 W, the dependence of the output power in the Q-switched regime on the pump power considerably differed from linear, which was explained by the formation of a thermal lens in the saturable absorber volume. The experimental energies and durations of laser pulses well agree with the values calculated from rate equations.

  16. Small gas-turbine units for the power industry: Ways for improving the efficiency and the scale of implementation

    NASA Astrophysics Data System (ADS)

    Kosoi, A. S.; Popel', O. S.; Beschastnykh, V. N.; Zeigarnik, Yu. A.; Sinkevich, M. V.

    2017-10-01

    Small power units (<1 MW) see increasing application due to enhanced growth of the distributed power generation and smart power supply systems. They are usually used for feeding facilities whose connection to centralized networks involves certain problems of engineering or economical nature. Small power generation is based on a wide range of processes and primary sources, including renewable and local ones, such as nonconventional hydrocarbon fuel comprising associated gas, biogas, coalmine methane, etc. Characteristics of small gas-turbine units (GTU) that are most widely available on the world market are reviewed. The most promising lines for the development of the new generation of small GTUs are examined. Special emphasis is placed on the three lines selected for improving the efficiency of small GTUs: increasing the fuel efficiency, cutting down the maintenance cost, and integration with local or renewable power sources. It is demonstrated that, as to the specific fuel consumption, small GTUs of the new generation can have an efficiency 20-25% higher than those of the previous generation, require no maintenance between overhauls, and can be capable of efficient integration into intelligent electrical networks with power facilities operating on renewable or local power sources.

  17. Laser cutting of steel plates up to 100 mm in thickness with a 6-kW fiber laser for application to dismantling of nuclear facilities

    NASA Astrophysics Data System (ADS)

    Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Seon, Sangwoo; Kim, Taek-Soo; Lee, Lim; Lee, Jonghwan

    2018-01-01

    A cutting study with a high-power ytterbium-doped fiber laser was conducted for the dismantling of nuclear facilities. Stainless steel and carbon steel plates of various thicknesses were cut at a laser power of 6-kW. Despite the use of a low output of 6-kW, the cutting was successful for both stainless steel and carbon steel plates of up to 100 mm in thickness. In addition, the maximum cutting speeds against the thicknesses were obtained to evaluate the cutting performance. As representative results, the maximum cutting speeds for a 60-mm thickness were 72 mm/min for the stainless steel plates and 35 mm/min for the carbon steel plates, and those for a 100-mm thickness were 7 mm/min for stainless steel and 5 mm/min for carbon steel plates. These results show an efficient cutting capability of about 16.7 mm by kW, whereas other groups have shown cutting capabilities of ∼10 mm by kW. Moreover, the maximum cutting speeds were faster for the same thicknesses than those from other groups. In addition, the kerf widths of 60-mm and 100-mm thick steels were also obtained as another important parameter determining the amount of secondary waste. The front kerf widths were ∼1.0 mm and the rear kerf widths were larger than the front kerf widths but as small as a few millimeters.

  18. FY2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system tomore » improve fuel efficiency through research in more efficient TDSs.« less

  19. NREL's Work for the U.S. Navy Illuminates Energy and Cost Savings | News

    Science.gov Websites

    load controls and whole-building energy efficiency retrofits as good investments for the Navy. " Program Director Steve Gorin said. Advanced power strips, a plug load control technology that cuts power and an office building with capacity for roughly 100 staff. While plug load savings depend on what can

  20. Cutting efficiency of apical preparation using ultrasonic tips with microprojections: confocal laser scanning microscopy study.

    PubMed

    Kwak, Sang-Won; Moon, Young-Mi; Yoo, Yeon-Jee; Baek, Seung-Ho; Lee, WooCheol; Kim, Hyeon-Cheol

    2014-11-01

    The purpose of this study was to compare the cutting efficiency of a newly developed microprojection tip and a diamond-coated tip under two different engine powers. The apical 3-mm of each root was resected, and root-end preparation was performed with upward and downward pressure using one of the ultrasonic tips, KIS-1D (Obtura Spartan) or JT-5B (B&L Biotech Ltd.). The ultrasonic engine was set to power-1 or -4. Forty teeth were randomly divided into four groups: K1 (KIS-1D / Power-1), J1 (JT-5B / Power-1), K4 (KIS-1D / Power-4), and J4 (JT-5B / Power-4). The total time required for root-end preparation was recorded. All teeth were resected and the apical parts were evaluated for the number and length of cracks using a confocal scanning micrscope. The size of the root-end cavity and the width of the remaining dentin were recorded. The data were statistically analyzed using two-way analysis of variance and a Mann-Whitney test. There was no significant difference in the time required between the instrument groups, but the power-4 groups showed reduced preparation time for both instrument groups (p < 0.05). The K4 and J4 groups with a power-4 showed a significantly higher crack formation and a longer crack irrespective of the instruments. There was no significant difference in the remaining dentin thickness or any of the parameters after preparation. Ultrasonic tips with microprojections would be an option to substitute for the conventional ultrasonic tips with a diamond coating with the same clinical efficiency.

  1. Cutting efficiency of apical preparation using ultrasonic tips with microprojections: confocal laser scanning microscopy study

    PubMed Central

    Kwak, Sang-Won; Moon, Young-Mi; Yoo, Yeon-Jee; Baek, Seung-Ho; Lee, WooCheol

    2014-01-01

    Objectives The purpose of this study was to compare the cutting efficiency of a newly developed microprojection tip and a diamond-coated tip under two different engine powers. Materials and Methods The apical 3-mm of each root was resected, and root-end preparation was performed with upward and downward pressure using one of the ultrasonic tips, KIS-1D (Obtura Spartan) or JT-5B (B&L Biotech Ltd.). The ultrasonic engine was set to power-1 or -4. Forty teeth were randomly divided into four groups: K1 (KIS-1D / Power-1), J1 (JT-5B / Power-1), K4 (KIS-1D / Power-4), and J4 (JT-5B / Power-4). The total time required for root-end preparation was recorded. All teeth were resected and the apical parts were evaluated for the number and length of cracks using a confocal scanning micrscope. The size of the root-end cavity and the width of the remaining dentin were recorded. The data were statistically analyzed using two-way analysis of variance and a Mann-Whitney test. Results There was no significant difference in the time required between the instrument groups, but the power-4 groups showed reduced preparation time for both instrument groups (p < 0.05). The K4 and J4 groups with a power-4 showed a significantly higher crack formation and a longer crack irrespective of the instruments. There was no significant difference in the remaining dentin thickness or any of the parameters after preparation. Conclusions Ultrasonic tips with microprojections would be an option to substitute for the conventional ultrasonic tips with a diamond coating with the same clinical efficiency. PMID:25383346

  2. Power Amplifier Module with 734-mW Continuous Wave Output Power

    NASA Technical Reports Server (NTRS)

    Fung, King Man; Samoska, Lorene A.; Kangaslahti, Pekka P.; Lamgrigtsen, Bjorn H.; Goldsmith, Paul F.; Lin, Robert H.; Soria, Mary M.; Cooperrider, Joelle T.; Micovic, Moroslav; Kurdoghlian, Ara

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers-to generate higher frequency signals in nonlinear Schottky diode-based LO sources. By advancing PA technology, the LO system performance can be increased with possible cost reductions compared to current GaAs PAs. High-power, high-efficiency GaN PAs are cross-cutting and can enable more efficient local oscillator distribution systems for new astrophysics and planetary receivers and heterodyne array instruments. It can also allow for a new, electronically scannable solid-state array technology for future Earth science radar instruments and communications platforms.

  3. Selection of the most influential factors on the water-jet assisted underwater laser process by adaptive neuro-fuzzy technique

    NASA Astrophysics Data System (ADS)

    Nikolić, Vlastimir; Petković, Dalibor; Lazov, Lyubomir; Milovančević, Miloš

    2016-07-01

    Water-jet assisted underwater laser cutting has shown some advantages as it produces much less turbulence, gas bubble and aerosols, resulting in a more gentle process. However, this process has relatively low efficiency due to different losses in water. It is important to determine which parameters are the most important for the process. In this investigation was analyzed the water-jet assisted underwater laser cutting parameters forecasting based on the different parameters. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for water-jet assisted underwater laser cutting parameters forecasting. Three inputs are considered: laser power, cutting speed and water-jet speed. The ANFIS process for variable selection was also implemented in order to detect the predominant factors affecting the forecasting of the water-jet assisted underwater laser cutting parameters. According to the results the combination of laser power cutting speed forms the most influential combination foe the prediction of water-jet assisted underwater laser cutting parameters. The best prediction was observed for the bottom kerf-width (R2 = 0.9653). The worst prediction was observed for dross area per unit length (R2 = 0.6804). According to the results, a greater improvement in estimation accuracy can be achieved by removing the unnecessary parameter.

  4. Simultaneous dual-wavelength lasing at 1047 and 1053 nm and wavelength tuning to 1072 nm in a diode-pumped a-cut Nd : LiYF4 laser

    NASA Astrophysics Data System (ADS)

    Lin, Zhi; Wang, Yi; Xu, Bin; Cheng, Yongjie; Xu, Huiying; Cai, Zhiping

    2015-12-01

    We report on diode-end-pumped a-cut Nd:YLF laser on F→I transition. In a free-running regime, using an output coupler with a radius of curvature of 1000 mm, we obtain dual-wavelength laser operation at both π-polarized 1047 nm and σ-polarized 1053 nm with maximum output power of about 1.25 W and the highest slope efficiency of about 50.9% at pump power of 5.77 W at room temperature, for the first time to our knowledge. Furthermore, using a 0.1-mm glass plate as a wavelength selector, a dual-wavelength laser at 1047 and 1072 nm can also be yielded with the maximum output power of 0.34 W, which has not been reported before.

  5. Implementation Analysis of Cutting Tool Carbide with Cast Iron Material S45 C on Universal Lathe

    NASA Astrophysics Data System (ADS)

    Junaidi; hestukoro, Soni; yanie, Ahmad; Jumadi; Eddy

    2017-12-01

    Cutting tool is the tools lathe. Cutting process tool CARBIDE with Cast Iron Material Universal Lathe which is commonly found at Analysiscutting Process by some aspects numely Cutting force, Cutting Speed, Cutting Power, Cutting Indication Power, Temperature Zone 1 and Temperatur Zone 2. Purpose of this Study was to determine how big the cutting Speed, Cutting Power, electromotor Power,Temperatur Zone 1 and Temperatur Zone 2 that drives the chisel cutting CARBIDE in the Process of tur ning Cast Iron Material. Cutting force obtained from image analysis relationship between the recommended Component Cuting Force with plane of the cut and Cutting Speed obtained from image analysis of relationships between the recommended Cutting Speed Feed rate.

  6. FY 1990/FY 1991 Biennial Budget Descriptive Summaries for the Strategic Defense Initiative Organization

    DTIC Science & Technology

    1989-01-01

    size, weight , power consumption, and radiation hardness, and on software algorithm validity and efficiency. 3. (U) Collection of radar, ctical, and...which have potential to achieve cooling requirements for LWIR sensors with far smaller weight and power penalties. (U) FY1989 Planned Program: o (U...two dollars for every SDI dollar. o (U) Inverted gaili--n arsenide by growing a razor-thin layer of silicon on GaAs and thus cut power loss by two

  7. Optimization of transversal phacoemulsification settings in peristaltic mode using a new transversal ultrasound machine.

    PubMed

    Wright, Dannen D; Wright, Alex J; Boulter, Tyler D; Bernhisel, Ashlie A; Stagg, Brian C; Zaugg, Brian; Pettey, Jeff H; Ha, Larry; Ta, Brian T; Olson, Randall J

    2017-09-01

    To determine the optimum bottle height, vacuum, aspiration rate, and power settings in the peristaltic mode of the Whitestar Signature Pro machine with Ellips FX tip action (transversal). John A. Moran Eye Center Laboratories, University of Utah, Salt Lake City, Utah, USA. Experimental study. Porcine lens nuclei were hardened with formalin and cut into 2.0 mm cubes. Lens cubes were emulsified using transversal and fragment removal time (efficiency), and fragment bounces off the tip (chatter) were measured to determine optimum aspiration rate, bottle height, vacuum, and power settings in the peristaltic mode. Efficiency increased in a linear fashion with increasing bottle height and vacuum. The most efficient aspiration rate was 50 mL/min, with 60 mL/min statistically similar. Increasing power increased efficiency up to 90% with increased chatter at 100%. The most efficient values for the settings tested were bottle height at 100 cm, vacuum at 600 mm Hg, aspiration rate of 50 or 60 mL/min, and power at 90%. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  8. Note: Retrofitting an analog spectrometer for high resolving power in NUV-NIR

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew S.; Batishchev, Oleg V.

    2017-11-01

    We demonstrate how an older spectrometer designed for photographic films can be efficiently retrofitted with a narrow laser-cut slit and a modern μm-pixel-size imaging CMOS camera, yielding sub-pm resolution in the broad near ultraviolet to near infrared (NUV-NIR) spectral range. Resolving power approaching 106 is achieved. Such digital retrofitting of an analog instrument is practical for research and teaching laboratories.

  9. Engaging with ENERGY STAR[R]: How to Increase Student Involvement in Your Energy Management Plan Energy Efficiency in K-12 Schools

    ERIC Educational Resources Information Center

    Grene, Hanna

    2011-01-01

    It is no secret that school budgets are growing smaller, forcing districts to make tough financial choices. Building operating costs drain a massive portion of most districts' budgets. As such, energy efficiency is a powerful tool to cut short- and long-term operating costs, and reductions in energy use. The U.S. Environmental Protection Agency's…

  10. Fabrication of narrow pulse passively Q-switched self-stimulated Raman laser with c-cut Nd:GdVO4

    NASA Astrophysics Data System (ADS)

    Shen, Gao; Li, Zuo-han; Han, Ming

    2016-11-01

    Combining the self-stimulated Raman scattering technology and saturable absorber of Cr4+:YAG, a 1.17 μm c-cut Nd:GdVO4 picosecond Q-switched laser is demonstrated in this paper. With an incident pump power of 10 W, the Q-switched laser with average power of 430 mW for 1.17 μm, pulse width of 270 ps, repetition rate of 13 kHz and the first order Stokes conversion efficiency of 4.3% is obtained. The Q-switched pulse width can be the narrowest in our research. In addition, the yellow laser at 0.58 μm is also achieved by using the LiB3O5 frequency doubling crystal.

  11. Diamond tool wear detection method using cutting force and its power spectrum analysis in ultra-precision fly cutting

    NASA Astrophysics Data System (ADS)

    Zhang, G. Q.; To, S.

    2014-08-01

    Cutting force and its power spectrum analysis was thought to be an effective method monitoring tool wear in many cutting processes and a significant body of research has been conducted on this research area. However, relative little similar research was found in ultra-precision fly cutting. In this paper, a group of experiments were carried out to investigate the cutting forces and its power spectrum characteristics under different tool wear stages. Result reveals that the cutting force increases with the progress of tool wear. The cutting force signals under different tool wear stages were analyzed using power spectrum analysis. The analysis indicates that a characteristic frequency does exist in the power spectrum of the cutting force, whose power spectral density increases with the increasing of tool wear level, this characteristic frequency could be adopted to monitor diamond tool wear in ultra-precision fly cutting.

  12. Diode-pumped microchip Tm:KLu(WO₄)₂ laser with more than 3 W of output power.

    PubMed

    Serres, Josep Maria; Mateos, Xavier; Loiko, Pavel; Yumashev, Konstantin; Kuleshov, Nikolai; Petrov, Valentin; Griebner, Uwe; Aguiló, Magdalena; Díaz, Francesc

    2014-07-15

    A diode-pumped microchip laser containing a quasi-monolithic plano-plano cavity is realized on the basis of a Tm:KLu(WO₄)₂ crystal. The maximum CW output power is 3.2 W (at an absorbed pump power of 6.8 W) and the slope efficiency as high as 50.4%. The laser is operating at 1946 nm in the TEM₀₀ mode with a M²<1.05. Microchip operation with Tm:KLu(WO₄)₂ is, in principle, due to a special crystal cut along the N(g) optical indicatrix axis. This crystal cut possesses positive near-spherical thermal lens that provides the required mode stabilization in the plano-plano cavity. Sensitivity factors of the thermal lens, "generalized" thermo-optic coefficients and constants describing the photoelastic effect are determined for the monolithic Tm:KLu(WO₄)₂ crystal.

  13. Efficient broadband near-infrared quantum cutting for solar cells.

    PubMed

    Teng, Yu; Zhou, Jiajia; Liu, Xiaofeng; Ye, Song; Qiu, Jianrong

    2010-04-26

    Yb(2+) and Yb(3+) co-activated luminescent material that can cut one photon in ultraviolet and visible region into multi NIR photons could be used as a downconversion luminescent convertor in front of crystalline silicon solar cell panels to reduce thermalization loss of the solar cell. After a direct excitation of Yb(2+) ions, an intense Yb(3+) luminescence is observed based on a cooperative energy transfer process. The energy transfer process is discussed according to the dependence of Yb(3+) luminescence intensity on the excitation power and the ambient temperature.

  14. Determining optimal torsional ultrasound power for cataract surgery with automatic longitudinal pulses at maximum vacuum ex vivo.

    PubMed

    Ronquillo, Cecinio C; Zaugg, Brian; Stagg, Brian; Kirk, Kevin R; Gupta, Isha; Barlow, William R; Pettey, Jeff H; Olson, Randall J

    2014-12-01

    To determine the optimal longitudinal power settings for Infiniti OZil Intelligent Phaco (IP) at varying torsional amplitude settings; and to test the hypothesis that increasing longitudinal power is more important at lower torsional amplitudes to achieve efficient phacoemulsification. Laboratory investigation. setting: John A. Moran Eye Center, University of Utah, Salt Lake City, Utah. procedure: Individual porcine nuclei were fixed in formalin, then cut into 2.0 mm cubes. Lens cube phacoemulsification was done using OZil IP at 60%, 80%, and 100% torsional amplitude with 0%, 10%, 20%, 30%, 50%, 75%, or 100% longitudinal power. All experiments were done using a 20 gauge 0.9 mm bent reverse bevel phaco tip at constant vacuum (550 mm Hg), aspiration rate (40 mL/min), and bottle height (50 cm). main outcome measure: Complete lens particle phacoemulsification (efficiency). Linear regression analysis showed a significant increase in efficiency with increasing longitudinal power at 60% torsional amplitude (R(2) = 0.7269, P = .01) and 80% torsional amplitude (R(2) = 0.6995, P = .02) but not at 100% amplitude (R(2) = 0.3053, P = .2). Baseline comparison of 60% or 80% vs 100% torsional amplitude without longitudinal power showed increased efficiency at 100% (P = .0004). Increasing longitudinal power to 20% abolished the efficiency difference between 80% vs 100% amplitudes. In contrast, 75% longitudinal power abolished the efficiency difference between 60% vs 100% torsional amplitudes. Results suggest that longitudinal power becomes more critical at increasing phacoemulsification efficiencies at torsional amplitudes less than 100%. Increasing longitudinal power does not further increase efficiency at maximal torsional amplitudes. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Study on boring hardened materials dryly by ultrasonic vibration cutter

    NASA Astrophysics Data System (ADS)

    Zhang, Jiangzhong; Zhang, Heng; Zhang, Yue

    2011-05-01

    It has been one of the difficulties that high-precision hole on hardened materials is machined. The supersonic vibration boring acoustic system in the lathe in which supersonic wave energy is applied on tool is introduced to create pulse power on the cutting process. The separation vibration cutting is achieved by the pulse force. The comparative tests on boring accuracy and surface quality are carried. The quality of surface machined by this method is compared to that by grinding. This cutting is the green cutting. The boring process system is stability. Under the condition that the cutting speed is less than or equal to 1/3 the tool vibration speed, the cutting force is pulse force and the Cutting energy is of high concentration in time, space and direction. The pulse energy effects on the cutting unit in less than one ten-thousandth second. Traditional cutting of irregular movement elastic compression are eliminated. The cutting force is greatly reduced. The cutting temperature is at room temperature. The tool life is greatly increased. Shape precision and surface quality is greatly improved. The regulations of the ultrasonic vibration boring dry cutting of hardened material are also summarized. The test results show that the ultrasonic vibration cutting tool boring is of very superior cutting mechanism and is a high-precision deep-hole machining of hardened materials, efficient cutting methods.

  16. An integrated condition-monitoring method for a milling process using reduced decomposition features

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Wu, Bo; Wang, Yan; Hu, Youmin

    2017-08-01

    Complex and non-stationary cutting chatter affects productivity and quality in the milling process. Developing an effective condition-monitoring approach is critical to accurately identify cutting chatter. In this paper, an integrated condition-monitoring method is proposed, where reduced features are used to efficiently recognize and classify machine states in the milling process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition, and Shannon power spectral entropy is calculated to extract features from the decomposed signals. Principal component analysis is adopted to reduce feature size and computational cost. With the extracted feature information, the probabilistic neural network model is used to recognize and classify the machine states, including stable, transition, and chatter states. Experimental studies are conducted, and results show that the proposed method can effectively detect cutting chatter during different milling operation conditions. This monitoring method is also efficient enough to satisfy fast machine state recognition and classification.

  17. Optimizing cutting conditions on sustainable machining of aluminum alloy to minimize power consumption

    NASA Astrophysics Data System (ADS)

    Nur, Rusdi; Suyuti, Muhammad Arsyad; Susanto, Tri Agus

    2017-06-01

    Aluminum is widely utilized in the industrial sector. There are several advantages of aluminum, i.e. good flexibility and formability, high corrosion resistance and electrical conductivity, and high heat. Despite of these characteristics, however, pure aluminum is rarely used because of its lacks of strength. Thus, most of the aluminum used in the industrial sectors was in the form of alloy form. Sustainable machining can be considered to link with the transformation of input materials and energy/power demand into finished goods. Machining processes are responsible for environmental effects accepting to their power consumption. The cutting conditions have been optimized to minimize the cutting power, which is the power consumed for cutting. This paper presents an experimental study of sustainable machining of Al-11%Si base alloy that was operated without any cooling system to assess the capacity in reducing power consumption. The cutting force was measured and the cutting power was calculated. Both of cutting force and cutting power were analyzed and modeled by using the central composite design (CCD). The result of this study indicated that the cutting speed has an effect on machining performance and that optimum cutting conditions have to be determined, while sustainable machining can be followed in terms of minimizing power consumption and cutting force. The model developed from this study can be used for evaluation process and optimization to determine optimal cutting conditions for the performance of the whole process.

  18. Wireless energy transfer: Dielectric lens antennas for beam shaping in wireless power-transfer applications

    NASA Astrophysics Data System (ADS)

    Gonçalves, Ricardo; Carvalho, Nuno B.; Pinho, Pedro

    2017-02-01

    In the current contest of wireless systems, the last frontier remains the cut of the power cord. In that sense, the interest over wireless energy transfer technologies in the past years has grown exponentially. However, there are still many challenges to be overcome in order to enable wireless energy transfer full potential. One of the focus in the development of such systems is the design of very-high-gain, highly efficient, antennas that can compensate for the propagation loss of radio signals over the air. In this paper, we explore the design and manufacturing process of dielectric lenses, fabricated using a professional-grade desktop 3D printer. Lens antennas are used in order to increase beam efficiency and therefore maximize the efficiency of a wireless power-transfer system operating at microwave frequencies in the Ku band. Measurements of two fabricated prototypes showcase a large directivity, as predicted with simulations. xml:lang="fr"

  19. Solar updraft power generator with radial and curved vanes

    NASA Astrophysics Data System (ADS)

    Hafizh, Hadyan; Hamsan, Raziff; Zamri, Aidil Azlan Ahmad; Keprawi, Mohamad Fairuz Mohamad; Shirato, Hiromichi

    2018-02-01

    Solar radiation is the largest source of energy available on earth and the solar updraft power generator (SUPG) is a renewable energy facility capable of harnessing its abundant power. Unlike the conventional wind turbines that harness natural wind in the atmosphere and often encounter with the intermittent issue or even complete cut-off from airflow, the SUPG creates artificial wind as a result of solar-induced convective flows. However, the SUPG has an inherent low total efficiency due to the conversion of thermal energy into pressure energy. Acknowledging the low efficiency and considering its potential as a renewable energy facility, the current work aims to increase the total efficiency by installing a series of guide walls inside the collector. Two types of guide walls were used i.e. radial and curved vanes. The result with curved vanes showed that the updraft velocity is higher compare to those without vanes. About 18% and 64% improvement of updraft velocity and mechanical power were attained respectively. Furthermore, it was observed that the role of radial vanes configuration was more to produce a smooth updraft velocity profile rather than increasing the total efficiency.

  20. A Project Assessment of Stabilizing System of WT Generation using Rechargeable Battery

    NASA Astrophysics Data System (ADS)

    Kojima, Yasuhiro; Takano, Tomihiro; Tanikawa, Ryoichi; Takagi, Tetsuro; Hirooka, Koutaro; Kumagai, Sadatoshi

    The expansion of the renewable energy introduction is examined as measures for controlling global warming. Wind power generation is expected as effective power resource, but the negative impact from the difficulty of an unstable output is concerned. In recent years, WT generation with contract of cut-of with shorting adjusting power and with rechargeable battery for stabilizing control are examined, but the introduction has not been accelerated yet because there is an influence in WT generation entrepreneur's business. In this paper, we make a brief summary of relation between the fluctuation of wind power generation and stability of electric power operation, and two types of approach; cut-off contract and stabilization using rechargeable battery. For the stabilization using battery, there are two methods, one is reduction control and the other is constant control. We propose a new control method for constant control based on profit optimization considering WT generation forecast and its risk of deviation. We also propose the estimation method for the .limitation of battery installation. Simulation results show the efficiency of our proposed methods.

  1. Features of precision slot cutting with a large number of calibers using the radiation of a single-mode fiber laser

    NASA Astrophysics Data System (ADS)

    Vitshas, A. A.; Zelentsov, A. G.; Lopota, V. A.; Menakhin, V. P.; Panchenko, V. P.; Soroka, A. M.

    2014-02-01

    The results of the experimental and theoretical investigations aimed at determining the characteristics and features of precision slot cutting with a large number of calibers in sheets of low-carbon steel using the radiation of a single-mode fiber laser with pulse power up to 1 kW are presented. The description of the experimental installation, performance conditions of investigations, and variable parameters are described. Precision cutting of low-carbon steel up to 10 mm with the number of calibers ranging from 30 to 70 at a slot width of ≈60 μm is performed for the first time. Such cutting occurs only in the pulsed-periodic mode using single-mode radiation with a pulse duration of 2-3 ms, a pulse ratio of 2-4, and oxygen, whose influence differs in principle both in various cut regions over the sheet thickness and from cutting with a CO2 laser. The cutting velocity (100-50 mm/min) of sheet steel up to thicknesses of 10 mm with deep channeling, roughness parameters, hardness of the cut surface, which insignificantly (by ≈20%) exceeds the hardness of untreated steel, the phase structure of steel, and the scales of their varying inside metal are measured. The efficiency (≈3%) of precision cutting and the efficiency of transportation of radiation (25%) in large-caliber slot orifices in the "waveguide" mode are determined by the experimental data. The useful specific energy contribution of the laser radiation is w l = N l/( hbv) ≈ 2 × 1012 J/m2 for all studied thicknesses of sheet samples accurate to 20%. A qualitative model of the laser-oxygen precision cutting with deep channeling, which explains the cyclic and interrupting character of cutting and necessity of using oxygen as the cutting gas, is proposed.

  2. FY2012 Advanced Power Electronics and Electric Motors Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  3. > 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser.

    PubMed

    Bhandari, Rakesh; Taira, Takunori

    2011-09-26

    Megawatt peak power, giant pulse microchip lasers are attractive for wavelength conversion, provided their output is linearly polarized. We use a [110] cut Cr(4+):YAG for passively Q-switched Nd:YAG microchip laser to obtain a stable, linearly polarized output. Further, we optimize the conditions for second harmonic generation at 532 nm wavelength to achieve > 6 MW peak power, 1.7 mJ, 265 ps, 100 Hz pulses with a conversion efficiency of 85%. © 2011 Optical Society of America

  4. FY2010 Annual Progress Report for Advanced Power Electronics and Electric Motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    2011-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  5. The use of mathematics and electric circuit simulator software in the learning process of wireless power transfer for electrical engineering students

    NASA Astrophysics Data System (ADS)

    Habibi, Muhammad Afnan; Fall, Cheikh; Setiawan, Eko; Hodaka, Ichijo; Wijono, Hasanah, Rini Nur

    2017-09-01

    Wireless Power Transfer (WPT) isa technique to deliver the electrical power from the source to the load without using wires or conductors. The physics of WPT is well known and basically learned as a course in high school. However, it is very recent that WPT is useful in practical situation: it should be able to transfer electric power in a significant efficiency. It means that WPT requires not much knowledge to university students but may attract students because of cutting edge technique of WPT. On the other hand, phenomena of WPT is invisible and sometimes difficult to imagine. The objective of this paper is to demonstrate the use of mathematics and an electric circuit simulator using MATHEMATICA software and LT-SPICE software in designing a WPT system application. It brings to a conclusion that the students as well the designer can take the benefit of the proposed method. By giving numerical values to circuit parameters, students acquires the power output and efficiency of WPT system. The average power output as well as the efficiency of the designed WPT which resonance frequency set on the system,leads it to produce high output power and better efficiency.

  6. kW-class direct diode laser for sheet metal cutting based on DWDM of pump modules by use of ultra-steep dielectric filters.

    PubMed

    Witte, U; Schneider, F; Traub, M; Hoffmann, D; Drovs, S; Brand, T; Unger, A

    2016-10-03

    A direct diode laser was built with > 800 W output power at 940 nm to 980 nm. The radiation is coupled into a 100 µm fiber and the NA ex fiber is 0.17. The laser system is based on pump modules that are wavelength stabilized by VBGs. Dense and coarse wavelength multiplexing are realized with commercially available ultra-steep dielectric filters. The electro-optical efficiency is above 30%. Based on a detailed analysis of losses, an improved e-o-efficiency in the range of 40% to 45% is expected in the near future. System performance and reliability were demonstrated with sheet metal cutting tests on stainless steel with a thickness of 4.2 mm.

  7. Development of high-power diode lasers with beam parameter product below 2 mm×mrad within the BRIDLE project

    NASA Astrophysics Data System (ADS)

    Crump, P.; Decker, J.; Winterfeldt, M.; Fricke, J.; Maaßdorf, A.; Erbert, G.; Tränkle, G.

    2015-03-01

    High power broad-area diode lasers are the most efficient source of optical energy, but cannot directly address many applications due to their high lateral beam parameter product BPP = 0.25 × ΘL 95%× W95% (ΘL95% and W95% are emission angle and aperture at 95% power content), with BPP > 3 mm×mrad for W95%~90μm. We review here progress within the BRIDLE project, that is developing diode lasers with BPP < 2 mm×mrad for use in direct metal cutting systems, where the highest efficiencies and powers are required. Two device concepts are compared: narrow-stripe broad-area (NBA) and tapered lasers (TPL), both with monolithically integrated gratings. NBAs use W95% ~ 30 μm to cut-off higher order lateral modes and reduce BPP. TPLs monolithically combine a single mode region at the rear facet with a tapered amplifier, restricting the device to one lateral mode for lowest BPP. TPLs fabricated using ELoD (Extremely Low Divergence) epitaxial designs are shown to operate with BPP below 2mm×mrad, but at cost of low efficiency (<35%, due to high threshold current). In contrast, NBAs operate with BPP < 2 mm×mrad, but maintain efficiency >50% to output of > 7 W, so are currently the preferred design. In studies to further reduce BPP, lateral resonant anti-guiding structures have also been assessed. Optimized anti-guiding designs are shown to reduce BPP by 1 mm×mrad in conventional 90 μm stripe BA-lasers, without power penalty. In contrast, no BPP improvement is observed in NBA lasers, even though their spectrum indicates they are restricted to single mode operation. Mode filtering alone is therefore not sufficient, and further measures will be needed for reduced BPP.

  8. Changes in the cutting efficiency of different types of dental diamond rotary instrument with repeated cuts and disinfection.

    PubMed

    Bae, Jin-Hyuk; Yi, Jaeyoung; Kim, Sungtae; Shim, June-Sung; Lee, Keun-Woo

    2014-01-01

    Cutting efficiency is one of the most important factors to consider when a specific dental diamond rotary instrument is selected. However, the selection of a dental diamond rotary instrument is based on clinical experience rather than any scientific evidence. The purpose of this study was to identify how the cutting efficiency of different types of dental diamond rotary instrument changed with repeated cuts and disinfection. Four types of diamond rotary instrument from 2 dental manufacturers (Shofu, Jin Dental) were investigated with a high-speed air-turbine handpiece. The groups were as follows: S cham group (n=10): chamfer design from Shofu; J cham group (n=10): chamfer design from Jin Dental; S thin group (n=10): thin tapered design from Shofu; J thin group (n=10): thin tapered design from Jin Dental. Changes in the cutting efficiency of diamond rotary instruments on glass ceramic blocks were measured after repeated cuts. Changes in cutting efficiency also were measured for 30 diamond rotary instruments, the same type as those used in group J cham after disinfection with ethylene oxide gas, immersion in solution, or autoclaving. One-way ANOVA, 2-way ANOVA, and repeated-measures ANOVA were used to identify differences in cutting efficiency, in total cutting efficiency, and change trend in cutting efficiency (α=.05). The Tukey honestly significant difference method was used for the post hoc tests. The principal metal components of the diamond rotary instruments were detected with x-ray spectrometry. The mean (standard deviation [SD]) total cutting efficiency after 10 cuts in the 4 groups was in the following order: J cham group (0.210 ± 0.064 g/min) > S cham group (0.170 ± 0.064 g/min) > J thin group (0.130 ± 0.042 g/min) > S thin group (0.010 ± 0.040 g/min) (P<.05).The decrease in the cutting efficiency was greatest after the first cut. The cutting efficiency was not influenced by repeated disinfection. The cutting efficiencies of diamond rotary instruments with different designs and particle sizes showed a decreasing trend after repeated cuts but did not show any change after various disinfecting procedures. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  9. Drilling Holes in Graphite/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Daniels, J. G.; Ledbetter, Frank E., III; Penn, B. G.; White, W. L.

    1986-01-01

    Slurry of silicon carbide powder in water fed onto bit while drilling. Slurry contains about 60 percent silicon carbide by weight. Slurry recirculated by low-power pump. With slurry, dull tools cut as fast as, or faster than, sharp ones. Holes drilled rapidly and efficiently regardless of ply orientation; whether unidirectional, quasi-isotropic symmetrical, or cross-ply.

  10. Blue 450nm high power semiconductor continuous wave laser bars exceeding rollover output power of 80W

    NASA Astrophysics Data System (ADS)

    König, H.; Lell, A.; Stojetz, B.; Ali, M.; Eichler, C.; Peter, M.; Löffler, A.; Strauss, U.; Baumann, M.; Balck, A.; Malchus, J.; Krause, V.

    2018-02-01

    Industrial material processing like cutting or welding of metals is rather energy efficient using direct diode or diode pumped solid state lasers. However, many applications cannot be addressed by established infrared laser technology due to fundamental material properties of the workpiece: For example materials like copper or gold have too low absorption in the near infrared wavelength range to be processed efficiently by use of existing high power laser systems. The huge interest to enable high power kW systems with more suitable wavelengths in the blue spectral range triggered the German funded research project 'BLAULAS': Therein the feasibility and capability of CW operating high power laser bars based on the GaN material system was investigated by Osram and Laserline. High performance bars were enabled by defeating fundamental challenges like material quality as well as the chip processes, both of which differ significantly from well-known IR laser bars. The research samples were assembled on actively cooled heat sinks with hard solder technology. For the first time an output power of 98W per bar at 60A drive current was achieved. Conversion efficiency as high as 46% at 50W output power was demonstrated.

  11. Research on subsurface defects of potassium dihydrogen phosphate crystals fabricated by single point diamond turning technique

    NASA Astrophysics Data System (ADS)

    Tie, Guipeng; Dai, Yifan; Guan, Chaoliang; Chen, Shaoshan; Song, Bing

    2013-03-01

    Potassium dihydrogen phosphate (KDP) crystals, which are widely used in high-power laser systems, are required to be free of defects on fabricated subsurfaces. The depth of subsurface defects (SSD) of KDP crystals is significantly influenced by the parameters used in the single point diamond turning technique. In this paper, based on the deliquescent magnetorheological finishing technique, the SSD of KDP crystals is observed and the depths under various cutting parameters are detected and discussed. The results indicate that no SSD is generated under small parameters and with the increase of cutting parameters, SSD appears and the depth rises almost linearly. Although the ascending trends of SSD depths caused by cutting depth and feed rate are much alike, the two parameters make different contributions. Taking the same material removal efficiency as a criterion, a large cutting depth generates shallower SSD depth than a large feed rate. Based on the experiment results, an optimized cutting procedure is obtained to generate defect-free surfaces.

  12. Power scaling of diode-pumped neodymium yttrium aluminum borate laser

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    1991-01-01

    Preliminary results are presented of the efficient diode-pumped operation of a neodymium yttrium aluminum borate (NYAB) laser at 531.5 nm using two 1-W diode-laser arrays for the pump. With 1380 mW of CW power incident on the crystal, as much as 51 mW of 532.5-nm laser radiation was obtained with the unoptimized cavity. The corresponding optical-to-optical conversion efficiency was 3.7 percent. A plot of the output 531.5 nm vs incident 807 nm pump power is shown. The crystal output power was critically dependent on the rotational and translational adjustment of the NYAB crystal inside the cavity. It is suggested that a crystal cut at the exact phase matching angle, placed in a cavity with proper optimal reflection and transmission mirror coatings, and pumped at proper wavelength can result in higher output power. Thus, the NYAB output power approaches that of a CW intracavity frequency doubled Nd:YAG laser.

  13. High power eye-safe Er3+:YVO4 laser diode-pumped at 976 nm and emitting at 1603 nm

    NASA Astrophysics Data System (ADS)

    Newburgh, G. A.; Dubinskii, M.

    2016-02-01

    We report on the performance of an eye-safe laser based on a Er:YVO4 single crystal, diode-pumped at 976 nm (4I15/2-->4I11/2 transition) and operating at 1603 nm (4I13/2-->4I15/2 transition) with good beam quality. A 10 mm long Er3+:YVO4 slab, cut with its c-axis perpendicular to the laser cavity axis, was pumped in σ-polarization and lased in π-polarization. The laser operated in a quasi-continuous wave (Q-CW) regime with nearly 9 W output power, and with a slope efficiency of about 39% with respect to absorbed power. This is believed to be the highest efficiency and highest power achieved from an Er3+:YVO4 laser pumped in the 970-980 nm absorption band.

  14. Average Power and Brightness Scaling of Diamond Raman Lasers

    DTIC Science & Technology

    2012-01-07

    was also reported [16] for Brewster angled surfaces (63.7 degrees from [110]) at rates similar to the present study when taking into consideration the... Brewster   cut  crystals were investigated.      The  output  power,  conversion  efficiency  and  beam  properties  of  the  DRL  were  investigated as...efficiency are likely to be achieved without the use of thermal  lens  or birefringence compensation.          By using an upgraded 50 W pump laser we have

  15. Isolation of guard cells from fresh epidermis using a piezo-power micro-dissection system with vibration-attenuated needles.

    PubMed

    Terpitz, Ulrich; Zimmermann, Dirk

    2010-01-01

    The Eppendorf Piezo-Power Microdissection (PPMD) system uses a tungsten needle (MicroChisel) oscillating in a forward-backward (vertical) mode to cut cells from surrounding tissue. This technology competes with laser-based dissection systems, which offer high accuracy and precision, but are more expensive and require fixed tissue. In contrast, PPMD systems can dissect freshly prepared tissue, but their accuracy and precision is lower due to unwanted lateral vibrations of the MicroChisel. Especially in tissues where elasticity is high, these vibrations can limit the cutting resolution or hamper the dissection. Here we describe a cost-efficient and simple glass capillary-encapsulation modification of MicroChisels for effective attenuation of lateral vibrations. The use of modified MicroChisels enables accurate and precise tissue dissection from highly elastic material.

  16. Validity of the Miller forensic assessment of symptoms test in psychiatric inpatients.

    PubMed

    Veazey, Connie H; Wagner, Alisha L; Hays, J Ray; Miller, Holly A

    2005-06-01

    This study investigated the validity of the Miller Forensic Assessment of Symptoms Test (M-FAST), a brief measure of malingering, in an inpatient psychiatric sample of 70. Among those patients who also completed the Personality Assessment Inventory (N=44), Total M-FAST score was related in the expected directions to the Personality Assessment Inventory validity scales and indexes, providing evidence for concurrent validity of the M-FAST. With the PAI malingering index used as a criterion, we examined the diagnostic efficiency of the M-FAST and found a cut score of 8 represented the best balance of sensitivity, specificity, positive predictive power, and negative predictive power. Based on this cut-score of 8, 16% of the population was classified as malingering. The M-FAST appears to be an excellent rapid screen for symptom exaggeration in this population and setting.

  17. FY2011 Advanced Power Electronics and Electric Motors Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  18. High Power High Efficiency Diode Laser Stack for Processing

    NASA Astrophysics Data System (ADS)

    Gu, Yuanyuan; Lu, Hui; Fu, Yueming; Cui, Yan

    2018-03-01

    High-power diode lasers based on GaAs semiconductor bars are well established as reliable and highly efficient laser sources. As diode laser is simple in structure, small size, longer life expectancy with the advantages of low prices, it is widely used in the industry processing, such as heat treating, welding, hardening, cladding and so on. Respectively, diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. At this power level, it can have many important applications, such as surgery, welding of polymers, soldering, coatings and surface treatment of metals. But there are some applications, which require much higher power and brightness, e.g. hardening, key hole welding, cutting and metal welding. In addition, High power diode lasers in the military field also have important applications. So all developed countries have attached great importance to high-power diode laser system and its applications. This is mainly due their low performance. In this paper we will introduce the structure and the principle of the high power diode stack.

  19. Re-Building Greensburg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewitt, Steven; Wallach, Daniel; Peterson, Stephanie

    2010-01-01

    Greensburg, KS - A town that was devastated by a tornado in 2007, yet came back to be one of the Nation's most energy-efficient, sustainable communities. Civic leaders and entrepreneurs helped rally residents behind the idea of "greening" Greensburg, inspiring the construction of numerous energy-efficient buildings, some of which generate their own renewable power with solar panels and wind turbines. Many of the town's government buildings use cutting edge energy-saving technologies, saving the local taxpayers' money. Greensburg has demonstrated to the world that any city can reach its energy efficiency and renewable energy goals today using widely available technologies.

  20. Re-Building Greensburg

    ScienceCinema

    Hewitt, Steven; Wallach, Daniel; Peterson, Stephanie

    2017-12-09

    Greensburg, KS - A town that was devastated by a tornado in 2007, yet came back to be one of the Nation's most energy-efficient, sustainable communities. Civic leaders and entrepreneurs helped rally residents behind the idea of "greening" Greensburg, inspiring the construction of numerous energy-efficient buildings, some of which generate their own renewable power with solar panels and wind turbines. Many of the town's government buildings use cutting edge energy-saving technologies, saving the local taxpayers' money. Greensburg has demonstrated to the world that any city can reach its energy efficiency and renewable energy goals today using widely available technologies.

  1. Application of laser processing for disassembly of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Baranov, Gennady A.; Zinchenko, A. V.; Arutyunyan, R. B.

    1998-12-01

    Provision of safety and drop of ecological risk at salvaging of nuclear submarines (NSM) of Russia Navy Forces represents one of the most actual problems of nowadays. It is necessary to remove from services of Russian Navy Forces 170 - 180 nuclear submarines by 2000. At salvaging of Russian Navy Forces NSM it should be necessary to cut out reactor compartments with more than 150 thousand tons of gross weight and to fragment terminal carcasses of submarines with gross weight of 2 million tons. Taking into account overall dimensions of salvaging objects and Euro-standard requirement on the sizes of carcass fragments, for salvaging of one NSM it is necessary to execute more than 10 km of cuts. Using of conventional methods of gas and plasma cutting of ship constructions and equipment polluted with radioactive oxides and bedding of insulation and paint and varnish materials causes contamination of working zones and environment by a mix of radioactive substances and highly toxic combustion products, nomenclature of which includes up to 50 names. Calculations carried out in the Institute of industrial and Marine Medicine have shown that salvage of just one NSM with using of gas and plasma cutting are accompanied by discharge into an environment of up to 11.5 kg of chromium oxides, up to 22.5 kg of manganese oxides, up to 97 kg of carbon oxides and up to 650 kg of nitrogen oxides. Fragmentation of such equipment by a method of directional explosion or hydraulic jet is problematic because of complexity of treated constructions and necessity to create special protective facilities, which will accumulate a bulk of radioactive and toxic discharges, as a consequence of the explosion and spreaded by shock waves and water deluges. In a number of new technological processes the cutting with using of high-power industrial lasers radiation stands out. As compared with other technological processes, laser cutting has many advantages determined by such unique properties of laser radiation as large power, capability to concentrate power on the small area (up to 108 W/cm2), good spatial and temporal controllability. The laser cutting advantages are the following: (1) high efficiency; (2) capability to cut various materials (metals, alloys, plastics, rubber, ceramics) and their compositions (fiber glass plastics, rubber-plastics, cermets) by one installation; (3) minimum pollution in gas and condensed phases; (4) high degree of technological process automation; (5) remote character of cutting and personnel absence in a processing zone.

  2. Investigative study of a diode-pumped continuous-wave Tm:YAP laser as an efficient 1.94 μm pump source

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Jacek; Zendzian, Waldemar; Jabczynski, Jan K.

    2016-12-01

    A detailed study of a Tm:YAP laser in continuous-wave (CW), single-pass end-pumped by a 793 nm diode laser is presented. The laser based on c-cut 3 at. % Tm:YAP crystal was experimentally examined and presented in the dependence on transmittance and radius of curvature of output coupling mirrors. A detailed spectral analysis was presented. The influence of a heat-sink cooling water temperature on the laser performance was studied. At room temperature, for an output coupling transmission of 19.5%, the maximum CW output power of 4.53 W was achieved, corresponding to a slope efficiency of 41.5% and an optical-to-optical conversion efficiency of 25.7% with respect to the incident pump power, respectively. We have shown that the output spectrum at a certain wavelength (e.g. 1940 nm) for a given pump power can be realized via the change of resonator parameters (OC transmittance, mode size).

  3. Effect of Cutting Velocity / Stem Size on the Efficiency of NRCRI Cassave Stem Cutting Machine

    NASA Astrophysics Data System (ADS)

    Ikejiofor, M. C.

    2012-11-01

    The developed NRCRI (National Root Crops Research Institute) cassava stem cutting machine was evaluated. The cassava stems from the variety TME 419 were used. The sizes of the stem used were 1.8, 2.0, 2.3 and 2.6cm. Also, different cutting velocities of 1.20, 1.23 and 1.32m/s were used. The stakes produced has length of 2.5cm. Analysis of variance in RCBD was used to evaluate the effect of the cutting velocity and the stem size on the efficiency of the cutting machine. The result of the analysis showed that the cutting velocity had very highly significant effect, while the stem size had no significant effect at 5% level on the efficiency of the cutting machine. The data obtained also showed that the highest and least cutting efficiencies of 99.42 and 94.71% were obtained with the machine cutting velocities of 1.2 and 1.32m/s respectively.

  4. Efficient extraction of high power THz radiation generated by an ultra-relativistic electron beam in a dielectric loaded waveguide

    DOE PAGES

    Antipov, S.; Baryshev, S. V.; Kostin, R.; ...

    2016-10-03

    Here, we have measured an intense THz radiation produced by a sub-picosecond, relativistic electron bunch in a dielectric loaded waveguide. For efficient THz pulse extraction, the dielectric loaded waveguide end was cut at an angle. For an appropriate choice of angle cut, such antenna converts the TM 01 mode excited in the waveguide into a free-space fundamental Gauss-Hermite mode propagating at an angle with respect to the electron beam trajectory. Simulations show that more than 95% of energy can be extracted using such a simple approach. More than 40 oscillations of about 170 ps long 0.48 THz signal were explicitlymore » measured with an interferometer and 10 μJ of energy per pulse, as determined with a calorimetric energy meter, were delivered outside the electron beamline to an area suitable for THz experiments.« less

  5. Momentum and velocity of the ablated material in laser machining of carbon fiber preforms

    NASA Astrophysics Data System (ADS)

    Mucha, P.; Speker, N.; Weber, R.; Graf, T.

    2013-11-01

    The automation in fabrication of CFRP (carbon-fiber-reinforced plastics) parts demands efficient and low-cost machining technologies. In conventional cutting technologies, tool-wear and low process speeds are some of the reasons for high costs. Thus, the use of lasers is an attractive option for cutting CF-preforms. A typical effect degrading the quality in laser cutting CF-preform is a bulged cutting edge. This effect is assumed to be caused by interaction of the fibers with the ablated material, which leaves the kerf at high velocity. Hence, a method for measuring the momentum and the velocity of the vapor is presented in this article. To measure the momentum of the ablated material, the CF-preform is mounted on a precision scale while cutting it with a laser. The direction of the momentum was determined by measuring the momentum parallel and orthogonal to the CF-preform surface. A change of the direction of the momentum with different cutting-speeds is assessed at constant laser-power. Averaged velocities of the ablation products of up to 300 m/s were determined by measuring the ablated mass and the momentum.

  6. The Effect of Boundary Support and Reflector Dimensions on Inflatable Parabolic Antenna Performance

    NASA Technical Reports Server (NTRS)

    Coleman, Michael J.; Baginski, Frank; Romanofsky, Robert R.

    2011-01-01

    For parabolic antennas with sufficient surface accuracy, more power can be radiated with a larger aperture size. This paper explores the performance of antennas of various size and reflector depth. The particular focus is on a large inflatable elastic antenna reflector that is supported about its perimeter by a set of elastic tendons and is subjected to a constant hydrostatic pressure. The surface accuracy of the antenna is measured by an RMS calculation, while the reflector phase error component of the efficiency is determined by computing the power density at boresight. In the analysis, the calculation of antenna efficiency is not based on the Ruze Equation. Hence, no assumption regarding the distribution of the reflector surface distortions is presumed. The reflector surface is modeled as an isotropic elastic membrane using a linear stress-strain constitutive relation. Three types of antenna reflector construction are considered: one molded to an ideal parabolic form and two different flat panel design patterns. The flat panel surfaces are constructed by seaming together panels in a manner that the desired parabolic shape is approximately attained after pressurization. Numerical solutions of the model problem are calculated under a variety of conditions in order to estimate the accuracy and efficiency of these antenna systems. In the case of the flat panel constructions, several different cutting patterns are analyzed in order to determine an optimal cutting strategy.

  7. Kysat-2 electrical power system design and analysis

    NASA Astrophysics Data System (ADS)

    Molton, Brandon L.

    In 2012, Kentucky Space, LLC was offered the opportunity to design KYSat-2, a CubeSat mission which utilizes an experimental stellar-tracking camera system to test its effectiveness of determining the spacecraft's attitude while on orbit. Kentucky Space contracted Morehead State University to design the electrical power system (EPS) which will handle all power generation and power management and distribution to each of the KYSat-2 subsystems, including the flight computer, communications systems, and the experimental payload itself. This decision came as a result of the success of Morehead State's previous CubeSat mission, CXBN, which utilized a custom built power system and successfully launched in 2011. For the KYSat-2 EPS to be successful, it was important to design a system which was efficient enough to handle the power limitations of the space environment and robust enough to handle the challenges of powering a spacecraft on orbit. The system must be developed with a positive power budget, generating and storing more power than will be stored by KYSat-2 over mission lifetime. To accomplish this goal, the use of deployable solar panels has been utilized to double the usable surface area of the satellite for power generation, effectively doubling the usable power of the satellite system on orbit. The KYSat-2 EPS includes of set of gold plated deployable solar panels utilizing solar cells with a 26% efficiency. Power generated by this system is fed into a shunt regulator circuit which regulates the voltage generated to be stored in a 3-cell series battery pack. Stored powered is maintained using a balancing circuit which increases the efficiency and lifetime of the cells on-orbit. Power distribution includes raw battery voltage, four high-power outputs (two 5V and two 3.3 V) and a low-noise, low power 3.3V output for use with noise sensitive devices, such as microcontrollers. The solar panel deployment system utilizes the nichrome wire which draws current directly from the battery pack which a solid state relay receives logic-high signal. This nichrome wire, while under current, cuts a nylon wire which holds the solar panels in a stowed state prior to deployment on orbit. All logic control, current/voltage measurement, and commanding/communications is handled through the use of a Texas Instruments MSP430 microcontroller over UART serial communications. Results of the completed EPS demonstrated high-power output efficiencies approaching 90% under the highest anticipated loads while on orbit. They showed maximum noise levels of approximately +/- 41.30 mV at 83.10 MHz under maximum load. The low-noise 3.3V outputs displayed very little noise, however, this came at the cost of efficiency showing only 26% efficiency at the outputs when under maximum load. The EPS has been successfully integrated with other KYSat-2 subsystems including the spacecraft flight computer, in which the flight computer was able to communicate with the EPS and carry out its functions while functioning solely off the power distributed by the power system. Finally, testing on the solar panels show that a positive voltage margin was achieved when under light and the deployment system was able to cut the nylon wire completely under control by the EPS.

  8. Management system to a photovoltaic panel based on the measurement of short-circuit currents

    NASA Astrophysics Data System (ADS)

    Dordescu, M.

    2016-12-01

    This article is devoted to fundamental issues arising from operation in terms of increased energy efficiency for photovoltaic panel (PV). By measuring the current from functioning cage determine the current value prescribed amount corresponding to maximum power point results obtained by requiring proof of pregnancy with this method are the maximum energy possible, thus justifying the usefulness of this process very simple and inexpensive to implement in practice. The proposed adjustment method is much simpler and more economical than conventional methods that rely on measuring power cut.

  9. FY2014 Electric Drive Technologies Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  10. FY2016 Electric Drive Technologies Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  11. FY2015 Electric Drive Technologies Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  12. Radially polarized and passively Q-switched Yb-doped fiber laser based on intracavity birefringent mode discrimination

    NASA Astrophysics Data System (ADS)

    Sun, Xuehuan; Wu, Yongxiao; Chen, Sanbin; Li, Jianlang

    2018-05-01

    In this paper, we demonstrated a passive Q-switched ytterbium-doped fiber laser with radially polarized beam emission by using a c-cut YVO4 birefringent crystal as the intracavity polarization discriminator, and a Cr4+:YAG crystal as the saturable absorber and output coupler. The maximum averaged laser power reached 3.89 W with a high slope efficiency of 66.5%. The laser pulse had a peak power of 161 W, 160 ns duration, and 151 kHz repetition rate at the absorbed pump power of 6.48 W. Such a radially polarized pulse would facilitate numerous applications.

  13. Power SiGe Heterojunction Bipolar Transistors (HBTs) Fabricated by Fully Self-Aligned Double Mesa Technology

    NASA Technical Reports Server (NTRS)

    Lu, Liang-Hung; Mohammadi, Saeed; Ma, Zhen-Qiang; Ponchak, George E.; Alterovitz, Samuel A.; Strohm, Karl M.; Luy, Johann-Friedrich; Downey, Alan (Technical Monitor)

    2001-01-01

    Multifinger SiGe HBTs have been fabricated using a novel fully self-aligned double-mesa technology. With the novel process technology, a common-emitter 2x2x30 sq micrometer device exhibits high maximum oscillating frequency (f(sub max)) and cut-off frequency (f(sub T)) of 78 and 37 GHz, respectively. In class-A operation, a multifinger device with l0x2x30 sq micrometer emitter is expected to provide an output power of 25.6 dBm with a gain of 10 dB and a maximum power added efficiency (PAE) of 30.33% at 8 GHz.

  14. Comparison of cutting efficiencies between electric and air-turbine dental handpieces.

    PubMed

    Choi, Charlson; Driscoll, Carl F; Romberg, Elaine

    2010-02-01

    Dentistry is gravitating toward the increased use of electric handpieces. The dental professional should have sufficient evidence to validate the switch from an air-turbine handpiece to an electric handpiece. However, there is little research quantifying the cutting efficiency of electric and air-turbine handpieces. Studies that do quantify cutting efficiency typically do so with only a single material. The purpose of this study was to compare the cutting efficiency of an electric handpiece and an air-turbine handpiece, using various materials commonly used in dentistry. Seven materials: Macor (machinable glass ceramic), silver amalgam, aluminum oxide, zirconium oxide, high noble metal alloy, noble metal alloy, and base metal alloy, were each cut with a bur 220 times; 110 times with an electric handpiece, and 110 times with an air-turbine handpiece. The weight difference of the material was calculated by subtracting the weight of the material after a cut from the weight of the material before the cut. The cutting efficiency was calculated by dividing the weight difference by the duration of the cut (g/s). Data were analyzed by a 2-way analysis of variance followed by Tukey's Honestly Significant Difference (HSD) test (alpha=.05). The electric handpiece cut more efficiently than the air-turbine handpiece (F=3098.9, P<.001). In particular, the high noble metal alloy, silver amalgam, and Macor were cut more efficiently with the electric handpiece (0.0383 +/-0.0002 g/s, 0.0260 +/-0.0002 g/s, and 0.0122 +/-0.0002 g/s, respectively) than with the air-turbine handpiece (0.0125 +/-0.0002 g/s, 0.0142 +/-0.0002 g/s, and 0.008 +/-0.0002 g/s, respectively). The electric handpiece is more efficient at cutting various materials used in dentistry, especially machinable glass ceramic, silver amalgam, and high noble alloy, than the air-turbine handpiece.

  15. On the closed form mechanistic modeling of milling: Specific cutting energy, torque, and power

    NASA Astrophysics Data System (ADS)

    Bayoumi, A. E.; Yücesan, G.; Hutton, D. V.

    1994-02-01

    Specific energy in metal cutting, defined as the energy expended in removing a unit volume of workpiece material, is formulated and determined using a previously developed closed form mechanistic force model for milling operations. Cutting power is computed from the cutting torque, cutting force, kinematics of the cutter, and the volumetric material removal rate. Closed form expressions for specific cutting energy were formulated and found to be functions of the process parameters: pressure and friction for both rake and flank surfaces and chip flow angle at the rake face of the tool. Friction is found to play a very important role in cutting torque and power. Experiments were carried out to determine the effects of feedrate, cutting speed, workpiece material, and flank wear land width on specific cutting energy. It was found that the specific cutting energy increases with a decrease in the chip thickness and with an increase in flank wear land.

  16. 303 nm continuous wave ultraviolet laser generated by intracavity frequency-doubling of diode-pumped Pr3+:LiYF4 laser

    NASA Astrophysics Data System (ADS)

    Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi

    2018-03-01

    We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.

  17. Comparison of cutting efficiency with different diamond burs and water flow rates in cutting lithium disilicate glass ceramic.

    PubMed

    Siegel, Sharon C; Patel, Tejas

    2016-10-01

    This study compared different diamond burs and different water flow rates on the cutting efficiency of sectioning through lithium disilicate glass ceramic. The authors used a standardized cutting regimen with 4 brands of diamond burs to section through lithium disilicate glass ceramic blocks. Twelve diamonds of each brand cut through the blocks in randomized order. In the first part of the study, the authors recorded sectioning rates in millimeters per minute for each diamond bur as a measure of cutting efficiency. In the second part of the study, the authors compared sectioning rates using only 1 brand of diamond bur, with 3 different water flow rates. The authors averaged and compared cutting rates of each brand of diamond bur and the cutting rates for each flow rate using an analysis of variance and determined the differences with a Tukey honest significant difference test. One diamond bur cut significantly slower than the other 3, and one diamond bur cut significantly faster than 2 of the others. The diamond bur cutting efficiency through lithium disilicate glass ceramic with a 20 mL/min water flow rate was significantly higher than 15 mL/min. There are differences in cutting efficiency between diamond burs when sectioning lithium disilicate glass ceramic. Use a minimum of 20 mL/min of water coolant flow when sectioning lithium disilicate glass ceramic with dental diamond burs to maximize cutting efficiency. Recommendations for specific diamond burs with a coarse grit and water flow rate of 20 mL/min can be made when removing or adjusting restorations made from lithium disilicate glass ceramic. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  18. Powered protrusion cutter

    DOEpatents

    Bzorgi, Fariborz M.

    2010-03-09

    An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade. The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.

  19. High power laser downhole cutting tools and systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  20. Reviews on laser cutting technology for industrial applications

    NASA Astrophysics Data System (ADS)

    Muangpool, T.; Pullteap, S.

    2018-03-01

    In this paper, an overview of the laser technology applied for the industrial has been reviewed. In general, this technology was used in several engineering applications such as industrial, medical, science, research sectors, etc. Focusing on the laser technology in the industrial section, it was, normally, employed for many purposes i.e. target marking, welding, drilling, and also cutting. Consequently, the laser cutting technology was, however, divided into three classifications YAG, CO2, and fiber laser, respectively. Each laser types have different advantages and disadvantages depending on the material type. The advantages by using laser cutting compared with the general cutting machines were exploited in terms of narrow kerf, high cutting speed, low heat-affected zone (HAZ), improve efficiency of the cutting process, high accuracy, etc. However, the main objectives from the technology used were increasing of the products and also decreasing the production cost. In the opposite way, some disadvantages of the technology were summarized by complexity to operate, high maintenance cost, and also high power consumption. In Thailand industry, there were many factories used this technology as a cutting process. Unfortunately, only few researches were published. It might explains that this technology were difficulty to develop, high investment, and also easy to import from aboard. For becoming to the Thailand 4.0 community, the Thailand industry might awareness to reduce the importing machine and boosting some policies to create novel innovative / know-how from the own country.

  1. Fast femtosecond laser ablation for efficient cutting of sintered alumina substrates

    NASA Astrophysics Data System (ADS)

    Oosterbeek, Reece N.; Ward, Thomas; Ashforth, Simon; Bodley, Owen; Rodda, Andrew E.; Simpson, M. Cather

    2016-09-01

    Fast, accurate cutting of technical ceramics is a significant technological challenge because of these materials' typical high mechanical strength and thermal resistance. Femtosecond pulsed lasers offer significant promise for meeting this challenge. Femtosecond pulses can machine nearly any material with small kerf and little to no collateral damage to the surrounding material. The main drawback to femtosecond laser machining of ceramics is slow processing speed. In this work we report on the improvement of femtosecond laser cutting of sintered alumina substrates through optimisation of laser processing parameters. The femtosecond laser ablation thresholds for sintered alumina were measured using the diagonal scan method. Incubation effects were found to fit a defect accumulation model, with Fth,1=6.0 J/cm2 (±0.3) and Fth,∞=2.5 J/cm2 (±0.2). The focal length and depth, laser power, number of passes, and material translation speed were optimised for ablation speed and high quality. Optimal conditions of 500 mW power, 100 mm focal length, 2000 μm/s material translation speed, with 14 passes, produced complete cutting of the alumina substrate at an overall processing speed of 143 μm/s - more than 4 times faster than the maximum reported overall processing speed previously achieved by Wang et al. [1]. This process significantly increases processing speeds of alumina substrates, thereby reducing costs, making femtosecond laser machining a more viable option for industrial users.

  2. Improved Planning and Programming for Energy Efficient New Army Facilities

    DTIC Science & Technology

    1988-10-01

    setpoints to occupant comfort must be considered carefully. Cutting off the HVAC system to the bedrooms during the day produced only small savings...functions of a building and minimizing the energy usage through optimization . It includes thermostats, time switches, programmable con- trollers...microprocessor systems, computers, and sensing devices that are linked with control and power components to manage energy use. This system optimizes load

  3. The Effects of Operational Parameters on a Mono-wire Cutting System: Efficiency in Marble Processing

    NASA Astrophysics Data System (ADS)

    Yilmazkaya, Emre; Ozcelik, Yilmaz

    2016-02-01

    Mono-wire block cutting machines that cut with a diamond wire can be used for squaring natural stone blocks and the slab-cutting process. The efficient use of these machines reduces operating costs by ensuring less diamond wire wear and longer wire life at high speeds. The high investment costs of these machines will lead to their efficient use and reduce production costs by increasing plant efficiency. Therefore, there is a need to investigate the cutting performance parameters of mono-wire cutting machines in terms of rock properties and operating parameters. This study aims to investigate the effects of the wire rotational speed (peripheral speed) and wire descending speed (cutting speed), which are the operating parameters of a mono-wire cutting machine, on unit wear and unit energy, which are the performance parameters in mono-wire cutting. By using the obtained results, cuttability charts for each natural stone were created on the basis of unit wear and unit energy values, cutting optimizations were performed, and the relationships between some physical and mechanical properties of rocks and the optimum cutting parameters obtained as a result of the optimization were investigated.

  4. Total internal reflection-based side-pumping configuration for terawatt ultraviolet amplifier and laser oscillator development

    NASA Astrophysics Data System (ADS)

    Cadatal-Raduban, Marilou; Pham, Minh Hong; Pham, Duong Van; Bui, Duong Thi Thuy; Yamanoi, Kohei; Takeda, Kohei; Empizo, Melvin John F.; Mui, Luong Viet; Shimizu, Toshihiko; Nguyen, Hung Dai; Sarukura, Nobuhiko; Fukuda, Tsuguo

    2018-06-01

    A two-side-pumping scheme that is based on total internal reflection in a diamond-cut Ce3+:LiCaAlF6 crystal suitable for the development of an ultraviolet laser and femtosecond amplifier system is proposed. Experimental fluorescence images and lasing results that demonstrate total internal reflection of the excitation beam using this diamond-cut crystal are presented. Calculations for the optimized crystal geometry that facilitate high extraction efficiency and homogeneity of the absorbed excitation beam are also discussed. About 50% increase in extraction efficiency compared to previously reported chirped-pulse femtosecond ultraviolet amplifier operating at 50-GW peak power is expected using this total internal reflection-based two-side-pumping configuration and a diamond-cut Ce3+:LiCaAlF6 crystal with a geometry of {φ _1} = 103°, {φ _2} = {φ _4} = 82°, {φ _3} = 93°, a length of 1.23 cm, a height of 2 cm, and an absorption coefficient of 1.5 cm-1. Our results can be used as a guide during the crystal growth process by providing the appropriate crystal geometry and size for a particular absorption coefficient to achieve high extraction efficiency. With the appropriate crystal combined with multiple-beam pumping afforded by the side-pumping scheme, the development of an all-solid-state ultraviolet laser operating at terawatt level would be within reach.

  5. Hybrid Engine Powered City Car: Fuzzy Controlled Approach

    NASA Astrophysics Data System (ADS)

    Rahman, Ataur; Mohiuddin, AKM; Hawlader, MNA; Ihsan, Sany

    2017-03-01

    This study describes a fuzzy controlled hybrid engine powered car. The car is powered by the lithium ion battery capacity of 1000 Wh is charged by the 50 cc hybrid engine and power regenerative mode. The engine is operated with lean mixture at 3000 rpm to charge the battery. The regenerative mode that connects with the engine generates electrical power of 500-600 W for the deceleration of car from 90 km/h to 20 km/h. The regenerated electrical power has been used to power the air-conditioning system and to meet the other electrical power. The battery power only used to propel the car. The regenerative power also found charging the battery for longer operation about 40 minutes and more. The design flexibility of this vehicle starts with whole-vehicle integration based on radical light weighting, drag reduction, and accessory efficiency. The energy efficient hybrid engine cut carbon dioxide (CO2) and nitrogen oxides (N2O) emission about 70-80% as the loads on the crankshaft such as cam-follower and its associated rotating components are replaced by electromagnetic systems, and the flywheel, alternator and starter motor are replaced by a motor generator. The vehicle was tested and found that it was able to travel 70 km/litre with the power of hybrid engine.

  6. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Radtke; David Glowka; Man Mohan Rai

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hardmore » and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.« less

  7. Broadband Ce(III)-Sensitized Quantum Cutting in Core-Shell Nanoparticles: Mechanistic Investigation and Photovoltaic Application.

    PubMed

    Sun, Tianying; Chen, Xian; Jin, Limin; Li, Ho-Wa; Chen, Bing; Fan, Bo; Moine, Bernard; Qiao, Xvsheng; Fan, Xianping; Tsang, Sai-Wing; Yu, Siu Fung; Wang, Feng

    2017-10-19

    Quantum cutting in lanthanide-doped luminescent materials is promising for applications such as solar cells, mercury-free lamps, and plasma panel displays because of the ability to emit multiple photons for each absorbed higher-energy photon. Herein, a broadband Ce 3+ -sensitized quantum cutting process in Nd 3+ ions is reported though gadolinium sublattice-mediated energy migration in a NaGdF 4 :Ce@NaGdF 4 :Nd@NaYF 4 nanostructure. The Nd 3+ ions show downconversion of one ultraviolet photon through two successive energy transitions, resulting in one visible photon and one near-infrared (NIR) photon. A class of NaGdF 4 :Ce@NaGdF 4 :Nd/Yb@NaYF 4 nanoparticles is further developed to expand the spectrum of quantum cutting in the NIR. When the quantum cutting nanoparticles are incorporated into a hybrid crystalline silicon (c-Si) solar cell, a 1.2-fold increase in short-circuit current and a 1.4-fold increase in power conversion efficiency is demonstrated under short-wavelength ultraviolet irradiation. These insights should enhance our ability to control and utilize spectral downconversion with lanthanide ions.

  8. Device for cutting protrusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzorgi, Fariborz M

    An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade.more » The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.« less

  9. High power high repetition rate diode side-pumped Q-switched Nd:YAG rod laser

    NASA Astrophysics Data System (ADS)

    Lebiush, E.; Lavi, R.; Tzuk, Y.; Jackel, S.; Lallouz, R.; Tsadka, S.

    1998-01-01

    A Q-switched diode side-pumped Nd:YAG rod laser is presented. The design is based on close coupled diodes which are mounted side by side to a laser rod cut at Brewster angle. No intra-cavity optics are needed to compensate for the induced thermal lensing of the rod. This laser produces 10 W average power with 30 ns pulse width and beam quality of 1.3 times diffraction limited at 10 kHz repetition rate. The light to light conversion efficiency is 12%. The same average power and beam quality is kept while operating the laser at repetition rates up to 50 kHz.

  10. Infrared Radiation Filament And Metnod Of Manufacture

    DOEpatents

    Johnson, Edward A.

    1998-11-17

    An improved IR radiation source is provided by the invention. A radiation filament has a textured surface produced by seeded ion bombardment of a metal foil which is cut to a serpentine shape and mounted in a windowed housing. Specific ion bombardment texturing techniques tune the surface to maximize emissions in the desired wavelength range and to limit emissions outside that narrow range, particularly at longer wavelengths. A combination of filament surface texture, thickness, material, shape and power circuit feedback control produce wavelength controlled and efficient radiation at much lower power requirements than devices of the prior art.

  11. In vitro assessment of cutting efficiency and durability of zirconia removal diamond rotary instruments.

    PubMed

    Kim, Joon-Soo; Bae, Ji-Hyeon; Yun, Mi-Jung; Huh, Jung-Bo

    2017-06-01

    Recently, zirconia removal diamond rotary instruments have become commercially available for efficient cutting of zirconia. However, research of cutting efficiency and the cutting characteristics of zirconia removal diamond rotary instruments is limited. The purpose of this in vitro study was to assess and compare the cutting efficiency, durability, and diamond rotary instrument wear pattern of zirconia diamond removal rotary instruments with those of conventional diamond rotary instruments. In addition, the surface characteristics of the cut zirconia were assessed. Block specimens of 3 mol% yttrium cation-doped tetragonal zirconia polycrystal were machined 10 times for 1 minute each using a high-speed handpiece with 6 types of diamond rotary instrument from 2 manufacturers at a constant force of 2 N (n=5). An electronic scale was used to measure the lost weight after each cut in order to evaluate the cutting efficiency. Field emission scanning electron microscopy was used to evaluate diamond rotary instrument wear patterns and machined zirconia block surface characteristics. Data were statistically analyzed using the Kruskal-Wallis test, followed by the Mann-Whitney U test (α=.05). Zirconia removal fine grit diamond rotary instruments showed cutting efficiency that was reduced compared with conventional fine grit diamond rotary instruments. Diamond grit fracture was the most dominant diamond rotary instrument wear pattern in all groups. All machined zirconia surfaces were primarily subjected to plastic deformation, which is evidence of ductile cutting. Zirconia blocks machined with zirconia removal fine grit diamond rotary instruments showed the least incidence of surface flaws. Although zirconia removal diamond rotary instruments did not show improved cutting efficiency compared with conventional diamond rotary instruments, the machined zirconia surface showed smoother furrows of plastic deformation and fewer surface flaws. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Energy efficiency in buildings, industry and transportation

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2012-11-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  13. Evaluation of cutting efficiency of ultrasonic tips used in orthograde endodontic treatment.

    PubMed

    Lin, Yu-Heng; Mickel, André K; Jones, Jefferson J; Montagnese, Thomas A; González, Alvaro F

    2006-04-01

    The purpose of the present study was to evaluate the cutting efficiency of the three different ultrasonic tips for orthograde endodontic treatment: stainless steel, zirconium nitride-coated, and diamond-coated tips. An ultrasonic handpiece was mounted on a custom-made automated balance, and each tip repeatedly penetrated dental stone blocks to a depth of 3 mm for 10 times. The amount of time taken to penetrate 3 mm of stone was measured. The diamond-coated tips showed significantly greater cutting efficiency than either stainless steel tips or zirconium-nitride coated tips. The stainless steel tips showed initial better cutting efficiency, but over time , there is no significant difference between the cutting efficiency of the stainless steel tips and the zirconium nitride coated tips. The diamond coated tips were the only group that showed breakage in this study.

  14. Electrodynamic Tethers. 1: Power Generator in LEO. 2: Thrust for Propulsion and Power Storage

    NASA Technical Reports Server (NTRS)

    Mccoy, J. E.

    1984-01-01

    An electrodynamic tether consists of a long insulated wire in space whose orbital motion cuts across lines of magnetic flux to produce an induce voltage that in typical low orbits averages about 200 v/km. Such a system should be capable of generating substantial electrical power, at the expense of IXB drag acting on its orbital energy. If a reverse current is driven against the induced voltage, the system should act as a motor producing IXB thrust. A reference system was designed, capable of generating 20 KW of power into an electrical load located anywhere along the wire at the expense of 2.6N (20,000 J/sec) drag on the wire. In an ideal system, the conversion between mechanical and electrical energy would reach 100% efficiency. In the actual system part of the 20 KW is lost to internal resistance of the wire, plasma and ionosphere, while the drag force is increased by residual air drag. The 20 KW PMG system as designed is estimated to provide 18.7 KW net power to the load at total drag loss of 20.4 KJ/sec, or an overall efficiency of 92%. Similar systems using heavier wire appear capable of producing power levels in excess of 1 Megawatt at voltages of 2-4 KV, with conversion efficiency between mechanical and electrical power better than 95%. The hollow cathode based system should be readily reversible from generator to motor operation by driving a reverse current using onboard power.

  15. A PFC3D-based numerical simulation of cutting load for lunar rock simulant and experimental validation

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jiang, Shengyuan; Tang, Dewei; Xu, Bo

    2017-05-01

    For sake of striking a balance between the need of drilling efficiency and the constrains of power budget on the moon, the penetrations per revolution of drill bit are generally limited in the range around 0.1 mm, and besides the geometric angle of the cutting blade need to be well designed. This paper introduces a simulation approach based on PFC3D (particle flow code 3 dimensions) for analyzing the cutting load feature on lunar rock simulant, which is derived from different geometric-angle blades with a small cutting depth. The mean values of the cutting force of five blades in the survey region (four on the boundary points and one on the center point) are selected as the macroscopic responses of model. The method of experimental design which includes Plackett-Burman (PB) design and central composite design (CCD) method is adopted in the matching procedure of microparameters in PFC model. Using the optimization method of enumeration, the optimum set of microparameters is acquired. Then, the experimental validation is implemented by using other twenty-five blades with different geometric angles, and the results from both simulations and laboratory tests give fair agreements. Additionally, the rock breaking process cut by different blades are quantified from simulation analysis. This research provides the theoretical support for the refinement of the rock cutting load prediction and the geometric design of cutting blade on the drill bit.

  16. Microchip laser operation of Tm,Ho:KLu(WO₄)₂ crystal.

    PubMed

    Loiko, Pavel; Serres, Josep Maria; Mateos, Xavier; Yumashev, Konstantin; Kuleshov, Nikolai; Petrov, Valentin; Griebner, Uwe; Aguiló, Magdalena; Díaz, Francesc

    2014-11-17

    A microchip laser is realized on the basis of a monoclinic Tm,Ho-codoped KLu(WO₄)₂crystal cut for light propagation along the Ng optical indicatrix axis. This crystal cut provides positive thermal lens with extremely weak astigmatism, S/M = 4%. High sensitivity factors, M = dD/dP(abs), of 24.9 and 24.1 m(-1)/W for the mg- and pg- tangential planes are calculated with respect to the absorbed pump power. Such thermo-optic behavior is responsible for mode stabilization in the plano-plano microchip laser cavity, as well as the demonstrated perfect circular beam profile (M(2) < 1.1). Maximum continuous-wave output power of 450 mW is obtained with a slope efficiency of 31%. A set of output couplers is employed to achieve lasing in the spectral range of 2060-2096 nm. The increase of output coupler transmission results in deterioration of the laser performance attributed to the increased up-conversion losses.

  17. Intense laser beams; Proceedings of the Meeting, Los Angeles, CA, Jan. 23, 24, 1992

    NASA Technical Reports Server (NTRS)

    Wade, Richard C. (Editor); Ulrich, Peter B. (Editor)

    1992-01-01

    Various papers on intense laser beams are presented. Individual topics addressed include: novel methods of copper vapor laser excitation, UCLA IR FEL, lasing characteristics of a large-bore copper vapor laser (CVL), copper density measurement of a large-bore CVL, high-power XeCl excimer laser, solid state direct-drive circuit for pumping gas lasers, united energy model for FELs, intensity and frequency instabilities in double-mode CO2 lasers, comparison of output power stabilities of CO and CO2 lasers, increasing efficiency of sealed-off CO lasers, thermal effects in singlet delta oxygen generation, optical extraction from the chemical oxygen-iodine laser medium, generation and laser diagnostic analysis of bismuth fluoride. Also discussed are: high-Q resonator design for an HF overtone chemical lasers, improved coatings for HF overtone lasers, scaled atmospheric blooming experiment, simulation on producing conjugate field using deformable mirrors, paraxial theory of amplitude correction, potential capabilities of adaptive optical systems in the atmosphere, power beaming research at NASA, system evaluations of laser power beaming options, performance projections for laser beam power to space, independent assessment of laser power beaming options, removal of atmospheric CFCs by lasers, efficiency of vaporization cutting by CVL.

  18. Boiler MACT Technical Assistance (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-03-01

    Fact sheet describing the changes to Environmental Protection Act process standards. The DOE will offer technical assistance to ensure that major sources burning coal and oil have information on cost-effective, clean energy strategies for compliance, and to promote cleaner, more efficient boiler burning to cut harmful pollution and reduce operational costs. The U.S. Environmental Protection Agency (EPA) is expected to finalize the reconsideration process for its Clean Air Act pollution standards National Emissions Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters (known as Boiler Maximum Achievable Control Technology (MACT)), in Spring 2012.more » This rule applies to large and small boilers in a wide range of industrial facilities and institutions. The U.S. Department of Energy (DOE) will offer technical assistance to ensure that major sources burning coal or oil have information on cost-effective clean energy strategies for compliance, including combined heat and power, and to promote cleaner, more efficient boilers to cut harmful pollution and reduce operational costs.« less

  19. Cutting efficiency of diamond burs operated with electric high-speed dental handpiece on zirconia.

    PubMed

    Nakamura, Keisuke; Katsuda, Yusuke; Ankyu, Shuhei; Harada, Akio; Tenkumo, Taichi; Kanno, Taro; Niwano, Yoshimi; Egusa, Hiroshi; Milleding, Percy; Örtengren, Ulf

    2015-10-01

    Zirconia-based dental restorations are becoming used more commonly. However, limited attention has been given to the difficulties experienced, concerning cutting, in removing the restorations when needed. The aim of the present study was to compare the cutting efficiency of diamond burs, operated using an electric high-speed dental handpiece, on zirconia (Zir) with those on lithium disilicate glass-ceramic (LD) and leucite glass-ceramic (L). In addition, evaluation of the cutting efficiency of diamond burs on Zir of different thicknesses was performed. Specimens of Zir were prepared with thicknesses of 0.5, 1.0, 2.0, and 4.0 mm, and specimens of LD and L were prepared with a thickness of 1.0 mm. Cutting tests were performed using diamond burs with super coarse (SC) and coarse (C) grains. The handpiece was operated at 150,000 rpm with a cutting force of 0.9 N. The results demonstrated that cutting of Zir took about 1.5- and 7-fold longer than cutting of LD and L, respectively. The SC grains showed significantly higher cutting efficiency on Zir than the C grains. However, when the thickness of Zir increased, the cutting depth was significantly decreased. As it is suggested that cutting of zirconia is time consuming, this should be taken into consideration in advance when working with zirconia restorations. © 2015 Eur J Oral Sci.

  20. Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers

    NASA Astrophysics Data System (ADS)

    Serres, Josep Maria; Loiko, Pavel; Mateos, Xavier; Liu, Junhai; Zhang, Huaijing; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc

    2017-02-01

    A trigonal 5.6 at.% Yb:YAl3(BO3)4 (Yb:YAB) crystal is employed in continuous-wave (CW) and passively Q-switched microchip lasers pumped by a diode at 978 nm. Using a 3 mm-thick, c-cut Yb:YAB crystal, which has a higher pump absorption efficiency, efficient CW microchip laser operation is demonstrated. This laser generated a maximum output power of 7.18 W at 1041-1044 nm with a slope efficiency η of 67% (with respect to the absorbed pump power) and an almost diffraction-limited beam, M2 x,y < 1.1. Inserting a Cr:YAG saturable absorber, stable passive Q-switching of the Yb:YAB microchip laser was obtained. The maximum average output power from the Yb:YAB/Cr:YAG laser reached 2.82 W at 1042 nm with η = 53% and a conversion efficiency with respect to the CW mode of 65% (when using a 0.7 mm-thick Cr:YAG). The latter corresponded to a pulse duration and energy of 7.1 ns / 47 μJ at a pulse repetition rate (PRR) of 60 kHz. Using a 1.3 mm-thick Cr:YAG, 2.02 W were achieved at 1041 nm corresponding to η = 38%. The pulse characteristics were 4.9 ns / 83 μJ at PRR = 24.3 kHz and the maximum peak power reached 17 kW. Yb:YAB crystals are very promising for compact sub-ns power-scalable microchip lasers.

  1. Broadband spatial optical filtering with a volume Bragg grating and a blazed grating pair

    NASA Astrophysics Data System (ADS)

    Chen, Guanjin; Sun, Xiaojie; Yuan, Xiao; Zhang, Guiju

    2017-10-01

    A broadband spatial optical filtering system is presented in this paper, which is composed of a Volume Bragg Grating (VBG) and a blazed grating pair. The diffraction efficiency and filtering properties are calculated and simulated by using Fourier diffraction analysis and Coupled Wave Theory. A blazed grating pair and VBG structures are designed and optimized in our simulation. The diffraction efficiency of filtering system shows more than 77.2% during the wavelength period from 953nm to 1153nm, especially 84.1% at the center wavelength. The beam quality is described with near-field modulation (M) and contrast ratio (C). The M of filtering beam are 1.44, 1.49 and 1.55, respectively and the C of filtering beam are 10.1%, 10.2% and 10.5% , respectively and the beam intensity distribution is great improved. The cut-off frequencies of three filtering systems are 1.57mm-1 , 2.06 mm-1 and 2.38 mm-1 , respectively from power spectral density (PSD) curve. It's clear that the cut-off frequency of filtering system is closely related to the angular selectivity of VBG, and the value of cut-off frequency is decided by VBG's Half Width at First Zero (HWFZ) and center wavelength.

  2. Efficient prediction of terahertz quantum cascade laser dynamics from steady-state simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnew, G.; Lim, Y. L.; Nikolić, M.

    2015-04-20

    Terahertz-frequency quantum cascade lasers (THz QCLs) based on bound-to-continuum active regions are difficult to model owing to their large number of quantum states. We present a computationally efficient reduced rate equation (RE) model that reproduces the experimentally observed variation of THz power with respect to drive current and heat-sink temperature. We also present dynamic (time-domain) simulations under a range of drive currents and predict an increase in modulation bandwidth as the current approaches the peak of the light–current curve, as observed experimentally in mid-infrared QCLs. We account for temperature and bias dependence of the carrier lifetimes, gain, and injection efficiency,more » calculated from a full rate equation model. The temperature dependence of the simulated threshold current, emitted power, and cut-off current are thus all reproduced accurately with only one fitting parameter, the interface roughness, in the full REs. We propose that the model could therefore be used for rapid dynamical simulation of QCL designs.« less

  3. Generating Fiducial Cuts for CLAS E5

    NASA Astrophysics Data System (ADS)

    Greenholt, Kristen

    2005-04-01

    The Thomas Jefferson National Accelerator Facility, located in Newport News, Virginia, is home to CLAS (CEBAF Large Acceptance Spectrometer) which observes the scattering effects of high-energy collisions of an electron beam and a proton or deuteron target. When data are collected with CLAS, one of the properties measured is the cross-section, which is proportional to the number of events and the efficiency and inversely proportional to the solid angle. The efficiency, or acceptance of the detector, is the ratio between the data one expects to observe in an ideal detector and the data that we actually measure with the real CLAS detector. In outlying azimuthal regions, the efficiency is less clearly understood, which leads to measurements which are reliant on the conditions of the detector itself. In order to analyze data which fall in regions of stable and well-understood efficiency, we generated fiducial cuts on CLAS. Our fiducial cuts fit a function to the edges of regions of stable efficiency. These cuts enable us to focus on the data with good acceptance/efficiency. When examining at the fiducial cuts, we required stable efficiency, or flat regions, a good visual fit, a minimized chi squared, and a reasonable behavior in each in azimuthal versus polar angle plane for each electron-momentum bin. Generating these fiducial cuts enables us to focus on data from CLAS where the efficiency of the detector is well understood.

  4. Assessing the efficiency of carbide drill bits and factors influencing their application to debris-rich subglacial ice

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Jiang, Jianliang; Cao, Pinlu; Wang, Jinsong; Fan, Xiaopeng; Shang, Yuequan; Talalay, Pavel

    2017-09-01

    When drilling into subglacial bedrock, drill operators commonly encounter basal ice containing high concentrations of rock debris and melt water. As such conditions can easily damage conventional ice drills, researchers have experimented with carbide, diamond, and polycrystalline diamond compact drill bits, with varying degrees of success. In this study, we analyzed the relationship between drilling speed and power consumption for a carbide drill bit penetrating debris-rich ice. We also assessed drill load, rotation speed, and various performance parameters for the cutting element, as well as the physical and mechanical properties of rock and ice, to construct mathematical models. We show that our modeled results are in close agreement with the experimental data, and that both penetration speed and power consumption are positively correlated with drill speed and load. When used in ice with 30% rock content, the maximum penetration speed of the carbide bit is 3.4 mm/s with a power consumption of ≤0.5 kW, making the bit suitable for use with existing electromechanical drills. Our study also provides a guide for further research into cutting heat and equipment design.

  5. Tool path strategy and cutting process monitoring in intelligent machining

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei

    2018-06-01

    Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.

  6. NREL Case Study Leads to International Partnership (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-12-01

    In 2012, NREL analysts produced a case study, "Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience," which drew upon dozens of interviews with international experts involved in crafting effective policies and markets. The report proposed a cross-cutting initiative to transform the world's power systems by implementing two complementary strategies: the large‐scale deployment of renewable energy, and a combination of comprehensive energy efficiency and smarter grids. This recommendation led to the launch of the 21st Century Power Partnership in April 2012, and its membership has since grown to include Denmark, Finland, Germany, India, Mexico, Spain, andmore » the United States. NREL, together with its affiliated Joint Institute for Strategic Energy Analysis, are the operating agents.« less

  7. High power diode lasers for solid-state laser pumps

    NASA Technical Reports Server (NTRS)

    Linden, Kurt J.; Mcdonnell, Patrick N.

    1994-01-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  8. Cutting efficiency of Reciproc and waveOne reciprocating instruments.

    PubMed

    Plotino, Gianluca; Giansiracusa Rubini, Alessio; Grande, Nicola M; Testarelli, Luca; Gambarini, Gianluca

    2014-08-01

    The aim of the present study was to evaluate the cutting efficiency of 2 new reciprocating instruments, Reciproc and WaveOne. Twenty-four new Reciproc R25 and 24 new WaveOne Primary files were activated by using a torque-controlled motor (Silver Reciproc) and divided into 4 groups (n = 12): group 1, Reciproc activated by Reciproc ALL program; group 2, Reciproc activated by WaveOne ALL program; group 3, WaveOne activated by Reciproc ALL program; and group 4, WaveOne activated by WaveOne ALL program. The device used for the cutting test consisted of a main frame to which a mobile plastic support for the handpiece is connected and a stainless steel block containing a Plexiglas block (inPlexiglass, Rome, Italy) against which the cutting efficiency of the instruments was tested. The length of the block cut in 1 minute was measured in a computerized program with a precision of 0.1 mm. Means and standard deviations of each group were calculated, and data were statistically analyzed with 1-way analysis of variance and Bonferroni test (P < .05). Reciproc R25 displayed greater cutting efficiency than WaveOne Primary for both the movements used (P < .05); in particular, Reciproc instruments used with their proper reciprocating motion presented a statistically significant higher cutting efficiency than WaveOne instruments used with their proper reciprocating motion (P < .05). There was no statistically significant difference between the 2 movements for both instruments (P > .05). Reciproc instruments demonstrated statistically higher cutting efficiency than WaveOne instruments. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. An Inductively Powered Scalable 32-Channel Wireless Neural Recording System-on-a-Chip for Neuroscience Applications

    PubMed Central

    Lee, Seung Bae; Lee, Hyung-Min; Kiani, Mehdi; Jow, Uei-Ming; Ghovanloo, Maysam

    2014-01-01

    We present an inductively powered 32-channel wireless integrated neural recording (WINeR) system-on-a-chip (SoC) to be ultimately used for one or more small freely behaving animals. The inductive powering is intended to relieve the animals from carrying bulky batteries used in other wireless systems, and enables long recording sessions. The WINeR system uses time-division multiplexing along with a novel power scheduling method that reduces the current in unused low-noise amplifiers (LNAs) to cut the total SoC power consumption. In addition, an on-chip high-efficiency active rectifier with optimized coils help improve the overall system power efficiency, which is controlled in a closed loop to supply stable power to the WINeR regardless of the coil displacements. The WINeR SoC has been implemented in a 0.5-µm standard complementary metal–oxide semiconductor process, measuring 4.9 × 3.3 mm2 and consuming 5.85 mW at ± 1.5 V when 12 out of 32 LNAs are active at any time by power scheduling. Measured input-referred noise for the entire system, including the receiver located at 1.2 m, is 4.95 µVrms in the 1 Hz~10 kHz range when the system is inductively powered with 7-cm separation between aligned coils. PMID:23850753

  10. Effect of repeated simulated clinical use and sterilization on the cutting efficiency and flexibility of Hyflex CM nickel-titanium rotary files.

    PubMed

    Seago, Scott T; Bergeron, Brian E; Kirkpatrick, Timothy C; Roberts, Mark D; Roberts, Howard W; Himel, Van T; Sabey, Kent A

    2015-05-01

    Recent nickel-titanium manufacturing processes have resulted in an alloy that remains in a twinned martensitic phase at operating temperature. This alloy has been shown to have increased flexibility with added tolerance to cyclic and torsional fatigue. The aim of this study was to assess the effect of repeated simulated clinical use and sterilization on cutting efficiency and flexibility of Hyflex CM rotary files. Cutting efficiency was determined by measuring the load required to maintain a constant feed rate while instrumenting simulated canals. Flexibility was determined by using a 3-point bending test. Files were autoclaved after each use according to the manufacturer's recommendations. Files were tested through 10 simulated clinical uses. For cutting efficiency, mean data were analyzed by using multiple factor analysis of variance and the Dunnett post hoc test (P < .05). For flexibility, mean data were analyzed by using Levene's Test of Equality of Error and a general linear model (P < .05). No statistically significant decrease in cutting efficiency was noted in groups 2, 5, 6, and 7. A statistically significant decrease in cutting efficiency was noted in groups 3, 4, 8, 9, and 10. No statistically significant decrease in flexibility was noted in groups 2, 3, and 7. A statistically significant decrease in flexibility was noted in groups 4, 5, 6, 8, 9, 10, and 11. Repeated simulated clinical use and sterilization showed no effect on cutting efficiency through 1 use and no effect on flexibility through 2 uses. Published by Elsevier Inc.

  11. Test results of a ten cell bipolar nickel-hydrogen battery

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.

    1983-01-01

    A ten cell bipolar nickel hydrogen 6.5 ampere-hour battery demonstrated over 2000 low Earth orbit cycles at an 80 percent depth-of-discharge. Charge/discharge cyclic ampere-hour and watt-hour efficiencies of 88 and 76 percent, respectively, observed. Peak power capability was determined at 1.1 kW. A 10C discharge rate yields 83 percent of the nominal stark capacity to the 1.0 volt cut off in just under 6 minutes.

  12. High-order Stokes generation in a KTP Raman laser pumped by a passively Q-switched ND:YLF laser

    NASA Astrophysics Data System (ADS)

    Wang, Maorong; Zhong, Kai; Mei, Jialin; Guo, Shibei; Xu, Degang; Yao, Jianquan

    2015-12-01

    High-order Stokes wave was observed in an x-cut KTP crystal based on stimulated Raman scattering (SRS) pumped by a passively Q-switched Nd:YLF laser with a Cr4+:YAG saturable absorber. Output spectra including the fundamental wave at 1047 nm and six Stokes wavelengths at 1077 nm, 1110 nm, 1130 nm, 1143 nm, 1164 nm, 1180 nm based on two Raman frequency shift at 267.4 cm-1 and 693.0 cm-1 were obtained simultaneously. We also detected green light generation with output power of 12 mW from self frequency mixing in the KTP crystal. The maximum total output power reached 452 mW at the repetition frequency of 8.1 kHz, corresponding to the optical-to-optical conversion efficiency of 4.61% and pump-to-Raman conversion efficiency of 3.6%.

  13. Wedge cutting of mild steel by CO 2 laser and cut-quality assessment in relation to normal cutting

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Karatas, C.; Uslan, I.; Keles, O.; Usta, Y.; Yilbas, Z.; Ahsan, M.

    2008-10-01

    In some applications, laser cutting of wedge surfaces cannot be avoided in sheet metal processing and the quality of the end product defines the applicability of the laser-cutting process in such situations. In the present study, CO 2 laser cutting of the wedge surfaces as well as normal surfaces (normal to laser beam axis) is considered and the end product quality is assessed using the international standards for thermal cutting. The cut surfaces are examined by the optical microscopy and geometric features of the cut edges such as out of flatness and dross height are measured from the micrographs. A neural network is introduced to classify the striation patterns of the cut surfaces. It is found that the dross height and out of flatness are influenced significantly by the laser output power, particularly for wedge-cutting situation. Moreover, the cut quality improves at certain value of the laser power intensity.

  14. Effect of laser incidence angle on cut quality of 4 mm thick stainless steel sheet using fiber laser

    NASA Astrophysics Data System (ADS)

    Mullick, Suvradip; Agrawal, Arpit Kumar; Nath, Ashish Kumar

    2016-07-01

    Fiber laser has potential to outperform the more traditionally used CO2 lasers in sheet metal cutting applications due to its higher efficiency, better beam quality, reliability and ease of beam delivery through optical fiber. It has been however, reported that the higher focusability and shorter wavelength are advantageous for cutting thin metal sheets up to about 2 mm only. Better focasability results in narrower kerf-width, which leads to an earlier flow separation in the flow of assist gas within the kerf, resulting in uncontrolled material removal and poor cut quality. However, the advarse effect of tight focusability can be taken care by shifting the focal point position towards the bottom surface of work-piece, which results in a wider kerf size. This results in a more stable flow within the kerf for a longer depth, which improves the cut quality. It has also been reported that fiber laser has an unfavourable angle of incidence during cutting of thick sections, resulting in poor absorption at the metal surface. Therefore, the effect of laser incidence angle, along with other process parameters, viz. cutting speed and assist gas pressure on the cut quality of 4 mm thick steel sheet has been investigated. The change in laser incidence angle has been incorporated by inclining the beam towards and away from the cut front, and the quality factors are taken as the ratio of kerf width and the striation depth. Besides the absorption of laser radiation, beam inclination is also expected to influence the gas flow characteristics inside the kerf, shear force phenomena on the molten pool, laser beam coupling and laser power distribution at the inclined cut surface. Design of experiment has been used by implementing response surface methodology (RSM) to study the parametric dependence of cut quality, as well as to find out the optimum cut quality. An improvement in quality has been observed for both the inclination due to the combined effect of multiple phenomena.

  15. “Agility” - Complexity Description in a New Dimension applied for Laser Cutting

    NASA Astrophysics Data System (ADS)

    Bartels, F.; Suess, B.; Wagner, A.; Hauptmann, J.; Wetzig, A.; Beyer, E.

    How to describe or to compare the complexity of industrial upcoming part geometries in laser-cutting? This question is essential for defining machine dynamics or kinematic structures for efficient use of the technological cutting-potential which is given by modern beam sources. Solid-state lasers as well as CO2 lasers offer, especially in thin materials, the opportunity of high cutting velocities. Considering the mean velocity on cutting geometries, it is significantly below the technological limitations. The characterization of cutting geometries by means of the agility as well as the application for laser-cutting will be introduced. The identification of efficient dynamic constellations will be shown as basic principle for designing future machine structures.

  16. Completely monolithic linearly polarized high-power fiber laser oscillator

    NASA Astrophysics Data System (ADS)

    Belke, Steffen; Becker, Frank; Neumann, Benjamin; Ruppik, Stefan; Hefter, Ulrich

    2014-03-01

    We have demonstrated a linearly polarized cw all-in-fiber oscillator providing 1 kW of output power and a polarization extinction ratio (PER) of up to 21.7 dB. The design of the laser oscillator is simple and consists of an Ytterbium-doped polarization maintaining large mode area (PLMA) fiber and suitable fiber Bragg gratings (FBG) in matching PLMA fibers. The oscillator has nearly diffraction-limited beam quality (M² < 1.2). Pump power is delivered via a high power 6+1:1 pump coupler. The slope efficiency of the laser is 75 %. The electro/optical efficiency of the complete laser system is ~30 % and hence in the range of Rofin's cw non-polarized fiber lasers. Choosing an adequate bending diameter for the Yb-doped PLMA fiber, one polarization mode as well as higher order modes are sufficiently supressed1. Resulting in a compact and robust linearly polarized high power single mode laser without external polarizing components. Linearly polarized lasers are well established for one dimensional cutting or welding applications. Using beam shaping optics radially polarized laser light can be generated to be independent from the angle of incident to the processing surface. Furthermore, high power linearly polarized laser light is fundamental for nonlinear frequency conversion of nonlinear materials.

  17. Enhancement of low power CO2 laser cutting process for injection molded polycarbonate

    NASA Astrophysics Data System (ADS)

    Moradi, Mahmoud; Mehrabi, Omid; Azdast, Taher; Benyounis, Khaled Y.

    2017-11-01

    Laser cutting technology is a non-contact process that typically is used for industrial manufacturing applications. Laser cut quality is strongly influenced by the cutting processing parameters. In this research, CO2 laser cutting specifications have been investigated by using design of experiments (DOE) with considering laser cutting speed, laser power and focal plane position as process input parameters and kerf geometry dimensions (i.e. top and bottom kerf width, ratio of the upper kerf to lower kerf, upper heat affected zone (HAZ)) and surface roughness of the kerf wall as process output responses. A 60 Watts CO2 laser cutting machine is used for cutting the injection molded samples of polycarbonate sheet with the thickness of 3.2 mm. Results reveal that by decreasing the laser focal plane position and laser power, the bottom kerf width will be decreased. Also the bottom kerf width decreases by increasing the cutting speed. As a general result, locating the laser spot point in the depth of the workpiece the laser cutting quality increases. Minimum value of the responses (top kerf, heat affected zone, ratio of the upper kerf to lower kerf, and surface roughness) are considered as optimization criteria. Validating the theoretical results using the experimental tests is carried out in order to analyze the results obtained via software.

  18. Temperature dynamics of soft tissues during diode laser cutting by different types of fiber opto-thermal converters

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Skrypnik, Alexei V.; Smirnov, Sergey N.; Semyashkina, Yulia V.

    2017-03-01

    The results of in vitro study of the soft tissue temperature dynamics during 980 nm diode laser cutting by different types (CLEAR, FILM, VOLUMETRIC) of fiber opto-thermal converters (FOTC) are presented. It was found that the use of CLEAR fiber end (tip) at the laser power below 8.5 W doesn't lead to the soft tissue (chicken meat) destruction. The chicken meat destruction (cutting) begins when irradiated by 8.5 W laser radiation for approximately 9.0 s. At the power of 9.0 W this time decreases up to 7.0 s, at 9.5 W - to 6.0 s, at 10.0 W - to 3.5 s. The moment of soft tissue cutting start correlates with the moment of black layer (absorber) formation at the fiber end and appearance of visually identifiable laser cut walls on the photos; the temperature in this case rapidly increases up to 850 °C. It was determined that the FILM FOTC begins to cut the soft tissue immediately after exposure of laser radiation with power of 4.0 W, the temperature in this case reaches 900 °C. It was determined that the VOLUMETRIC FOTC begins to cut the tissue immediately after exposure at the power of 1.0 W, the temperature in this case reaches 600 °C. VOLUMETRIC FOTC can produce more effective cuts of the soft tissue at the laser power of 4.0 W, in this case, the temperature is above 1200 °C.

  19. Comparing cutting efficiencies of diamond burs using a high-speed electric handpiece.

    PubMed

    Chung, Evelyn M; Sung, Eric C; Wu, Ben; Caputo, Angelo A

    2006-01-01

    This study sought to compare the cutting efficiency of different diamond burs on initial use as well as during repeated use, alternating with sterilization. Long, round-end, tapered diamond burs with similar diameter, profile, and diamond coarseness (125-150 microm grit) were used. A high-torque, high-speed electric handpiece (set at 200,000 rpm) was utilized with a coolant flow rate of 25 mL/min. Burs were tested under a constant load of 170 g while cuts were made on a machinable ceramic substrate block. Each bur was subjected to five consecutive cuts for 30 seconds of continuous operation and the cutting depths were measured. All burs performed similarly on the first cut. Cutting efficiencies for three of the bur groups decreased significantly after the first cycle; however, by the fifth cycle, all bur groups performed similarly without any significant differences (p > 0.05). A scanning electron microscope revealed significant crystal loss after each use.

  20. RESEARCH: Shrub Propagation Techniques for Biological Control ofInvading Tree Species

    PubMed

    Meilleur; Veronneau; Bouchard

    1997-05-01

    / The use of relatively stable shrub communities to control invasionby trees could be an efficient way of reducing herbicide applications, andthus represents an environmental gain, in areas such as rights-of-way. Thequestion is how to favor the expansion of these relatively stable shrubcommunities using different propagation techniques. Three experimentaltreatments, cutting back, layering, and cutting back-layering were performedon Cornus stolonifera, Salix petiolaris, and Spiraea albaclones already located within the corridor of an electrical power line. Toestablish the efficiency of treatments, we examined the statisticaldifferences of growth traits between species and treatments.An analysis of the effects of layering shows, after the first growth season,differences for all growth traits in only one species, Spiraea alba.After the second growth season, we observed the development of new aerialstems. Layering favors horizontal expansion of shrubs over heightdevelopment. The third year after treatment, the effect of layering isreduced except for Cornus stolonifera, which continuously increases,as shown by the significant progression of the clone issued from the layereven five years after treatments. With the cutting back technique, weexpected a distinct vertical growth of the shrubs at the expense ofincreasing the crown diameter. This technique would be best associated withthe rejuvenation of clones, followed by a layering of new shoots to allow ahorizontal expansion of the shrubs. Therefore, the formation of a dense shrubcommunity by layering should be considered a valuable approach for thebiological control of undesirable trees in powerline rights-of-way.KEY WORDS: Layering; Cutting back; Right-of-way; Cornus stolonifera;Salix petiolaris; Spiraea alba; Quebec

  1. System technology for laser-assisted milling with tool integrated optics

    NASA Astrophysics Data System (ADS)

    Hermani, Jan-Patrick; Emonts, Michael; Brecher, Christian

    2013-02-01

    High strength metal alloys and ceramics offer a huge potential for increased efficiency (e. g. in engine components for aerospace or components for gas turbines). However, mass application is still hampered by cost- and time-consuming end-machining due to long processing times and high tool wear. Laser-induced heating shortly before machining can reduce the material strength and improve machinability significantly. The Fraunhofer IPT has developed and successfully realized a new approach for laser-assisted milling with spindle and tool integrated, co-rotating optics. The novel optical system inside the tool consists of one deflection prism to position the laser spot in front of the cutting insert and one focusing lens. Using a fiber laser with high beam quality the laser spot diameter can be precisely adjusted to the chip size. A high dynamic adaption of the laser power signal according to the engagement condition of the cutting tool was realized in order not to irradiate already machined work piece material. During the tool engagement the laser power is controlled in proportion to the current material removal rate, which has to be calculated continuously. The needed geometric values are generated by a CAD/CAM program and converted into a laser power signal by a real-time controller. The developed milling tool with integrated optics and the algorithm for laser power control enable a multi-axis laser-assisted machining of complex parts.

  2. Continuous-wave Nd:YVO4/KTiOPO4 green laser at 542 nm under diode pumping into the emitting level

    NASA Astrophysics Data System (ADS)

    Liu, J. H.

    2012-10-01

    We report a green laser at 542 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1086 nm Nd:YVO4 laser under 880 nm diode pumping into the emitting level 4 F 3/2. A KTiOPO4 (KTP) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 14.5 W, as high as 1.33 W of CW output power at 542 nm is achieved. The optical-to-optical conversion efficiency is up to 9.2%, and the fluctuation of the green output power was better than 3.8% in the given 30 min.

  3. A new device to test cutting efficiency of mechanical endodontic instruments.

    PubMed

    Giansiracusa Rubini, Alessio; Plotino, Gianluca; Al-Sudani, Dina; Grande, Nicola M; Sonnino, Gianpaolo; Putorti, Ermanno; Cotti, Elisabetta; Testarelli, Luca; Gambarini, Gianluca

    2014-03-06

    The purpose of the present study was to introduce a new device specifically designed to evaluate the cutting efficiency of mechanically driven endodontic instruments. Twenty new Reciproc R25 (VDW, Munich, Germany) files were used to be investigated in the new device developed to test the cutting ability of endodontic instruments. The device consists of a main frame to which a mobile plastic support for the hand-piece is connected and a stainless-steel block containing a Plexiglas block against which the cutting efficiency of the instruments was tested. The length of the block cut in 1 minute was measured in a computerized program with a precision of 0.1mm. The instruments were activated by using a torque-controlled motor (Silver Reciproc; VDW, Munich, Germany) in a reciprocating movement by the "Reciproc ALL" program (Group 1) and in counter-clockwise rotation at 300 rpm (Group 2). Mean and standard deviations of each group were calculated and data were statistically analyzed with a one-way ANOVA test (P<0.05). Reciproc in reciprocation (Group 1) mean cut in the Plexiglas block was 8.6 mm (SD=0.6 mm), while Reciproc in rotation mean cut was 8.9 mm (SD=0.7 mm). There was no statistically significant difference between the 2 groups investigated (P>0.05). The cutting testing device evaluated in the present study was reliable and easy to use and may be effectively used to test cutting efficiency of both rotary and reciprocating mechanical endodontic instruments.

  4. The use of power tools in the insertion of cortical bone screws.

    PubMed

    Elliott, D

    1992-01-01

    Cortical bone screws are commonly used in fracture surgery, most patterns are non-self-tapping and require a thread to be pre-cut. This is traditionally performed using hand tools rather than their powered counterparts. Reasons given usually imply that power tools are more dangerous and cut a less precise thread, but there is no evidence to support this supposition. A series of experiments has been performed which show that the thread pattern cut with either method is identical and that over-penetration with the powered tap is easy to control. The conclusion reached is that both methods produce consistently reliable results but use of power tools is much faster.

  5. In vitro comparison of the cutting efficiency and temperature production of 10 different rotary cutting instruments. Part I: Turbine.

    PubMed

    Ercoli, Carlo; Rotella, Mario; Funkenbusch, Paul D; Russell, Scott; Feng, Changyong

    2009-04-01

    Standards to test the cutting efficiency of dental rotary cutting instruments are either nonexistent or inappropriate, and knowledge of the factors that affect their cutting performance is limited. Therefore, rotary cutting instruments for crown preparation are generally marketed with weak or unsupported claims of superior performance. The purpose of this study was to examine the cutting behavior of a wide selection of rotary cutting instruments under carefully controlled and reproducible conditions with an air-turbine handpiece. Ten groups of rotary cutting instruments (n=30) designed for tooth preparation were selected: 9 diamond rotary cutting instruments (7 multi-use, 2 disposable) and 1 carbide bur. One bur per group was imaged with a scanning electron microscope (SEM) at different magnifications. Macor blocks (n=75) were used as a substrate, and 4 cuts were made on each specimen, using a new rotary cutting instrument each time, for a total of 300 cuts. The cuts were performed with an air-turbine handpiece (Midwest Quiet Air). A computer-controlled, custom-made testing apparatus was used to monitor all sensors and control the cutting action. The data were analyzed to compare the correlation of rotary cutting instrument type, grit, amount of pressure, cutting rate, revolutions per minute (rpm), temperature, and type of handpiece, using 1-way ANOVA and Tukey's Studentized Range test (alpha=.05). Compared to the baseline temperature, all rotary cutting instruments showed a reduction of temperature in the simulated pulp chamber. The Great White Ultra (carbide bur) showed a significantly higher rate of advancement (0.15 mm/s) and lower applied load (106.46 g) and rpm (304,375.97). Tooth preparation with an adequate water flow does not cause harmful temperature changes in the pulp chamber, regardless of rotary cutting instrument type. The tested carbide bur showed greater cutting efficiency than all diamond rotary cutting instruments.

  6. Tm:KLu(WO(4))(2) microchip laser Q-switched by a graphene-based saturable absorber.

    PubMed

    Serres, Josep Maria; Loiko, Pavel; Mateos, Xavier; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc

    2015-06-01

    We report on the first Tm-doped double tungstate microchip laser Q-switched with graphene using a Tm:KLu(WO4)2 crystal cut along the Ng dielectric axis. This laser generates a maximum average output power of 310 mW with a slope efficiency of 13%. At a repetition rate of 190 kHz the shortest pulses with 285 ns duration and 1.6 µJ energy are achieved.

  7. Test results of a ten cell bipolar nickel-hydrogen battery

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.

    1983-01-01

    A ten cell bipolar nickel hydrogen 6.5 ampere-hour battery demonstrated over 2000 low earth orbit cycles at an 80 percent depth-of-discharge. Charge/discharge cyclic ampere-hour and watt-hour efficiencies of 88 and 76 percent, respectively, observed. Peak power capability was determined at 1.1 kW. A 10C discharge rate yields 83 percent of the nominal stark capacity to the 1.0 volt cut off in just under 6 minutes. Previously announced in STAR as N83-26253

  8. Cutting efficiency of instruments with different movements: a comparative study.

    PubMed

    Tocci, Luigi; Plotino, Gianluca; Al-Sudani, Dina; Rubini, Alessio Giansiracusa; Sannino, Gianpaolo; Piasecki, Lucila; Putortì, Ermanno; Testarelli, Luca; Gambarini, Gianluca

    2015-01-01

    The aim of the present study was to evaluate the cutting efficiency of two new reciprocating instruments, Twisted File Adaptive and WaveOne Primary. 10 new Twisted File Adaptive (TF Adaptive) (SybronEndo, Glendora, CA, USA) and 10 new WaveOne Primary files (Dentsply Maillefer, Ballaigues, Switzerland) were activated using a torque-controlled motor, respectively TFA motor (SybronEndo, Glendora, CA, USA) and Silver motor (VDW, Munich, Germany). The device used for the cutting test consisted on a mainframe to which a mobile plastic support for the hand-piece is connected and a stainless-steel block containing a Plexiglas block against which the cutting efficiency of the instruments was tested. The length of the block cut in 1 minute was measured in a computerized program with a precision of 0.1 mm. Mean and standard deviations of each group were calculated and data were statistically analyzed with one-way ANOVA and Bonferroni t test (P < 0.05). TF Adaptive displayed significantly greater maximum penetration depth than WaveOne Primary (P < 0.05). In fact, TF Adaptive instruments (Group 1) cut the Plexiglas block to a mean depth of 8.7 (SD 0.5) mm, while WaveOne Primary instruments cut the Plexiglas block to a mean depth of 6.4 (SD 0.3) mm. Twisted File Adaptive instruments demonstrated statistically higher cutting efficiency than WaveOne instruments.

  9. Cutting Efficiency of Instruments with Different Movements: a Comparative Study

    PubMed Central

    Plotino, Gianluca; Al-Sudani, Dina; Rubini, Alessio Giansiracusa; Sannino, Gianpaolo; Piasecki, Lucila; Putortì, Ermanno; Testarelli, Luca; Gambarini, Gianluca

    2015-01-01

    ABSTRACT Objectives The aim of the present study was to evaluate the cutting efficiency of two new reciprocating instruments, Twisted File Adaptive and WaveOne Primary. Material and Methods 10 new Twisted File Adaptive (TF Adaptive) (SybronEndo, Glendora, CA, USA) and 10 new WaveOne Primary files (Dentsply Maillefer, Ballaigues, Switzerland) were activated using a torque-controlled motor, respectively TFA motor (SybronEndo, Glendora, CA, USA) and Silver motor (VDW, Munich, Germany). The device used for the cutting test consisted on a mainframe to which a mobile plastic support for the hand-piece is connected and a stainless-steel block containing a Plexiglas block against which the cutting efficiency of the instruments was tested. The length of the block cut in 1 minute was measured in a computerized program with a precision of 0.1 mm. Mean and standard deviations of each group were calculated and data were statistically analyzed with one-way ANOVA and Bonferroni t test (P < 0.05). Results TF Adaptive displayed significantly greater maximum penetration depth than WaveOne Primary (P < 0.05). In fact, TF Adaptive instruments (Group 1) cut the Plexiglas block to a mean depth of 8.7 (SD 0.5) mm, while WaveOne Primary instruments cut the Plexiglas block to a mean depth of 6.4 (SD 0.3) mm. Conclusions Twisted File Adaptive instruments demonstrated statistically higher cutting efficiency than WaveOne instruments. PMID:25937877

  10. Comparison of a novel high-power blue diode laser (λ=442 nm) with Ho:YAG (λ=2100 nm), Tm fiber (λ=1940 nm), and KTP (λ=532 nm) lasers for soft tissue ablation

    NASA Astrophysics Data System (ADS)

    Vinnichenko, Victoriya; Kovalenko, Anastasiya; Arkhipova, Valeriya; Yaroslavsky, Ilya; Altshuler, Gregory; Gapontsev, Valentin

    2018-02-01

    Three lasers were directly compared, including the Ho:YAG laser (λ = 2100 nm), Tm fiber laser (λ = 1940 nm) operating in 3 different modes (CW, regular pulse, and super pulse), and blue diode laser (λ = 442 nm) for vaporization and coagulation efficiency for treating blood-rich soft tissues, ex vivo, in a porcine kidney model at quasi-contact cutting in water. In addition, experimental results were compared with published data on performance of KTP laser (λ = 532 nm) at similar experimental settings (Power = 60 W and cutting speed = 2 mm/s). Tm fiber laser in pulsed mode and blue laser produced highest vaporization rates of 3.7 and 3.4 mm3/s, respectively. Tm fiber laser (in both CW and pulsed modes) also produced the largest coagulation zone among the laser sources tested. A carbonization zone was observed for Tm fiber laser in CW and pulsed modes, as well as for the blue diode laser. Tm fiber laser in super-pulse mode and Ho:YAG laser both resulted in irregular coagulation zones without carbonization. Comparison with known data for KTP laser revealed that tissue effects of the blue laser are similar to that of the KTP laser. These results suggest that the combination of the two lasers (Tm fiber and blue diode) in one system may achieve high cutting efficiency and optimal coagulation for hemostasis during surgical treatment. Ex vivo testing of the combined system revealed feasibility of this approach. The combination of the CW Tm fiber laser (120W) and the blue diode laser (60W) emitting through a combination tip were compared with CW 120 W Tm fiber laser alone and 120 W Ho:YAG laser. Vaporization rates measured 34, 28, and 6 mm3/s, and coagulation zones measured 0.6, 1.3, and 1.7 mm, respectively. A carbonization zone was only observed with CW Tm fiber laser. The vaporization rate of combined CW Tm fiber laser / blue diode laser was comparable to published data for KTP laser for equivalent total power. Thus, high-power blue diode laser, Tm fiber laser, and their combination may provide an alternative to conventional Ho:YAG and KTP lasers for applications in urology and other surgical fields.

  11. A new multipurpose CO2 laser therapy instrument.

    PubMed

    Peng, X

    1995-02-01

    A new multipurpose CO2 laser therapy instrument has been developed. It is a highly efficient medical instrument. By use of high laser power density to coagulate, evaporate, and cut body tissue on the nidus, the operation can be controlled and has obvious curative effects. Unlike other kinds of CO2 laser therapy instruments, this device has an advanced switching power supply (SPS) and red guiding light system. With an overcurrent protective device, an overvoltage protective device, and a high-voltage shield device, it provides efficiency, stability, reliability, and low loss. The plastic casing does not leak electricity and the film switches are designed for clinical practice convenience. Additionally, the laser power is numerically displayed and can be set prior to the procedure. The distinct visible guiding light of the laser output makes the operation more convenient and accurate. Because of this unique design and properties, it is a leading model in China. The instrument can be widely used for surgery, gynecology, dermatology, and otolaryngology. The radiation therapy of low laser power density has the effect of being antiinflamatory, analgesic, and antipruritic, and promotes cure of the epithelium. Moreover, it is effective to treat all sorts of sprains, scapulohumeral periarthritis, arthritis, sciatica, and surface ulcers.

  12. Effects of machining conditions on the specific cutting energy of carbon fibre reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Azmi, A. I.; Syahmi, A. Z.; Naquib, M.; Lih, T. C.; Mansor, A. F.; Khalil, A. N. M.

    2017-10-01

    This article presents an approach to evaluate the effects of different machining conditions on the specific cutting energy of carbon fibre reinforced polymer composites (CFRP). Although research works in the machinability of CFRP composites have been very substantial, the present literature rarely discussed the topic of energy consumption and the specific cutting energy. A series of turning experiments were carried out on two different CFRP composites in order to determine the power and specific energy constants and eventually evaluate their effects due to the changes in machining conditions. A good agreement between the power and material removal rate using a simple linear relationship. Further analyses revealed that a power law function is best to describe the effect of feed rate on the changes in the specific cutting energy. At lower feed rate, the specific cutting energy increases exponentially due to the nature of finishing operation, whereas at higher feed rate, the changes in specific cutting energy is minimal due to the nature of roughing operation.

  13. Harsh medicine. [retail wheeling experiment in Michigan and side effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studness, C.M.

    1993-07-15

    Retailing wheeling's harmful side-effects may surface in a Michigan experiment. In the final analysis, the debate over retail wheeling is about whether there will be direct price competition in the electric power industry. Retail wheeling would extend to the electric power market the same freedom of choice among customers that is present elsewhere in the economy. It would provide a mechanism through which competition could enforce an efficient allocation of resources. It also undoubtedly would eliminate most of the huge discrepancies that exist between so many neighboring service areas. It is unlikely that permitting retail wheeling would actually result inmore » much wheeling or loss of load. Utilities will no doubt meet the threat of the loss of load by cutting rates to hold their customers. Hence, the primary effect would be on the pricing of electricity, not the wheeling of power. The retail wheeling experiment under consideration in Michigan can become an important step toward making the utility industry more efficient for the nation and more equitable for ratepayers. Unfortunately, it also is potentially unfair to the utilities involved. A retail wheeling experiment in one state is likely to put those utilities at risk for competitive attack, but is unlikely to give those utilities the countervailing power to use retail wheeling elsewhere to market their power. Fairness and economic efficiency require that retail wheeling exist everywhere, and that is is accessible to utilities as well as non-utilities.« less

  14. RF pulse compression for future linear colliders

    NASA Astrophysics Data System (ADS)

    Wilson, Perry B.

    1995-07-01

    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  15. Multi-pair two-way massive MIMO AF relaying with ZFR/ZFT beamforming and imperfect CSI over ricean fading channels

    NASA Astrophysics Data System (ADS)

    Xu, Kui; Sun, Xiaoli; Zhang, Dongmei

    2016-10-01

    This paper investigates the spectral and energy efficiencies of a multi-pair two-way amplify-and-forward (AF) relay system over Ricean fading channels, where multiple user-pairs exchange information within pair through a relay with very large number of antennas, while each user equipped with a single antenna. Firstly, beamforming matrixe of zero-forcing reception/zero-forcing transmission (ZFR/ZFT) with imperfect channel state information (CSI) at the relay is given. Then, the unified asymptotic signal-to-interference-plus-noise ratio (SINR) expressions with imperfect CSI are obtained analytically. Finally, two power scaling schemes are proposed and the asymptotic spectral and energy efficiencies based on the proposed power scaling schemes are derived and verified by the Monte-Carlo simulations. Theoretical analyses and simulation results show that with imperfect CSI, if the number of relay antennas grows asymptotically large, we need cut down the transmit power of each user and relay to different proportion when the Ricean K-factor is non-zero and zero (Rayleigh fading) in order to maintain a desirable rate.

  16. Self-Healable, Stretchable, Transparent Triboelectric Nanogenerators as Soft Power Sources.

    PubMed

    Sun, Jiangman; Pu, Xiong; Liu, Mengmeng; Yu, Aifang; Du, Chunhua; Zhai, Junyi; Hu, Weiguo; Wang, Zhong Lin

    2018-06-04

    Despite the rapid advancements of soft electronics, developing compatible energy devices will be the next challenge for their viable applications. Here, we report an energy-harnessing triboelectric nanogenerator (TENG) as a soft electrical power source, which is simultaneously self-healable, stretchable, and transparent. The nanogenerator features a thin-film configuration with buckled Ag nanowires/poly(3,4-ethylenedioxythiophene) composite electrode sandwiched in room-temperature self-healable poly(dimethylsiloxane) (PDMS) elastomers. Dynamic imine bonds are introduced in PDMS networks for repairing mechanical damages (94% efficiency), while the mechanical recovery of the elastomer is imparted to the buckled electrode for electrical healing. By adjusting the buckling wavelength of the electrode, the stretchability and transparency of the soft TENG can be tuned. A TENG (∼50% stretchabitliy, ∼73% transmittance) can recover the electricity genearation (100% healing efficiency) even after accidental cutting. Finally, the conversion of biomechanical energies into electricity (∼100 V, 327 mW/m 2 ) is demonstrated by a skin-like soft TENG. Considering all these merits, this work suggests a potentially promising approach for next-generation soft power sources.

  17. Water demand for electricity in deep decarbonisation scenarios: a multi-model assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouratiadou, I.; Bevione, M.; Bijl, D. L.

    This study assesses the effects of deep electricity decarbonisation and shifts in the choice of power plant cooling technologies on global electricity water demand, using a suite of five integrated assessment models. We find that electricity sector decarbonisation results in co-benefits for water resources primarily due to the phase-out of water-intensive coal-based thermoelectric power generation, although these co-benefits vary substantially across decarbonisation scenarios. Wind and solar photovoltaic power represent a win-win option for both climate and water resources, but further expansion of nuclear or fossil- and biomass-fuelled power plants with carbon capture and storage may result in increased pressures onmore » the water environment. Further to these results, the paper provides insights on the most crucial factors of uncertainty with regards to future estimates of water demand. These estimates varied substantially across models in scenarios where the effects of decarbonisation on the electricity mix were less clear-cut. Future thermal and water efficiency improvements of power generation technologies and demand-side energy efficiency improvements were also identified to be important factors of uncertainty. We conclude that in order to ensure positive effects of decarbonisation on water resources, climate policy should be combined with technology-specific energy and/or water policies.« less

  18. A new device to test cutting efficiency of mechanical endodontic instruments

    PubMed Central

    Rubini, Alessio Giansiracusa; Plotino, Gianluca; Al-Sudani, Dina; Grande, Nicola M.; Putorti, Ermanno; Sonnino, GianPaolo; Cotti, Elisabetta; Testarelli, Luca; Gambarini, Gianluca

    2014-01-01

    Background The purpose of the present study was to introduce a new device specifically designed to evaluate the cutting efficiency of mechanically driven endodontic instruments. Material/Methods Twenty new Reciproc R25 (VDW, Munich, Germany) files were used to be investigated in the new device developed to test the cutting ability of endodontic instruments. The device consists of a main frame to which a mobile plastic support for the hand-piece is connected and a stainless-steel block containing a Plexiglas block against which the cutting efficiency of the instruments was tested. The length of the block cut in 1 minute was measured in a computerized program with a precision of 0.1mm. The instruments were activated by using a torque-controlled motor (Silver Reciproc; VDW, Munich, Germany) in a reciprocating movement by the “Reciproc ALL” program (Group 1) and in counter-clockwise rotation at 300 rpm (Group 2). Mean and standard deviations of each group were calculated and data were statistically analyzed with a one-way ANOVA test (P<0.05). Results Reciproc in reciprocation (Group 1) mean cut in the Plexiglas block was 8.6 mm (SD=0.6 mm), while Reciproc in rotation mean cut was 8.9 mm (SD=0.7 mm). There was no statistically significant difference between the 2 groups investigated (P>0.05). Conclusions The cutting testing device evaluated in the present study was reliable and easy to use and may be effectively used to test cutting efficiency of both rotary and reciprocating mechanical endodontic instruments. PMID:24603777

  19. Simulation of Temperature Field Distribution for Cutting the Temperated Glass by Ultraviolet Laser

    NASA Astrophysics Data System (ADS)

    Yang, B. J.; He, Y. C.; Dai, F.; Lin, X. C.

    2017-03-01

    The finite element software ANSYS was adopted to simulate the temperature field distribution for laser cutting tempered glass, and the influence of different process parameters, including laser power, glass thickness and cutting speed, on temperature field distribution was studied in detail. The results show that the laser power has a greater influence on temperature field distribution than other paremeters, and when the laser power gets to 60W, the highest temperature reaches 749°C, which is higher than the glass softening temperature. It reflects the material near the laser spot is melted and the molten slag is removed by the high-energy water beam quickly. Finally, through the water guided laser cutting tempered glass experiment the FEM theoretical analysis was verified.

  20. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Calculation of mass transfer in the remote cutting of metals by radiation of a high-power repetitively pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Gladush, G. G.; Rodionov, N. B.

    2002-01-01

    The mechanism of remote cutting of steel plates by radiation of a high-power repetitively pulsed CO2 laser is theoretically studied. The models of melt removal by the gravity force and the recoil pressure of material vapour are proposed and the sufficient conditions for the initiation of cutting are determined. A numerical model of a thermally thin plate was employed to describe the cutting for large focal spots.

  1. Lean energy analysis of CNC lathe

    NASA Astrophysics Data System (ADS)

    Liana, N. A.; Amsyar, N.; Hilmy, I.; Yusof, MD

    2018-01-01

    The industrial sector in Malaysia is one of the main sectors that have high percentage of energy demand compared to other sector and this problem may lead to the future power shortage and increasing the production cost of a company. Suitable initiatives should be implemented by the industrial sectors to solve the issues such as by improving the machining system. In the past, the majority of the energy consumption in industry focus on lighting, HVAC and office section usage. Future trend, manufacturing process is also considered to be included in the energy analysis. A study on Lean Energy Analysis in a machining process is presented. Improving the energy efficiency in a lathe machine by enhancing the cutting parameters of turning process is discussed. Energy consumption of a lathe machine was analyzed in order to identify the effect of cutting parameters towards energy consumption. It was found that the combination of parameters for third run (spindle speed: 1065 rpm, depth of cut: 1.5 mm, feed rate: 0.3 mm/rev) was the most preferred and ideal to be used during the turning machining process as it consumed less energy usage.

  2. Method and apparatus for diamond wire cutting of metal structures

    DOEpatents

    Parsells, Robert; Gettelfinger, Geoff; Perry, Erik; Rule, Keith

    2005-04-19

    A method and apparatus for diamond wire cutting of metal structures, such as nuclear reactor vessels, is provided. A diamond wire saw having a plurality of diamond beads with beveled or chamfered edges is provided for sawing into the walls of the metal structure. The diamond wire is guided by a plurality of support structures allowing for a multitude of different cuts. The diamond wire is cleaned and cooled by CO.sub.2 during the cutting process to prevent breakage of the wire and provide efficient cutting. Concrete can be provided within the metal structure to enhance cutting efficiency and reduce airborne contaminants. The invention can be remotely controlled to reduce exposure of workers to radioactivity and other hazards.

  3. Handpiece coolant flow rates and dental cutting.

    PubMed

    von Fraunhofer, J A; Siegel, S C; Feldman, S

    2000-01-01

    High-speed handpieces incorporate water coolant sprays to remove cutting debris and minimize thermal insult to the pulp. Little data exists on optimal coolant flow rates during clinical procedures. This study compared the effect of different coolant flow rates on diamond stone cutting efficiency. Cutting studies were performed on Macor machinable ceramic using a previously developed test regimen--a KaVo high-speed handpiece at a cutting force of 91.5 g (0.9 N). Cutting was performed with round end tapered medium grit diamond stones under cooling water flow rates of 15, 20, 25, 30 and 44 ml/min, with cutting rates determined as the time to transect the 13 mm square cross-section of the Macor bar. Each bur was used for five cuts, with six burs used for each flow rate, for a total of 150 measurements. The data were analyzed by one-way ANOVA with a post hoc Scheffé test. The cutting studies indicated that diamond stone cutting rates increased with higher coolant flow rates over the range of 15-44 ml/min. The data suggest that higher coolant flow rates promote cutting efficiency.

  4. Identifying Major Transitions in the Evolution of Lithic Cutting Edge Production Rates

    PubMed Central

    Clarkson, Chris

    2016-01-01

    The notion that the evolution of core reduction strategies involved increasing efficiency in cutting edge production is prevalent in narratives of hominin technological evolution. Yet a number of studies comparing two different knapping technologies have found no significant differences in edge production. Using digital analysis methods we present an investigation of raw material efficiency in eight core technologies broadly representative of the long-term evolution of lithic technology. These are bipolar, multiplatform, discoidal, biface, Levallois, prismatic blade, punch blade and pressure blade production. Raw material efficiency is assessed by the ratio of cutting edge length to original core mass. We also examine which flake attributes contribute to maximising raw material efficiency, as well as compare the difference between expert and intermediate knappers in terms of cutting edge produced per gram of core. We identify a gradual increase in raw material efficiency over the broad sweep of lithic technological evolution. The results indicate that the most significant transition in efficiency likely took place with the introduction of small foliate biface, Levallois and prismatic blade knapping, all introduced in the Middle Stone Age / Middle Palaeolithic among early Homo sapiens and Neanderthals. This suggests that no difference in raw material efficiency existed between these species. With prismatic blade technology securely dated to the Middle Palaeolithic, by including the more recent punch and pressure blade technology our results dispel the notion that the transition to the Upper Palaeolithic was accompanied by an increase in efficiency. However, further increases in cutting edge efficiency are evident, with pressure blades possessing the highest efficiency in this study, indicating that late/epi-Palaeolithic and Neolithic blade technologies further increased efficiency. PMID:27936135

  5. Identifying Major Transitions in the Evolution of Lithic Cutting Edge Production Rates.

    PubMed

    Muller, Antoine; Clarkson, Chris

    2016-01-01

    The notion that the evolution of core reduction strategies involved increasing efficiency in cutting edge production is prevalent in narratives of hominin technological evolution. Yet a number of studies comparing two different knapping technologies have found no significant differences in edge production. Using digital analysis methods we present an investigation of raw material efficiency in eight core technologies broadly representative of the long-term evolution of lithic technology. These are bipolar, multiplatform, discoidal, biface, Levallois, prismatic blade, punch blade and pressure blade production. Raw material efficiency is assessed by the ratio of cutting edge length to original core mass. We also examine which flake attributes contribute to maximising raw material efficiency, as well as compare the difference between expert and intermediate knappers in terms of cutting edge produced per gram of core. We identify a gradual increase in raw material efficiency over the broad sweep of lithic technological evolution. The results indicate that the most significant transition in efficiency likely took place with the introduction of small foliate biface, Levallois and prismatic blade knapping, all introduced in the Middle Stone Age / Middle Palaeolithic among early Homo sapiens and Neanderthals. This suggests that no difference in raw material efficiency existed between these species. With prismatic blade technology securely dated to the Middle Palaeolithic, by including the more recent punch and pressure blade technology our results dispel the notion that the transition to the Upper Palaeolithic was accompanied by an increase in efficiency. However, further increases in cutting edge efficiency are evident, with pressure blades possessing the highest efficiency in this study, indicating that late/epi-Palaeolithic and Neolithic blade technologies further increased efficiency.

  6. The generation of a continuous-wave Nd:YVO4/LBO laser at 543 nm by direct in-band diode pumping at 888 nm

    NASA Astrophysics Data System (ADS)

    Fu, S. C.; Wang, X.; Chu, H.

    2013-02-01

    We report the generation of a green laser at 543 nm by intracavity frequency doubling of the continuous-wave (cw) laser operation of a 1086 nm Nd:YVO4 laser under 888 nm diode pumping into the emitting level 4F3/2. An LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature, is used for the laser second-harmonic generation. At an incident pump power of 17.8 W, as high as 4.53 W cw output power at 543 nm is achieved. The optical-to-optical conversion efficiency is up to 25.4%, and the fluctuation of the green output power is better than 2.3% in a 30 min period.

  7. Determining cutting efficiency of nickel-titanium coronal flaring instruments used in lateral action.

    PubMed

    Peters, O A; Morgental, R D; Schulze, K A; Paqué, F; Kopper, P M P; Vier-Pelisser, F V

    2014-06-01

    To develop a method to evaluate the cutting behaviour of nickel-titanium (NiTi) coronal flaring instruments. BioRaCe BR0 (BR), HyFlex CM 1 (HY), ProFile OS No. 2 (PF) and ProTaper Sx (PT) instruments were used in simulated coronal flaring using a lateral action against bovine dentine blocks, at 250 and 500 rpm. Cutting efficiency was assessed by three methods: first, areas of notches produced by instruments were directly measured under a stereomicroscope. Second, dentine specimens were then analysed by surface profilometry to determine the maximum cutting depth and finally by microcomputed tomography to assess the volume of removed dentine. Data were compared using parametric tests with the significance level set at 0.05. For all three methods, HY and PF were the most and the least cutting-efficient instruments, respectively (P < 0.05). Significant differences were detected between 250 and 500 rpm for HY and PT (area); for BR, HY and PT (depth); and for BR and HY (volume). There were strong positive correlations between the results obtained with those three different methods with r-values ranging from 0.81 to 0.92. Measuring the amount of material removed in a specific time under stereomicroscopy is a simple and rational way to assess the cutting behaviour of NiTi rotary instruments in lateral action. HyFlex, manufactured with thermomechanically treated NiTi wire, was the most efficient instrument, and increased rotational speed was associated with increased cutting efficiency. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. High-power thulium-doped fiber laser in an all-fiber configuration

    NASA Astrophysics Data System (ADS)

    Baravets, Yauhen; Todorov, Filip; Honzatko, Pavel

    2016-12-01

    High-power Tm-doped fiber lasers are greatly suitable for various applications, such as material processing, medicine, environmental monitoring and topography. In this work we present an all-fiber narrowband CW laser in near fundamental mode operation based on a Tm-doped double-clad active fiber pumped by 793 nm laser diodes with a central wavelength stabilized at 2039 nm by a fiber Bragg grating. The achieved output power is 60 W with a slope efficiency of 46%. The measured beam quality factor is less than 1.4. Further increasing of the output power is possible using various power scaling techniques, for example, coherent combination of several Tm-doped fiber lasers. The developed fiber laser could be employed for welding, cutting and marking of thermoplastics in industry, minimally invasive surgery in medicine or sensors in lidar systems. Future improvements of thulium fiber lasers are possible due to the extremely wide gain-bandwidth of the active medium and the rapid growth of 2-μm fiber components production.

  9. An investigation of laser cutting quality of 22MnB5 ultra high strength steel using response surface methodology

    NASA Astrophysics Data System (ADS)

    Tahir, Abdul Fattah Mohd; Aqida, Syarifah Nur

    2017-07-01

    In hot press forming, changes of mechanical properties in boron steel blanks have been a setback in trimming the final shape components. This paper presents investigation of kerf width and heat affected zone (HAZ) of ultra high strength 22MnB5 steel cutting. Sample cutting was conducted using a 4 kW Carbon Dioxide (CO2) laser machine with 10.6 μm wavelength with the laser spot size of 0.2 mm. A response surface methodology (RSM) using three level Box-Behnken design of experiment was developed with three factors of peak power, cutting speed and duty cycle. The parameters were optimised for minimum kerf width and HAZ formation. Optical evaluation using MITUTOYO TM 505 were conducted to measure the kerf width and HAZ region. From the findings, laser duty cycle was crucial to determine cutting quality of ultra-high strength steel; followed by cutting speed and laser power. Meanwhile, low power intensity with continuous wave contributes the narrowest kerf width formation and least HAZ region.

  10. Removal of Lattice Imperfections that Impact the Optical Quality of Ti:Sapphire using Advanced Magnetorheological Finishing Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Schaffers, K I; Bayramian, A J

    2007-10-09

    Ti:sapphire has become the premier lasing medium material for use in solid-state femtosecond high-peak power laser systems because of its wide wavelength tuning range. With a tuneable range from 680 to 1100 nm, peaking at 800 nm, Ti:sapphire lasing crystals can easily be tuned to the required pump wavelength and provide very high pump brightness due to their good beam quality and high output power of typically several watts. Femtosecond lasers are used for precision cutting and machining of materials ranging from steel to tooth enamel to delicate heart tissue and high explosives. These ultra-short pulses are too brief tomore » transfer heat or shock to the material being cut, which means that cutting, drilling, and machining occur with virtually no damage to surrounding material. Furthermore, these lasers can cut with high precision, making hairline cuts of less than 100 microns in thick materials along a computer-generated path. Extension of laser output to higher energies is limited by the size of the amplification medium. Yields of high quality large diameter crystals have been constrained by lattice distortions that may appear in the boule limiting the usable area from which high quality optics can be harvested. Lattice distortions affect the transmitted wavefront of these optics which ultimately limits the high-end power output and efficiency of the laser system, particularly when operated in multi-pass mode. To make matters even more complicated, Ti:sapphire is extremely hard (Mohs hardness of 9 with diamond being 10) which makes it extremely difficult to accurately polish using conventional methods without subsurface damage or significant wavefront error. In this presentation, we demonstrate for the first time that Magnetorheological finishing (MRF) can be used to compensate for the lattice distortions in Ti:sapphire by perturbing the transmitted wavefront. The advanced MRF techniques developed allow for precise polishing of the optical inverse of lattice distortions with magnitudes of about 70 nm in optical path difference onto one or both of the optical surfaces to produce high quality optics from otherwise unusable Ti:sapphire crystals. The techniques include interferometric, software, and machine modifications to precisely locate and polish sub-millimeter sites onto the optical surfaces that can not be polished into the optics conventionally. This work may allow extension of Ti:sapphire based systems to peak powers well beyond one petawatt.« less

  11. Wireless Power Transfer to Millimeter-Sized Nodes Using Airborne Ultrasound.

    PubMed

    Rekhi, Angad S; Khuri-Yakub, Butrus T; Arbabian, Amin

    2017-10-01

    We propose the use of airborne ultrasound for wireless power transfer to mm-sized nodes, with intended application in the next generation of the Internet of Things (IoT). We show through simulation that ultrasonic power transfer can deliver 50 [Formula: see text] to a mm-sized node 0.88 m away from a ~ 50-kHz, 25-cm 2 transmitter array, with the peak pressure remaining below recommended limits in air, and with load power increasing with transmitter area. We report wireless power recovery measurements with a precharged capacitive micromachined ultrasonic transducer, demonstrating a load power of 5 [Formula: see text] at a simulated distance of 1.05 m. We present aperture efficiency, dynamic range, and bias-free operation as key metrics for the comparison of transducers meant for wireless power recovery. We also argue that long-range wireless charging at the watt level is extremely challenging with existing technology and regulations. Finally, we compare our acoustic powering system with cutting edge electromagnetically powered nodes and show that ultrasound has many advantages over RF as a vehicle for power delivery. Our work sets the foundation for further research into ultrasonic wireless power transfer for the IoT.

  12. High efficiency ZnO-based dye-sensitized solar cells with a 1H,1H,2H,2H-perfluorodecyltriethoxysilane chain barrier for cutting on interfacial recombination

    NASA Astrophysics Data System (ADS)

    Xie, Yahong; Zhou, Xiaofeng; Mi, Hongyu; Ma, Junhong; Yang, Jianya; Cheng, Jian

    2018-03-01

    Charge recombination at the ZnO photoanode/electrolyte interface is one of the major limitations for high performance dye-sensitized solar cells (DSSCs) toward their theoretical power conversion efficiency (PCE). Here, we proposed an efficient approach for reducing this interfacial losses and consequently facilitating charge transfer by decorating a hydrophobic thin-film on the surface of the dye-coated zinc oxide photoanode via 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTES) hexane solution immersing. As a result, a high PCE of 8.22% was obtained, which far exceeded the efficiency of 5.40% in a conventional DSSC without PFDTES treatment. Furthermore, PFDTES treatment also largely elongated the lifetime of photogenerated electrons, and maintained a good photo-response at the photoelectrode. This work provides a comprehensive explanation of electron injection, transfer and recombination at the ZnO photoanode/electrolyte interface, and a promising strategy to explore high efficiency ZnO-based DSSCs.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarrao, J.; Kwok, W-K; Bozovic, I.

    As an energy carrier, electricity has no rival with regard to its environmental cleanliness, flexibility in interfacing with multiple production sources and end uses, and efficiency of delivery. In fact, the electric power grid was named ?the greatest engineering achievement of the 20th century? by the National Academy of Engineering. This grid, a technological marvel ingeniously knitted together from local networks growing out from cities and rural centers, may be the biggest and most complex artificial system ever built. However, the growing demand for electricity will soon challenge the grid beyond its capability, compromising its reliability through voltage fluctuations thatmore » crash digital electronics, brownouts that disable industrial processes and harm electrical equipment, and power failures like the North American blackout in 2003 and subsequent blackouts in London, Scandinavia, and Italy in the same year. The North American blackout affected 50 million people and caused approximately $6 billion in economic damage over the four days of its duration. Superconductivity offers powerful new opportunities for restoring the reliability of the power grid and increasing its capacity and efficiency. Superconductors are capable of carrying current without loss, making the parts of the grid they replace dramatically more efficient. Superconducting wires carry up to five times the current carried by copper wires that have the same cross section, thereby providing ample capacity for future expansion while requiring no increase in the number of overhead access lines or underground conduits. Their use is especially attractive in urban areas, where replacing copper with superconductors in power-saturated underground conduits avoids expensive new underground construction. Superconducting transformers cut the volume, weight, and losses of conventional transformers by a factor of two and do not require the contaminating and flammable transformer oils that violate urban safety codes. Unlike traditional grid technology, superconducting fault current limiters are smart. They increase their resistance abruptly in response to overcurrents from faults in the system, thus limiting the overcurrents and protecting the grid from damage. They react fast in both triggering and automatically resetting after the overload is cleared, providing a new, self-healing feature that enhances grid reliability. Superconducting reactive power regulators further enhance reliability by instantaneously adjusting reactive power for maximum efficiency and stability in a compact and economic package that is easily sited in urban grids. Not only do superconducting motors and generators cut losses, weight, and volume by a factor of two, but they are also much more tolerant of voltage sag, frequency instabilities, and reactive power fluctuations than their conventional counterparts. The challenge facing the electricity grid to provide abundant, reliable power will soon grow to crisis proportions. Continuing urbanization remains the dominant historic demographic trend in the United States and in the world. By 2030, nearly 90% of the U.S. population will reside in cities and suburbs, where increasingly strict permitting requirements preclude bringing in additional overhead access lines, underground cables are saturated, and growth in power demand is highest. The power grid has never faced a challenge so great or so critical to our future productivity, economic growth, and quality of life. Incremental advances in existing grid technology are not capable of solving the urban power bottleneck. Revolutionary new solutions are needed ? the kind that come only from superconductivity.« less

  14. Advanced porous electrodes with flow channels for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Bhattarai, Arjun; Wai, Nyunt; Schweiss, Ruediger; Whitehead, Adam; Lim, Tuti M.; Hng, Huey Hoon

    2017-02-01

    Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution.

  15. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture.

    PubMed

    Karthikeya Sharma, T

    2015-11-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.

  16. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture

    PubMed Central

    Karthikeya Sharma, T.

    2014-01-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied. PMID:26644918

  17. Epidermal electronic systems for sensing and therapy

    NASA Astrophysics Data System (ADS)

    Lu, Nanshu; Ameri, Shideh K.; Ha, Taewoo; Nicolini, Luke; Stier, Andrew; Wang, Pulin

    2017-04-01

    Epidermal electronic system is a class of hair thin, skin soft, stretchable sensors and electronics capable of continuous and long-term physiological sensing and clinical therapy when applied on human skin. The high cost of manpower, materials, and photolithographic facilities associated with its manufacture limit the availability of disposable epidermal electronics. We have invented a cost and time effective, completely dry, benchtop "cut-and-paste" method for the green, freeform and portable manufacture of epidermal electronics within minutes. We have applied the "cut-and-paste" method to manufacture epidermal electrodes, hydration and temperature sensors, conformable power-efficient heaters, as well as cuffless continuous blood pressure monitors out of metal thin films, two-dimensional (2D) materials, and piezoelectric polymer sheets. For demonstration purpose, we will discuss three examples of "cut-and-pasted" epidermal electronic systems in this paper. The first will be submicron thick, transparent epidermal graphene electrodes that can be directly transferred to human skin like a temporary transfer tattoo and can measure electrocardiogram (ECG) with signal-to-noise ratio and motion artifacts on par with conventional gel electrodes. The second will be a chest patch which houses both electrodes and pressure sensors for the synchronous measurements of ECG and seismocardiogram (SCG) such that beat-to-beat blood pressure can be inferred from the time interval between the R peak of the ECG and the AC peak of the SCG. The last example will be a highly conformable, low power consumption epidermal heater for thermal therapy.

  18. Experimental study of a VBG-based Tm : YLF slab laser at different output coupler parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, X M; Ding, Y; Dai, T Y

    2015-04-30

    The performance of a Tm : YLF slab laser is studied at different output coupler parameters. Use is made of a 20-mm-long a-cut slab crystal doped with 2.5 at. % thulium ions. With a volume Bragg grating and a Fabry – Perot etalon, the selected output wavelength of this Tm : YLF slab laser is 1908 nm. For the optimised output coupler with a transmission of 20% and a radius of curvature of 300 mm, the output power exceeds 74.1 W and the slope efficiency with respect to the absorbed pump power reaches 48.4%. In addition, the beam quality ofmore » the Tm : YLF slab laser is improved. (lasers)« less

  19. MCT-Based LWIR and VLWIR 2D Focal Plane Detector Arrays for Low Dark Current Applications at AIM

    NASA Astrophysics Data System (ADS)

    Hanna, S.; Eich, D.; Mahlein, K.-M.; Fick, W.; Schirmacher, W.; Thöt, R.; Wendler, J.; Figgemeier, H.

    2016-09-01

    We present our latest results on n-on- p as well as on p-on- n low dark current planar mercury cadmium telluride (MCT) photodiode technology long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) two-dimensional focal plane arrays (FPAs) with quantum efficiency (QE) cut-off wavelength >11 μm at 80 K and a 512 × 640 pixel format FPA at 20 μm pitch stitched from two 512 × 320 pixel photodiode arrays. Significantly reduced dark currents as compared with Tennant's "Rule 07" are demonstrated in both polarities while retaining good detection efficiency ≥60% for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at 20 K higher operating temperature than with previous AIM INFRAROT-MODULE GmbH (AIM) technology. For p-on- n LWIR MCT FPAs, broadband photoresponse nonuniformity of only about 1.2% is achieved at 55 K with low defective pixel numbers. For an n-on- p VLWIR MCT FPA with 13.6 μm cut-off at 55 K, excellent photoresponse nonuniformity of about 3.1% is achieved at moderate defective pixel numbers. This advancement in detector technology paves the way for outstanding signal-to-noise ratio performance infrared detection, enabling cutting-edge next-generation LWIR/VLWIR detectors for space instruments and devices with higher operating temperature and low size, weight, and power for field applications.

  20. Algorithm for measuring the internal quantum efficiency of individual injection lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommers, H.S. Jr.

    1978-05-01

    A new algorithm permits determination of the internal quantum efficiency eta/sub i/ of individual lasers. Above threshold, the current is partitioned into a ''coherent'' component driving the lasing modes and the ''noncoherent'' remainder. Below threshold the current is known to grow as exp(qV/n/sub 0/KT); the algorithm proposes that extrapolation of this equation into the lasing region measures the noncoherent remainder, enabling deduction of the coherent component and of its current derivative eta/sub i/. Measurements on five (AlGa)As double-heterojunction lasers cut from one wafer demonstrate the power of the new method. Comparison with band calculations of Stern shows that n/sub 0/more » originates in carrier degeneracy.« less

  1. Dynamic kirigami structures for integrated solar tracking.

    PubMed

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R; Shtein, Max

    2015-09-08

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.

  2. Dynamic kirigami structures for integrated solar tracking

    PubMed Central

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  3. Chemical oxygen-iodine laser (COIL) for the dismantlement of nuclear facilities

    NASA Astrophysics Data System (ADS)

    Hallada, Marc R.; Seiffert, Stephan L.; Walter, Robert F.; Vetrovec, John

    2000-05-01

    The dismantlement of obsolete nuclear facilities is a major challenge for both the US Department of Energy and nuclear power utilities. Recent demonstrations have shown that lasers can be highly effective for size reduction cutting, especially for the efficient storage and recycling of materials. However, the full benefits of lasers can only be realized with high average power beams that can be conveniently delivered, via fiber optics, to remote and/or confined areas. Industrial lasers that can meet these requirements are not available now or for the foreseeable future. However, a military weapon laser, a Chemical Oxygen Iodine Laser (COIL), which has been demonstrated at over a hundred kilo Watts, could be adapted to meet these needs and enable entirely new industrial applications. An 'industrialized' COIL would enable rapid sectioning of thick and complex structures, such as glove boxes, reactor vessels, and steam generators, accelerating dismantlement schedules and reducing worker hazards. The full advantages of lasers in dismantlement could finally be realized with a portable COIL which is integrated with sophisticated robotics. It could be built and deployed in less than two years, breaking the paradigm of labor-intensive dismantlement operations and cutting processing times and costs dramatically.

  4. Laser Cutting of Multilayered Kevlar Plates

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Al-Sulaiman, F.; Karakas, C.; Ahsan, M.

    2007-12-01

    Laser cutting of Kevlar plates, consisting of multilayered laminates, with different thicknesses are carried out. A mathematical model is developed to predict the kerf width, thermal efficiency, and specific energy requirements during cutting. Optical microscopy and Scanning Electron Microscopy (SEM) are employed to obtain the micrographs of the cutting sections. The kerf width size is measured and compared with the predictions. A factorial analysis is carried out to assess the affecting parameters on the mean kerf width and dimensionless damage sizes. It is found that the kerf width and damage sizes changes sharply when increasing cutting speed from 0.03 to 0.08 m/s. Thermal efficiency of the cutting process increases with increasing thickness and cutting speed while specific energy reduces with increasing thickness. The main effects of cutting parameters are found to be significant on the mean kerf width and dimensionless damage sizes, which is more pronounced for the workpiece bottom surface, where locally distributed char formation and sideways burning are observed.

  5. 940  mW 1564  nm multi-longitudinal-mode and 440  mW 1537  nm single-longitudinal-mode continuous-wave Er:Yb:Lu2Si2O7 microchip lasers.

    PubMed

    Huang, Jianhua; Chen, Yujin; Lin, Yanfu; Gong, Xinghong; Luo, Zundu; Huang, Yidong

    2018-04-15

    An Er:Yb:Lu 2 Si 2 O 7 microchip laser was constructed by placing a 1.2 mm thick, Y-cut Er:Yb:Lu 2 Si 2 O 7 microchip between two 1.2 mm thick sapphire crystals, in which input and output mirrors were directly deposited onto one face of each crystal. End-pumped by a continuous-wave 975.4 nm diode laser, a 1564 nm multi-longitudinal-mode laser with a maximum output power of 940 mW and slope efficiency of 20% was realized at an absorbed pump power of 5.5 W when the transmission of output mirror was 2.2%. When the transmission of the output mirror was increased to 6%, a 1537 nm single-longitudinal-mode laser with a maximum output power of 440 mW and slope efficiency of 12% was realized at an absorbed pump power of 4.3 W. The results indicate that the Er:Yb:Lu 2 Si 2 O 7 crystal is a promising microchip gain medium to realize a single-longitudinal-mode laser.

  6. Cutting efficiency of air-turbine burs on cast titanium and dental casting alloys.

    PubMed

    Watanabe, I; Ohkubo, C; Ford, J P; Atsuta, M; Okabe, T

    2000-11-01

    The purpose of this study was to investigate the cutting efficiency of air-turbine burs on cast free-machining titanium alloy (DT2F) and to compare the results with those for cast commercially pure (CP) Ti, Ti-6Al-4V alloy, and dental casting alloys. The cast metal (DT2F, CP Ti, Ti-6Al-4V, Type IV gold alloy and Co-Cr alloy) specimens were cut with air-turbine burs (carbide burs and diamond points) at air pressures of 138 or 207 kPa and a cutting force of 0.784 N. The cutting efficiency of each bur was evaluated as volume loss calculated from the weight loss cut for 5 s and the density of each metal. The bulk microhardness was measured to correlate the machinability and the hardness of each metal. The amounts of DT2F cut with the carbide burs were significantly (p < 0.05) greater than for the other titanium specimens at either 138 or 207 kPa. The diamond points exhibited similar machining efficiency among all metals except for Type IV gold alloy. The increase in the volume loss of Co-Cr alloy (Vitallium) cut with the diamond points showed a negative value (-29%) with an increase in air pressure from 138 to 207 kPa. There was a negative correlation between the amounts of metal removed (volume loss) and the hardness (r2 = 0.689) when the carbide burs were used. The results of this study indicated that a free-machining titanium alloy (DT2F) exhibited better machinability compared to CP Ti and Ti-6Al-4V alloy when using carbide fissure burs. When machining cast CP Ti and its alloys, carbide fissure burs possessed a greater machining efficiency than the diamond points and are recommended for titanium dental prostheses.

  7. High efficient bone ablation with diode pumped Erbium and Thulium lasers including different delivery fibers: a comparative in vitro study

    NASA Astrophysics Data System (ADS)

    Stock, Karl; Hausladen, Florian; Stegmayer, Thomas; Wurm, Holger

    2018-02-01

    Er:YAG lasers (3μm) allow efficient bone ablation caused by the strong absorption in water. Unfortunately, there are only a few and comparable expensive fiber materials for this wavelength available which are suitable for high laser power. The bone ablation efficiency of the Tm:YAG laser is minor (2μm) but inexpensive silica fibers can be used. The aim of this study was to investigate the bone ablation, using novel diode pumped high power Er:YAG (laser power 40W) and Tm:YAG laser system (60W) and adaptive fiber delivery systems. Expected advantage of these lasers is the longer lifetime of the fibers because of the high repetition rate and low pulse energy compared to the flash lamp pumped laser systems. The bare fiber output ends of a sapphire fiber (Er:YAG laser) and of a silica fiber (Tm:YAG laser) were attached under water and a water filled container including the fixed sample (bovine bone slices) was moved by a computer controlled translation stage. In a second set-up we provided a focusing unit and appropriate water spray unit. The generated cut kerfs were analyzed by light microcopy and laser scanning microscopy. The results show that with the diode pumped Er:YAG laser and sapphire fiber a particular high efficient bone ablation (> 0.16mm2/J) is possible both with bare fiber under water and focusing unit with water spray. The higher power of the Tm:YAG laser also results in high ablation rates but causes enlarged thermal damages. In conclusion, this study demonstrates that efficient bone ablation is possible with both diode pumped laser systems. In terms of efficiency the Er:YAG laser is outstanding. The Tm:YAG laser also allows fast bone ablation, provided that the thermal impact is limited by effective cooling and high movement velocity of the laser spot, for example by using an automatic scanner.

  8. Spectrally selective solar absorber with sharp and temperature dependent cut-off based on semiconductor nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhou, Lin; Zheng, Qinghui; Lu, Hong; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2017-05-01

    Spectrally selective absorbers (SSA) with high selectivity of absorption and sharp cut-off between high absorptivity and low emissivity are critical for efficient solar energy conversion. Here, we report the semiconductor nanowire enabled SSA with not only high absorption selectivity but also temperature dependent sharp absorption cut-off. By taking advantage of the temperature dependent bandgap of semiconductors, we systematically demonstrate that the absorption cut-off profile of the semiconductor-nanowire-based SSA can be flexibly tuned, which is quite different from most of the other SSA reported so far. As an example, silicon nanowire based selective absorbers are fabricated, with the measured absorption efficiency above (below) bandgap ˜97% (15%) combined with an extremely sharp absorption cut-off (transition region ˜200 nm), the sharpest SSA demonstrated so far. The demonstrated semiconductor-nanowire-based SSA can enable a high solar thermal efficiency of ≳86% under a wide range of operating conditions, which would be competitive candidates for the concentrated solar energy utilizations.

  9. Experimental Evaluation and Optimization of Flank Wear During Turning of AISI 4340 Steel with Coated Carbide Inserts Using Different Cutting Fluids

    NASA Astrophysics Data System (ADS)

    Lawal, S. A.; Choudhury, I. A.; Nukman, Y.

    2015-01-01

    The understanding of cutting fluids performance in turning process is very important in order to improve the efficiency of the process. This efficiency can be determined based on certain process parameters such as flank wear, cutting forces developed, temperature developed at the tool chip interface, surface roughness on the work piece, etc. In this study, the objective is to determine the influence of cutting fluids on flank wear during turning of AISI 4340 with coated carbide inserts. The performances of three types of cutting fluids were compared using Taguchi experimental method. The results show that palm kernel oil based cutting fluids performed better than the other two cutting fluids in reducing flank wear. Mathematical models for cutting parameters such as cutting speed, feed rate, depth of cut and cutting fluids were obtained from regression analysis using MINITAB 14 software to predict flank wear. Experiments were conducted based on the optimized values to validate the regression equations for flank wear and 5.82 % error was obtained. The optimal cutting parameters for the flank wear using S/N ratio were 160 m/min of cutting speed (level 1), 0.18 mm/rev of feed (level 1), 1.75 mm of depth of cut (level 2) and 2.97 mm2/s palm kernel oil based cutting fluid (level 3). ANOVA shows cutting speed of 85.36 %; and feed rate 4.81 %) as significant factors.

  10. Lateral and axial cutting efficiency of instruments manufactured with conventional nickel-titanium and novel gold metallurgy.

    PubMed

    Vasconcelos, R A; Arias, A; Peters, O A

    2018-05-01

    To isolate the effect of metallurgy in lateral and axial cutting efficacy against plastic and bovine dentine substrates by comparing two rotary systems with identical design but manufactured with either conventional nickel-titanium or heat-treated gold alloy. A total of 258 ProTaper Universal (PTU) and ProTaper Gold (PTG) Shaping instruments were used. Bending behaviour was assessed to determine the appropriate displacement associated with a 2 N force in lateral cutting. Ten instruments of each type were used in lateral action for 60 s against bovine dentine or plastic substrates four consecutive times producing four notches in each specimen. Ten further instruments of each type were used in on axial action in four standardized simulated root canals fabricated from 4-mm thick plastic or dentine discs. Both tests were performed at 300 rpm in a computer-controlled testing platform. Notch area and torsional load were compared with Student's t-tests. Repeated measures ANOVA was used to compare cutting efficiency across the four different time-points. Pearson correlation coefficients between substrates were also determined. For lateral action, all three PTG instruments cut significantly more effectively (P < 0.05) than PTU on the plastic substrate. S1 and S2 PTG cut significantly more after 120 and 180 s (P < 0.05) on bovine dentine substrate. For axial action, S1 and S2 PTG were significantly more efficient in cutting at 180 s on plastic and 120 s on bovine dentine (P < 0.05). Instruments made from heat-treated nickel-titanium gold alloy had equal or greater cutting efficiency when compared to those made from conventional nickel-titanium. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. Laser cutting of various materials: Kerf width size analysis and life cycle assessment of cutting process

    NASA Astrophysics Data System (ADS)

    Yilbas, Bekir Sami; Shaukat, Mian Mobeen; Ashraf, Farhan

    2017-08-01

    Laser cutting of various materials including Ti-6Al-4V alloy, steel 304, Inconel 625, and alumina is carried out to assess the kerf width size variation along the cut section. The life cycle assessment is carried out to determine the environmental impact of the laser cutting in terms of the material waste during the cutting process. The kerf width size is formulated and predicted using the lump parameter analysis and it is measured from the experiments. The influence of laser output power and laser cutting speed on the kerf width size variation is analyzed using the analytical tools including scanning electron and optical microscopes. In the experiments, high pressure nitrogen assisting gas is used to prevent oxidation reactions in the cutting section. It is found that the kerf width size predicted from the lump parameter analysis agrees well with the experimental data. The kerf width size variation increases with increasing laser output power. However, this behavior reverses with increasing laser cutting speed. The life cycle assessment reveals that material selection for laser cutting is critical for the environmental protection point of view. Inconel 625 contributes the most to the environmental damages; however, recycling of the waste of the laser cutting reduces this contribution.

  12. Multiple-objective optimization in precision laser cutting of different thermoplastics

    NASA Astrophysics Data System (ADS)

    Tamrin, K. F.; Nukman, Y.; Choudhury, I. A.; Shirley, S.

    2015-04-01

    Thermoplastics are increasingly being used in biomedical, automotive and electronics industries due to their excellent physical and chemical properties. Due to the localized and non-contact process, use of lasers for cutting could result in precise cut with small heat-affected zone (HAZ). Precision laser cutting involving various materials is important in high-volume manufacturing processes to minimize operational cost, error reduction and improve product quality. This study uses grey relational analysis to determine a single optimized set of cutting parameters for three different thermoplastics. The set of the optimized processing parameters is determined based on the highest relational grade and was found at low laser power (200 W), high cutting speed (0.4 m/min) and low compressed air pressure (2.5 bar). The result matches with the objective set in the present study. Analysis of variance (ANOVA) is then carried out to ascertain the relative influence of process parameters on the cutting characteristics. It was found that the laser power has dominant effect on HAZ for all thermoplastics.

  13. Thirst for Power: Energy, Water and Human Survival

    NASA Astrophysics Data System (ADS)

    Webber, M.

    2015-12-01

    Energy and water are precious resources, and they are interconnected. The energy sector uses a lot of water -- the thermoelectric power sector alone is the largest user of water in the U.S., withdrawing 200 billion gallons daily for powerplant cooling. Conversely, the water sector is responsible for over twelve percent of national energy consumption for moving, pumping, treating, and heating water. This interdependence means that droughts can cause energy shortages, and power outages can bring the water system to a halt. It also means that water efficiency is a pathway to energy efficiency and vice versa. This talk will give a big-picture overview of global energy and water trends to describe how they interact, what conflicts are looming, and how they can work together. This talk will include the vulnerabilities and cross-cutting solutions such as efficient markets and smart technologies that embed more information about resource management. It will include discussion of how population growth, economic growth, climate change, and short-sighted policies are likely to make things worse. Yet, more integrated planning with long-term sustainability in mind along with cultural shifts, advanced technologies, and better design can avert such a daunting future. Combining anecdotes and personal stories with insights into the latest science of energy and water, this talk will identify a hopeful path toward wise, long-range water-energy decisions and a more reliable and abundant future for humanity.

  14. Cryogenic Tm:YAP microchip laser

    NASA Astrophysics Data System (ADS)

    Hubka, Zbyněk.; Å ulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Å koda, Václav

    2016-04-01

    The spectral characteristics of laser active media, and thus those of the laser output, are temperature dependent. Specifically, in almost every crystal host, cooling to low temperatures leads to better heat removal, a higher efficiency and output power, and a reduced lasing threshold. Tm-ion doped lasers have an emission wavelength around 2 μm and are important in medicine for soft tissue cutting and hemostasis, as well as in LIDAR or atmosphere sensing technology. This paper presents the performance-temperature dependency of a 4 at. % doped Tm:YAP microchip. During the experiment the Tm:YAP crystal was placed inside an evacuated liquid nitrogen cryostat on a cooling finger. As its temperature was varied from 80 K to 340 K, changes were observed in the absorption spectrum, ranging from 750 nm to 2000 nm and in the fluorescence spectrum from 1600 nm to 2050 nm. Fluorescence lifetime was seen to rise and fall with decreasing temperature. The laser was pumped by a 792 nm laser diode and at 80 K the maximum output peak power of the laser was 4.6 W with 23 % slope efficiency and 0.6 W threshold, compared to 2.4 W output peak power, 13 % slope efficiency and 3.3 W threshold when at 340 K. The laser emission wavelength changed from 1883 nm to 1993 nm for 80 K and 300 K, respectively.

  15. Experience with the lathe cut Bausch & Lomb Soflens: Part II--Power and optics study.

    PubMed

    Weissman, B A; Levinson, A

    1978-04-01

    Ten familiar spin cast and ten lathe cut Bausch & Lomb SOFLENS contact lenses were measured as to their power on a lensometer and on an eye. Both quality of the optics and quantitative measurements were considered. Lens flexure and the presence of a fluid lens between the posterior surface of the contact lens and the anterior cornea is indicated for both lenses to explain differences between power of the lens in air and on the eye. The spin cast lens design appears to create a quantitatively larger fluid lens, and one which will add positive optical power to the lens/eye system. Either from this and/or additional factors, the lathe cut lens appears to give improved optical performance both in air and on the eye.

  16. Cutting efficiency of conventional and martensitic nickel-titanium instruments for coronal flaring.

    PubMed

    Morgental, Renata Dornelles; Vier-Pelisser, Fabiana Vieira; Kopper, Patrícia Maria Poli; de Figueiredo, José Antonio Poli; Peters, Ove A

    2013-12-01

    This study aimed at evaluating the influence of rotational speed and number of uses on the cutting efficiency of 4 nickel-titanium coronal flaring instruments against 2 substrates, bovine dentin and acrylic blocks. BioRaCe BR0, HyFlex CM1, ProFile OS#2, and ProTaper Sx were used in simulated lateral action against both substrates at 250 and 500 rpm up to 5 times, producing 5 notches in each block. Notch areas and lengths were measured under a stereomicroscope, and data were compared by using parametric tests (α = 0.05). Against both substrates, HyFlex CM1 and ProFile OS#2 were the most and the least cutting efficient instruments, respectively (P < .05). Against acrylic, area and length values at 500 rpm were significantly higher than those at 250 rpm for all brands. Against dentin, significant differences were detected between 250 and 500 rpm for HyFlex CM1 and ProTaper Sx (area) and for BioRace BR0, HyFlex CM1, and ProTaper Sx (length). Regarding cutting efficiency loss, area and length for notches 1 and 2 (first notches) and 4 and 5 (last notches) were similar against acrylic. Against dentin, length values for notches 1 and 2 were significantly higher than those for notches 4 and 5 in ProFile OS#2 and ProTaper Sx. A strong correlation was detected between the overall results obtained on acrylic and dentin for area and length (P < .0001), although further analysis showed that data against acrylic were a poor predictor of data against dentin after repeated use. HyFlex CM1 was the most cutting efficient instrument in lateral action. An increase in rotational speed improved the cutting efficiency. Results against acrylic showed a high correlation to data against dentin, but acrylic may not be a proper substrate when the intention is to assess cutting efficiency loss with repeated use. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Experimental study of laser-oxygen cutting of low-carbon steel using fibre and CO{sub 2} lasers under conditions of minimal roughness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golyshev, A A; Malikov, A G; Orishich, A M

    The results of an experimental study of laser-oxygen cutting of low-carbon steel using fibre and CO{sub 2} lasers are generalised. The dependence of roughness of the cut surface on the cutting parameters is investigated, and the conditions under which the surface roughness is minimal are formulated. It is shown that for both types of lasers these conditions can be expressed in the same way in terms of the dimensionless variables – the Péclet number Pe and the output power Q of laser radiation per unit thickness of the cut sheet – and take the form of the similarity laws: Pemore » = const, Q = const. The optimal values of Pe and Q are found. We have derived empirical expressions that relate the laser power and cutting speed with the thickness of the cut sheet under the condition of minimal roughness in the case of cutting by means of radiation from fibre and CO{sub 2} lasers. (laser technologies)« less

  18. Budgeting for Efficiency and Effectiveness

    ERIC Educational Resources Information Center

    Pereus, Steven C.

    2012-01-01

    For most districts, budgeting has become a cost-cutting exercise designed to close the gap between revenues and expenses. During this process, decision makers inherently assume that existing operations are efficient and effective--an assumption that is rarely validated by facts. Cutting programs and services balances budgets but does not…

  19. Efficient propagation of citrus rootstocks by stem cuttings

    USDA-ARS?s Scientific Manuscript database

    A simple multicomponent system is described that is effective for rapid propagation of a diversity of citrus rootstock genotypes by single node cuttings, including new hybrids and those that are most commonly used as rootstocks. Efficiency of this system for rooting shoot explants of six important r...

  20. UTC Power/Delphi SECA CBS Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorman, Michael; Kerr, Rich

    2013-04-04

    The subject report summarizes the results of solid oxide fuel cell development conducted by UTC Power in conjunction with Delphi Automotive Systems under a cost-share program with from October 2008 through March of 2013. Over that period Delphi Automotive Systems developed a nearly four times larger area solid oxide fuel cell stack capable of operating on pre-reformed natural gas and simulated coal gas with durability demonstrated to 5,000 hours and projected to exceed 10,000 hours. The new stack design was scaled to 40-cell stacks with power output in excess of 6.25kW. Delphi also made significant strides in improving the manufacturability,more » yield and production cost of these solid oxide fuel cells over the course of the program. Concurrently, UTC Power developed a conceptual design for a 120 MW Integrated Gasification Fuel Cell (IGFC) operating on coal syngas with as high as 57% Higher Heating Value (HHV) efficiency as a measure of the feasibility of the technology. Subsequently a 400 kW on-site system preliminary design with 55% Lower Heating Value (LHV) efficiency operating on natural gas was down-selected from eighteen candidate designs. That design was used as the basis for a 25kW breadboard power plant incorporating four Delphi cell stacks that was tested on natural gas before the program was discontinued due to the sale of UTC Power in early 2013. Though the program was cut short of the endurance target of 3,000 hours, many aspects of the technology were proven including: large-area, repeatable cell manufacture, cell stack operation on simulated coal gas and natural gas and integrated power plant operation on natural gas. The potential of the technology for high efficiency stationary electric power generation is clear. Acceptable production costs, durability, and reliability in real world environments are the remaining challenges to commercialization.« less

  1. Pulse Power Compression by Cutting a Dense Z-Pinch with a Laser Beam

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    1999-07-01

    A thin cut made through a z-pinch by an intense laser beam can become a magnetically insulated diode crossed by an intense ion beam. For larger cuts, the gap is crossed by an intense relativistic electron beam, stopped by magnetic bremsstrahlung resulting in a pointlike intense x-ray source. In either case, the impedance of the pinch discharge is increased, with the power delivered rising in the same pro-portion. A magnetically insulated cut is advantageous for three reasons: First, with the ion current com-parable to the Alfvèn ion current, the pinch instabilities are reduced. Second, with the energy deposit-ed into fast ions, a non-Maxwellian velocity distribution is established increasing<σ ν> value for nuclear fusion reactions taking place in the pinch discharge. Third, in a high density z-pinch plasma, the intense ion beam can launch a thermonuclear detonation wave propagating along the pinch discharge channel. For larger cuts the soft x-rays produced by magnetic bremsstrahlung can be used to drive a thermonuclear hohlraum target. Finally, the proposed pulse power compression scheme permits to use a cheap low power d.c. source charging a magnetic storage coil delivering the magnetically stored energy to the pinch discharge load by an exploding wire opening switch.

  2. Corneal refractive surgery: Is intracorneal the way to go and what are the needs for technology?

    NASA Astrophysics Data System (ADS)

    Hjortdal, Jesper; Ivarsen, Anders

    2014-02-01

    Corneal refractive surgery aims to reduce or eliminate refractive errors of the eye by changing the refractive power of the cornea. For the last 20 years controlled excimer laser ablation of corneal tissue, either directly from the corneal stromal surface or from the corneal interior after creation of a superficial corneal flap has become widely used to correct myopia, hyperopia, and astigmatism. Recently, an intrastromal refractive procedure whereby a tissue lenticule is cut free in the corneal stroma by a femtosecond laser and removed through a small peripheral incision has been introduced. This procedure avoids creation of a corneal flap and the potential associated risks while avoiding the slow visual recovery of surface ablation procedures. Precise intrastromal femtosecond laser cutting of the fine lenticule requires very controlled laser energy delivery in order to avoid lenticule irregularities, which would compromise the refractive result and visual acuity. This newly introduced all-femtosecond based flap-free intracorneal refractive procedure has been documented to be a predictable, efficient, and safe procedure for correction of myopia and astigmatism. Technological developments related to further improved cutting quality, hyperopic and individualized treatments are desirable.

  3. Laser micro-machining strategies for transparent brittle materials using ultrashort pulsed lasers

    NASA Astrophysics Data System (ADS)

    Bernard, Benjamin; Matylitsky, Victor

    2017-02-01

    Cutting and drilling of transparent materials using short pulsed laser systems are important industrial production processes. Applications ranging from sapphire cutting, hardened glass processing, and flat panel display cutting, to diamond processing are possible. The ablation process using a Gaussian laser beam incident on the topside of a sample with several parallel overlapping lines leads to a V-shaped structured groove. This limits the structuring depth for a given kerf width. The unique possibility for transparent materials to start the ablation process from the backside of the sample is a well-known strategy to improve the aspect ratio of the ablated features. This work compares the achievable groove depth depending on the kerf width for front-side and back-side ablation and presents the best relation between the kerf width and number of overscans. Additionally, the influence of the number of pulses in one burst train on the ablation efficiency is investigated. The experiments were carried out using Spirit HE laser from Spectra-Physics, with the features of adjustable pulse duration from <400 fs to 10 ps, three different repetition rates (100 kHz, 200 kHz and 400 kHz) and average output powers of >16 W ( at 1040 nm wavelength).

  4. Multivariate evaluation of the cutting performance of rotary instruments with electric and air-turbine handpieces.

    PubMed

    Funkenbusch, Paul D; Rotella, Mario; Chochlidakis, Konstantinos; Ercoli, Carlo

    2016-10-01

    Laboratory studies of tooth preparation often involve single values for all variables other than the one being tested. In contrast, in clinical settings, not all variables can be adequately controlled. For example, a new dental rotary cutting instrument may be tested in the laboratory by making a specific cut with a fixed force, but, in clinical practice, the instrument must make different cuts with individual dentists applying different forces. Therefore, the broad applicability of laboratory results to diverse clinical conditions is uncertain and the comparison of effects across studies difficult. The purpose of this in vitro study was to examine the effects of 9 process variables on the dental cutting of rotary cutting instruments used with an electric handpiece and compare them with those of a previous study that used an air-turbine handpiece. The effects of 9 key process variables on the efficiency of a simulated dental cutting operation were measured. A fractional factorial experiment was conducted by using an electric handpiece in a computer-controlled, dedicated testing apparatus to simulate dental cutting procedures with Macor blocks as the cutting substrate. Analysis of variance (ANOVA) was used to assess the statistical significance (α=.05). Four variables (targeted applied load, cut length, diamond grit size, and cut type) consistently produced large, statistically significant effects, whereas 5 variables (rotation per minute, number of cooling ports, rotary cutting instrument diameter, disposability, and water flow rate) produced relatively small, statistically insignificant effects. These results are generally similar to those previously found for an air-turbine handpiece. Regardless of whether an electric or air-turbine handpiece was used, the control exerted by the dentist, simulated in this study by targeting a specific level of applied force, was the single most important factor affecting cutting efficiency. Cutting efficiency was also significantly affected by factors simulating patient/clinical circumstances and hardware choices. These results highlight the greater importance of local clinical conditions (procedure, dentist) in understanding dental cutting as opposed to other hardware-related factors. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Designed experiment evaluation of key variables affecting the cutting performance of rotary instruments.

    PubMed

    Funkenbusch, Paul D; Rotella, Mario; Ercoli, Carlo

    2015-04-01

    Laboratory studies of tooth preparation are often performed under a limited range of conditions involving single values for all variables other than the 1 being tested. In contrast, in clinical settings not all variables can be tightly controlled. For example, a new dental rotary cutting instrument may be tested in the laboratory by making a specific cut with a fixed force, but in clinical practice, the instrument must make different cuts with individual dentists applying a range of different forces. Therefore, the broad applicability of laboratory results to diverse clinical conditions is uncertain and the comparison of effects across studies is difficult. The purpose of this study was to examine the effect of 9 process variables on dental cutting in a single experiment, allowing each variable to be robustly tested over a range of values for the other 8 and permitting a direct comparison of the relative importance of each on the cutting process. The effects of 9 key process variables on the efficiency of a simulated dental cutting operation were measured. A fractional factorial experiment was conducted by using a computer-controlled, dedicated testing apparatus to simulate dental cutting procedures and Macor blocks as the cutting substrate. Analysis of Variance (ANOVA) was used to judge the statistical significance (α=.05). Five variables consistently produced large, statistically significant effects (target applied load, cut length, starting rpm, diamond grit size, and cut type), while 4 variables produced relatively small, statistically insignificant effects (number of cooling ports, rotary cutting instrument diameter, disposability, and water flow rate). The control exerted by the dentist, simulated in this study by targeting a specific level of applied force, was the single most important factor affecting cutting efficiency. Cutting efficiency was also significantly affected by factors simulating patient/clinical circumstances as well as hardware choices. These results highlight the importance of local clinical conditions (procedure, dentist) in understanding dental cutting procedures and in designing adequate experimental methodologies for future studies. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Evolutionary Bi-objective Optimization for Bulldozer and Its Blade in Soil Cutting

    NASA Astrophysics Data System (ADS)

    Sharma, Deepak; Barakat, Nada

    2018-02-01

    An evolutionary optimization approach is adopted in this paper for simultaneously achieving the economic and productive soil cutting. The economic aspect is defined by minimizing the power requirement from the bulldozer, and the soil cutting is made productive by minimizing the time of soil cutting. For determining the power requirement, two force models are adopted from the literature to quantify the cutting force on the blade. Three domain-specific constraints are also proposed, which are limiting the power from the bulldozer, limiting the maximum force on the bulldozer blade and achieving the desired production rate. The bi-objective optimization problem is solved using five benchmark multi-objective evolutionary algorithms and one classical optimization technique using the ɛ-constraint method. The Pareto-optimal solutions are obtained with the knee-region. Further, the post-optimal analysis is performed on the obtained solutions to decipher relationships among the objectives and decision variables. Such relationships are later used for making guidelines for selecting the optimal set of input parameters. The obtained results are then compared with the experiment results from the literature that show a close agreement among them.

  7. Welding And Cutting A Nickel Alloy By Laser

    NASA Technical Reports Server (NTRS)

    Banas, C. M.

    1990-01-01

    Technique effective and energy-efficient. Report describes evaluation of laser welding and cutting of Inconel(R) 718. Notes that electron-beam welding processes developed for In-718, but difficult to use on large or complex structures. Cutting of In-718 by laser fast and produces only narrow kerf. Cut edge requires dressing, to endure fatigue.

  8. Estimation of the laser cutting operating cost by support vector regression methodology

    NASA Astrophysics Data System (ADS)

    Jović, Srđan; Radović, Aleksandar; Šarkoćević, Živče; Petković, Dalibor; Alizamir, Meysam

    2016-09-01

    Laser cutting is a popular manufacturing process utilized to cut various types of materials economically. The operating cost is affected by laser power, cutting speed, assist gas pressure, nozzle diameter and focus point position as well as the workpiece material. In this article, the process factors investigated were: laser power, cutting speed, air pressure and focal point position. The aim of this work is to relate the operating cost to the process parameters mentioned above. CO2 laser cutting of stainless steel of medical grade AISI316L has been investigated. The main goal was to analyze the operating cost through the laser power, cutting speed, air pressure, focal point position and material thickness. Since the laser operating cost is a complex, non-linear task, soft computing optimization algorithms can be used. Intelligent soft computing scheme support vector regression (SVR) was implemented. The performance of the proposed estimator was confirmed with the simulation results. The SVR results are then compared with artificial neural network and genetic programing. According to the results, a greater improvement in estimation accuracy can be achieved through the SVR compared to other soft computing methodologies. The new optimization methods benefit from the soft computing capabilities of global optimization and multiobjective optimization rather than choosing a starting point by trial and error and combining multiple criteria into a single criterion.

  9. The effects of habitat management on the species, phylogenetic and functional diversity of bees are modified by the environmental context.

    PubMed

    Sydenham, Markus A K; Moe, Stein R; Stanescu-Yadav, Diana N; Totland, Ørjan; Eldegard, Katrine

    2016-02-01

    Anthropogenic landscape elements, such as roadsides, hedgerows, field edges, and power line clearings, can be managed to provide important habitats for wild bees. However, the effects of habitat improvement schemes in power line clearings on components of diversity are poorly studied. We conducted a large-scale experiment to test the effects of different management practices on the species, phylogenetic, and functional diversity of wild bees in power line clearings (n = 19 sites across southeastern Norway) and explored whether any treatment effects were modified by the environmental context. At each site, we conducted the following treatments: (1) Cut: all trees cut and left to decay in the clearing; (2) Cut + Remove: all trees cut and removed from the plot; and (3) Uncut: uncleared. The site-specific environmental context (i.e., elevation and floral diversity) influenced the species, phylogenetic, and functional diversity within bee species assemblages. The largest number of species was found in the Cut + Remove treatment in plots with a high forb species richness, indicating that the outcome of management practices depends on the environmental context. Clearing of treatment plots with many forb species also appeared to alter the phylogenetic composition of bee species assemblages, that is, more closely related species were found in the Cut and the Cut + Remove plots than in the Uncut plots. Synthesis and applications: Our experimental simulation of management practices in power line clearings influenced the species, phylogenetic, and functional diversity of bee species assemblages. Frequent clearing and removal of the woody debris at low elevations with a high forb species richness can increase the value of power line clearings for solitary bees. It is therefore important for managers to consider the environmental context when designing habitat improvement schemes for solitary bees.

  10. The Outward Efficiency of Schools.

    ERIC Educational Resources Information Center

    Wadeskog, Anders

    1987-01-01

    The public sector in Sweden is under pressure to augment its productivity and cut costs, and the education sector is faced with the same demands. Most people believe that adequately proportioned, efficiently operating schools are essential to Sweden's long-term economic development, but this is seldom mentioned in connection with spending cuts. In…

  11. Feasibility Study on Cutting HTPB Propellants with Abrasive Water Jet

    NASA Astrophysics Data System (ADS)

    Jiang, Dayong; Bai, Yun

    2018-01-01

    Abrasive water jet is used to carry out the experiment research on cutting HTPB propellants with three components, which will provide technical support for the engineering treatment of waste rocket motor. Based on the reliability theory and related scientific research results, the safety and efficiency of cutting sensitive HTPB propellants by abrasive water jet were experimentally studied. The results show that the safety reliability is not less than 99.52% at 90% confidence level, so the safety is adequately ensured. The cooling and anti-friction effect of high-speed water jet is the decisive factor to suppress the detonation of HTPB propellant. Compared with pure water jet, cutting efficiency was increased by 5% - 87%. The study shows that abrasive water jets meet the practical use for cutting HTPB propellants.

  12. Electron cyclotron heating/current-drive system using high power tubes for QUEST spherical tokamak

    NASA Astrophysics Data System (ADS)

    Onchi, Takumi; Idei, H.; Hasegawa, M.; Nagata, T.; Kuroda, K.; Hanada, K.; Kariya, T.; Kubo, S.; Tsujimura, T. I.; Kobayashi, S.; Quest Team

    2017-10-01

    Electron cyclotron heating (ECH) is the primary method to ramp up plasma current non-inductively in QUEST spherical tokamak. A 28 GHz gyrotron is employed for short pulses, where the radio frequency (RF) power is about 300 kW. Current ramp-up efficiency of 0.5 A/W has been obtained with focused beam of the second harmonic X-mode. A quasi-optical polarizer unit has been newly installed to avoid arcing events. For steady-state tokamak operation, 8.56 GHz klystron with power of 200 kW is used as the CW-RF source. The high voltage power supply (54 kV/13 A) for the klystron has been built recently, and initial bench test of the CW-ECH system is starting. The array of insulated-gate bipolar transistor works to quickly cut off the input power for protecting the klystron. This work is supported by JSPS KAKENHI (15H04231), NIFS Collaboration Research program (NIFS13KUTR085, NIFS17KUTR128), and through MEXT funding for young scientists associated with active promotion of national university reforms.

  13. Linearly polarized pumped passively Q-switched Nd:YVO4 microchip laser for Ince-Gaussian laser modes with controllable orientations

    NASA Astrophysics Data System (ADS)

    He, Hong-Sen; Zhang, Ming-Ming; Dong, Jun; Ueda, Ken-Ichi

    2016-12-01

    A tilted, linearly polarized laser diode end-pumped Cr4+:YAG passively Q-switched a-cut Nd:YVO4 microchip laser for generating numerous Ince-Gaussian (IG) laser modes with controllable orientations has been demonstrated by selecting the crystalline orientation of an a-cut Nd:YVO4 crystal. The same IG laser mode with different orientations has been achieved with the same absorbed pump power in a passively Q-switched Nd:YVO4 microchip laser under linearly polarized pumping when the incident pump power and the crystalline orientation of an a-cut Nd:YVO4 crystal are both properly selected. The significant improvement of pulsed laser performance of controllable IG modes has been achieved by selecting the crystalline orientation of an a-cut Nd:YVO4 crystal. The maximum pulse energy is obtained along the a-axis of an a-cut Nd:YVO4 crystal and the highest peak power is achieved along the c-axis of an a-cut Nd:YVO4 crystal, respectively, which has potential applications on quantum computation and optical manipulation. The generation of controllable IG laser modes in microchip lasers under linearly polarized pumping provides a convenient and universal way to control IG laser mode numbers with anisotropic crystal as a gain medium.

  14. FY2014 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Motors Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozpineci, Burak

    The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 throughmore » 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Advanced Power Electronics and Electric Motors (APEEM) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.« less

  15. Experimental comparison of laser energy losses in high-quality laser-oxygen cutting of low-carbon steel using radiation from fibre and CO{sub 2} lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golyshev, A A; Malikov, A G; Orishich, A M

    We report a comparative experimental study of laseroxygen cutting of low-carbon steel using a fibre laser with a wavelength of 1.07 μm and a CO{sub 2} laser with a wavelength of 10.6 μm at the sheet thickness of 3 – 16 mm. For the two lasers we have measured the dependence of the cutting speed on the radiation power and determined the cutting speed at which the surface roughness is minimal. The coefficient of laser radiation absorption in the laser cutting process is measured for these lasers at different values of the cutting speed and radiation power. It is foundmore » that the minimal roughness of the cut surface is reached at the absorbed laser energy per unit volume of the removed material, equal to 11 – 13 J mm{sup -3}; this value is the same for the two lasers and does not depend on the sheet thickness. (laser technologies)« less

  16. ALPS yield optimization cutting program

    Treesearch

    P. Klinkhachorn; J.P. Franklin; Charles W. McMillin; H.A. Huber

    1989-01-01

    This paper reports ongoing work on a series of computer programs developed to automate hardwood lumber processing in a furniture roughmill. The program computes the placement of cuttings on lumber, based on a description of each board in terms of shape and defect location, and a cutting bill. These results are suitable for use with a high-power laser to cut the parts...

  17. Comparative Evaluation of Cutting Methods of Activated Concrete from Nuclear Power Plant Decommissioning - 13548

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, HakSoo; Chung, SungHwan; Maeng, SungJun

    2013-07-01

    The amount of radioactive wastes from decommissioning of a nuclear power plant varies greatly depending on factors such as type and size of the plant, operation history, decommissioning options, and waste treatment and volume reduction methods. There are many methods to decrease the amount of decommissioning radioactive wastes including minimization of waste generation, waste reclassification through decontamination and cutting methods to remove the contaminated areas. According to OECD/NEA, it is known that the radioactive waste treatment and disposal cost accounts for about 40 percentage of the total decommissioning cost. In Korea, it is needed to reduce amount of decommissioning radioactivemore » waste due to high disposal cost, about $7,000 (as of 2010) per a 200 liter drum for the low- and intermediate-level radioactive waste (LILW). In this paper, cutting methods to minimize the radioactive waste of activated concrete were investigated and associated decommissioning cost impact was assessed. The cutting methods considered are cylindrical and volume reductive cuttings. The study showed that the volume reductive cutting is more cost-effective than the cylindrical cutting. Therefore, the volume reductive cutting method can be effectively applied to the activated bio-shield concrete. (authors)« less

  18. Single-use instruments, cutting blocks, and trials increase efficiency in the operating room during total knee arthroplasty: a prospective comparison of navigated and non-navigated cases.

    PubMed

    Mont, Michael A; McElroy, Mark J; Johnson, Aaron J; Pivec, Robert

    2013-08-01

    The purpose of this prospective controlled trial was to determine if efficiency increases could be achieved in non-navigated and navigated total knee arthroplasties by replacing traditional saws, cutting blocks, and trials with specialized saws and single-use cutting blocks and trials. Various timing metrics during total knee arthroplasty, including operating room preparation times and specific intra-operative times, were measured in 400 procedures performed by eight different surgeons at 6 institutions. Efficiency increases were the result of statistically significant reductions in combined instrument setup and cleanup times as well as in adjusted surgical episode times in navigated total knee arthroplasties. Single-use instruments show promising benefits, but adequate patient follow-up is needed to confirm safety and efficacy before they can be widely adopted. Nevertheless, the authors believe that the use of single-use instruments, cutting guides, and trial implants for total knee arthroplasty will play an increasing role in improving operating room efficiency. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Cutting efficiency of four different rotary nickel: Titanium instruments

    PubMed Central

    Cecchin, Doglas; de Sousa-Neto, Manoel Damião; Pécora, Jesus Djalma; Gariba-Silva, Ricardo

    2011-01-01

    Aim: The aim of this study was to evaluate the cutting efficiency of rotary nickel-titanium (NiTi) instruments K3, NiTi Tee, Profile, and Quantec with taper size 04/25. Materials and Methods: The number of samples was 10 for each group (n = 10). The cutting efficiency was measured by the mass loss from each acrylic resin block after instrumentation of a simulated canal using the Crown-down technique. Results: The analysis of variance (ANOVA) showed that there was a statistically significant difference among the studied groups. The Tukey's test showed that the acrylic resin blocks prepared with instruments K3 (0.00369 ± 0.00022), NiTi Tee (0.00368 ± 0.00023), and Profile (0.00351 ± 0.00026) presented the greatest mass loss, showing no statistically significant difference among them (P < 0.05). The lowest mass loss was found in the blocks prepared with Quantec instruments (0.00311 ± 0.0003) (P < 0.05). Conclusions: It could be concluded that the K3, NiTi Tee, and Profile instruments presented a greater cutting efficiency than the Quantec instruments. PMID:21814349

  20. Power consumption and lumber yields for reduced-kerf circular saws cutting hardwoods

    Treesearch

    Donald G. Cuppett

    1982-01-01

    Two 50-inch diameter headsaws were used for sawing (a) hardwood cants into boards, and (b) hardwood bolts into pallet parts. One saw had a 9x10 gage plate with 114-inch kerf teeth, and the other had a 7x8 gage plate with 9/32-inch kerf teeth. Power consumption for the two saws was determined with a watt-hour meter, measuring power used for paired cuts in 6-inch thick...

  1. In vitro comparison of the cutting efficiency and temperature production of ten different rotary cutting instruments. Part II: electric handpiece and comparison with turbine.

    PubMed

    Ercoli, Carlo; Rotella, Mario; Funkenbusch, Paul D; Russell, Scott; Feng, Changyong

    2009-05-01

    The cutting behavior of dental rotary cutting instruments is influenced by the handpiece used. While the turbine handpiece has been extensively tested in previous studies, limited published information exists on the use of rotary cutting instruments with the electric handpiece system and on possible interactions between rotary cutting instruments and handpiece type. The purpose of this study was to examine the cutting performance of a wide selection of rotary cutting instruments tested with the electric handpiece and compare the results with those of the air-turbine handpiece (Part I), identifying possible interactions between handpiece type and rotary cutting instruments. Ten groups of rotary cutting instruments (n=30) designed for tooth preparation were selected: 9 diamond (7 multi-use, 2 disposable) and 1 carbide. Macor blocks (n=75) were used as a substrate, and 4 cuts were made on each specimen, using a new rotary cutting instrument each time, for a total of 300 cuts. The cuts were performed with an electric handpiece (Intramatic Lux K200), with the same methods used in the Part I study. To qualitatively evaluate the rotary cutting instrument surface characteristics, 1 specimen from each group was examined 3 times with a scanning electron microscope (SEM): before use, then after use, but before being cleaned and sterilized, and finally, after ultrasonic cleaning. To compare rotary cutting instrument performance between the turbine and electric handpieces, the data were analyzed using 2-way ANOVA to study the main effects of the group of rotary cutting instruments, handpieces, and their interaction. For analysis of the significant main effect, 1-way ANOVA and Tukey's Studentized Range test were used (alpha=.05). Compared to the baseline temperature, all rotary cutting instruments showed a reduction of the temperature in the simulated pulp chamber when tested with the electric handpiece. The Great White Ultra (carbide bur) showed the highest rate of advancement (0.17 mm/s) and lowest applied load (108.35 g). Considering all rotary cutting instruments as a single group, the electric handpiece showed mean lower temperature (26.68 degrees C), higher rate of advancement (0.12 mm/s), and higher load (124.53 g) than the air-turbine handpiece (28.37 degrees C, 0.11 mm/s, and 121.7 g, respectively). Considering each single group of rotary cutting instruments, significant differences were found for the electric or air-turbine handpiece. The tested carbide bur showed greater cutting efficiency than the tested diamond rotary cutting instruments when used with the electric handpiece. The electric handpiece showed a higher cutting efficiency than the turbine, especially when used with the carbide bur, probably due to its greater torque.

  2. Cutting efficiency of nickel-titanium rotary and reciprocating instruments after prolonged use.

    PubMed

    Gambarini, Gianluca; Giansiracusa Rubini, Alessio; Sannino, Giampaolo; Di Giorgio, Gianni; Di Giorgio, Fabrizio; Piasecki, Lucila; Al-Sudani, Dina; Plotino, Gianluca; Testarelli, Luca

    2016-01-01

    The aim of the present study was to compare the cutting efficiency of Twisted File instruments used in continuous rotation or TF Adaptive motion and evaluate if prolonged use significantly affected their cutting ability. 20 new NiTi instruments were used in the present study (TF tip size 35, 0.06 taper; Sybron-Endo, Orange, CA, USA), divided into 2 subgroups of 10 instruments each, depending on which movement was selected on the endodontic motor. Group 1: TF instruments were activated using the program TF continuous rotation at 500 rpm and torque set at 2 N; Group 2: TF instruments were activated using the reciprocating TF Adaptive motion. Cutting efficiency was tested in a device developed to test the cutting ability of endodontic instruments. Each instrument cut 10 plastic blocks (10 uses) and the length of the surface cut in a plastic block after 1 min was measured in a computerized program with a precision of 0.1 mm. Maximum penetration depth was calculated after 1 use and after 10 uses, and mean and standard deviation (SD) of each group was calculated. Data were statistically analyzed with a one-way ANOVA test (P < 0.05). TF instruments used in continuous rotation (Group 1) cut a mean depth of 10.4 mm (SD = 0.6 mm) after the first use and 10.1 mm (SD 1.1 mm) after 10 uses, while TF instruments used with the Adaptive motion cut a mean depth of 9.9 mm (SD = 0.7 mm) after the first use and 9.6 mm (SD = 0.9 mm) after 10 uses. There was no statistically significant difference between the two groups investigated (P > 0.05) nor between instruments after 1 or 10 uses. In conclusion, the TFA motion showed a lateral cutting ability similar to continuous rotation and all tested instruments exhibited the same cutting ability after prolonged use.

  3. Assessing resolution in live cell structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Pospíšil, Jakub; Fliegel, Karel; Klíma, Miloš

    2017-12-01

    Structured Illumination Microscopy (SIM) is a powerful super-resolution technique, which is able to enhance the resolution of optical microscope beyond the Abbe diffraction limit. In the last decade, numerous SIM methods that achieve the resolution of 100 nm in the lateral dimension have been developed. The SIM setups with new high-speed cameras and illumination pattern generators allow rapid acquisition of the live specimen. Therefore, SIM is widely used for investigation of the live structures in molecular and live cell biology. Quantitative evaluation of resolution enhancement in a real sample is essential to describe the efficiency of super-resolution microscopy technique. However, measuring the resolution of a live cell sample is a challenging task. Based on our experimental findings, the widely used Fourier ring correlation (FRC) method does not seem to be well suited for measuring the resolution of SIM live cell video sequences. Therefore, the resolution assessing methods based on Fourier spectrum analysis are often used. We introduce a measure based on circular average power spectral density (PSDca) estimated from a single SIM image (one video frame). PSDca describes the distribution of the power of a signal with respect to its spatial frequency. Spatial resolution corresponds to the cut-off frequency in Fourier space. In order to estimate the cut-off frequency from a noisy signal, we use a spectral subtraction method for noise suppression. In the future, this resolution assessment approach might prove useful also for single-molecule localization microscopy (SMLM) live cell imaging.

  4. Growth and laser properties of Nd:Ca 4YO(BO 3) 3 crystal

    NASA Astrophysics Data System (ADS)

    Zhang, H. J.; Meng, X. L.; Zhu, L.; Wang, C. Q.; Cheng, R. P.; Yu, W. T.; Zhang, S. J.; Sun, L. K.; Chow, Y. T.; Zhang, W. L.; Wang, H.; Wong, K. S.

    1999-02-01

    Nd:Ca 4YO(BO 3) 3 (Nd:YCOB) crystal was grown by the Czochralski method, and its structure was measured by using a four circle X-ray diffractometer. The transparent spectrum from 200 to 2600 nm was measured at room temperature. The fluorescence spectrum near 1.06 μm showed that the main emission wavelength of Nd:YCOB crystal was centered at 1060.8 nm. Laser output at 1.06 μm has been demonstrated when it was pumped by a Ti:sapphire laser at the wavelength of 794 nm, the highest output power was 68 mW under pumping power of 311 mW, the pumping threshold was 163 mW and slope efficiency was 46.9%. The self-frequency doubled green light has been observed when it was pumped by a Ti:sapphire or a laser diode (LD). A 14.5 mm Nd:YCOB crystal sample cut at ( θ, φ)=(90°, 33°) was used for type I second-frequency generation (SHG) of the 1.06 μm laser pulse. The SHG conversion efficiency was 22%.

  5. Theoretical explanation of the polarization-converting system achieved by beam shaping and combination technique and its performance under high power conditions

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Li, Xiao; Shang, YaPing; Xu, XiaoJun

    2015-10-01

    The fiber laser has very obvious advantages and broad applications in remote welding, 3D cutting and national defense compared with the traditional solid laser. But influenced by heat effect of gain medium, nonlinear effect, stress birefringence effect and other negative factors, it's very difficult to get high power linearly polarized laser just using a single laser. For these limitations a polarization-converting system is designed using beam shaping and combination technique which is able to transform naturally polarized laser to linearly polarized laser at real time to resolve difficulties of generating high-power linearly polarized laser from fiber lasers in this paper. The principle of the Gaussian beam changing into the hollow beam passing through two axicons and the combination of the Gaussian beam and the hollow beam is discussed. In the experimental verification the energy conversion efficiency reached 93.1% with a remarkable enhancement of the extinction ratio from 3% to 98% benefited from the high conversion efficiency of axicons and the system worked fine under high power conditions. The system also kept excellent far field divergence. The experiment phenomenon also agreed with the simulation quite well. The experiment proves that this polarization-converting system will not affect laser structure which controls easily and needs no feedback and controlling system with stable and reliable properties at the same time. It can absolutely be applied to the polarization-conversion of high power laser.

  6. Scissors: More than a Cut Above

    ERIC Educational Resources Information Center

    Suzanne, Teri

    2005-01-01

    Scissors are a unique interactive tool when successfully used, allowing teachers and students to recognize and explore each other's creative ability while nurturing mutual communication. Freehand cutting gives children freedom to create as they cut. Scissors have the power to improve fine motor skills, stimulate creative imagination, reinforce…

  7. The distribution of first-passage times and durations in FOREX and future markets

    NASA Astrophysics Data System (ADS)

    Sazuka, Naoya; Inoue, Jun-ichi; Scalas, Enrico

    2009-07-01

    Possible distributions are discussed for intertrade durations and first-passage processes in financial markets. The view-point of renewal theory is assumed. In order to represent market data with relatively long durations, two types of distributions are used, namely a distribution derived from the Mittag-Leffler survival function and the Weibull distribution. For the Mittag-Leffler type distribution, the average waiting time (residual life time) is strongly dependent on the choice of a cut-off parameter tmax, whereas the results based on the Weibull distribution do not depend on such a cut-off. Therefore, a Weibull distribution is more convenient than a Mittag-Leffler type if one wishes to evaluate relevant statistics such as average waiting time in financial markets with long durations. On the other hand, we find that the Gini index is rather independent of the cut-off parameter. Based on the above considerations, we propose a good candidate for describing the distribution of first-passage time in a market: The Weibull distribution with a power-law tail. This distribution compensates the gap between theoretical and empirical results more efficiently than a simple Weibull distribution. It should be stressed that a Weibull distribution with a power-law tail is more flexible than the Mittag-Leffler distribution, which itself can be approximated by a Weibull distribution and a power-law. Indeed, the key point is that in the former case there is freedom of choice for the exponent of the power-law attached to the Weibull distribution, which can exceed 1 in order to reproduce decays faster than possible with a Mittag-Leffler distribution. We also give a useful formula to determine an optimal crossover point minimizing the difference between the empirical average waiting time and the one predicted from renewal theory. Moreover, we discuss the limitation of our distributions by applying our distribution to the analysis of the BTP future and calculating the average waiting time. We find that our distribution is applicable as long as durations follow a Weibull law for short times and do not have too heavy a tail.

  8. Breeding lettuce for improved fresh-cut processing

    USDA-ARS?s Scientific Manuscript database

    Lettuce is a widely grown vegetable that is used to make fresh-cut salads, which are popular with consumers due to their convenience. Production and processing of fresh-cut lettuce is continually evolving, offering more products and becoming more efficient. Breeding new lettuce cultivars specialized...

  9. Spectral analysis of GEOS-3 altimeter data and frequency domain collocation. [to estimate gravity anomalies

    NASA Technical Reports Server (NTRS)

    Eren, K.

    1980-01-01

    The mathematical background in spectral analysis as applied to geodetic applications is summarized. The resolution (cut-off frequency) of the GEOS 3 altimeter data is examined by determining the shortest wavelength (corresponding to the cut-off frequency) recoverable. The data from some 18 profiles are used. The total power (variance) in the sea surface topography with respect to the reference ellipsoid as well as with respect to the GEM-9 surface is computed. A fast inversion algorithm for matrices of simple and block Toeplitz matrices and its application to least squares collocation is explained. This algorithm yields a considerable gain in computer time and storage in comparison with conventional least squares collocation. Frequency domain least squares collocation techniques are also introduced and applied to estimating gravity anomalies from GEOS 3 altimeter data. These techniques substantially reduce the computer time and requirements in storage associated with the conventional least squares collocation. Numerical examples given demonstrate the efficiency and speed of these techniques.

  10. Reducing greenhouse gas emissions for climate stabilization: framing regional options.

    PubMed

    Olabisi, Laura Schmitt; Reich, Peter B; Johnson, Kris A; Kapuscinski, Anne R; Su, Sangwon H; Wilson, Elizabeth J

    2009-03-15

    The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO2 concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term.

  11. Effectiveness of US state policies in reducing CO2 emissions from power plants

    NASA Astrophysics Data System (ADS)

    Grant, Don; Bergstrand, Kelly; Running, Katrina

    2014-11-01

    President Obama's landmark initiative to reduce the CO2 emissions of existing power plants, the nation's largest source of greenhouse gas (GHG) pollutants, depends heavily on states and their ability to devise policies that meet the goals set by the Environmental Protection Agency (EPA). Under the EPA's proposed Clean Power Plan, states will be responsible for cutting power plants' carbon pollution 30% from 2005 levels by 2030. States have already adopted several policies to reduce the electricity sector's climate impact. Some of these policies focus on reducing power plants' CO2 emissions, and others address this outcome in a more roundabout fashion by encouraging energy efficiency and renewable energy. However, it remains unclear which, if any, of these direct and indirect strategies actually mitigate plants' emissions because scholars have yet to test their effects using plant-level emission data. Here we use a newly released data source to determine whether states' policies significantly shape individual power plants' CO2 emissions. Findings reveal that certain types of direct strategy (emission caps and GHG targets) and indirect ones (public benefit funds and electric decoupling) lower plants' emissions and thus are viable building blocks of a federal climate regime.

  12. The effects of electric power industry restructuring on the safety of nuclear power plants in the United States

    NASA Astrophysics Data System (ADS)

    Butler, Thomas S.

    Throughout the United States the electric utility industry is restructuring in response to federal legislation mandating deregulation. The electric utility industry has embarked upon an extraordinary experiment by restructuring in response to deregulation that has been advocated on the premise of improving economic efficiency by encouraging competition in as many sectors of the industry as possible. However, unlike the telephone, trucking, and airline industries, the potential effects of electric deregulation reach far beyond simple energy economics. This dissertation presents the potential safety risks involved with the deregulation of the electric power industry in the United States and abroad. The pressures of a competitive environment on utilities with nuclear power plants in their portfolio to lower operation and maintenance costs could squeeze them to resort to some risky cost-cutting measures. These include deferring maintenance, reducing training, downsizing staff, excessive reductions in refueling down time, and increasing the use of on-line maintenance. The results of this study indicate statistically significant differences at the .01 level between the safety of pressurized water reactor nuclear power plants and boiling water reactor nuclear power plants. Boiling water reactors exhibited significantly more problems than did pressurized water reactors.

  13. The effect of handpiece spray patterns on cutting efficiency.

    PubMed

    Siegel, Sharon C; von Fraunhofer, J Anthony

    2002-02-01

    High-speed handpieces' spray ports direct coolant at the cutting interface. The authors evaluated the effect of the number of ports and their positions on cutting rates, or CRs. The authors performed cutting studies on a machinable ceramic block using an established testing regimen. One-port, three-port and four-port handpieces from one manufacturer were operated at maximum torque and rotation speed under a water flow of 25 milliliters per minute. The authors made 6-millimeter long edge and groove cuts in 13-mm cross-section blocks using six medium-grit diamond burs for each handpiece. Each bur cut a total of 78 mm. The authors determined CR as the time to transect the block and analyzed the data by two-way analysis of variance with post hoc Scheffé tests. CRs varied by the type of cut and the number of spray ports. No differences were found in CRs for the three handpieces during edge cutting. The one-port handpiece cut significantly slower (P < .001) than did the three- and four-port handpieces during groove cutting. The data indicate that the number of handpiece spray ports, and their positioning relative to the bur affect water supply to the cutting interface and, consequently, the CR under these study conditions. Optimal cutting efficiency requires good coolant access, especially within restricted areas. A multiple-port handpiece may be advantageous when preparing the interproximal region for a crown or a proximal box, owing to the better water spray pattern. Dentists should consider the influence of the number of spray ports when selecting handpieces for cutting procedures.

  14. Development and Production of Array Barrier Detectors at SCD

    NASA Astrophysics Data System (ADS)

    Klipstein, P. C.; Avnon, E.; Benny, Y.; Berkowicz, E.; Cohen, Y.; Dobromislin, R.; Fraenkel, R.; Gershon, G.; Glozman, A.; Hojman, E.; Ilan, E.; Karni, Y.; Klin, O.; Kodriano, Y.; Krasovitsky, L.; Langof, L.; Lukomsky, I.; Nevo, I.; Nitzani, M.; Pivnik, I.; Rappaport, N.; Rosenberg, O.; Shtrichman, I.; Shkedy, L.; Snapi, N.; Talmor, R.; Tessler, R.; Weiss, E.; Tuito, A.

    2017-09-01

    XB n or XB p barrier detectors exhibit diffusion-limited dark currents comparable with mercury cadmium telluride Rule-07 and high quantum efficiencies. In 2011, SemiConductor Devices (SCD) introduced "HOT Pelican D", a 640 × 512/15- μm pitch InAsSb/AlSbAs XB n mid-wave infrared (MWIR) detector with a 4.2- μm cut-off and an operating temperature of ˜150 K. Its low power (˜3 W), high pixel operability (>99.5%) and long mean time to failure make HOT Pelican D a highly reliable integrated detector-cooler product with a low size, weight and power. More recently, "HOT Hercules" was launched with a 1280 × 1024/15- μm format and similar advantages. A 3-megapixel, 10- μm pitch version ("HOT Blackbird") is currently completing development. For long-wave infrared applications, SCD's 640 × 512/15- μm pitch "Pelican-D LW" XB p type II superlattice (T2SL) detector has a ˜9.3- μm cut-off wavelength. The detector contains InAs/GaSb and InAs/AlSb T2SLs, and is fabricated into focal plane array (FPA) detectors using standard production processes including hybridization to a digital silicon read-out integrated circuit (ROIC), glue underfill and substrate thinning. The ROIC has been designed so that the complete detector closely follows the interfaces of SCD's MWIR Pelican-D detector family. The Pelican-D LW FPA has a quantum efficiency of ˜50%, and operates at 77 K with a pixel operability of >99% and noise equivalent temperature difference of 13 mK at 30 Hz and F/2.7.

  15. Mitochondrial abundance and efficiency contribute to lean color of dark cutting beef

    USDA-ARS?s Scientific Manuscript database

    Beef carcasses exhibiting four levels of dark cutting severity (DCS): Severe, Moderate, Mild, and Shady were compared to Control carcasses to investigate biochemical traits contributing to the dark cutting condition. Color attributes of Longissimus lumborum (LL) were measured after grading and duri...

  16. A comparative study on performance of CBN inserts when turning steel under dry and wet conditions

    NASA Astrophysics Data System (ADS)

    Abdullah Bagaber, Salem; Razlan Yusoff, Ahmad

    2017-10-01

    Cutting fluids is the most unsustainable components of machining processes, it is negatively impacting on the environmental and additional energy required. Due to its high strength and corrosion resistance, the machinability of stainless steel has attracted considerable interest. This study aims to evaluate performance of cubic boron nitride (CBN) inserts for the machining parameters includes the power consumption and surface roughness. Due to the high single cutting-edge cost of CBN, the performance of significant is importance for hard finish turning. The present work also deals with a comparative study on power consumption and surface roughness under dry and flood conditions. Turning process of the stainless steel 316 was performed. A response surface methodology based box-behnken design (BBD) was utilized for statistical analysis. The optimum process parameters are determined as the overall performance index. The comparison study has been done between dry and wet stainless-steel cut in terms of minimum value of energy and surface roughness. The result shows the stainless still can be machined under dry condition with 18.57% improvement of power consumption and acceptable quality compare to the wet cutting. The CBN tools under dry cutting stainless steel can be used to reduce the environment impacts in terms of no cutting fluid use and less energy required which is effected in machining productivity and profit.

  17. Micromachined electrical cauterizer

    DOEpatents

    Lee, Abraham P.; Krulevitch, Peter A.; Northrup, M. Allen

    1999-01-01

    A micromachined electrical cauterizer. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 .mu.m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures.

  18. Micromachined electrical cauterizer

    DOEpatents

    Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.

    1999-08-31

    A micromachined electrical cauterizer is disclosed. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 {mu}m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures. 7 figs.

  19. High-quality laser cutting of stainless steel in inert gas atmosphere by ytterbium fibre and CO{sub 2} lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golyshev, A A; Malikov, A G; Orishich, A M

    Processes of cutting stainless steel by ytterbium fibre and CO{sub 2} lasers have been experimentally compared. The cut surface roughnesses for 3- and 5-mm-thick stainless steel sheets are determined. The absorption coefficient of laser radiation during cutting is measured. It is established that the power absorbed by metal during cutting by the CO{sub 2} laser exceeds that for the ytterbium laser (provided that the cutting speed remains the same). The fact that the maximum cutting speed of the CO{sub 2} laser is lower than that of the ytterbium fibre laser is explained. (laser technologies)

  20. Ankle mechanics during sidestep cutting implicates need for 2-degrees of freedom powered ankle-foot prostheses.

    PubMed

    Ficanha, Evandro M; Rastgaar, Mohammad; Kaufman, Kenton R

    2015-01-01

    The ankle joint of currently available powered prostheses is capable of controlling one degree of freedom (DOF), focusing on improved mobility in the sagittal plane. To increase agility, the requirements of turning in prosthesis design need to be considered. Ankle kinematics and kinetics were studied during sidestep cutting and straight walking. There were no significant differences between the ankle sagittal plane mechanics when comparing sidestep cutting and straight walking; however, significant differences were observed in ankle frontal plane mechanics. During straight walking, the inversion-eversion (IE) angles were smaller than with sidestep cutting. The ankle that initiated the sidestep cutting showed progressively increasing inversion from 2 to 13 degrees while the following contralateral step showed progressively decreasing inversion from 8 to -4 degrees during normal walking speed. The changes in IE kinematics were the most significant during sidestep cutting compared with straight walking. The IE moments of the step that initiated the sidestep cutting were always in eversion, acting as a braking moment opposing the inverting motion. This suggests that an ankle-foot prosthesis with active DOFs in the sagittal and frontal planes will increase the agility of gait for patients with limb loss.

  1. Cut Next Winter's Heating Bill Today.

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    1999-01-01

    Presents specific steps that help make schools energy efficient and cut costs. Four basic strategies are suggested that include creating a database of energy usage that can also catch the occasional billing error, investigating less obvious ways of cutting energy use, such as applying cellulose commercial spray as an insulation choice, and…

  2. Influence of oscillating and rotary cutting instruments with electric and turbine handpieces on tooth preparation surfaces.

    PubMed

    Geminiani, Alessandro; Abdel-Azim, Tamer; Ercoli, Carlo; Feng, Changyong; Meirelles, Luiz; Massironi, Domenico

    2014-07-01

    Rotary and nonrotary cutting instruments are used to produce specific characteristics on the axial and marginal surfaces of teeth being prepared for fixed restorations. Oscillating instruments have been suggested for tooth preparation, but no comparative surface roughness data are available. To compare the surface roughness of simulated tooth preparations produced by oscillating instruments versus rotary cutting instruments with turbine and electric handpieces. Different grit rotary cutting instruments were used to prepare Macor specimens (n=36) with 2 handpieces. The surface roughness obtained with rotary cutting instruments was compared with that produced by oscillating cutting instruments. The instruments used were as follows: coarse, then fine-grit rotary cutting instruments with a turbine (group CFT) or an electric handpiece (group CFE); coarse, then medium-grit rotary cutting instruments with a turbine (group CMT) or an electric handpiece (group CME); coarse-grit rotary cutting instruments with a turbine handpiece and oscillating instruments at a low-power (group CSL) or high-power setting (group CSH). A custom testing apparatus was used to test all instruments. The average roughness was measured for each specimen with a 3-dimensional optical surface profiler and compared with 1-way ANOVA and the Tukey honestly significant difference post hoc test for multiple comparisons (α=.05). Oscillating cutting instruments produced surface roughness values similar to those produced by similar grit rotary cutting instruments with a turbine handpiece. The electric handpiece produced smoother surfaces than the turbine regardless of rotary cutting instrument grit. Rotary cutting instruments with electric handpieces produced the smoothest surface, whereas the same instruments used with a turbine and oscillating instruments achieved similar surface roughness. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Potassium-titanyl-phosphate laser assisted robotic partial nephrectomy in a porcine model: can robotic assistance optimize the power needed for effective cutting and hemostasis?

    PubMed

    Boris, Ronald S; Eun, Daniel; Bhandari, Akshay; Lyall, Kathryn; Bhandari, Mahendra; Rogers, Craig; Alassi, Osama; Menon, Mani

    2007-01-01

    A potassium-titanyl-phosphate (KTP) laser through robotic endo-wrist instrument has been evaluated as an ablative and hemostatic tool in robotic assisted laparoscopic partial nephrectomy (RALPN). Ten RALPN were performed in five domestic female pigs. The partial nephrectomies were performed with bulldog clamping of the pedicle. Flexible glass fiber carrying 532-nm green light laser was used through a robotic endowrist instrument in two cases. Power usage from 4 to 10 W was tested. The laser probe was explored both as a cutting knife and for hemostasis. The pelvicalyceal system was closed with a running suture. Partial nephrectomies using KTP laser were performed without complications. Mean operative times and warm ischemia times for laser cases were 96 and 18 min, respectively. Mean estimated blood loss was 60 ml compared with 50 ml for non-laser cases. Complete hemostasis with the laser alone could be achieved with a power of 4 W and was found to be effective. In our hands the laser fiber powered up to 10 W was not effective as a quick cutting agent. Histopathologic analysis of the renal remnant revealed a cauterized surface effect with average laser penetration depth less than 1 mm and minimal surrounding cellular injury. The new robotic endowrist instrument carrying flexible glass fiber transmitting 532-nm green light laser is a useful addition to the armamentarium of the robotic urologic setup. Its control by the console surgeon enables quicker and more complete hemostasis of the cut surface in renal sparing surgery using a porcine model. Histologically proven lased depth of less than 1 mm suggests minimal parenchyma damage in an acute setting. Laser application as a cutting agent, however, requires further investigation with interval power settings beyond the limits of this preliminary study. We estimate that effective cutting should be possible with a setting lower than traditionally recommended for solid organs.

  4. Study of heat generation and cutting force according to minimization of grain size (500 nm to 180 nm) of WC ball endmill using FEM

    NASA Astrophysics Data System (ADS)

    Byeon, J. H.; Ahmed, F.; Ko, T. J.; lee, D. K.; Kim, J. S.

    2018-03-01

    As the industry develops, miniaturization and refinement of products are important issues. Precise machining is required for cutting, which is a typical method of machining a product. The factor determining the workability of the cutting process is the material of the tool. Tool materials include carbon tool steel, alloy tool steel, high-speed steel, cemented carbide, and ceramics. In the case of a carbide material, the smaller the particle size, the better the mechanical properties with higher hardness, strength and toughness. The specific heat, density, and thermal diffusivity are also changed through finer particle size of the material. In this study, finite element analysis was performed to investigate the change of heat generation and cutting power depending on the physical properties (specific heat, density, thermal diffusivity) of tool material. The thermal conductivity coefficient was obtained by measuring the thermal diffusivity, specific heat, and density of the material (180 nm) in which the particle size was finer and the particle material (0.05 μm) in the conventional size. The coefficient of thermal conductivity was calculated as 61.33 for 180nm class material and 46.13 for 0.05μm class material. As a result of finite element analysis using this value, the average temperature of exothermic heat of micronized particle material (180nm) was 532.75 °C and the temperature of existing material (0.05μm) was 572.75 °C. Cutting power was also compared but not significant. Therefore, if the thermal conductivity is increased through particle refinement, the surface power can be improved and the tool life can be prolonged by lowering the temperature generated in the tool during machining without giving a great influence to the cutting power.

  5. Microwave drying remediation of petroleum-contaminated drill cuttings.

    PubMed

    Júnior, Irineu Petri; Martins, André Leibsohn; Ataíde, Carlos H; Duarte, Cláudio R

    2017-07-01

    The oil reservoir drilling phase generates contaminated cuttings with oil formation itself. These cuttings must be subjected to a decontamination process before being disposed of in the environment. Several technologies are cited in literature for the remediation of soil contaminated with oil or diesel, but none have been reported to remedy drill cuttings contaminated with oil from reservoir. The reservoir drill cuttings are a problem because its discharge is not allowed. The drying technology using microwave has shown promise in the decontamination of cuttings with non-aqueous base drilling fluid, conciliating good robustness and high removal efficiency. Considering the aspects mentioned previously, the application of heating and drying technology using microwave in the remediation of oil contaminated cuttings from well drill was studied. The influence of temperature, specific energy and initial content of water in the drying operation of the reservoir cuttings and of the drilling cuttings artificially contaminated with oil were analyzed. The results showed an influence of temperature in the drying of the cuttings, being necessary to reach the boiling temperature of heavier hydrocarbons to reach an efficient removal in the operation. The specific energy has a strong influence, reaching a total decontamination using 2.67 kWh/kg. The initial water content was effective in removing oil, reducing the residual level of oil with the increase of initial content of water. It also modifies the temperature profiles of the kinetic-warming of the contaminated cuttings. Both the technology and the equipment used proved effective for obtaining total decontamination of oil from the cuttings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of Two Football Stud Types on Knee and Ankle Kinetics of Single-Leg Land-Cut and 180° Cut Movements on Infilled Synthetic Turf.

    PubMed

    Bennett, Hunter J; Brock, Elizabeth; Brosnan, James T; Sorochan, John C; Zhang, Songning

    2015-10-01

    Higher ACL injury rates have been recorded in cleats with higher torsional resistance in American football, which warrants better understanding of shoe/stud-dependent joint kinetics. The purpose of this study was to determine differences in knee and ankle kinetics during single-leg land cuts and 180° cuts on synthetic infilled turf while wearing 3 types of shoes. Fourteen recreational football players performed single-leg land cuts and 180° cuts in nonstudded running shoes (RS) and in football shoes with natural (NTS) and synthetic turf studs (STS). Knee and ankle kinetic variables were analyzed with a 3 × 2 (shoe × movement) repeated-measures ANOVA (P < .05). A significant shoe-by-movement interaction was found in loading response peak knee adduction moments, with NTS producing smaller moments compared with both STS and RS only in 180° cuts. Reduced peak negative plantar flexor powers were also found in NTS compared with STS. The single-leg land cut produced greater loading response and push-off peak knee extensor moments, as well as peak negative and positive extensor and plantar flexor powers, but smaller loading peak knee adduction moments and push-off peak ankle eversion moments than 180° cuts. Overall, the STS and 180° cuts resulted in greater frontal plane knee loading and should be monitored for possible increased ACL injury risks.

  7. Analysis of fabric materials cut using ultraviolet laser ablation

    NASA Astrophysics Data System (ADS)

    Tsai, Hsin-Yi; Yang, Chih-Chung; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Andrew Yeh, J.

    2016-04-01

    Laser ablation technology has widely been applied in the clothing industry in recent years. However, the laser mechanism would affect the quality of fabric contours and its components. Hence, this study examined carbonization and oxidation conditions and contour variation in nonwoven, cotton, and composite leather fabrics cut by using an ultraviolet laser at a wavelength of 355 nm. Processing parameters such as laser power, pulse frequency, scanning speed, and number of pulses per spot were adjusted to investigate component variation of the materials and to determine suitable cutting parameters for the fabrics. The experimental results showed that the weights of the component changed substantially by pulse frequency but slightly by laser power, so pulse frequency of 100 kHz and laser power of 14 W were the approximate parameters for three fabrics for the smaller carbonization and a sufficient energy for rapidly cutting, which the pulse duration of laser system was fixed at 300 μs and laser irradiance was 0.98 J/mm2 simultaneously. In addition, the etiolate phenomenon of nonwoven was reduced, and the component weight of cotton and composite leather was closed to the value of knife-cut fabric as the scanning speed increased. The approximate scanning speed for nonwoven and composite leather was 200 mm/s, and one for cotton was 150 mm/s, respectively. The sharper and firmer edge is obtained by laser ablation mechanism in comparison with traditional knife cutting. Experimental results can serve as the reference for laser cutting in the clothing industry, for rapidly providing smoother patterns with lower carbonization and oxidation edge in the fashion industry.

  8. Multiphase High-Frequency Isolated DC-DC Converter for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Maurya, Rakesh; Srivastava, S. P.; Agarwal, Pramod

    2014-01-01

    Industrial applications such as welding, plasma cutting, and surface hardening require a large DC current at low voltage. In such applications, the rating of power supply varies from few kilowatts to hundreds of kilowatts. The power supply employs in such applications particularly in arc welding process is expected to operate from open-circuit (no-load) to short-circuit (when the electrode sticks to the workpiece for a short span of time) quickly. In this paper, high-frequency isolated multiphase DC-DC converter is proposed which is well suited for aforementioned applications. Based on mathematical analysis, a simulation study with 5 kW, 5 V/1,000 A proposed model is carried out using Simulink block set and Sim Power System tool box and its performances are evaluated under symmetrical control methods. To verify the simulation results, scaled prototype model of rating 1.5 V/100 A is developed and tested with aforementioned control method under different operating conditions. In comparison with conventional welding power supply employed in many industries, the performance of proposed converter is improved significantly in terms of size and weight, efficiency and dynamic response.

  9. Modeling and experimental validation of sawing based lander anchoring and sampling methods for asteroid exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Dong, Chengcheng; Zhang, Hui; Li, Song; Song, Aiguo

    2018-05-01

    This paper presents a novel lander anchoring system based on sawing method for asteroid exploration. The system is composed of three robotic arms, three cutting discs, and a control system. The discs mounted at the end of the arms are able to penetrate into the rock surface of asteroids. After the discs cut into the rock surface, the self-locking function of the arms provides forces to fix the lander on the surface. Modeling, trajectory planning, simulations, mechanism design, and prototype fabrication of the anchoring system are discussed, respectively. The performances of the system are tested on different kinds of rocks, at different sawing angles, locations, and speeds. Results show that the system can cut 15 mm deep into granite rock in 180 s at sawing angle of 60°, with the average power of 58.41 W, and the "weight on bit" (WOB) of 8.637 N. The 7.8 kg anchoring system is capable of providing omni-directional anchoring forces, at least 225 N normal and 157 N tangent to the surface of the rock. The system has the advantages of low-weight, low energy consumption and balance forces, high anchoring efficiency and reliability, and could enable the lander to move and sample or assist astronauts and robots in walking and sampling on asteroids.

  10. Totally implantable total artificial heart and ventricular assist device with multipurpose miniature electromechanical energy system.

    PubMed

    Takatani, S; Orime, Y; Tasai, K; Ohara, Y; Naito, K; Mizuguchi, K; Makinouchi, K; Damm, G; Glueck, J; Ling, J

    1994-01-01

    A multipurpose miniature electromechanical energy system has been developed to yield a compact, efficient, durable, and biocompatible total artificial heart (TAH) and ventricular assist device (VAD). Associated controller-driver electronics were recently miniaturized and converted into hybrid circuits. The hybrid controller consists of a microprocessor and controller, motor driver, Hall sensor, and commutation circuit hybrids. The sizing study demonstrated that all these components can be incorporated in the pumping unit of the TAH and VAD, particularly in the centerpiece of the TAH and the motor housing of the VAD. Both TAH and VAD pumping units will start when their power line is connected to either the internal power pack or the external battery unit. As a redundant driving and diagnostic port, an emergency port was newly added and will be placed in subcutaneous location. In case of system failure, the skin will be cut down, and an external motor drive or a pneumatic driver will be connected to this port to run the TAH. This will minimize the circulatory arrest time. Overall efficiency of the TAH without the transcutaneous energy transmission system was 14-18% to deliver pump outputs of 4-9 L/min against the right and left afterload pressures of 25 and 100 mm Hg. The internal power requirement ranged from 6 to 13 W. The rechargeable batteries such as NiCd or NiMH with 1 AH capacity can run the TAH for 30-45 min. The external power requirement, when TETS efficiency of 75% was assumed, ranged from 8 to 18 W. The accelerated endurance test in the 42 degrees C saline bath demonstrated stable performance over 4 months. Long-term endurance and chronic animal studies will continue toward a system with 5 years durability by the year 2000.

  11. An Energy-Efficient Algorithm for Wearable Electrocardiogram Signal Processing in Ubiquitous Healthcare Applications

    PubMed Central

    Sodhro, Ali Hassan; Sodhro, Gul Hassan; Lohano, Sonia; Pirbhulal, Sandeep

    2018-01-01

    Rapid progress and emerging trends in miniaturized medical devices have enabled the un-obtrusive monitoring of physiological signals and daily activities of everyone’s life in a prominent and pervasive manner. Due to the power-constrained nature of conventional wearable sensor devices during ubiquitous sensing (US), energy-efficiency has become one of the highly demanding and debatable issues in healthcare. This paper develops a single chip-based wearable wireless electrocardiogram (ECG) monitoring system by adopting analog front end (AFE) chip model ADS1292R from Texas Instruments. The developed chip collects real-time ECG data with two adopted channels for continuous monitoring of human heart activity. Then, these two channels and the AFE are built into a right leg drive right leg drive (RLD) driver circuit with lead-off detection and medical graded test signal. Human ECG data was collected at 60 beats per minute (BPM) to 120 BPM with 60 Hz noise and considered throughout the experimental set-up. Moreover, notch filter (cutoff frequency 60 Hz), high-pass filter (cutoff frequency 0.67 Hz), and low-pass filter (cutoff frequency 100 Hz) with cut-off frequencies of 60 Hz, 0.67 Hz, and 100 Hz, respectively, were designed with bilinear transformation for rectifying the power-line noise and artifacts while extracting real-time ECG signals. Finally, a transmission power control-based energy-efficient (ETPC) algorithm is proposed, implemented on the hardware and then compared with the several conventional TPC methods. Experimental results reveal that our developed chip collects real-time ECG data efficiently, and the proposed ETPC algorithm achieves higher energy savings of 35.5% with a slightly larger packet loss ratio (PLR) as compared to conventional TPC (e.g., constant TPC, Gao’s, and Xiao’s methods). PMID:29558433

  12. An Energy-Efficient Algorithm for Wearable Electrocardiogram Signal Processing in Ubiquitous Healthcare Applications.

    PubMed

    Sodhro, Ali Hassan; Sangaiah, Arun Kumar; Sodhro, Gul Hassan; Lohano, Sonia; Pirbhulal, Sandeep

    2018-03-20

    Rapid progress and emerging trends in miniaturized medical devices have enabled the un-obtrusive monitoring of physiological signals and daily activities of everyone's life in a prominent and pervasive manner. Due to the power-constrained nature of conventional wearable sensor devices during ubiquitous sensing (US), energy-efficiency has become one of the highly demanding and debatable issues in healthcare. This paper develops a single chip-based wearable wireless electrocardiogram (ECG) monitoring system by adopting analog front end (AFE) chip model ADS1292R from Texas Instruments. The developed chip collects real-time ECG data with two adopted channels for continuous monitoring of human heart activity. Then, these two channels and the AFE are built into a right leg drive right leg drive (RLD) driver circuit with lead-off detection and medical graded test signal. Human ECG data was collected at 60 beats per minute (BPM) to 120 BPM with 60 Hz noise and considered throughout the experimental set-up. Moreover, notch filter (cutoff frequency 60 Hz), high-pass filter (cutoff frequency 0.67 Hz), and low-pass filter (cutoff frequency 100 Hz) with cut-off frequencies of 60 Hz, 0.67 Hz, and 100 Hz, respectively, were designed with bilinear transformation for rectifying the power-line noise and artifacts while extracting real-time ECG signals. Finally, a transmission power control-based energy-efficient (ETPC) algorithm is proposed, implemented on the hardware and then compared with the several conventional TPC methods. Experimental results reveal that our developed chip collects real-time ECG data efficiently, and the proposed ETPC algorithm achieves higher energy savings of 35.5% with a slightly larger packet loss ratio (PLR) as compared to conventional TPC (e.g., constant TPC, Gao's, and Xiao's methods).

  13. In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency.

    PubMed

    Loiko, Pavel; Serres, Josep Maria; Mateos, Xavier; Yumashev, Konstantin; Kuleshov, Nikolai; Petrov, Valentin; Griebner, Uwe; Aguiló, Magdalena; Díaz, Francesc

    2015-02-01

    We report on a continuous-wave Ho:KLu(WO4)2 (KLuW) microchip laser with a record slope efficiency of 84%, the highest value among the holmium inband-pumped lasers, delivering 201 mW output power at 2105 nm. The Ho laser operating at room temperature on the (5)I8→(5)I7 transition is in-band-pumped by a diode-pumped Tm:KLuW microchip laser at 1946 nm. Ho:KLuW laser operation at 2061 and 2079 nm is also demonstrated with a maximum slope efficiency of 79%. The microchip laser generates an almost diffraction-limited output beam with a Gaussian profile and a M2<1.1. The laser performance of the Ng-cut Ho:KLuW crystal is very similar for pump light polarizations ‖Nm and Np. The positive thermal lens plays a key role in the laser mode stabilization and proper mode-matching. The latter, together with the low quantum defect under in-band-pumping (∼0.08), is responsible for the extraordinary high slope efficiency.

  14. Ultralight Cut-Paper-Based Self-Charging Power Unit for Self-Powered Portable Electronic and Medical Systems.

    PubMed

    Guo, Hengyu; Yeh, Min-Hsin; Zi, Yunlong; Wen, Zhen; Chen, Jie; Liu, Guanlin; Hu, Chenguo; Wang, Zhong Lin

    2017-05-23

    The development of lightweight, superportable, and sustainable power sources has become an urgent need for most modern personal electronics. Here, we report a cut-paper-based self-charging power unit (PC-SCPU) that is capable of simultaneously harvesting and storing energy from body movement by combining a paper-based triboelectric nanogenerator (TENG) and a supercapacitor (SC), respectively. Utilizing the paper as the substrate with an assembled cut-paper architecture, an ultralight rhombic-shaped TENG is achieved with highly specific mass/volume charge output (82 nC g -1 /75 nC cm -3 ) compared with the traditional acrylic-based TENG (5.7 nC g -1 /5.8 nC cm -3 ), which can effectively charge the SC (∼1 mF) to ∼1 V in minutes. This wallet-contained PC-SCPU is then demonstrated as a sustainable power source for driving wearable and portable electronic devices such as a wireless remote control, electric watch, or temperature sensor. This study presents a potential paper-based portable SCPU for practical and medical applications.

  15. Single Piezo-Actuator Rotary-Hammering Drill

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2011-01-01

    This innovation comprises a compact drill that uses low-axial preload, via vibrations, that fractures the rock under the bit kerf, and rotates the bit to remove the powdered cuttings while augmenting the rock fracture via shear forces. The vibrations fluidize the powered cuttings inside the flutes around the bit, reducing the friction with the auger surface. These combined actions reduce the consumed power and the heating of the drilled medium, helping to preserve the pristine content of the produced samples. The drill consists of an actuator that simultaneously impacts and rotates the bit by applying force and torque via a single piezoelectric stack actuator without the need for a gearbox or lever mechanism. This reduces the development/fabrication cost and complexity. The piezoelectric actuator impacts the surface and generates shear forces, fragmenting the drilled medium directly under the bit kerf by exceeding the tensile and/or shear strength of the struck surface. The percussive impact action of the actuator leads to penetration of the medium by producing a zone of finely crushed rock directly underneath the struck location. This fracturing process is highly enhanced by the shear forces from the rotation and twisting action. To remove the formed cuttings, the bit is constructed with an auger on its internal or external surface. One of the problems with pure hammering is that, as the teeth become embedded in the sample, the drilling efficiency drops unless the teeth are moved away from the specific footprint location. By rotating the teeth, they are moved to areas that were not fragmented, and thus the rock fracturing is enhanced via shear forces. The shear motion creates ripping or chiseling action to produce larger fragments to increase the drilling efficiency, and to reduce the required power. The actuator of the drill consists of a piezoelectric stack that vibrates the horn. The stack is compressed by a bolt between the backing and the horn in order to prevent it from being subjected to tensile stress that will cause it to fail. The backing is intended to transfer the generated mechanical vibrations towards the horn. In order to cause rotation, the horn is configured asymmetrically with helical segments and, upon impacting the bit, it introduces longitudinal along the axis of the actuator and tangential force causing twisting action that rotates the bit. The longitudinal component of the vibrations of the stack introduces percussion impulses between the bit and the rock to fracture it when the ultimate strain is exceeded under the bit.

  16. Machines employing a hot gas jet to cut metals and nonmetallic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyaev, V.M.; Aleksandrenkov, V.P.

    1995-07-01

    The flame-cutting of metals is a basic materials-processing operation performed in the course of machine-building and, in some sectors (shipbuilding, aircraft construction, petrochemicals) it is the most important operation. In addition, this method of cutting remains the main operation performed in the processing of scrap metal. The importance of it has occasioned the development of a wide range of cutting tools within just the last decade. Not surprisingly, VNIIavtogen-mash (the All-Union Scientific Research Institute of Machinery for the Gas Welding and Cutting of Metals) is the leading designer of metal-cutting tools in this country. The problem of efficiently cutting metalsmore » is gaining in importance and will continue to do so in coming years in connection with the conversion of military hardware to other uses, the decommissioning of old and obsolete equipment, and utilization of the enormous reserves of scrap in this country. There will thus be a significant increase in the amounts of existing high-alloy steels, nonferrous metals and their alloys, and composites that require cutting. A wide range of cutters is available for the gas-flame cutting of metals, Liquid fuels based on petroleum products are promising from the viewpoint of energy efficiency and performance. The operation of a new generation of cutters, referred to as thermo-gas jet cutters, is based on the principle of the destructive action of a hot, fast-moving, chemically active jet on the material to be cut.« less

  17. Multimodal far-field acoustic radiation pattern: An approximate equation

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1977-01-01

    The far-field sound radiation theory for a circular duct was studied for both single mode and multimodal inputs. The investigation was intended to develop a method to determine the acoustic power produced by turbofans as a function of mode cut-off ratio. With reasonable simplifying assumptions the single mode radiation pattern was shown to be reducible to a function of mode cut-off ratio only. With modal cut-off ratio as the dominant variable, multimodal radiation patterns can be reduced to a simple explicit expression. This approximate expression provides excellent agreement with an exact calculation of the sound radiation pattern using equal acoustic power per mode.

  18. Tether cutting maneuver in swing-by trajectory

    NASA Astrophysics Data System (ADS)

    Yamasaki, Tsubasa; Bando, Mai; Hokamoto, Shinji

    2018-01-01

    The swing-by maneuver is known as a method to change the velocity of a spacecraft by using the gravity force of the celestial body. The powered swing-by has been studied to enhance the velocity change during the swing-by maneuver. This paper studies another way of the powered swing-by using tether cutting, which does not require additional propellant consumption, and shows that the proposed powered swing-by can increase the effect of the swing-by as same as using impulsive thrust. Moreover, it is discussed whether the system has possibility to realize both the powered swing-by of a mother satellite and the planetary capture of a subsatellite simultaneously.

  19. SAW properties in quartz-like α-GeO2 single crystal

    NASA Astrophysics Data System (ADS)

    Taziev, R. M.

    2018-05-01

    The paper investigates numerically the properties of surface acoustic waves (SAW) in a new α-GeO2 single crystal of trigonal crystal symmetry (32). It is shown that the SAW has a maximum value of electromechanical coupling coefficient ≈0.14% on Z+120°, X –cut of a crystal with a zero power flow deflection angle. For the case of Z+140°X+25°-cut, the SAW electromechanical coupling coefficient equals 0.17 %, but the power flow deflection angle is not zero. Calculations are made of the frequency dependence of the conductance of SAW interdigital transducers (IDT), which electrode number equals 100 and wavelength is 20 microns on Z+120°,X –cut crystal. The excitations of bulk acoustic waves are absent in this cut case. Leaky acoustic wave, generated by IDT on Z+120°,X –cut of crystal, has a small electromechanical coupling coefficient, which is 4 times less than that for SAW.

  20. Post-mortem prediction of primal and selected retail cut weights of New Zealand lamb from carcass and animal characteristics.

    PubMed

    Ngo, L; Ho, H; Hunter, P; Quinn, K; Thomson, A; Pearson, G

    2016-02-01

    Post-mortem measurements (cold weight, grade and external carcass linear dimensions) as well as live animal data (age, breed, sex) were used to predict ovine primal and retail cut weights for 792 lamb carcases. Significant levels of variance could be explained using these predictors. The predictive power of those measurements on primal and retail cut weights was studied by using the results from principal component analysis and the absolute value of the t-statistics of the linear regression model. High prediction accuracy for primal cut weight was achieved (adjusted R(2) up to 0.95), as well as moderate accuracy for key retail cut weight: tenderloins (adj-R(2)=0.60), loin (adj-R(2)=0.62), French rack (adj-R(2)=0.76) and rump (adj-R(2)=0.75). The carcass cold weight had the best predictive power, with the accuracy increasing by around 10% after including the next three most significant variables. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Freon, T-B1 cutting fluid

    NASA Technical Reports Server (NTRS)

    Peters, R. L.

    1969-01-01

    Improved cutting fluid completely controls the heat generated from machining operations, thus providing longer tool life. Fluid is especially useful in the working of plastics and replaces less efficient contaminating oils.

  2. Mathematical model of simple spalling formation during coal cutting with extracting machine

    NASA Astrophysics Data System (ADS)

    Gabov, V. V.; Zadkov, D. A.

    2018-05-01

    A single-mass model of a rotor shearer is analyzed. It is shown that rotor mining machines has large inertia moments and load dynamics. An extraction module model with selective movement of the cutting tool is represented. The peculiar feature of such extracting machines is fluid power drive cutter mechanism. They can steadily operate at large shear thickness, and locking modes are not an emergency for them. Comparing with shearers they have less inertional mass, but slower average cutting speed, and its momentary values depend on load. Basing on the equation of hydraulic fuel consumption balance the work of fluid power drive of extracting module cutter mechanism together with hydro pneumatic accumulator is analyzed. Spalling formation model during coal cutting with fluid power drive cutter mechanism and potential energy stores are suggested. Matching cutter speed with the speed of main crack expansion and amount of potential energy consumption, cutter load is determined only by ultimate stress at crack pole and friction. Tests of an extracting module cutter in real size model proved the stated theory.

  3. Wavelength dependency in high power laser cutting and welding

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Ziermann, Stephan; Holzer, Marco

    2012-03-01

    Laser cutting and welding have been around for more than 30 years. Within those three decades there has never been a greater variety of high power laser types and wavelengths to choose from than there is today. There are many considerations when choosing the right laser for any given application - capital investment, cost of ownership, footprint, serviceability, along with a myriad of other commercial & economic considerations. However, one of the most fundamental questions that must be asked and answered is this - "what type of laser is best suited for the application?". Manufacturers and users alike are realizing what, in retrospect, may seem obvious - there is no such thing as a universal laser. In many cases there is one laser type and wavelength that clearly provides the highest quality application results. This paper will examine the application fields of high power, high brightness 10.6 & 1 micron laser welding & cutting and will provide guidelines for selecting the laser that is best suited for the application. Processing speed & edge quality serve as key criteria for cutting. Whereas speed, seam quality & spatter ejection provide the paradigm for welding.

  4. Ultrafast disk technology enables next generation micromachining laser sources

    NASA Astrophysics Data System (ADS)

    Heckl, Oliver H.; Weiler, Sascha; Luzius, Severin; Zawischa, Ivo; Sutter, Dirk

    2013-02-01

    Ultrashort pulsed lasers based on thin disk technology have entered the 100 W regime and deliver several tens of MW peak power without chirped pulse amplification. Highest uptime and insensitivity to back reflections make them ideal tools for efficient and cost effective industrial micromachining. Frequency converted versions allow the processing of a large variety of materials. On one hand, thin disk oscillators deliver more than 30 MW peak power directly out of the resonator in laboratory setups. These peak power levels are made possible by recent progress in the scaling of the pulse energy in excess of 40 μJ. At the corresponding high peak intensity, thin disk technology profits from the limited amount of material and hence the manageable nonlinearity within the resonator. Using new broadband host materials like for example the sesquioxides will eventually reduce the pulse duration during high power operation and further increase the peak power. On the other hand industry grade amplifier systems deliver even higher peak power levels. At closed-loop controlled 100W, the TruMicro Series 5000 currently offers the highest average ultrafast power in an industry proven product, and enables efficient micromachining of almost any material, in particular of glasses, ceramics or sapphire. Conventional laser cutting of these materials often requires UV laser sources with pulse durations of several nanoseconds and an average power in the 10 W range. Material processing based on high peak power laser sources makes use of multi-photon absorption processes. This highly nonlinear absorption enables micromachining driven by the fundamental (1030 nm) or frequency doubled (515 nm) wavelength of Yb:YAG. Operation in the IR or green spectral range reduces the complexity and running costs of industrial systems initially based on UV light sources. Where UV wavelength is required, the TruMicro 5360 with a specified UV crystal life-time of more than 10 thousand hours of continues operation at 15W is an excellent choice. Currently this is the world's most powerful industrial sub-10 ps UV laser.

  5. Mean Posterior Corneal Power and Astigmatism in Normal Versus Keratoconic Eyes.

    PubMed

    Feizi, Sepehr; Delfazayebaher, Siamak; Javadi, Mohammad Ali; Karimian, Farid; Ownagh, Vahid; Sadeghpour, Fatemeh

    2018-01-01

    To compare mean posterior corneal power and astigmatism in normal versus keratoconus affected eyes and determine the optimal cut-off points to maximize sensitivity and specificity in discriminating keratoconus from normal corneas. A total of 204 normal eyes and 142 keratoconus affected eyes were enrolled in this prospective comparative study. Mean posterior corneal power and astigmatism were measured using a dual Scheimpflug camera. Correlation coefficients were calculated to assess the relationship between the magnitudes of keratometric and posterior corneal astigmatism in the study groups. Receiver operating characteristic curves were used to compare the sensitivity and specificity of the measured parameters and to identify the optimal cut-off points for discriminating keratoconus from normal corneas. The mean posterior corneal power was -6.29 ± 0.20 D in the normal group and -7.77 ± 0.87 D in the keratoconus group ( P < 0.001). The mean magnitudes of the posterior corneal astigmatisms were -0.32 ± 0.15 D and -0.94 ± 0.39 D in the normal and keratoconus groups, respectively ( P < 0.001). Significant correlations were found between the magnitudes of keratometric and posterior corneal astigmatism in the normal (r=-0.76, P < 0.001) and keratoconus (r=-0.72, P < 0.001) groups. The mean posterior corneal power and astigmatism were highly reliable characteristics that distinguished keratoconus from normal corneas (area under the curve, 0.99 and 0.95, respectively). The optimal cut-off points of mean posterior corneal power and astigmatism were -6.70 D and -0.54 D, respectively. Mean posterior corneal power and astigmatism measured using a Galilei analyzer camera might have potential in diagnosing keratoconus. The cut-off points provided can be used for keratoconus screening.

  6. Optimizing Synchronization Stability of the Kuramoto Model in Complex Networks and Power Grids

    NASA Astrophysics Data System (ADS)

    Li, Bo; Wong, K. Y. Michael

    Maintaining the stability of synchronization state is crucial for the functioning of many natural and artificial systems. For the Kuramoto model on general weighted networks, the synchronization stability, measured by the dominant Lyapunov exponent at the steady state, is shown to have intricate and nonlinear dependence on the network topology and the dynamical parameters. Specifically, the dominant Lyapunov exponent corresponds to the algebraic connectivity of a meta-graph whose edge weight depends nonlinearly on the steady states. In this study, we utilize the cut-set space (DC) approximation to estimate the nonlinear steady state and simplify the calculation of the stability measure, based on which we further derive efficient algorithms to optimize the synchronization stability. The properties of the optimized networks and application in power grid stability are also discussed. This work is supported by a Grant from the Research Grant Council of Hong Kong (Grant Numbers 605813 and 16322616).

  7. Diode-pumped 1.5-1.6 μm laser operation in Er³⁺ doped YbAl₃(BO₃)₄ microchip.

    PubMed

    Chen, Yujin; Lin, Yanfu; Zou, Yuqi; Huang, Jianhua; Gong, Xinghong; Luo, Zundu; Huang, Yidong

    2014-06-02

    Er3+ doped YbAl3(BO3)4 crystal with large absorption coefficient of 184 cm(-1) at pump wavelength of 976 nm is a promising microchip gain medium of 1.5-1.6 μm laser. End-pumped by a 976 nm diode laser, 1.5-1.6 μm continuous-wave laser with maximum output power of 220 mW and slope efficiency of 8.1% was obtained at incident pump power of 4.54 W in a c-cut 200-μm-thick Er:YbAl3(BO3)4 microchip. When a Co2+:Mg0.4Al2.4O4 crystal was used as the saturable absorber, 1521 nm passively Q-switched pulse laser with about 0.19 μJ energy, 265 ns duration, and 96 kHz repetition rate was realized.

  8. Precision cut lung slices as an efficient tool for in vitro lung physio-pharmacotoxicology studies.

    PubMed

    Morin, Jean-Paul; Baste, Jean-Marc; Gay, Arnaud; Crochemore, Clément; Corbière, Cécile; Monteil, Christelle

    2013-01-01

    1.We review the specific approaches for lung tissue slices preparation and incubation systems and the research application fields in which lung slices proved to be a very efficient alternative to animal experimentation for biomechanical, physiological, pharmacological and toxicological approaches. 2.Focus is made on air-liquid interface dynamic organ culture systems that allow direct tissue exposure to complex aerosol and that best mimic in vivo lung tissue physiology. 3.A compilation of research applications in the fields of vascular and airway reactivity, mucociliary transport, polyamine transport, xenobiotic biotransformation, chemicals toxicology and complex aerosols supports the concept that precision cut lung slices are a very efficient tool maintaining highly differentiated functions similar to in vivo lung organ when kept under dynamic organ culture. They also have been successfully used for lung gene transfer efficiency assessment, for lung viral infection efficiency assessment, for studies of tissue preservation media and tissue post-conditioning to optimize lung tissue viability before grafting. 4.Taken all together, the reviewed studies point to a great interest for precision cut lung slices as an efficient and valuable alternative to in vivo lung organ experimentation.

  9. Investigating the CO 2 laser cutting parameters of MDF wood composite material

    NASA Astrophysics Data System (ADS)

    Eltawahni, H. A.; Olabi, A. G.; Benyounis, K. Y.

    2011-04-01

    Laser cutting of medium density fibreboard (MDF) is a complicated process and the selection of the process parameters combinations is essential to get the highest quality cut section. This paper presents a means for selecting the process parameters for laser cutting of MDF based on the design of experiments (DOE) approach. A CO 2 laser was used to cut three thicknesses, 4, 6 and 9 mm, of MDF panels. The process factors investigated are: laser power, cutting speed, air pressure and focal point position. In this work, cutting quality was evaluated by measuring the upper kerf width, the lower kerf width, the ratio between the upper kerf width to the lower kerf width, the cut section roughness and the operating cost. The effect of each factor on the quality measures was determined. The optimal cutting combinations were presented in favours of high quality process output and in favours of low cutting cost.

  10. CPU-GPU mixed implementation of virtual node method for real-time interactive cutting of deformable objects using OpenCL.

    PubMed

    Jia, Shiyu; Zhang, Weizhong; Yu, Xiaokang; Pan, Zhenkuan

    2015-09-01

    Surgical simulators need to simulate interactive cutting of deformable objects in real time. The goal of this work was to design an interactive cutting algorithm that eliminates traditional cutting state classification and can work simultaneously with real-time GPU-accelerated deformation without affecting its numerical stability. A modified virtual node method for cutting is proposed. Deformable object is modeled as a real tetrahedral mesh embedded in a virtual tetrahedral mesh, and the former is used for graphics rendering and collision, while the latter is used for deformation. Cutting algorithm first subdivides real tetrahedrons to eliminate all face and edge intersections, then splits faces, edges and vertices along cutting tool trajectory to form cut surfaces. Next virtual tetrahedrons containing more than one connected real tetrahedral fragments are duplicated, and connectivity between virtual tetrahedrons is updated. Finally, embedding relationship between real and virtual tetrahedral meshes is updated. Co-rotational linear finite element method is used for deformation. Cutting and collision are processed by CPU, while deformation is carried out by GPU using OpenCL. Efficiency of GPU-accelerated deformation algorithm was tested using block models with varying numbers of tetrahedrons. Effectiveness of our cutting algorithm under multiple cuts and self-intersecting cuts was tested using a block model and a cylinder model. Cutting of a more complex liver model was performed, and detailed performance characteristics of cutting, deformation and collision were measured and analyzed. Our cutting algorithm can produce continuous cut surfaces when traditional minimal element creation algorithm fails. Our GPU-accelerated deformation algorithm remains stable with constant time step under multiple arbitrary cuts and works on both NVIDIA and AMD GPUs. GPU-CPU speed ratio can be as high as 10 for models with 80,000 tetrahedrons. Forty to sixty percent real-time performance and 100-200 Hz simulation rate are achieved for the liver model with 3,101 tetrahedrons. Major bottlenecks for simulation efficiency are cutting, collision processing and CPU-GPU data transfer. Future work needs to improve on these areas.

  11. Experimental investigation of transient temperature characteristic in high power fiber laser cutting of a thick steel plate

    NASA Astrophysics Data System (ADS)

    Phi Long, Nguyen; Matsunaga, Yukihiro; Hanari, Toshihide; Yamada, Tomonori; Muramatsu, Toshiharu

    2016-10-01

    Experiment of temperature measurement was performed to investigate the transient temperature characteristics of molten metal during laser cutting. The aim of this study was to establish a method for measuring the surface temperature variation near the molten pool correlated with changes in cutting parameters. The relationship between temperature inside the kerf cut and characteristic of the cut surface was investigated by using thermography and thermocouples. Results show strong correlations between the transient temperatures and the thermal image for different cutting conditions. In addition, two-color thermometer has been used to obtain radiation intensity emitted from the irradiating zone as a function of operating conditions. Experiments have shown that one can detect the cutting quality by characterization of the surface temperature during laser cutting process.

  12. CO2 laser cutting of ultra thin (75 μm) glass based rigid optical solar reflector (OSR) for spacecraft application

    NASA Astrophysics Data System (ADS)

    Mishra, Shubham; Sridhara, N.; Mitra, Avijit; Yougandar, B.; Dash, Sarat Kumar; Agarwal, Sanjay; Dey, Arjun

    2017-03-01

    Present study reports for the first time laser cutting of multilayered coatings on both side of ultra thin (i.e., 75 μm) glass substrate based rigid optical solar reflector (OSR) for spacecraft thermal control application. The optimization of cutting parameters was carried out as a function of laser power, cutting speed and number of cutting passes and their effect on cutting edge quality. Systematic and in-detail microstructural characterizations were carried out by optical and scanning electron microscopy techniques to study the laser affected zone and cutting edge quality. Sheet resistance and water contact angle experiments were also conducted locally both prior and after laser cut to investigate the changes of electrical and surface properties, if any.

  13. National energy conservation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A set of energy conservation actions that cut across all sectors of the economy were analyzed so that all actions under consideration be analyzed systematically and as a whole. The actions considered were as follows: (1) roll back the price of newly discovered oil, (2) freeze gasoline production for 3 years at 1972 levels, (3) mandate automobile mileage improvements, (4) require industry to improve energy efficiency, (5) require manufacture of household appliances with greater efficiency, (6) force conversion of many power plants from gas and oil to coal. The results showed that considerable gas and oil would be saved by forcing switches to coal. However, the large scale switch to coal was shown to require greatly increased outputs from many other industries that in turn require more energy. It was estimated that nearly 2.5 quads of additional coal were needed to produce these additional requirements. Also, the indirect requirements would create more jobs.

  14. Cascaded spintronic logic with low-dimensional carbon

    NASA Astrophysics Data System (ADS)

    Friedman, Joseph S.; Girdhar, Anuj; Gelfand, Ryan M.; Memik, Gokhan; Mohseni, Hooman; Taflove, Allen; Wessels, Bruce W.; Leburton, Jean-Pierre; Sahakian, Alan V.

    2017-06-01

    Remarkable breakthroughs have established the functionality of graphene and carbon nanotube transistors as replacements to silicon in conventional computing structures, and numerous spintronic logic gates have been presented. However, an efficient cascaded logic structure that exploits electron spin has not yet been demonstrated. In this work, we introduce and analyse a cascaded spintronic computing system composed solely of low-dimensional carbon materials. We propose a spintronic switch based on the recent discovery of negative magnetoresistance in graphene nanoribbons, and demonstrate its feasibility through tight-binding calculations of the band structure. Covalently connected carbon nanotubes create magnetic fields through graphene nanoribbons, cascading logic gates through incoherent spintronic switching. The exceptional material properties of carbon materials permit Terahertz operation and two orders of magnitude decrease in power-delay product compared to cutting-edge microprocessors. We hope to inspire the fabrication of these cascaded logic circuits to stimulate a transformative generation of energy-efficient computing.

  15. Efficiency of innovative technology in construction industry

    NASA Astrophysics Data System (ADS)

    Stverkova, H.; Vaclavik, V.

    2017-10-01

    The need for sustainability increasingly influences the development of new technologies, business processes and working practices. Innovations are an important part of all business processes. The aim of innovation is, in particular, to reduce the burden on the environment. The current trend in the construction industry is diamond rope cutting. The aim of the paper is to evaluate the most advanced technology for cutting and removing concrete structures in terms of efficiency.

  16. Study on Roadheader Cutting Load at Different Properties of Coal and Rock

    PubMed Central

    2013-01-01

    The mechanism of cutting process of roadheader with cutting head was researched, and the influences of properties of coal and rock on cutting load were deeply analyzed. Aimed at the defects of traditional calculation method of cutting load on fully expressing the complex cutting process of cutting head, the method of finite element simulation was proposed to simulate the dynamic cutting process. Aimed at the characteristics of coal and rock which affect the cutting load, several simulations with different firmness coefficient were taken repeatedly, and the relationship between three-axis force and firmness coefficient was derived. A comparative analysis of cutting pick load between simulation results and theoretical formula was carried out, and a consistency was achieved. Then cutting process with a total cutting head was carried out on this basis. The results show that the simulation analysis not only provides a reliable guarantee for the accurate calculation of the cutting head load and improves the efficiency of the cutting head cutting test but also offers a basis for selection of cutting head with different geological conditions of coal or rock. PMID:24302866

  17. Efficient algorithm for locating and sizing series compensation devices in large power transmission grids: II. Solutions and applications

    DOE PAGES

    Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha

    2014-10-01

    In a companion manuscript, we developed a novel optimization method for placement, sizing, and operation of Flexible Alternating Current Transmission System (FACTS) devices to relieve transmission network congestion. Specifically, we addressed FACTS that provide Series Compensation (SC) via modification of line inductance. In this manuscript, this heuristic algorithm and its solutions are explored on a number of test cases: a 30-bus test network and a realistically-sized model of the Polish grid (~ 2700 nodes and ~ 3300 lines). The results on the 30-bus network are used to study the general properties of the solutions including non-locality and sparsity. The Polishmore » grid is used as a demonstration of the computational efficiency of the heuristics that leverages sequential linearization of power flow constraints and cutting plane methods that take advantage of the sparse nature of the SC placement solutions. Using these approaches, the algorithm is able to solve an instance of Polish grid in tens of seconds. We explore the utility of the algorithm by analyzing transmission networks congested by (a) uniform load growth, (b) multiple overloaded configurations, and (c) sequential generator retirements.« less

  18. Development of a thermal scheme for a cogeneration combined-cycle unit with an SVBR-100 reactor

    NASA Astrophysics Data System (ADS)

    Kasilov, V. F.; Dudolin, A. A.; Krasheninnikov, S. M.

    2017-02-01

    At present, the prospects for development of district heating that can increase the effectiveness of nuclear power stations (NPS), cut down their payback period, and improve protection of the environment against harmful emissions are being examined in the nuclear power industry of Russia. It is noted that the efficiency of nuclear cogeneration power stations (NCPS) is drastically affected by the expenses for heat networks and heat losses during transportation of a heat carrier through them, since NPSs are usually located far away from urban area boundaries as required for radiation safety of the population. The prospects for using cogeneration power units with small or medium power reactors at NPSs, including combined-cycle units and their performance indices, are described. The developed thermal scheme of a cogeneration combined-cycle unit (CCU) with an SBVR-100 nuclear reactor (NCCU) is presented. This NCCU should use a GE 6FA gasturbine unit (GTU) and a steam-turbine unit (STU) with a two-stage district heating plant. Saturated steam from the nuclear reactor is superheated in a heat-recovery steam generator (HRSG) to 560-580°C so that a separator-superheater can be excluded from the thermal cycle of the turbine unit. In addition, supplemental fuel firing in HRSG is examined. NCCU effectiveness indices are given as a function of the ambient air temperature. Results of calculations of the thermal cycle performance under condensing operating conditions indicate that the gross electric efficiency η el NCCU gr of = 48% and N el NCCU gr = 345 MW can be achieved. This efficiency is at maximum for NCCU with an SVBR-100 reactor. The conclusion is made that the cost of NCCU installed kW should be estimated, and the issue associated with NCCUs siting with reference to urban area boundaries must be solved.

  19. High-power CO(2) laser with a Gauss-core resonator for high-speed cutting of thin metal sheets.

    PubMed

    Takenaka, Y; Nishimae, J; Tanaka, M; Motoki, Y

    1997-01-01

    A novel resonator, the Gauss-core resonator, based on a stable resonator configuration designed to yield a highly focusing beam operating in a large-volume TEM(00) mode, is presented. A 6.2 kW linearly polarized output beam with an M(2) factor of 1.7 is obtained experimentally for a high-power cw CO(2) laser. The capability of the Gauss-core resonator to process laser materials is also studied. We can cut 1-mm-thick mild (soft) steel with a maximum cutting speed of 58 m/min at 5.6 kW and 0.2-mm-thick steel 145 m/min at 2.8 kW.

  20. Energy saving in ac generators

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1980-01-01

    Circuit cuts no-load losses, without sacrificing full-load power. Phase-contro circuit includes gate-controlled semiconductor switch that cuts off applied voltage for most of ac cycle if generator idling. Switch "on" time increases when generator is in operation.

  1. A 9.61-W, b-cut Tm,Ho:YAP laser in Q-switched mode operation

    NASA Astrophysics Data System (ADS)

    Li, Guoxing; Yang, Xining; Zhang, Ziqiu; Zhang, Hongda; Zhang, Liang

    2018-02-01

    A high energy of b-cut Tm, Ho:YAlO3 laser is reported in the paper. The laser operated in acousto-optical Qswitched mode at 2.12 μm. The output average power of 9.61 W was achieved at the pulse repetition frequency of 10 kHz ,and the power of 11.6 W was acquired in continuous wave mode. Moreover, the energy per pulse of 0.961 mJ in 64.4 ns was acquired at 10 kHz with a 14.92-kW peak power.

  2. Nonlinear metamaterials for electromagnetic energy harvesting (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Oumbe Tekam, Gabin Thibaut; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan

    2016-09-01

    Surrounded by electromagnetic radiation coming from wireless power transfer to consumer devices such as mobile phones, computers and television, our society is facing the scientific and technological challenge to recover energy that is otherwise lost to the environment. Energy harvesting is an emerging field of research focused on this largely unsolved problem, especially in the microwave regime. Metamaterials provide a very promising platform to meet this purpose. These artificial materials are made from subwavelength building blocks, and can be designed by resonate at particular frequencies, depending on their shape, geometry, size, and orientation. In this work, we show that an efficient electromagnetic energy harvester can be design by inserting a nonlinear element directly within the metamaterial unit cell, leading to the conversion of RF input power to DC charge accumulation. The electromagnetic energy harvester operating at microwave frequencies is built from a cut-wire metasurface, which operates as a quasistatic electric dipole resonator. Using the equivalent electrical circuit, we design the parameters to tune the resonance frequency of the harvester at the desired frequency, and we compare these results with numerical simulations. Finally, we discuss the efficiency of our metamaterial energy harvesters. This work potentially offers a variety of applications, for example in the telecommunications industry to charge phones, in robotics to power microrobots, and also in medicine to advance pacemakers or health monitoring sensors.

  3. Effects of Different Polarization Strategies on Laser Cutting with Direct Diode Lasers

    NASA Astrophysics Data System (ADS)

    Rodrigues, G. Costa; Duflou, J. R.

    As Direct Diode Lasers are introduced as an emerging technology for laser cutting of metal sheets, new challenges arise. The relatively low beam quality remains a limitation to the maximum cutting speed. One way to balance this may be a strategic use of laser polarization in order to influence laser material interaction in the cutting kerf. In this paper the effects of cross-, linear-, radial- and azimuthal- laser beam polarization arrangements are studied with both Fusion and Flame cutting at an output power of approximately 750W. Different combinations of materials and thicknesses were cut and the maximum cutting speed and edge quality analyzed. It is found that at similar cutting edge quality, improvements in cutting speed can go up to 40% with an inert gas, such as Nitrogen, and up to 20% with a reactive gas, such as Oxygen, in agreement with analytical models for absorption previously developed by the authors.

  4. Computational Efficiency of the Simplex Embedding Method in Convex Nondifferentiable Optimization

    NASA Astrophysics Data System (ADS)

    Kolosnitsyn, A. V.

    2018-02-01

    The simplex embedding method for solving convex nondifferentiable optimization problems is considered. A description of modifications of this method based on a shift of the cutting plane intended for cutting off the maximum number of simplex vertices is given. These modification speed up the problem solution. A numerical comparison of the efficiency of the proposed modifications based on the numerical solution of benchmark convex nondifferentiable optimization problems is presented.

  5. Cutting Head for Ultrasonic Lithotripsy

    NASA Technical Reports Server (NTRS)

    Angulo, E. D.; Goodfriend, R.

    1987-01-01

    Kidney stones lodged in urinary tract disintegrated with increased safety and efficiency by cutting head attached to end of vibrated wire probe. Aligns probe with stone and enables probe to vibrate long enough to disintegrate stone. Design of cutting head reduces risk of metal-fatigue-induced breakage of probe tip leaving metal fragments in urinary tract. Teeth of cutting head both seat and fragment kidney stone, while extension of collar into catheter lessens mechanical strain in probe wire, increasing probe life and lessening danger of in situ probe breakage.

  6. Some aspects of precise laser machining - Part 1: Theory

    NASA Astrophysics Data System (ADS)

    Wyszynski, Dominik; Grabowski, Marcin; Lipiec, Piotr

    2018-05-01

    The paper describes the role of laser beam polarization and deflection on quality of laser beam machined parts made of difficult to cut materials (used for cutting tools). Application of efficient and precise cutting tool (laser beam) has significant impact on preparation and finishing operations of cutting tools for aviation part manufacturing. Understanding the phenomena occurring in the polarized light laser cutting gave possibility to design, build and test opto-mechanical instrumentation to control and maintain process parameters and conditions. The research was carried within INNOLOT program funded by Polish National Centre for Research and Development.

  7. Demonstration of paper cutting using single emitter laser diode and infrared-absorbing ink.

    PubMed

    Pagès, Hubert; Piombini, Hervé; Enguehard, Franck; Acher, Olivier

    2005-04-04

    We show that conventional paper can be cut using a 1W laser diode, provided the cutting lines are first traced using a proper ink. The ink should absorb the laser light, and penetrate deep into the paper. An "invisible ink" that is transparent in the visible range and absorbing in the infrared has been successfully tested. The paper is tidily cut. The laser power required to cut the paper is proportional to the displacement speed of the paper. Cutting speeds exceeding 3 cm.s-1.W-1 have been demonstrated. At higher speeds, the paper is not cut through, but easy-tearable lines and easy-folding lines are obtained. The whole inking and laser cutting process may be integrated into next generations of personal inkjet printers and expand document creation abilities.

  8. Improvement of cutting performance for thick stainless steel plates by step-like cutting speed increase in high-power fiber laser cutting

    NASA Astrophysics Data System (ADS)

    Seon, Sangwoo; Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Kim, Taek-Soo; Lee, Lim; Lee, Jonghwan

    2018-07-01

    A study was conducted to improve the cutting performance of a 60-mm thick stainless steel plate using a 6-kW fiber laser. Two techniques for improving the initial cutting performance were evaluated by preheating the work piece with a waiting time and step-like cutting speed increase. Both techniques showed improved cutting results compared to constant speed cutting. Among them, the method with a step-like cutting speed increase showed the better result in terms of cutting performance. As a result, a 60-mm thick stainless steel plate was cut at a maximum cutting speed of 72 mm/min with a preheating cutting speed of 24 mm/min. In order to confirm the effect of preheating, an additional experiment was performed to measure the temperature variation during the cutting process. Through this experiment, preheating temperature conditions were found to allow the specimen to be cut. It is expected that the results of this work will contribute to improving the cutting performance of thick metal structures in various industrial fields, as well as the dismantling of nuclear facilities using lasers in the future.

  9. Health hazard evaluation report HETA 96-0137-2607, Yankee Atomic Electric Company, Rowe, Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylvain, D.C.

    1996-10-01

    In response to a request from the Health and Safety Supervisor at the Yankee Nuclear Power Station (SIC-4911), Rowe, Massachusetts, an investigation was begun into ozone (10028156) exposure during plasma arc cutting and welding. Welders had reported chest tightness, dry cough, and throat and bronchial irritation. The nuclear power station was in the process of being decommissioned, and workers were dismantling components using welding and cutting methods. Of the operations observed during the site visit, the highest ozone concentrations were generated during plasma arc cutting, followed by metal inert gas (MIG) welding and arc welding. During plasma arc cutting themore » average and peak concentrations exceeded the NIOSH ceiling recommended exposure limit of 0.1 part per million. The author concludes that ozone exposure during plasma arc cutting and MIG welding presented a health hazard to welders. The author recommends that improvements be made in the local exhaust ventilation, that nitrogen-dioxide levels be monitored during hot work, and that many exposed workers wear protective clothing, use ultraviolet blocking lotion, and continue the use appropriate shade of eye protection.« less

  10. SEMICONDUCTOR INTEGRATED CIRCUITS: A reconfigurable analog baseband circuit for WLAN, WCDMA, and Bluetooth

    NASA Astrophysics Data System (ADS)

    Tao, Tong; Baoyong, Chi; Ziqiang, Wang; Ying, Zhang; Hanjun, Jiang; Zhihua, Wang

    2010-05-01

    A reconfigurable analog baseband circuit for WLAN, WCDMA, and Bluetooth in 0.35 μm CMOS is presented. The circuit consists of two variable gain amplifiers (VGA) in cascade and a Gm-C elliptic low-pass filter (LPF). The filter-order and the cut-off frequency of the LPF can be reconfigured to satisfy the requirements of various applications. In order to achieve the optimum power consumption, the bandwidth of the VGAs can also be dynamically reconfigured and some Gm cells can be cut off in the given application. Simulation results show that the analog baseband circuit consumes 16.8 mW for WLAN, 8.9 mW for WCDMA and only 6.5 mW for Bluetooth, all with a 3 V power supply. The analog baseband circuit could provide -10 to +40 dB variable gain, third-order low pass filtering with 1 MHz cut-off frequency for Bluetooth, fourth-order low pass filtering with 2.2 MHz cut-off frequency for WCDMA, and fifth-order low pass filtering with 11 MHz cut-off frequency for WLAN, respectively.

  11. Spectroscopy of the Schwarzschild black hole at arbitrary frequencies.

    PubMed

    Casals, Marc; Ottewill, Adrian

    2012-09-14

    Linear field perturbations of a black hole are described by the Green function of the wave equation that they obey. After Fourier decomposing the Green function, its two natural contributions are given by poles (quasinormal modes) and a largely unexplored branch cut in the complex frequency plane. We present new analytic methods for calculating the branch cut on a Schwarzschild black hole for arbitrary values of the frequency. The branch cut yields a power-law tail decay for late times in the response of a black hole to an initial perturbation. We determine explicitly the first three orders in the power-law and show that the branch cut also yields a new logarithmic behavior T(-2ℓ-5)lnT for late times. Before the tail sets in, the quasinormal modes dominate the black hole response. For electromagnetic perturbations, the quasinormal mode frequencies approach the branch cut at large overtone index n. We determine these frequencies up to n(-5/2) and, formally, to arbitrary order. Highly damped quasinormal modes are of particular interest in that they have been linked to quantum properties of black holes.

  12. Chapter 10: Peak Demand and Time-Differentiated Energy Savings Cross-Cutting Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W; Stern, Frank; Spencer, Justin

    Savings from electric energy efficiency measures and programs are often expressed in terms of annual energy and presented as kilowatt-hours per year (kWh/year). However, for a full assessment of the value of these savings, it is usually necessary to consider the measure or program's impact on peak demand as well as time-differentiated energy savings. This cross-cutting protocol describes methods for estimating the peak demand and time-differentiated energy impacts of measures implemented through energy efficiency programs.

  13. Non-Poissonian photon statistics from macroscopic photon cutting materials.

    PubMed

    de Jong, Mathijs; Meijerink, Andries; Rabouw, Freddy T

    2017-05-24

    In optical materials energy is usually extracted only from the lowest excited state, resulting in fundamental energy-efficiency limits such as the Shockley-Queisser limit for single-junction solar cells. Photon-cutting materials provide a way around such limits by absorbing high-energy photons and 'cutting' them into multiple low-energy excitations that can subsequently be extracted. The occurrence of photon cutting or quantum cutting has been demonstrated in a variety of materials, including semiconductor quantum dots, lanthanides and organic dyes. Here we show that photon cutting results in bunched photon emission on the timescale of the excited-state lifetime, even when observing a macroscopic number of optical centres. Our theoretical derivation matches well with experimental data on NaLaF 4 :Pr 3+ , a material that can cut deep-ultraviolet photons into two visible photons. This signature of photon cutting can be used to identify and characterize new photon-cutting materials unambiguously.

  14. 16 CFR 1205.6 - Warning label for reel-type and rotary power mowers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... cutting width of the blade as possible. However, in the absence of a suitable mounting surface near the center of the cutting width, the label shall be placed on the nearest suitable mounting surface to the...

  15. Notification: CIGIE Purchase Card Cross-Cutting Project

    EPA Pesticide Factsheets

    Project #OA-FY17-0088, December 20, 2016. The EPA OIG plans to participate in a Council of the Inspectors General on Integrity and Efficiency (CIGIE) purchase card cross-cutting project led by the U.S. Department of Agriculture OIG.

  16. Save Money and the Planet: Make Your School Energy Efficient.

    ERIC Educational Resources Information Center

    Lewis, Eleanor J.; Weltman, Eric

    1993-01-01

    Examines ways in which schools can cut their energy costs. Suggestions are provided for making school lighting more efficient, conducting a life-cycle cost analysis to facilitate energy efficiency, and developing funding for implementing energy-efficient projects. (GLR)

  17. Stirling Convertor Control for a Concept Rover at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Blaze-Dugala, Gina M.

    2009-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for potential use as an electric power system for space science missions. This generator would make use of the free-piston Stirling cycle to achieve higher conversion efficiency than currently used alternatives. NASA GRC initiated an experiment with an ASRG simulator to demonstrate the functionality of a Stirling convertor on a mobile application, such as a rover. The ASRG simulator made use of two Advanced Stirling Convertors to convert thermal energy from a heat source to electricity. The ASRG simulator was designed to incorporate a minimum amount of support equipment, allowing integration onto a rover powered directly by the convertors. Support equipment to provide control was designed including a linear AC regulator controller, constant power controller, and Li-ion battery charger controller. The ASRG simulator is controlled by a linear AC regulator controller. The rover is powered by both a Stirling convertor and Li-ion batteries. A constant power controller enables the Stirling convertor to maintain a constant power output when additional power is supplied by the Li-ion batteries. A Li-ion battery charger controller limits the charging current and cut off current of the batteries. This paper discusses the design, fabrication, and implementation of these three controllers.

  18. Fuzzy-logic based Q-Learning interference management algorithms in two-tier networks

    NASA Astrophysics Data System (ADS)

    Xu, Qiang; Xu, Zezhong; Li, Li; Zheng, Yan

    2017-10-01

    Unloading from macrocell network and enhancing coverage can be realized by deploying femtocells in the indoor scenario. However, the system performance of the two-tier network could be impaired by the co-tier and cross-tier interference. In this paper, a distributed resource allocation scheme is studied when each femtocell base station is self-governed and the resource cannot be assigned centrally through the gateway. A novel Q-Learning interference management scheme is proposed, that is divided into cooperative and independent part. In the cooperative algorithm, the interference information is exchanged between the cell-edge users which are classified by the fuzzy logic in the same cell. Meanwhile, we allocate the orthogonal subchannels to the high-rate cell-edge users to disperse the interference power when the data rate requirement is satisfied. The resource is assigned directly according to the minimum power principle in the independent algorithm. Simulation results are provided to demonstrate the significant performance improvements in terms of the average data rate, interference power and energy efficiency over the cutting-edge resource allocation algorithms.

  19. Online machining error estimation method of numerical control gear grinding machine tool based on data analysis of internal sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Fei; Zhang, Chi; Yang, Guilin; Chen, Chinyin

    2016-12-01

    This paper presents an online estimation method of cutting error by analyzing of internal sensor readings. The internal sensors of numerical control (NC) machine tool are selected to avoid installation problem. The estimation mathematic model of cutting error was proposed to compute the relative position of cutting point and tool center point (TCP) from internal sensor readings based on cutting theory of gear. In order to verify the effectiveness of the proposed model, it was simulated and experimented in gear generating grinding process. The cutting error of gear was estimated and the factors which induce cutting error were analyzed. The simulation and experiments verify that the proposed approach is an efficient way to estimate the cutting error of work-piece during machining process.

  20. Power Consumption Optimization in Tooth Gears Processing

    NASA Astrophysics Data System (ADS)

    Kanatnikov, N.; Harlamov, G.; Kanatnikova, P.; Pashmentova, A.

    2018-01-01

    The paper reviews the issue of optimization of technological process of tooth gears production of the power consumption criteria. The authors dwell on the indices used for cutting process estimation by the consumed energy criteria and their applicability in the analysis of the toothed wheel production process. The inventors proposed a method for optimization of power consumptions based on the spatial modeling of cutting pattern. The article is aimed at solving the problem of effective source management in order to achieve economical and ecological effect during the mechanical processing of toothed gears. The research was supported by Russian Science Foundation (project No. 17-79-10316).

  1. Power control system for a hot gas engine

    DOEpatents

    Berntell, John O.

    1986-01-01

    A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

  2. Innovative approach to reduction of waste streams for cutting operations in remote environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skibo, A.

    SRNL proposes to develop and demonstrate an approach using the SRNL rotary microfilter (RMF) technology for reducing waste streams in remote cutting operations during decontamination operations. SRNL offers to collaborate with Tokyo Electric Power Company (TEPCO) in evaluation, testing, and utilization of SRNL’s radiation-hardened rotary microfilter in the deactivation and decommissioning (D&D) operations of the Fukushima Daiichi Nuclear Power Station (NPS). Refinement of the scope and associated costs will be conducted in consultation with TEPCO.

  3. The use of cutting temperature to evaluate the machinability of titanium alloys.

    PubMed

    Kikuchi, Masafumi

    2009-02-01

    This study investigated the machinability of titanium, two commercial titanium alloys (Ti-6Al-4V and Ti-6Al-7Nb) and free-cutting brass using the cutting temperature. The cutting temperature was estimated by measuring the thermal electromotive force of the tool-workpiece thermocouple during cutting. The thermoelectric power of each metal relative to the tool had previously been determined. The metals were slotted using a milling machine and carbide square end mills under four cutting conditions. The cutting temperatures of Ti-6Al-4V and Ti-6Al-7Nb were significantly higher than that of the titanium, while that of the free-cutting brass was lower. This result coincided with the relationship of the magnitude of the cutting forces measured in a previous study. For each metal, the cutting temperature became higher when the depth of cut or the cutting speed and feed increased. The increase in the cutting speed and feed was more influential on the value than the increase in the depth of cut when two cutting conditions with the same removal rates were compared. The results demonstrated that cutting temperature measurement can be utilized to develop a new material for dental CAD/CAM applications and to optimize the cutting conditions.

  4. Western Wind Data Set | Grid Modernization | NREL

    Science.gov Websites

    replicates the stochastic nature of wind power plant output. NREL modeled hysteresis around wind turbine cut where wind speeds are often near wind turbine cut-out (~25 m/s), SCORE output does not replicate the Vestas V90). The hysteresis-corrected SCORE is an attempt to put the wind turbine hysteresis at cut-out

  5. Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime.

    PubMed

    Yamamoto, Kaoru; Hatano, Naomichi

    2015-10-01

    Mesoscopic thermoelectric heat engine is much anticipated as a device that allows us to utilize with high efficiency wasted heat inaccessible by conventional heat engines. However, the derivation of the heat current in this engine seems to be either not general or described too briefly, even inappropriately in some cases. In this paper, we give a clear-cut derivation of the heat current of the engine with suitable assumptions beyond the linear-response regime. It resolves the confusion in the definition of the heat current in the linear-response regime. After verifying that we can construct the same formalism as that of the cyclic engine, we find the following two interesting results within the Landauer-Büttiker formalism: the efficiency of the mesoscopic thermoelectric engine reaches the Carnot efficiency if and only if the transmission probability is finite at a specific energy and zero otherwise; the unitarity of the transmission probability guarantees the second law of thermodynamics, invalidating Benenti et al.'s argument in the linear-response regime that one could obtain a finite power with the Carnot efficiency under a broken time-reversal symmetry [Phys. Rev. Lett. 106, 230602 (2011)]. These results demonstrate how quantum mechanics constrains thermodynamics.

  6. Overview of nanofluid application through minimum quantity lubrication (MQL) in metal cutting process

    NASA Astrophysics Data System (ADS)

    Sharif, Safian; Sadiq, Ibrahim Ogu; Suhaimi, Mohd Azlan; Rahim, Shayfull Zamree Abd

    2017-09-01

    Pollution related activities in addition to handling cost of conventional cutting fluid application in metal cutting industry has generated a lot of concern over time. The desire for a green machining environment which will preserve the environment through reduction or elimination of machining related pollution, reduction in oil consumption and safety of the machine operators without compromising an efficient machining process led to search for alternatives to conventional cutting fluid. Amongst the alternatives of dry machining, cryogenic cooling, high pressure cooling, near dry or minimum quantity lubrication (MQL), MQL have shown remarkable performance in terms of cost, machining output, safety of environment and machine operators. However, the MQL under aggressive machining or very high speed machining pose certain restriction as the lubrication media cannot perform efficiently at elevated temperature. In compensating for the shortcomings of MQL technique, high thermal conductivity nanoparticles are introduced in cutting fluids for use in the MQL lubrication process. They have indicated enhanced performance of machining process and significant reduction of loads on the environment. The present work is aimed at evaluating the application and performance of nanofluid in metal cutting process through MQL lubrication technique highlighting their impacts and prospects as lubrication strategy in metal cutting process for sustainable green manufacturing. Enhanced performance of vegetable oil based nanofluids over mineral oil-based nanofluids have been reported and thus highlighted.

  7. Rock bit requires no flushing medium to maintain drilling speed

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Steel drill bit having terraces of teeth intersected by spiral grooves with teeth permits the boring of small holes through rock with low power. The cuttings are stored in a chamber behind the cutting head. Could be used as sampling device.

  8. Advanced axial field D.C. motor development for electric passenger vehicle

    NASA Technical Reports Server (NTRS)

    Jones, W. J.

    1982-01-01

    A wound-field axial-flux dc motor was developed for an electric vehicle drive system. The motor is essentially an axial-flux version of the classical Gramme-ring winding motor, but the active conductors are recessed into slots cut into the two opposite faces of the laminated tape-wound core ring. Three motors were built and tested in the program. The second (functional) model was a six-pole machine which weighed 88.5 kg. It developed 16.9 km (33.0 hp), and a max speed of 4800 rpm. Full load efficiency was 92% and predicted SAE D-cycle efficiency was 88%. The last engineering) model was a 4-pole machine with compoles, allowing a weight reduction to 45 kg (100 lbs.) while addressing some manufacturability problems. The engineering model was rated at 13.2 kw (17.6 hp) at 3000 rpm, with a peak power of 19.8 km (26.4 hp) and a max speed of 7200 rpm. Initial test results on this motor showed poor commutation and efficiency; the program was terminated without resolution of these problems.

  9. EBW H&CD Potential for Spherical Tokamaks

    NASA Astrophysics Data System (ADS)

    Urban, J.; Decker, J.; Peysson, Y.; Preinhaelter, J.; Shevchenko, V.; Taylor, G.; Vahala, L.; Vahala, G.

    2011-12-01

    Spherical tokamaks (STs), which feature relatively high neutron flux and good economy, operate generally in high-ß regimes, in which the usual EC O- and X- modes are cut-off. In this case, electron Bernstein waves (EBWs) seem to be the only option that can provide features similar to the EC waves—controllable localized heating and current drive (H&) that can be utilized for core plasma heating as well as for accurate plasma stabilization. We first derive an analytical expression for Gaussian beam OXB conversion efficiency. Then, an extensive numerical study of EBW H&CD performance in four typical ST plasmas (NSTX L- and H-mode, MAST Upgrade, NHTX) is performed. Coupled ray-tracing (AMR) and Fokker-Planck (LUKE) codes are employed to simulate EBWs of varying frequencies and launch conditions. Our results indicate that an efficient and universal EBW H&CD system is indeed viable. In particular, power can be deposited and current reasonably efficiently driven across the whole plasma radius. Such a system could be controlled by a suitably chosen launching antenna vertical position and would also be sufficiently robust.

  10. Identification of high performance and component technology for space electrical power systems for use beyond the year 2000

    NASA Technical Reports Server (NTRS)

    Maisel, James E.

    1988-01-01

    Addressed are some of the space electrical power system technologies that should be developed for the U.S. space program to remain competitive in the 21st century. A brief historical overview of some U.S. manned/unmanned spacecraft power systems is discussed to establish the fact that electrical systems are and will continue to become more sophisticated as the power levels appoach those on the ground. Adaptive/Expert power systems that can function in an extraterrestrial environment will be required to take an appropriate action during electrical faults so that the impact is minimal. Manhours can be reduced significantly by relinquishing tedious routine system component maintenance to the adaptive/expert system. By cataloging component signatures over time this system can set a flag for a premature component failure and thus possibly avoid a major fault. High frequency operation is important if the electrical power system mass is to be cut significantly. High power semiconductor or vacuum switching components will be required to meet future power demands. System mass tradeoffs have been investigated in terms of operating at high temperature, efficiency, voltage regulation, and system reliability. High temperature semiconductors will be required. Silicon carbide materials will operate at a temperature around 1000 K and the diamond material up to 1300 K. The driver for elevated temperature operation is that radiator mass is reduced significantly because of inverse temperature to the fourth power.

  11. Ultra-short pulse delivery at high average power with low-loss hollow core fibers coupled to TRUMPF's TruMicro laser platforms for industrial applications

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Pricking, S.; Overbuschmann, J.; Nutsch, S.; Kleinbauer, J.; Gebs, R.; Tan, C.; Scelle, R.; Kahmann, M.; Budnicki, A.; Sutter, D. H.; Killi, A.

    2017-02-01

    Multi-megawatt ultrafast laser systems at micrometer wavelength are commonly used for material processing applications, including ablation, cutting and drilling of various materials or cleaving of display glass with excellent quality. There is a need for flexible and efficient beam guidance, avoiding free space propagation of light between the laser head and the processing unit. Solid core step index fibers are only feasible for delivering laser pulses with peak powers in the kW-regime due to the optical damage threshold in bulk silica. In contrast, hollow core fibers are capable of guiding ultra-short laser pulses with orders of magnitude higher peak powers. This is possible since a micro-structured cladding confines the light within the hollow core and therefore minimizes the spatial overlap between silica and the electro-magnetic field. We report on recent results of single-mode ultra-short pulse delivery over several meters in a lowloss hollow core fiber packaged with industrial connectors. TRUMPF's ultrafast TruMicro laser platforms equipped with advanced temperature control and precisely engineered opto-mechanical components provide excellent position and pointing stability. They are thus perfectly suited for passive coupling of ultra-short laser pulses into hollow core fibers. Neither active beam launching components nor beam trackers are necessary for a reliable beam delivery in a space and cost saving packaging. Long term tests with weeks of stable operation, excellent beam quality and an overall transmission efficiency of above 85 percent even at high average power confirm the reliability for industrial applications.

  12. Pulpal thermal responses to an erbium,chromium: YSGG pulsed laser hydrokinetic system.

    PubMed

    Rizoiu, I; Kohanghadosh, F; Kimmel, A I; Eversole, L R

    1998-08-01

    Laser systems are known to raise pulpal temperatures when applied to tooth surfaces. Dental biocalcified tissues can be cut with an erbium,chromium:yttrium-scandium-gallium-garnet laser-powered hydrokinetic system. This device is effective for caries removal and cavity preparation in vitro. Pulpal monitoring of temperature changes during hard tissue cutting by a hydrokinetic system have not been reported. This study compared the effects of hydrokinetic system, dry bur, and wet bur tooth cutting on pulpal temperature. In vivo thermocouple intrapulpal measurements were made on cuspid teeth in anesthetized beagle dogs. In vitro measurements were made on extracted human molar teeth preserved in high-salt solution and later rinsed in phosphate-buffered saline (pH 7.4) to simulate in vivo conditions. The hydrokinetic system was compared with conventional air-turbine-powered bur cutting. The hydrokinetic system cuts and bur preparations were randomly made on the buccal surfaces at the cervical one third of the crown and extended until exposure of the pulp was confirmed clinically. Pulpal temperatures associated with the hydrokinetic system either showed no change or decreased by up to 2 degrees C. Wet bur preparations resulted in a 3 degrees to 4 degrees C rise. With dry bur preparations, a 14 degrees C rise in temperature was recorded. Under the conditions of this study, the erbium,chromium:yttrium-scandium-gallium-garnet laser-powered hydrokinetic system, when used for cavity preparation, had no apparent adverse thermal effect as measured in the pulp space.

  13. Experimental investigation of the effect of the laser beam polarization state on the quality of steel sheet cutting

    NASA Astrophysics Data System (ADS)

    Golyshev, A. A.; Orishich, A. M.; Shulyatyev, V. B.

    2017-10-01

    The paper presents the results of experimental investigation of the effect of the beam polarization on the quality of the oxygen-assisted laser cutting of steel by a CO2-laser. Under consideration is the effect of the laser cutting parameters by the beam with the linear polarization on the cut surface roughness. It is founded that the minimal roughness is reached when the electric field vector is perpendicular to the cutting speed vector. It is concluded that the absorbed power distribution imposes the essential influence on the surface quality, and that the radiation heating of side walls is important to have lower roughness. Obtained results enabled to present probable reasons of the worse surface quality of the metals cut by a fiber laser than the ones cut by a CO2-laser.

  14. The Generation Rate of Respirable Dust from Cutting Fiber Cement Siding Using Different Tools

    PubMed Central

    Qi, Chaolong; Echt, Alan; Gressel, Michael G

    2017-01-01

    This article describes the evaluation of the generation rate of respirable dust (GAPS, defined as the mass of respirable dust generated per unit linear length cut) from cutting fiber cement siding using different tools in a laboratory testing system. We used an aerodynamic particle sizer spectrometer (APS) to continuously monitor the real-time size distributions of the dust throughout cutting tests when using a variety of tools, and calculated the generation rate of respirable dust for each testing condition using the size distribution data. The test result verifies that power shears provided an almost dust-free operation with a GAPS of 0.006 gram meter−1 (g m−1) at the testing condition. For the same power saws, the cuts using saw blades with more teeth generated more respirable dusts. Using the same blade for all four miter saws tested in this study, a positive linear correlation was found between the saws’ blade rotating speed and its dust generation rate. In addition, a circular saw running at the highest blade rotating speed of 9068 RPM generated the greatest amount of dust. All the miter saws generated less dust in the ‘chopping mode’ than in the ‘chopping and sliding’ mode. For the tested saws, GAPS consistently decreased with the increases of the saw cutting feed rate and the number of board in the stack. All the test results point out that fewer cutting interactions between the saw blade’s teeth and the siding board for a unit linear length of cut tend to result in a lower generation rate of respirable dust. These results may help guide optimal operation in practice and future tool development aimed at minimizing dust generation while producing a satisfactory cut. PMID:28395343

  15. The Generation Rate of Respirable Dust from Cutting Fiber Cement Siding Using Different Tools.

    PubMed

    Qi, Chaolong; Echt, Alan; Gressel, Michael G

    2017-03-01

    This article describes the evaluation of the generation rate of respirable dust (GAPS, defined as the mass of respirable dust generated per unit linear length cut) from cutting fiber cement siding using different tools in a laboratory testing system. We used an aerodynamic particle sizer spectrometer (APS) to continuously monitor the real-time size distributions of the dust throughout cutting tests when using a variety of tools, and calculated the generation rate of respirable dust for each testing condition using the size distribution data. The test result verifies that power shears provided an almost dust-free operation with a GAPS of 0.006 g m-1 at the testing condition. For the same power saws, the cuts using saw blades with more teeth generated more respirable dusts. Using the same blade for all four miter saws tested in this study, a positive linear correlation was found between the saws' blade rotating speed and its dust generation rate. In addition, a circular saw running at the highest blade rotating speed of 9068 rpm generated the greatest amount of dust. All the miter saws generated less dust in the 'chopping mode' than in the 'chopping and sliding' mode. For the tested saws, GAPS consistently decreased with the increases of the saw cutting feed rate and the number of board in the stack. All the test results point out that fewer cutting interactions between the saw blade's teeth and the siding board for a unit linear length of cut tend to result in a lower generation rate of respirable dust. These results may help guide optimal operation in practice and future tool development aimed at minimizing dust generation while producing a satisfactory cut. Published by Oxford University Press on behalf of The British Occupational Hygiene Society 2017.

  16. Descriptive Analysis of In Vitro Cutting of Swine Mitral Cusps: Comparison of High-Power Laser and Scalpel Blade Cutting Techniques.

    PubMed

    Pinto, Nathali Cordeiro; Pomerantzeff, Pablo Maria Alberto; Deana, Alessandro; Zezell, Denise; Benetti, Carolina; Aiello, Vera Demarchi; Lopes, Luciana Almeida; Jatene, Fabio Biscegli; Chavantes, M Cristina

    2017-02-01

    The most common injury to the heart valve with rheumatic involvement is mitral stenosis, which is the reason for a big number of cardiac operations in Brazil. Commissurotomy is the traditional technique that is still widely used for this condition, although late postoperative restenosis is concerning. This study's purpose was to compare the histological findings of porcine cusp mitral valves treated in vitro with commissurotomy with a scalpel blade to those treated with high-power laser (HPL) cutting, using appropriate staining techniques. Five mitral valves from healthy swine were randomly divided into two groups: Cusp group (G1), cut with a scalpel blade (n = 5), and Cusp group (G2), cut with a laser (n = 5). G2 cusps were treated using a diode laser (λ = 980 nm, power = 9.0 W, time = 12 sec, irradiance = 5625 W/cm 2 , and energy = 108 J). In G1, no histological change was observed in tissue. A hyaline basophilic aspect was focally observed in G2, along with a dark red color on the edges and areas of lower birefringence, when stained with hematoxylin-eosin, Masson's trichrome, and Sirius red. Further, the mean distances from the cutting edge in cusps submitted to laser application and stained with Masson's trichrome and Sirius red were 416.7 and 778.6 μm, respectively, never overcoming 1 mm in length. Thermal changes were unique in the group submitted to HPL and not observed in the cusp group cut with a scalpel blade. The mean distance of the cusps' collagen injury from the cutting edge was less than 1 mm with laser treatment. Additional studies are needed to establish the histological evolution of the laser cutting and to answer whether laser cutting may avoid valvular restenosis better than blade cutting.

  17. p-polarized Cherenkov THz wave radiation generated by optical rectification for a Brewster-cut LiNbO3 crystal

    NASA Astrophysics Data System (ADS)

    Liu, Pengxiang; Xu, Degang; Liu, Changming; Lv, Da; Lv, Yingjin; Wang, Peng; Yao, Jianquan

    2011-08-01

    In this paper, we investigated p-polarized Cherenkov radiation excited by an ultra-short laser pulse focused into a line in an LiNbO3 crystal. The geometries of p- and s-polarized THz generation were both analyzed. We did further calculations on p-polarized THz radiation and designed a Brewster-cut geometry. The radiated energy and conversion efficiency were roughly estimated. Compared with s-polarized waves radiated from a Cherenkov-cut crystal, p-polarized THz radiation has lower energy and conversion efficiency, but higher intensity and better beam quality. The effect of angular dispersion between the spectral components of the THz pulse after refraction at the Brewster surface was also discussed.

  18. Study on the effect of innovative leaching solvent on the oil removal for oily drilling cuttings

    NASA Astrophysics Data System (ADS)

    Li, Long; Ma, Cha; Hao, Weiwei; Li, Mu; Huang, Zhao; Liu, Yushuang

    2018-02-01

    A new type of leaching solvent for oily drilling cuttings was developed, and the effect of leaching solvent on the oil removal for oily cuttings was investigated. The results indicated that the leaching solvent had good capacity of oil removal for oily cuttings, and the oil content of treated cuttings is less than 0.6%. The leaching solvent could be separated from the oil phase through distillation, and the recyclable solvent could be reused to treat other cuttings. Moreover, oil resources adsorbed on the oily cuttings could be recycled and reused to prepare new drilling fluids, so the drilling cost could be reduced greatly. As a result, the leaching solvent could treat the oily cuttings effectively, and recycle and reuse oil resources, and thus produce great economic benefits. It can play an essential role in safe drilling jobs and improvement of drilling efficiency in the future.

  19. Erosion of Pelton buckets and changes in turbine efficiency measured in the HPP Fieschertal

    NASA Astrophysics Data System (ADS)

    Abgottspon, A.; Staubli, T.; Felix, D.

    2016-11-01

    Geometrical changes and material loss of Pelton turbine runners as well as changes in turbine efficiency were measured at HPP Fieschertal in Valais, Switzerland. The HPP is equipped with two horizontal axis Pelton units, with each 32 MW nominal power, 7.5 m3/s design discharge, 515 m head and two injectors. The injectors and the buckets are hard-coated. Hydro-abrasive erosion was quantified based on repeated measurements on two runner buckets using (i) 3d-scanning and (ii) a coating thickness gauge. Changes in efficiency were measured by applying the sliding needle procedure. In addition to these periodically performed measurements, efficiency was also continuously monitored. The highest erosion rate was measured during the first half of the sediment season 2012 including a major sediment transport event. Because the runner was not fully reconditioned at the beginning of this season, progressive damages occurred. After the event, a splitter width of 10 mm was measured, corresponding to 1.5 % of the inner bucket width. The cut-outs were eroded by up to 9 mm towards the axis. The efficiency reductions ranged from 1 % in the year with the major sediment transport event to insignificant differences in 2014, when the sediment load was small and only little hydro-abrasive erosion occurred.

  20. 15. Photocopied August 1978. LOCOMOTIVE CRANE IN THE ROCK CUT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopied August 1978. LOCOMOTIVE CRANE IN THE ROCK CUT, AUGUST 21, 1900. LOADING DUMP CARS. A STEAM SHOVEL LOADING DUMP CARS IS VISIBLE IN THE LEFT BACKGROUND. (61) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  1. RoboSimian Cuts Hole in Wall

    NASA Image and Video Library

    2015-06-09

    Using a cordless power drill, RoboSimian cuts a hole into a panel of drywall to complete one of the tasks in the DARPA Robotics Challenge Finals in Pomona, California. This image was taken on June 6, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19326

  2. Material Processing with High Power CO2-Lasers

    NASA Astrophysics Data System (ADS)

    Bakowsky, Lothar

    1986-10-01

    After a period of research and development lasertechnique now is regarded as an important instrument for flexible, economic and fully automatic manufacturing. Especially cutting of flat metal sheets with high power C02-lasers and CNC controlled two or three axes handling systems is a wide spread. application. Three dimensional laser cutting, laser-welding and -heat treatment are just at the be ginning of industrial use in production lines. The main. advantages of laser technology. are - high. accuracy - high, processing velocity - law thermal distortion. - no tool abrasion. The market for laser material processing systems had 1985 a volume of 300 Mio S with growth rates between, 20 % and 30 %. The topic of this lecture are hiTrh. power CO2-lasers. Besides this systems two others are used as machining tools, Nd-YAG- and Eximer lasers. All applications of high. power CO2-lasers to industrial material processing show that high processing velocity and quality are only guaranteed in case of a stable intensity. profile on the workpiece. This is only achieved by laser systems without any power and mode fluctuations and by handling systems of high accuracy. Two applications in the automotive industry are described, below as examples for laser cutting and laser welding of special cylindrical motor parts.

  3. Thirst for Power: Energy, Water and Human Survival

    NASA Astrophysics Data System (ADS)

    Webber, M.

    2016-12-01

    Energy, food and water are precious resources, and they are interconnected. The energy sector uses a lot of water, the food sector uses a lot of energy and water, the water sector uses a lot of energy, and as a nation we are contemplating a biofuels policy that uses food for energy. The thermoelectric power sector alone is the largest user of water in the U.S., withdrawing 200 billion gallons daily for powerplant cooling. Conversely, the water sector is responsible for over twelve percent of national energy consumption for moving, pumping, treating, and heating water. The food system uses over ten percent of national energy consumption. This interdependence means that droughts can cause energy shortages, and power outages can bring the water system to a halt, while energy and water challenges pose constraints to our food system. It also means that water efficiency is a pathway to energy efficiency and vice versa. This talk will give a big-picture overview of global food, energy and water trends to describe how they interact, what conflicts are looming, and how they can work together. This talk will include the vulnerabilities and cross-cutting solutions such as efficient markets and smart technologies that embed more information about resource management. It will include discussion of how population growth, economic growth, climate change, and short-sighted policies are likely to make things worse. Yet, more integrated planning with long-term sustainability in mind along with cultural shifts, advanced technologies, and better design can avert such a daunting future. Combining anecdotes and personal stories with insights into the latest science of energy and water, this talk will identify a hopeful path toward wise, long-range water-energy decisions and a more reliable and abundant future for humanity.

  4. Effect of the focal plane position on CO2 laser beam cutting of injection molded polycarbonate sheets

    NASA Astrophysics Data System (ADS)

    Moradi, Mahmoud; Mehrabi, Omid; Azdast, Taher; Benyounis, Khaled Y.

    2016-11-01

    In the present research, the effect of laser beam focal plane position (FPP) on the kerf quality of the polycarbonate laser cutting is investigated. Low power CO2 laser is used as the heat source of the cutting runs. In the experiments, FPP is varied from 0 to -4mm while other processing parameters (i.e. laser power, cutting speed and gas pressure) are considered constant. Upper and lower kerf width, kerf taper, upper heat affected zone and surface roughness of the kerf wall are also considered as the responses. Observations signified that reducing the position of the laser beam focal point from zero to - 3mm reduces the upper and lower kerf width. However reducing FPP below -3mm leads to an increase in the kerf width. Results also reveals that upper heat affected zone value reduces by reduction in FPP. Moreover the best kerf wall surface roughness occurred at FPP= -3mm.

  5. A novel method for transmitting southern rice black-streaked dwarf virus to rice without insect vector.

    PubMed

    Yu, Lu; Shi, Jing; Cao, Lianlian; Zhang, Guoping; Wang, Wenli; Hu, Deyu; Song, Baoan

    2017-08-15

    Southern rice black-streaked dwarf virus (SRBSDV) has spread from the south of China to the north of Vietnam in the past few years, and has severely influenced rice production. However, previous study of traditional SRBSDV transmission method by the natural virus vector, the white-backed planthopper (WBPH, Sogatella furcifera), in the laboratory, researchers are frequently confronted with lack of enough viral samples due to the limited life span of infected vectors and rice plants and low virus acquisition and inoculation efficiency by the vector. Meanwhile, traditional mechanical inoculation of virus only apply to dicotyledon because of the higher content of lignin in the leaves of the monocot. Therefore, establishing an efficient and persistent-transmitting model, with a shorter virus transmission time and a higher virus transmission efficiency, for screening novel anti-SRBSDV drugs is an urgent need. In this study, we firstly reported a novel method for transmitting SRBSDV in rice using the bud-cutting method. The transmission efficiency of SRBSDV in rice was investigated via the polymerase chain reaction (PCR) method and the replication of SRBSDV in rice was also investigated via the proteomics analysis. Rice infected with SRBSDV using the bud-cutting method exhibited similar symptoms to those infected by the WBPH, and the transmission efficiency (>80.00%), which was determined using the PCR method, and the virus transmission time (30 min) were superior to those achieved that transmitted by the WBPH. Proteomics analysis confirmed that SRBSDV P1, P2, P3, P4, P5-1, P5-2, P6, P8, P9-1, P9-2, and P10 proteins were present in infected rice seedlings infected via the bud-cutting method. The results showed that SRBSDV could be successfully transmitted via the bud-cutting method and plants infected SRBSDV exhibited the symptoms were similar to those transmitted by the WBPH. Therefore, the use of the bud-cutting method to generate a cheap, efficient, reliable supply of SRBSDV-infected rice seedlings should aid the development of disease control strategies. Meanwhile, this method also could provide a new idea for the other virus transmission in monocot.

  6. Quantifying thermal modifications on laser welded skin tissue

    NASA Astrophysics Data System (ADS)

    Tabakoglu, Hasim Ö.; Gülsoy, Murat

    2011-02-01

    Laser tissue welding is a potential medical treatment method especially on closing cuts implemented during any kind of surgery. Photothermal effects of laser on tissue should be quantified in order to determine optimal dosimetry parameters. Polarized light and phase contrast techniques reveal information about extend of thermal change over tissue occurred during laser welding application. Change in collagen structure in skin tissue stained with hematoxilen and eosin samples can be detected. In this study, three different near infrared laser wavelengths (809 nm, 980 nm and 1070 nm) were compared for skin welding efficiency. 1 cm long cuts were treated spot by spot laser application on Wistar rats' dorsal skin, in vivo. In all laser applications, 0.5 W of optical power was delivered to the tissue, 5 s continuously, resulting in 79.61 J/cm2 energy density (15.92 W/cm2 power density) for each spot. The 1st, 4th, 7th, 14th, and 21st days of recovery period were determined as control days, and skin samples needed for histology were removed on these particular days. The stained samples were examined under a light microscope. Images were taken with a CCD camera and examined with imaging software. 809 Nm laser was found to be capable of creating strong full-thickness closure, but thermal damage was evident. The thermal damage from 980 nm laser welding was found to be more tolerable. The results showed that 1070 nm laser welding produced noticeably stronger bonds with minimal scar formation.

  7. Mathematical modeling of laser based potato cutting and peeling.

    PubMed

    Ferraz, A Carlos O; Mittal, Gauri S; Bilanski, Walter K; Abdullah, Hussein A

    2007-01-01

    A mathematical model is developed and validated to predict the depth of cut in potato tuber slabs as a function of laser power and travel speed. The model considers laser processing parameters such as input power, spot size and exposure time as well as the properties of the material being cut such as specific heat, thermal conductivity, surface reflectance, etc. The model also considers the phase change of water in potato and the ignition temperature of the solid portion. The composition of the potato tuber is assumed to be of water and solid. The model also assumes that the ablation process is accomplished through ejection of liquid water, debris and water vapour, and combustion of solid. A CO(2) laser operating in c.w. mode was chosen for the experimental work because water absorbs laser energy highly at 10.6 microm, and CO(2) laser units with relatively high output power are available. Slabs of potato tuber were chosen to be laser processed since potato contains high moisture and large amounts of relatively homogeneous tissue. The results of the preliminary calculations and experiments concluded that the model is able to predict the depth of cut in potato tuber parenchyma when subjected to a CO(2) laser beam.

  8. Micro-scanning mirrors for high-power laser applications in laser surgery

    NASA Astrophysics Data System (ADS)

    Sandner, Thilo; Kimme, Simon; Grasshoff, Thomas; Todt, Ulrich; Graf, Alexander; Tulea, Cristian; Lenenbach, Achim; Schenk, Harald

    2014-03-01

    We present two novel micro scanning mirrors with large aperture and HR dielectric coatings suitable for high power laser applications in a miniaturized laser-surgical instrument for neurosurgery to cut skull tissue. An electrostatic driven 2D-raster scanning mirror with 5x7.1mm aperture is used for dynamic steering of a ps-laser beam of the laser cutting process. A second magnetic 2D-beam steering mirror enables a static beam correction of a hand guided laser instrument. Optimizations of a magnetic gimbal micro mirror with 6 mm x 8 mm mirror plate are presented; here static deflections of 3° were reached. Both MEMS devices were successfully tested with a high power ps-laser at 532nm up to 20W average laser power.

  9. Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusters.

    PubMed

    Ni, Chengsheng; Hedley, Gordon; Payne, Julia; Svrcek, Vladimir; McDonald, Calum; Jagadamma, Lethy Krishnan; Edwards, Paul; Martin, Robert; Jain, Gunisha; Carolan, Darragh; Mariotti, Davide; Maguire, Paul; Samuel, Ifor; Irvine, John

    2017-08-01

    A metal-organic hybrid perovskite (CH 3 NH 3 PbI 3 ) with three-dimensional framework of metal-halide octahedra has been reported as a low-cost, solution-processable absorber for a thin-film solar cell with a power-conversion efficiency over 20%. Low-dimensional layered perovskites with metal halide slabs separated by the insulating organic layers are reported to show higher stability, but the efficiencies of the solar cells are limited by the confinement of excitons. In order to explore the confinement and transport of excitons in zero-dimensional metal-organic hybrid materials, a highly orientated film of (CH 3 NH 3 ) 3 Bi 2 I 9 with nanometre-sized core clusters of Bi 2 I 9 3- surrounded by insulating CH 3 NH 3 + was prepared via solution processing. The (CH 3 NH 3 ) 3 Bi 2 I 9 film shows highly anisotropic photoluminescence emission and excitation due to the large proportion of localised excitons coupled with delocalised excitons from intercluster energy transfer. The abrupt increase in photoluminescence quantum yield at excitation energy above twice band gap could indicate a quantum cutting due to the low dimensionality.Understanding the confinement and transport of excitons in low dimensional systems will aid the development of next generation photovoltaics. Via photophysical studies Ni et al. observe 'quantum cutting' in 0D metal-organic hybrid materials based on methylammonium bismuth halide (CH 3 NH 3 )3Bi 2 I 9 .

  10. Nd:YAG Pulsed Laser Assisted Machining of AMS 5708 Waspaloy Alloy

    NASA Astrophysics Data System (ADS)

    Sharifi, Zahra; Shoja-Razavi, Reza; Vafaei, Reza; Hashemi, Sayed Hamid

    2018-03-01

    Due to very high strenght, low thermal conductivity, and high work hardening rate, the machinability of nickel-based superalloys is poor at room temperature. Laser-assisted machining (LAM) can provide a better aspect of machining such alloys. Since the wavelength of Nd:YAG laser is about 1/10th of that of CO2 laser, absorption and heating efficiency of Nd:YAG laser is much higher on metals and especially superalloys. Transmission of Nd:YAG laser through fiber optics to the heating point on the workpiece is a simple task during machining. This makes the LAM process more convenient and practical than the CM process. In this study a model is introduced for LAM of waspaloy, and its machinability is evaluated in terms of ease of material removal. Also, a temperature generation model is introduced for the Nd:YAG laser beam. Furthemore, wear behavior of an uncoated tungsten carbide and the formed chips were compared during the LAM and the CM of waspolay. To study the wear mechanism, the worn cutting tool was studied via scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). The formed chips were also evaluated via SEM and optical microscopy. Based on the results, the optimum LAM conditions were obtained at a cutting speed of 24 m/min and a feed rate of 0.06 mm/rev when a 400 W laser mean power and 80 Hz frequency are applied. Under these conditions, the temperature ahead of the cutting tool edge on the surface of workpiece was estimated to be 524°C. In comparison with CM, a significant improvement in tool wear and a better chip morphology were achieved through LAM, and also specific cutting energy and surface roughness were reduced by 25 and 20%, respectively.

  11. Rescue US energy innovation

    NASA Astrophysics Data System (ADS)

    Anadon, Laura Diaz; Gallagher, Kelly Sims; Holdren, John P.

    2017-10-01

    President Trump has proposed severe cuts to US government spending on energy research, development and demonstration, but Congress has the `power of the purse' and can rescue US energy innovation. If serious cuts are enacted, the pace of innovation will slow, harming the economy, energy security and global environmental quality.

  12. Improvements of high-power diode laser line generators open up new application fields

    NASA Astrophysics Data System (ADS)

    Meinschien, J.; Bayer, A.; Bruns, P.; Aschke, L.; Lissotschenko, V. N.

    2009-02-01

    Beam shaping improvements of line generators based on high power diode lasers lead to new application fields as hardening, annealing or cutting of various materials. Of special interest is the laser treatment of silicon. An overview of the wide variety of applications is presented with special emphasis of the relevance of unique laser beam parameters like power density and beam uniformity. Complementary to vision application and plastic processing, these new application markets become more and more important and can now be addressed by high power diode laser line generators. Herewith, a family of high power diode laser line generators is presented that covers this wide spectrum of application fields with very different requirements, including new applications as cutting of silicon or glass, as well as the beam shaping concepts behind it. A laser that generates a 5m long and 4mm wide homogeneous laser line is shown with peak intensities of 0.2W/cm2 for inspection of railway catenaries as well as a laser that generates a homogeneous intensity distribution of 60mm x 2mm size with peak intensities of 225W/cm2 for plastic processing. For the annealing of silicon surfaces, a laser was designed that generates an extraordinary uniform intensity distribution with residual inhomogeneities (contrast ratio) of less than 3% over a line length of 11mm and peak intensities of up to 75kW/cm2. Ultimately, a laser line is shown with a peak intensity of 250kW/cm2 used for cutting applications. Results of various application tests performed with the above mentioned lasers are discussed, particularly the surface treatment of silicon and the cutting of glass.

  13. Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate

    NASA Technical Reports Server (NTRS)

    Himmer, Phillip; Battle, Philip; Suckow, William; Switzer, Greg

    2011-01-01

    This work proposes to establish the feasibility of fabricating isolated ridge waveguides in 5% MgO:LN. Ridge waveguides in MgO:LN will significantly improve power handling and conversion efficiency, increase photonic component integration, and be well suited to spacebased applications. The key innovation in this effort is to combine recently available large, high-photorefractive-damage-threshold, z-cut 5% MgO:LN with novel ridge fabrication techniques to achieve high-optical power, low-cost, high-volume manufacturing of frequency conversion structures. The proposed ridge waveguide structure should maintain the characteristics of the periodically poled bulk substrate, allowing for the efficient frequency conversion typical of waveguides and the high optical damage threshold and long lifetimes typical of the 5% doped bulk substrate. The low cost and large area of 5% MgO:LN wafers, and the improved performance of the proposed ridge waveguide structure, will enhance existing measurement capabilities as well as reduce the resources required to achieve high-performance specifications. The purpose of the ridge waveguides in MgO:LN is to provide platform technology that will improve optical power handling and conversion efficiency compared to existing waveguide technology. The proposed ridge waveguide is produced using standard microfabrication techniques. The approach is enabled by recent advances in inductively coupled plasma etchers and chemical mechanical planarization techniques. In conjunction with wafer bonding, this fabrication methodology can be used to create arbitrarily shaped waveguides allowing complex optical circuits to be engineered in nonlinear optical materials such as magnesium doped lithium niobate. Researchers here have identified NLO (nonlinear optical) ridge waveguide structures as having suitable value to be the leading frequency conversion structures. Its value is based on having the low-cost fabrication necessary to satisfy the challenging pricing requirements as well as achieve the power handling and other specifications in a suitably compact package.

  14. CFD modelling of liquid-solid transport in the horizontal eccentric annuli

    NASA Astrophysics Data System (ADS)

    Sayindla, Sneha; Challabotla, Niranjan Reddy

    2017-11-01

    In oil and gas drilling operations, different types of drilling fluids are used to transport the solid cuttings in an annulus between drill pipe and well casing. The inner pipe is often eccentric and flow inside the annulus can be laminar or turbulent regime. In the present work, Eulerian-Eulerian granular multiphase CFD model is developed to systematically investigate the effect of the rheology of the drilling fluid type (Newtonian and non-Newtonian), drill pipe eccentricity and inner pipe rotation on the efficiency of cuttings transport. Both laminar and turbulent flow regimes were considered. Frictional pressure drop is computed and compared with the flow loop experimental results reported in the literature. The results confirm that the annular frictional pressure loss in a fully eccentric annulus are significantly lesser than the concentric annulus. Inner pipe rotation improve the efficiency of the cuttings transport in laminar flow regime. Cuttings transport velocity and concentration distribution were analysed to predict the different flow patterns such as stationary bed, moving bed, heterogeneous and homogeneous bed formation.

  15. Research on tool wearing on milling of TC21 titanium alloy

    NASA Astrophysics Data System (ADS)

    Guilin, Liu

    2017-06-01

    Titanium alloys are used in aircraft widely, but the efficiency is a problem for machining titanium alloy. In this paper, the cutting experiment of TC21 titanium alloy was studied. Cutting parameters and test methods for TC21 titanium alloy were designed. The wear behavior of TC21 titanium alloy was studied based on analysis of orthogonal test results. It provides a group of cutting parameters for TC21 titanium alloy processing.

  16. Assessment of wear dependence parameters in complex model of cutting tool wear

    NASA Astrophysics Data System (ADS)

    Antsev, A. V.; Pasko, N. I.; Antseva, N. V.

    2018-03-01

    This paper addresses wear dependence of the generic efficient life period of cutting tools taken as an aggregate of the law of tool wear rate distribution and dependence of parameters of this law's on the cutting mode, factoring in the random factor as exemplified by the complex model of wear. The complex model of wear takes into account the variance of cutting properties within one batch of tools, variance in machinability within one batch of workpieces, and the stochastic nature of the wear process itself. A technique of assessment of wear dependence parameters in a complex model of cutting tool wear is provided. The technique is supported by a numerical example.

  17. A new method to obtain narrowband emission from a broadband current using increased impedance of plasma-like media (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hur, Min Sup; Ersfeld, Bernhard; Noble, Adam; Suk, Hyyong; Jaroszynski, Dino A.

    2017-05-01

    In conventional radiation sources, narrowband radiation emission can be obtained by narrowband current oscillation. Usually the spectrum of the oscillating current is made narrow by a large or complicated structure for wave-particle interaction. One good example is the beam-undulator system. In this presentation, we introduce a new method to obtain a radiation emission with a well-collimated frequency without changing the broadband nature of a given current source. The method is based on our recent discovery of the new physical properties of the cut-off phenomenon, which broadly exists in general plasma-like media, such as plasma, waveguide, or photonic crystal, etc. A common feature of these media is the Bohm-Gross dispersion relation, which has a frequency condition to make the wavenumber zero. In the zero-wavenumber state, an electromagnetic wave cannot propagate through the medium, but instead, is reflected (i.e. cut-off). In regular steady-state analysis, the cut-off condition is characterized by infinite radiation impedance. An interesting question here is what would happen to the radiation power, if a non-zero current oscillating with the cut-off frequency were enforced in a medium (a current source, in contrast with the regular voltage source). A regular steady-state analysis for this situation leads to infinite power of radiation from Ohm's law. We could solve such a paradoxical situation by analyzing the non-steady-state system; we found that the system can be described by a time-dependent Schroedinger equation with an external driving term. The solution of this equation shows a temporally growing electromagnetic field. When this concept is extended to a generally broadband current source, the spectral density at the cut-off frequency can be selectively enhanced (selectively enhanced emission, SEE). Hence a general broadband radiation source can be easily converted to a narrowband source by enclosing the system with a plasma-like medium. The current source seems to exist in many radiation systems with a low driver-to-emission efficiency. When the current is determined predominantly by the driver (for examples, laser pulses), while the feedback from the emitted field is weak, such current can be considered as a quasi-current source, We present a few examples (mostly from PIC simulations) to demonstrate the SEE; two-color-driven THz system enclosed by a tapered waveguide, THz emission from a magnetized plasma, and re-interpretation of experimental data. Those examples show that quasi-current source can be found in practical systems, and the SEE mechanism works.

  18. Novel air-injection technique to locate the medial cut end of lacerated canaliculus.

    PubMed

    Liu, Bingqian; Li, Yonghao; Long, Chongde; Wang, Zhonghao; Liang, Xuanwei; Ge, Jian; Wang, Zhichong

    2013-12-01

    Locating the medial cut end of the severed canaliculus is the most difficult aspect of canalicular repair, especially in patients with more medial laceration, severe oedema, persistent errhysis and a narrow canaliculus. Irrigation is a widely used technique to identify the cut end; however, we found that air injected through the intact canaliculus with a straight needle failed to reflux when the common canaliculus or lacrimal sac was not blocked. We describe a simple, safe and efficient air-injection technique to identify the medial cut edge of a lacerated canaliculus. In this method, we initially submersed the medial canthus under normal saline, then injected filtered air through the intact canaliculus using a side port stainless steel probe with a closed round tip. The tip was designed to block the common canaliculus to form a relatively closed system. The efficiency of this novel air-injection technique was equivalent to the traditional technique but does not require the cooperation of the patient to blow air. Using this technique, the medial cut end was successfully identified by locating the air-bubble exit within minutes in 19 cases of mono-canalicular laceration without any complication.

  19. Surface and microstructure modifications of Ti-6Al-4V titanium alloy cutting by a water jet/high power laser converging coupling

    NASA Astrophysics Data System (ADS)

    Weiss, Laurent; Tazibt, Abdel; Aillerie, Michel; Tidu, Albert

    2018-01-01

    The metallurgical evolution of the Ti-6Al-4V samples is analyzed after an appropriate cutting using a converging water jet/high power laser system. New surface microstructures are obtained on the cutting edge as a result of thermo-mechanical effects of such hybrid fluid-jet-laser tool on the targeted material. The laser beam allows to melt and the water-jet to cool down and to evacuate the material upstream according to a controlled cutting process. The experimental results have shown that a rutile layer can be generated on the surface near the cutting zone. The recorded metallurgical effect is attributed to the chemical reaction between water molecules and titanium, where the laser thermal energy brought onto the surface plays the role of reaction activator. The width of the oxidized zone was found proportional to the cutting speed. During the reaction, hydrogen gas H2 is formed and is absorbed by the metal. The hydrogen atoms trapped into the alloy change the metastable phase formation developing pure β circular grains as a skin at the kerf surface. This result is original so it would lead to innovative converging laser water jet process that could be used to increase the material properties especially for surface treatment, a key value of surface engineering and manufacturing chains.

  20. Stress Reconstruction Analysis of Wheel Saw Cut Tests and Evaluation of Reconstruction Procedure

    DOT National Transportation Integrated Search

    1993-09-01

    The report is the fourth in a series of engineering studies on railroad vehicle wheel performance. The results of saw cut tests performed on one new and one used wheel designed for a fleet of multiple unit (MU) power cars are summarized and analyzed....

  1. The charging security study of electric vehicle charging spot based on automatic testing platform

    NASA Astrophysics Data System (ADS)

    Li, Yulan; Yang, Zhangli; Zhu, Bin; Ran, Shengyi

    2018-03-01

    With the increasing of charging spots, the testing of charging security and interoperability becomes more and more urgent and important. In this paper, an interface simulator for ac charging test is designed, the automatic testing platform for electric vehicle charging spots is set up and used to test and analyze the abnormal state during the charging process. On the platform, the charging security and interoperability of ac charging spots and IC-CPD can be checked efficiently, the test report can be generated automatically with No artificial reading error. From the test results, the main reason why the charging spot is not qualified is that the power supply cannot be cut off in the prescribed time when the charging anomaly occurs.

  2. Ca3La2(BO3)4 crystal: a new candidate host material for the ytterbium ion

    NASA Astrophysics Data System (ADS)

    Wang, Yeqing; You, Zhenyu; Zhu, Zhaojie; Xu, Jinlong; Li, Jianfu; Wang, Yan; Wang, Hongyan; Tu, Chaoyang

    2013-10-01

    A disordered laser crystal Yb3+-doped Ca3La2(BO3)4 crystal was grown by the Czochralski technique. The characterized room temperature polarized spectra, re-absorption possibility and laser performance showed that this crystal should be a promising gain material, not only suitable for diode pumping, but also a good candidate for the generation of tunable and short pulse lasers. End pumped by a diode laser at 976 nm in plano-concave and plano-plano cavity, a 3.65 W output power with a slope efficiency of 65% was achieved by using a c-cut Yb3+:Ca3La2(BO3)4 crystal. The output laser wavelength shifted from 1042 to 1062 nm.

  3. Image acquisition system using on sensor compressed sampling technique

    NASA Astrophysics Data System (ADS)

    Gupta, Pravir Singh; Choi, Gwan Seong

    2018-01-01

    Advances in CMOS technology have made high-resolution image sensors possible. These image sensors pose significant challenges in terms of the amount of raw data generated, energy efficiency, and frame rate. This paper presents a design methodology for an imaging system and a simplified image sensor pixel design to be used in the system so that the compressed sensing (CS) technique can be implemented easily at the sensor level. This results in significant energy savings as it not only cuts the raw data rate but also reduces transistor count per pixel; decreases pixel size; increases fill factor; simplifies analog-to-digital converter, JPEG encoder, and JPEG decoder design; decreases wiring; and reduces the decoder size by half. Thus, CS has the potential to increase the resolution of image sensors for a given technology and die size while significantly decreasing the power consumption and design complexity. We show that it has potential to reduce power consumption by about 23% to 65%.

  4. Key kinematic parameters in a low-loss power splitter written by femtosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Peyton, R.; Guarepi, V.; Videla, F.; Torchia, G. A.

    2018-05-01

    In this work we design, fabricate and characterize a 1  ×  2 Y-branch power splitter based on simplified coherent coupling. This device was constructed by type II waveguide structures inscribed by a direct femtosecond laser writing technique in x-cut lithium niobate crystal. First of all, a theoretical study that links the kinematic and writing fluence of the process is developed, which allows us to establish the design trade-off and justify the best geometry chosen. Then, the design was optimized and tested by using commercial software, resulting in a compact and low-loss photonic circuit. The efficiency of the proposed device is compared with two others: a curved and a straight splitter. Finally, the experimental results were compared with simulations and then a statistical analysis of multiple comparisons was also conducted, obtaining 3.7 dB  ±  0.1 dB insertion losses and 4.5% of the unbalanced coupling ratio.

  5. A review of virtual cutting methods and technology in deformable objects.

    PubMed

    Wang, Monan; Ma, Yuzheng

    2018-06-05

    Virtual cutting of deformable objects has been a research topic for more than a decade and has been used in many areas, especially in surgery simulation. We refer to the relevant literature and briefly describe the related research. The virtual cutting method is introduced, and we discuss the benefits and limitations of these methods and explore possible research directions. Virtual cutting is a category of object deformation. It needs to represent the deformation of models in real time as accurately, robustly and efficiently as possible. To accurately represent models, the method must be able to: (1) model objects with different material properties; (2) handle collision detection and collision response; and (3) update the geometry and topology of the deformable model that is caused by cutting. Virtual cutting is widely used in surgery simulation, and research of the cutting method is important to the development of surgery simulation. Copyright © 2018 John Wiley & Sons, Ltd.

  6. An investigation on co-axial water-jet assisted fiber laser cutting of metal sheets

    NASA Astrophysics Data System (ADS)

    Madhukar, Yuvraj K.; Mullick, Suvradip; Nath, Ashish K.

    2016-02-01

    Water assisted laser cutting has received significant attention in recent times with assurance of many advantages than conventional gas assisted laser cutting. A comparative study between co-axial water-jet and gas-jet assisted laser cutting of thin sheets of mild steel (MS) and titanium (Ti) by fiber laser is presented. Fiber laser (1.07 μm wavelength) was utilised because of its low absorption in water. The cut quality was evaluated in terms of average kerf, projected dross height, heat affected zone (HAZ) and cut surface roughness. It was observed that a broad range process parameter could produce consistent cut quality in MS. However, oxygen assisted cutting could produce better quality only with optimised parameters at high laser power and high cutting speed. In Ti cutting the water-jet assisted laser cutting performed better over the entire range of process parameters compared with gas assisted cutting. The specific energy, defined as the amount of laser energy required to remove unit volume of material was found more in case of water-jet assisted laser cutting process. It is mainly due to various losses associated with water assisted laser processing such as absorption of laser energy in water and scattering at the interaction zone.

  7. Vapor-melt Ratio in Laser Fine Cutting of Slot Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xuyue; Meng Qingxuan; Kang Renke

    In order to improve cut quality for slot arrays, a new method of laser fine cutting under the consideration of the ratio of vapor to melt is presented. Laser cutting of 6063 aluminum alloy sheet, 0.5 mm in thickness, was carried out on a JK701H Nd:YAG pulse laser cutting system. The effects of vapor-melt ratio on kerf width, surface roughness and recast layer were studied which relate cutting qualities. Observation on the cut samples with different vapor-melt ratios (0.687, 1.574, 3.601 varied with laser power increasing, and 1.535, 3.601, 7.661 with decreasing of beam cutting speed) shows that high vapor-meltmore » ratio improves laser cut quality clearly. Kerf width 0.2 mm of smooth area on kerf top area and thickness 2.03 {mu}m of recast layer are obtained. No dross was found on the kerf bottom and the percentage of the smooth area is up to 40% out of whole kerf side. The research on vapor-melt ratio provides a deeper understanding of laser cutting and improves laser cut quality effectively.« less

  8. A [111]-Cut Si Hemisphere Two-Photon Response Photodetector

    NASA Astrophysics Data System (ADS)

    Liu, Xiu-Huan; Chen, Zhan-Guo; Jia, Gang; Wang, Hai-Yan; Gao, Yan-Jun; Li, Yi

    2011-11-01

    Properties of two-photon response in a [111]-cut nearly-intrinsic Si hemisphere photodetector are studied. The measured photocurrent of the photodetector responding to the 1.32μm continuous wave laser shows a quadratic dependence on the coupled optical power and is saturated with the bias voltage. Also, the photocurrent is independent of polarization. Such properties are in good agreement with the theory of two-photon absorption. The isotropic photocurrent generated from the [111]-cut Si hemisphere is compared to the anisotropic one induced in the [110]-cut Si sample and the ratio of χxxxx/χxxyy for silicon performing at 1.32 μm is calculated to be 2.4 via the fitted function of the anisotropic photocurrent from the [110]-cut sample.

  9. Blackberry propagation by non-leafy floricane cuttings

    USDA-ARS?s Scientific Manuscript database

    Propagation of 1- or 2-node hardwood cuttings from blackberry (Rubus sp.) floricanes can be an efficient and reliable source of rooted transplants but consistent rooting is needed. Floricanes were collected from 9-year-old ‘Triple Crown’ and ‘Siskiyou’ plants on 5 November 2009, 3 December 2009, an...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This Building America Top Innovations profile describes Building America research showing how some energy-efficiency measure cost increases can balance against measures that reduce up-front costs: Advanced framing cuts lumber costs, right sizing can mean downsizing the HVAC, moving HVAC into conditioned space cuts installation costs, designing on a 2-foot grid reduces materials waste, etc.

  11. BI Buy

    ERIC Educational Resources Information Center

    Demski, Jennifer

    2011-01-01

    At a time when higher education is enduring budget cuts, institutions are under more pressure than ever to make each dollar count. While cuts in staff and services are often an unpleasant part of the solution, the drive toward greater efficiency also means getting smart about purchasing. And, increasingly, universities and colleges are turning to…

  12. Optimization of CO2 laser cutting parameters on Austenitic type Stainless steel sheet

    NASA Astrophysics Data System (ADS)

    Parthiban, A.; Sathish, S.; Chandrasekaran, M.; Ravikumar, R.

    2017-03-01

    Thin AISI 316L stainless steel sheet widely used in sheet metal processing industries for specific applications. CO2 laser cutting is one of the most popular sheet metal cutting processes for cutting of sheets in different profile. In present work various cutting parameters such as laser power (2000 watts-4000 watts), cutting speed (3500mm/min - 5500 mm/min) and assist gas pressure (0.7 Mpa-0.9Mpa) for cutting of AISI 316L 2mm thickness stainless sheet. This experimentation was conducted based on Box-Behenken design. The aim of this work is to develop a mathematical model kerf width for straight and curved profile through response surface methodology. The developed mathematical models for straight and curved profile have been compared. The Quadratic models have the best agreement with experimental data, and also the shape of the profile a substantial role in achieving to minimize the kerf width. Finally the numerical optimization technique has been used to find out best optimum laser cutting parameter for both straight and curved profile cut.

  13. PowerWheel - A new look at waterwheels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisman, R.N.; Broome, K.R.; Mayo, H.A.

    1995-12-31

    The PowerWheel is an advanced overshot water wheel, designed to generate electric power at drop structures on canals or on overflow spillways. Unlike the wheels of the 18th and 19th century which were designed to have maximum efficiency at a single flow rate, the current applications demand a wheel that can operate efficiently over a wide range of flows. The prototype PowerWheel will have a width to diameter ratio of 3 or more, in contrast to the wheels of the 19th century, which had large diameters and narrow widths. A model PowerWheel was built of plexiglass and delivered for testingmore » to the Imbt Hydraulics Laboratory at Lehigh University. The wheel has a diameter of 3.5 ft and is 16 in wide. The wheel contains 20 buckets and the bucket depth can be varied from a shallow depth of 4 in to a mid depth of 7 in to 10 in for the deep bucket. The blades have a rather simple geometry with a 4 in radius quarter circle at the outside of the wheel and then straight to the bottom of the bucket. The flume in which the wheel was tested has a width of 18 in. A hole was cut in the head box of the flume and a delivery chute was connected to the head box. The position of the chute can readily be moved up or down in relation to the wheel; for a fixed position of the chute on the head box, the slope of the chute can be changed because the chute was attached to the head box with a piano hinge. The laboratory flow system can deliver flow up to 6 cfs through a calibrated Venturi meter. The PowerWheel was subjected to flows ranging from 0.3 to 3.5 cfs.« less

  14. Applications of the chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Latham, W. Pete; Kendrick, Kip R.; Quillen, Brian

    2000-01-01

    The Chemical Oxygen-Iodine Laser (COIL) has been developed at the Air Force Research Laboratory for military applications. For example, the COIL is to be use as the laser device for the ABL. A high power laser is useful for applications that require the delivery of a substantial amount of energy to a very small focused laser spot. The COIL is a member of the class of high power lasers that are also useful for industrial applications, including the materials processing task of high speed cutting and drilling. COIL technology has received considerable interest over the last several years due to its short, fiber- deliverable wavelength, scalability to very high powers, and demonstrated nearly diffraction-limited optical quality. These unique abilities make it an ideal candidate for nuclear reactor decommissioning and nuclear warhead dismantlement. Japanese researchers envision using a COIL for disaster cleanup and survivor rescue. It is also being studied by the oil and gas industry for well drilling. Any commercial or industrial application that requires very rapid, precise, and noninvasive cutting or drilling, could be readily accomplished with a COIL. Because of the substantial power levels available with a COIL, the laser could also be used for broad area applications such as paint stripping. This paper includes a collection of experiments accomplished at the Air Force Research Laboratory Chemical Laser Facility, including metal cutting, hole drilling, high power fiber optic transmission, and rock crushing.

  15. Profiling analysis of low molecular weight heparins by multiple heart-cutting two dimensional chromatography with quadruple time-of-flight mass spectrometry.

    PubMed

    Ouyang, Yilan; Zeng, Yangyang; Rong, Yinxiu; Song, Yue; Shi, Lv; Chen, Bo; Yang, Xinlei; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2015-09-01

    Low molecular weight heparins (LMWHs) are polydisperse and microheterogenous mixtures of polysaccharides used as anticoagulant drugs. Profiling analysis is important for obtaining deeper insights into the structure of LMWHs. Previous oligosaccharide mapping methods are relatively low resolution and are unable to show an entire picture of the structural complexity of LMWHs. In the current study a profiling method was developed relying on multiple heart-cutting, two-dimensional, ultrahigh performance liquid chromatography with quadruple time-of-flight mass spectrometry. This represents an efficient, automated, and robust approach for profiling LMWHs. Using size-exclusion chromatography and ion-pairing reversed-phase chromatography in a two-dimensional separation, LMW components of different sizes and LMW components of the same size but with different charges and polarities can be resolved, providing a more complete picture of a LMWH. Structural information on each component was then obtained with quadrupole time-of-flight mass spectrometry. More than 80 and 120 oligosaccharides were observed and unambiguously assigned from the LMWHs, nadroparin and enoxaparin, respectively. This method might be useful for quality control of LMWHs and as a powerful tool for heparin-related glycomics.

  16. Commissioning a hobby cutting device for radiochromic film preparation.

    PubMed

    Zolfaghari, Somayeh; Francis, Kirby E; Kairn, Tanya; Crowe, Scott B

    2017-06-01

    In addition to a high spatial resolution and well characterised dose response, one of the major advantages of radiochromic film as a dosimeter is that sheets of film can be cut into pieces suitable for use as calibration films, and for in vivo and phantom measurements. The cutting of film is typically done using scissors or a guillotine, and this process can be time-consuming, limited in precision, requires extensive handling and does not allow holes to be cut from the film without cutting from an existing edge. This study investigated the use of a Brother ScanNCut hobby cutting system for EBT3 film preparation. The optimal operating parameters (blade size, pressure, speed) that resulted in precise cuts with minimal delamination at cut edges were identified using test cutting patterns. These parameters were then used to cut a large film insert for a stereotactic head phantom for comparison against an insert cut with scissors. While the hobby cutting system caused a wider region of delamination at the film edge (1.8 mm) compared to scissors (1 mm), the hobby cutting system was found to be able to produce reproducible cuts more efficiently and more accurately than scissors. The use of the hobby cutting system is recommended for complex phantom inserts (containing sharp corners or holes for alignment rods) or in situations where large numbers of film pieces need to be prepared.

  17. Modal density function and number of propagating modes in ducts

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1976-01-01

    The question of the number of propagating modes within a small range of mode cut off ratio was raised. The population density of modes were shown to be greatest near cut off and least for the well propagating modes. It was shown that modes of nearly the same cut off ratio behave nearly the same in a sound absorbing duct as well as in the way they propagate to the far. Handling all of the propagating modes individually, they can be grouped into several cut off ratio ranges. It is important to know the modal density function to estimate acoustic power distribution.

  18. Theoretical study of cut area of reduction of large surfaces of rotation parts on machines with rotary cutters “Extra”

    NASA Astrophysics Data System (ADS)

    Bondarenko, J. A.; Fedorenko, M. A.; Pogonin, A. A.

    2018-03-01

    Large parts can be treated without disassembling machines using “Extra”, having technological and design challenges, which differ from the challenges in the processing of these components on the stationary machine. Extension machines are used to restore large parts up to the condition allowing one to use them in a production environment. To achieve the desired accuracy and surface roughness parameters, the surface after rotary grinding becomes recoverable, which greatly increases complexity. In order to improve production efficiency and productivity of the process, the qualitative rotary processing of the machined surface is applied. The rotary cutting process includes a continuous change of the cutting edge surfaces. The kinematic parameters of a rotary cutting define its main features and patterns, the cutting operation of the rotary cutting instrument.

  19. Interdisciplinary Social Science: An Example of Vertical and Horizontal Integrative Strategies

    NASA Astrophysics Data System (ADS)

    Durlabhji, Subhash

    2005-03-01

    A "Concept-Centered" strategy for Integrative Studies was proposed and implemented in the creation of the book Power in Focus: Perspectives from Multiple Disciplines. Essays on the ubiquitous concept of Power were solicited internationally and a final cut of ten essays from ten different disciplines, written specifically for this project, were included. This provides an example of what might be called Horizontal Integration, as it cut across multiple disciplines. One of the essays in the volume provides an example of Vertical Integration, as it applies a psychodynamic hypothesis concerning the development of Power relations among humans across hierarchical levels, from the child to the family to other groups and institutions in society, including finally entire nations and regions of the world.

  20. Wirelessly powered micro-tracer enabled by miniaturized antenna and microfluidic channel

    NASA Astrophysics Data System (ADS)

    Duan, G.; Zhao, X.; Seren, H. R.; Chen, C.; Zhang, X.

    2015-12-01

    A miniaturized antenna, 380μm by 380μm in size, was fabricated and integrated with a commercialized passive RFID chip to form a micro-tracer, whose size was 2mm by 1mm in total. The micro-tracer was wirelessly powered and interrogated by a single layer spiral reader antenna through near field coupling. To maximize the working distance, the resonant frequency of micro-tracer and reader antenna were matched at 840MHz. Due to the ultra small size of the tracer antenna, power transfer efficiency decreased dramatically as the distance between tracer antenna and reader antenna increased, thus the working distance of the microtracer was limited within 1mm. To achieve massive operation of the micro-tracer, a microfluidic platform was fabricated with in channel focusing and separation. Acrylic sheets were laser cut to define the channel and cover structure, then bonded together layer by layer with a glass substrate, on which reader antenna was integrated. Pump oil was used as the fluidic media carrying the micro-tracer flowing inside the microfluidic channel. The wireless power transfer and real-time communication was demonstrated with the micro-tracer flowing above the reader antenna, as the ID of the micro-tracer was retrieved and displayed on a computer screen.

  1. Single crystal growth and nonlinear optical properties of Nd3+ doped STGS crystal for self-frequency-doubling application

    NASA Astrophysics Data System (ADS)

    Chen, Feifei; Wang, Lijuan; Wang, Xinle; Cheng, Xiufeng; Yu, Fapeng; Wang, Zhengping; Zhao, Xian

    2017-11-01

    The self-frequency-doubling crystal is an important kind of multi-functional crystal materials. In this work, Nd3+ doped Sr3TaGa3Si2O14 (Nd:STGS) single crystals were successfully grown by using Czochralski pulling method, in addition, the nonlinear and laser-frequency-doubling properties of Nd:STGS crystals were studied. The continuous-wave laser at 1064 nm was demonstrated along different physical axes, where the maximum output power was obtained to be 295 mW for the Z-cut samples, much higher than the Y-cut (242 mW) and X-cut (217 mW) samples. Based on the measured refractive indexes, the phase matching directions were discussed and determined for type I (42.5°, 30°) and type II (69.5°, 0°) crystal cuts. As expected, self-frequency-doubling green laser at 529 nm was achieved with output powers being around 16 mW and 12 mW for type I and type II configurations, respectively.

  2. Fatigue life of laser cut metals

    NASA Technical Reports Server (NTRS)

    Martin, M. R.

    1986-01-01

    Fatigue tests were conducted to determine the actual reduction in fatigue life due to weight removal for balancing by: hand grinding, low power (20 watt) Nd:glass laser, and high power (400 watt) Nd:YAG laser.

  3. On the Cutting Performance of Segmented Diamond Blades when Dry-Cutting Concrete

    PubMed Central

    Martynenko, V.; Martínez Krahmer, D.; Benítez, A.; Genovese, G.

    2018-01-01

    The objective of the present study is to analyze and compare the cutting performance of segmented diamond blades when dry-cutting concrete. A cutting criteria is proposed to characterize the wear of the blades by measuring the variation of the external diameter and the weight loss of the blade. The results exhibit the cutting blade SB-A, which has twice the density of diamonds and large contact area, exhibits less wear even though the material removal rate is higher compared with the other two cutting blades. Additionally, the surface topography of the different blades is evaluated to examine the impact of wear depending on the surface profile and the distribution of the diamonds in the blade’s matrix. Large number of diamonds pull-out are found in blades type SB-C, which additionally shows the worst wear resistant capability. As a conclusion, the cutting efficiency of the blade is found to be related to the density of embedded diamonds and the type of the surface profile of the cutting blade after reaching the stop criteria. PMID:29425125

  4. On the Cutting Performance of Segmented Diamond Blades when Dry-Cutting Concrete.

    PubMed

    Sánchez Egea, A J; Martynenko, V; Martínez Krahmer, D; López de Lacalle, L N; Benítez, A; Genovese, G

    2018-02-09

    The objective of the present study is to analyze and compare the cutting performance of segmented diamond blades when dry-cutting concrete. A cutting criteria is proposed to characterize the wear of the blades by measuring the variation of the external diameter and the weight loss of the blade. The results exhibit the cutting blade SB-A, which has twice the density of diamonds and large contact area, exhibits less wear even though the material removal rate is higher compared with the other two cutting blades. Additionally, the surface topography of the different blades is evaluated to examine the impact of wear depending on the surface profile and the distribution of the diamonds in the blade's matrix. Large number of diamonds pull-out are found in blades type SB-C, which additionally shows the worst wear resistant capability. As a conclusion, the cutting efficiency of the blade is found to be related to the density of embedded diamonds and the type of the surface profile of the cutting blade after reaching the stop criteria.

  5. Association Between Aerobic Fitness And High Blood Pressure in Adolescents in Brazil: Evidence for Criterion-Referenced Cut-Points.

    PubMed

    Silva, Diego Augusto; Tremblay, Mark; Pelegrini, Andreia; Dos Santos Silva, Roberto Jeronimo; Cabral de Oliveira, Antonio Cesar; Petroski, Edio Luiz

    2016-05-01

    Criterion-referenced cut-points for health-related fitness measures are lacking. This study aimed to determine the associations between aerobic fitness and high blood pressure levels (HBP) to determine the cut-points that best predict HBP among adolescents. This cross-sectional school-based study with sample of 875 adolescents aged 14-19 years was conducted in southern Brazil. Aerobic fitness was assessed using the modified Canadian Aerobic Fitness Test (mCAFT). Systolic and diastolic blood pressure were measured by the oscillometric method with a digital sphygmomanometer. Analyses controlled for sociodemographic variables, physical activity, body mass and biological maturation. Receiver Operating Characteristic (ROC) curves demonstrated that mCAFT measures could discriminate HBP in both sexes (female: AUC = 0.70; male: AUC = 0.63). The cut-points with the best discriminatory power for HBP were 32 mL·kg-1·min-1 for females and 40 mL·kg-1·min-1 for males. Females (OR = 8.4; 95% CI: 2.1, 33.7) and males (OR: 2.5; CI 95%: 1.2, 5.2) with low aerobic fitness levels were more likely to have HBP. mCAFT measures are inversely associated with BP and cut-points from ROC analyses have good discriminatory power for HBP.

  6. Transport on percolation clusters with power-law distributed bond strengths.

    PubMed

    Alava, Mikko; Moukarzel, Cristian F

    2003-05-01

    The simplest transport problem, namely finding the maximum flow of current, or maxflow, is investigated on critical percolation clusters in two and three dimensions, using a combination of extremal statistics arguments and exact numerical computations, for power-law distributed bond strengths of the type P(sigma) approximately sigma(-alpha). Assuming that only cutting bonds determine the flow, the maxflow critical exponent v is found to be v(alpha)=(d-1)nu+1/(1-alpha). This prediction is confirmed with excellent accuracy using large-scale numerical simulation in two and three dimensions. However, in the region of anomalous bond capacity distributions (0< or =alpha< or =1) we demonstrate that, due to cluster-structure fluctuations, it is not the cutting bonds but the blobs that set the transport properties of the backbone. This "blob dominance" avoids a crossover to a regime where structural details, the distribution of the number of red or cutting bonds, would set the scaling. The restored scaling exponents, however, still follow the simplistic red bond estimate. This is argued to be due to the existence of a hierarchy of so-called minimum cut configurations, for which cutting bonds form the lowest level, and whose transport properties scale all in the same way. We point out the relevance of our findings to other scalar transport problems (i.e., conductivity).

  7. Fiber laser micromachining of thin NiTi tubes for shape memory vascular stents

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Li, Dong Bo; Tong, Yi Fei; Zhu, Yu Fu

    2016-07-01

    Nickel titanium (NiTi) alloy has widely been used in the vascular stent manufacturing due to its excellent properties. Neodymium-doped yttrium aluminum garnet (Nd:YAG) laser is commonly used for the preparation of metal vascular stents. Recently, fiber lasers have been used for stent profiling for better cutting quality. To investigate the cutting-kerf characters of NiTi vascular stents fabricated by fiber laser cutting, laser cutting experiments with thin NiTi tubes were conducted in this study, while NiTi sheets were used in other fiber laser cutting studies. Different with striation topography, new topographies such as layer topography and topography mixed with layers and striations were observed, and the underlying reason for new topographies was also discussed. Comparative research on different topographies was conducted through analyzing the surface roughness, kerf width, heat-affected zone (HAZ) and dross formation. Laser cutting process parameters have a comprehensive influence on the cutting quality; in this study, the process parameters' influences on the cutting quality were studied from the view of power density along the cutting direction. The present research provides a guideline for improving the cutting quality of NiTi vascular stents.

  8. Effects of momentum transfer on sizing of current collectors for lithium-ion batteries during laser cutting

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyoung; Mazumder, Jyotirmoy

    2018-02-01

    One of the challenges of the lithium-ion battery manufacturing process is the sizing of electrodes with good cut surface quality. Poor cut surface quality results in internal short circuits in the cells and significant heat generation. One of the solutions that may improve the cut quality with a high cutting speed is laser cutting due to its high energy concentration, fast processing time, high precision, small heat affected zone, flexible range of laser power and contact free process. In order to utilize the advantages of laser electrode cutting, understanding the physical phenomena for each material is crucial. Thus, this study focuses on the laser cutting of current collectors, such as pure copper and aluminum. A 3D self-consistent mathematical model for the laser cutting, including fluid flow, heat transfer, recoil pressure, multiple reflections, capillary and thermo-capillary forces, and phase changes, is presented and solved numerically. Simulation results for the laser cutting are analyzed in terms of penetration time, depth, width, and absorptivity, based on these selected laser parameters. In addition, melt pool flow, melt pool geometry and temperature distribution are investigated.

  9. High-efficiency spectral purity filter for EUV lithography

    DOEpatents

    Chapman, Henry N [Livermore, CA

    2006-05-23

    An asymmetric-cut multilayer diffracts EUV light. A multilayer cut at an angle has the same properties as a blazed grating, and has been demonstrated to have near-perfect performance. Instead of having to nano-fabricate a grating structure with imperfections no greater than several tens of nanometers, a thick multilayer is grown on a substrate and then cut at an inclined angle using coarse and inexpensive methods. Effective grating periods can be produced this way that are 10 to 100 times smaller than those produced today, and the diffraction efficiency of these asymmetric multilayers is higher than conventional gratings. Besides their ease of manufacture, the use of an asymmetric multilayer as a spectral purity filter does not require that the design of an EUV optical system be modified in any way, unlike the proposed use of blazed gratings for such systems.

  10. Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kaoru; Hatano, Naomichi

    2015-10-01

    Mesoscopic thermoelectric heat engine is much anticipated as a device that allows us to utilize with high efficiency wasted heat inaccessible by conventional heat engines. However, the derivation of the heat current in this engine seems to be either not general or described too briefly, even inappropriately in some cases. In this paper, we give a clear-cut derivation of the heat current of the engine with suitable assumptions beyond the linear-response regime. It resolves the confusion in the definition of the heat current in the linear-response regime. After verifying that we can construct the same formalism as that of the cyclic engine, we find the following two interesting results within the Landauer-Büttiker formalism: the efficiency of the mesoscopic thermoelectric engine reaches the Carnot efficiency if and only if the transmission probability is finite at a specific energy and zero otherwise; the unitarity of the transmission probability guarantees the second law of thermodynamics, invalidating Benenti et al.'s argument in the linear-response regime that one could obtain a finite power with the Carnot efficiency under a broken time-reversal symmetry [Phys. Rev. Lett. 106, 230602 (2011), 10.1103/PhysRevLett.106.230602]. These results demonstrate how quantum mechanics constrains thermodynamics.

  11. Forestry alters foraging efficiency and crop contents of aphid-tending red wood ants, Formica aquilonia.

    PubMed

    Johansson, Therese; Gibb, Heloise

    2012-01-01

    Forest management alters species behaviours, distributions and interactions. To evaluate forestry effects on ant foraging performance, we compared the quality and quantity of honeydew harvested by ants among clear-cuts, middle-aged and mature spruce-dominated stands in boreal forests in Sweden. Honeydew quality was examined using honeydew collected by squeezing the gasters of laden Formica aquilonia workers. We used fifteen laden individuals at each study site (four replicates of each stand age) and analysed honeydew chemical composition with gas chromatography-mass spectroscopy. To compare the quantity of honeydew collected by individual ants, we collected and weighed five ants moving up and five ants moving down each of ten trees at the twelve sites (totally 1200 ants). The concentration of trehalose in honeydew was lower in clear-cuts compared with middle aged and mature stands, and similar trends were shown for sucrose, raffinose and melezitose, indicating poorer honeydew quality on clear cuts. Concentrations of the amino acid serine were higher on clear-cuts. The same trend occurred for glutamine, suggesting that increased N-uptake by the trees after clear cutting is reflected in the honeydew of aphids. Ants in mature stands had larger heads and carried proportionally more honeydew and may therefore be more efficient foragers. Human alternation of habitats through clear-cutting thus affects food quality and worker condition in F. aquilonia. This is the first study to show that honeydew quality is affected by anthropogenic disturbances, likely contributing to the reduction in size and abundance of F. aquilonia workers and mounds after clear cutting.

  12. 40 CFR 53.3 - General requirements for an equivalent method determination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature and pressure sensors, outdoor enclosure, electrical power supply, control devices and operator... rate cut-off; operation following power interruptions; effect of variations in power line voltage... other tests, full wind-tunnel tests similar to those described in § 53.62, or to special tests adapted...

  13. Quantitative assessment of the enamel machinability in tooth preparation with dental diamond burs.

    PubMed

    Song, Xiao-Fei; Jin, Chen-Xin; Yin, Ling

    2015-01-01

    Enamel cutting using dental handpieces is a critical process in tooth preparation for dental restorations and treatment but the machinability of enamel is poorly understood. This paper reports on the first quantitative assessment of the enamel machinability using computer-assisted numerical control, high-speed data acquisition, and force sensing systems. The enamel machinability in terms of cutting forces, force ratio, cutting torque, cutting speed and specific cutting energy were characterized in relation to enamel surface orientation, specific material removal rate and diamond bur grit size. The results show that enamel surface orientation, specific material removal rate and diamond bur grit size critically affected the enamel cutting capability. Cutting buccal/lingual surfaces resulted in significantly higher tangential and normal forces, torques and specific energy (p<0.05) but lower cutting speeds than occlusal surfaces (p<0.05). Increasing material removal rate for high cutting efficiencies using coarse burs yielded remarkable rises in cutting forces and torque (p<0.05) but significant reductions in cutting speed and specific cutting energy (p<0.05). In particular, great variations in cutting forces, torques and specific energy were observed at the specific material removal rate of 3mm(3)/min/mm using coarse burs, indicating the cutting limit. This work provides fundamental data and the scientific understanding of the enamel machinability for clinical dental practice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Excimer laser in arthroscopic surgery

    NASA Astrophysics Data System (ADS)

    Koort, Hans J.

    1991-05-01

    The development of efficient high-power lasersystems for use in surgery, especially in arthroscopic fields, leads to a new push for all endoscopic techniques. Both techniques, laser and endoscope, complete each other in an ideal way and allow applications which could not be reached with conventional techniques. One of the newer laser types is the excimer laser, which will be a good choice for surface treatment because of its very considerate interaction with tissue. One example is the ablation or smoothing of articular cartilage and meniscal shaving in orthopaedics. On the other hand, the power of this laser system is high enough to cut tissue, for instance in the lateral release, and offers therefore an alternative to the mechanical and electrical instruments. All lasers can only work fine with effective delivery systems. Sometimes there is only a single fiber, which becomes very stiff at diameters of more than 800 micrometers . This fiber often allows only the tangential treatment of tissue, most of the laser power is lost in the background. New fiber systems with many, sometimes hundreds of very thin single fibers, could offer a solution. Special handpieces and fibersystems offer distinct advantages in small joint arthroscopy, especially those for use with excimer lasers will be discussed.

  15. Airport electric vehicle powered by fuel cell

    NASA Astrophysics Data System (ADS)

    Fontela, Pablo; Soria, Antonio; Mielgo, Javier; Sierra, José Francisco; de Blas, Juan; Gauchia, Lucia; Martínez, Juan M.

    Nowadays, new technologies and breakthroughs in the field of energy efficiency, alternative fuels and added-value electronics are leading to bigger, more sustainable and green thinking applications. Within the Automotive Industry, there is a clear declaration of commitment with the environment and natural resources. The presence of passenger vehicles of hybrid architecture, public transport powered by cleaner fuels, non-aggressive utility vehicles and an encouraging social awareness, are bringing to light a new scenario where conventional and advanced solutions will be in force. This paper presents the evolution of an airport cargo vehicle from battery-based propulsion to a hybrid power unit based on fuel cell, cutting edge batteries and hydrogen as a fuel. Some years back, IBERIA (Major Airline operating in Spain) decided to initiate the replacement of its diesel fleet for battery ones, aiming at a reduction in terms of contamination and noise in the surrounding environment. Unfortunately, due to extreme operating conditions in airports (ambient temperature, intensive use, dirtiness, …), batteries suffered a very severe degradation, which took its toll in terms of autonomy. This reduction in terms of autonomy together with the long battery recharge time made the intensive use of this fleet impractical in everyday demanding conditions.

  16. Application research of CO2 laser cutting natural stone plates

    NASA Astrophysics Data System (ADS)

    Ma, Lixiu; Song, Jijiang

    2009-08-01

    Now, the processing of natural stone plates is the high performance sawing machine primarily,many researchers deeply studied the processing characters in the sawing process and the strength characters during the processing. In order to realize the profiled-processing and pattern- carving of the natural stone, It lays a solid foundation for the laser cutting and the pattern-carving technology of natural stone plate. The working principle, type and characteristics of laser cutting are briefly described. The paper selects 6 kinds stone plates of natural taken as experimental sample,the experimental sample was China Shanxi Black, Old Spain Golden Yellow, New Spain Golden Yellow, Jazz White, Maple Leaf Red, Cream White respectively. Use high power CO2 laser cutting system,the stone plates cutting experiment of 6 kinds different hardness, the best working speed are obtained,The experimental results indicate that: The laser cutting speed has no correlation with the ingredient content of stone plate.

  17. High power industrial picosecond laser from IR to UV

    NASA Astrophysics Data System (ADS)

    Saby, Julien; Sangla, Damien; Pierrot, Simonette; Deslandes, Pierre; Salin, François

    2013-02-01

    Many industrial applications such as glass cutting, ceramic micro-machining or photovoltaic processes require high average and high peak power Picosecond pulses. The main limitation for the expansion of the picosecond market is the cost of high power picosecond laser sources, which is due to the complexity of the architecture used for picosecond pulse amplification, and the difficulty to keep an excellent beam quality at high average power. Amplification with fibers is a good technology to achieve high power in picosecond regime but, because of its tight confinement over long distances, light undergoes dramatic non linearities while propagating in fibers. One way to avoid strong non linearities is to increase fiber's mode area. Nineteen missing holes fibers offering core diameter larger than 80μm have been used over the past few years [1-3] but it has been shown that mode instabilities occur at approximately 100W average output power in these fibers [4]. Recently a new fiber design has been introduced, in which HOMs are delocalized from the core to the clad, preventing from HOMs amplification [5]. In these so-called Large Pitch Fibers, threshold for mode instabilities is increased to 294W offering robust single-mode operation below this power level [6]. We have demonstrated a high power-high efficiency industrial picosecond source using single-mode Large Pitch rod-type fibers doped with Ytterbium. Large Pitch Rod type fibers can offer a unique combination of single-mode output with a very large mode area from 40 μm up to 100μm and very high gain. This enables to directly amplify a low power-low energy Mode Locked Fiber laser with a simple amplification architecture, achieving very high power together with singlemode output independent of power level or repetition rate.

  18. Strips, Clearcuts, And Deferment Cuts: Harvest Costs And Site Impacts For Alternative Prescriptions In Upland Hardwoods

    Treesearch

    Robert B. Rummer; Emily Carter; Bryce Stokes; John Klepac

    1997-01-01

    Clearcutting upland hardwood stands is a common management prescription in the South which maximizes harvest efficiency. However, with increasing concerns about esthetics and ecological impacts, a better understanding of alternative treatments is needed. This study compared conventional block clearcutting, strip clearcutting, and deferment cutting in replicated...

  19. Observations on School District and Service Consolidation in Michigan. Working Paper #17

    ERIC Educational Resources Information Center

    Arsen, David

    2011-01-01

    School district consolidation enjoys a unique status among strategies to reduce education costs. It promises to cut spending, without lowering service quality, by improving the efficiency of service delivery. In contrast to strategies aimed at lowering employee salaries or benefits--which are hard to avoid when cutting spending in any labor…

  20. Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining.

    PubMed

    Zhu, Zhiwei; To, Suet; Zhang, Shaojian

    2015-08-10

    Fast/slow tool servo (FTS/STS) diamond turning is a very promising technique for the generation of micro-lens array (MLA). However, it is still a challenge to process MLA in large scale due to certain inherent limitations of this technique. In the present study, a novel ultra-precision diamond cutting method, as the end-fly-cutting-servo (EFCS) system, is adopted and investigated for large-scale generation of MLA. After a detailed discussion of the characteristic advantages for processing MLA, the optimal toolpath generation strategy for the EFCS is developed with consideration of the geometry and installation pose of the diamond tool. A typical aspheric MLA over a large area is experimentally fabricated, and the resulting form accuracy, surface micro-topography and machining efficiency are critically investigated. The result indicates that the MLA with homogeneous quality over the whole area is obtained. Besides, high machining efficiency, extremely small volume of control points for the toolpath, and optimal usage of system dynamics of the machine tool during the whole cutting can be simultaneously achieved.

  1. Phase unwrapping with graph cuts optimization and dual decomposition acceleration for 3D high-resolution MRI data.

    PubMed

    Dong, Jianwu; Chen, Feng; Zhou, Dong; Liu, Tian; Yu, Zhaofei; Wang, Yi

    2017-03-01

    Existence of low SNR regions and rapid-phase variations pose challenges to spatial phase unwrapping algorithms. Global optimization-based phase unwrapping methods are widely used, but are significantly slower than greedy methods. In this paper, dual decomposition acceleration is introduced to speed up a three-dimensional graph cut-based phase unwrapping algorithm. The phase unwrapping problem is formulated as a global discrete energy minimization problem, whereas the technique of dual decomposition is used to increase the computational efficiency by splitting the full problem into overlapping subproblems and enforcing the congruence of overlapping variables. Using three dimensional (3D) multiecho gradient echo images from an agarose phantom and five brain hemorrhage patients, we compared this proposed method with an unaccelerated graph cut-based method. Experimental results show up to 18-fold acceleration in computation time. Dual decomposition significantly improves the computational efficiency of 3D graph cut-based phase unwrapping algorithms. Magn Reson Med 77:1353-1358, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Efficient prepreg recycling at low temperatures

    NASA Astrophysics Data System (ADS)

    Pannkoke, Kord; Oethe, Marcus; Busse, Jürgen

    When manufacturing fibre reinforced plastics engineers are still confronted with a lack of experience concerning efficient recycling methods for prepreg cutting waste. Normally, the prepregs are cured and subsequently milled to use them as a filler material for polymers. However, this method is expensive and it is difficult to find applications for the milled FRP. An alternative method to recycle CFRP prepregs will be presented in this paper. Cutting the uncured prepreg waste was done by means of a saw mill which was cooled down to low temperatures. Working temperatures of -30°C are sufficient to harden the uncured resin and to achieve cuttable prepregs. Furthermore, post-curing during the cutting process is avoided with this technique. The result is a `cotton'-like matted structure with random fibre orientation and fibre length distribution. Subsequent curing was done by means of a press and an autoclave, respectively. It will be shown by means of tension and bending tests that low-temperature cutting of uncured prepregs is a way to partly conserve the high valuation of FRP during recycling. Furthermore, it offers possibilities for various applications.

  3. Technological study on reducing blast-hole rate during laser cutting oil pipe

    NASA Astrophysics Data System (ADS)

    Deng, Qiansong; Yang, Weihong; Tang, Xiahui; Peng, Hao; Qin, Yingxiong

    2012-03-01

    In this paper, a laser cutting technology for the oil pipes with the thickness of 10mm, the diameter of 142mm and the material of N80 has been developed, in order to reduce the high hole-blast rate in processing. Experiments are taken on the Rofin DC025 slab CO2 laser cutting system and a set of flexible fixtures. The reasons of forming blast-hole have been analyzed, and the influences of technique parameters on blast-hole rate have been studied, such as laser power, pulse frequency, laser delay, focus position and oxygen pressure. The results show that the blast-hole rate can be controlled lower than 5% at the conditions of laser power 1500W, laser delay 5s, pulse frequency 180Hz, the oxygen pressure 0.6 kg/cm2, focus length 190mm, nozzle diameter 1.5mm.

  4. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source.

    PubMed

    Venkatesan, K

    2017-07-01

    Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60-150 m/min, feed rates of 0.05-0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.

  5. Rock Cutting Depth Model Based on Kinetic Energy of Abrasive Waterjet

    NASA Astrophysics Data System (ADS)

    Oh, Tae-Min; Cho, Gye-Chun

    2016-03-01

    Abrasive waterjets are widely used in the fields of civil and mechanical engineering for cutting a great variety of hard materials including rocks, metals, and other materials. Cutting depth is an important index to estimate operating time and cost, but it is very difficult to predict because there are a number of influential variables (e.g., energy, geometry, material, and nozzle system parameters). In this study, the cutting depth is correlated to the maximum kinetic energy expressed in terms of energy (i.e., water pressure, water flow rate, abrasive feed rate, and traverse speed), geometry (i.e., standoff distance), material (i.e., α and β), and nozzle system parameters (i.e., nozzle size, shape, and jet diffusion level). The maximum kinetic energy cutting depth model is verified with experimental test data that are obtained using one type of hard granite specimen for various parameters. The results show a unique curve for a specific rock type in a power function between cutting depth and maximum kinetic energy. The cutting depth model developed here can be very useful for estimating the process time when cutting rock using an abrasive waterjet.

  6. [Study of cuttings identification using laser-induced breakdown spectroscopy].

    PubMed

    Tian, Ye; Wang, Zhen-nan; Hou, Hua-ming; Zhai, Xiao-wei; Ci, Xing-hua; Zheng, Rong-er

    2012-08-01

    Cutting identification is one of the most important links in the course of cutting logging which is very significant in the process of oil drilling. In the present paper, LIBS was used for identification of four kinds of cutting samples coming from logging field, and then multivariate analysis was used in data processing. The whole spectra model and the feature model were built for cuttings identification using PLS-DA method. The accuracy of the whole spectra model was 88.3%, a little more than the feature model with an accuracy of 86.7%. While in the aspect of data size, the variables were decreased from 24,041 to 27 by feature extraction, which increased the efficiency of data processing observably. The obtained results demonstrate that LIBS combined with chemometrics method could be developed as a rapid and valid approach to cutting identification and has great potential to be used in logging field.

  7. New generation of compact high power disk lasers

    NASA Astrophysics Data System (ADS)

    Feuchtenbeiner, Stefanie; Zaske, Sebastian; Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Kumkar, Sören; Metzger, Bernd; Killi, Alexander; Haug, Patrick; Speker, Nicolai

    2018-02-01

    New technological developments in high power disk lasers emitting at 1030 nm are presented. These include the latest generation of TRUMPF's TruDisk product line offering high power disk lasers with up to 6 kW output power and beam qualities of up to 4 mm*mrad. With these compact devices a footprint reduction of 50% compared to the previous model could be achieved while at the same time improving robustness and increasing system efficiency. In the context of Industry 4.0, the new generation of TruDisk lasers features a synchronized data recording of all sensors, offering high-quality data for virtual analyses. The lasers therefore provide optimal hardware requirements for services like Condition Monitoring and Predictive Maintenance. We will also discuss its innovative and space-saving cooling architecture. It allows operation of the laser under very critical ambient conditions. Furthermore, an outlook on extending the new disk laser platform to higher power levels will be given. We will present a disk laser with 8 kW laser power out of a single disk with a beam quality of 5 mm*mrad using a 125 μm fiber, which makes it ideally suited for cutting and welding applications. The flexibility of the disk laser platform also enables the realization of a wide variety of beam guiding setups. As an example a new scheme called BrightLine Weld will be discussed. This technology allows for an almost spatter free laser welding process, even at high feed rates.

  8. Industrial femtosecond lasers for machining of heat-sensitive polymers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hendricks, Frank; Bernard, Benjamin; Matylitsky, Victor V.

    2017-03-01

    Heat-sensitive materials, such as polymers, are used increasingly in various industrial sectors such as medical device manufacturing and organic electronics. Medical applications include implantable devices like stents, catheters and wires, which need to be structured and cut with minimum heat damage. Also the flat panel display market moves from LCD displays to organic LED (OLED) solutions, which utilize heat-sensitive polymer substrates. In both areas, the substrates often consist of multilayer stacks with different types of materials, such as metals, dielectric layers and polymers with different physical characteristic. The different thermal behavior and laser absorption properties of the materials used makes these stacks difficult to machine using conventional laser sources. Femtosecond lasers are an enabling technology for micromachining of these materials since it is possible to machine ultrafine structures with minimum thermal impact and very precise control over material removed. An industrial femtosecond Spirit HE laser system from Spectra-Physics with pulse duration <400 fs, pulse energies of >120 μJ and average output powers of >16 W is an ideal tool for industrial micromachining of a wide range of materials with highest quality and efficiency. The laser offers process flexibility with programmable pulse energy, repetition rate, and pulse width. In this paper, we provide an overview of machining heat-sensitive materials using Spirit HE laser. In particular, we show how the laser parameters (e.g. laser wavelength, pulse duration, applied energy and repetition rate) and the processing strategy (gas assisted single pass cut vs. multi-scan process) influence the efficiency and quality of laser processing.

  9. Factors influencing laser cutting of wood

    Treesearch

    V.G. Barnekov; C.W. McMillin; H.A. Huber

    1986-01-01

    Factors influencing the ability of lasers to cut wood may be generally classified into these three areas: 1) characteristics of the laser beam; 2) equipment and processing variables; and 3) properties of the workpiece. Effects of beam power, mode, polarization, and stability are discussed as are aspects of optics, location of focal point, feed speed, gas-jet assist...

  10. Consequences of 1983-84 Budget Cuts for California Community Colleges.

    ERIC Educational Resources Information Center

    Hayward, Gerald C.

    This report from the Chancellor to the Board of Governors of the California Community Colleges highlights the consequences of 1983-84 budget cuts for the state's community colleges. First, the projected effects of the Governor's veto of $232 million in community college funding are outlined, i.e., a 12% decline in real buying power for the…

  11. Bidirectional, Automatic Coal-Mining Machine

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1986-01-01

    Proposed coal-mining machine operates in both forward and reverse directions along mine face. New design increases efficiency and productivity, because does not stop cutting as it retreats to starting position after completing pass along face. To further increase efficiency, automatic miner carries its own machinery for crushing coal and feeding it to slurry-transport tube. Dual-drum mining machine cuts coal in two layers, crushes, mixes with water, and feeds it as slurry to haulage tube. At end of pass, foward drum raised so it becomes rear drum, and rear drum lowered, becoming forward drum for return pass.

  12. IN VITRO FLOW ANALYSIS OF NOVEL DOUBLE-CUTTING, OPEN-PORT, ULTRAHIGH-SPEED VITRECTOMY SYSTEMS.

    PubMed

    Zehetner, Claus; Moelgg, Marion; Bechrakis, Emmanouil; Linhart, Caroline; Bechrakis, Nikolaos E

    2017-10-09

    To analyze the performance and flow characteristics of novel double-cutting, open-port, 23-, 25-, and 27-gauge ultrahigh-speed vitrectomy systems. In vitro fluidic measurements were performed to assess the volumetric aspiration profiles of several vitrectomy systems in basic salt solution and egg white. Double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. Increase in cutting frequency to the maximum level resulted in flow reduction of less than 10% (0.0%-9.5%). Commercially available 23-, 25-, and 27-G double-cutting probes exhibited higher egg-white and basic salt solution flow rates at all evaluated cut rates, with aspirational efficiencies being 1.1 to 2.9 times the flow rates of standard single-blade vitrectomy probes of the same caliber at the maximum preset vacuum. The highest relative differences were observed at faster cut rates. The newly introduced double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. The fluidic principle of constant flow even at the highest cut rates and low vacuum levels might impact surgical strategies, especially when performing manipulations close to the retina.

  13. Comparison of anthropometric indices (body mass index, waist circumference, waist to hip ratio and waist to height ratio) in predicting risk of type II diabetes in the population of Yazd, Iran.

    PubMed

    Mirzaei, Masoud; Khajeh, Mohammad

    2018-04-13

    The purpose of this study was to determine the best anthropometric index and calculate the cut-off point for each anthropometric index in predicting the risk of type II diabetes in the population of Yazd city in Iran. The present analytical cross-sectional study was performed using the data from Yazd Health Study (YaHS) with a sample size of 9293. All required data including anthropometric indices BMI, WC, WHR, and WHtR were extracted from the YAHS questionnaire. The ROC curve was employed to compare the predictive power of each anthropometric index in the risk of developing the type II diabetes. WHtR in both genders had better predictive power for the risk of type II diabetes (AUC = 0.692 for males and AUC = 0.708 for females), and BMI showed a weaker predictive power (AUC = 0.603 for males and AUC = 0.632 for females), WC and WHR also revealed similar predictive power in the risk of type II diabetes. The cut-off point of BMI for predicting the risk of diabetes was almost identical in both genders (26.2 in males and 25.9 in females), the cut-off point of WC (91 cm), and WHtR (0.56) in males was lower than in the females (96 cm for WC and 0.605 for WHtR). The cut-off point of WHR in males (0.939) was higher than in females (0.892). The WHtR showed the best predictor of diabetes risk compared to other indices, and the BMI was the weakest predictor of the risk for diabetes. Copyright © 2018. Published by Elsevier Ltd.

  14. Evaluation of Process Performance for Sustainable Hard Machining

    NASA Astrophysics Data System (ADS)

    Rotella, Giovanna; Umbrello, Domenico; , Oscar W. Dillon, Jr.; Jawahir, I. S.

    This paper aims to evaluate the sustainability performance of machining operation of through-hardening steel, AISI 52100, taking into account the impact of the material removal process in its various aspects. Experiments were performed for dry and cryogenic cutting conditions using chamfered cubic boron nitride (CBN) tool inserts at varying cutting conditions (cutting speed and feed rate). Cutting forces, mechanical power, tool wear, white layer thickness, surface roughness and residual stresses were investigated in order to evaluate the effects of extreme in-process cooling on the machined surface. The results indicate that cryogenic cooling has the potential to be used for surface integrity enhancement for improved product life and more sustainable functional performance.

  15. Evaluation of laser cutting process with auxiliary gas pressure by soft computing approach

    NASA Astrophysics Data System (ADS)

    Lazov, Lyubomir; Nikolić, Vlastimir; Jovic, Srdjan; Milovančević, Miloš; Deneva, Heristina; Teirumenieka, Erika; Arsic, Nebojsa

    2018-06-01

    Evaluation of the optimal laser cutting parameters is very important for the high cut quality. This is highly nonlinear process with different parameters which is the main challenge in the optimization process. Data mining methodology is one of most versatile method which can be used laser cutting process optimization. Support vector regression (SVR) procedure is implemented since it is a versatile and robust technique for very nonlinear data regression. The goal in this study was to determine the optimal laser cutting parameters to ensure robust condition for minimization of average surface roughness. Three cutting parameters, the cutting speed, the laser power, and the assist gas pressure, were used in the investigation. As a laser type TruLaser 1030 technological system was used. Nitrogen as an assisted gas was used in the laser cutting process. As the data mining method, support vector regression procedure was used. Data mining prediction accuracy was very high according the coefficient (R2) of determination and root mean square error (RMSE): R2 = 0.9975 and RMSE = 0.0337. Therefore the data mining approach could be used effectively for determination of the optimal conditions of the laser cutting process.

  16. Van tells residential conservation story. [Potomac Edison Co. of Allegheny Power System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-01-15

    Potomac Edison Co. is taking its residential energy-conservation story to the public via a mobile van that will be on display at schools, service clubs, shopping centers, fairs, and exhibits. The van is equiped with exhibits featuring the latest in energy-saving equipment and techniques in insulation, ventilation, hot water, solar energy, load control, fireplace heat control, utility billing, appliances, appliance efficiency, lighting, heat pump, and furnace heat recovery. The exhibits are not limited to electrical applications. One shows the effect that an orifice installed in a shower head has on the amount of hot water used. The device cuts themore » amounts of both water and energy use to about one-half. Each display item is readily available from local sources. (MCW)« less

  17. Cutting of optical materials by using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Nolte, Stefan; Will, Matthias; Augustin, Markus; Triebel, Peter; Zoellner, Karsten; Tuennermann, Andreas

    2001-11-01

    In the past years, ultrashort pulse lasers have been established as precise and universal tools for the microstructuring of solid materials. Since thermal and mechanical influences are minimized, the application of this technology is also suitable for the structuring of optical materials and opens new possibilities. In this paper, the influence of pulse duration, pulse energy (fluence) and polarization on the cutting quality for glass and silicon will be discussed. As a concrete application, the cutting and micromarking of dielectric coated mirrors for high power fiber lasers will be highlighted.

  18. Traveling wave electrode design of electro-optically modulated coupled-cavity surface-emitting lasers.

    PubMed

    Zujewski, Mateusz; Thienpont, Hugo; Panajotov, Krassimir

    2012-11-19

    We present a novel design of an electro-optically modulated coupled-cavity vertical-cavity surface-emitting laser (CC-VCSEL) with traveling wave electrodes of the modulator cavity, which allows to overcome the RC time constant of a traditional lumped electrode structures. The CC-VCSEL optical design is based on longitudinal mode switching which has recently experimentally demonstrated a record modulation speed. We carry out segmented transmission line electrical design of the modulator cavity in order to compensate for the low impedance of the modulator section and to match the 50 Ω electrical network. We have optimized two types of highly efficient modulator structures reaching -3 dB electrical cut-off frequency of f(cut-off) = 330 GHz with maximum reflection of -22 dB in the range from f(LF) = 100 MHz to f(cut-off) and 77 - 89% modulation efficiency.

  19. Phacoemulsification using a chisel-shaped illuminator: enhanced depth trench, one-shot crack, and phaco cut.

    PubMed

    Wi, Jaemin; Seo, Hyejin; Lee, Jong Yeon; Nam, Dong Heun

    2016-01-01

    To evaluate the efficacy and outcomes of intracameral illuminator-assisted nucleofractis technique in cataract surgery. Since June 2012, this novel technique has been performed in all cataract cases by one surgeon (approximately 300 cases of various densities). Trenching continues until the posterior plate white reflex between an endonucleus and an epinucleus is identified (enhanced depth trench). After trenching, cracking is initiated with minimal separation force, and completion of cracking is confirmed by posterior capsule reflex (one-shot crack). With followability enhanced by an elliptical phaco mode, the divided nucleus is efficiently cut into small fragments by a chisel-shaped illuminator (phaco cut). We have not experienced any capsular bag or zonular complications, and the effective phacoemulsification time seemed to be shorter than that with the conventional technique. This technique simplifies the complete division of the nucleus, which is the most challenging step in safe and efficient phacoemulsification.

  20. Cut set-based risk and reliability analysis for arbitrarily interconnected networks

    DOEpatents

    Wyss, Gregory D.

    2000-01-01

    Method for computing all-terminal reliability for arbitrarily interconnected networks such as the United States public switched telephone network. The method includes an efficient search algorithm to generate minimal cut sets for nonhierarchical networks directly from the network connectivity diagram. Efficiency of the search algorithm stems in part from its basis on only link failures. The method also includes a novel quantification scheme that likewise reduces computational effort associated with assessing network reliability based on traditional risk importance measures. Vast reductions in computational effort are realized since combinatorial expansion and subsequent Boolean reduction steps are eliminated through analysis of network segmentations using a technique of assuming node failures to occur on only one side of a break in the network, and repeating the technique for all minimal cut sets generated with the search algorithm. The method functions equally well for planar and non-planar networks.

  1. Smart design to resolve spectral overlapping of phosphor-in-glass for high-powered remote-type white light-emitting devices.

    PubMed

    Lee, Jin Seok; Arunkumar, P; Kim, Sunghoon; Lee, In Jae; Lee, Hyungeui; Im, Won Bin

    2014-02-15

    The white light-emitting diode (WLED) is a state-of-the-art solid state technology, which has replaced conventional lighting systems due to its reduced energy consumption, its reliability, and long life. However, the WLED presents acute challenges in device engineering, due to its lack of color purity, efficacy, and thermal stability of the lighting devices. The prime cause for inadequacies in color purity and luminous efficiency is the spectral overlapping of red components with yellow/green emissions when generating white light by pumping a blue InGaN chip with yellow YAG:Ce³⁺ phosphor, where red phosphor is included, to compensate for deficiencies in the red region. An innovative strategy was formulated to resolve this spectral overlapping by alternatively arranging phosphor-in-glass (PiG) through cutting and reassembling the commercial red CaAlSiN₃:Eu²⁺ and green Lu₃Al₅O₁₂:Ce³⁺ PiG. PiGs were fabricated using glass frits with a low softening temperature of 600°C, which exhibited excellent thermal stability and high transparency, improving life time even at an operating temperature of 200°C. This strategy overcomes the spectral overlapping issue more efficiently than the randomly mixed and patented stacking design of multiple phosphors for a remote-type WLED. The protocol for the current design of PiG possesses excellent thermal and chemical stability with high luminous efficiency and color purity is an attempt to make smarter solid state lighting for high-powered remote-type white light-emitting devices.

  2. High efficiency and broadband acoustic diodes

    NASA Astrophysics Data System (ADS)

    Fu, Congyi; Wang, Bohan; Zhao, Tianfei; Chen, C. Q.

    2018-01-01

    Energy transmission efficiency and working bandwidth are the two major factors limiting the application of current acoustic diodes (ADs). This letter presents a design of high efficiency and broadband acoustic diodes composed of a nonlinear frequency converter and a linear wave filter. The converter consists of two masses connected by a bilinear spring with asymmetric tension and compression stiffness. The wave filter is a linear mass-spring lattice (sonic crystal). Both numerical simulation and experiment show that the energy transmission efficiency of the acoustic diode can be improved by as much as two orders of magnitude, reaching about 61%. Moreover, the primary working band width of the AD is about two times of the cut-off frequency of the sonic crystal filter. The cut-off frequency dependent working band of the AD implies that the developed AD can be scaled up or down from macro-scale to micro- and nano-scale.

  3. High speed machining of space shuttle external tank liquid hydrogen barrel panel

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.

    1983-01-01

    Actual and projected optimum High Speed Machining data for producing shuttle external tank liquid hydrogen barrel panels of aluminum alloy 2219-T87 are reported. The data included various machining parameters; e.g., spindle speeds, cutting speed, table feed, chip load, metal removal rate, horsepower, cutting efficiency, cutter wear (lack of) and chip removal methods.

  4. High speed machining of space shuttle external tank liquid hydrogen barrel panel

    NASA Astrophysics Data System (ADS)

    Hankins, J. D.

    1983-11-01

    Actual and projected optimum High Speed Machining data for producing shuttle external tank liquid hydrogen barrel panels of aluminum alloy 2219-T87 are reported. The data included various machining parameters; e.g., spindle speeds, cutting speed, table feed, chip load, metal removal rate, horsepower, cutting efficiency, cutter wear (lack of) and chip removal methods.

  5. Efficient algorithm for locating and sizing series compensation devices in large power transmission grids: I. Model implementation

    NASA Astrophysics Data System (ADS)

    Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha

    2014-10-01

    We explore optimization methods for planning the placement, sizing and operations of flexible alternating current transmission system (FACTS) devices installed to relieve transmission grid congestion. We limit our selection of FACTS devices to series compensation (SC) devices that can be represented by modification of the inductance of transmission lines. Our master optimization problem minimizes the l1 norm of the inductance modification subject to the usual line thermal-limit constraints. We develop heuristics that reduce this non-convex optimization to a succession of linear programs (LP) that are accelerated further using cutting plane methods. The algorithm solves an instance of the MatPower Polish Grid model (3299 lines and 2746 nodes) in 40 seconds per iteration on a standard laptop—a speed that allows the sizing and placement of a family of SC devices to correct a large set of anticipated congestions. We observe that our algorithm finds feasible solutions that are always sparse, i.e., SC devices are placed on only a few lines. In a companion manuscript, we demonstrate our approach on realistically sized networks that suffer congestion from a range of causes, including generator retirement. In this manuscript, we focus on the development of our approach, investigate its structure on a small test system subject to congestion from uniform load growth, and demonstrate computational efficiency on a realistically sized network.

  6. Analysis of laser remote fusion cutting based on a mathematical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matti, R. S.; Department of Mechanical Engineering, College of Engineering, University of Mosul, Mosul; Ilar, T.

    Laser remote fusion cutting is analyzed by the aid of a semi-analytical mathematical model of the processing front. By local calculation of the energy balance between the absorbed laser beam and the heat losses, the three-dimensional vaporization front can be calculated. Based on an empirical model for the melt flow field, from a mass balance, the melt film and the melting front can be derived, however only in a simplified manner and for quasi-steady state conditions. Front waviness and multiple reflections are not modelled. The model enables to compare the similarities, differences, and limits between laser remote fusion cutting, lasermore » remote ablation cutting, and even laser keyhole welding. In contrast to the upper part of the vaporization front, the major part only slightly varies with respect to heat flux, laser power density, absorptivity, and angle of front inclination. Statistical analysis shows that for high cutting speed, the domains of high laser power density contribute much more to the formation of the front than for low speed. The semi-analytical modelling approach offers flexibility to simplify part of the process physics while, for example, sophisticated modelling of the complex focused fibre-guided laser beam is taken into account to enable deeper analysis of the beam interaction. Mechanisms like recast layer generation, absorptivity at a wavy processing front, and melt film formation are studied too.« less

  7. Analysis of laser remote fusion cutting based on a mathematical model

    NASA Astrophysics Data System (ADS)

    Matti, R. S.; Ilar, T.; Kaplan, A. F. H.

    2013-12-01

    Laser remote fusion cutting is analyzed by the aid of a semi-analytical mathematical model of the processing front. By local calculation of the energy balance between the absorbed laser beam and the heat losses, the three-dimensional vaporization front can be calculated. Based on an empirical model for the melt flow field, from a mass balance, the melt film and the melting front can be derived, however only in a simplified manner and for quasi-steady state conditions. Front waviness and multiple reflections are not modelled. The model enables to compare the similarities, differences, and limits between laser remote fusion cutting, laser remote ablation cutting, and even laser keyhole welding. In contrast to the upper part of the vaporization front, the major part only slightly varies with respect to heat flux, laser power density, absorptivity, and angle of front inclination. Statistical analysis shows that for high cutting speed, the domains of high laser power density contribute much more to the formation of the front than for low speed. The semi-analytical modelling approach offers flexibility to simplify part of the process physics while, for example, sophisticated modelling of the complex focused fibre-guided laser beam is taken into account to enable deeper analysis of the beam interaction. Mechanisms like recast layer generation, absorptivity at a wavy processing front, and melt film formation are studied too.

  8. A Study on The Development of Local Exhaust Ventilation System (LEV’s) for Installation of Laser Cutting Machine

    NASA Astrophysics Data System (ADS)

    Harun, S. I.; Idris, S. R. A.; Tamar Jaya, N.

    2017-09-01

    Local exhaust ventilation (LEV) is an engineering system frequently used in the workplace to protect operators from hazardous substances. The objective of this project is design and fabricate the ventilation system as installation for chamber room of laser cutting machine and to stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed. LEV’s fabricated with rated voltage D.C 10.8V and 1.5 ampere. Its capacity 600 ml, continuously use limit approximately 12-15 minute, overall length LEV’s fabricated is 966 mm with net weight 0.88 kg and maximum airflow is 1.3 meter cubic per minute. Stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed and fabricated overall result get 2 main gas vapor which air and carbon dioxide. For air gas which experimented by using anemometer, general duct velocity that produce is same with other gas produce, carbon dioxide which 5 m/s until 10 m/s. Overall result for 5 m/s and 10 m/s as minimum and maximum duct velocity produce for both air and carbon dioxide. The air gas flow velocity that captured by LEV’s fabricated, 3.998 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 79.960% and 7.667 m/s average velocity captured from 10 m/s duct velocity with efficiency of 76.665%. For carbon dioxide gas flow velocity that captured by LEV’s fabricated, 3.674 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 73.480% and 8.255 m/s average velocity captured from 10 m/s duct velocity with efficiency of 82.545%.

  9. Detection of stratosphere troposphere exchange in cut-off low systems

    NASA Technical Reports Server (NTRS)

    Price, Jeremy D.; Vaughan, Geraint

    1994-01-01

    The Aberystwyth MST radar has been used as part of the TOASTE program to study the structure of the tropopause in cut-off-low system with an aim to identifying regions where stratosphere-troposphere exchange are taking place. Theory predicts that the vertical gradient in reflected power is proportional to the static stability of the reflecting region, and should therefore resolve tropopause structure. Comparisons of MST power profiles with radiosonde data are presented and show good agreement, revealing regions of indefinite tropopauses, where stratosphere-troposphere exchange is thought to take place. The continuous nature of MST data allows an estimation of the size of these regions.

  10. The Local Politics of Education Governance: Power and Influence among School Boards, Superintendents, and Teachers' Unions

    ERIC Educational Resources Information Center

    Zeehandelaar, Dara B.

    2012-01-01

    School districts have two general courses of action to maintain fiscal solvency and raise student achievement in the face of drastic funding cuts. They can reduce spending on teachers, a strategy opposed by many teachers' unions because it threatens teacher job security. They can also cut expenditures in other areas such as instructional…

  11. 'Intelligent' system's cost-cutting power.

    PubMed

    Dodge, Jeremy

    2010-05-01

    Jeremy Dodge, business manager at Marshall Tufflex Energy Management, explains how a voltage optimisation system that, in a claimed industry first, uses "auto-transformers" to reduce incoming mains electricity voltage so that electrical equipment receives precisely the "outgoing feed" it needs to function optimally and no more, thus significantly reducing wastage, can help major electricity users cut their bills "by as much as 25%".

  12. Collaboration across Difference: A Joint Autoethnographic Examination of Power and Whiteness in the Higher Education Anti-Cuts Movement

    ERIC Educational Resources Information Center

    Ellison, Erin Rose; Langhout, Regina Day

    2016-01-01

    We outline structures of whiteness and analyze how forms of dominance embedded and enacted in higher education structures have been made salient, through a self-reflexive account of the authors' anti-cuts organizing. The authors implicate themselves, reflexively incorporating positions as a white, female, working class-raised doctoral student and…

  13. New Groups Give Teachers Alternative Voice: Organizations Help Educators Cut Policy Teeth

    ERIC Educational Resources Information Center

    Sawchuk, Steven

    2012-01-01

    In times of great uncertainty for U.S. teachers, who speaks for them? The question is almost axiomatic in its simplicity, but the answer is far less clear-cut. The teachers' unions remain the most visible, powerful, and probably the most important advocates for teachers. But over the past few years, a number of new efforts have sprung up…

  14. Baseline studies on the feasibility of detecting a coal/shale interface with a self-powered sensitized pick

    NASA Technical Reports Server (NTRS)

    Anderson, G. R., II

    1981-01-01

    The feasibility of utilizing a sensitized pick to discriminate between cutting coal and roof material during the longwall mining process was investigated. A conventional longwall mining pick was instrumented and cutting force magnitudes were determined for a variety of materials, including Illinois #6 coal, shale type materials, and synthetic coal/shale materials.

  15. Direct diode lasers and their advantages for materials processing and other applications

    NASA Astrophysics Data System (ADS)

    Fritsche, Haro; Ferrario, Fabio; Koch, Ralf; Kruschke, Bastian; Pahl, Ulrich; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang; Eibl, Florian; Kohl, Stefanie; Dobler, Michael

    2015-03-01

    The brightness of diode lasers is improving continuously and has recently started to approach the level of some solid state lasers. The main technology drivers over the last decade were improvements of the diode laser output power and divergence, enhanced optical stacking techniques and system design, and most recently dense spectral combining. Power densities at the work piece exceed 1 MW/cm2 with commercially available industrial focus optics. These power densities are sufficient for cutting and welding as well as ablation. Single emitter based diode laser systems further offer the advantage of fast current modulation due their lower drive current compared to diode bars. Direct diode lasers may not be able to compete with other technologies as fiber or CO2-lasers in terms of maximum power or beam quality. But diode lasers offer a range of features that are not possible to implement in a classical laser. We present an overview of those features that will make the direct diode laser a very valuable addition in the near future, especially for the materials processing market. As the brightness of diode lasers is constantly improving, BPP of less than 5mm*mrad have been reported with multikW output power. Especially single emitter-based diode lasers further offer the advantage of very fast current modulation due to their low drive current and therefore low drive voltage. State of the art diode drivers are already demonstrated with pulse durations of <10μs and repetition rates can be adjusted continuously from several kHz up to cw mode while addressing power levels from 0-100%. By combining trigger signals with analog modulations nearly any kind of pulse form can be realized. Diode lasers also offer a wide, adaptable range of wavelengths, and wavelength stabilization. We report a line width of less than 0.1nm while the wavelength stability is in the range of MHz which is comparable to solid state lasers. In terms of applications, especially our (broad) wavelength combining technology for power scaling opens the window to new processes of cutting or welding and process control. Fast power modulation through direct current control allows pulses of several microseconds with hundreds of watts average power. Spot sizes of less than 100 μm are obtained at the work piece. Such a diode system allows materials processing with a pulse parameter range that is hardly addressed by any other laser system. High productivity material ablation with cost effective lasers is enabled. The wide variety of wavelengths, high brightness, fast power modulation and high efficiency of diode lasers results in a strong pull of existing markets, but also spurs the development of a wide variety of new applications.

  16. Nasal potential difference outcomes support diagnostic decisions in cystic fibrosis.

    PubMed

    Tridello, Gloria; Menin, Laura; Pintani, Emily; Bergamini, Gabriella; Assael, Baroukh Maurice; Melotti, Paola

    2016-09-01

    When cystic fibrosis (CF) is suspected Nasal Potential Difference (NPD) measurements are proposed to support controversial diagnosis: we investigated appropriate outcomes at the CF Centre of Verona. NPD were measured in 196 subjects: 50 non-CF, 65 classical CF (the reference group) and 81 with uncertain CF (case group). Discriminating power was determined by comparison between several outcomes from the CF reference group versus non-CF: basal, amiloride, 0Cl, isoproterenol, ATP, Delta-amiloride, Delta-0Cl, Delta-isoproterenol, Delta-ATP, Delta-isoproterenol+Delta-0Cl, Wilschanski Index (WI) and Sermet score (SS). The most appropriate cut-off values for variables with the best discriminating power were then applied to the case group. Descriptive statistics, logistic regression models and ROC curve analysis were applied. WI and SS were the most powerful in discriminating CF from non-CF subjects. In the reference group sensitivity of the 0.82 WI cut-off was 98%, specificity 96%; both sensitivity and specificity of the -0.44 SS cut-off value were 100%. For the case group, WI and SS were, respectively, consistent with CF diagnosis in 94% and 92% of the cases. Formulae have the highest discriminating power and can support the diagnosis in uncertain cases; they should be utilized for standardized interpretation of NPD for diagnosis and possibly for clinical research. Copyright © 2016. Published by Elsevier B.V.

  17. Stretchable Kirigami Polyvinylidene Difluoride Thin Films for Energy Harvesting: Design, Analysis, and Performance

    NASA Astrophysics Data System (ADS)

    Hu, Nan; Chen, Dajing; Wang, Dong; Huang, Shicheng; Trase, Ian; Grover, Hannah M.; Yu, Xiaojiao; Zhang, John X. J.; Chen, Zi

    2018-02-01

    Kirigami, a modified form of origami which includes cutting, has been used to improve material stretchability and compliance. However, this technique is, so far, underexplored in patterning piezoelectric materials towards developing efficient and mechanically flexible thin-film energy generators. Motivated by existing kirigami-based applications, we introduce interdigitated cuts to polyvinylidene fluoride (PVDF) films to evaluate the effect on voltage generation and stretchability. Our results from theoretical analysis, numerical simulations, and experimental tests show that kirigami PVDF films exhibit an extended strain range while still maintaining significant voltage generation compared to films without cuts. Various cutting patterns are studied, and it is found that films with denser cuts have a larger voltage output. This kirigami design can enhance the properties of existing piezoelectric materials and help to integrate tunable PVDF generators into biomedical devices.

  18. Laser bottom hole assembly

    DOEpatents

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  19. Transforming the market for commercial and industrial distribution transformers: A government, manufacturer, and utility collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLaski, A.; Gauthier, J.; Shugars, J.

    Distribution transformers offer a largely untapped opportunity for efficiency improvements in buildings. Application of energy-efficient equipment can reduce transformer losses by about 20%, substantially cutting a facility's total electricity bill and offering typical paybacks less than three years. Since nearly all of the electricity powering the commercial and industrial sectors is stepped down in voltage by facility-owned distribution transformers, broad application of energy-efficient equipment will lead to huge economy-wide energy and dollar savings as well as associated environmental benefits. This opportunity has led to a multi-party coordinated effort that offers a new model for national partnerships to pursue market transformation.more » The model, called the Informal Collaborative Model for the purposes of this paper, is characterized by voluntary commitments of multiple stakeholders to carry out key market interventions in a coordinated fashion, but without pooling resources or control. Collaborative participants are joined by a common interest in establishing and expanding the market for a new product, service, or practice that will yield substantial energy savings. This paper summarizes the technical efficiency opportunity available in distribution transformers; discusses the market barriers to widespread adoption of energy-efficient transformers; and details an overall market transformation strategy to address the identified market barriers. The respective roles of each of the diverse players--manufacturers, government agencies, and utility and regional energy efficiency programs--are given particular attention. Each of the organizations involved brings a particular set of tools and capabilities for addressing the market barriers to more efficient transformers.« less

  20. New application system for laser and ultrasonic therapy in endoscopic surgery

    NASA Astrophysics Data System (ADS)

    Desinger, Kai; Helfmann, Juergen; Stein, Thomas; Mueller, Gerhard J.

    1996-12-01

    Flexible acoustic waveguides for selective tissue fragmentation are not yet commercially available. Experimental studies have shown the possibility of transmission of acoustical transients via optical silica glass fibers. The aim of this project is the development of a new endoscopic application system that would enable surgeons to use the laser and the ultrasound technique for therapy simultaneously. The concept of this application system is based on the transmission of laser radiation and ultrasound power via flexible silica glass fibers. Theoretical and experimental results on the feasibility of such an application system for an ultrasonic power delivery system are presented. Piezo-electric transducers are used to provide a high efficiency in generating the ultrasonic power. With reference to the CUSA-technique, a special flexible guiding system has been designed for providing aspiration at the tip and for protection of the fiber. The system transmits via an optical fiber up to 100 Watt Nd:YAG laser radiation. The axial oscillation of the fiber tip is +/- micrometers at a frequency of 27 kHz. First results of in vitro experiments are presented. The parenchymatous cells of liver can be fragmented without destruction of the collagenous matrix. The laser can be optionally used to coagulate bleedings or to cut collagenous tissues in contact. Applications for an acoustical and optical waveguide in ultrasonic surgery are demonstrated. This new approach in developing a first application system for the therapeutical use of laser radiation and power ultrasound in minimal invasive surgery via optical waveguides offers new possibilities in surgery. The laser ultrasonic surgical therapy (LUST) with its thin and flexible applicator provides new working fields especially for neuro or liver surgery. The tip can be bent and thus areas which could not be treated before have now been made accessible. Without changing the instrumentation, the surgeon can use the laser for tissue coagulation or cutting, next to the selective ultrasonic tissue fragmentation, where nerves or vessels will not be affected. Such a LUST-application system could be ready for clinical use in two to four years.

  1. Multi objective optimization model for minimizing production cost and environmental impact in CNC turning process

    NASA Astrophysics Data System (ADS)

    Widhiarso, Wahyu; Rosyidi, Cucuk Nur

    2018-02-01

    Minimizing production cost in a manufacturing company will increase the profit of the company. The cutting parameters will affect total processing time which then will affect the production cost of machining process. Besides affecting the production cost and processing time, the cutting parameters will also affect the environment. An optimization model is needed to determine the optimum cutting parameters. In this paper, we develop an optimization model to minimize the production cost and the environmental impact in CNC turning process. The model is used a multi objective optimization. Cutting speed and feed rate are served as the decision variables. Constraints considered are cutting speed, feed rate, cutting force, output power, and surface roughness. The environmental impact is converted from the environmental burden by using eco-indicator 99. Numerical example is given to show the implementation of the model and solved using OptQuest of Oracle Crystal Ball software. The results of optimization indicate that the model can be used to optimize the cutting parameters to minimize the production cost and the environmental impact.

  2. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, M.

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors, and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making HEVs practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies.« less

  3. Graph-cut based discrete-valued image reconstruction.

    PubMed

    Tuysuzoglu, Ahmet; Karl, W Clem; Stojanovic, Ivana; Castañòn, David; Ünlü, M Selim

    2015-05-01

    Efficient graph-cut methods have been used with great success for labeling and denoising problems occurring in computer vision. Unfortunately, the presence of linear image mappings has prevented the use of these techniques in most discrete-amplitude image reconstruction problems. In this paper, we develop a graph-cut based framework for the direct solution of discrete amplitude linear image reconstruction problems cast as regularized energy function minimizations. We first analyze the structure of discrete linear inverse problem cost functions to show that the obstacle to the application of graph-cut methods to their solution is the variable mixing caused by the presence of the linear sensing operator. We then propose to use a surrogate energy functional that overcomes the challenges imposed by the sensing operator yet can be utilized efficiently in existing graph-cut frameworks. We use this surrogate energy functional to devise a monotonic iterative algorithm for the solution of discrete valued inverse problems. We first provide experiments using local convolutional operators and show the robustness of the proposed technique to noise and stability to changes in regularization parameter. Then we focus on nonlocal, tomographic examples where we consider limited-angle data problems. We compare our technique with state-of-the-art discrete and continuous image reconstruction techniques. Experiments show that the proposed method outperforms state-of-the-art techniques in challenging scenarios involving discrete valued unknowns.

  4. Multiple sclerosis lesion segmentation using an automatic multimodal graph cuts.

    PubMed

    García-Lorenzo, Daniel; Lecoeur, Jeremy; Arnold, Douglas L; Collins, D Louis; Barillot, Christian

    2009-01-01

    Graph Cuts have been shown as a powerful interactive segmentation technique in several medical domains. We propose to automate the Graph Cuts in order to automatically segment Multiple Sclerosis (MS) lesions in MRI. We replace the manual interaction with a robust EM-based approach in order to discriminate between MS lesions and the Normal Appearing Brain Tissues (NABT). Evaluation is performed in synthetic and real images showing good agreement between the automatic segmentation and the target segmentation. We compare our algorithm with the state of the art techniques and with several manual segmentations. An advantage of our algorithm over previously published ones is the possibility to semi-automatically improve the segmentation due to the Graph Cuts interactive feature.

  5. Basic studies on laser-assisted phacoemulsification using diode-pumped Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Hausladen, Florian; Wurm, Holger; Stock, Karl

    2016-03-01

    The aim of this study was to determine the potential of a novel diode-pumped Er:YAG laser for phacoemulsification in basic experimental investigations. An appropriate experimental setup was created, including a translation stage for sample movement, a sample holder, a water spray for sample humidification and a surgical microscope with a CCD camera for video documentation. The analysis of the laser cuts and histological sections was done by light microscopy. As samples porcine eye lenses hardened by formalin were used. In ablation experiments with different spot diameters and radiant powers and a constant repetition rate νr = 200 Hz the maximum ablation depths of (4.346 +/- 0.044) mm have reached at (Ø = 480 μm, Φ = 24.15 W) with a maximum extend of thermal damage of (0.165 +/- 0.030) mm. The average ablation efficiency is 0.241 mm3/J. With a spot diameter of 308 μm the maximum ablation depth is (4.238 +/- 0.040) mm at 24.65 W with a mean ablation efficiency of 0.293 mm3/J. The extend of the thermally damaged region is (0.171 +/- 0.024) mm at this laser power. Using a sapphire cylinder with a diameter of 412 μm (length 38.5 mm) in direct tissue contact with water spray for sample humidification the ablation depth reaches (1.017 +/- 0.074) mm at 4.93 W and (1.840 +/- 0.092) mm at 9.87 W with a mean efficiency of 0.261 mm3/J. A thermal damage zone of (0.064 +/-0.024) mm at 9.87 W was measured. Additionally, at this high power, a progressive contamination and destruction of the cylinder end facet was observed. In conclusion, the investigations show that the diode-pumped Er:YAG laser has considerable potential for cataract surgery.

  6. CAD-based strength analysis of EK-18 excavator bucket construction for mounting of anti-adhesive devices

    NASA Astrophysics Data System (ADS)

    Zenkov, S. A.; Lobanov, D. V.

    2018-03-01

    3D rigid-body model of a bucket of power shovel EK-18 was built using modern CAD-software. Tetrahedral grid with 10-node second-order elements was chosen, and the given model was imported to APM WinMachine - model preparation preprocessor for finite element analysis. The finite element model was based on the geometrical model, imported from KOMPAS-3D to APM Studio. Calculation of stressed-strained state of the bucket was carried out under the forces emerging while digging with “back hoe” equipment. Shift, deformation and tension charts were planned and the most and the least strained areas were pointed out. Wet coherent soil excavation deals with soil adhesion to working bodies of power shovels and leads to reduced performance. The performance decrease is caused by a reduction of useful bucket capacity and partial unloading, increased front resistance to cutting (digging) caused by wet soil adhesion to a working body, increased bucket entry resistance, increased idle time caused by necessity to clean working bodies. Also energy losses increase and quality of work drops because friction forces go up. Friction force occurs while digging and levelling account for 30…70 percent of total digging resistance while performance decreases 1.2…2 times and more. Vibrothermal exposure creates new technological effect which involves a wider humidity range of efficient application and a reduction of friction forces. Disintegrating adhesion bonds with heating requires less driving force from the vibrator. Vibration boosts up heating of the contact layer, which reduces thermal energy losses. However, the question of piezoelectric ceramic actuators location on the excavator bucket needs to be dealt with. The most suitable spots for mounting piezoelectric ceramic devices for reducing soil adhesion to the excavator bucket were defined. Their efficiency is derived from combined (vibrothermal) methods of exposure. Such devices eliminates soil adhesion to the bucket and increases efficiency of using power shovels with wet coherent soils.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lercher, Johannes

    PNNL’s catalysis research is serving as a catalyst for changing how our nation will secure a strong, clean energy future. Senior Physical Chemist Johannes Lercher leads an award-winning team that is developing catalysts that efficiently make fuels from alternate feedstocks, such as biomass, and can store electrical energy in chemical bonds. The researchers are also creating catalysts that can increase vehicle fuel efficiency, while simultaneously cutting emissions. About 80 percent of all man-made materials — from plastics to pharmaceuticals — are made using catalysts. Through PNNL’s Institute for Integrated Catalysis, Johannes and colleagues study how to speed the catalysis reactionmore » process for manufacturers, which ultimately cuts costs and production time.« less

  8. Real-time haptic cutting of high-resolution soft tissues.

    PubMed

    Wu, Jun; Westermann, Rüdiger; Dick, Christian

    2014-01-01

    We present our systematic efforts in advancing the computational performance of physically accurate soft tissue cutting simulation, which is at the core of surgery simulators in general. We demonstrate a real-time performance of 15 simulation frames per second for haptic soft tissue cutting of a deformable body at an effective resolution of 170,000 finite elements. This is achieved by the following innovative components: (1) a linked octree discretization of the deformable body, which allows for fast and robust topological modifications of the simulation domain, (2) a composite finite element formulation, which thoroughly reduces the number of simulation degrees of freedom and thus enables to carefully balance simulation performance and accuracy, (3) a highly efficient geometric multigrid solver for solving the linear systems of equations arising from implicit time integration, (4) an efficient collision detection algorithm that effectively exploits the composition structure, and (5) a stable haptic rendering algorithm for computing the feedback forces. Considering that our method increases the finite element resolution for physically accurate real-time soft tissue cutting simulation by an order of magnitude, our technique has a high potential to significantly advance the realism of surgery simulators.

  9. Simultaneous three wavelength mid-IR laser by utilizing MgO:PPLN crystal

    NASA Astrophysics Data System (ADS)

    Yan, Boxia; Wang, Yanwei; Qi, Yan

    2017-10-01

    A multi-wavelength mid-infrared laser based on a multi-period doped MgO periodically poled lithium niobate (MgO:PPLN) was reported in this letter. The pump source was 1.064μm Q-switched Nd:YVO4 laser with a pulse repetition rate of 15kHz and pulse duration around 30ns. Three domain periods of 28.5μm, 29μm and 29.5μm in series were fabricated in a 2mm-thick z-cut MgO:PPLN, and the length of each domain period was 20mm. The extra-cavity singly resonant optical parametric oscillator had been demonstrated with a compact two-mirror cavity. Three idler wavelengths of 3825nm, 4004nm and 4165nm in the mid infrared were obtained at the same time, and the total output power was 139mW at 1.064μm pump power of 3.09W corresponding to optical-to-optical conversion efficiency of 4.5 and the pump threshold was 1.04W for the 60mm-long MgO:PPLN.

  10. Structured optical vortices with broadband comb-like optical spectra in Yb:Y3Al5O12/YVO4 Raman microchip laser

    NASA Astrophysics Data System (ADS)

    Dong, Jun; Wang, Xiaolei; Zhang, Mingming; Wang, Xiaojie; He, Hongsen

    2018-04-01

    Structured optical vortices with 4 phase singularities have been generated in a laser diode pumped continuous-wave Yb:Y3Al5O12/YVO4 (Yb:YAG/YVO4) Raman microchip laser. The broadband comb-like first order Stokes laser emitting spectrum including 30 longitudinal modes covers from 1072.49 nm to 1080.13 nm with a bandwidth of 7.64 nm, which is generated with the Raman shift 259 cm-1 of the c-cut YVO4 crystal converted from the fundamental laser around 1.05 μm. Pump power dependent optical vortex beams are attributed to overlap of the Stokes laser field with the fundamental laser field caused by dynamically changing the coupling losses of the fundamental laser field. The maximum output power is 1.16 W, and the optical-to-optical efficiency is 18.4%. This work provides a method for generating structured optical vortices with an optical frequency comb in solid-state Raman microchip lasers, which have potential applications in quantum computations, micro-machining, and information processing.

  11. Into the development of a model to assess beam shaping and polarization control effects on laser cutting

    NASA Astrophysics Data System (ADS)

    Rodrigues, Gonçalo C.; Duflou, Joost R.

    2018-02-01

    This paper offers an in-depth look into beam shaping and polarization control as two of the most promising techniques for improving industrial laser cutting of metal sheets. An assessment model is developed for the study of such effects. It is built upon several modifications to models as available in literature in order to evaluate the potential of a wide range of considered concepts. This includes different kinds of beam shaping (achieved by extra-cavity optical elements or asymmetric diode staking) and polarization control techniques (linear, cross, radial, azimuthal). A fully mathematical description and solution procedure are provided. Three case studies for direct diode lasers follow, containing both experimental data and parametric studies. In the first case study, linear polarization is analyzed for any given angle between the cutting direction and the electrical field. In the second case several polarization strategies are compared for similar cut conditions, evaluating, for example, the minimum number of spatial divisions of a segmented polarized laser beam to achieve a target performance. A novel strategy, based on a 12-division linear-to-radial polarization converter with an axis misalignment and capable of improving cutting efficiency with more than 60%, is proposed. The last case study reveals different insights in beam shaping techniques, with an example of a beam shape optimization path for a 30% improvement in cutting efficiency. The proposed techniques are not limited to this type of laser source, neither is the model dedicated to these specific case studies. Limitations of the model and opportunities are further discussed.

  12. Study on the separation effect of high-speed ultrasonic vibration cutting.

    PubMed

    Zhang, Xiangyu; Sui, He; Zhang, Deyuan; Jiang, Xinggang

    2018-07-01

    High-speed ultrasonic vibration cutting (HUVC) has been proven to be significantly effective when turning Ti-6Al-4V alloy in recent researches. Despite of breaking through the cutting speed restriction of the ultrasonic vibration cutting (UVC) method, HUVC can also achieve the reduction of cutting force and the improvements in surface quality and cutting efficiency in the high-speed machining field. These benefits all result from the separation effect that occurs during the HUVC process. Despite the fact that the influences of vibration and cutting parameters have been discussed in previous researches, the separation analysis of HUVC should be conducted in detail in real cutting situations, and the tool geometry parameters should also be considered. In this paper, three situations are investigated in details: (1) cutting without negative transient clearance angle and without tool wear, (2) cutting with negative transient clearance angle and without tool wear, and (3) cutting with tool wear. And then, complete separation state, partial separation state and continuous cutting state are deduced according to real cutting processes. All the analysis about the above situations demonstrate that the tool-workpiece separation will take place only if appropriate cutting parameters, vibration parameters, and tool geometry parameters are set up. The best separation effect was obtained with a low feedrate and a phase shift approaching 180 degrees. Moreover, flank face interference resulted from the negative transient clearance angle and tool wear contributes to an improved separation effect that makes the workpiece and tool separate even at zero phase shift. Finally, axial and radial transient cutting force are firstly obtained to verify the separation effect of HUVC, and the cutting chips are collected to weigh the influence of flank face interference. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Physiological performance and work capacity of Sudanese cane cutters with Schistosoma mansoni infection.

    PubMed

    Collins, K J; Brotherhood, R J; Davies, C T; Doré, C; Hackett, A J; Imms, F J; Musgrove, J; Weiner, J S; Amin, M A; El Karim, M; Ismail, H M; Omer, A H; Sukkar, M Y

    1976-05-01

    Physiological tests of work performance and measurement of field productivity were made in 194 Sudanese cane cutters in order to study the effect of Schistosoma mansoni infection. The cane cutters were selected from two age ranges (16-24 and 25-45 years) and subdivided into three clinical groups: not infected, infected with, and infected without clinical signs of hepatosplenomegaly. Men infected with Schistosoma haemotobium, malaria (blood film), or with hemoglobin levels less than 10 g/100 ml were excluded. There was a statistically significant (P less than 0.002) higher mean hemoglobin concentration in those not infected but the mean difference was less than 1 g/100 ml. Submaximal responses to exercise on a stationary bicycle ergometer, oxygen intake, ventilation, tidal volume, cardiac frequency and estimated maximal aerobic power output calculated both in absolute terms and relative to lean body mass and leg volume were similar in the six groups of cane cutters. No significant differences were found in physique, body composition or in thermoregulatory function tests. The cane cutters were found to have little natural acclimatization to heat in terms of sweating capacity when compared with a group of fully acclimatized Sudanese soldiers. The mean productivity (mean daily weight of cane cut per man) was significantly correlated with the individual's estimated maximum aerobic capacity determined in the laboratory, but not with the degree of S. mansoni infection. The noninfected group was less "efficient" (mean productivity:oxygen intake) during cutting than the infected groups but a larger proportion of the noninfected were in their first season of cutting. There was a positive correlation between the number of seasons' cutting experience and the individual's age, degree of infection and mean productivity. Cane cutters studied in this investigation were a relatively fit, active population from whom the more seriously ill were excluded. These results do not, therefore necessarily reflect the effects of S. mansoni on physiological work capacity and productivity of more static populations in areas of high endemicity.

  14. Application of laser spot cutting on spring contact probe for semiconductor package inspection

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyoung; Cho, Jungdon; Kim, Chan Ho; Lee, Seung Hwan

    2017-12-01

    A packaged semiconductor has to be electrically tested to make sure they are free of any manufacturing defects. The test interface, typically employed between a Printed Circuit Board and the semiconductor devices, consists of densely populated Spring Contact Probe (SCP). A standard SCP typically consists of a plunger, a barrel, and an internal spring. Among these components, plungers are manufactured by a stamping process. After stamping, plunger connecting arms need to be cut into pieces. Currently, mechanical cutting has been used. However, it may damage to the body of plungers due to the mechanical force engaged at the cutting point. Therefore, laser spot cutting is considered to solve this problem. The plunger arm is in the shape of a rectangular beam, 50 μm (H) × 90 μm (W). The plunger material used for this research is gold coated beryllium copper. Laser parameters, such as power and elapsed time, have been selected to study laser spot cutting. Laser material interaction characteristics such as a crater size, material removal zone, ablation depth, ablation threshold, and full penetration are observed. Furthermore, a carefully chosen laser parameter (Etotal = 1000mJ) to test feasibility of laser spot cutting are applied. The result show that laser spot cutting can be applied to cut SCP.

  15. Consequences of repetitive toenail cutting by podiatric physicians on force production, endurance to fatigue, and the electromyogram of the flexor digitorum superficialis muscles.

    PubMed

    Vie, Bruno; Loffredo, Remy; Sanahdji, Farid; Weber, Jean-Paul; Jammes, Yves

    2014-01-01

    We hypothesized that the repetitive use of a toenail clipper by podiatric physicians could induce fatigue of the flexor digitorum superficialis (FDS) muscle, reducing the accuracy of toenail cutting. We examined the consequences of cutting a plastic sheet, reproducing the resistance of thick toenails, with a podiatric medical clipper on the maximal handgrip force (Fmax) developed by the FDS muscle and an isometric handgrip sustained at 50% of Fmax, during which endurance to fatigue and changes in the power spectra of the surface FDS muscle electromyogram (root mean square and median frequency) were measured. The same participants randomly performed one or five runs of 30 successive cuttings, each on different days. After the first and fifth cutting runs, Fmax increased, suggesting a post-tetanic potentiation. During the handgrip sustained at 50% of Fmax, we measured a significant reduction in the tension-time index after the first cutting run. Moreover, after the fifth cutting run, the tension-time index decrease was significantly accentuated, and the decrease in FDS muscle median frequency was enhanced. No median frequency decline was measured during the cutting runs. These results suggest that the efficacy of occupational podiatric medical tasks progressively declines with the repetition of toenail cutting. We propose solutions to remedy this situation.

  16. Lasers for industrial production processing: tailored tools with increasing flexibility

    NASA Astrophysics Data System (ADS)

    Rath, Wolfram

    2012-03-01

    High-power fiber lasers are the newest generation of diode-pumped solid-state lasers. Due to their all-fiber design they are compact, efficient and robust. Rofin's Fiber lasers are available with highest beam qualities but the use of different process fiber core sizes enables the user additionally to adapt the beam quality, focus size and Rayleigh length to his requirements for best processing results. Multi-mode fibers from 50μm to 600μm with corresponding beam qualities of 2.5 mm.mrad to 25 mm.mrad are typically used. The integrated beam switching modules can make the laser power available to 4 different manufacturing systems or can share the power to two processing heads for parallel processing. Also CO2 Slab lasers combine high power with either "single-mode" beam quality or higher order modes. The wellestablished technique is in use for a large number of industrial applications, processing either metals or non-metallic materials. For many of these applications CO2 lasers remain the best choice of possible laser sources either driven by the specific requirements of the application or because of the cost structure of the application. The actual technical properties of these lasers will be presented including an overview over the wavelength driven differences of application results, examples of current industrial practice as cutting, welding, surface processing including the flexible use of scanners and classical optics processing heads.

  17. Laser selective cutting of biological tissues by impulsive heat deposition through ultrafast vibrational excitations.

    PubMed

    Franjic, Kresimir; Cowan, Michael L; Kraemer, Darren; Miller, R J Dwayne

    2009-12-07

    Mechanical and thermodynamic responses of biomaterials after impulsive heat deposition through vibrational excitations (IHDVE) are investigated and discussed. Specifically, we demonstrate highly efficient ablation of healthy tooth enamel using 55 ps infrared laser pulses tuned to the vibrational transition of interstitial water and hydroxyapatite around 2.95 microm. The peak intensity at 13 GW/cm(2) was well below the plasma generation threshold and the applied fluence 0.75 J/cm(2) was significantly smaller than the typical ablation thresholds observed with nanosecond and microsecond pulses from Er:YAG lasers operating at the same wavelength. The ablation was performed without adding any superficial water layer at the enamel surface. The total energy deposited per ablated volume was several times smaller than previously reported for non-resonant ultrafast plasma driven ablation with similar pulse durations. No micro-cracking of the ablated surface was observed with a scanning electron microscope. The highly efficient ablation is attributed to an enhanced photomechanical effect due to ultrafast vibrational relaxation into heat and the scattering of powerful ultrafast acoustic transients with random phases off the mesoscopic heterogeneous tissue structures.

  18. Intense infrared emission of Er(3+) in Ca(8)Mg(SiO(4))(4)Cl(2) phosphor from energy transfer of Eu(2+) by broadband down-conversion.

    PubMed

    Zhou, Jiajia; Teng, Yu; Liu, Xiaofeng; Ye, Song; Xu, Xiaoqiu; Ma, Zhijun; Qiu, Jianrong

    2010-10-11

    We report on conversion of near-ultraviolet and visible radiation ranging from 250 to 500 nm into near-infrared emission by a Ca(8)Mg(SiO(4))(4)Cl(2): Eu(2+), Er(3+) phosphor. Efficient 1530-1560 nm Er(3+) emission ((4)I(13/2)-->(4)I(15/2)) was detected under the excitation of Eu(2+) (4f?5d) absorption band as a result of energy transfer from Eu(2+) to Er(3+), which is confirmed by both steady state and time-resolved emission spectra. The laser power dependent emission intensity changes were investigated to analysis the energy transfer mechanism. Energy transfer from Eu(2+) to Er(3+) followed by a multi-photon quantum cutting of Er(3+) is proposed. The result indicates that the phosphor has potential application in enhancement of conversion efficient of germanium solar cells because the energy difference of Er(3+): (4)I(13/2)-->(4)I(15/2) transition matches well with the bandgap of Ge (Eg~0.785 eV).

  19. A theoretical and experimental study on the pulsed laser dressing of bronze-bonded diamond grinding wheels

    NASA Astrophysics Data System (ADS)

    Deng, H.; Chen, G. Y.; Zhou, C.; Zhou, X. C.; He, J.; Zhang, Y.

    2014-09-01

    A series of theoretical analyses and experimental investigations were performed to examine a pulsed fiber-laser tangential profiling and radial sharpening technique for bronze-bonded diamond grinding wheels. The mechanisms for the pulsed laser tangential profiling and radial sharpening of grinding wheels were theoretically analyzed, and the four key processing parameters that determine the quality, accuracy, and efficiency of pulsed laser dressing, namely, the laser power density, laser spot overlap ratio, laser scanning track line overlap ratio, and number of laser scanning cycles, were proposed. Further, by utilizing cylindrical bronze wheels (without diamond grains) and bronze-bonded diamond grinding wheels as the experimental subjects, the effects of these four processing parameters on the removal efficiency and the surface smoothness of the bond material after pulsed laser ablation, as well as the effects on the contour accuracy of the grinding wheels, the protrusion height of the diamond grains, the sharpness of the grain cutting edges, and the graphitization degree of the diamond grains after pulsed laser dressing, were explored. The optimal values of the four key processing parameters were identified.

  20. Investigation of KDP crystal surface based on an improved bidimensional empirical mode decomposition method

    NASA Astrophysics Data System (ADS)

    Lu, Lei; Yan, Jihong; Chen, Wanqun; An, Shi

    2018-03-01

    This paper proposed a novel spatial frequency analysis method for the investigation of potassium dihydrogen phosphate (KDP) crystal surface based on an improved bidimensional empirical mode decomposition (BEMD) method. Aiming to eliminate end effects of the BEMD method and improve the intrinsic mode functions (IMFs) for the efficient identification of texture features, a denoising process was embedded in the sifting iteration of BEMD method. With removing redundant information in decomposed sub-components of KDP crystal surface, middle spatial frequencies of the cutting and feeding processes were identified. Comparative study with the power spectral density method, two-dimensional wavelet transform (2D-WT), as well as the traditional BEMD method, demonstrated that the method developed in this paper can efficiently extract texture features and reveal gradient development of KDP crystal surface. Furthermore, the proposed method was a self-adaptive data driven technique without prior knowledge, which overcame shortcomings of the 2D-WT model such as the parameters selection. Additionally, the proposed method was a promising tool for the application of online monitoring and optimal control of precision machining process.

  1. Some aspects of precise laser machining - Part 2: Experimental

    NASA Astrophysics Data System (ADS)

    Grabowski, Marcin; Wyszynski, Dominik; Ostrowski, Robert

    2018-05-01

    The paper describes the role of laser beam polarization on quality of laser beam machined cutting tool edge. In micromachining the preparation of the cutting tools in play a key role on dimensional accuracy, sharpness and the quality of the cutting edges. In order to assure quality and dimensional accuracy of the cutting tool edge it is necessary to apply laser polarization control. In the research diode pumped Nd:YAG 532nm pulse laser was applied. Laser beam polarization used in the research was linear (horizontal, vertical). The goal of the carried out research was to describe impact of laser beam polarization on efficiency of the cutting process and quality of machined parts (edge, surface) made of polycrystalline diamond (PCD) and cubic boron nitride (cBN). Application of precise cutting tool in micromachining has significant impact on the minimum uncut chip thickness and quality of the parts. The research was carried within the INNOLOT program funded by the National Centre for Research and Development.

  2. Aroma profile design of wine spirits: Multi-objective optimization using response surface methodology.

    PubMed

    Matias-Guiu, Pau; Rodríguez-Bencomo, Juan José; Pérez-Correa, José R; López, Francisco

    2018-04-15

    Developing new distillation strategies can help the spirits industry to improve quality, safety and process efficiency. Batch stills equipped with a packed column and an internal partial condenser are an innovative experimental system, allowing a fast and flexible management of the rectification. In this study, the impact of four factors (heart-cut volume, head-cut volume, pH and cooling flow rate of the internal partial condenser during the head-cut fraction) on 18 major volatile compounds of Muscat spirits was optimized using response surface methodology and desirability function approaches. Results have shown that high rectification at the beginning of the heart-cut enhances the overall positive aroma compounds of the product, reducing off-flavor compounds. In contrast, optimum levels of heart-cut volume, head-cut volume and pH factors varied depending on the process goal. Finally, three optimal operational conditions (head off-flavors reduction, flowery terpenic enhancement and fruity ester enhancement) were evaluated by chemical and sensory analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Studies on nanosecond 532nm and 355nm and ultrafast 515nm and 532nm laser cutting super-hard materials

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay

    2017-02-01

    In this paper, micro-processing of three kinds of super-hard materials of poly-crystal diamond (PCD)/tungsten-carbide (WC), CVD-diamond and cubic boron nitride (CNB) has been systematically studied using nanosecond laser (532nm and 355nm), and ultrafast laser (532nm and 515nm). Our purpose is to investigate a full laser micro-cutting solution to achieve a ready-to-use cutting tool insert (CTI). The results show a clean cut with little burns and recasting at edge. The cutting speed of 2-10mm/min depending on thickness was obtained. The laser ablation process was also studied by varying laser parameters (wavelength, pulse width, pulse energy, repetition rate) and tool path to improve cutting speed. Also, studies on material removal efficiency (MRE) of PCD/WC with 355nm-ns and 515nm-fs laser as a function of laser fluence show that 355nm-ns laser is able to achieve higher MRE for PCD and WC. Thus, ultrafast laser is not necessarily used for superhard material cutting. Instead, post-polishing with ultrafast laser can be used to clean cutting surface and improve smoothness.

  4. Novel tool wear monitoring method in milling difficult-to-machine materials using cutting chip formation

    NASA Astrophysics Data System (ADS)

    Zhang, P. P.; Guo, Y.; Wang, B.

    2017-05-01

    The main problems in milling difficult-to-machine materials are the high cutting temperature and rapid tool wear. However it is impossible to investigate tool wear in machining. Tool wear and cutting chip formation are two of the most important representations for machining efficiency and quality. The purpose of this paper is to develop the model of tool wear with cutting chip formation (width of chip and radian of chip) on difficult-to-machine materials. Thereby tool wear is monitored by cutting chip formation. A milling experiment on the machining centre with three sets cutting parameters was performed to obtain chip formation and tool wear. The experimental results show that tool wear increases gradually along with cutting process. In contrast, width of chip and radian of chip decrease. The model is developed by fitting the experimental data and formula transformations. The most of monitored errors of tool wear by the chip formation are less than 10%. The smallest error is 0.2%. Overall errors by the radian of chip are less than the ones by the width of chip. It is new way to monitor and detect tool wear by cutting chip formation in milling difficult-to-machine materials.

  5. The Politics of Priorities in Turbulent Times: Policy Logics, Faces of Power, and Reform Possibilities

    ERIC Educational Resources Information Center

    Maxcy, Brendan D.

    2011-01-01

    Following the U.S. financial crisis of 2008, demands on our social safety nets grew as federal, state, and local revenues declined. Projected shortfalls are forcing deep cuts in state and local services including education. It is too early to know fully the nature of the cuts or impacts on various communities and constituencies. This article looks…

  6. Optimal placement of fast cut back units based on the theory of cellular automata and agent

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Yan, Feng

    2017-06-01

    The thermal power generation units with the function of fast cut back could serve power for auxiliary system and keep island operation after a major blackout, so they are excellent substitute for the traditional black-start power sources. Different placement schemes for FCB units have different influence on the subsequent restoration process. Considering the locality of the emergency dispatching rules, the unpredictability of specific dispatching instructions and unexpected situations like failure of transmission line energization, a novel deduction model for network reconfiguration based on the theory of cellular automata and agent is established. Several indexes are then defined for evaluating the placement schemes for FCB units. The attribute weights determination method based on subjective and objective integration and grey relational analysis are combinatorically used to determine the optimal placement scheme for FCB unit. The effectiveness of the proposed method is validated by the test results on the New England 10-unit 39-bus power system.

  7. An experimental study of cutting performances in machining of nimonic super alloy GH2312

    NASA Astrophysics Data System (ADS)

    Du, Jinfu; Wang, Xi; Xu, Min; Mao, Jin; Zhao, Xinglong

    2018-05-01

    Nimonic super alloy are extensively used in the aerospace industry because of its unique properties. As they are quite costly and difficult to machine, the machining tool is easy to get worn. To solve the problem, an experiment was carried out on a numerical control slitting automatic lathe to analysis the tool wearing conditions and parts' surface quality of nimonic super alloy GH2132 under different cutters. The selection of suitable cutter, reasonable cutting data and cutting speed is obtained and some conclusions are made. The excellent coating tool, compared with other hard alloy cutters, along with suitable cutting data will greatly improve the production efficiency and product quality, it can completely meet the process of nimonic super alloy GH2312.

  8. Predicting the Performance of Chain Saw Machines Based on Shore Scleroscope Hardness

    NASA Astrophysics Data System (ADS)

    Tumac, Deniz

    2014-03-01

    Shore hardness has been used to estimate several physical and mechanical properties of rocks over the last few decades. However, the number of researches correlating Shore hardness with rock cutting performance is quite limited. Also, rather limited researches have been carried out on predicting the performance of chain saw machines. This study differs from the previous investigations in the way that Shore hardness values (SH1, SH2, and deformation coefficient) are used to determine the field performance of chain saw machines. The measured Shore hardness values are correlated with the physical and mechanical properties of natural stone samples, cutting parameters (normal force, cutting force, and specific energy) obtained from linear cutting tests in unrelieved cutting mode, and areal net cutting rate of chain saw machines. Two empirical models developed previously are improved for the prediction of the areal net cutting rate of chain saw machines. The first model is based on a revised chain saw penetration index, which uses SH1, machine weight, and useful arm cutting depth as predictors. The second model is based on the power consumed for only cutting the stone, arm thickness, and specific energy as a function of the deformation coefficient. While cutting force has a strong relationship with Shore hardness values, the normal force has a weak or moderate correlation. Uniaxial compressive strength, Cerchar abrasivity index, and density can also be predicted by Shore hardness values.

  9. Increased impedance near cut-off in plasma-like media leading to emission of high-power, narrow-bandwidth radiation

    PubMed Central

    Hur, M. S.; Ersfeld, B.; Noble, A.; Suk, H.; Jaroszynski, D. A.

    2017-01-01

    Ultra-intense, narrow-bandwidth, electromagnetic pulses have become important tools for exploring the characteristics of matter. Modern tuneable high-power light sources, such as free-electron lasers and vacuum tubes, rely on bunching of relativistic or near-relativistic electrons in vacuum. Here we present a fundamentally different method for producing narrow-bandwidth radiation from a broad spectral bandwidth current source, which takes advantage of the inflated radiation impedance close to cut-off in a medium with a plasma-like permittivity. We find that by embedding a current source in this cut-off region, more than an order of magnitude enhancement of the radiation intensity is obtained compared with emission directly into free space. The method suggests a simple and general way to flexibly use broadband current sources to produce broad or narrow bandwidth pulses. As an example, we demonstrate, using particle-in-cell simulations, enhanced monochromatic emission of terahertz radiation using a two-colour pumped current source enclosed by a tapered waveguide. PMID:28071681

  10. Increased impedance near cut-off in plasma-like media leading to emission of high-power, narrow-bandwidth radiation

    NASA Astrophysics Data System (ADS)

    Hur, M. S.; Ersfeld, B.; Noble, A.; Suk, H.; Jaroszynski, D. A.

    2017-01-01

    Ultra-intense, narrow-bandwidth, electromagnetic pulses have become important tools for exploring the characteristics of matter. Modern tuneable high-power light sources, such as free-electron lasers and vacuum tubes, rely on bunching of relativistic or near-relativistic electrons in vacuum. Here we present a fundamentally different method for producing narrow-bandwidth radiation from a broad spectral bandwidth current source, which takes advantage of the inflated radiation impedance close to cut-off in a medium with a plasma-like permittivity. We find that by embedding a current source in this cut-off region, more than an order of magnitude enhancement of the radiation intensity is obtained compared with emission directly into free space. The method suggests a simple and general way to flexibly use broadband current sources to produce broad or narrow bandwidth pulses. As an example, we demonstrate, using particle-in-cell simulations, enhanced monochromatic emission of terahertz radiation using a two-colour pumped current source enclosed by a tapered waveguide.

  11. Bright Ideas.

    ERIC Educational Resources Information Center

    Armstrong, Phil

    1999-01-01

    Discusses how to upgrade lighting technology in schools to reduce energy consumption and cut operating costs. Explores fixture efficiency using ballast and lamp upgrades and compact fluorescent lights. Other ideas include changing exit signs to ones that use less wattage, improving luminary efficiency through use of reflectors and shielding…

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuuichi Tooya; Tadahiro Washiya; Kenji Koizumi

    Japan Atomic Energy Agency (JAEA) has been leading feasibility study on commercialized fast reactor cycle systems in Japan. In this study, we have proposed a new disassembly technology by mechanical disassembly system that consists of a mechanical cutting step and a wrapper tube pulling step. In the mechanical disassembly system, high durability mechanical tool grinds the wrapper tube (Slit-cut (S/C) operation in circle direction), and then the wrapper tube is pulled out and removed from the fuel assembly. Then the fuel pins are cut (Crop-cut (C/C) operation at entrance nozzle side) and the entrance nozzle is removed. The fuel pinsmore » are transported to the shearing device in next process. The Fundamental tests were carried out with simulated FBR fuel pins and wrapper tube, and cutting performance and wrapper tube pulling performance has been confirmed by engineering scale. As results, we established an efficient disassembly procedure and the fundamental design of mechanical disassembly system. (authors)« less

  13. Efficient Interconnection Schemes for VLSI and Parallel Computation

    DTIC Science & Technology

    1989-08-01

    Definition: Let R be a routing network. A set S of wires in R is a (directed) cut if it partitions the network into two sets of processors A and B ...such that every path from a processor in A to a processor in B contains a wire in S. The capacity cap(S) is the number of wires in the cut. For a set of...messages M, define the load load(M, S) of M on a cut S to be the number of messages in M from a processor in A to a processor in B . The load factor

  14. Application of dynamic milling in stainless steel processing

    NASA Astrophysics Data System (ADS)

    Shan, Wenju

    2017-09-01

    This paper mainly introduces the method of parameter setting for NC programming of stainless steel parts by dynamic milling. Stainless steel is of high plasticity and toughness, serious hard working, large cutting force, high temperature in cutting area and easy wear of tool. It is difficult to process material. Dynamic motion technology is the newest NC programming technology of Mastercam software. It is an advanced machining idea. The tool path generated by the dynamic motion technology is more smooth, more efficient and more stable in the machining process. Dynamic motion technology is very suitable for cutting hard machining materials.

  15. Machining the Integral Impeller and Blisk of Aero-Engines: A Review of Surface Finishing and Strengthening Technologies

    NASA Astrophysics Data System (ADS)

    Fu, Youzhi; Gao, Hang; Wang, Xuanping; Guo, Dongming

    2017-05-01

    The integral impeller and blisk of an aero-engine are high performance parts with complex structure and made of difficult-to-cut materials. The blade surfaces of the integral impeller and blisk are functional surfaces for power transmission, and their surface integrity has significant effects on the aerodynamic efficiency and service life of an aero-engine. Thus, it is indispensable to finish and strengthen the blades before use. This paper presents a comprehensive literature review of studies on finishing and strengthening technologies for the impeller and blisk of aero-engines. The review includes independent and integrated finishing and strengthening technologies and discusses advanced rotational abrasive flow machining with back-pressure used for finishing the integral impeller and blisk. A brief assessment of future research problems and directions is also presented.

  16. Burst-mode optical label processor with ultralow power consumption.

    PubMed

    Ibrahim, Salah; Nakahara, Tatsushi; Ishikawa, Hiroshi; Takahashi, Ryo

    2016-04-04

    A novel label processor subsystem for 100-Gbps (25-Gbps × 4λs) burst-mode optical packets is developed, in which a highly energy-efficient method is pursued for extracting and interfacing the ultrafast packet-label to a CMOS-based processor where label recognition takes place. The method involves performing serial-to-parallel conversion for the label bits on a bit-by-bit basis by using an optoelectronic converter that is operated with a set of optical triggers generated in a burst-mode manner upon packet arrival. Here we present three key achievements that enabled a significant reduction in the total power consumption and latency of the whole subsystem; 1) based on a novel operation mechanism for providing amplification with bit-level selectivity, an optical trigger pulse generator, that consumes power for a very short duration upon packet arrival, is proposed and experimentally demonstrated, 2) the energy of optical triggers needed by the optoelectronic serial-to-parallel converter is reduced by utilizing a negative-polarity signal while employing an enhanced conversion scheme entitled the discharge-or-hold scheme, 3) the necessary optical trigger energy is further cut down by half by coupling the triggers through the chip's backside, whereas a novel lens-free packaging method is developed to enable a low-cost alignment process that works with simple visual observation.

  17. 46 CFR 58.25-50 - Rudder stops.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-50 Rudder stops. (a) Power-operated steering gear must have arrangements for cutting off power to the gear before the rudder reaches the stops. These arrangements must be...

  18. 46 CFR 58.25-50 - Rudder stops.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-50 Rudder stops. (a) Power-operated steering gear must have arrangements for cutting off power to the gear before the rudder reaches the stops. These arrangements must be...

  19. 46 CFR 58.25-50 - Rudder stops.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-50 Rudder stops. (a) Power-operated steering gear must have arrangements for cutting off power to the gear before the rudder reaches the stops. These arrangements must be...

  20. 46 CFR 58.25-50 - Rudder stops.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-50 Rudder stops. (a) Power-operated steering gear must have arrangements for cutting off power to the gear before the rudder reaches the stops. These arrangements must be...

  1. 46 CFR 58.25-50 - Rudder stops.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-50 Rudder stops. (a) Power-operated steering gear must have arrangements for cutting off power to the gear before the rudder reaches the stops. These arrangements must be...

  2. Laser cutting of ultra-thin glasses based on a nonlinear laser interaction effect

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Wu, Zhouling

    2013-07-01

    Glass panel substrates have been widely used in consumer electronics such as in flat panel TVs, laptops, and cell phones. With the advancement in the industry, the glass substrates are becoming thinner and stronger for reduced weight and volume, which brings great challenges for traditional mechanical processes in terms of cut quality, yield, and throughput. Laser glass cutting provides a non-contact process with minimum impact and superior quality compared to the mechanical counterparts. In this paper, we presented recent progresses in advanced laser processing of ultra-thin glass substrates, especially laser-cutting of ultra-thin glasses by a high power laser through a nonlinear interaction effect. Our results indicate that this technique has great potential of application for mass production of ultra-thin glass substrates.

  3. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts,more » and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative cooling stage, in which the incoming air is in thermal contact with a moistened surface that evaporates the water into a separate air stream. As the evaporation cools the moistened surface, it draws heat from the incoming air without adding humidity to it. A number of cooling cycles have been developed that employ indirect evaporative cooling, but DEVAP achieves a superior efficiency relative to its technological siblings.« less

  4. Effect of powdered activated carbon technology on short-cut nitrogen removal for coal gasification wastewater.

    PubMed

    Zhao, Qian; Han, Hongjun; Xu, Chunyan; Zhuang, Haifeng; Fang, Fang; Zhang, Linghan

    2013-08-01

    A combined process consisting of a powdered activated carbon technology (PACT) and short-cut biological nitrogen removal reactor (SBNR) was developed to enhance the removal efficiency of the total nitrogen (TN) from the effluent of an upflow anaerobic sludge bed (UASB) reactor, which was used to treat coal gasification wastewater (CGW). The SBNR performance was improved with the increasing of COD and TP removal efficiency via PACT. The average removal efficiencies of COD and TP in PACT were respectively 85.80% and 90.30%. Meanwhile, the NH3-N to NO2-N conversion rate was achieved 86.89% in SBNR and the total nitrogen (TN) removal efficiency was 75.54%. In contrast, the AOB in SBNR was significantly inhibited without PACT or with poor performance of PACT in advance, which rendered the removal of TN. Furthermore, PAC was demonstrated to remove some refractory compounds, which therefore improved the biodegradability of the coal gasification wastewater. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. In vitro culture conditions and OeARF and OeH3 expressions modulate adventitious root formation from oleaster (Olea europaea L. subsp. europaea var. sylvestris) cuttings.

    PubMed

    Chiappetta, Adriana; Gagliardi, Cinzia; Bruno, Leonardo; Bitonti, Maria Beatrice

    2014-01-01

    Olea europaea L. subsp. europaea var. sylvestris, also named oleaster, is the wild form of olive and it is used as rootstock and pollen donor for many cultivated varieties. An efficient procedure for in vitro propagation of oleaster was established in this study. A zeatin concentration of 2.5 mg/L was effective to induce an appreciable vegetative growth. Also high rooting efficiency was obtained by using a short IBA pulse, followed by two different IBA concentrations in the culture medium. With the aim to enlarge knowledge on the molecular aspects of adventitious rooting, we also evaluated the transcriptional modulation of an ARFs member and HISTONE H3 genes, involved in auxin signaling and cell replication, respectively, during the root induction phase of cuttings. The obtained results suggest that the selected genes, as markers of the induction phase, could be very useful for setting up efficient culture conditions along the rooting process, thus increasing micropropagation efficiency.

  6. Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor)

    2014-01-01

    A Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill includes a horn actuator having high power piezoelectric materials and a flexure pre-stress to increase the actuators effectiveness. The drill is a low mass, low power, compact coring drill measuring 20-cm high by 7-cm diameter and having a total weight of 2 kg including drive electronics. Using an average power of 50-Watts, the drill basalt is expected to cut basalt at a rate of 0.2 cm/min down to depth of 10-cm and create cuttings and an intact core. The drill is expected to operate under different environments including Martian ambient (6 Torr and down to -50 degree C), and liquid nitrogen temperatures (77 K) and low pressure (<<1 Torr) to simulate lunar polar and Europa conditions. Materials expected to be sampled include Kaolinite, Saddleback Basalt, Limestone, Volcanic Breccia, Siltstone, ice, permafrost and layered rocks with different hardness.

  7. Edge-facet pumped, multi-aperture, thin-disk laser geometry for very high average power output scaling

    DOEpatents

    Zapata, Luis E.

    2004-12-21

    The average power output of a laser is scaled, to first order, by increasing the transverse dimension of the gain medium while increasing the thickness of an index matched light guide proportionately. Strategic facets cut at the edges of the laminated gain medium provide a method by which the pump light introduced through edges of the composite structure is trapped and passes through the gain medium repeatedly. Spontaneous emission escapes the laser volume via these facets. A multi-faceted disk geometry with grooves cut into the thickness of the gain medium is optimized to passively reject spontaneous emission generated within the laser material, which would otherwise be trapped and amplified within the high index composite disk. Such geometry allows the useful size of the laser aperture to be increased, enabling the average laser output power to be scaled.

  8. Influence of shear cutting parameters on the fatigue behavior of a dual-phase steel

    NASA Astrophysics Data System (ADS)

    Paetzold, I.; Dittmann, F.; Feistle, M.; Golle, R.; Haefele, P.; Hoffmann, H.; Volk, W.

    2017-09-01

    The influence of the edge condition of car body and chassis components made of steel sheet on fatigue behavior under dynamic loading presents a major challenge for automotive manufacturers and suppliers. The calculated lifetime is based on material data determined by the fatigue testing of specimens with polished edges. Prototype components are often manufactured by milling or laser cutting, whereby in practice, the series components are produced by shear cutting due to its cost-efficiency. Since the fatigue crack in such components usually starts from a shear cut edge, the calculated and experimental determined lifetime will vary due to the different conditions at the shear cut edges. Therefore, the material data determined with polished edges can result in a non-conservative component design. The aim of this study is to understand the relationship between the shear cutting process and the fatigue behavior of a dual-phase steel sheet. The geometry of the shear cut edge as well as the depth and degree of work hardening in the shear affected zone can be adjusted by using specific shear cutting parameters, such as die clearance and cutting edge radius. Stress-controlled fatigue tests of unnotched specimens were carried out to compare the fatigue behavior of different edge conditions. By evaluating the results of the fatigue experiments, influential shear cutting parameters on fatigue behavior were identified. It was possible to assess investigated shear cutting strategies regarding the fatigue behavior of a high-strength steel DP800.

  9. Efficient Cells Cut the Cost of Solar Power

    NASA Technical Reports Server (NTRS)

    2013-01-01

    If you visit Glenn Research Center, you might encounter a photovoltaic (PV) array that looks unlike anything you've ever seen. In fact, what one would normally identify as the panel is actually a series of curved mirrors called solar concentrators, engineered to reflect sunlight rather than absorb it. These concentrators gather, intensify, and focus sun beams upward, aiming at a fixture containing specialized silicon concentrated PV chips the actual solar cells. If you stay by the array for a while, you'll notice that the solar concentrators follow the path of the sun throughout the day, changing position to best capture and utilize the sunlight. The specialized chips that make the technology possible are the brainchild of Bernard Sater, an engineer who had worked at Glenn since the early 1960s before retiring to pursue his unique ideas for harnessing solar power. Sater contributed to multiple PV projects in the latter part of his career at the Center, including research and development on the International Space Station s solar arrays. In his spare time, he enjoyed tinkering with new approaches to solar power, experiments that resulted in the system installed at Glenn today. Sater s basic idea had two components. First, he wanted to create a silicon cell that was smaller, more efficient, and much lower cost than those available at the time. To ensure that the potential of such a chip could be realized, he also planned on pairing it with a system that could concentrate sunlight and focus it directly on the cell. When he retired from Glenn in 1994 to focus on researching and developing the technology full time, Sater found that NASA was interested in the concept and ready to provide funding, facilities, and expertise in order to assist in its development.

  10. The DSM-5 Self-Rated Level 1 Cross-Cutting Symptom Measure as a Screening Tool.

    PubMed

    Bastiaens, Leo; Galus, James

    2018-03-01

    The DSM-5 Self-Rated Level 1 Cross-Cutting Symptom Measure was developed to aid clinicians with a dimensional assessment of psychopathology; however, this measure resembles a screening tool for several symptomatic domains. The objective of the current study was to examine the basic parameters of sensitivity, specificity, positive and negative predictive power of the measure as a screening tool. One hundred and fifty patients in a correctional community center filled out the measure prior to a psychiatric evaluation, including the Mini International Neuropsychiatric Interview screen. The above parameters were calculated for the domains of depression, mania, anxiety, and psychosis. The results showed that the sensitivity and positive predictive power of the studied domains was poor because of a high rate of false positive answers on the measure. However, when the lowest threshold on the Cross-Cutting Symptom Measure was used, the sensitivity of the anxiety and psychosis domains and the negative predictive values for mania, anxiety and psychosis were good. In conclusion, while it is foreseeable that some clinicians may use the DSM-5 Self-Rated Level 1 Cross-Cutting Symptom Measure as a screening tool, it should not be relied on to identify positive findings. It functioned well in the negative prediction of mania, anxiety and psychosis symptoms.

  11. Understanding nonlinear vibration behaviours in high-power ultrasonic surgical devices

    PubMed Central

    Mathieson, Andrew; Cardoni, Andrea; Cerisola, Niccolò; Lucas, Margaret

    2015-01-01

    Ultrasonic surgical devices are increasingly used in oral, craniofacial and maxillofacial surgery to cut mineralized tissue, offering the surgeon high accuracy with minimal risk to nerve and vessel tissue. Power ultrasonic devices operate in resonance, requiring their length to be a half-wavelength or multiple-half-wavelength. For bone surgery, devices based on a half-wavelength have seen considerable success, but longer multiple-half-wavelength endoscopic devices have recently been proposed to widen the range of surgeries. To provide context for these developments, some examples of surgical procedures and the associated designs of ultrasonic cutting tips are presented. However, multiple-half-wavelength components, typical of endoscopic devices, have greater potential to exhibit nonlinear dynamic behaviours that have a highly detrimental effect on device performance. Through experimental characterization of the dynamic behaviour of endoscopic devices, it is demonstrated how geometrical features influence nonlinear dynamic responses. Period doubling, a known route to chaotic behaviour, is shown to be significantly influenced by the cutting tip shape, whereas the cutting tip has only a limited effect on Duffing-like responses, particularly the shape of the hysteresis curve, which is important for device stability. These findings underpin design, aiming to pave the way for a new generation of ultrasonic endoscopic surgical devices. PMID:27547081

  12. Power Electronics and Electric Machines | Transportation Research | NREL

    Science.gov Websites

    -to resource for information from cutting-edge thermal management research, making wide-scale adoption battery, the motor, and other powertrain components. NREL's thermal management and reliability research is thermal management technologies to improve performance, cost, and reliability for power electronics and

  13. Development of AISI 316L stainless steel coronary stent

    NASA Astrophysics Data System (ADS)

    García-López, Erika; Siller, Héctor R.; Rodríguez, Ciro A.

    2018-02-01

    Coronary stents are manufactured through a sequence of processes and each step demands the process control to assure surface quality. This study is focused on the influence of laser cutting parameters and electropolishing on average surface roughness and back wall dross percentage for fiber laser cutting of AISI 316L coronary struts. A preliminary test and a design of experiments (DOE) were implemented to determine the limiting cutting conditions and the effect of these parameters on quality indicators. Preliminary results identify four cutting zones from a non-cut zone to a burned zone, in a frequency range between 1000 and 1500 Hz and a peak power between 160 to 180 W for clean cuts. From the DOE results, several interactions between factors were observed; however, a laser frequency of 1000 to 1500 Hz and a cutting speed of 250 mm/min minimize the backwall dross percentage and the surface roughness to values less than 2% and 0.9 μm, respectively. After the laser conditions selection, coronary stents were manufactured and electropolished to reduce the surface roughness on the strut edge. Electropolishing results indicate a surface roughness reduction from 0.9 μm to 0.3 μm after 300 s of electropolishing time.

  14. Quantum Max-flow/Min-cut

    NASA Astrophysics Data System (ADS)

    Cui, Shawn X.; Freedman, Michael H.; Sattath, Or; Stong, Richard; Minton, Greg

    2016-06-01

    The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts of the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.

  15. Optimized path planning for soft tissue resection via laser vaporization

    NASA Astrophysics Data System (ADS)

    Ross, Weston; Cornwell, Neil; Tucker, Matthew; Mann, Brian; Codd, Patrick

    2018-02-01

    Robotic and robotic-assisted surgeries are becoming more prevalent with the promise of improving surgical outcomes through increased precision, reduced operating times, and minimally invasive procedures. The handheld laser scalpel in neurosurgery has been shown to provide a more gentle approach to tissue manipulation on or near critical structures over classical tooling, though difficulties of control have prevented large scale adoption of the tool. This paper presents a novel approach to generating a cutting path for the volumetric resection of tissue using a computer-guided laser scalpel. A soft tissue ablation simulator is developed and used in conjunction with an optimization routine to select parameters which maximize the total resection of target tissue while minimizing the damage to surrounding tissue. The simulator predicts the ablative properties of tissue from an interrogation cut for tuning and simulates the removal of a tumorous tissue embedded on the surface of healthy tissue using a laser scalpel. We demonstrate the ability to control depth and smoothness of cut using genetic algorithms to optimize the ablation parameters and cutting path. The laser power level, cutting rate and spacing between cuts are optimized over multiple surface cuts to achieve the desired resection volumes.

  16. Micro and nano-structured green gallium indium nitride/gallium nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Stark, Christoph J. M.

    Light-emitting diodes (LEDs) are commonly designed and studied based on bulk material properties. In this thesis different approaches based on patterns in the nano and micrometer length scale range are used to tackle low efficiency in the green spectral region, which is known as “green gap”. Since light generation and extraction are governed by microscopic processes, it is instructive to study LEDs with lateral mesa sizes scaled to the nanometer range. Besides the well-known case of the quantum size effect along the growth direction, a continuous lateral scaling could reveal the mechanisms behind the purported absence of a green gap in nanowire LEDs and the role of their extraction enhancement. Furthermore the possibility to modulate strain and piezoelectric polarization by post growth patterning is of practical interest, because the internal electric fields in conventional wurtzite GaN LEDs cause performance problems. A possible alternative is cubic phase GaN, which is free of built-in polarization fields. LEDs on cubic GaN could show the link between strong polarization fields and efficiency roll-off at high current densities, also known as droop. An additional problem for all nitride-based LEDs is efficient light extraction. For a planar GaN LED only roughly 8% of the generated light can be extracted. Novel lightextraction structures with extraction-favoring geometry can yield significant increase in light output power. To investigate the effect of scaling the mesa dimension, micro and nano-sized LED arrays of variable structure size were fabricated. The nano-LEDs were patterned by electron beam lithography and dry etching. They contained up to 100 parallel nano-stripe LEDs connected to one common contact area. The mesa width was varied over 1 μm, 200 nm, and 50 nm. These LEDs were characterized electrically and optically, and the peak emission wavelength was found to depend on the lateral structure size. An electroluminescence (EL) wavelength shift of 3 nm towards smaller values was observed when the stripe width was reduced from 1 μm to 50 nm. At the same time a strong fourfold enhancement of the light emission from the patterned region over the unpatterned area was observed. Micro-patterned LEDs showed non-linear scaling of the light output power, and an enhancement of 39 % was achieved for structures with an area fill ratio of 0.5 over an LED with square mesa. Growth of cubic GaN and cubic GaInN/GaN LEDs was shown by M-OVPE in Vshaped grooves formed by the {111} planes of etched silicon. SEM images of the GaN layer in small ( 0.5 μm) regions show a contrast change where the phase boundary between cubic and wurtzite GaN is expected to occur. The growth parameter space is explored for optimal conditions while minimizing the alloying problem for GaN growth on Si. The cubic GaN phase is confirmed by electron back-scatter diffraction (EBSD) in the V-groove center, whereas wurtzite GaN is found near the groove edges. Luminescence of undoped GaN and GaInN/GaN multi-quantum well structures was studied by cathodoluminescence (CL). The undoped cubic GaN structure showed strong band-edge luminescence at 385 nm (3.22 eV) at 78 K, whereas for the MQW device strong emission at 498 nm is observed, even at room temperature. Full cubic LED structures were grown, and wavelength-stable electroluminescence at 489 nm was demonstrated. LEDs with integrated light extraction structures are grown on free-standing GaN substrates with different off-cut angles. The devices with different off-cut show pronounced features at the top surface that also penetrate the active region. For a 2.24° off-cut, these features resemble fish scales, where the feature sizes are in the μm-range. The 2.24° off-cut LED shows a 3.6-fold increased light output power compared to a LED on virtually on-axis substrate with 0.06° off-cut. The enhancement found in the fish scale LEDs is attributed to increased light scattering, effectively reducing the fraction of trapped light. These results show the potential of structures on the micro and nanometer scale for LED device performance and the progress on cubic GaN could open alternative ways to understand the droop problem.

  17. densityCut: an efficient and versatile topological approach for automatic clustering of biological data

    PubMed Central

    Ding, Jiarui; Shah, Sohrab; Condon, Anne

    2016-01-01

    Motivation: Many biological data processing problems can be formalized as clustering problems to partition data points into sensible and biologically interpretable groups. Results: This article introduces densityCut, a novel density-based clustering algorithm, which is both time- and space-efficient and proceeds as follows: densityCut first roughly estimates the densities of data points from a K-nearest neighbour graph and then refines the densities via a random walk. A cluster consists of points falling into the basin of attraction of an estimated mode of the underlining density function. A post-processing step merges clusters and generates a hierarchical cluster tree. The number of clusters is selected from the most stable clustering in the hierarchical cluster tree. Experimental results on ten synthetic benchmark datasets and two microarray gene expression datasets demonstrate that densityCut performs better than state-of-the-art algorithms for clustering biological datasets. For applications, we focus on the recent cancer mutation clustering and single cell data analyses, namely to cluster variant allele frequencies of somatic mutations to reveal clonal architectures of individual tumours, to cluster single-cell gene expression data to uncover cell population compositions, and to cluster single-cell mass cytometry data to detect communities of cells of the same functional states or types. densityCut performs better than competing algorithms and is scalable to large datasets. Availability and Implementation: Data and the densityCut R package is available from https://bitbucket.org/jerry00/densitycut_dev. Contact: condon@cs.ubc.ca or sshah@bccrc.ca or jiaruid@cs.ubc.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153661

  18. An Experimental Study of Cutting Performances of Worn Picks

    NASA Astrophysics Data System (ADS)

    Dogruoz, Cihan; Bolukbasi, Naci; Rostami, Jamal; Acar, Cemil

    2016-01-01

    The best means to assess rock cuttability and efficiency of cutting process for using mechanical excavation is specific energy (SE), measured in full-scale rock cutting test. This is especially true for the application of roadheaders, often fitted with drag-type cutting tools. Radial picks or drag bits are changed during the operation as they reach a certain amount of wear and become blunt. In this study, full-scale cutting tests in different sedimentary rock types with bits having various degree of wear were used to evaluate the influence of bit wear on cutting forces and specific energy. The relationship between the amount of wear as represented by the size of the wear flats at the tip of the bit, and cutting forces as well as specific energy was examined. The influence of various rock properties such as mineral content, uniaxial compressive strength, tensile strength, indentation index, shore hardness, Schmidt hammer hardness, and density with required SE of cutting using different levels of tool wear was also studied. The preliminary analysis of the data shows that the mean cutting forces increase 2-3 times and SE by 4-5 times when cutting with 4 mm wear flat as compared to cutting with new or sharp wedge shape bits. The grain size distribution of the muck for cutting different rock types and different level of bit wear was analyzed and discussed. The best fit prediction models for SE based on statistical analysis of laboratory test results are introduced. The model can be used for estimating the performance of mechanical excavators using radial tools, especially roadheaders, continuous miners and longwall drum shearers.

  19. Decommissioning of German Research Reactors Under the Governance of the Federal Ministry of Education and Research - 12154

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weigl, M.

    2012-07-01

    Since 1956, nuclear research and development (R and D) in Germany has been supported by the Federal Government. The goal was to help German industry to become competitive in all fields of nuclear technology. National research centers were established and demonstration plants were built. In the meantime, all these facilities were shut down and are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactormore » with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. Another big project was finished in 2008. The Forschungs-Reaktor Juelich 1 (FRJ1), a research reactor with a thermal power of 10 MW was completely dismantled and in September 2008 an oak tree was planted on a green field at the site, where the FRJ1 was standing before. This is another example for German success in the field of D and D. Within these projects a lot of new solutions and innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). Some examples are underwater-cutting technologies like plasma arc cutting and contact arc metal cutting. This clearly shows that research on the field of D and D is important for the future. Moreover, these research activities are important to save the know-how in nuclear engineering in Germany and will enable enterprises to compete on the increasing market of D and D services. The author assumes that an efficient decommissioning of nuclear installations will help stabilize the credibility of nuclear energy. Some critics of nuclear energy are insisting that a return to 'green field sites' is not possible. The successful completion of two big D and D projects (HDR and KKN), which reached green field conditions, are showing quite the contrary. Moreover, research on D and D technologies offers the possibility to educate students on a field of nuclear technology, which will be very important in the future. In these days D and D companies are seeking for a lot of young engineers and this will not change in the coming years. (authors)« less

  20. [Improvement of magnetic resonance phase unwrapping method based on Goldstein Branch-cut algorithm].

    PubMed

    Guo, Lin; Kang, Lili; Wang, Dandan

    2013-02-01

    The phase information of magnetic resonance (MR) phase image can be used in many MR imaging techniques, but phase wrapping of the images often results in inaccurate phase information and phase unwrapping is essential for MR imaging techniques. In this paper we analyze the causes of errors in phase unwrapping with the commonly used Goldstein Brunch-cut algorithm and propose an improved algorithm. During the unwrapping process, masking, filtering, dipole- remover preprocessor, and the Prim algorithm of the minimum spanning tree were introduced to optimize the residues essential for the Goldstein Brunch-cut algorithm. Experimental results showed that the residues, branch-cuts and continuous unwrapped phase surface were efficiently reduced and the quality of MR phase images was obviously improved with the proposed method.

Top